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AN EXTENSION OF THE RELIABILITY CONCEPT TO VECTOR VARIABLES

Walter Kristof
Bbstract

The coefficient of precision type of reliability originally defined
for scalar variables is generalized to vector variables and named vector
reliability. The new coefficient ranges from zero to one. Additional basic
properties of vector reliability are derived. Vector information is defined
a.s‘ e simple function of vector reliability. A numbef of properties of
vector information are demonstrated in §rder to justify its use as A measure

of information contained in a vector variable. Two applications are é.ppended

by way of illustration.
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AN EXTENSION OF THE RELIABILITY CONCEPT TO.VECTOR VARIABLES

l. Definition and Discuesion of Vector.fﬁeliability

A familiar definitioh of the relia_,b':iiity px of a scalar random variable

X with true score T and error F, X =T+E, is given by the coefficient

of precision,

2,2
@) ey =op/e
If Ay is to express an intrinsic property of variable X and if this vari-

able represents measurement along an interval scale, then Py should be

indepehdent of linear transformations of X . This is indeed the case if we

~introduce the rule that transformation Y = aX + b , a0 and b constants,

ishall imply the true score transfomation U = aT + const. This rule is cer-

oa.inly in agreement w1th our 1ntuitive notion of true score.
In this note we w1ll first extend the relia.b:l.lity concept ‘to vector vari- )

ables along the lines 1ndica.ted recently by Conger and Lipshitz (1971) In

. this new presentation, the use of _the covariance matrix instead of the correla-

tion matrix leads to desirable invariance properties. Reliability is explicitly

defined in terms of p'opula.tion'. characteristics, In addition, an analog to the
notion of information in vector variables will be developed and presented.
Let us again employ the classical test theory model. Hence, for vector
variables, X = T+ E . Itwill be assumed that I and E are statistically
inciependent. As a generalization of (1) we define the reliability A of

vector X as

(T - )BT - 1)
(2) pX Bl'zx 5!; )

e - 1y )5 (X - m)

lResearch reported in this paper has been supported by grant GB-182350 from
National Science Foundation.
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column vectors X and T having means B and M, , respectively. Iy is

the variance-covariance matrix of X and is assumed to be positive definite.
The denominator in (2) is simply the number of components of X , m say.
-1 - . . .
The numerator equals  tr z_,rz& ’ };.2 being the variance-covariance mat;‘:.x of
T . Hence (2) can be rewritten as
-1

(3) _.px‘=%tr§,1§x .

Denoting the reliability of the i -th component of X by p; and writing

B = oyl s 5

||0'i'j|| > We have also

1 o ii
) ;:))£ =1 - & I 0330 (1 -‘pi)

when the componénts’ of E are unco:related.

The fdllowing is seet; to be trué:..

(i) If we adopt the :trahsfom*,ion rule that & linear transformation
.A_X + _1: > A nonsiﬁgu.la.r', :Lml')lvies‘ thé fransform_ation of t'ru‘e‘ scorés_
AT+ C, C any constant vector , then px remains 'unché.nig"éd under

transformation of X as follows from (3). Hence Py =Py «

(ii) Independence of true score and error is preserved under such linear
transformations of X . However, initially uncorrelated errors may become
correlated.

(iii) We have O < Py f 1 . For, nonnegativity of Py follows at once

from (2) since %zl is positive definite. Further, there is always a linear

transformation of X that will lead to uncorrelated errors. At the same
time, Py remains unaltered according to (i). Hence, Py <1 as follows

from (h)? -
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(iv) Assume that the components of E are uncorrelated and p; <1
for all i . Then _vector reliability px equals the average componént
reliability, @, = Zpi/m , if and only i;‘ the components of X are uncor-
related. If th; components of X are not all uncorrelated, however, then
Py < zpi/m « Proof:

Let us deal with the first part of the assertion first. We derive from

(k) that o = zpi/m is equivalent to

(5)  E(1-ouct)(1-p)=0 .
1 .

