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A Class of Tests for Multivariate Normality Based on

Linear Functions of Order Statistics

Murray A. Aitkin

Macquarie University and Educational Testing Service

SUMMARY

A class of tests for normality using the ratio of two estimates of the
standard deviation is generalized to provide a class of tests for multi-
variate normality using a characterization of the multivariate normal.

The powers of some of the tests are examined numerically and compared with

the power of a recent similar test.
1. INTRODUCTION

Tests for normality based on the ratio of two estimates of the stan-
dard deviation from a single sample have been proposed by several authors.
We restrict attention here to those statistics using the usual estimate
based on the sum of squares in the denominator, and an estimate based on
a linear function of the sample order statistics in the numerator. Such
statistics include the ratio u of range to standard deviation (David,
Hartley, and Pearson, 1954 ), Shapiro and Wilk's (1965) statistic W based
on the best linear unbiased estimate of the standard deviation, and
D'Agostino's (1971) statistic D , based on Gini's mean difference.
Similar statistics could easily be constructed from other order statistic
estimators of the standard deviation, for example, the mean deviation

about the median (Nair, 1947).




D=

Malkovich and Afifi (1971) have generalized the W statistic to
the multivariate case using an approximation to a union-intersection test.
In this paper we generalize the class of statistics described above
to the multivariate case by a union intersection procedure different from
that considered by Malkovich and Afifi. Percentage points for some of
these statistics are obtained by empirical sampling. The empirical powers
of the tests are examined for certain nonnormal alternatives considered by

Malkovich and Afifi.

2. TESTS FOR NORMALITY

Let X <X, < ...<X be the order statistics in a sample of size n
In - "2n — — "nn

. 2 '
from a normal population N(p,0”) , and let by, Sby, £+ <b Dea

set of constants. The sample 'torrelation' between the Xin and the bin

is
n -
by (bin - b)(xin - X)
1
n n
(% (e, -B)2 s (x, -%)2)2
in in
1 1
where
_ n n
b=Xb X = .
> in/n , X )i Xin/n



Defining

n
_ - =y2,1/2
ain_ (bin - b)/{ ? (bin b) ] b
and defining
n
& (x, - i)z = 32 ,
1

the sum of squared deviations about the mean, we may express the "cor-

relation” as

n
r(a,n) = ¢ ainX1n/ R
1
where now
n no,
z a,, = o z a/ = 1 .
1t 1

Several test statistics proposed for testing normality may be put

in the above form. David, Hartley, and Pearson (1954) consideread
- %)/ 6/ - Y2
nn 1
1/2
- (2(n - 112 x(a )

where gi = (—2-1/2,0,0,...,C%2€U@) . Shapiro and Wilk (1965) consider

4



where

a

-1 - D
a, =V " m/{m'v Q@Jl/n )

m and V being,respectively, the mean vector and covariance matrix of the

vector of normal order statistics. D'Agostino (1971) considers

n

(i - % (n + 1))X,
1 in
D= 575
=%

S

{(n2 - l)/l?n2]l/2 r(§5:n)

where
agp = Ui -3 (0 1)} /ta(? - A2
Pearson and Chandra Sekar (1936) consider
r=af(x_ - X)/s
<o - M2 ra,n)
where
8,4, = -{n(n - 1)}'1/2 , for idn
=\{(n - l)/n}l/2 , for i=n .



Other such statistics can easily be constructed. For cwample, Hair
(1947) considers m' , the mean deviation about the median, as an ~stimate

of 0

A} n k
| -5 — -
m' =% (xirl ) =2 (Xn-i+l,n xin) ,
1 1
A~ . . n- 1 . . n
wvhere v 1is the sample median, and k = ) if n is odd, k = 5

if n is even. A test for normality could then be based on

ragn) = v /@) o
3. TESTS FOR MULTIVARIATE NORMALITY

" Let X be a p -component random vector. It is well known (see, for
example, Anderson, 1958) that X is multivariate normal if and only if every

linear function ['5 is univariate normal, where f is an arbitrary fixed

vector. We use this property to construct a union-intersection test for

normality.

Let K—l""’}in be & random sample from a population. TLet X be an

arbitrary fixed vector, and define
Z*i:Z'Xi F} i;'l,a--’n P4

the dependence of Z* on Z being understood. Let the ordered Z# be

denoted by Z"in < ... < Zgn . We construct any of the statistics

in 1in

MBS

n
a, 2% /0 & (2% - Z-*)ell/2
1

n
< a, 7¥ /{['sﬁ}l/2 )
1 A >k

in in
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where S is the matrix of sample cross-products. It is clear th=t such
statistics are origin and scale invariant for all ,(, i.e., do nov

! 'y ( 11 here 4 and © ¢ Lhes nedrn
depend on K i and é Xﬁ for a , Wwhere § ar

and covariance matrix of X . lience they do not Jdepend on ;i and & .

