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AN EKTENBION OF THE RELIABILITY CONCEPT TO VECTOR VARIABLES

Walter Kristof

Abstract

The coefficient of precision type of reliability originally defined

for scalar variables is generalized to vector variables and named vector

reliability. The new coefficient ranges from zero to one. Additional basic

properties of vector reliability are derived. Vector information is defined

as a simple function of vector reliability. A number of properties of

vector information are demonstrated in order to justify its use as a measure

of information contained in a vector variable. Two applications are appended

by way of illustration.



AN EXTENSION OF THE RELIABILITY CONCEPT TO,VECTOR VARIABLES/

1. Definition and Discussion of Vector/Reliability

A familiar definition of the reliability px of a scalar random variable

X with true score T and error F., X = T + E , is given by the coefficient

of precision,

(1) PX 4/4

If px is to express an intrinsic property of variable X and if this vari-

able represents measurement along an interval scale, then should be

independent of linear transformations of X . This is indeed the case if we

introduce the rule that transformation Y = aX + b , a 1 0 and b constants,

shall imply the true score transformation U = aT + const. This rule is cer-

tainly in agreement with our intuitive notion of true score.

In this note we will first extend the reliability concept to vector vari-

ables along the lines indicated recently by Conger and Lipshitz (1971). In

this new presentation, the use of the covariance matrix instead of the correla-

tion matrix leads to desirable invariance properties. Reliability is explicitly

defined in terms of population characteristics. In addition, an analog to the

notion of information in vector variables will be developed and presented.

Let vE again employ the classical test theory model. Hence, for vector

variables, X = T + E . It will be assumed that T and E are statistically

independent. As a generalization of (1) we define the reliability p, of

vector X as

(2)
e(E Br)'74-(1(11 Br)

Px

OS Ex ) ' x-(X )
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column vectors X and T having means 1.5( and pm , respectively. T is

the variance-covariance matrix of X and is assumed to be positive definite.

The denominator in (2) is simply the number of components of X, in say.

The numerator equals tr E Ex , Lr be the variance-covariance matrix of

T Hence (2) can be rewritten as

Denoting the reliability of the i -th component of X by p . and writing

(3)
1 -1Ax - tr ItEx

1
HaijH '

Ha4I , we have also

p, = 1 - - p )
m .

=
i

11.

when the components of E are uncorrelated.

The following is seen to be true:

(i) If we adopt the transformation rule that a linear transformation

Y = AX + B , A nonsingular, implies the transformation of true scores

U =AT + C C any constant vector, then p, remains unchanged under

transformation of X as follows from (3). Hence p = p .

(ii) Independence of true score and error is preserved under such linear

transformations of X . However, initially uncorrelated errors may become

correlated,.

(iii) We have 0 < A < 1 . For, nonnegativity of ox folic:Airs at once

-1
from (2) since Ix is positive definite. Further, there is always a linear

NMI

transformation of X that will lead to uncorrelated errors. At the same

time, px remains unaltered according to (i). Hence, n - <1 as follows
-X

from (4).

I
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(iv) Assume that the components of E are uncorrelated and pi < 1

for all i . Then vector reliability p equals the average component
J!

reliability, 0
1
= Epi/m , if and only if the components of X are uncor-

related. If the components of X are not all uncorrelated, however, then

px < EPiim . Proof:

Let us deal with the first part of the assertion first. We derive from

(4) that px = Epiim is equivalent to

(5) E(1 - aiiaii)(

Sufficiency of the condition follows upon noting that (5) is satisfied when

a = liaii . As to necessity, let r have a canonical decomposition

Ex = PAP' where P = is orthogonal and A is positive diagonal with
ONO

7N in the j -th diagonal position. Then

m
2

aii
j
E
1
Pij7j

=

m haii = E p2ijoi
j=1

The Cauchy-Schwarz inequality yields

f

i r.i.
m

2
r (6) ,/ a. a > E Pi = 1 1

ii . , 4
=

a =J.

aii<Oforalli.Butl-pi>0 for all i . Inconsequentlyl-a
ii

F,

r .
order to satisfy (5) it is necessary that always 1 - aiiaii = 0 . Therefore

1.

ii=1/aiifor all i which implies that r is diagonal.
2

I a
=1C

2
An explicit proof of this implication could be written down at once and

has been omitted.

