
DOCUMENT RESUME

ED 066 862 EM 010 095

AUTHOR Roid, Gale H.
TITLE User's Guide to "MULE"; McGill University Language

for Education. A Computer-Assisted Instruction Author
Language.

INSTITUTION McGill Univ., Montreal (Quebec).
PUB DATE 72
NOTE 8p.

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS College Students; *Computer Assistc2 Instruction;

Computer Programs; Guides; *Programiag Languages
IDENTIFIERS McGill University; *MULE computer language

ABSTRACT
A computer-assisted instruction (CAI) author language

and operating system is available for use by McGill instructors on
the university's IBM 360/65 RAX Time-Sharing System. Instructors can
use this system to prepare lessons which allow the computer and a
student to "converse" in natural language. The instructor prepares a
lesson by coding text material, questions, and answers in a special
CAI language. The coded lesson is prepared for input to the MULE
compiler. Once the lesson has been placed in a disk file it can be
called upon from any remote terminal connected to the RAX system by a
student who then proceeds through an instructional dialogue with the
executing program. Basic parts of the MULE language are explained
here, including the statement form, label field, operation code
field, operation codes for display statements, operation codes for
response processing statements, and operation codes for control and
accounting statements. Student's times, responses, and scores are
automatically recorded on a permanent file. (JK)

C3
User's Guide to "MULE"

McGill University Languaca for Education:

A Computer-Assisted Instruction Author Language
O

Gala H. Rcid
McGill University

U.S OEPARTMENT OF HEALTH.
EOUCATION & WELFARE
OFFICE OF EOUCATION

THIS DOCUMENT HAS BEEN REPRO
OUCEO EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION OFIIG
MATING IT POINTS OF VIEW OR OPIN
IONS STATED 00 NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EOU
CATION POSITION OR POLICY

SECTION I: Introduction

A computer-assisted instruction (CAI) author larguage and

operating system is available for use by McGill instructors on

the university's IBM 360/65 RAX Time-Sharing System. Instructors

can use this system to prepare lessons which allow the computer

and a student to "converse" in natural language.

The instructor prepares a lesson by coding text material,

questions and answers in a special CAI language. The coded lesson

is prepared for input to the MULE compiler. Once the lesson has

been placed in a disk file it can be called upon from any remote

terminal connected to the RAX system by a student who then proceeds

through an inscructionai dialogue with the executing program.

SECTION II: The MULE Author Language

Lessons are prepared for computer input by coding them in the

MULE languizge. "Coding" means writing lesson material in a special

form involving many individual statements. Each statement is made

up of at least three parts: 1) a label or number for the statement,

2) an operation code, and 3) written material to be read from

or typed onto a computer terminal. Each statement must be less

than 80 characters in length, in order to conform to IBM card

restrictions, as illustrated below:

Statement Form:

Information: Label

I

Operation
Code

Card Column: 1 2 3 4 56 7 8

Text

9 801

The Label Field

Labels for each statement are optional. The main purpose of

labels is to identify points in a coded lesson to which a student

is to be branched (see description.of the "GTO" operation code).

Labels consist of from 1 to 4 alphabetic or numeric characters.

Each label must start in the first card column (although leading

blanks can be used as "characters "',.

Operation Code Field

Operation codes are three or four-letter symbols which

indicate to the MULE compiler the operation that is to be performed

at that point in the lesson. These codes are typed into positions

(columns) 5, 6, 7, and 8 of each statement. There are four basic

types of statements in the MULE language, each with its own set of

operation codes, 1) Display statements that ask for information to

be typed out on the student's telutype, 2) Response Processing

statements that call for and inspect rt response from the student,

3) Accounting statements that allow records to be kept of types

and frequencies of student responses, and 4) Control statements

which direct the sequenc,?. in which lesson statements are executed

(viz., "GTO" branching statements), or signal the end of a lesson.

Each Operation code will be described in turn.

2291.21c2r22227:E2LOX.a§tatELnents.

