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Purpose: To illustrate how generalizability theory is useful in
assessing the reliability of classroom observation instruments. The
conditions under which a given instrument is used vary from situation
to situation, which changes the reliability of the instrument. A new
index of reliability, called the coefficient of generalizability, is
given as an index of how well one can generalize from the instrument
to the universe score according to the conditions of observation.

Method: Data from an instrument assessing verbal behavior are
reanalyzed using generalizability theory. Three raters observed two
classes of five student teachers at the Stanford. University School of
Education on two occasions. Three facets (Class, Occasion, and Rater)
were specified for study. Analysis of variance yielded the components
of variance due to these facets, and ratio of the estimated universe.
Score variance to the observed-score variance was computed as the
'coefficient of generalizability. The possible effect of various hypo-
thetical conditions of observation on the coefficient of generalizability
was considered.

Results: The coefficient of generalizability for one rater ob-
serving one class on one day was near zero for most of the summary
variables for the instrument. The coefficient was increased when the
number of observers and the number of days of observation were increased.
This result was directly attributable to rater bias. Perhaps different
observer training procedures could improve the usefulness of the instrument.

Target groups: Students of tests and measurements; educational
researchers.
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Introductory Statement

The Center is concerned with the shortcomings of teaching in Ameri-
can schools: the ineffectiveness of many American teachers in promoting
achievement of higher cognitive objectives, in engaging their students in
the tasks of school learning, and, especially, in serving the needs of
students from low-income areas. Of equal concern is the inadequacy of
American schools as environments. fostering the teachers' own motivations,
skills, and professionalism.

The Center employs the resources of the behavioral sciences--theoret-
ical and methodological--in seeking and applying knowledge basic to achieve-
ment of its objectives. Analysis of the Center's problem area has resulted
in three programs: Heuristic Teaching, Teaching Students from Low-Income
Areas, and the Environment for Teaching. Drawing primarily upon psychology
and sociology, and also upon economics, political science, and anthropology,
the Center has formulated integrated programs of research, development,
demonstration, and dissemination in these three areas. In the Heuristic
Teaching area, the strategy is to develop a model teacher training system
integrating components that dependably enhance teaching skill. In the
program on Teaching Students from Low-Income Areas, the strategy is to
develop materials and procedures for engaging and motivating such students
and their teachers. In the program on Environment for Teaching, the strategy
is to develop patterns of school organization and teacher evaluation that
will help teachers function more professionally, at higher levels of morale
and commitment.

The difficulty of constructing a reliable instrument for observing
classroom behavior often arises from failure to understand that the
instrument will be used under different conditions from those in which
it was devised. The author suggests that Cronbach's coefficient of gener-
alizability offers a solution to the problem. This paper was prepared as a
part of the Training Studies project of the Heuristic Teaching program.
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Abstract

This paper illustrates how generalizability theory can be used in
assessing the reliability of classroom observation instruments. A new
index of reliability, called the coefficient of generalizability, is
used to measure how well one can generalize from the observation instru-
ment to the universe score in different conditions of observation. Data
from an instrument assessing verbal behavior are reanalyzed. Three raters
observed two classes of students on two days. The coefficient of gener-
alizability for one rater observing one class on one day was near zero
for most of the summary variables for the instrument; the coefficient
was increased when the number of observers and the number of observations
(days) were increased. This result could be directly attributed to rater
bias. The instrument may be improved by changing rater training procedures.
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USING GENERALIZABILITY THEORY AND MULTIFACET DESIGNS

IN THE VALIDATION OF A CLASSROOM OBSERVATION

INSTRUMENT

J. Philip Baker

Reliability is a principal concern in the construction of instru-

ments for observing classroom behavior. In the statistical literature

various formulae exist for computing reliability coefficients. Unfor-

tunately, these are sometimes used without full understanding of their

meaning. One frequent cause of the misunderstanding and misinterpreta-

tion of reliability coefficients is that the conditions under which an

instrument is constructed often are not the same as the conditions under

which the instrument is used for evaluative or decision-making purposes.