Sufficiency of the condition follows upon noting that (5) is satisfied when

o= 1/0;; + As to necessity, let L, have a canonical decomposition

_Z';X = PAP' 'where P= "pij" is orthogonal and A is positive diagonal with

‘A, in the j -th diagonal position. Then

d

m- ‘ m
2 ii 2
G:s = & DPs:N: o" = £ po./N .
ii j=l<13 J _ j=1 ij’ 3

The Cauchy-Schwarz inequality yields

1 m 2

J=1

consequently 1 - gy,0° <O forall 1. But 1-p; >0 forall i. In
ii
.o-

i =0 . Therefore

order to satisfy (5) it is necessary that always 1 - o,

o' = 1/o,, for ell i vhich implies that L is diagonal.’

2An explicit proof of this implication could be written down at once and
has been omitted.
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As to the second part of the assertion, it now follows from the above
Cauchy-Schwarz inequality (6) that there must be some k for which

- Kk -
D - < .
H 1 O3 0 Thus

14 R - . 2
?(l <0540 - 'oi) <o K}

which is equivalent to @, < Zpi/m . This completes the proof.
'Hence we see that px will be at most equal to Zpi/m .

(v) A =0 is equivalent to p, = O for all i . This fact is easily

i
it
5]
i
W
)
il
B
g
i

established by using (3) and considering that Iy 1s positive semidefinite

and g)zl is positive definite..
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(vi) A =1 is equivalent to p; =1 for all i provided that I,

! " remains positive definite. For, p, =1 for‘ all i dimplies T, =1L ,
_ . i - = X

 hence- = 1 by (3). On the other hé.nd, there is a linear transformation

% . of X to Y that will lead to uncorrelated errors in 'Y and leave Ay = Py

accordiﬁg to (i). Denoting parameters which refer to Y by superscript (Y)
. we have from (4)

zogp o - o) - 0
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Because ag.%)aii(x) > 0 we conclude that png_-!) =1 for all i . Hence all
components of Y are error-free. The same must then apply to components of
» . X because these are linear combinations of the former. Therefore Py = 1
E for all i .

(vii) Statement (vi) depends crucially on L, remaining positive definite.

This becomes evident when we consider the following case. Let the components

of X represent parallel forms of the same test with common reliability p <1.
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Assume that errors are uncorrelated. EX is positive semidefinite. We find

that

o0 = [1+ (m - 2)p)/[1 + (m - 2)p - (m - 1)67]

and obtain from (4) the result

(7) A, = o/[1+ (m-1)] .

The derivation of this formula breaks down when p=1, i.e., wvhen ¥,

not positive definite. However, we can still obtain

limp, = 1/m .
p-)]_’p)-(- ‘

On the other hand, if the components of X do not represént parallel (but.

possibly nearly parallel) forms and stays positive definite then p, > 1
- X posi , 1

implies @, = 1 according to (vi).

(viii) There is a certain relationship between A, and the maximal reliabil-

ity of a linear composite of the components of X . This méxml'reliability' '

is given by the largest eigenvalue of ;‘T%zl « For a derivation and additional
references see Lord and Novick, 1968, p. 123. In contrast, Py is the average

of all eigenvalues of g,rg;l as follows from (3).

This concludes our enumeration of basic properties of Py -

2. Definition and Discussion of Vector Information

The reliability p = o;i/a'}% of a single variable X can be viewed as a

measure of the amount of "true information" contained in a typical observed

value of X . The scaling is such that 0 <p < 1 . It appears that this
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concept can be naturally extended to vector variables X with ' m >1
components. The quantity mAy exhibits features that we would require
such a generalized measure to- possess. ' Let us restrict ourselves to the
nondegenerate ease when _z;x is positive defi_.nite. We find the following.

(i*) ma, remains unchanged under nonsingular linear transformations
of X when the_transforma.tion rule given in (i) is adopted.
(ii') o< ma, <m according to (iii).
(iii') mo, = ; precisely when T is abconSte‘nt as follows <rom (v).
Hence X may be rega.rded as containing only error.
(iv') mpx =m preci»sely when E isa constant as follows from (vi).
Hence X may be regarded as conta.inzl.ng no error.
(v* ) Let the (ml + ma) -component vector X be partitioned into
‘subvectors }£1 va.nd_ }52 with m, a.nd m2 components > respect:.vely,
m=m +m,. If, for general m , the quant:.ty mpx is to be mterpreted

1n the sense of & measure of ":mforma.t:.on conta:.ned in the m -component

vector X ,. ‘then we should requ:.re the property of subadd:.t:.v:.ty,

(my + moley Smypy +mafy

when errors are not correlated across }_gl and )_(_2 . The equality sign
should be expected to hold when, in addition, .9 and X, are independent
of each other, i.e., when these subvectors supply independent information.

