
DOCUMENT RESUME

ED 065 144 LI 003 765

AUTHOR Weiman, Carl F. R.; Rothstein, Jerome
TITLE Pattern Recognition by Retina-Like Devices.
INSTITUTION Ohio State Univ., Columbus. Computer and Information

Science Research Center.
SPONS AGENCY National Science Foundation, Washington, D.C. Office

of Science Information Services.
REPORT NO OSU-CISRC-TR-72-8
PUB DATE Jul 72
NOTE 165p.;(28 References)

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS *Algorithms; Computers; *Computer Science; Doctoral

Theses; *Pattern Recognition
IDENTIFIERS *Farey Series

ABSTRACT
This study has investigated some pattern recognition

capabilities of devices consisting of arrays of cooperating elements
acting in parallel. The problem of recognizing straight lines in
general position on the quadratic lattice has been completely solved
by applying parallel acting algorithms to a special code for lines on
the lattice. The relation of the code to Farey series and continued
fractions and the effects on the code of a line when the line is
subjected to affine transformations were studied in detail.
Algorithms for reducing straight line codes to a standard form were
developed and made the basis of a line recognition process. Cellular
automata were designed tc carry out liae recognition. Other cellular
automata were designed to recognize topological connectedness, detect
boundaries and approximate curves by straight line segments.
(Author)

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS 00CUMENT HAS BEEN REPRO-
DUCK) EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-

..* INATING IT. POINTS OF VIEW OR OPIN.
IONS STATEO 00 NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF mi.
CATION POSITION OR POLICY.

1

0-4

(OSU-CISRC-TR-72-8)

PATTERN RECOGNITION BY RETINA-LIKE DEVICES

by

Carl F. R. Weiman and Jerome Rothstein

Work performed under

Grant No. 534.1, National Science Foundation

The Computer and Information Science Research Center

The Ohio State University

Columbus, Ohio 43210

July 1972

1

ABSTRACT

This study has investigated some pattern recognition capabilities

of devices consisting of arrays of cooperating elements acting in

parallel. The problem of recognizing straight lines in general position

on the quadratic lattice has been completely solved by applying parallel

acting algorithms to a special code for lines on the lattice. The

relation of the code to Farey series and continued fractions and the

effects on the code of a line when the line is subjected to affine

transformations were studied in detail. Algorithms for reducing

straight line codes to a standard form were developed and made the basis

of a line recognition process. Cellular automata were designed to

carry out line recognition. Other cellular automata were designed to

recognize topological connectedness, detect boundaries and approximate

curves by straight line segments.

ii

PREFACE

This work was done in partial fulfillment of the requirements

for a doctor of philosophy degree in Computer and Information Science

from The Ohio State University. It was supported in part by Grant

No. GN-534.1 from the Office of Science Information Service, National

Science Foundation, to the Computer and Information Science Research

Center of The Ohio State University.

The Computer and Information Science Research Center of The Ohio

State University is an interdisciplinary research organization which

consists of the staff, graduate students, and faculty of many Univer-

sity departments and laboratories. This report is based on research

accomplished in cooperation with the Department of Computer and Infor-

mation Science.

The research was administered and monitored by The Ohio State

University Research Foundation.

iii

ACKNOWLEDGMENTS

I wish to acknowledge my debt to Professor Jerome Rothstein, my

advisor for this dissertation. He is responsible for clearly formulating

the problem studied, inventing the code, and discovering many of its

properties. This material constitutes the bulk of the first half of

the dissertation (the first four chapters). He also suggested the

application of Farey's series and continued fractions to the problem.

The resulting theorems on continued fractions and their relation to the

code are largely my work.

The second half of the dissertation, containing the parallel

computer designs incorporating the code properties, is primarily my work.

Professor Rothstein provided valuable suggestions and no less valuable

editing of my often unreadable text describing the operations of the

parallel computers.

Many thanks to my reading committee, Professors Weed, Saltzer,

and Ernst for their valuable suggestions, patience, and tolerance of

exposure to very rough drafts given them much too close to deadlines.

In addition I wish to thank Dudley Fulton for writing a Fortran

IV G simulation of a straight line recognizing parallel computer

similar to that described in V.2. His work provided a test of the

design that led to improvements. Conversations with him also clarified

my thinking on the design of parallel computers.

I also wish to thank Professor Rothstein personally, not only for

the already described debt concerning this dissertation, but also for

skillfully introducing me to the many agonies and rare (but greater)

iv

ecstasies that accompany research. A contributing factor in my motivation

to do research has been exposure for several years to his courses and

personal conversations, many of which though unrelated to this

dissertation directly, inspired me indirectly to look at the world in a

much more interesting way.

ABSTRACT

PREFACE

ACKNOWLEDGMENTS

LIST OF FIGURES

TABLE OF CONTENTS

Chapter

I. INTRODUCTION 1

II. STRAIGHT LINE CODE 5

Code Definition
Generalization of Code to All Octants
Elementary Code Properties
Resolving Power of Code for Translation of Lines
Slope Resolution on Finite Grids

III. AFFINE TRANSFORMATIONS AND STRAIGHT LINE CODES. . 27

Unimodular Transformations
Algorithms for Recognition of Straight Line Codes

IV. CODE TRANSFORNATIONS, CONTINUED FRACTIONS AND FAREY
SERIES 40

Code Reduction and Continued Fractions
Translation of Lines and Cyclic Shifts in Code

Cyclic Shifts and Code Concatenation
Shift Polygons
Lines as Operators on the Code

Rotation of Lines and Farey Series in Terms of
Continued Fractions

V. PARALLEL COMPUTERS WHICH RECOGNIZE AND GENERATE
STRAIGHT LINES

Structure and Notation of Parallel Computers
Straight Line Recognizer Based on CCF-Reduction

81

Page

Straight Line Recognizer Based on Shift Polygon

Straight Line Generator
Discussion of Parallel Computers

VI. PARALLEL COMPUTERS TO RECOGNIZE CONNECTIVITY AND
OTHER PROPERTIES 119

Separation of Distinct Connected Regions
Determination of Boundaries of Connected Regions

on the Grid
Straight Line Approximation of Curves
Aspects of Polygon Recognition

VII. CONCLUDING REMARKS 147

APPENDIX: ORIGIN OF THE CODE (by J. Rothstein) 149

BIBLIOGRAPHY 152

LIST OF FIGURES

Page

1. 11.1: Code Definition and Octant Symmetry 7

2. 11.2: Run and Bend Configurations and Compatible
Octants 10

3. 11.3: Lattice Geometry for Cyclic Shift in Code 16

4. 11.4: Straight Line Code and Farey Series 24

5. 111.1: Effect of Shearing Transformation on Code 30

6. IV.1: Code Reduction and Continued Fractions 44

7. 1V.2: Geometric Interpretation of CF and CCF
Convergents 49

8. 11.3: Lattice Geometry Related to Cyclic Shift in
Code 55

9. IV.4: Relation of Shift Polygon to Code and
Continued Fraction 59

10. IV.5: Function Relating Slopes with Fixed Denominators
to Shift Polygons with Fixed Number of Vertices 62

11. 1V.6: Transposition Table for Cyclic Shifts 65

12. 1V.7: Operator Plane 70

13. 1V.8: Geometric Representation of p/q and its
Predecessors in all Farey Series 77

14. V.1: Organizational Hierarchy of Parallel Computers 83

15. V.2: Octant Compatibility Detector 88

16. V.3: Line Recognizer Based on CCF-Reduction 92

17. V.4: Straight Line Recognizer Based on Shift Polygon 99

18. V.5: Interconnections for Straight Line Generator 106

viii

19. V.6: Parallel Computer that Determines and Stores

Page

Slope of Line to be Constructed 108

20. V.7: Parallel Computer that Constructs a Line,
Given its Slope 112

21. VI.1: Parallel Computer that Recognizes Connected
Regions 121

22. VI.2: Interconnections for Assigning Regions to CS's 123

23. VI.3: Parallel Computer to Recognize "Boundaries" 127

24. VI.4: Interconnections for Straight Line Approximation 130

25. VI.5: Parallel Computer that Holds C's not Currently
Being Processed by Line Recognizer or Illegal
String Truncator 131

26. VI.6: Straight Line Recognizer Used in the
Approximation of Curves by Line Segments 133

27. VI.7: Parallel Computer that Truncates Illegal
Substring 136

28. VI.8: Grid Cells Crossed by Lines that Meet at
Obtuse Angles 142

29. VI.9: Interference of Excited Neighborhood
Configurations Near Acute Vertices 144

ix

CHAPTER I: INTRODUCTION

The purpose of this study was to gain insight into the pattern

recognizing capabilities of devices consisting primarily of arrays of

cooperating elements acting in parallel. A formal system of this kind

was studied rigorously.

Arrays of simple devices are integrated into a system that can, by

virtue of its structure, perform complex tasks far beyond the capabilities

of the individual elements. An array of identical finite state

automata is arranged on a quadratic lattice, one per lattice cell, with

inputs and outputs connecting each automaton to its four nearest

neighbors. Each automaton also has an external input. In addition,

there are central synchronizing automata, each capable of receiving

inputs from or sending outputs to large numbers of the array automata

simultaneously. The array of automata is a member of the class of

mathematical structures or systems variously called cellular automata,

iterative circuit computers, tesselation automata, and parallel computers

(see Yamada and Amoroso, 1969; Burks, 1970; Codd, 1968; VonNeumann, 1966,

Gonzalez, 1963; Garner and Squire, 1963 and Holland, 1959). The function

of the central synchronizer and the method by which array automata

connect to it are departures from the preceding studies. The result is

increased flexibility in the operations of the array automata.

The system chosen was inspired in part by visual retinas. The

system shares certain properties with visual retinas. Both are two-

dimensional arrays that process patterns by the simultaneous actions

1

2

and interactions of individual devices, and central control units are vital

to operation of the arrays. In this sense, and virtually only in this

sense, can this and similar devices be called retina-like. However, other

loose analogies often crop up. For example, laterla inhibition is a kind

of local neighborhood interaction, (see Ratliff, 1965). Also, the shift

polygon recognizer of section V.3 uses what can be viewed as an analog of

eye tremor.

The designs of some pattern recognition devices have been motivated

by properties of retinas. One of the earliest and most thoroughly

studied is the perceptron (see Rosenblatt, 1962; Block, 1962). It uses

receptive fields and simple summation of effects from neighboring cells.

Its failure to recognize simple topological properties and simple figures

(e.g., polygons) without great complications has been extensively analyzed

by Minsky and Papert (1969). Here the neighborhood functions can be

completely general, permitting complicated discriminations of excited

configurations of cell niehgborhoods over which the perceptron merely

sums. Neural networks (see McCulloch, 1943; Caianiello, 1968) have

many of the same limitations as perceptrons, particularly the use of

threshold functions and fixed connections between components.

To study the pattern recognition capabilities of cellular automata,

we chose a specific class of patterns, thoroughly studied its properties

on the grid, and then designed programa to exploit those properties.

To make the pattern class simple enough to yield transparent results

and complex enough to be of interest, the class of straight lines was

11

3

chosen. Lines are the simplest non-trivial elements in Euclidean

geometry. Points, in contrast, are too simple because their recognition

involves excitation of a single detector rather than a pattern of

excitation in a group of detectors. Straight lines are also the

simplest functions in analytic geometry and the only ones expressible

in linear form in planar cartesian coordinates. Furthermore, straight

lines are central to geometrical optics and the mechanics of rigid

bodies, two fields that loom large in the world of visual experience.

Finally, since any pattern consisting of curves can be approximated to

any desired accuracy by straight line segments, the door is open to

generalization.

Once straight lines were chosen as the pattern class, a special

code was constructed and used to represent the position of lines with

respect to lattice cells. It has several uniquely useful properties.

For example affine (line preserving) transformations of the line

correspond to simple transformations on the code, such as deleting and

interchanging digits. Since affine transformations are important in

the projection of three-dimensional objects onto two dimensional

surfaces (e.g., retinas) this property is valuable for pattern

recognition. In particular, translation and rotation of patterns on

the lattice are easily treated.

After the relation of the code to line geometry was understood,

automata programs were designed to recognize lines. These programs

and the structure of the automata executing them are invariant under

translation and rotation of lines. Also, the programs.operate largely

12

4

in parallel. That is, recognition is the result of a number of steps,

each consisting of the simultaneous processing of local neighborhood

information by all relevant cells.

The use of local neighborhoods of excitation as the basis for

recognition superficially resembles the use of feature or masks in

standard pattern recognition methods. These treat recognition as a

problem of statistical decision (see for example Sebestyen, 1962; Fu,

1968; and Patrick, 1972). This is in sharp contrast to the algorithmic

approach of this study, which is exact and not probabilistic.