In such situations, previously published reliability information may no

longer apply.

Cronbach et al. (in press) have outlined a solution to the problem:

they recommend that instead of publishing only reliability data (which

are valid only for the conditions defined in the validation process), the

researcher should describe as many facets (general classes into which con-

ditions of the study fall) of the observation process as might be impor-

tant in the use of the instrument, and should include the variance com-

ponent for each of these facets. The user is then able to construct

coefficients appropriate to his own particular needs.

The Cronbach et al. report uses a new index of reliability, called

the coefficient of generalizability, rather than the traditional reliabil-

ity coefficient. For each facet there is a coefficient of generalizability

(intraclass correlation coefficient) that serves as an index for general-

izing from the instrument to the universe score defined by the facet. For

example, although a student gets only a sample of mathematical questions

on an ability test, a researcher would probably want to generalize the

The author, now at Stanford Research Institute, was formerly a
Research Assistant at the Center.



the student's performance to all possible math questions of comparable

concepts and difficulty (i.e., his math ability). The coefficient can

be computed using data from the validation study in a manner prescribed

by the conditions of decision study.

The following study will illustrate the use of a generalizability

coefficient, using an actual observation instrument, and will demonstrate

how the Cronbach procedure can shed new light on the validity of the

instrument.

Study of Verbal Behavior

Maria Flores-Hernandez (1970), in her doctoral dissertation at

Stanford University, developed a classroom observation instrument to

assess the verbal behavior of teacher and students during discussion

periods. Each sentence of the transcripts of the discussions was rated

in three general categories: Use of Previous Comments, Type of Concept-

ualization, and Level of Conceptualization. Each general category was

broken down into smaller subcategories representing different types of

verbal behavior, as follows:

Use of Previous Comments

A44. (Accepts-Advances): Speaker accepts previous idea or adds
to idea.

R-11.(Repeats-Rephrases): Speaker simply repeats or-rephrases..
earlier comments. .

EL (Elaborate's): Speaker_adds.own_ideas to.earlier.comments..

SU (Summarizes): Speaker summarizes what has been said earlier.

II. Type of Conceptualization

GM (Cognitive memory): Speaker is remembering earlier events.

CV (Convergent production): Speaker is synthesizing data to form
a conclusion.

DV (Divergent production): Speaker is taking a new approach to
the problem, is being creative, or
is changing the subject.

EV (Evaluation): Speaker is judging the. worth, beauty, or cor-
rectness of something.
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III. Level of Conceptualization

Da (Date): Speaker is working with facts.

Co (Concepts): Speaker is working with concepts (one at a time).

Ge (Generalization): Speaker is working with a system of concepts.

A catch-all category called Administration was used by the raters

for sentences that did not fit in any of the three general categories of

the system. Sentences assigned to the catch-all category (9.5 percent of

the sentences in all) were not used in the analysis. In addition to the

ratings along the three categorical dimensions, actuarial counts of the

speaker (Teacher or Pupil) and the sentence type (Statement or Question)

were taken.

Observations were conducted in the classrooms of five Stanford interns

in the Secondary Teacher Education Program (STEP). Each teacher had two

classes. Each class was observed on two consecutive days. A stenographer

was present in each classroom, and tape recordings were also made of the

discussions. From these sources, typescripts were made, and these type-

scripts were then rated by three raters.

The Use of Previous Comments category originally had an additional

subcategory--Ignores (the previous comment)--but only 14 out of some

16,000 sentences were assigned to this category. Thus it was excluded

and those observations were dropped.

Although each of the three major categories could receive a numerical

"score" for each sentence, it was difficult to decide which of the sub-

categories represented the low end of the scale, and which the high end..

It was decided to assign each sentence to a category that represented the

intersection of the ratings in each of the three major categories; this

meant that there were now 48 variables (4 x 4 x 3). For example, a sen-

tence was placed in the A-A,CV,Co box if it received ratings of A-A in the

Use of Comments category, CV in the Type of Conceptualization category,

and Co in the Level of Conceptualization category.