1



As to the second part of the assertion, it now follows from the above

Cauchy-Schwarz inequality (6) that there must be some k for which

1 - a a
kk

< 0 . Thus
kk

E(1 - a..a
ii)(1

o.) <-0

which is equivalent to p < Epi/m . This completes the proof.

Hence we see that
Px

will be at most equal to Epi/m .

(v) p = 0 is equivalent to pi = 0 for all i . This fact is easily

established by using (3) and considering that Em is positive semidefinite

and Ex1 is positive definite.

(vi) px = 1 is equivalent to pi = 1 for all i provided that Ex

remains positive definite. For, pi = 1 for all i implies &T, = E

hence p = 1 by (3). On the other hand, there is a linear transformation

of X to Y that will lead to uncorrelated errors in Y and leave px = py

according to (i).

we have from (4)

EaC)aii(X)(1 - p(i)) = 0

Denoting parameters which refer to Y by superscript (Y)

Because aiPaii(K) > 0 we conclude that 4) = 1 for all i . Hence all

components of Y are error-free. The same must then apply to components of

Xbecausethesearelinearcombinationsoftheformer.Therefore.PI =1

for all i .

(vii) Statement (vi) depends crucially on Ix remaining positive definite.

This becomes evident when we consider the following case. Let the components

of X represent parallel forms of the same test with common reliability p < 1 .
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Assume that errors are uncorrelated. Ek is positive semidefinite. We find

that

3.

a1..a = [ + (m - 2)p] /[1 + - 2)p - - 1)p2)

and obtain from (4) the result

(7) ex = p/[1 + (m - 1)p] .

The derivation of this formula breaks down when p = 1 , i.e., when E
X

is

not positive definite. However, we can still obtain

lim px = l/m
p+1

On the other hand, if the components of X do not represent parallel (but

possibly nearly parallel) forms and Lk stays positive definite then pi 4 1

implies ok = 1 according to (vi).

(viii) There is a certain relationship between p,
t'

and the maximal reliabil-
-

ity of a linear composite of the components of X . This maximal reliability

is given by the largest eigenvalue of grk1 . For a derivation and additional
=1.

references see Lord and

of all eigenvalues of
_

This concludes our enumeration of basic properties of px .

Y.1

'1

Novick, 1968, p. 123. In contrast, p, is the average

-1
as follows from (3).

2. Definition and Discussion of Vector Information

2,
The reliability p = avak of a single variable X can be viewed as a

measure of the amount of "true information" contained in a typical observed

value of X . The scaling is such that 0 < p < 1 . It appears that this
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concept can be naturally extended to vector variables X with m > 1

components. The quantity mpx exhibits features that we would require

such a generalized measure to possess. Let us restrict ourselves to the

nondegenerate case when Ex is positive definite. We find the following.

(i') mp, remains unchanged under nonsingular linear transformations

of X when the transformation rule given in (i) is adopted.

(ii' ) 0 < nin < m according to (iii).

(iii') mpx = 0 precisely when T is a constant as follows from (v).

Hence X may be regarded as containing only error.

(iv') mak = m precisely when E is a constant as follows from (vi).

Hence X may be regarded as containing no error.

(v') Let the (ml m2) -component vector X be partitioned into

subvectors X1 and 12 with mi and m2 components respectively,

m = mi m2 . If, for general m the quantity mow is to be interpreted

in the sense of a measure of "information" contained in the m -component

vector X then we should require the property of subadditivity,

(ml m2)PX m ra2Px2

when errors are not correlated across X and X2 The equality sign

should be expected to hold when, in addition, X1 and 1(2 are independent

of each other, i.e., when these subvectors supply independent information.