The straight line recognition program was the first successful one.

Other programs were constructed to recognize topological connectivity,

detect boundaries, and recognize complex configurations of lines.

13

CHAPTER II: STRAIGHT LINE CODE

To design cellular automata algorithms for pattern recognition, a

notation or code for describing configurations of excited lattice cells

is needed. Properties of particular configurations then reduce to

properties of the code which would be incorporated into the design of

recognition algorithms. To be useful, such a code should be economical

in that it carry only information of interest, and transformations of

the pattern relevant to recognition should result in simple code trans-

formations. Raster scan codes can be rejected on the basis of both

criteria. First, they are not economical since they include information

from all lattice cells, not just those excited by the pattern. Second,

code digits corresponding to cells excited by a pattern may be

scattered among digits corresponding to cells that are not; thus the

changes in such a code resulting from geometric transformations of the

pattern (e.g., translation, rotation) may be' quite complicated.

11.1 Code Definition

A code in which each digit corresponds to a single lattice cell

excited by a line can be defined by observing that the line must

intersect exactly two sides of each cell it crosses and the symmetry

of the location of these sides can only be of two types. The two sides

crossed must be either parallel or perpendicular to ecrch other. If the

line goes through a lattice point, that point can be assigned to two

perpendicular sides of a lattice cell in a manner consistent with the

5

14

6

above observation. In the code to be defined below a 0 corresponds to

a cell in which parallel sides are crossed by the line and a 1 corresponds

to a pair of adjacent cells in which perpendicular sides are crossed.

In the latter case a single digit corresponds to a pair of cells

because such cells always occur in pairs. The more precise definition

given below will be used to derive straight line code properties to be

used in the design of recognition algorithms. Some of these properties

will also be used to show that the restriction in the definition that

lines be rays in octant I* starting at the origin can be relaxed.

Definition 11.1: Given a ray in octant I starting at the origin,
generate its code by writing 0 for each lattice
cell it crosses through parallel sides and 1 for
each cell it crosses through perpendicular sides,
omitting the cell tmmediately following in the
latter case. Lattice points are considered as
the corners of cells immediately above and to the
left. (See Figure II.1.)

The convention that a lattice point be considered as lying on the

side of a particular lattice cell is adopted so that each cell crossed

by a line have exactly two nearest neighbor cells also crossed by that

line (with the cell adjacent to the origin the sole exception). Of the

four cells bordering a lattice point crossed by a line, MO are already

crossed by the line so the choice of cell membership for the point must

be made between the remaining MO cells. This choice is arbitrary; the

upper left cell was chosen in the above definition so that the origin

would be considered as belonging to the cell above and to its left.

* The octants of the plane are defined as the eight wedges separated by
the lines x=0, y=0, x=y, and xim-y. They are numbered in counter-clockwise
order with roman numerals, octant.I being the wedge immediately above the
positive x-axis.

15

X=0

X=y

IrainvimalmentIpplas-A,Pww_°Alta ln Y=0

vk

Figure 11.1: Code Definition and Octant Symmetry

ti

X=-y

7

8

Since this cell shares a vertical side with the first cell crossed by

the line, and a line of slope m < I must go through the vertical side

on the right of the first cell crossed by the line, parallel (vertical)

sides of the first cell are crossed by the line and the first digit of

any line code is 0. Were the cell below and to the right of a lattice

point considered as containing that point instead, the first digit of

any line code would be 1.

11.2 Generalization of Code to All Octants

Definition 11.1 will yield the code of a line in any octant if the

convention for lattice points crossed by the line is appropriately changed.

Note that reflecting the lattice about any of the lines x=0, r0, x=y,

or x=-y (x- and y-axes and two main diagonals) leaves it unchanged.

Equivalently, reflecting any line about those axes leaves its code

unchanged since the symmetry of sides of cells it crosses is unchanged.

To be consistent with the convention that the first digit of a code be

0, the location of cells to which lattice points belong must be chosen

so that the reflection that brings the line into octant I also brings

the cell location into that of definition 11.1. The resulting

convention for the various octants is shown by the small arrows in

Figure 11.1 pointing from the lattice points to the cell to which they

belong.

The eightfold ambiguity in the interpretation of a particular code

corresponding to the possible octants in which its line lies can be

resolved by adding three bits to the code. These correspond to the

17

9

orientation of neighborhood configurations of cells corresponding to

O's and l's and the direction in which the line is traced. Since a

code 0 corresponds to a cell with parallel sides crossed by a line, and

those sides are shared by nearest neighbors on opposite sides of the

cell in question, these nearest neighbors must also be crossed by the

line. An excited cell with such a configuration of excited nearest

neighbors will be called a run. If the excited neighbors are to the

right and left the cell is called a 0-run and if they are above and

below it is called a I-run. These are the only kinds of runs possible

and the two kinds can only arise in configurations of cells crossed by

lines in the quadrant pairs shown in Figure 11.2. Similarly, a coea 1

corresponds to a pair of cells, each of which has perpendicular sides

crossed by a line. Thus, each excited cell in the pair has two excited

nearest neighbors on adjacent sides. Although there are four possible

such configurations, which will be called bends, they always occur in

pairs which can only arise in configurations of cells crossed by lines

in the quadrant pairs shown in Figure 11.2. Thus, as with the runs,

there are two mutually exclusive bend types labelled 0 and 1 according

to the quadrant compatibility shown in Figure 11.2. Hence, the code of

a line may be interpreted as a sequence of bend pairs and runs represent-

ing the lattice's approximation of the line.

Specifying the type of run or type of bend pair reduces the ambiguity

of line orientation in interpreting a code by narrowing the possibility

to four octants (a pair of .opposite quadrants). From Figure 11.2 it

is obvious that specifying both run and bend types is equivalent to

18

Shaded Squares are Excited Cells

0-run

1-run

1-run

0-run

1-run 1-run

Erzr.A

10

1-bend 0-bend

0-bend 1-bend

-bend 0-bend

0-run 0-run
III II

1-bend IV 0-bend

0-run I 0-run

1-bend0-bend

1-run 1-run

0-ben 0-bend

Figure 11.2: Run and Bend Configurations and Compatible Octants

1 9

11

taking the intersection of two quadrant pairs, thereby narrowing the

possible line orientation to a pair of octants 180° apart in the lattice.

This remaining ambiguity is that of the direction in which a line is

traced. Adopting the convention that the positive direction is that

which yields a code that starts with 0, this final ambiguity may be

resolved by specifying the cell that a lattice point crossed by the line

belongs to. From the discussion in the paragraph following definition

11.1 recall that there are two possible choices for this convention,

one yielding a code beginning with 0 for the line traced from the origin

and the other yielding a code beginning with 1. The latter choice

yields the same code as the former choice if the line traced is rotated

180 0, i.e., if it is traced in the opposite direction from the origin.

A line in any octant may be brought into octant I by appropriate

lattice preserving reflections about the lines x=0, y=0, x=y, x=-y

without changing its code. Thus, the code of any line in any octant is

the same as the code of some line in octant I and no generality is lost

in restricting the study of code properties to lines in octant I. This

restriction is therefore adopted to simplify the proofs of the following

theorems about elementary code properties. A finite subset of the lattice

is called a IVA in the following discussion.

11.3 Elementary Code Pro erties

Theorem 11.1: The codes of all lines on an n x n grid are n digits
long.

Proof: The lattice parallels divide the grid into n vertical

columns. In a column in which only one cell is crossed by the

20

12

line this cell must be a run, yielding a code 0, since the line

must enter the left side of the cell and exit the right in

traversing the column. In a column containing a bend, the

line must enter the column through the left side of a cell and

then exit that cell through its upper side. (If it exited

that cell through the right side the cell would be a run and

the only excited cell in the column.) The second excited cell

in this column must be entered through its lower side since it

shares that side with the first excited cell. The line must

then exit the column through the right side of the second

excited cell. (If it exited through the upper side,the second

cell would be a 1-run implying a slope constraint incompatible

with octant I.) The first excited cell in this case yields a

code 1 and the second is ignored, and a single digit per column

results, completing the proof.

Theorem 11.1 shows that code length is the same for lines of all

slopes on a fixed grid and that this length is a natural fit to the

grid size. Also, the proof shows that bends always occur in pairs and

thus justifies the convention in definition 11.1 that code l's correspond

to bend pairs.

Not all binary sequences are the codes of straight lines. An

intuitive constraint on digit distribution is that l's and O's be

distributed as homogeneously as possible. More precisely, since lattice

parallels are uniformly spacedo straight line is cut into equal segments

by its intersections with either the horizontal or vertical lattice

21

13

parallels. As the intersections of the line with vertical parallels

determine code digit columns and the intersections with horizontal

parallels occur in columns corresponding to code l's, the number of

adjacent O's between l's anywhere in the code of any particular line

should be nearly the same. Defining a segment of code of length k as

a substring not preceeded by a 0 and consisting of k-1 consecutive O's

and the 1 following,the above intuition may be formalized as:

Theorem 11.2: The lengths of any two segments in the code of a line
cannot differ by more than one.

Proof: A segment of length k corresponds to a chain of k-1

adjacent runs terminated on both ends by bends. Since the line

must cross horizontal sides of both these bends the limits on

slope m imposed by this configuration of excited cells is:

a) 1/(k+1) <m < 1/(k-1)

and thus for a segment of length k+h

b) 1/0041+1)< m < 1/(k+h-1)

These two requirements are compatible for a fixed m only if 11120,

1 or hO, -1.

Expressions a) and b) in the proof above show that the ratio of l's

to digits in a segment (i.e., the reciprocal of segment length) is

nearly equal to the slope. The theorem below shows that the ratio of

l's to digits in certain longer substrings of the code of a line is equal

to the slope.

Theorem 11.3: The code of a line of rational slope p/q through the
origin, where p and q are mutually prime positive
integers and p<q, is periodic with period q and p l's
per period. Conversely, the slope of a line correspond-
ing to a periodic code is rational.

22

14

Proof: The only lattice points crossed by the line have coordinates

(kchkp), k all integers. Thus, the figure consisting of the line

and lattice cells it crosses from the origin to (q,p) is congruent

to the similarly defined figure between any two lattice points

crossed consecutively by the line. Hence the code corresponding

to the q columns covered by each of these figures is identical

and from the proof of Theorem 11.4 consists of q digits.

Also from the proof of Theorem 11.1, code l's correspond to

columns in which the line crosses lattice horizontals. Since

there are p such crossings between (kq,kp) and ((k+1)q, (k+l)p)

there are p l's in every period of the code.

Converse: Construct the chain of runs and bends corresponding to

a periodic code with q digits per period, p of which are l's.

Corresponding to any bend is a bend q columns to the right by

periodicity of the code. A horizontal side of each cif these

bends must be crossed by the lineythereby constraining the slope

to p Aq+1)< m p/(q-1). Similarly, for the line to cross

corresponding bends k periods apart, the slope is bounded by

kp/(k1+1)< m <kp/(kq-1). Taking the limit as k-4. co yields

m=p/q.

Theorem 11.3 implies that a straight line whose code is aperiodic

has irrational slope and conversely. Thus periodicity of the code of

a line is equivalent to rationality of its slope and aperiodicity is

equivalent to irrationality of its slope. In the periodic case the

number of 1°8 per period is the numerator of the slope and the number

.23

15

of digits per period is the denominator. In the aperiodic case the

density of l's (number of l's divided by number of digits in a connected

substring) approximates the slope with increasing accuracy as the

length of the substring is increased.

The preceding theorems show that the code takes into account both

the slopes of lines and the sizes of the grids they are projected on in

a simple way. The theorems in the following sections (11.4 and 11.5)

show the effects of translation and rotation of a line on its code.

11.4 Resolving Power of Code for Translation of Lines

Theorem 11.4: Vertical translation of a line of rational slope p/q
results in a succession of cyclic shifts of fixed
magnitude in its code. Reversing the direction of
translation reverses the direction of the shift. The

original code recurs after one unit vertical
displacement.

Proof: (Refer to Figure 11.3) Let the equation of the line be

ym(p/q)x+yo. Then the value of the y-intercept yo is the

magnitude of the vertical displAcement of the line from its

original position through the origin. As yo is increased from

its original value of zero the line moves off the lattice points

(kq,kp), k all integers, but the code remains unchanged until

new Lattice points lie on the line because until that happens

the sides of lattice cells crossed by the line are the same as

when the line went through the origin. When a new lattice point

(q', p') is crossed by the line due to its upward translation,

the 1 in the code column corresponding to the lattice column to

the right of that point and the 0 left of it are transposed.