Initially, the investigators were interested in looking for differ-

ences in the distribution of the tallies for each of the variables between

Teacher-Statements, Teacher-Questions, Pupil-Statements, and Pupil-Questions.

A computer program was written which tallied the ratings (a) for each class

v:4



discussion in the four above-mentioned sentence types, (b) for each class

regardless of sentence type, (c) for each sentence type across classes,

and (d) for the total number of sentences across classes and sentence

type. Nearly 15,000 entries were made in the summary table.

For each table, both raw scores and proportions were computed. Since

the proportions were small--usually less than 0.15--they were transformed

using the arc sine transformation to normalize their distributions.

The initial analyses were made using three facets: Class (2 levels),

Day (2 levels), and Rater (3 levels). A fourth variable, that of. Intern,

entered into the reanalysis of the data; it was this variable over which

I wished to generalize. Accordingly, a four-way analysis of variance

(ANOVA) was performed, each of the 48 variables receiving separate analysis.

The mean squares obtained from each analysis were used in continuing the

generalizability study.

At this point it is appropriate to explain the generalizability

methodology used, before proceeding to the results of the ANOVA.

Generalizability Techniques

The first step in this procedure is to identify components of vari-

ance. Components of variance can be extracted from mean squares by alge-

braic methods. For each mean square in the ANOVA table, an expression

representing its composition can be written. For example, in a fully

crossed design, each main effect term contains terms of all other inter-

action terms plus the main effect term; these terms are multiplied by the

product of the sample sizes of the variables that do not appear in each

term.

The notation used in this discussion is as follows: p , i , and j

represent the main effects in the ANOVA table. p stands for the popu-

lation that is the object of generalization (usually persons), and i

and j are the sets of conditions (facets) that can also be objects of

generalization. pi , pj , ij , and pij are the interaction terms in

the ANOVA table. a
2
(p) represents the variance due to p . The

variance due to the other terms in the table is similarly notated. n ,

n
'

and nj refer to the sample sizes of p , i , and j respectively.



n a
2
(p) + a (pi,e) is interpreted as the sum of the product of the

sample size of i times the variance due to p plus the variance due

to the p x i interaction (this last term being confounded with the

error, or residual, varianceinthiscase). The following examples illustrate

mean square expressions for 2- and 3-way ANOVA tables.

2-way:

3-way:

Expected Mean Square
Source Component Expression

n a
2
(p) + a

2
(pi,e)

n a
2
(i) + a

2
(pi,e)

P.

pi,e a
2
(pi,e)

n
i
n a

2
(p) + nia

2
(p ) + n

J
a
2
(pi) + a

2
(pij,e)

n
P
n
i
a
2
(i) + n

P
a2(ij) + n

i
a
2
(pi) + a

2
(pij,e)

j n
p
n
i
a
2
(j) + n

i
a2(pj) + p

P
a
2
(ij) + a

2
(pij,e)

Pi n
i

2
a
2
(pi) + a (pij , e)

Pi n
i
a
2
(pj) + a2(pij,e)

ij n a
2
(ij) + a2(pij,e)

pij,e a
2
(pij e)

In looking at the 2-way table, it can be seen that the value of the pi,e

term (also called the residual) is simply the estimate of the pi and e

(error) components provided by ANOVA computer programs; the residual is

computed by subtracting the grand mean, row, and column effects from each

observation in turn, squaring this result, summing over all observations,

and dividing by the appropriate number of degrees of freedom. The pi,e

component, then, in analyses where there is only one observation in each

cell, represents whatever variance is not accounted for by the main effects

(rows and columns). If there is more than one observation per cell, then

the pi,e term becomes an interaction term (pi), and an additional term

(e) is available as the residual, or error, term. This discussion is con-

fined to the one observation per cell situation. In looking at the

10



expression for the p term, it can be seen that by subtracting the pi,e

term, ni times the variance of p remains (n
i
a
2
(p)). This is because the

variance of p has been sampled n
i
times, and the average has not yet been

computed in the mean square term. Dividing nia
2
(p) by ni leaves us with

2
a (p), which is the variance attributable to facet p. The same reasoning

applies to extracting the component for i.

