
DOCUMENT RESUME

ED 067 393 TM 001 788

AUTHOR Burke, John P.; Elashoft, Janet Dixon
TITLE The Effects of Serial Dependence on Polynomial

Regression Models for Individual Growth Data.
INSTITUTION Stanford Univ., Calif. School of EducaLion.; Stanford

Univ., Calif. Stanford Center for Research and
Development in Teaching.

SPONS AGENCY Office of Education (DHEW) , Washington, D.C.
REPORT NO R-D-MEMO -711
BUREAU NO BR-5-0252
PUB DATE May 71
CONTRACT OEC-6-10-078
NOTE I43p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS Data Analysis; *Individual Development; *Mathematical

Models; *Methods Research; Models; *State of the Art
Reviews; *Statistical Analysis

IDENTIFIERS *Polynomial Regression Models

ABSTRACT
This paper provides a survey of models for the

analysis of individual growth data emphasizing the problems posed by
serial or time dependence in the application of polynomial regression
models. The concepts of serial correlation and autoregressive models
are illustrated. It is demonstrated that standard inference
procedures may be quite misleading when applied to polynomial
regression models involving time dependence. Little consideration has
been given in the literature for the case of individual series to the
development of alternative procedures or to the problem of providing
a more reliable basis for inference except for the econometric model.
(Author)



Est

riryvq?

0:0

.0O

- 1 ID e

FILMED FROM BEST AVAILABLE COPY
11.1.11=11111



STANFORD CENTER
FOR RESEARCH AND DEVELOPMENT
IN TEACHING

Research and Development Memorandum No. 74

THE EFFECTS OF SERIAL DEPENDENCE ON
POLYNOMIAL REGRESSION MODELS FOR
INDIVIDUAL GROWTH DATA

John P. Burke and Janet Dixon Elashoff

School of Education
Stanford University
Stanford, California

May 1971

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG.
INATING IT POINTS OF VIEW OR °PIN-
IONS STATED 00 NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY

Published by the Stanford Center for Research
and Development in Teaching, supported in part
as a research and development center by funds
from the United States Office of Education,
Department of Health, Education, and Welfare.
The opinions expressed in this publication do
not necessarily reflect the position, policy,
or endorsement of the Office of Education.
(Contract No.OEC-6-10-078, Project No. 5-0252--
0704.)

2



Introductory Statement

The central mission of the Stanford Center for Research and Develop-
ment in Teaching is to contribute to the improvement of teaching in
American schools. Given the urgency of the times, technological develop-
ments, and advances in knowledge from the behavioral sciences about teach-
ing and learning, the Center works on the assumption that a fundamental
reformulation of the future role of the teacher will take place. The
Center's mission is to specify as clearly, and on as empirical a basis as
possible, the direction of that reformulation, to help shape it, to fashion
and validate programs for training and retraining teachers in accordance
with it, and to develop and test materials and procedures for use in these
new training programs.

The Center is at work in three interrelated problem areas:
(a) Heuristic Teaching, which aims at promoting self-motivated and sus-
tained inquiry in students, emphasizes affective as well as cognitive
processes, and places a high premium upon the uniqueness of each pupil,
teacher, and learning situation; (b) The Environment for Teaching, which
aims at making schools more flexible so that pupils, teachers, and learn-
ing materials can be brought together in ways that take account of their
many differences; and (c) Teaching Students from Low-Income Areas, which
aims to determine whether more heuristically oriented teachers and more
open kinds of schools can and should be developed to improve the education
of those currently labled as the poor and the disadvantaged.

Research and Development Memorandum No. 74, which follows, presents
a methodological development generated by the Methodology Unit in answer
to problems encountered in the analysis of repeated measurements data.
Such data analysis problems pose frequent difficulties in data gathered
by Center projects.

iii
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Abstract

This paper provides a survey of models for the analysis of individual

growth data emphasizing the problems posed by serial or time dependence in

the application of polynomial regression models. The concepts of serial

correlation and autoregressive models are illustrated. It is demonstrated

that standard inference procedures may be quite misleading when applied to

polynomial regression models involving time dependence. Little considera-

tion has been given in the literature for the case of individual series to

the development of alternative procedures or to the problem of providing

a more reliable basis for inference except for the econometric model.
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THE EFFECTS OF SERIAL DEPENDENCE ON POLYNOMIAL

REGRESSION MODELS FOR INDIVIDUAL GROWTH DATA

John P. Burke and Janet Dixon Elashoff1

This paper surveys statistical models for the analysis of individual

growth data with the major emphasis on the problems posed by serial or

time dependence in the application of polynomial regression models. Time

is considered to be an important variable, in contrast to situations in

which repeated measurements are a device for reducing error variance or

a convenience in data collection.