Without changing the problem, we may therefore make a4 linear transformation

YA+ b

where A is a pxp positive definite matrix and b an arbitrary

-1 /2 -1/2-
vector. Take A =8 / and b=S 1/2)_( , where 81/2 is the (unique)
symmetric square root of § , so that

r =5 oq)

The components of ¥i are then scores on standardized principal component

variables with ¥=0 , (Y, - Y)(Yi -¥)' = 1. Define
N U :
Zi:L'Zi i=l.,~-a,n
and denote the ordered Zi by Zln < . < Znn . Then we consider the

statistics

r(ﬂ) zu n) = % ainZin/(L'L)l/g ' .

For different choices of a, a one-sided or two-sided test may be appro-
priate (for example, the test based on W 1is one-sided, but that based on
u two-sided). If small values of r(a,{,n) are significant, we do not

reject at level Q@ the hypothesis of normality of X’)_( if

r7en) <r(a, [, n) .
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A size @ union-intersection test for the hypothesis of multivariate normelity

of X will not reject if

1l-a

CL (E:n) < r(f}_: LI;‘ n)
for all z , so that

)

. 1
inf r(a, f, n) > <L (a,n)

where c%‘-a(g,n) is the lower 100 per cent point of the distribution of

inf r(g, Z, n) . A conservative two-sided test at level Q ma,; se obtained by

not rejecting the normelity hypothesis when

inf r(a, L, n) > C%-G/E(f}_;n) ;

. a/2
sup r(a, £, n) < cU/ (a;n)

—

where cg(g,n) is the upper 100@ per cent point of the distribution of

sup r(a, §, n) .
4. SUPr AND INF r FOR p = 2

Consider first the case p = 2 . The linear function Z = l'l!_ 1s then |
£1Yl + ZEYQ . Bince r(g, L, n) 1is independent of scale, we may assume without
any loss of generality that 11 =1, '22 = L , since 1t is only the ratio [2/[,1
that matters. (We might instead set Zl = sin 6 , /,2 = cos 8 and map each point
into a trigonometric function. Such a procedure has been used by Andrews
(197’1) in another context. The results are equivalent for p = 2, but

for p >2 the polar transformation becomes less convenient.) We consider

therefore the values
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These may be plotted as n lines in the (Z,f() plane. The n lincs
intersect in N = (5) points, defining N values of L, [l < i[N
(some of which may be coincident). The points define N - 1 regions
L'j = {y: Kj—l<15'{j] ) j= l’-nn,N + l, Whel'e YO R ~00 b} Xl\}*‘l = o,
The regions Lj have the property that the ordering of the Zi = Q'Yi

is the same for all f[€ Lj .

Now in the region Lj y let the ordered Zi be

i< <y
Zln—..l—Znn ’

and write

Jo_ J
PRI ST

Then for [ ELJ.

)

r(g_, L n) = r(g, £, n) (

in™1i in"21i

— NS

a, Y3+ ¢ %a. ¥ )/ + (B2

(3 + gsdy/ + M2

)

where

Now

1{11‘ r(g, [, n) = inf inf I‘(E: 1: n) ,
j [€11j




-

and for IE LJ , r(a, I, n) is the ratio of a linear form to the square

root of a positive definite gquadrati: form. It is well-known that this

ratio, for unrestricted I , has only onc cxtreme value, a maximum crual to

2 .a\1/2
J 1/

(_‘vj 3 — lj lj e .
S0t 82 » Which occurs when [:_ SQ/S:L . Hence

inf r(a, /, n) = inf r(a, /~j’ n) .
J

_ad jad '
e (_SQ/S]_¢ Lj > the supremum of r(g, f, n) will also occur at

an YJ. . I f = sg/sie L, , write [3& = sg/si, and then |

SIKJP r(%: l: n) = S;_lp (r(a, ‘Z,j’ n), r(a, ,(3: n)) . |

REMARK
The supremum simplifies considerably for the u statistic of David,

Hartley and Pearson and for the + statistic of Pearson and Chandra Sekar.

We have

sup r = sup r(ay, [, n) E_l/asup{(Znn -7 n)/(l(',K)l/E] ’
g I .

and if we use the normalization ['[ =

+2
-

tes

sup r = 2-1/231;1p(z - Z

K_ nn ln) :

Thus sup r, is a multiple of the greatest distance between the projections
of any two points ¥i’¥j , on the hyperplane Z = {'Y . The distance will

be greatest when the hyperplane passes through the two points which are

10
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farthest apart, i.e., at the diameter of the convex hull of the points
y .