The 3-way table presents a more complex situation, but the same

principles apply. The value of the residual component (a
2
(pij,e)) is

directly available as the mean square for the residual. To obtain the

components for each source in the table, these steps may be followed.

1. Subtract the residual value from each of the interaction mean

square values. Divide each of these results by the appropriate

n value. (E.g., the pi component is obtained by subtracting

MS
pij,e

from MS
Pi

and dividing the result by n since j is the

variable not present in the pi expression.) We now have the

components of variance for each interaction term.

2. The formula for computing the component for j is

2
a (j) = MS - MS - MS + MS

13 Pi Pii,e

The residual term is added, rather than subtracted, at the end

of the expression because both MS
pi

and MS contain the

residual (so it is subtracted twice), but the expression for

a2a (j) contains the residual only once.

3. The p and i components may be extracted using similar equations:

a
2
(i) = MS

i
- MS

pi
- MS

ij
+ MS

pij,e

a.
2
(p) = MS

P
- MS

Pi
- MS

Pi
+ MS

pij,e

Having derived the components of variance for each source, the next

step is to find the discrepancy between the observed scores for each

variable and the universe mean; this is done in a manner that represents

an intention to generalize over all or selected facets. To generalize

over all facets, X TT Mp is needed. The Mp indicates that generali-
p".0...

zation is over all facets, and the capital IJ denotes all conditions i

and all j. The symbol for the discrepancy score is Apu. Then the
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within-class standard deviation is a(A). a
2
(A) can be represented in

terms of components of A. Using the Cronbach et al. notation,
F-

will

stand for all terms of the component M - U. Similarly M
pI
- will stand

for M
pI

- Mp - M
I
+ M.

In the reanalysis of the Flores-Hernandez study, M represents the

mean of the universe of classes conducted by the interns. Since there

are three obvious facets which could be examined, the notation for observed

scores could be X
pIJK.

Breaking down the terms of XPIJK yields:

M Mp- 1- MI- + MJ- + MK- + MpJ- 1- MIA- ma" + +

MpIJ- MpJe MIJK- MpIJK,e-

The terms of M are M + M A
pI

is found by subtracting the expression

Mp

+ M
I

+
p K ,e The variance components of each of these terms is a

divided by their frequency of occurrence within each class (within p), and

the sum of the resulting values is the value of a
2
(A). This term repre-

sents the variance of the within-class discrepancy.

Of final interest in this analysis will be the coefficient of gener-

alizability, which has already been introduced as a reliability coefficient

for a particular universe of generalization. It is estimated by the ratio

of the estimated universe-score variance to the expected observed-score

variance.

Results of Generalizability Reanalysis

In this study, all 15 terms of the ANOVA table, which would normally

appear in a 4-way fully crossed design, did not appear, since classes were

nested within interns. Also, results of the first analysis indicated that

the component for interns was relatively small. It was decided to elimi-

nate the Intern facet from the analysis, and consider only classes. This

left 10 classes, 3 raters, and 2 days in a fully crossed design.

The data using the 48-variable analysis were discouraging. It appeared

that rater bias provided most of the variance in the scores, and that reli-

ability was virtually nonexistent. It was then decided to look at marginal

totals of the 11 main classifications (A-A, R-R, EL, SU, CM, CV, DV, EV,

Da, Co, Ge).

12
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Table 1 shows the ANOVA summary for the A-A category across the

Teacher-Pupil and Statement-Question dimensions.