The problems considered in the literature can be distinguished on

the number of individuals considered, n , and the number of measurements

per individual, p . For p = 2 and n sufficiently large (say, 10

or more), the problem is one of measuring or contrasting group "growth"

or II change. tt An extensive literature in educational and psychological

research has been devoted to the analysis of such two-observation repeated

measurements data (Cronbach & Furby, 1970; Lord, 1956, 1957, 1958, 1963;

McNemar, 1958; Werts & Linn, 1970, and many others). With a larger num-

ber of time points, different methods of characterizing change in group

data arise. Under certain assumptions about the structure of the data,

analysis of variance techniques may be applied to the analysis of regres-

sion models with the time measure (generally in orthogonal polynomial

form) as dependent variable. Winer (1962, Ch. 7) discusses the simplest

form of analysis; Gaito and Wiley (1963) and Bock (1963) discuss more

1John P. Burke was a Research Assistant at the Center when this
paper was prepared; Janet Dixon Elashoff is Coordinator of the Methodology
Unit and Assistant Professor of Education at Stanford University.
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general approaches and provide an introduction to the biometric literature

in which most attention has been given to this situation. Rao (1965) and

Grizzle and Allen (1969) have made more recent contributions.

For a single individual or system and p very large (over 100 ),

an extensive literature on the spectral analysis of time series has evolved,

primarily in the context of electrical engineering applications (see, e.g.,

Parzen, 19 6 1). Holtzman (1963) discusses stochastic difference models for

psychological data.

The focus here is on applications to data on a single individual in

which p is moderate, say, in the range 5 to 15 . Problems in the

investigation of such data include postulating a model to account for the

data, estimating parameters of the model to characterize the individual,

and testing hypotheses about an individual's curve. Questions of interest

may be: What is an individual's average score? Is there growth or learning

(a trend over time)? Is that trend linear, quadratic, exponential?

An example of the determination of characteristics of individual

learning curves is provided by a study by Stake (1961) in which a theoret-

ical learning function of hyperbolic form was fitted to data obtained over

a series of trials, and the parameters of the function used as measures

for an individual in subsequent analyses. Stake's procedures, however,

take no account of the issues of dependence to be considered in this paper.

(In fact, the psychological literature on learning curves generally assumes

a nonstatistical error-free model. See, e.g., Estes, 1956.) Other models

for individual change over time which do account for probable dependence

are entering the literature of education and psychology as more attention

9:
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is given to the idea of experimental time series (Gottman, McFall, &

Barnett, 1969; McGuire & Glass, 1967).

The following sections (a) review a standard approach to the

analysis of individual growth data, based on a polynomial regression

model, which ignores possible dependence among the observations; (b)

introduce some possible models to account for serial dependency among the

observations; (c) discuss the effects of serial dependence on the standard

procedures; (d) outline some methods for detecting the existence of serial

dependence; and (e) discuss some alternative approaches to the problem.

Standard Approach Ignoring Dependence: Polynomial Regression

Suppose that observations, yt , of some variable are taken on an

individual at p points in time. A natural and simple model to describe

the relationship between yt and time, t , is a polynomial regression

model:

(1) yt =s f3

1
t + 02t2 + + ktk-1 + et k < p .

With this polynomial regression model and some assumptions about

et , one can describe an individual's growth curve, and test hypotheses

about the initial score for an individual, or about the existence of trends

in scores over time. A polynomial regression may be intended as an exact

description of the process generating the data, or as an adequate approxi

mation to a more complex model for the relationship between y and the

time measure. Or, one might apply regression techniques, without concern

for any underlying process, because the coefficients, the f3 s , provide

10
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useful descriptions of patterns in the data (see Fig. 1). Here attention

will be restricted to polynomial regression models although many other

types of models are possible (see Anderson, in press).

The standard least squares procedure for estimation and tests of

hypotheses of the parameters 00 , , Ok will be valid if

(2)

et "k, N(0, a2)

E(et et,) = 0 t' # t

That is, for any t , the error term et has a normal distribution

with mean zero and variance ce
2

. In addition, et is independent

of the error term at any other time t', t' t . In other words,

standard least squares procedures will be valid if the relationship

between yt and yt, , t' < t , is due solely to the relationship of

the means of yt and yt, to t and t' and not to any dependence

between the value of the observation yt and the actual value observed

for yt .