We will prove that these requirements are indeed satisfied. Without loss of

generality we suppose that m1 > m2 .

Let us perform two separate linear transformations, X1 4 Yi and X2 Y2 1

such that the partitioned variance-covariance matrix of Y , where Y results

from the combined transformation X -, Y , takes on the form
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Here I
1

and I
2

are identity matrices of orders ml and m2 , respectively.

Matrix I' is of order ml x m2 and contains in its truncated diagonal the

canonical correlations yi between /.1. and ?i2 , i = 1, ...1m2 indicating

the position, and zeroes elsewhere.

The above transformation X + carries at the same time the original

true score vector T in X = T + E into a new true score vector U composed

of subvectors l and U2 corresponding to Yi and Y2 . The variance -

covariancecovariance matrix of U may then be partitioned accordingly,

1

A c

C1

-
with A = IIaid

II , B = IIbi3 II , c = II c i3II Let us partition
1

Ey1
F G

G1 1 H

Taking the special form of into o account we find that F = and

H = are diagonal matrices with fii = (1 - yi)
-1

for i <m2 and

fii = 1 for m2 < i < ml
,

hii = (1 - yi2 ) -1 with i <i m2 . The ml x m2

2 -1
matrix G = contains in its truncated diagonal gii = -yi(1 - yi)

and zeroes elsewhere.



Invoking (i') we obtain

(8) + mdpx = (mI+ m2)py = tr

= tr AF + 2 tr + tr BH .

The required traces are easy to evaluate due to the initial transformation

X Y . We get

(9)

2
ml

mi 22
tr AF = E = E aii + E aii

i=1 i=1 i=1 1 - yi

ra2 4
px + -----ff pli

iE=1 1 - yi

ml
Here we have used the fact that E aii = tr All equals mipy and hence

i=1

also mipk due to (i'). By pli = a. we designate the reliability of

the i -th component of.Yi . In complete analogy,

2

(10)
;2 Yi

tr BH = m2px + '2i

where ph denotes the reliability of the i -th component of X2 . Finally,

2
Yi

m2

2tr CG' = -2 E
m2

cii = -2 .E

i=1 1 - yi 1=1 1 yi
(u)

In taking this step we assume that errors across X1 and )42 and so across

and .12 are uncorrelated, thus cii = yi . Insertion in (8) yields now
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2
m2 Yi

(1113. m2)PX milPX
I

m2PX
-2 iE1 1 - 7.

2 (2 Pli PLi)
.

Therefore we have indeed subadditivity,

(13) (mi + n12 )Px m2P12

Wewillgenerallyexpectthat2-13li -0.>0 . Hence the equality sign

in (13) will hold precisely when all canonical correlations yi are zero,

i.e., when all correlations between components of Xi and components of

X2 are zero. This completes the proof of (v').

(vi') Let the (ml + m2) -component vector X be partitioned as in (v ).

If for general m = ml + m2 , the quantity max is to be interpreted in the
ONO

sense of a measure of "information" contained in X then we should require

the property

(ml m2)PX max (m1PX1' m2PX_2)

We will prove this property when errors are not correlated across Xi and

X
2

.

Upon making the same transformation of Xi and /{.2 as in (v') and using

E(14) mp, = tr ELT2 = E ph
2 i.1

we obtain from (12) the difference 5 ,

(15)
5 (ml m2)PX m1PX1

2
m2 Th2 yi

= E ph - E -7 (2 -

i=1 i=1 1 - yi
Ph)
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2
Since <y1 . p11 .p2i we have further

mE2 2 Pf PI.li 21
l

(16) > E p' - E
. 2i .

(2 - pt t.)
i

- p21
i =1 1=1 1 - piipli

For 0 < pii < 1 the expression

()LPL
1 PliPii (2 Pli 141)

is a nondecreasing nonnegative function of piti and tends to p2i when

plc 1 Therefore

(17)
m2 m2 PL.