-1""’1n . Thus
-~ _ )-l/f" ] l/{')
».'a';lp ru = & E-;ul?{(li - XJ) (Xi - X,j)]
A 1,
= Q_l/zsup[(x. - X,)'S-JKX. - X,)}l/d
i, - 7 -

in terms of the original variables.

Similarly,

sup r_

Szp r(ih: ﬁ, n)
_ 1,-1/2 yo1/2
= (1-3) sip (z /D",
and taking z'l =1 as above,
-1/2
sup r_ = (1 - %) 1/ sup 2. -
Thus sup r is a multiple of the greatest distance from the origin of the

projection of any point on the hyperplane Z = Z_'X . This distance will be

greatest for the point furthest from the origin. Thus

1y-1/2 ay 11/2
supr = (1-2) Slilpilizi}

1/2

1,-1/2 —] -
(1 - 1Y supl (4 - B'57 e, - B))

in terms of the original variables. These results hold for all p , but no
corresponding results hold for inf r, or iif r. ., or for sup r(g_, (, n)
[

in general, since the other statistics do not have a simple distance inter-

pretation. Thus for r, s no explicit calculation of the supremum is

11
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necessary, for it must occur for one of the vectors Z already required for

li
=

the infimum. For r.o the explicit calculation is necesszary unless Zi =Y

for some 1 .

5. AN EXAMPLE

Below appears part of Student's data on the number of hours incrcase in
sleep gained from the use of two drugs (Anderson, 1058, p. 51). For simplicity

we have taken only the first five subjects.

Patient Drug A (xl) Drug B (x2) Y, Y,
1 1.9 0.7 0.58592 0.50966
2 0.8 -1.6 © 0.23394 -0.68989
3 1.1 -0.2 0.18796 0.10817
L4 0.1 -1.2 -0. 33245 -0.31752
5 -0.1 -0.1 -0.67537 0. 38958

The matrix of sample cross products S 1is

S = |2.592  1.54k s s'l/2 = 0.704,134  -0.183,727 |
1.544  3.388 -0.183,727 0.609,u1hJ
while X' = (0.76, -0.48) . The principal component scores Y, = S-l/2()£i - %)

are given above in the columns Y Y, . The (2) = 10 points of intersec-

l J

tion yj are obtained by solving simultaneously the pairs of equations

giving Y.. - Y
/ - 1i ls'! . 7.
- Y. - Y,. ’ 17lv3=l)"':5
Tei 2
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(1f Yoi - YZJ should be zero, Z is defined by Zy = Y4 .) The 10 values -

of K » ordered from smallest to largest, are

-10.59375 0.05761
-1.22241, 0.48497
-1.11024 0.84237
-0.99121 1.52104
-0.29343  3.06787

Suppose we wish to find S?p r, and inf r, Taking the value

{l = =10.50375 , corresponding to the intersection of Z, and Z5 , the 2,
are -b.76742, 7.48037, -0.94823, 3.00270, -4.76742. Then z%s - Zié = 12.24779

2 2 . 1)
{2(1 + l,)}l/ = 1k, 92171 , r(gl, [l,n) = 0.8208 . On repeating the calcula-

tion for the other nine values of [ , . the following r values are obtained:

.8208 .8953
<9979 -8395
9975 - 8735
.9940 8455
.8319 .8836

To test for a local maximum in L, , the ordering of the Z. : Z <z. <

1 5

2, <12

< . .
3 4 Z2 defines the orderings

0.58592 0.50966
-0.67537 0.38958

0.18796 0.10817
-0.332k5 -0.31752
0.23394 -0.68989
. . 1
of Yl and Yé respectively. The corresponding values of Sl and Sp are

271/2(0.25304 - 0.58592) = -0.24889 and 2-/2(-0.68989 - 0.50966) = -0.84820

respectively. Then [ = S%/Si = 3.40793 & L, . Hence there is no local

maximum for X eEL On repeating this procedure for the other Lj s

l L
only one local maximum occurs, namely r = 0.8740 when Z = 0.90070 in ‘ |
L, . This does not yield a global maximum, so that

’ 13
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inf r(ay, /, n) = .6208 at / = -10.50375
sup r(a;, [, n) = .9979 ab f = -1l.22251

To verify the supremum in this case, we note that .
-1/2 , o nl/2 _ oo
277y, - ¥)' (¥, - X)) .9980

which agrees with the above result within round-off error.