It is convenient although not essential to assume that the time points

are equally spaced, and it is so assumed here, Minor differences in pro-

cedure arise for unequally spaced time points in the determination of

orthogonal polynomial coefficients (see Appendix). Common practice

varies in the specification of the time measure; the p points being

denoted 0, 1, 2, ..., p-1 or 1, 2, 3, ..., p . The same form of

analysis applies to either convention, although the interpretation of

regression coefficients may differ.
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The p equations represented by the general equation (1) may be put

in matrix form as

(3)

yl

Y2

Yt

Y
- P-

5
0
+ a

1
1 + a

2
1 + ... + a

k
1
k-1

a0 + al 2 + a
1

22 + ... + a
k
2
k-1

a
0
+ alt + a2t2 + ... + a

k
t
k-1

S0 + alp + a2p2 + ... + a
k
p
k-1

Or y=Xa+e
,x, r il, ,x,

where y is the pxl vector of observations, y =
,x, ,x,

X =
ix,

1

1

1

1

1
-

1

2

3

t

P

1

4

9

t2 2

p
2

1

2k-1

3k-1

k-1

p
k-1

_

9

)

ak-1

e =
f,

el

e
P

+

Y2

YP

el

e
2

et

e
P

1
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Assumptions (2) are that e has a multivariate normal distribution with
ti

E(e) = 0 ,

and variance-covariance matrix

E(e
1
e
2

) E(e
1
e
p
)

E(e2e1) E(e22)

E(e
p
e
1
) E(e

2
)

2
a
e

0

0 a
e

2

0

0

0

a2
a
e

From least squares theory the estimators of the coefficients are

obtained by solving the equation

(4) $ = x' y .

2
a
e
I .

A A

Under (2) the estimators 13

0'
...,

k-1
have a multivariate normal

distribution with means

E(Si) = Si i = 0, ..., k-1

(5) and variance-covariance matrix

V(S) = a
2

(X1X)
-1

.

ti e

The following hypothetical example illustrates the application of

regression techniques to growth-type data. Suppose there are measures at

each of 10 equidistant time points on two individuals (Table 1 and

Fig. 1). One can fit regression curves and consider how the parameters

of these curves reflect apparent differences in the pattern of growth.

In this case it seems appropriate to fit a quadratic curve to both
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sets of data. The quadratic model may be expressed with either powers

of t or the orthogonal polynomial forms of these powers as the independent

variables (see Appendix). The orthogonal polynomial model for a quadratic

is written as

Yt 10 4. Y1 Plt 12 P2t et

where pit are the orthogonal polynomial coefficients of degree i .

Applying standard least squares procedures for orthogonal polynomials

(Appendix formula A.4), the data in Table 1 yields the estimates shown in

Table 2.

Hypothetical Data for 10

TABLE 1

Time Points on Two Individuals

Individual 0 1 2 3

Time

5 6 7 8 94

1

2

20

20

18

33

25

48

22

52

28

66

36

63

50

76

55

78

70

83

73

81

TABLE 2

Least Squares Estimates of Orthogonal Polynomial

Coefficients for Data in Table 1

Individual
10

Coefficients

Y
21

1 39.7 3.28 1.38

2 60.0 3.39 -1.42

2.4
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0

-9 -7 -5 -3 -1 1 3 5 7 9

pl

0: Individual 1 X: Individual 2

11111[111
Fig. 1. Plots of hypothetical data for 10 time points on two

individuals from Table 1 with fitted curves showing mean, linear, and
quadratic components.
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Examination of the coefficients shows that the mean yo (shown by

on Fig. 1) is considerably lower for individual 1. The coefficient

yi which reflects the linear component of the trend (the straight lines

in Fig. 1 show mean + linear component) is nearly the same for individ-

uals 1 and 2. The coefficients y2 clearly reflect the different char-

acteristics of the quadratic components of the two individuals. Note that

y2 for individual 1 is positive indicating a concave curve, which might

A
be interpreted as "early learning," while y2 for individual 2 is nega-

tive indicating a convex curve or "late learning." The curved lines in

Figure 1 are the fitted quadratic curves; the difference between the cor-

responding straight and curved lines being the quadratic component con-

tributed by y2 .

Models for Serial Dependence

Suppose a polynomial regression model such as that given by

conditions (1) and (2) while being of the right general form does not

fit the data well; that is, the value of y
t

seems to have some depen-

dence on the actual value of y
t-1

, not explained by the dependence of

the mean of yt on t . A number of different models to describe this

sort of situation have been proposed.

Models based on stochastic difference equations express the

dependence of observations on preceding observations rather than on the

time measure. A simple model of this type is the first-order model:

(6) yt = pl y
t-1 et'
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where the error component e
t

is assumed to have the following

properties:

E(et) = 0

G 2 t = t
E(etet,) = { e

0 t t'

E(et
Yt-s)

0 1 < s < t-1 .

That is, the et have identical distributions with zero mean, constant

variance
2

(a
e
), and are independent of the preceding observations.

This model is referred to as a first-order stochastic difference

equation, Markov chain, or autoregressive process. In this first-order

model an observation is assumed to be dependent on the immediately pre-

ceding observation
Yt-1

, but not directly dependent on any observations

preceding yt_i . Other models may be proposed reflecting higher order

dependence such as a stochastic difference equation of the second order

Yt P1 Yt-1 P2 Yt-2 et

The graphs of Figure 2 illustrate the kinds of series generated

by stochastic difference and regression models. The first-order

stochastic difference model generates a series in which there is oscil-

lation about a mean value (0) with no overall trend, and a tendency for

runs of positive and negative values. The linear regression model gives

rise to a trend and is more appropriate to processes in which an increase

in level with time is expected.