V

16

Figure 11.3: Lattice Geometry for Cyclic Shift in Code

25

17

(That is, the line crossed perpendicular sides of the right cell and

parallel sides of the left cell prior to crossing the point (q', p')

and vice versa afterwards.) This transposition must occur in the same

columns of every period of the code due to congruence of the geometry

of the line on the lattice between lattice points lying on the line.

It can only occur once in each code period since closer spacing would

imply that the denominator of the slope of the line is less than q.

Clearly the geometry of the line y=(p/q)x+yo (where yo is the value

for which (q', p') lies on the line) on the lattice between (q',p') and

(01', p+p') is congruent to the geometry of the line y=(p/q)x on the

lattice between (0,0) and (i,p). Thus, the code of the former line

is the same as the code of the latter shifted q' digits to the right.

Since the code is periodic, this is a right cyclic shift of q' digits

in each period of the code. It also follows from this congruence that

continued upward translation results in repetition of these cyclic

shifts of magnitude q' and downward translation results in repeated

left cyclic shifts of magnitude q'.

The magnitude of vertical displacement necessary to casue a single

cyclic shift and hence the number of cyclic shifts to regain the original

code are found in the following:

Lemma: For a line of slope p/q, vertical displacement by 1/q units
results in a cyclic shift of the code by q' digits to the
right and only multiples of q such shifts yield the original
code of the line through the origin.

Proof: It is a property of the quadratic lattice that the minimun

area of a parallelogram whose vertices are lattice points is one

26

18

unit squared (immediate consequences of theorems in Hardy & Wright,

(1965), pp. 27-29). Since (q',p') is the first point the line

crosses during upward translation, the points (0,0), (q,p),

(1/4411, p'+p) are the vertices of such a minimal parallelogram whose

area is qyo = 1 implying yo = 1/q.

A succession of q such translations results in one unit

vertical displacement of the line and hence the same sequence

of cell crossings as the line through the origin and hence the

original code. If q' and q had any common factors the original

code might occur for multiples of the cyclic permutation other

than q. In that case, the area of the minimal parallelogram

could be written:

p'q-q'peT'ak-bkpok(ap'-bp) = 1

This implies that the common factor, k, of q and q', is 1.

There is only one degree of freedom of motion for an infinite

line of fixed slope in the plane. This was expressed in Theorem 11.4

as a variation in y-intercept in the equation of the line. Had the

x-intercept been chosen to express this variation, the equation of the

line could have been written

Y' (13/0x+yo' (x+ (9/1))Y0)

where -(q/p)yo is the x-intercept. In that case, the horizontal

translation necessary for a cyclic shift by q' digits to the right would

be -1/p. Whatever convention is used to derive the properties of the

code under translation of the line, the conclusion is that on either

27

19

side of a line of slope p/q going through lattice points there lies a

strip of width 1/(p
2
+q

2
)
-(1/2)

containing no lattice points and any

translation of a line within each of these strips results in no change

in its code. This expresses the finite resolving power of the code to

distinguish the positions of lines of the same slope on the lattice.

Note that this resolving power is generally much better than the

-resolving power of the grid in locating points (1/ (p2412)1/2 for

lines vs. 1 for points). This improvement is due to the fact that the

line imposes a relation on the positions of p+q excited cells while the

point excites only a single cell.

Theorem 11.5: Of all possible cyclic permutations of the code of
a line of rational slope, the code of the line
through the origin has the minimum value when
interpreted as a binary number.

Proof: Only upward displacements of the line by less than one unit

need be considered to get all cyclic permutations of the code since

unit vertical displacement yields the same code as no displacement

and hence the code for ym(p/q)x+5,0 is the same as the code for

yls(p/q)x-(1-y0). For upward displacement of a line, l's shift

to the left as a result of the transposition described in the

proof of Theorem 11.4 thereby increasing the value of the code

interpreted as a binary number. The only exception occurs when

a 1 in the first column shifts to the left and hence into the

Rth column. This only occurs when a line moves upward into a

position exactly one unit above its original position through

the origin, i.e., when the code is shifted back into its

20

original form with minimum binary value

Displacing a line through the origin downward by less than 1/q

units transposes the 0 at the beginning of each period of the code and

the 1 at the end, leaving all other digits unchanged. This new code

is the same as the code of a line through the origin based on the

convention that a lattice point belongs to the cell below and to its

right rather than above and to its left as in definition 11.1. Thus the

choice of convention for cell membership of lattice points is equivalent

to choosing whether to regard lines through lattice points as lying

slightly above or slightly below the points in question.

Recall from the discussion following definition 11.1 that tracing

a line in one direction yields the same code as tracing it in the

opposite direction using the alternate convention of lattice point

assignment to lattice cells. Thus, tracing a line from the origin to

(q,p) using the standard convention yields the same code as tracing it

from (q,p) to the cligin using the alternate convention. Since from

the above paragraph the only code change resulting from changing this

convention is the interchanging of the 0 and 1 at the ends of a period,

the intervening digits must read the same in forward and reverse order.

In summary:

Theorem 11.6: Each period of the code of a line of rational slope,
excluding the first and last digit, is symmetrical,
i.e., it reads the same in forward and reverse order.
Either the first digit of a period is 0 and the last
1 or vice versa, depending on the convention chosen
for lattice point assignment to lattice cells.

29

21

Consider the infinite btnary sequence corresponding to the code

of a line of irrational slope m through the origin (y=mx+yo, yo = 0).

Since the line crosses no lattice points other than the origin, adopting

either the standard or alternate convention for lattice point member:-

ship in a cell affects only the first digit of this sequence. As the

line is translated vertically by an arbitrarily small amount yoodigits

will shift in infinitely many places since the line will sweep over

the lattice points representing the infinitely many rational approximat-

ions p/q to m such that 1' gm' 4 I yOl.
If yo is irrational, no

lattice points lie on the line and if yo is rational p/q, the point (q,p)

is the only lattice point lying on the line and the code is shifted q

digits to the right. These and other properties of codes of lines of

irrational slope will be important in the context of computing rational

approximations of irrational numbers, particularly quadratic irrationals.

For lines on finite grids, however, all codes are finite and in the

following section (II.5) it will be shown Chat these finite codes

represent the lines whose slopes are the best rational approximations

of the irrational slopes on a given grid.

11.5 Slope Resolution on Finite Grids

On an nxn grid the code of a line of slope 0 Chrough the origin

consists of n consecutive O's. As the line is rotated counterclockwise

its code remains unchanged until its slope reaches l/n. Then the

lattice point (n,l) lies on the line and its code becomes (n-1)

consecutive Ols followed by a 1. With continued rotation, the code

30

22

remains unchanged until the line sweeps across new lattice points. Each

time this occurs the 1 in the code column corresponding to the lattice

column to the right of such a point and the 0 left of it are transposed

in exactly the same manner as described in the proof of Theorem 11.4.

Hence:

Theorem 11.7: The value of the code of a line through the origin
interpreted as a binary number increases monotonically
with slope.

When the slope of the line reaches 1 (+5° rotation) its code is n

consecutive l's. Thus O's correspond to a horizontal path and l's to a

diagonal path on the gird. With increasing slope the fraction of digits

which are l's increases monotonically.

Obviously a line will sweep across all lattice points in octant I

as its slope is increased from 0 to 1. Whenevyr the line sweeps across

a lattice point whose coordinates are not mutually prime, say (kq,kp) it

also sweeps across (q,p). Therefore its code is periodic with q digits

per period, p of which are l's. Thus, rotating a line through the

origin on an nxn grid yields the sequence of codes of lines with rational

slopes p/q such that p and q are all integers satisfying:

0 <p<q<n

and the slopes are arranged in increasing order. This sequence of

fractions is well known in mathematics as the Farey series of order n,

written Dc. (See Hardy & Wright,(1965), p. 23 and following for definition

and properties of :r). Hence:

Theorem 11.8: There is a 1-to-1 correspondence beLween the Farey
series of order n and the codes of lines through the
origin in octant I on an nxn grid.

31

23

Thus, theorems about Farey series correspond to properties of the code.

In the preceding discussion it was shown that the infinite class

of lines through the origin with slopes between 0 and 1 is partitioned

into a finite number of classes by the finite number of n-digit line

codes. This expresses the finite resolving power of the grid to dis-

tinguish slopes of lines on an nxn grid. Each class characterized by

a single code consists of all lines in a wedge whose apex is the origin

and whose interior contains no lattice points (if there were interior

points, the code would change as the line swept across them). The code

of any line in such a wedge is the code of the line of rational slope

through a lattice point on the lower boundary of the wedge. A single

period of such a code is the shortest substring starting at the left

that can be repeated to yield the entire code. The upper boundary of

each wedge is a line whose slope is the successor in 0.
n
of the slope

of the lower boundary. Figure 11.4 illustrates the relation between the

wedges, 4-digit codes on a 4x4 grid, and,5rie. The overbar (--) on codes

indicates one complete period.

Note that extending the nxn grid introduces new lattice points

within the extensions of some of the wedges of the original grid. Thus,

the partition of slopes by wedges corresponding to distinct codes is

refined. However, since these new lattice points lie outside the

original grid, the new codes resulting from their introduction are

derived by simply appending digits to the original codes. That is, the

new codes differ from the original codes only after the nth place. The

rate at which these refinements are introduced as the grid is extended

24

Terms in 474
-- Code

1/1 -- Tin

3/4 -- 0111

-- 0110

1/2 -- 0101

1/3 -- 0010

1/4 -- 0001

on --bboo

Figure 11.4: Straight Line Code and Farey Series

33

25

is given in the following:

Theorem 11.9: The number of classes of lines through the origin with
slope between 0 and 1 on an nxn grid (or the number of
distinct n-digit line codes, or the number of wedges
with no interior lattice points) is roughly proportional

to grid area, i.e., .1.1(3n
2
)/ir

2
.

Proof: Theorem 11.8 gives the 1-to-1 correspondence between

n-digit codes and 0
n

. Theorem 331 on page 268 of Hardy and

Wright states "The number of terms in the Farey series of order

n is approximately (3n2)/1T2."

Theorem 11.10: The slope interval delimited by each wedge corresponding

to a distinct n-digit code cannot be less than 1/n 2 nor
greater than l/n.

Proof: Theorem 28 on page 23 of Hardy and Wright states that if

h/k and h'/k' are two successive terms in then

kh'-hk'=1.

This may be rewritten as the difference between two successive

terms

h' h _ 1

kk'

which is the slope interval delimited by a wedge. Since

1 1
k' < n and k <n'

>
kk' n2

Theorem 29 on page 23 states that if h/k, h"/k", and h'/k'

are three successive terms of 2'
n

then

h" h+h'

k" k+k'

Thus k+k'> n if h/k and h'/k1 are two successive terms (otherwise

s 4

26

h+h' rather than h'/k', would be the successor of
W47 '

h/k). Thus a lower bound for kk' is

k(n+l-k), where 0 <k < n .

This quantity has minimum value n when k=1 or n. Thus

1 1

In summary, finite grids yield only codes of lines of rational

slopes, and these partition the slopes of lines fairly uniformly. The

resolving power expressed by this partition is proportional to grid area.

Since the codes of lines of rational slope are periodic, a single period

is sufficient to describe the entire code of a line on a grid. The

standard form of such a period (corresponding to the line through the

origin) is found by cyclically permuting the digits of a period until a

code which has minimum value when interpreted as a binary number results.

Because of the above properties, all codes referred to in Chapter III

will be single periods in standard form of code of lines with rational

slopes.

CHAPTER III: AFFINE TRANSFORMATIONS AND STRAIGHT LINE CODES

Not all n-digit strings are the codes of straight lines on an n x n

grid. There are constraints on line codes such as the homogeneous

distribution of l's described in theorem 11.2. One way to recognize

line codes is to apply geometric transformations to the grid that

preserve straight lines but simplify their codes to a more recognizable

form (e.g., an arbitrary number of O's followed by a 1). If only lines

are mapped into lines then only codes corresponding to cell configurations

compatible with straight lines would be reduced to recognizable form.

If code digits are expressed as cell states in a cellular automaton these

code simplifications would be expressed as interactions between cells.

Transformations that map lines into lines, preserving parallelism, on

the plane are called affine in mathematics (see Rektorys(1969), p.22$, for

definition) and correspond to multiplying the coordinate vectors of

points by a 2 x 2 matrix of constants with non-zero determinant and

adding a constant vector. The latter vector will be considered (0,0)

here because translation of a line may be ignored in code recognition

since it introduces trivial code changes.