6. GENERAL P
-

The argument in §4 can be extended directly to any p . Without loss

of generality we consider the standardized principal variables Xi =S
3 ’o 3 '
and again take fhe linear function ['Y as Y, o+ XlYE + oeee + Xp-lYp . The
values Z, = Y, + XlYQi + oeee + Ip-lypi now gefine n hyperplanes. These
intersect p at a time in (;) points, defining (g) values of [ , which
then define regions with the property that the ordering of the Zi is fixed
in each region. Again the infimum of r(a, /, n) will occur at one of the
vertices of the region, and the supremum will occur either at one .of these
points, or at a local maximum if one occurs in a region, the maximum then
P g2\M/? 3 g R
being ( & Sic ) , occurring when Xk = Sk/Sl , Wwhere S: =Za, V.,
k=1 1

k=21..0,p, the j superscript denoting the j -th region.

However, the ordering of the Zi at each of the (;) values of g

becomes a major computational problem for p>2 . For p =2, it is neces-

sary to order the Z, only once, for if the ordering in (say) Ly 1is

14
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rstablished, then it is known that in Ll , the ordering of just two obsecrva-
tions is interchanged from that in LO , and these observations are identified
by the original determination of {l . Thus the ordering of the Z 6 in every

L. can be obtained with just one ordering. This does not happen for p> 2 ,
h;wever, essentially because the points cannot be ordered on one dimension.
The ordering must thérefore be recalculated at each of the (29 values of g,
a very %ime-consuming process. Some saving in time is possible for ro f'or
this requires for each X only the maximum anﬁ minimum Z , not a complete

ordering.

We therefore consider an alternative procedure. Let

-y 2 p-1 :
Z =Y+ fY,+ J{ Yo een + / Y, -

Then Y is mapped into a polynomial in the (Z,/) plane. The results of
84 may now be extended with some changes, but we note that all possible linear
functions Z'Z cannot be generated in this way. Thus this procedure may be
less powerful against certain kinds of departures from normality than one
which considers all linear functions.

The n polynomials Zi now intersect two at a time in p - 1 points,
defining (p - l)(g) points /j (some of which may be coincident or imaginary,
corresponding to complex roots in [ of Zi - Zj =0 ). The regions Lj are

defined as before, and in Lj 5

, I P _1y.1/2
r(a, f> n) = (£ 8 /Ahyz PO
k=1 k=1

Further complications now arise as this function has multiple maxima and
minima. We shall ignore these however and consider only the points [j
defined above. Again this may result in some loss of power: this question is

examined in 88. We thus evaluate




inf I‘(E, KJ-} n)
J

and sup r(a, [j, n)
J
and accept or reject the hypothesis of multivariate normality accordingly.

7. OTHER TESTS FOR MULTIVARIATE NORMALILTY

Tests for multivariate normality have recently been considered by
Malkovich and Afifi (1971), in a study including the tesﬁs discussed in
Kowalski (1970) and some others. In particular, they generalize the skevmess
and kurtosis statistics bi/e and b2 to the multivariate case by a union-
intersection argument. Shapiro and Wilk's W is also generalized, but by a
procedure different from that describéd in §4 and §6. Rather than obtaining
the infimum of W over all linear functions Kf& , they consider the linear

function J'X which produces a value of, W as close to its lower bound as

possible. It is known (see Shapiro and Wilk (1965) for details) that W

attains its lower bound when

X, -X =(n - l)/(naln) i

X; - X = —l/(naln) s

for i=121,...,n ,i# 3, for any j . Malkovich and Afifi consider the

vector J which minimizes
L1 =) - (0= 1)/(ney )17 + 3 LG, - %) + 1Y(nay ),
if]

which is




N
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Since j may take any value from 1 to n , £j is chosen to maximize the

denominator of W . Thus let m be such that
Fyrgl 7 £y1g-L %
(xm-x)s X -X)= max (X.-X)'S (X.,-X)
- -m = = -j = i =
l:gip
Let the ordered values of
U, = (X, - X)'stx - X)
o == =m =
be Uy ... SU . Then the Malkovich-Afifi statistic is

1
%

1><1

)

Wy, = [ZainUin]2/Q(_m - X)'s” -

If we use the standardized principal variables

|
nn

this reduces to

W= l[ra, v, ]a/y' Y o,
—m —m

P in in
vhere
_ 1
Vi=Lidn o
Vv LV are the ordered V. , and m 1is such that
In
- ~ 'nn 3

Y'Y = max Y.Y.