A more interesting approach to growth data of this nature may be to

retain the basic polynomial regression model described in (1) but to

specify a model for serial dependence among the errors or residuals.

17
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Stochastic Difference Model: yt = 0.4yt-1 + et , et rt, N(0,4)

Fig. 2. Data generated by linear regression and stochastic difference

models (note different scales).
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Descriptions of several of the commonly used models of this type will be

helpful; each requires different assumptions about the nature of serial

dependence among the errors.

A basic assumption of the standard least squares estimates for

model (1) is that the errors have constant variance and are independent

of each other; i.e., the variance-covariance matrix is E = a2
eI

. Serial

correlation or dependence is said to exist whenever there is correlation

between any pair of error terms; i.e.,

E(etet,) 0 0 for some t and t' 0 t .

Usually a particular model based on empirical evidence or theoretical

considerations is chosen to represent the form of serial correlation.

Here the characteristics of two particular models will be considered, the

autoregressive error model, and the cumulative error model.

The most commonly used model in the literature is the first-order

stochastic difference equation or autoregressive error model
2

:

(8) et = pe
t-1

+ u
t

with Ipl < 1 , and

a
2

t =

(9) E(ut) = 0 , E(et,ut) = 0 t' < t , E(utut,) = { u
0 t o t '

Hence E(e
t
) = 0 and E(e

2
) = a

2
= a

2
(1-p

2
) .

e u

In other words, the error term et is a linear function of the error

term at time t-1 , plus term ut representing additional unaccounted-

for variability.

2
This model for the error term is exactly like the stochastic difference

model (6) for observations previously considered.



It can be shown that E(e
t
e
t+s

) = psa Hence the variance-

covariance matrix of errors generated by this process is

Ea = a2
e

r
1 p p2 pp-1^

p 1
pp -2

pp -1
p 1

13

Such a pattern of variance-covariance matrix, in which off cliagoral corre-

lations decrease monotonically, is often referred to as a simplex.

In the context of this autoregressive model for serial dependence,

a population serial correlation coefficient of lag s is defined as the

correlation between error terms s units apart. Algebraically,

(10) As

(s2)E(s2
t+S)

E(e e
t t+s)

Under model (8), ps

E(e e )
t t+s

2
a
e

-A

The sample serial correlation coefficient of lag 1 of the residuals

from regression provides an estimator of p . If one defines the residuals

A A
zt = yt - yt , where y

t
is the standard least squares estimate at time

t , then one definition of the sample coefficient of lag s is

20
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r

E z_z_
t = s+1 L -s

E z
2

t = 1

which may be likened to a product moment correlation between the series

z
s+1 '

z and zl, zp-s . This coefficient provides a statistic

useful for detecting dependence in observed data.

The cumulative error model is less commonly encountered, but

provides an interesting comparison with the previous model. Here it is

proposed that

(12) e
t
= e

t-1
+ u

t '

or et = E ut
'

t=1

and conditions (9) hold for et and ut . It follows that E(et) = 0 ,

and E(etet4s) = t 02 (s > 0)

matrix of errors is

, and hence the variance-covariance

1 1 1 ... 1 1

1 2 2 ... 2 2

E = a
2

c u
1 2 3 ... 3 3

. . . .

1 2 3 ...p-1 p-1

1 2 3 ...p-1 p
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In the cumulative error model, th:2 error at time t is composed of

the error at time t-1 plus an independent component ut . The incre-

ment u
t

may be conceived of as an error arising during the time interval

t-1 to t . The conditions under which one might expect this model to

hold are discussed by Mandel (1957).

Note that the cumulative error model is the same form as the auto-

regressive model but with p = 1 . The class of first-order autoregressive

models with Ipi > 1 is often denoted as the class of nonstationary auto-

regressive processes, while Ipl < 1 defines the class of stationary auto-

regressive processes. Stationary processes have constant variance across

time; note the ones in the diagonals of E
a

. The variances of nonstationary

processes increase or "explode" over time; note the diagonal terms in E
c

.

Observe that in the consideration of data for a single individual, an

estimate of E
a

or E
c

would not be available to provide a suggestion of

which underlying error model was appropriate. In order to get an estimate

of E , replications of the sequence of p observations would be needed.