111.1 Unimodular Transformations

The unimodular (see Hardy & Wright(1965) p,28 for definition and

properties) subgroup of the affine transformations maps lattice points

into lattice points. Thus, unimodular transformations can be applied

by simply relabelling lattice points without altering the grid. This

27

28

relabelling can be expressed in the cellular automata as simply re-

defining what is to be considered as the set of nearest neighbors of

each cell. Applying a unimodular transformation corresponds to multi-

plying the coordinate vectors of points by a 2 x 2 matrix of integers

with determinant +1.

Two kinds of unimodular transformations that result in simple code

changes are the shearing transformations Sk and the slope-complementing

transformation C. Their respective matrices

1 0)

1

(1 1)
and CS =

k (k 1
.

-

are to postmultiply the row vectors of point coordinates.

Looking first at the shearing transformations, note

-
SkSj = Skil implying (Sk)

1
= S_k .

Thus, the shearing transformations are isomorphic to the integers under

addition. The original basis of the lattice is the pair of vectors from

the origin to (1,0), and (0,1), i.e., the unit horizontal and vertical

vectors respectively, starting at the origin. Applying Sk to this basis

transforms it into the pair of vectors from the origin to (1,0) and

(k,l) respectively. Thus the point whose coordinates in the old basis

are (x,y) has coordinates:

-1
(x,Y)(Sk) - (x,Y)

1(0)
=

-k 1

with respect to the new basis. Note that the y-coordinate is unchanged,

37

29

but the x-coordinate is displaced ky units to the left, thereby shearing

the grid. This basis change can be regarded as a change in the perspective

from which the lattice is viewed. That is, the points are not moved but

their labels are changed.

The code of a line of slope p/q through the origin has l's in places

corresponding to lattice columns in which the line crosses lattice

horizontals. Substituting y=j into the equation of the line y = (p/q)x,

the coordinates of the jth such crossing (the Oth being the origin),

corresponding to the jth 1 in the code, are ((q/p)j,j). The coordinates

of this point with respect to the new basis, resulting from the application

of S
k

to the old basis, are ((q/p)j-kj,j). That is, there are k fewer

vertical columns of unit width between any two adjacent crossings of

lattice horizontals by the line and hence k fewer O's between adjacent

code l's, (k is always chosen to not exceed the number of O's in the

shortest code segments). Figure 111.1 illustrates the effect of S1 on

the lattice and code for a line of slope 2/5. In summary:

Theorem 111.1: Applying Sk to the lattice basis deletes k O's

from each segment of the code of a line on that
lattice. Applying S.11 inserts h O's in each seg-

mentowhere h may be any positive integer but k
must not exceed the number of O's in any short
segment of the code.

The deletion of O's described above simplifies a code by decreasing

the number of digits in it. Since the same number of O's is deleted

from each segment of a code by applying Sk there is no change in the

difference between any two segment lengths. Thus the fact that a code

satisfies or violates the segment length constraint of theorem 11.2 is

not altered by applying shearing transformations.

(0,0)

. I /. e, ri. ,91

(5,

..

..

/

/
/

/
/

/

/
/

/

/
/

/
/

/
/

/

/
. /
.

/
/

/

1

z

0 /

/

0 1

Figure Ma: Effect of Shearing Transformation on Code

3 9

2)

30

31

The code change resulting from the application of Sk to a lattice

can be effected in cellular automata by considering the cell one unit

above and k units to the right of any cell as its upper neighbor. The

bend configurations resulting from this redefining of local neighborhoods

will then be separated by k fewer runs than under the usual definition

of neighborhoods. Further discussion will be given when specific designs

for cellular automata are presented in Chapter V.

Suppose the length of any segment in a code is either s or s-1.

Applying
5s_2

deletes the maximum number of O's (i.e., s-2 per segment)

possible from the code. Since its long and short segments then consist

of 01 and 1 respectively, applying the slope-complementing transformation,

whose effect on the code is as follows, is needed to return to the

situation in which further 0-deletion is possible.

Theorem 111.2: Applying C to the lattice basis interchanges l's
and O's in the code of a line on the lattice
except for the first and last digit of each
period which remain 0 and 1 respectively.

Proof: Suppose the line goes through the origin and (q,p).

Then applying C, which is its own inverse, to the lattice

yields a line whose slope is the complement with respect

to 1 of the original line, i.e.,

(q,p)
(1 1)

(q,q-p) or y 5=-2.x . (1-2.)x.
0 -1

Thus the period of the code of the new line is also q and the

slope is still between 0 and 1. Since the code digits in columns

immediately following and preceding a lattice point crossed by

4o

32

the corresponding line are always 0 and 1 respectively, the first

and last digits of each period of the new code are 0 and 1

respectively.

Since the slope of the new line is (q-p)/q each period of

its code contains as many l's (i.e., q-p) as there are O's in

each period of the code of the old line. Equivalently, there

are as many O's in each period of the new code as there are l's

in each period of the old. Thus, the theorem can be proved if

it can be shown that none of the l's in the new code lie in the

same columns as l's of the old, i.e., l's in one code correspond

to G's of the other except for the first and last digits of each

period.

Assume the contradiction of the above, i.e., the jth I of

the old code and kth 1 of the new both occupy the qlth column

of their respective periods. By the paragraph before Theorem

111.1, this can be expressed as:

gcq/01-0 -9q/P

where 111 means the least integer exceeding or equal to x.

Then,
jq "1'1

; 0 .1 r1 < P

kq ql(g-p) - r2; 0 < r2 < (q-p)

Adding these equations and dividing by q yields

k+j ql - (r1+r2)/q

Thus (r
1
4T

2
)/q must be an integer, whence r

1
r
2

In 0. This implies

41

33

that q
1
= q. But this value of q

1
corresponds to the 1 at the end

of the code period which has already been considered.

The effect of C on the code can be expressed without regarding the

first and last digits of a period as exceptions to the 0-1 interchange.

Recall from Theorem 11.6 that except for these two digits, a period of

any code reads the same in forward or reverse order. Thus, reversing

the order of a period of code makes the first digit 1 and the last 0

without changing the intervening digit. Hence, applying C yields the

same result as revevAng the order of each period and interchanging O's

and l's.

111.2 Algorithms for Recognition of Straight Line Codes

In a line code whose long and short segments consist of 01 and 1

respectively, no 0 can be adjacent to another O. Therefore, after

applying C no 1 can be adjacent to another 1. That is, every code

segment must contain at least one O. Thus, a shearing transformation

can be applied to shorten this code again into a code whose long and

short segments consist of 01 and 1 respectively. Obviously this

repetition of shearing and slope complementing transformations successively

shortens the code. Eventually, the original line code will be reduced to

a single digit, 1 if the last transformation is S and 0 if it is C.

Summarizing the above and proving the converse is:

Theorem 111.3: Applying the following algorithm to a period of
any straight line code in standard form reduces
it to a single digit (0). Binary strings not
corresponding to straight lines are not reduced
to a single digit.

34

I. Delete s-2 O's from each segment of the string,
where s is the length of the longest segments
in the string.

2. Reverse the order of the string and change all
O's to l's and l's to O's.

Repeat steps 1 and 2 as long as the resulting string
is more than one digit long and does not violate the
segment length constraint of Theorem 11.2. In case
of such a violation, the string cannot be a period of
straight line code and is rejected. If such a vio-
lation never occurs, the string is eventually reduced
to the digit 0 and the original string constitutes a
period of the code of a straight line.

Proof: It was shown in the paragraph preceding the theorem that

a period of straight line code is reduced to a single digit by

repeating steps 1 and 2.

To prove that any code that is reduced to a single digit by

repeating steps 1 and 2 corresponds to a lineopply the inverse

of those steps in reverse order starting with the string consisting

of 0. The inverse of step 1 is the insertion of s-2 O's in each

segment and corresponds to applying the affine transformation S
2-s

to the lattice. Step 2 is its own inverse and corresponds to

applying the affine transformation C to the lattice. The string

consisting of 0 corresponds to a straight line through the origin

with slope zero. Hence, applying the inverse of the steps that

reduced the original code corresponds to applying affine trans-

formations to the lattice, mapping the line of slope 0 into a line

whose code is the original string.

Since the grid cannot resolve pattern loci within grid cells any

number of patterns that are not straight lines can yield excited cell

35

configurations whose codes are those of straight lines. However, a

code that is reduced to a single digit corresponds to a configuration

of cells identical to that which would be excited by a straight line.

Thus, the recognition algorithm of Theorem 111.3 (and any algorithm

based on the code) is really answering the question: "Can a straight

line be drawn through all the cells excited by the pattern and no

others?"

Any algorithm that reduces a period of straight line code to a

single digit and rejects codes that cannot correspond to a line will

be called a reduction. The algorithm of Theorem 111.3 will be called

the S-reduction because the shearing transformation S reduces the
k

number of digits in the string. Since S
k

and C are affine transformations,

any sequence of inserting or deleting the same number of O's in all

segments or complementing digits and reversing string order, that results

in a string consisting of a single digit, is a valid reduction. However,

combining terms in any such reduction yields the sequence of Theorem

111.3. That is, the affine transformations corresponding to any reduction

can always be written as a sequence in which C and S
k
alternate, i.e.,

(Sk)CS
k

CS
k

S
k
(C)

1 2 3

If there were any consecutive C's in the sequence they would cancel

according to the rule

(2n+1) 2n 1 0
C =C, C = I = .

0 1

36

Consecutive Sk
's would combine according to the rule SkSj = S .

k+j

Apparently, then, there is only freedom to choose the value of the

subscripts and not the order of the transformations. Recall that the

subscript cannot exceed s-2, the number of O's in the shortest segments

of the code. Therefore, suppose some subscript k less than s-2 is chosen.

Applying S then yields a code with at least one 0 in each of its short

segments and at least two O's in each ofits long segments. Applying C

next yields a code with consecutive l's occupying the places of the

consecutive O's in long segments of the code prior to the application of

C. Thus, short segments of the code after C has been applied consist of

I's; there are no O's that can be deleted so shearing transformations

cannot be applied. Hence, C must be applied again; these two consecutive

C's cancel, so k cannot be less than s-2.

Though the sequence of shearing and slope-complementing transform-

ations that reduce the code of a particular line to a single digit is

unique, terms may be combined in it to yield code reduction steps that

are not expressed as the deletion and interchanging of digits. Since

2
S , C and CS C all equal the identity, they may be inserted anywhere
0 0

in the sequence of transformations without changing the code. Also,

can be decomposed into S S for purposes of recombining terms.
j+k j k

The following theorem expresses a reduction algorithm based on such a

cmbining of terms. The sequence of codes resulting from its application

reveal some very important properties of the code, particularly the

uffects of translation and rotation.

37

Theorem 111.4: Applying the following algorithm to a period of
any straight line code in standard form reduces
it to a single digit. Binary strings not
corresponding to straight lines are not reduced to
a single digit.

1. Replace each long segment in the code with a 0
and each short segment with a 1.

Repeat step 1 as long as the resulting string is
more than one digit long and does not violate the
segment length constraint of Theorem 11.2. In case
of such a violation the string is rejected. If

such a violation never occurs the string is eventual-
ly reduced to the digit 0 and the original string
constitutes a period of the code of a straight line.

Proof: Since whole segments are being rewritten as single digits

the code is being shortened each time step 1 is applied. Step 1

corresponds to applying the sequence of affine transformations

5s-2 1
CS C (where s is the length of long segments)

to the lattice. That is, S
s-2

results in a code whose long and

short segments are 01 and 1 respectively. Since S
1
removes one

0 from each segment CS
1
C removes one 1 from each set of adjacent

l's. If this 1 is removed from the left end of each set of

adjacent l's it is the 1 in the segment 01. Thus, after the

application of
5s_2,

CS1C repliaces long segments (31) by 0 and

short segments (1) by 1.

Since this algorithm corresponds to the application of a

sequence of affine transformations, a code that is reduced to

a single digit by the algorithm must be a period of the code

of a straight line by the same argument as in the proof of

Theorem 111.3.

46

38

In each rewriting step of Theorem 111.4, long segments are treated

as horizontals and short segments as lines of slope 1 in the new

perspective corresponding to the affine transformation of the lattice.

It will be shown in Chapter IV that the slope of the line in this new

perspective is the complement with respect to 1 of the remainder of

the reciprocal of the original slope quotient. Successive rewriting

steps then lead to a continued fraction development of the original

slope quotient. For this reason, the algorithm of Theorem 111.4 is

called the CCF-reduction (Complemented Continued Fraction). In an

analogous manner the rewriting steps of the following theorem lead to

the ordinary continued fraction development of the slope quotient,

different from that of Theorem 111.4. For this reason, the algorithm

of Theorem 111.5 is called the CF-reduction (Continued Fraction).