TABLE 1

Three-Way ANOVA Table for Category A-A

Source Mean Square df
Variance
Component

Proportion of
Variance

Accounted for

Class (C) 0.00618 9 -0.0011 0.000
Rater (R) 1.0475 2 0.0517 0.876
Day (D) 0.00798 1 0.0002 0.003
CR 0.01238 18 0.0056 0.095
CD 0.00188 9 0.0002 0.004
RD 0.00227 2 0.0001 0.002

Residual 0.00121 18 0.0012 0.020

The most arresting feature of this table is that 87 percent of the variance of

the scores in the A-A category comes from rater disagreement. In addi-

tion, nearly 10 percent of the variance is due to rater bias involving

the class being rated. Finally, only 2 percent of the variance is unac-

counted for, using this design.

Table 2 shows how the discrepancy (unaccounted) variance--a
2
(A)--

was computed. The variance of the discrepancy scores is 0.02. It might

appear that an error of about 0.04 (95 percent level) is acceptable, but

when we look at the generalizability coefficient, a different picture

emerges.

The coefficient of generalizability is estimated by the ratio of the

estimated universe-score variance to the expected observed-score variance.

The expected observed-score variance is made up of all components where c

is found: c, cR, cD, cRD. The c component is negative and is treated as

zero. The other components total to 0.0022. The universe score is esti-

mated by the c component, which is zero. The generalizability coefficient,

then, is 0.0000/0.0022 = 0.0000. Four of the 11 classification variables

in this study had generalizability coefficients of zero, a discouraging

result to say the least.

A
A
4
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TABLE 2

Components of Scores for a Two-Facet Analysis
of Variable A-A

c RD
M
c

cRD Component of
Variance

Frequency
Within c

Contribution

to a
2
(A)

M

M
c
-

MR7

MD-

McR-
M
cD

MRD-
-m

cRD,e

M

M
c

MR7

MD-

McR
M
CD
-

MRD-
-m

cRD,e

0.0517

0.002

0.0056

0.0002

0.0001

0.0012

3

2

3

2

6

6

Total

0.0172

0.0001

0.0019

0.0001

0.0000

0.0002

= 0.020.0194

Note: Capit,11 letters as subscripts indicate that these components
are considered fixed in this study, i.e., the universe of raters is the
3 raters used in the study, and the universe of days is the 2 days on
which the classes were observed. The value of a2(A), then, applies to
this study only; other values can be computed for differing conditions
of R and D.

Possible Conclusions from Generalizability Theory

Turning to some of the variables that had positive coefficients,

one can see how the generalizability study using the multifacet approach

can suggest how best to use an observation instrument in decision studies.

Since the variance components, which are summed to obtain the values for

computing the ratio, are divided by the number of times they are sampled

in the design, it is possible to determine how the coefficient varies from

design to design. The CV variable will be used for illustration.

Table 3 shows how the coefficient can assume different values when

the number of raters and the number of observations (days) are varied.

It is apparent that increasing the number of raters reduces the variance

component due to raters, since that component is sampled more often.

Increasing the number of days increases the generalizability coefficient.

14
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11.

The figure 0.82 indicates a respectable level of reliability, but it

requires 3 raters looking at a class on 3 different occasions to obtain

that value. Simply increasing the number of observations and using one

rater does not provide sufficient reliability for firm scores.

The CV variable was the only one for which a coefficient greater

than 0.8 was obtained (Co had a coefficient of 0.75, using 3 raters and

3 days); all the other variables were below 0.7.

The difficulty with this instrument appears to be that rater

variability'accounts for most of the variance in the observed scores.

This finding might suggest that training procedures for the raters should

be improved, or that the rating procedures are too involved and cumbersome

for raters to use accurately and reliably. The instrument probably cannot

be used without revision along one or both of these lines.

16



12

References

Cronbach, L. J., Gleser, G. C., Nanda, H., and Rajaratnam, N. The depend-
ability of behavioral measurements: Theory of generalizability for
single and multiple observations. New York: John Wiley & Sons (in
press).

Flores-Hernandez, M. Teachers' class discussion variables related to
student participation and opinion. Unpublished doctoral dissertation,
Stanford University, 1970.

1?