The cumulative error model generates different betweel-times

correlations as well as different variances. Thus

2

=
a
t +

tt5 _
t,t+s 0

t
0
t+s vrTi 2 t+s

t 0 (t+s)0

For any value of s this correlation is a function of t . Hence

there is no single population serial correlation coefficient of lag s

p
s

, as in the autoregressive model.
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The point here is that, while the autoregressive model is the

one most frequently encountered in the literature and is often considered

to be the model for serial correlation, other models may be worth con-

sidering. The cumulative error model is one example. Other possibilities

are second-order autoregressive models, or a model such as that used by

Box
3

. These models may generate rather different patterns of serial

dependence from those generated by the stationary autoregressive model.

Furthermore, such concepts as the serial correlation coefficient may not

be generally meaningful in other models.

Effects of Serial Correlation on Conventional Least Squares Procedures

This section will consider the effects of serial correlation on

ordinary least squares procedures for estimation of parameters in (1) in terms

of: (a) bias in the least squares estimators of regression coefficients;

(b) the efficiency of the least squares estimators; (c) the validity of

hypothesis tests and confidence intervals based on the conventional pro-

cedure.

The problem of prediction of values beyond the range of the time

measure is considered by Johnston (1963, pp. 195-199), in the context of

the general regression model encountered in econometric applications.

3
Box (1954), in studying the effects of serial correlation on analysis of
variance, used

E = a2

1

p

0

p

1

0

0

p

0 p

0

0

1
am.
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Generally speaking, the results presented in this section may be

summarized by saying that the ordinary least squares estimators of the

regression coefficients, a , are unbiased and reasonably efficient
ti

(that is, the variances are not appreciably larger than the minimum

obtainable variances) but tests and confidence intervals for the true

values of a may be seriously misleading.
rt,

Figure 3 illustrates the effect of serial correlation, showing data

generated by a linear regression model with autoregressive error term

for p = 0.2 and 0.8 . BO and
1

are the ordinary least squares

estimates, p is the r
1

of (11), and d is the Durbin-Watson

d-statistic (22) whose use will be discussed later. Discrepancies be-

tween the line specified by the model and the line fitted using ordinary

least squares techniques are evident, particularly for p = 0.8 . Note

that the residuals from the fitted line tend to be more random than the

A

actual errors. Consequently, p is an underestimate of p .

Bias

It is readily shown that the estimators obtained by ordinary least

squares techniques are unbiased under any form of serial correlation

(Johnston, p. 188) as long as E(et) = 0 . This means that the expected

value of a coefficient estimated from replications of a given series is

the population coefficient.

Efficiency

The most efficient estimator of a parameter (out of a class of

possible estimators) is that for which the variance of the estimate is

least. Although two estimators may both be unbiased, the more efficient
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will tend to provide individual estimates closer to the population value,

narrower confidence intervals, and consequently more powerful tests of

hypotheses. When the conventional assumptions of independence (2) are

met, the ordinary least squares (o.l.s.) estimators of the regression

coefficients are the most efficient of any unbiased estimators which

are linear functions of the observed values.

When serial correlation exists the least squares estimators may

not be the most efficient. If the error variance-covariance matrix

is assumed known, it can be shown that the most efficient linear unbiased

estimators of the 13 coefficients are those obtained by techniques

known as generalized least squares (Johnston, sect. 7.3). These

estimators, the g.l.s. estimators, are given by

(13) f3* = (X' E-1 X)-1 X' E-1 Y .

11., ti

In practice, E would not be known. However, calculation of

Var (Si)
for various specifications of p and E provides a lower

Var di)

bound for the efficiency of the o.l.s. estimators relative to any other

linear unbiased estimators one might devise.

For general error variance-covariance matrix E , the variances for

g.l.s. and o.l.s. estimators are given by:

(14) Var (13*) = (X' E-1 X)-1
ti 1.1 ti 1.1

Var (i3) = (X'X)-1 X' E X (VX)-1
ti ti ti ti titi ti 11.,
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(The formula for Var (

case of independence.)

reduces to formula (5) when E = a2 , the

Table 3 gives the relative efficiencies of the o.l.s. and g.l.s.

estimators of the polynomial coefficients 130 , 131 , R2 based on five

time points, for the autoregressive model ( E = Ea) with p varying

from -0.8 to 0.8 , and for the cumulative error model. Note that

relative efficiency increases with increase in number of time points.

(See Rosenblatt, 1956, for tables of variances for o.l.s. and g.l.s. or

Markov estimates for 10, 15, 20, and 50 time points in a linear regres-

sion model.)

It is clear that the relative efficiency of the o.l.s. estimators is

generally high except for large. negative p . Decisions between alter-

native estimators based on relative efficiency depend on the complexity

of calculation for the alternative estimators, and problem-specific

decisions about power, etc.; however, except for p < -0.6, the o.l.s

estimators have satisfactorily small variances under the autoregressive

model.