Theorem 111.5: Applying the following algorithm to a period of
any straight line code in standard form reduces
it to a single digit. Binary strings not
corresponding to straight lines are not reduced
to a single digit.

1. Replace each long segment in the code with a 1
and each short segment with a 0, then reverse
the order of the string.

Follow the same instructions as appear after step 1
in Theorem 111.4.

Proof: The code resulting from applying step 1 in this theorem

differs from the code resulting from step 1 in the previous

theorem in that the roles of l's and O's are interchanged and

the order is reversed. That is, a C transformation has been

added here so the affine transformation corresponding to

step I is:

S
s-2

CS C.0 = S C S
1

39

Thus, the code is shortened at each step by the application of

an affine transformation and the theorem may be proved by the

same argument as in Theorem 111.4.

In the following chapter code properties revealed by the CCF-

reduction and the related CF-reduction will be discussed in detail and

the interesting interplay between Farey series, continued fractions and

straight line codes will be presented.

CHAPTER IV: CODE TRANSFORMATIONS, CONTINUED FRACTIONS AND FAREY SERIES

IV.1 Code Reduction and Continued Fractions

Since the code of a line whose slope is p/q has p l's per period,

and thus p segments, rewriting long and short segments as O's and l's

respectively yields a code with p digits per period. This latter code,

resulting from the application of one step of the CCF-reduction (Theorem

111.4), will be called the new code and the code for the line of slope

p/q the old code in the following discussion. The number of l's in the

new code is the number of short segments in the old. But this is just

the number of O's that would have to be inserted in the old code to

yield a code composed of only long segments. Call this number of l's

in the new code 14. The slope of the line corresponding to such a code

consisting of only long segments is p/(0-14). Its reciprocal,

(q+p)/p, is an integer equal to the length of these long segments. From

the proof of Theorem 111.2, the leftmost 1 in the old code occurs in

columnR/P. This 1 terminates the first segment, which must be .long

since rewriting it yields 0 as the first digit of the new code. The

length of long segments in the old code is thus rvil, i.e.,

(op)/p = rido . / pl + 1

Here Lq/2j is the greatest integer not exceeding q/p. Equivalently

LJ = (p-p2)/p r/P

where r in the remainder on division of q by p, or

40

49

and

41

= 0/12.1.P+1 = r4/0.13-P , 0 < r < P, 0 < P < P

p' = p-r.
2

The new code thus corresponds to a line of slope lyp, the complement

with respect to 1 of the remainder of the quotient of q by p. The slope

of the old line can now be written

p/q=
1

r4/13 -P2/P

Rewriting the long and short segments of the new code as 0 and 1

respectively leads to a similar expression for pyp which can be

incorporated into the expression for p/q as

1

Pig rq/o_
1

WW1
2 3 2

Carrying out the entire CCF-reduction on the old code then leads to the

continued fraction

pig = 1

/1311
1 1

1

rcl//132'i
1

-

50

1

rqN7P1,7'

42

where pl/ql is the slope of tna line corresponding to the code prior to

the jth rewriting of segments as digits. From the preceding, it is

apparent that the coefficient rql/pc of the CCF is the length of long

segments of code prior to the jth rewriting of segments as digits.

Callingthissegmentlengths.,the continued fraction will be written

p/c1 = r;l, s2, s3, .

Consider now the result of applying one step of the CF-reduction

(Theorem 111.5) to the code of a line of slope p/q. As in the CCF-

reduction, the number of digits in the new code is p, the number of l's

in the old code. However, since the role of l's and O's is interchanged

when applying the CF-reduction rather than the CCF-reduction, the number

of l's in the new code is p-p = r, the remainder of the quotient of q

by p. By the same process as just described for the CCF-reduction, the

ordinary continued fraction, with positive rather than the negative signs

resulting from the CCF reduction, can be developed using the Euclidean

division algorithm (see Hardy and Wright, 1965, p. 136), i.e.,

pig= 1

LA/a, +
1

L. 2 2J
+

+ 1

Vmj

Here v7171 is the slope of the line corresponding to the code prior to
.1 .1

43

the jth rewriting of long segments as l's and short segments as O's. The

length of short segments of code prior to the jth rewriting is tyl/Vil.

Callingthislengtha,the ordinary continued fraction (CF) will be
J

written

p/q = 121, a2, a3, ... 5.0.

Figure IV.1 illustrates the CF- and CCF-reduction of the code of

a line of slope 8/13 and the corresponding continued fractions.

Obviously, both reduction processes can be reversed to generate the

code of a line of any rational slope p/q between 0 and 1. That is,

derive the CF or CCF by applying to p/q the Euclidean division algorithm

or the division with negative remainder, respectively. In the case of

the CF, write a segment of length a and then rewrite its O's as segments
M

of length 54_1-1 and its l's as segments of length am_l and reverse the

order of the string. Repeat this rewriting of O's as short segments

and l's as long segments and reversing digit order using a
i
's with

successively decreasing subscripts to determine the length of short

segmentsforsuccessivere have been used,
1

the result is the code of a line of slope p/q. The same code can be

generated using the CCF for p/q by starting with segment of length sm

and successively rewriting O's as long segments and l's as short segments

using sj's with decreasing subscripts to determine the length of long

segments for each rewriting.

Although the CF and CCF share many important properties, they

have some interesting differences. The CCF yields much clearer

CF

CCF111,

8

13

a
5
=2

a4=1

a3=1

a
2
=1

a
1
=1

s
1
=2

s
2
=3

s
3
= 3

1

,.,

0

1

1
4,00.

0 1 14.
1 1 0 1 00,.. 00'""

0 1 0 1 1 0 1 1
8

:1-5.

0 US 1 0 1

1

44

1st level code

2nd level code

3rd level code

8 1
P1 = 1 P2 3 P3 8

13 1 . =
2 ' q

2
5 q

3
13

1
q
1

2

3
3

Figure IV.1: Code Reduction and Continued Fractions

53

45

derivations of code properties and their interpretation in terms of grid

geometry than the CF. The following discussion and theorems express

some of the properties of CF and CCF and their relevance to the code and

grid geometry.

The large body of mathematical literature on continued fractions

contains full treatments of their use in approximating the values of

complicated functions by rational numbers. Thorough presentations of

such topics and good bibliographies can be found in Perron (1960) Wall

(1948), Khovanskii (1963), and Sierpinski (1964). Here, elementary

properties of CF's and CCF's and their relation of grid geometry are of

interest; many of these for CF's are in Hardy and Wright (1965).

Relevant theorems from there will be given here without proofs and

labelled by their numbers in Hardy and Wright (1965) followed by HW.

Some of their notation will be changed to avoid conflict with notation

used here. For example, their CF's have a Oth term, i.e.,

p/c1 =1-0, al' aM

so that all positive rational numbers can be represented. Here only

slopes between 0 and 1 are considered so ao = 0 always,and is therefore

omitted. Since CCF's are generally neglected in the literature except

for brief statements of elementary theorems, proofs here will be given

in detail for theorems concerning them.

The fractions

and

vj/wj = a2, aii

p /q = ri s
2' j

54

1 < i<M

1 < < N

46

are called the ith and Jth convergents tx) the CF and CCF respectively.

In this context, the notation Lakjor N-0 means the fraction 1/a1 or

1/s
1
which conflicts with the notation LJ andri used in Chapter III.

This ambiguity will be resolved either explicitly or by context when it

appears. In any case, the brackets will seldom contain a single term

when used to denote a convergent to a continued fraction. The following

two theorems express recursion rules for deriving successive convergents.

Theorem 14911W: If v. and w are defined by
1 i

vl = 1, v
2
= a

2'
. . ., v.

1
= a

i
v
i-1

+ v
i-2

wl = a
1

, w
2
= a

1
a
2
+1, . . ., w. = a w + w

1 i i-1 i-2

then 1.21, a2, ... a. I

1

Similarly,

Theorem IV.1: If p and q are defined by

pl 1, P2 s2'
p =sp - p

J-1 J-2

ql = q2 = 5152 -1, . . . =sq - q

then rrl, s2, pj/qj

Proof: (By induction) For J=3, 1l s2, = 1

1

= 1s-
1 53

s2s3-1

= p
3
/c1

3

5 5

s2s3-1

s s s -s -s
1 2 3 1 3

53

47

Now suppose the theorem holds for the jth case and write the

(i+l)th convergnet as r3 , s , s , s s s 1
1- 2 J j+1 2"." s

j+1

i.e., as a CCF with j levels. Then,

Fs"

1-1 (31-1/sj41)pjml-pj_2

is j+1 (s
j
-1/8

j+1
)q

j-1 -cf j-2

- 5j4l1'i.2 7.1-1

sj+lsjcij-1 sj+1-2 -c1171 sj+1ci1-c11-1

which completes the proof.

The preceding can be used to prove the following theorems.

Theorem 150NW: v
i
w-1. -v

-1
w
i

= (-1) 1
-1

or
1 i

i
1w)-(v

i-1
/w

i-1
)=(-1)i-1/(w

i
w
i-1

)

Theorem 151HW: v.w. -v w = (-1) i
a

1 1-2 i-2 1

=

or

It follows from 14911W that all v w are positive, so 150 HW

implies that the sign of the difference between two successive convergents

alternates. Theorem 15111W implies that the sequence of even convergents

increases monotonically and the sequence of odd convergents decreases

monotonically. Since p/q = v
M
/w
M

(the final convergent) its value must

exceed that of any even convergent and be less than any odd convergent.

Thus, the value of each successive odd/even convergent is closer to p/q

than all preceding odd/even convergents. (See Hardy and Wright, 1965,

p. 132 for details).

48

If the CF convergents are regarded as slopes, the geometrical

interpretation of 15011W and 151HW is that the slopes alternately exceed

and are exceeded by p/q but the difference in slope between p/q and

successive slopes (convergents) decreases. Theorems 15511W and 15711W

statethat%c>w
i-1

and v
i
/w

i
is in lowest terms. Therefore, there are

no lattice points between the origin and (40 vi) on the line connecting

them and the distance between the origin and successive points correspond-

ing to CF convergents increases monotonically. Figure IV.2 illustrates

these properties.

Convergents to the CCF behave differently, i.e.,

Theorem IV.2: piqj.1-qjpi.1 = 1 or (pj/qj)-(pj_1/qj_1) = 1/(qjqj_1)

Proof: pjqj_1-qjpj..1 = sipi.lqi.1-pi.2qi.1-siqj.ip+pq =

= 0 n 0-
rj-2-1n j-1

= = p
2
q
1
-q

2
p
1

= 51 52 -(51 52 -1) = 1.

The difference between the jth end (j-1)th convergents is always positive

so the sequence of CCF convergents increases monotonically. Since

p/q = pqN (the final convergent) its value exceeds that of all other

convergents and each convergent is closer to p/q than all those preceding.

Analogous to 151HW is:

Theorem IV.3: p
j
q
j-2

-p
j-2

qj = sj or (p /q.)-(p.
2
/q

2
) = s.(q q)

j J J- j-j j-2 j
Proof: p

j
q
j-2

-p
j-2

qj = sjp
j-1

q
j-2

-p
j-2

q
j-2

-s
j
q
j-1

p
j-2

+p
j-2

q
j-2

=

= s
j
(p

The following three theorems lead to a geometric interpretation of

CCF convergents analogous to that for CF convergents.

Theorem IV.4: s > 2.

57

50

Proof: The (j-1)th CCF reduction step corresponds to generating

the code of the complemented remainder p!/q of the quotient

q'
1
/p'

-1
as in the discussion at the beginning of IV.1. Since

j- j

this remainder is less than 1, its reciprocal is greater than 1, so

s. = q'W > 1,

Theorem 117.5: qj > pj > pj-1.

Proof: (By induction)

Hence s. > 2.

q2 = 5l52-1 > 2s1-1 = 5l+(51-1) si+1 > sl = qi

Now suppose q > q. then
j 3-1

qj+1 sj+lqj q j-Ilqj-qj-1 qj+(qj-qj-1) > qj

The same argument applies to p..

Theorem IV.6: p./q is in lowest terms.
j

Proof: Suppose there is a common divisor d, i.e., dipj and d,
'1i3

Then di(p.q.
1 1
-q.p.) But from Theorem IV.2, the quantity in

3- 3-

parentheses is 1, so dll whence d=1.

Referring now to Figure IV.2, Theorem IV.6 can be geometrically

interpreted as stating that there are no lattice points between the

origin and (q., p.) on the line connecting them. Theorem IV.5 implies

that points corresponding to successive convergents are successively

further from the origin, and Theorem IV.2 implies that the slopes of

lines connecting the origin to those points are successively closer to

p/q.

Convergents to the CF of any number, rational or irrational, are

the best possible rational approximations to it in the following sense.