5 E Pli E (1 Ph) Yi=1 i=1 2i

i.e., (mj. + ra2)px > mipx . An analogous derivation holds when the roles
1

of mi and m2 are interchanged. Consequently,

(18) (mi + m2)p max (mipx1, m2P112)

as required. This completes the proof of (vi').

Properties (i') - (vi') will sufficiently justify our use of

mphratr 1
as a measure of information contained in X .

3. Illustrative Examples

Example 1: The following application3 uses real data and will serve to

illustrate the meaning of and mpx . It is based on Wechsler's (1958,

pp. 100-103) publication of data on the WAIS for the age group 25-34 years.

3This example is different from the one used by Conger and Lipshitz (1971).

4



The WAIS is composed of six verbal tests andfive performance tests. The

examiner will typically attempt to interpret differences in a subject's per-

formance on the two subbatteries. We may therefore ask, for example, to

what extent the two subbatteries do furnish independent information.

The WAIS contains the following subtests: 1. Information, 2, Com-

prehension, 3. Arithmetic, 4. Similarities, 5. Digit Span, 6. Vocab-

ulary, 7. Digit Symbol, 8. Picture Completion, 9. Block Design,

10. Picture Arrangement, 11. Object Assembly. However, the performance

test Digit Span will not be included in the analysis because the reliability

of this test is not reported in Wechsler's (1958, p. 103) table for the age

group considered. Hence we will be dealing with a verbal battery of six

tests (tests 1-6) and a performance battery of four tests (tests 8-11) only.

The following table contains the intercorrelations of the tests, the

diagonal gives the reliabilities. The first two digits after the decimal

point are listed.

Test 1 2 3 4 5 6

1 91 70 66 70 53 81

2 77 49 62 40 73

3 81 55 49 59

4 85 46 74

5 66 51

6 95

8

9

10

12.

8 9 10 11

67 58 62 45

56 49 57 43

50 51 49 37

56 52 52 39

39 39 47 30

61 53 62 43

85 62 57 54

83 58 61

60 52

68

.41
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The entire table can be taken as representing Em with m = mi + m2 = 10 ,

mi = 6
'

m
2

= 4 . Matrix E- results from substituting ones for the relia-

bilitiesbilities in the diagonal. Matrices Ey , E , 4 and E are obtainedy T
el e-2 -1 -2

as portions.

We will assume independence of errors of measurement across tests. Upon

inversion of Ey , Ey and Ey we use (4) and get the following vector
-2

reliabilities: px = .5445 , py = .6139 and py = .5226 . The correspond-

ing amounts of information become :nick = 5.4445 mipx = 3.6835 and ra,Plx

-1
C

2.0904 .

The difference mak
m1PIX

is 1.7610. This is the portion of the

information represented by the total WAIS battery that is not accounted for

by the verbal subbattery and hence is added by the performance subbattery.

This added amount is contributed by four tests. So, on the average, each of

them contributes less than one half of the theoretically possible amount.

The information contained in the total battery comes from ten tests.

Hence, on the average, each of them contributes a little more than one half

of the theoretically possible amount. Figures of this sort may help in assess-

ing a battery of tests.

Example 2: Suppose we wish to measure a trait by using a test whose

reliability is p < 1 . In order to increase accuracy we administer m

parallel forms of the i;est with uncorrelated errors. We expect that, on the

average, the sum of the m measurements will be more accurate than any single

measurement. In fact, the Spearman -Brown formula of classical test theory

tells us that the reliability of the sum will be mpi[1+'(m - 1)p] which

exceeds p . This is, at the same time, the amount of information contained

in the sum, the sum being regarded as a new variable.
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01Jsing the theory developed in this paper we see that taking the sum is

indeed optimal. We are extracting the maximum, namely, the total amount of

information contained in m parallel measurements. For, according to (7),

this total is mak = nip/(l + Cm - 1)o) .
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