Validity of Hypothesis Tests and Confidence Intervals

There are a variety of hypotheses about the values of regression

coefficients that may be tested; e.g., H0: Si = 0 or H0: SO = 81 = (32 = 0

(8 = 0) . Under the ordinary assumptions of independence (2), t- and

F-tests are appropriate for these hypotheses. There is evidence, however,

that the existence of serial correlation seriously affects the validity of

the tests.
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TABLE 3

Relative Efficiency of O.L.S. and G.L.S. Estimators of

Polynomial Coefficients Based on 5 Time Points

Var (i3 )

-0.8 -0.6

Autoregressive Error Model

0.6 0.8

Cumulative

P

-0.4 -0.2 0 0.2 0.4

Error
Model

0.43

0.38

0.37

0.75

0.73

0.72

0.92

0.92

0.92

0.99

0.99

0.99

1.00

1.00

1.00

1.00

0.99

0.99

0.98

0.99

0.99

0.98

0.98

0.98

0.96

0.98

0.98

0.96

0.98

0.98

Var (110)

Var (3 )
1

Var (131)

Var (82)

Var (132)

TABLE 4

Probability of Type I Error When Nominal Significance

Level Is 0.05 Under Serial Correlation

Example 1

Example 2

-0.4 -0.2 0.0
P

0.2 0.4 0.6 0.8

.0026 .0164 .05

.05

.11

.14

.20

.38 .70 .92
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Computations of the probability of a Type I error in two different

situations illustrate how the use of standard hypothesis tests derived

under (1) and (2) can be extremely misleading under the autoregressive

error model described by (8) and (9).

In Table 4, example 1 is for a two-sided t-test of
f31 0

in

the model: yt = 80 + 61t + et , t = 1, ..., p and p large, Elashoff

(1968). Example 2 is for the F-test of a
0

= f3 I = 62 = 83 = a
4

= 0 in

the model yt = 00 + 6
1
t + 62 t

2
+ 03 t

3 + f34 t
4
+ et , t

1 2
125' 2 5 ' "

Hoel (1964). Both are examined under the autoregressive error model

et = pet-1 + ut

where E(et) = 0 and

E = a
e

1 p p2

p 1 p

Pp-1 pp-2

._

4

II

0 1

It is apparent that the probability of a Type I error is strongly

affected by p . When positive serial correlation exists, the null

hypothesis is likely to be

If the ordinary least

efficient even when serial

rejected far too frequently.

squares estimators are unbiased and relatively

correlation exists,why are hypothesis tests

so misleading? When serial correlation exists, the assumptions of inde-

pendence of errors which justify the derivation of t- and F- statistics
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no longer hold (Elashoff, 1968). In particular, the formula (5) for

A2
the variances of estimators no longer holds, and the usual estimator a

e

of the Cr
2

e
is a serious underestimate when serial correlation exists.

The general formula for the variance of estimates under assumptions

of independence is

(15)
0,2 (x' X) -1
e

When dependence exists the appropriate formula is

(16) VO) = (X'X)-1 X'EX (X1X)-1 .

ti

For example, the standard test of H0: (31 = 0 is based on using

the formula

2

(17) Var =
e

E(t-T)2
t

for the variance of 13:1 in the formula for the t-statis'cic. However, if

the errors follow the autoregressive model given by (8) and (9) the cor-

rect formula for the variance for p large is approximately

a 2

(18) Var (131) - (1 + 12) .
2 1-p

E(t-
t

The difference between these formulae can be quite substantial; their

ratio is 1:2- (see Table 5).
l+p
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TABLE 5

Ratio of Standard Formula for Var
1

to Correct Formula for

Var
1
Under the Autoregressive Error Model

l+p

p

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

4.0 2.33 1.5 1 0.75 0.63 0.57

"2
The usual estimator a

e
of the error variance, obtained by deter-

mining the mean square of the residuals from regression, is seriously

biased downward. Observation of the graphs in Figure 3 gives some in-

sight into this problem: the least squares lines actually "fit" better

than they should, in the sense of reducing the squares of the deviations

from the regression line. Hence the residual mean square is much less

than the error variance. The average extent of bias under particular

polynomial regression models can be determined algebraically. The prob-

lem has been investigated by Watson (1955) and Watson and Hannan (1956)

at a general theoretical level.

Econometric Studies of the Effects of Serial Correlation

In exploring the literature dealing with serial correlation and its

effects, much of it will be found to be based on a model appropriate to

economic studies (e.g., Cochrane & Orcutt, 1949; Johnston, 1963; Rao &

Griliches, 1969). The econometric model is sufficiently different from the

polynomial regression model with autoregressive error that the conclusions

31
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based on it are either not directly pertinent to the polynomial model,

or need to be interpreted with caution. However, the econometric model

has received considerable study and sheds light on the effects of serial

correlation.