If viw. is a CV convergent to m then there are no fractions v/w with
1 1

5 9

51

smaller denominator (Id <W) such that Iv - wm1 < Iv
i

- w
i
ml (182 HW).

i

The geometric interpretation of this CF property is that there are no

points to the left of (w , v.) that are closer than it is to the line
i 1

y = mx. Convergents to the CCF of any number are the best rational

approximation less than that number in the same sense as CF convergents.

That is,

Theorem IV.7: If p./q is a CCF convergent to p/q there are no other
J j

fractions v/w, where w < q., v/w < p/q satisfying
3

Iv w(p/q) 1...Ipj-cii(p/q)

That is, the only lattice points beneath the line of
slope p/q closer to it than (1 , p) lie to the right

of that point.

Proof: A geometric interpretation of Theorem IV.2 is that there

are no lattice points in the interior or on the sides of the

parallelogram (0, 0), (qi, pi), (qj...1-11j, pi.i+pj), (qi_1, pi_1)

formed by the lines connecting the origin to two successive

convergents except for the vertices. These parallelograms free

of lattice points are shaded in Figure IV.2. Furthermore, from

Theorem IV.5 the leftmost new parallelogram vertices introduced

by taking successive CCF convergents lie to the right of all

previous such parallelogram vertices. From Theorem IV.2 the

sides that are shared by two parallelograms are of successively

increasing slope for successive convergents. The final parallelo-

gram is bounded on one side by the line of slope p/q through the

origin.

60

52

Thus, the entire region enclosed by the lines

y = (p/q)x, y = (p./q.)x, x = q
J J

is covered by parallelograms which, except for their vertices,

are free of lattice points. The vertices of these parallelograms

all lie to the right of (qj, pi) except for the vertex (0, 0) they

all share. Figure IV.2 illustrates this situation.

An alternate proof of Theorem IV.7 may be derived from the code

properties illustrated in Figure IV.1. Call the code resulting from

the (j-1)th application of a CCF reduction step to the code for p/q the

jth level code. That is, the 1st level code is the code for p/q and the

Nth level code consists of a single segment of length s
N

. Similarly,

the jth level code for p./q consists of a single segment of length sj.
J J

This segment corresponds to a single digit, 0, in the (j+l)th level

code for p
j+1

/q
j+1

. Therefore, the 1st level code for p /q consists,
j+1 j+1

of the concatenation of (s
j+1

-1) periods of the 1st level code for p./q.
J J

(each of which corresponds to a 0 in the (j+l)th level code) followed

by some other code. This other code will be derived in IV.2; for now

it suffices to know that the code for the (j+l)th CCF convergent is

derived from the code for the jth convergent by concatenating at least

one period of the latter with some other code. That is, none of the

first q. digits are altered. Therefore, there can be no lattice points

to the left of (q , p) between the lines of slope p./q and p/q. If
J

there were, a code 1 and 0 would interchange somewhere in the first qj

digits as described in the first paragraph of 11.5 when the slope of

the line is increased.

61

53

In Figure IV.1, the triangle encloses the 1st, 2nd, and 3rd level

codes for p
2
/q

2
. The relation between concatenation and successive CCF

convergents is thereby illustrated for p2/q2 and p3/q3. Although CF

convergents may be derived from the codes resulting from CF reduction

of the code for p/q, the reversal of code order at each step results in

a more complicated code change than the simple concatenation shown for

CCF convergents. That is, the code for vi/wi corresponds to a 1 at the

(i+l)th level, and since this 1 is the first or last digit at the (i+l)th

level depending on whether i is even or odd respectively, the derivation

of codes for successive convergents involves generating new code from

right to left as well as left to right. From Theorem IV.7, nothing is

lost in considering CCF convergents rather than CF convergents, so the

former will be used exclusively in the following text. The advantages

of the CCF over the CF are the monotonicity of the sequence of convergents

and the simple concatenation structure of the corresponding codes. In

the rest of this chapter the CCF structure of the code will be used to

derive code transformations related to translation and rotation of

lines on the grid.

IV.2 Translation of Lines and Cyclic Shifts in Code

IV.2.1 Cyclic Shifts and Code Catenation

Recall from Theorem 11.4 that upward translation of a line of

slope p/q results in the right cyclic shift by q' digits of each period

of the code for every 1/q units vertical displacement. This cyclic

shift is effected by the transposition of a 0 and 1 when the line is

62

54

displaced enough to pass through lattice points closest to the line of

slope p/q through the origin. Call the original and displaced lines L

and L' as illustrated in Figure IV.3. Since there are no lattice points

in the strip between L and L', the line L' and the line y =(p'/q1)x cross

the same cell sides in the first q' columns, so the first q' digits of

the code after such a cyclic shift constitute the code for the line

y = (p'/q')x.

The code for p'/q' can be derived from the code for p/q by using

the multilevel CCF structure of the code illustrated in Figure IV.1.

Transposing a 0 and 1 in the q'th and (q4.1)th columns of the 1st level

code yields the same result as transposing the short segment following

the 1 and the long segment terminating in that 1 since the long segment

is shortened by one digit and short segment is lengthened by one digit.

This segment transposition in the 1st level code corresponds to the trans-

position of a 0 and a 1 in the 2nd level code exactly like the trans-

position in the 1st level code. In the same manner, the transposition

propagates through all higher level codes. At the Nth level, such a

transposition can only occur at the end of the code, i.e, the only 1,

which terminates the Nth level code, is transposed with the 0 to its left.

The points connected by the dotted line in Figure IVA lie between the

digits to be transposed at each level.

The first q' digits of the 1st level code after the single

transposition described in the preceding paragraph correspond to the

first s -1 digits of the Nth level code. The lengths of long and short

segments at all levels are unchanged by the transposition except in the

6 3

55

Figure IV.3: Lattice Geometry Related to Cyclic Shift in Code

64

56

)

Nth level where segment length has been decreased by one digit. There-_
fore, if the CCF for p/q is

r71, . . .sN1

the CCF of p'/q' must be

= 51, sN, 11

Applying Theorem IV.1 to the latter CCF yields

Theorem IV.8:
qi sN+1% qN-1 q qN-1' P-PN-1

That is, the magnitude of the cyclic shift is the denominator of the

slope minus the denominator of the next to the last convergent to the

CCF of the slope.

Since downward translation of a line of slope p/q results in left

cyclic shifts by q' digits, the x coordinates of the points on the line

L
o

of closest lattice points below L in Figure IV.3 must be q-q'+kq,

k = 0, + 1, + 2, Therefore the point (go, po.) on L° must be

(q-q', p-ce) which by Theorem IV.8 is (q
N-1'

p
N-1

). The geometry of

the lattice line intersections with the line segment connecting (q' p')

and (q,p) is congruent to the geometry of the lattice line inter-

sections with the line segment connecting the origin to (q°, p°). Hence

the codes of these bdo line segments are identical. But the code for

the former segment is just the (q'+1)th through qtyl digits of the code

for L'. Therefore the first q digits of the code for L' are the concaten-

ation of the code for p'/q' and the code for p
0
/q

0
. The first q digits

of the code for L are the concatenation of the code for p°/q° and the

code for p'/W because the'line segment connecting the origin and

(q, p) crosses the same sides of lattice cells as the line segment from

65

57

the origin to (q°, p°) followed by the line segment from (q°, p°) to (q, p).

That is, there are no lattice points within the triangle (0, 0), (q°, p)

(q, p). In summary,

Theorem IV.9: The code for p/q is the concatenation of the codes for
p
N-1

/q
N-1

and (p-p
N-1

)/(q-q
N-1

). Upward translation

of the line y = (p/q)x by 1/q units reverses the order
of the concatenation.

Notice that if the code for p/q had one more level (the (kfl)th

level) the segment of length s -1 would be a short segment at the Nth

level and the segment of length s
N
would then be a long segment. These

long and short segments at the Nth level would then correspond to O's

and l's respectively at the (N+1)th level. Therefore, the 1st level

code corresponding to a 1 at the (N+1)th level is simply the code for

p/041 The discussion of the alternate proof of Theorem 11.7 based on

the code can now be completed with:

Theorem IV.10: The code for the OCP convergent p /q is derived
j+1 j+1

from the code for p /q. by concatenating s -1 periods
j+1

of the latter with one period of the code for

(pJ-PJ-1)/(yqi-1).

Proof: The (j+l)th level code for p /q consists of (s -1)
j+1 j+1

O's followed by a 1. These O's correspond to the 1st level code

for p /q and the 1 corresponds to the 1st level code for p'/q'

in Theorem IV.8 substituting j for N.

Note that Theorem IV.8 can be regarded as a special case of

Theorem IV.10 where j = N+1 and
5N+1

= 1. It is given as a separate

theorem because it plays such an important role in the code tran9forms-

66

58

tions resulting from translation and rotation of lines.

IV.2.2 Shift Polygons

The cyclic shift of the code for p/q by q' digits to the right

resulting from trnaslation of the corresponding line (q' will be referred

to as a right shift for brevity) can be illustrated by constructing a

"shift polygon" as follows. (Refer to Figure IV.4) Divide the

circumference of a circle into q equal arcs with points labelled in the

clockwise direction 0, 1, ..., q-2, q-1. The jth point represents a

cyclic shift of j columns to the right in each period of the code for

p/q. A succession of shifts is represented by a succession of directed

chords linking the corresponding points. Thus, the shifts corresponding

to upward translation by one unit distance of a line of slope p/q are

represented by a q sided regular polygon (which may be re-entrant or

star shaped) obtained by linking in order the points 0, q', 2q'mod(q),

...jq'mod(q), qq'mod(q) = 0. For any q, p uniquely determines q'

by Theorem IV.8. Moving the line downward instead of upward results in

shifts of -q' digits eachicorresponding to traversing the shift polygon

in the opposite direction. In Figure IV.3 the lines L' and L°, whose

respective equations are

y = (p/q)x+(l/q) and y = (p/q)x-(1/q)

pass through the lattice points that determine the cyclic shifts in the

code of the line L of slope p/q through the origin. The follmaing

theorem expresses a property of these points on L° and L' which will

be used to prove several theorems related to shift polygons.

6 '7

7 = = 0
upward

translation
of line

shift polygon for 3/7

59

ver tex shift

0 0 01 0 1 0 1

2 0 1 0 0.1 0 1

4 0 1 0 1 0 0.1

6 0.1 0 1 0 1 0

1 1 0 061 0 1 0

3 1 0 1 0 0.1 0

5 1 0 1 0 1 0 O.

7 0 0 1 0 1 0 1

p 1 3
2-; =

1 1

3q 1 7 q
3

1 2

1 1
2 - -2- 2

1

4

2=
1 7

2

11

2

2! 1 1

P 4 1
3

1
2

1

Figure IV.4: Relation of Shift Polygon to Code and Continued Fraction

68

60

Theorem IV.11: All lattice points (w, v) on L and 140 , satisfy the
equation

vp-wq = + 1.
The sign is positive for points on L' and negative for
points on L°. No other lattice points satisfy this
equation for a given q and p.

Proof: For a point (w, v) to satisfy the equation, the points

(0, 0), (q, p), v),(q+w, p+v) must be the vertices of a

parallelogram of unit area. Since one base of this parallelogram

is the line segment connecting (0, 0) and (q, p) whose length is

2 2 1/2
(p +q) the altitude must be 1/(p

2
+q

2
)
1/2

. But this altitude

is the perpendicular distance of L from both L' and L°. There-

fore, (w, v) must lie on L' or L° and since all points on these

lines are the same pcxpendicular distance from L they all qualify

as vertices of the unit area parallelograms in question. The

cross product* in the equation is positive if the vector from the

origin to (o, v) lies in a clockwise direction relative to the

vector from the origin to (q, p) and negative if the positions

are reversed.

Since (q', p') is on the line L' in Figure 1V.3, its cross product

with (q, p) is

p'q-q'p = 1.

But this is also the expression for the cross product of the points

(p, p') and (q, q'). Since p'< p <q and pl< q'< q, the point

(p, p') must be the point determining the digit shift in the code of the

line y = (q'/q)x. The right shift q' is a function of p and q, which

can be written as

* Hereafter, the cross product of (xl, 571) and (x2, y2) is defined as
the number x2y1 - y2x1.

69

P (p) = q' .

Paraphrasing the previous sentence in terms of it yields

P (q') = p ,

whence

61

P (P (P)) = P 9

q q

or the function P (p) is equal to its inverse. This proves the following

theorem.

Theorem IV.12: If q' is the right shift in the code of a line of
slope p/q, then p is the right shift in the code of
a line of slope q'/q.