1. "PRO" PROblem. The information typed in cols. 9-80
of a PRO statement are written out on the
teletype. PRO is meant to be used as the first
line of text written on the teletype for each
discrete problem, frame, question or unit.
Triple spacing above the line is done automat-
ically. On the permanent record of student
responses, the responses corresponding to each
DRO statement are written, each PRO being
numbered from the first to the nth (see SECTION III
on accounting).

2. "PRE" PREsent lesson material (text). The information
typed in columns 9-80 of a PRE statement is
written out on the teletype, with triple above it.
A PRE statement is used for introductory comments
or directive.

3. "XXX"

4. "SHO"

Continuation of text or information. The
characters in columns 9-80 of an XXX statement
are typed out on the teletype with single spacing.

XXX can also be used to type messages to the
student after a response has been processed (see
XXX below).

SHOW the contents of a Counter. Can be used to
display student's score, or other accounting
information. See description below.

Operation Codes for Response Processing Statements

1. "ANS"

2. "CUD"

ANSwer. When an ANS statement is encountered
ETthe MULE system during execution, the teletype
is set up to receive a response from the student.
ANS causes a '?" to be typed out on the teletype
and then causes the system to read in one line of
information from the student.

"Good" Response. Causes the student's response
to be compared with the characters in columns
9-80 of the GUD statement. An exact, character
for character match is necessary. For example,
the statement:

GUDF IIBM CARD
Column F1 .2 3 4 5 6 7 8 9 80

would cause the student's response to be
compared with "IBM CARD". (More than one
GUD can be used for any one ANS).

3. "BAD" BAD response. Causes the student's response
to be compared with the characters in columns
9-80 of the BAD statement. Exact match necessary.
Equivalent to a GUD statement in function, but
difference in name ("Good" vs. "Bad") helps
instructor write lesson clearly. (More than one
BAD can be used for any one ANS.)

4. "KWG" (Key Word Good)

"KWB" (Key Word Bad)

These codes direct the computer to search the
student's response for character strings
("Key words"). Their format is as follows:

column
K W G /W1/,/W2/,/W3/JORDER=x;MATCH=n

9 801 2 3 4 5 6 7 8

"Wl", "W2", and "W3" are Loy words to be searched
for in the student's respcnse. Any characters
except comma (,), slash (/), and semi-colon (;)
may be used in the key words. The whole
instruction must fit on one card, although several
may be used for any one ANS.

The variable ORDER indicates whether the order
of the key words is important. "ORDER=" may be
abbreviated to "O=" or "ORDis" followed by a YES
(or Y) or NO (or N). ORDERYES implies that the
order of key words given on the KWG or KWB card
must be found for a positive match to occur;
ORDER0NO that order is not important.

The variable MATCH indicates the number of key
words which must be found in order for a positive
match to occur. "MATCH -" may be abbreviated to
"M-" or "MAT" followed by a number 0 to 9. The
number specifies how many key words must be
identified. (If "MATCH=24" is specified
erroneously, the program assumes "MATCH -2" was
specified).

If only one key word is to be searched for, then
the instruction may be abbreviated to "KWG /W1/".
In all other cases ORDER and MATCH must be
specified. Spacing is relatively unimportant as
is the order of ORDER and MATCH. Only if these
parameters are NOT abbreviated can the verbs "IS"
and "ARE" be us70to replace the equal sign (_m).

5. "UNX"

6. "XXX"

Some examples follow:

KWG /SEMI/o/CONDUCTOR/;MATCH=2;0Y

KWG /1/,/2/,/4/:M=1;ORDER IS NO

KWB /TWO/,/2/;0=N;M=1

UNeXpected response. If student's response
Wes not match a GUD or BAD, an unexpected
response can be processed with this statement.
An integer number from 1 to 9 must accompany
UNX, in column 9, i.e.,

Column
U N X

1 2 3 4 5 6 7 8 9 80

where "n" is an integer number indicating the
number of times an unexpected response will be
allowed for any one ANS, before the student is
moved on to the next frame (the next PRE).

An XXX continuation statement can be used to
follow GUD, BAD, and UNX statements, in which
case the information in columns 9-80 of the XXX
statement are typed on the student's teletype
after a positive match (or "no match" in the
case of UNX). This makes it possible for verbal
feedback, instrur:tions or other comments to be
given to the student immediately after his
response.