Econometric models are of the form

(19)
Yt 80 81 xlt 82 x2t + et

where (3
0

is frequently taken to be 0 . (In an econometric context, the

x
it

may be such variables as annual prices of some commodities.) The

major difference from the polynomial regression model considered in this

paper is the use of random variables x
i

measured at each time point

rather than powers of t to predict y . More sophisticated treatment

of the "time" measure or the use of other indicators of change in con-

ditions could lead to the a?plication of econometric-type models. T. W.

Anderson (1963) has pointed out that econometricians generally consider

the inclusion of time variables to be substitutes for other unknown

variables whose values are related to the time measure.

In particular, Rao and Griliches (1969) study a simple econometric

model:

(20)

Yt 8 xt et

xt =Xx +
t-1 . t

et = p ut
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E(vt) = E(ut) = E(vt ut)

= E(ut ut -1) = E(vt vt_1) = 0

2 2
E(vt) = av , E(ut) = a2 ,

IAI < 1, Ipl < 1 .

In contrast, the linear regression model with autoregressive error term is

(21)

yt = 00 + Bit + et

e
t
= pe

t-1
+ u

t

E(ut) = E(ut
ut -1) =

0

2 2
E(ut) = au , 'pi < 1 .

Examining both models, it will be noted that in model (20) the constant

term 0
0

has been dropped and a random variable x
t

with an autoregressive

probability structure has been substituted for t . A comparison of t

written as t = (t-1) + 1 with xt = Xxt_i + vt suggests that results

for the Rao and Griliches model for X close to 1 should be most

similar to results for the linear regression model.

For model (21), efficiency computations maybe made directly; as

seen in Table 3, the ordinary least squares estimators are generally effi-

cient. For econometric models similar to (20), however, efficiency com-

putations based on sampling experiments (necessary because xt is a random

variable) indicate that ordinary least squares estimators may not be

03
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satisfactory (see Cochrane & Orcutt, 1949, and Rao & Griliches, 1969).

Rao and Griliches (1969) indicate that for X close to 1 ordinary

least squares estimators are relatively efficient in the econometric

model as one would expect.

Tests for Serial Correlation

The existence of serial correlation may be investigated in a

variety of ways. Figure 3 indicates a common feature of serially cor-

related data in the tendency for runs of positive and negative residuals

from the fitted curve. An obvious initial step is to graph the data

and to consider the patterns in the residuals. Mandel (1957, p. 562)

applies a test for the cumulative error model based on the number of

times the residuals change their sign.

Several tests for the existence of serial correlation of the auto-

regressive kind have been proposed. Probably the most easily applied is

that based on the Durbin-Watson d-statistic, defined as

E (z - z )
2

t t-1

(22) d =
t = 2

P
E z

t
t = 1

where the z
t

are the residuals from the fitted regression line.

Durbin and Watson (1951) provide tables of lower and upper bounds dt

a

and d
u

for values of p from 15 to 100 and of k (degree) from

a

1 to 5 , for single tail significance level a = .05 , .025 , and

.001. The null hypothesis is p = 0 in the model e
t
= pe

t-1
+ u

t
.
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Against the alternative hypothesis p > 0 , the null hypothesis is

rejected if d < d
'

not rejected if d > d
ua

, and the test is in-
a

conclusive otherwise. Against the alternative hypothesis p < 0 , the

null hypothesis is rejected if 4-d < dt , not rejected if 4-d < du ,

a a
and the test is inconclusive otherwise. The alternative hypothesis

p # 0 may be tested by a combination of the above tests at the significance

level
a

. For example, for tests of the hypothesis p > 0 for the data

of Figure 3, the d value of 1.98 for the model with p = 0.2 is not

significant at the .05 level, while the d value of 0.90 for the

model with p = 0.8 is significant at the .01 level. Durbin (1970)

provides an exact test when this bounds test is inconclusive. For a poly-

nomial regression on t up to degree 5 Theil and Nagar (1961) provide

approximate 1% and 5% significance points.

Durbin (1969) has also developed a graphical method for a more

general test of departures from serial independence.

Conclusions

Studies of regression problems with serial dependence in the

residuals have been concerned primarily with evaluating the effects of

violating the ordinary least squares assumptions. As pointed out here,

ordinary least squares estimators of the coefficients in a polynomial

regression such as

y
t

= a
0
+ S1t + a2t2 + et

are unbiased and may still be efficient even when Ee # a
2
I . However,

inferences about S
0 ' 1 '

and S
2

based on ordinary least squares

procedures may be quite misleading.
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Little consideration has been given, in the case of individual series,

to the development of alternative procedures or to the problem of providing

a more reliable basis for statements of inference, except for the econo-

metric model. Although there are no clear-cut procedures to follow, if

it has been determined that there is serial dependence of an extent to

make ordinary least squares inappropriate, several alternative possibilities

have been suggested.