The preceding shows how the slope of a line can be determined

from the shift polygon. The numerator of the slope is derived from q'

(the number of vertex separated arcs subtended by each polygon side) by

substituting the latter into the same function P that yields q as a

function of p. The deonminater q of the slope is the number of polygon

vertices by defifiition. The set of all integers between 0 and q that

are prime to q is both the domain and range of P which is therefore a

permutation on that set. Even powers of that permutation equal the

identity.

In the left column of Figure IV.5 are all the fractions 0 < p/q< 1

for q = 7. Opposite each of these fractions in the right column is the

fraction corresponding to the lattice point that determines code shifts

when the line of slope p/q is translated. The denominators on the right

are the magnitude of the cyclic shift or the number of stdes crossed by

each side of the shift polygon. For example, the case p/q 3/7 has

been illustrated in Figure IVA. The lines in Figure IV.5 connect

70

62

p/q P
q
(p)=q'

pll /q '

Figure IV.5: Function Relating Slopes With Fixed Denominators

to Shift Polygons with Fixed Number of Vertices

71

63

fractions with equa] values of p and q'. The right-left symmetry of this

figure of lines is an expression of Theorem IV.12. That is, a value of

p in the left column yields a value of q' opposite it in the right column;

that value of q' in a numerator in the left column will then yield the

value p in the denominator in the right column.

The vertical symmetry of the figure of lines in Figure IV.5 about

the dotted line is expressed in the following.

Theorem IV.13: The shift polygon for (q-p)/q is the same as that for
p/q with the directions of all chords reversed.

Proof: The transformation C =
(1 1)

discussed in 111.1 maps
0 -1

(q, p) into (q, q-p) and (q', p') into (q', q'-p'). The cross

product of the vectors from the origin to these new points is

(q01:10)cv(cvp)ql ciceplcOpcilcice =

Thus, from Theorem IV.11 (q', q-p) lies on the lower line of

lattice points closest to the line of slope (q-p)/q through the

origin. Therefore, downward translation of this line results

in a right cyclic shift of the code for (q-p)/q by q' digits and

upward translation results in a right cyclic shift by -q' = q-q'

digits (i.e., a,left cyclic shift by q' digits which is the same

as a right cyclic shift by q-q' digits), whence

P (q-p) = q - P (p) .

The digit shift of a code of a line whose slope is a complement

of another is the complement of the shift with respect to the denominator

of that slope.

72

64

In the preceding paragraphs it was shown that codes for straight

lines of rational slope have the property that transposing some adjacent

pair of digits yields the original code cyclically shifted. If there

are no periodic binary strings other than straight line codes that have

this property, it can be used as the basis of straight line recognition.

Suppose there is some periodic binary string with period q

containing 0 and 1 in columns k and k+1 which when transposed yield the

original string cyclically shifted q' digits to the right where q and

q' are mutua/ly prime. Then this new string must have a 0 and 1 in

columns k+q' and k+1+1' which when transposed yield the original string

cyclically shifted 2q' digits to the right. Similarly, a sequence of

such transpositions yields the original string cyclically shifted

qq'mod(q) = 0 digits to the right, i.e., the original string. The

following construction can be used to derive the original binary string

from the sequence of transpositions.

Construct the transposition table for q and q' as follows. (Refer

to Figure IV.6, the transposition table for q = 7, q' = 2.) The first

row of cells represents the unknown code after the first transposition

has occurred. The location of the first transposition determines the

position of two digits of the code, i.e., the 1 and 0 resulting from

the transposition. For convenience write this 0 in the leftmost cell

of the top row and the 1 in the rightmost cell. Since the code is cyclic,

the starting point is arbitrary. If such a transposition results in a

cyclic shift by q' digits to the right in the code, the next transposition

must occur q' digits to the right of the first. Using the second row

7 3

65

i

. 0

._--.

q'=2

,

q=7

.1.....----
,

1
,

1

IF
1 0 0 1

- *
I 0 11 1 0

0 1

Final code for p/q = 3/7

Figure IV.6: Transposition Table for Cyclic Shifts

7 ,
4

66

from the top of the grid to represent the unknown code after the second

transposition, two more digits of the unknown code are determined by the

location of this transposition, i.e., an adjacent 1 and 0 in the q'th

and (q'+1)th columns. Similarly, after the jth transposition, a 1 and

a 0 can be found in the jq' mod(q)th and (jq+1)mod(q)th columns of the

jth row from the top of the table.

Since each transposition determines the columns in which an

adjacent 0 and 1 occur in the jth row from the top of the table, it

determines the location of the adjacent 0 and 1 in the row above

corresponding to the code prior to that transposition. Call the grid

point joining the four cells of the table holding these four digits a

transposition point. If q' has no factors in common with q, there will

be one trnnsposition point between any two adjacent columns of the table

after q transpositions. Therefore each digit of the code has taken part

in two transpositions, one corresponding to the transposition point to

the left and the other to the right of the column containing that digit.

If the original digit in some column was 0, the first transposition

replaces it with a 1 and the second replaces the 1 with a 0. If the

original digit was 1, the first transposition replaces it with a 0 and

the second replaces the 0 with a 1. Therefore, after q transpositions

the original code results. It can be read off from the transposition

table by taking in order either the bottom or the topmost entry in each

column of the table.

It is impossible for q' to have any factors in common with q if

a single transposition results in a string that is the original string

67

cyclically shifted. For if q' and q had the factor k in common, the

transposition points would only lie on vertical lines to the right of

columns that were multiples of k. Thus after q/k transpositions, a

transposition point would recur between an adjacent 1 and 0, the results

of the last time the transposition point occurred in that column. That

is, the digits resulting from the first transposition in those columns

would not be altered by transpositions in adjacent columns since none

occurred. These digits are therefore in the wrong order for a trans-

position to occur and a contradiction results. That is, if the first

transposition replaces 01 with 10, so must all others because the

resulting code is identical to the prior code except for a cyclic shift.

It is clear from the construction just described that q and q'

completely determine the structure of the transposition table and hence

the code derived from it by reading off the bottom entry in each column.

Now consider a straight line code of period q for which the transposition

yields a cyclic shift by q' digits to the right. This straight line

code will yield precisely the same transposition table as that of an

unknown string with period q and right cyclic shift q' resulting from a

single transposition. Therefore the unknown string must be the code of

Lhe straight line with the same q and q'. This proves the following

theorem.

Theorem IV.14: The codes of lines of rational slope are the only
periodic binary strings containing an adjacent 0
and 1 which when transposed yield the original code
cyclically shifted.

7 6

68

Since straight line codes correspond to configurations of excited

cells on the lattice that can be crossed by straight lines, the theorem

implies that only patterns which excite such configurations can yield

regular shift polygons when translated in a fixed direction. That is,

to the resolving power of the grid, the pattern must be a straight line.

IV.2.3 Lines as Operators on the Code

The following is an application of the code shift properties

described in the preceding sections of IV,2. It is of interest because

it shows how the trajectory of motion of a pattern, in this case a pair

of lines, can be found relative to the grid without observing the change

in coordinate values of points in the pattern induced by such motion.

That is, the cyclic shifts in the lines caused by their translation on

the grid can be used to find the magnitude and direction of that trans-

lation. Details follow.

Consider two lines L
1

and L
2

through the origin on an nxn grid.

Let p/q and r/s be their respective slopes where q<n,s<npand

0 < p/q< r/s < 1. If the intersection of these lines is moved about

the grid, preserving both slopes, the code of each will be cyclically

shifted as described in the preceding sections of IV.2. Denote by ci

the magnitude of the shift in the code of Li caused by displacing Li

(p
2
+q

2
)
-1/2

units perpendicular to its direction. Denote by c
2
the mag-

nitude of the shift in the code of L2 caused by displacement of L

(r
2
+s

2
)
-1/2

units perpendicular to its direction. These shift magnitudes

correspond to q' in preceding sections, Moving the intersection of Li

and L
2
along a line of slope t/u, preserving their slopes, results

69

in shifts of both codes that depend on the components of motion

perpendicular to L. and L . Conversely, given the codes of two lines
2

and their sequences of cyclic shifts under trantilation it is possible to

derive the trajectory of their intersection when translated along the

line of slope t/u. In this sense, the line of slope t/u is said to be

an operator on the codes of L
1
and L

2
.

In Figure IV.7 the parallels to L represent the displacements of
1

L which result in shifts of its code; similarly, the parallels to L2
1

represent the displacements of L which result in shifts of its code.
2

Regarding these parallels as the horizontals and verticals, respectively,

of an "operator plane", the code with respect to this new coordinate

system of the line of slope t/u in the old system corresponds to the

sequence of cyclic shifts in the codes for p/q and r/s as their inter-

section is moved along the line of slope t/u. That is, each 0 of the

code represents crossing a "vertical" of the operator plane, causing a

right shift of c2 digits for the code of r/s. Similarly, each 1 of the

code represents crossing a "horizontal" of the operator plane, causing

a right shift of c
1
digits in the code for p/q.

To find the code of t/u in the operator plane the coordinates of

(u, t) with respect to the lattice basis generating the operator plane

are needed. Call the basis vectors of the original square lattice

(e
e
1 and the basis vectors of the operator plane 0 . Ale coordinates

2

of the latter with respect to the former are found by simultaneously

solving the equations of the lines whose intersections determine the

fundamental parallelogram of the operator plane. For the coordinates

el

of el with respect to solve:
1

2

7 8

(el)ele2
is the intersection of:

r -I 1-y-irx and y 1-- qx

(%=7Iii

70

71 (el)
et

is the intersection of :
I yr.q x and y=fx+

Figure IV.7: Operator Plane

7 9

1

y = (p/q)x and y = (r/s)x-1/s

obtaining

71

ei = (q/(qr-ps),p/(qr -14ele2

where the subscripts refer to the basis in which the coordinates preceding

are to be taken. Similarly, for e solve:

y = (r/s)x and y = (p/q)x+1/q

obtaining

e; = (s/(qr-ps),r/(qr-ps)) e e
1 2

These relationships are expressed by the matrix equation:

s r

qr-ps qr-ps

qr-ps qr-ps
el ei

2 2

I.

Now, to find the coordinates of (u, t)ee2 with respect to the new basis

postmultiply by the inverse of the. Owe:Ault:lax:

(u, t) r "P = (ru-st, qt-pu)e
1

ele2 -s q 1 2

Thus, the code for (lt-pu)/(ru-st) gives the sequence of shifts for the

codes of L
1
and 112 as described in the preceding paragraph.

Now suppose p/q and r/s are known and the intersection of the lines

L
1
and L

2
of those slopes through the origin is translated along a line

of unknown slope t/u. For clarity, say p/q < t/u < (p+r)/(q+s), i.e.,

the slope of t/u in the operator plane whose axes are L
1
and L

2
is

between 0 and 1 so that an operator code can be defined without worrying

about the octant reflections discussed in 11.2. The value of t/u can

so

72

be derived from the sequence of cyclic shifts induced in the codes for

L
I
and L

2
as follows. Every time a shift occurs in the code for L

2

write a 0 in the operator code. Every time a shift occurs in the code

for L
1
write a 1 in the operator code and ignore the next shift in the

code for L . The result is the code for t/u in the operator plane.
2

That is, since the line through the origin and (u, t) on the grid

corresponds to the line through the origin and (ru-st, qt-pu) in the

operator plane according to the preceding paragraph, the operator code

has (ru-st) digits and (qt-pu) of them are l's. Calling the coordinates

in the operator plane (u', t'), u and t can be found by solving for

(u, t) in the matrix equation in the preceding paragraph,

t) = (u', t')

(

s r

qr-ps qr-ps

qr-ps qr-ps

Considering the direction of motion of a pattern relative to the

grid as described in the preceding paragraphs might be very useful in

accurately determining the position of patterns on the grid relative to

each other. That is, the unknown grid coordinates (u, 0 of a cell can

be found by moving the intersection of two known lines into that cell'and

observing the digit shifts in the codes of the two lines. Furthermore,

since the choice of these two lines is arbitrary, they can be chosen

in a way to set up an arbitrary temporary coordinate system on the grid.

Motion parallel to one axis corresponds to an absence of shifts in the

code of the line defining that axis and motion in other directions

corresponds to a sequence of shifts in the codes of both lines. This

81

73

flexible coordinate mechanism could greatly simplify the interpretation

of perspective change in patterns projected on the grid from a three

dimensional space. That is, if a point in space has coordinates (0, tl)

with respect to the coordinate system of some plane in space in which

it lies, various projections of that point and plane on the grid will

result in a variety of cell excitation patterns. Hovever, the

coordinates of the projection of that point in the operator plane

defined by the projection of the axes of the plane in space onto the

grid will be constant.