Example of response processing:

Col.: 123456789

PRO HOW ARE YOU TODAY?
B1 ANS

KWG /FINE /, /OK /, /NOT BAD /;0 =N;141
XXX THAT'S GOOD
KWB /BAD/o/TERRIBLE/;00.N:M101
XXX TOO BAD
UNX 1

XXX SORRY, I DIDN'T READ YOU
GTO 81
PRO WELL, LET'S GET ON WITH THE LESSON

END

0 eration Codes for Control Statements

1. "GTO" Go TO. A branching statement causes the lesson
ri continued at the statement given by the

label in columns 9, 10, 11 of the GTO statement.
Used to break the sequence of statement execution.

If a GTO is used after a GUD, BAD, or UNX, the
branch is made only if a positive match is made
(or "no match" is the case of UNX). See example
of response processing above.

2. "END" END of lesson. Signals the MULE compiler of the
end of lesson code. Used only once per lesson
as the very last statement.

0 oration Codes for Accounting Statements (See also SECTION III below,

1. "ADD"

2. "SHO'

ADD to a counter for record keeping, scoring,
etc. Up to 200 counters can be used to accumulate
scores or tallies during lesson.

Information starting in column 9 of the ADD
statement is used to indicate 1) whether a
positive or negative quantity is to be added
to a counter, 2) the quantity to be added to
the counter, and 3)the number of the counter.
Each of these three elements is separated by a
comma, e.g.:

ADD 1, #5

ADD --, 2, #101

Also, two counters can be operated on, e.g.:

ADD , #2, #3

(which would add the contents of counters #2
and #3).

SHOw the contents of a counter. Specified
counter contents are written on the teletype
along with verbal comments if desired.

The SHO statement has three possible forms:

1) SHO comment; #m; more comment

For example:

SHO YOU HAVE GOTTEN; #16; CORRECT SO FAR

2) SHO comment; #m

For example:

SHO NUMBER RIGHT=; #2

3) SHO #m

For example:

SHO ; #151

3. "TIME" TIME (typed in columns 5, 6, 7 & 8) used once
at the beginning of a MULE lesson, starts a
timing routine that computes the total amount
of elapsed time the students take to complete
the lesson.

SECTION III: Automatic Accounting and Student Record File

1. Automatic Accounting Function

MULE incorporates the function of the ADD instruction

automatically for every GUD or KWG, BAD or KWG, and UNX response.

Counters 0, 1, and 2 respectively are reserved for counting the

number of UNX's, GUD's or KWG'so and BAD's or KGB's. For example,

if you wished to tell a student how he was doing on a lesson you

might use the following SHO statements:

SHO YOU HAVE; #1; CORRECT SO FAR

SHO YOU HAVE MISSED; #2

SHO AND; #0; WERE UNEXPECTED

2. Permanent File for Student Records

The responses, time, and scores for each student are

automatically recorded on a permanent file (supplied by the user)

for use by the instructor for accounting purposes. The MULE

compiler constructs an implicit numbering of the PRO's in a lesson

from "1" to n, the total number of PRO's. The responses of each

student for each PRO are written on a permanent record file with

their associated number and GUD, BAD or UNX classification. Below

is a sample of a student record:

1. GUD *** RESPONSE *** COLLEEN HORAN

2. GUD *** RESPONSE *** D

3. GUD *** RESPONSE *** POSITIVE

4. UNX *** RESPONSE *** RECOVERY

5. BAD *** RESPONSE *** B

*TOTAL GODS * 3

TOTAL BADS = 1

TOTAL UNXS 1

TOTAL ELAPSED TIME 3.48 MINS

$$ DATE OF FILE ENTRY: 15 JUL 70

*** TIME OF DAY AT COMPLETION: 10.31.05

To obtain a printout of your permanent file (each page

showing a record such as that above for each student's use of a

lesson), you can use a program called DSPLAY which can be run from

a teletype terminal. Another program, MULER, can be run through

batch processing to have the file printed on a high-speed printer.

A program called RENEWP is used to erase a permanent file which

has been printed, is filled, and needs to be reused.