The initial problem is to settle on an appropriate model for the form

of dependence. If the choice is restricted to either a cumulative or a

first-order autoregressive model, investigation of the residuals from a

fitted ordinary least squares regression may provide sufficient information

to distinguish the more appropriate model. Selection of a first-order

autoregressive model against a higher-order model may be based on con-

sideration of the sample serial correlation coefficients of lag 1 and

higher (Holtzman, 1963). There are some potential problems in

arriving at an appropriate model for the form of serial dependence, due

to the bias toward randomness of the residuals mentioned in the section

concerning the effects of serial correlation on conventional least

squares procedures.

Procedures for analyzing data for which a cumulative error model i3

appropriate are detailed in the articles of Mandel (1959) and Jaech

(1964). In a first-order autoregressive model, C. R. Rao (1967) presents

a procedure for estimating the coefficients (3 in a polynomial regression.
ti

Closely related to this are the approaches investigated by P. Rao and

Griliches (1969)

a6
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C. R. Rao (1967), noting that in the first-order autoregressive

error model one can write ut = et - pet-1 , expresses the polynomial

model in the form

ut Yt PYt-i 130 (l-p) 131(t-P
(t-l)) - f3k(tk-P(t-1)k) .

Then p and the Si are estimated simultaneously by minimizing Eut
2

.

This approach looks interesting but no specific information is available

on the characteristics of the estimators obtained.

Rao and Griliches have suggested similar approaches for the econo-

metric model (20) although minimizing Eu2 presents problems in the

general situation of random xt since the relationship is nonlinear in

13 and p . Their investigations do suggest that C. R. Rao's approach

may be useful for the polynomial regression model.

While consideration of the analysis of individual growth curves

provides some insight into the problems presented by the occurrence of

serial dependence, educational data is most often available for more than

one individual. In this situation, the problem of postulating a model and

estimating several parameters, all on a small piece of data, are avoided if

one is willing to make certain assumptions about similarities of models

for individuals. Gaito and Wiley (1963) and Bock (1963) provide an intro-

duction to the literature in this area.
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APPENDIX

Orthogonal Polynomial Coefficients

This paper discusses the effects of serial dependence on analyses

based on polynomial regression coefficients. Generally, orthogonal

polynomial coefficients have been preferred in the psychological and

educational literature dealing with repeated measurements data as being

more descriptive of the data (see, e.g., Gaito & Wiley, 1963; Bock,

1963). Some of the relationships between the two approaches will be

briefly indicated here.

In equation (3) the general form of the polynomial regression model

is expressed as

(A.1) y = X
ti ti

where

X =
ti

P. + e

fb ti

1

1

1

1

1

2

3

.

1

4

9

.

2
p

1

k -1
2

3
k-1

.k -1
p

for equally spaced time points.

Analysis based on orthogonal polynomial coefficients proceeds in

the same way as for the polynomial regression, but the matrix X is
ti

replaced by a matrix of orthogonal polynomials, denoted for convenience

as P . The vector of coefficients is denoted as y . Hence the model (3)

may be expressed as

(A.2) y=P y+e.
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The matrix P is obtained by a process of "orthogonalizing" the
ti

matrix X . Standard procedures exist for this, but the elements of P

ti rt,

are readily available in tabulated form when the time points are equally

spaced (Winer, 1962; Fisher & Yates, 1957). For unequally spaced

time points, see Gaito (1965).

As an example, the matrix P corresponding to a quadratic poly -
ti

nomial based on 5 time points is

P =

1 -2 2

A- VU5 VDT

1 -1 -1

/1.5 11174-

1
0

-2

1 2 2

71-.15 /IX

P has the characteristic that the columns are orthogonal to each
ti

other; i.e., the sum of the products of the elements is zero. This leads

to the result:

P'P =
11.1 11.1

=I .
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A A
Consequently, the formulae for y and Var y are considerably

simpler than for and Var . The estimators of y from least
ti

squares theory are:

(A.3) Y P'y

with variance-covariance matrix

(A.4) V(Y) = a2 I .

fl)

This latter formula indicates the algebraic independence among the

estimates of the coefficients when the errors are independent. Since the

variance-covariance matrix is diagonal, the individual coefficients are

A A A
independent; e.g., in the example shown in Table 2, yo , yi , y2 are

algebraically independent. This is not true for the polynomial regression

coefficients, for which there exists an algebraic dependence between

R
0 ' 1 ' 2 '

etc.

When serial dependence exists between observations, formula (14)

for the variance of the ordinary least squares estimators becomes

Var (y) = (13'13)-1 P' E P (PIP)-1

= P' E P since P'13 = I .

ti fl) ti fIJ ti
It can be seen from this formula that when E

2
I the o.l.s.

estimates of the orthogonal polynomial coefficients no longer have the

advantage of being independent. Relative efficiency figures derived from

these formulae for the orthogonal polynomial coefficients are quite simi-

lar to those for the ordinary polynomial coefficients, and hypothesis

testing behavior should follow the same pattern.