=m lfjfn J—J
The null distributions of the statistics r described in & and %6
seem analytically intractable, as the corresponding univariate statistics
in general do not have simple forms, and the multivariate statistics are

obtained by data-based linear functions of X . DPercentage points of the

17
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statistics were therefore obtained by simulation, using samples of 500. A
more accurate table of percentage points is in preparation, but the results

from samples of 500 should give a clear picture of power properties.

8. POWER RESULTS

Approximate lower percentage points of Malkovich and Afifi's wp s

. 2 1/2 )
of W. =infr (gz,ggn) , and of U . = (2(n - 1))7/7 4inf r(gl,(,n) s

and approximate upper percentage points of u

L= (2(n - i)]l/2 SE? r(ay, {,n)

-

were determined by generating 00 samples for p=2, n = 10,20 , and
p=3%, n=10, at values of @ = .01, .02, .025, .05(.05).25 . 1In
addition, approximate pegcentage points of W;in s u;in , and uﬁax vere
determined for p =3, n = 10 and the same velues of & , where the
asterisk indicates the use of a polynomial mapping rather than a hyperplane
mapping of X .

The powers of the above tests were then determined against the

following distributions.

p =2 LN Xi independent log normal
U Xi independent uniform
th Xi independent th
th Xi independent th
N - IN Xl normal, X2 log normal, Xl’XE indepenient
N-U Xl normal, X2 uniform, Xl,X2 independent
N - th Xl normal, X2 th s Xl’XE independent
N - th Xl normal, X2 th s Xl,X2 independent
BVN(+5, «5) (Xl,Xz) mixture of bivariate normals
BVN(.75, .5) where BVN(p, p) has density

18
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pi’p(}:l,xz) i (1 - p)("_p(:/_l,;':,d)

where

L £ Gpp) = @) - )R el -(F - 2z, 28)/200 - °))

p=5: IN, U, tlo'

In Table 1 appear the results for o = .10, p =2, n = 10 and 20 .

Other values of O gave comparable results

TABLE 1
FMPIRICAL POWERS FOR & = .10 , p=2, n = 10 AND 20
n = 10
v ' Wmin Ynin? Ymax W u
LN 15 .78 .21 .72 .13
U .08 .12 .18 .15 .32
tu .30 .26 .17 .23 .17
. . . .1 .1
t0 18 1k 13 5 5
N-LN .53 .54 .13
N-U .13 L1h .19
N-t), .20 .16 b
N-t 4 .15 .16 .15
BVN(.5, .5) .15 .15 .15
BVN(.75, .5) SR .12 .12 B
n = 20
" W W . u . ,u
_p min min’ max H u
uN .Q7 .99 L7 .96 .1k |
8] .03 .22 .51 .39 .55 |
t), .38 .36 .3% .27 2L
. . . .18 14
tg 30 25 21 1 1
N-LN .81 87 .22
N-U .09 .18 -3k
N-t) .26 24 .21
N-t, .23 .22 .21
BVN(.5,.5) c17 .16 .18
9~ . . .1
,EMC BVN(.75, .5) 16 1k 19 5
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The columns headed W and u give the empirical powers for n = 10
and 20 in the univariate case for W and u , reproduced from Shapiro,
Wilk and Chen (1968). The results for @ = .10, p=3, n =10 are

given in Table 2.

TABLE 2

EMPIRICAL POWERS FOR O = .10 , p=3, n =10

% G G
Yg Wmin Ynin’ Ymax wmin Tnin’ Ymax W u
IN .64 .64 .18 .62 A4 .72 .13
U .09 .11 .10 o1k .15 .15 .He
th .16 J1h .11 17 N .13 .13

9. CONCLUSIONS

The power of Wmin was generally very close to that of Wb cver the
range of bivariate distributions considered, except for the bivariate
uniform distribution where the Wp test appeared to be biased. The
bivariate u test was much less powerful for skewed distributions, but
superior for the bivariate uniform or normal-uniform. These results are
not unexpected reflecting similar performances for W and u in the uni-
variate case. In the trivariate case, WP and Wmin were equivalent,
and again superior to u for the lognormal, although for the uniform and
th alternatives all tests had very low power for n = 10 . The powers
for the W*¥ and u* tests based on polynomial mappings were very close to
those of the tests based on hyperplane mappings, suggesting that the simpler

polynomial mappings may be quite satisfactory.
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E I am grateful to L. J. Gleser and J. A. Hartigan for helpful comments,
i ) and to Dorothy Thayer for the programming. A program to obtain wmin and

., ,u may be obtained from Mrs. Thayer, Division of Data Analysis
min’ max

and Research, Educational Testing Service, Princeton, N.J. 08540 .
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