We will prove that these requirements are indeed satisfied. Without loss of

generality we suppose that m, > m, .

Let us perform two separate linear transformations, X, * Y, and X, + Y, ,

such that the partitioned variance-covariance matrix of Y, where Y results

from the combined transformation X + Y , takes on the form
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with A=la,.l, B=1b
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Here ll and ;2 are identity matrices of. orders m and m, respectively.

Matrix I' is of order m X m, and contains in its truncated diagonal the
canonicz_a.l correlations 75 between )_(l and X, , i=1000,m, indicating
the position, and zeroes elsewhere.

The above transformation X + Y carries at the same time the original
true score vector T in X =T+ E into a new true score vector U composed

of subvectors U, and U, corresponding to X, and Y, . The variance-

5 Up
covariance matrix of U may then be partitioned accordingly,

e Tt

Teking the special form of £, into account we find that F = "fij" and

- 2,-1 .
H = "hij" are diagonal matrices with f;, = (1 - 71) for i< m, and

R 2\-1 _. R ;
£,. =1 for my<ism , hii=(l-7i) with i <m, . The m xm,

ii
matrix G = .Ilgi ;j“ contains in its truncated diagonal 834 = —7i(l - 712)—1

and zeroes elsewhere.

£
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Invoking (i') we obtain

8)  (my + mpey = (m, + mloy = b EZF"
=trAF+ 2tr CG' + tr BH .

The required traces are easy to evaluate due to the initial transformation

)_£->_Y_. We get

2
g e T2 7y
(9) tr AF = & a,.f.. =% a,, + L = _a
—_— iitii ii 2 %ii
o i=1 iél i=1 1 - 7y
2
T2 vy
-me + 2 —gel
i=11 -7

Here we have used the fact that T a4y = tr .l_l_]_il equals m, Py and hence
‘ : i=1 <1
also mlpx due to (i'). By pli 8y we designate the reliability of

the i -th component of . Yl In complete analogy,

4

i

(10) tr BH = myR, + L —3 péi
= i=11 - 7

where péi denotes the reliability of the i -th component of Y, . Finally,

2
(11)  2tr cg' = -2 22 ! = -2 z 73
—s ey 2 1. .

In teking this step we assume that errors across )_{_1 and X, and so across

5

end Y, are uncorrelated, thus c;; =7; « Insertion in (8) yields now




@) %ﬁ%&=wg+w%-? 5 (B-piy - Pay) -
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i=1 1 -7

Therefore we have indeed subadditivity,
(13)  (m + m'g)nxfmlbxl+ ey,

We will generally expéct that 2 - pii - péi >0 . Hence the equality sign
in (13) will hold precisely when all canonical correlations 7; are zero,

and compohents of

i.e., when all correlations between components of X,

X, are zero. This completes the proof of (v*). |
(vi') Let the (ml + m2) -component vector X be partitiohed as in (v').
If, for general m =m +m, , the quantity ma, is to be interpfreted in the

sense of a measure of "information" contained in X , then we should require

the property

(ﬁ+%ﬁzmxm&fy%y.-
We will prove this property when errors are not correlated across }_gl and

)&2 .

Upon making the same transformation of }_(_1 and X, as in (v') and using

(%) | tr BI 32 pl
= TY =
"*ze == .7 P2

we obtain from (12) the difference & ,

(15) 8

(my + mpday - myBy

2
T Py - ;2 ---7-1---(2 - P}y - P3y)
o e T h T 75 11 ~ P2y

7o e
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Since 75 <p! .pai we have further

m2
(16) 8> = pl
jop 2 °

- n!
)

is a nondecreasing nonnegative function of pii and tends to péi when

pii* 1l . Therefore

) ny 02
M) 82 el - 5ot (1-py) -
oy Pt E Toer 21

i.e., (ml + m2)p2{- > mlp?_{_l « An analogous derivation holds when the roles

of ml and m, are interchanged. Consequently,

(18)  (m + my)ay 2 max (mlo,il, m2°>£,2)

as required. This completes the proof of (vi').
Properties (i') - (vi') will sufficiently justify our use of

mp.k tr g.,lgx as a measure of information contained in X .

3 Illustrative Examples

Example 1: The following za.ppl:i.ca:l:ion3 uses real data and will serve to

illustrate the meaning of Ay and may . It is based on Wechsler's (1958,

pp. 100-103) publication of data on the WAIS for the age group 25-34 years.

3This example is different from the one used by Conger and Lipshitz (1971).
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The WAIS is composed of six verbal tests apd.five performance tests. The
examiner will typically attempt to interpret differences in a subject's per-
formance on the two subbatteries. We may therefore ask, for example, to
what extent the two subbatteries do furnish independent information.

The WAIS contains the following subtests: 1. Information, 2., Com-
prehension, 3. Arithmetic, U4. Similarities, 5. Digit Span, 6. Vocab-
ulary, T. Digit Symbol, 8. Picture Completion, 9. Block Design,

10. Picture Arrangement, 11. Object Assembly. However, the performance
test Digit Span will not be included in the analysis because the reliability
of this test is not reported in Wechsler's (1958, p. 103) table for the age
group considered. Hence we will be dealing with a verbal battery of six
tests (tests 1-6) and a performance battery of four tests (tests 8-11) only.

The following table contains the intercorrelations of the tests, the
diagonal gives the relisbilities. The first two digits after the decimal

point are listed.

Test 1 2 3 4 5 6f8 9 10 11

1 91 70 66 70 53 8167 58 62 A5
2 T7T %9 62 4o 73156 49 57 43
3 81 55 49 59§50 51 49 37
L 85 46 Th |56 52 52 39
5 66 5113 39 47 30
6 95 [ 61 53 62 43

8 85 62 57 5k
9 83 58 61
10 _ 60 52

1 68
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The entire table can be taken as representing Z‘T with m= m, + my = 10,
m = 6, my,=U4. Matrix L, results from substitu;ing ones for the relia-
bilities in the diagonal. Ma;rices ;_'2(-1 » _}:‘_x_a ’ 531 and ET-Z are obtained
as portions.

We will assume independence of errors of measurement across tests. Upon
inversion of %, , L, and L,  we use (k) and get the following vector

.S S o
reliabilities: A = .5hLs5 A = .6139 and 02(.2 = .5226 . The correspond-
)

ing amounts of information become mpzc- = S5.hhLs5 mlpx-l = 3.68%5 and m2px_2 =
2.0004 .

The difference may - mlp&l is 1.7610. This is the portion of the
information represented by the total WAIS battery that is not accounted for
by the verbal subbattery and hence is added by the performance subbattery.
This added amount is contributed by four tests. So, on the average, each of
them contributes less than one half of the theoretically possible amount.

The information contained in the total battery comes from ten tests.

Hence, on the average, each of them contributes a little more than one half

of the theoretically possible amount. Figures of this sort may help in assess-
ing a battery of tests.:

Example 2: Suppose we wish to measure a trait by using a test whose
reliability is p <1 . In order to increase accuracy we administer m
perallel forms of the vest with uncorrelated errors. We expect that, on the
average, the sum of the m measurements will be more accurate than any single
measurement. In fact, the Spearman-Brown formule of classical test theory
tells us tha..t the reliability of the sum will be mp/[1l + “(m - 1)p] which
exceeds p . This is, at the same time, the amount of information c;ntained

in the sum, the sum being regarded as a new variable.
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,;Using the theory developed in this paper we see that taking the sum is
indeed optimal. We are extracting the maximmum, hamely, the total amount of

information contained in m parallel measurements. For » according to (7),

this total is mp, = mo/[1+ (m - 1)p] .
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