The operator plane may be used to determine translation along

trajectories other than straight lines. That is, translation of the

intersection of L
1
and L

2
through any side of a cell defined by the

intersection of operator plane parallels yields a shift in the code of

one of the lines. This shift uniquely determines which side of the cell

was crossed. Thus, an arbitrary path through cells can be uniquely

determined from the sequence of shifts in the codes for Li and L2.

The resolution of this path is limited by the size of the cells, but

their area is in general much smaller than the unit area of the original

grid cells. For example, suppose p/q and r/s are chosen to be l/n and

(n-1)/n. Then the area of the cells in th.e operator plane is 1/(n2-2n),

the cross product of the numerators and denominators of the two frautions.

This increased resolving pover is a consequence of the properties of

lines discussed in //.4.

82

74

IV.3 Rotation of Lines and_areLieries in Terms of Continued Fractions

The CCF structure of the code can be used to determine the changes

in code resulting from rotation of a line about the origin as well as

the translation described in the preceding section. According to 11.5,

rotating a line through the origin from slope 0 to 1 on an nxn grid

yields a succession of codes of lines whose slopes correspond to the

successive terms of the Farey series of order n, .11 . Thus the rule

for code changes caused by line rotation corresponds to the rule for

finding successive terms of Y. If p/q is a term of :r, the preceding

and following terms will be called p-/q" and p
+
/q
+

respectively here.

The latter term is called the successor of p/q in Y. The rule for

finding the successor of p/q follows.

Rotating the line L in Figure IV.3 about the origin to increase

its slope results in no change in its code until it crosses the right-

most lattice point on L'. That is, since there are no lattice points

in the strip between L and L' no new cell sides are crossed until the

first new lattice point ((k-1)q+q',(k-l)p+p') is crossed (k is the largest

integer satisfying (k-1)q+e4n). By the same arguments as those preced-

ing Theorem IV.7, the code for the line from the origin to that point on

L' is the concatenation of (k-1) periods of the code for p/q and one

period of the code for pi/ce. By the argument following Theorem IV.9,

these two codes correspond to O's and l's respectively in the (N+1)th

level code. Therefore, the CCF of the code for pi./q+ must be

.
l' 2' 8Ntl

'

That is:

75

Theorem IV.15: The successor of p/q in the Farey series of order n is

kpN-pN.1 kp-pN_1

kqN-qN_I. kq-q11.1

where k is the greatest integer satisfying

kq-q < n.
N-1

Note that p'/q' is the special case where k=1. In case the CCF

terms immediately preceding this 1 are all equal to 2, the number of

CCF levels is drastically reduced. That is,

Theorem IV.16: F , ..., s , 2, 2, 2,2, 11 = Fs- , ..., s -11
1 j 1 i

Proof: Follows immediately from s7 . s 11 = r;
,

:T1.
1, k' 1 "" sk

That is, a string of consecutive 2's in the CCF is annihilated by a

following terminal 1, and the preceding term (s) is diminished by 1.
i

There is no analogue of this telescoping property in CF convergents

because the expressions for successive convergents are sums rather than

differences. (See Theorems 149HW and IV.1).

Refering again to Figure IV.3, the preceding theorem reflects an

interesting duality between a lattice point with mutually prime coordinates

(q, p) and the line L' of slope p/q through the infinite number of

lattice points closest to L. Each lattice point on L' corresponds to

a distinct successor of p/q in a distinct Farey series. Now for each

point (w, v) on L° there is a distinct line through an infinite number

of lattice points closest to y.(v/w)x. But Theorem IV.11 says that

pw-vq = 1, thus implying that (4, p) lies on each of these lines. There-

fore it lies on their intersection. So, corresponding to the infinite

84

76

set of lattice points on L' or L° there is an infinite set of lines

through (q, p), each of which goes through one lattice point on L' and

o 0 o o,
one lattice point on L . To all lattice points on L except (q , p),

(q, p) has the same relation as (q', p') has to (q, p). Figure IV.8

illustrates the intersection lf the described lines at (q, p).

The preceding geometric duality corresponds to the CCF duality

between
j terms

s2, 0011, sN, il and rip s2, sN+1,775.,

That is, the first CCF expresses the points of L' in terms of (q, p)

and the second expresses (q, p) in terms of the lines through points on

L
o

. The corresponding code duality is the concatenation of periods of

the code for p/q in the first case and breaking down the code for p/q

into the codes for p'/q' and p°/q° in the second case. In the latter

case the code for p/q has the same relation to the code consisting of

the concatenation of one period of the code for p
0
and j periods of

the code for p/q as the code for p'/q' has to the code for p/q.

The CCF structure of the code yields some novel proofs of

well known theorems on Farey series. For example,

Theorem 2811W: If p/q and p
+
/q
+

are two successive terms of 'n then

+
q

+
-qp p 1.

Proof: p/q = p
N
/q
N

and p
+, +

= p
1

/q
N+1

by Theorem IV.15
N+

Thus, the cross product above is a case of Theorem IV.2.

Theorem 29HW: If p-/q", p/q, p+/q+ are three successive terms of

then

77

Figure IV.8: Geometric Representation of p/q and its
Predecessors in all Farey Series'

86

78

+

q
+

+ q
- q

Proof: The three fractions are three successive convergents to the

CCF r; s
2' 5N-1'

s s
N' N+1

Applying Theorem IV.1 yields

N+1PN 1'N-1 1'N-1 sN+1 PN
s
N+1'N 'N-1 c1N-1

s
N+1

q
N

qa

Notice that the preceding theorem holds for any three successive convergents

to a CCF, not simply a CCF whose entries are determined by the order of

the Farey series according to Theorem IV.15. A geometric interpretation

of this property is that every CCF convergent lies on the main diagonal

of the parallelogram formed by adding the vectors corresponding to the

preceding the following CCF convergents. AA analogue in CF convergents

is :

Theorem IV.17: For the CF convergent vi/wi defined as in IV.1,

v -v.
1+1 1-1 =

a
i+1

vi vi

wi+l-wi-1 ai+lwi wi

Proof: Applying Theorem 14911W yields

a
i+1

v
i
+ v

i-1
-v

i-1
a v
i+1 i

a
i+1

w
i
+ w

i-1
-w

i-1
a
i+1

w
i

Geometrically, this means that the vector connecting the lattice points

corresponding to any two successive odd/even CF convergents is a multiple

of the vector from the origin to the point corresponding to the idterven-

ing even/odd CF convergent.

79

The new proofs of Farey series theorems based on the CCF and codes

instead of traditional tools depend on the fact that the lattice point

corresponding to the successor of any term p/q lies on the line L' of

lattice points closest to the line L through the origin and (4, p).

Under any unimodular transformation the images of the lines L and L'

retain their property of being "closest" to each other (no lattice

points from elsewhere in the original lattice are mapped onto or between

them). Furthermore, points with mutually prime coordinates are mapped

into points with mutually prime coordinates by unimodular transformations.

These two properties make it possible to generalize the notion of Farey

series as follows:

Definition IV.1 Let3 be the usual definition of the Farey series
` n

(

of order n. Then let
X
1

X
2)1r where

Y1 Y2 n
where x1y2-x2y1 = 1 be called the Generalized Farey

Series of order n, whose members are defined as
follows. If the kth term of yn is p/q then the

kth term of the Generalized Farey series is

Ylc147213

xlq+x2p

The unimodular transformation above maps the unit square (0,0), (1,0),

(1,1), (0,1) into the unit parallelogram (0,0), (x1,y1), (x3+x2,y1+y2),

(x
2
,y

2
) and the square nxn grid into the parallelogram composed of nxn

of these unit parallelograms. Thus for any unit parallelogram there

are generalized Farey series of any order. Choosing a transformation

to map the first quadrant into a wedge within the first quadrant

introduces a refinement of the view of that subset of the quadrant. An

83

80

alternate interpretation is that the transformation is the discrete

approximation of the affine perspective transformation of the two

dimensional projection of three dimensional objects under rigid motion

in three dimensions. The reduction sequences which lead to the continued

fraction of the slope of a line may be interpreted in both the above

ways. Each transformation in the sequence both refines the approximation

to the slope and changes the perspective from which the line is viewed

until the line is the x-axis of the final coordinate systems. The code

is then reduced to the digit 0.

CHAPTER V: PARALLEL COMPUTERS WHICH RECOGNIZE AND GENERATE STRAIGHT LINES

The code theorems in the preceding chapters express, in the

efficient language of the code, intrinsic geometric properties of lines

on lattices. For example, Theorem 11.2, which states that the number

of O's separating l's is nearly the same throughout the code of a

straight line, expresses the fact that a line is cut into equal segments

by the parallels of the lattice. The code used here is particularly

powerful in expressing such properties because geometric transformations

of lines on lattices often correspond to simple code transformations.

In writing the code for a line, each digit is determined by the

position of the line with respect to a single lattice square. Similarly,

in CF- or CCF-reduction, each new digit is determined by a single

segment of the old code. Hence, both these operations may be performed

by parallel rather than sequential string processing. This suggests

a parallel computer design to perform such operations. In this chapter

the code properties described in preceding chapters are incorporated

into the design of parallel computers that recognize and generate

configurations of grid cells that can be crossed by straight lines.

V.1 Structure and Notation of Parallel Computers

Each of the parallel computers to be described consists of a

collection of identical finite automata operating in parallel. Their

programs and inputs vary according to the task. The structure, notation,

and mode of operation common to all the parallel computers is described

81

90

82

briefly in the following paragraphs. Details will be given in the

descriptions of specific designs in the following sections.

Eich parallel computer consists of sets of automata in four levels,

each of which performs a different kind of informational task and

communicates with the levels immediately above and below. Messages sent

from higher to lower levels may be regarded as instructions to the lower

level to 'look for' something and messages in the opposite direction as

reports that something has or has not been found. At the lowest level

ate the external input sensors, e.g., photocells, which detect the

presence or absence of a stimulus, e.g., light, in a single grid square

and send a 1 or a 0 to the automaton in the next higher level (see

Figure VA). Each automaton, called a C (Cell) in the latter level is

thus associated with a single grid square. Each C exchanges messages

with the C's that are its four nearest neighbors. These messages

consist of either 0, 1, or no message, sent independently to all four

neighbors. In addition, C's exchange one of the messages (0, 1, 00, 01,

10, 11) with an automaton called the CS (Cell Synchronizer) in the next

higher level.

The CS connects to a large number of C's but is not capable of

distinguishing the identity of individual sources or recipients of its

inputs and outputs. It combines the messages from the C's in a symmetric

boolean function and according to the value of that function goes into

a new state. At that time, it sends the same message to all C's

connected to it. The CS therefore, does not store information

91

0,1,00,01,10,11 l
sent both ways

o
0,1,00,01,10,11 it
sent both ways 4,

,----"------,

83

CS
2

CS

C

stimulus detector

Figure V.1: Organizational Hierarchy of Parallel Computers

9 2

84

from individual cells nor perform computations. It merely synchronizes

and programs the C's so that they are performing the right operation at

the right time.

The general mode of operation and notation used to express it are

as follows. First, the pattern is projected onto the stimulus detector

level and detectors that are excited by it send 1 to the C's which

respond by going into an active state and connecting to CS. The states

of C's are represented by four digit binary numbers in the ovals in the

transition graph (e.g., left half of Figure V.2). The states are written

as four digits to permit the storing of different kinds of information

in different digits; the inactive state prior to excitation is 0000.

All automata in the parallel computer are Mealy type; i.e., there is a

finite delay between an input and the resulting output to neighbors to

prevent race conditions. Upon excitation, all C's simultaneously send

outputs to their four nearest neighbors and CS. Messages between C's

are written in the corresponding quadrants of the large X's adjacent

to the appropriate transition arrow in the left half of Figure V.2.

Inputs to a C are written above the horizontal line next to this arrow

and outputs below. For example,X written above the line means a C

receives a 1 from both its upper and left neighbors. Written below the

line, the same symbol means the C is sending a 1 to those neighbors.

If a given C transition does not depend on inputs from other C's but

only on the input from CS (a "don't care" condition for input from C's)

the X will be ommitted. If the transition condition iS a single symbol

e.g., 1, from any single neighbor, that symbol will be written without

93

85

an X. (For example, see the transition from 1100 to 1110 in Figure V.3.)

The C messages to and from CS are written in the samll squares below and

above the same horizontal lines in the left half of Figure V.2.

In the time step following the C transition described in the

preceding paragraph, CS receives simultaneously the messages from all

C's connected to it and computes some simple symmetric boolean function

of them. The value of this function and the present state of the CS

determine its next state and output. The states of the CS are written

in the circles in the right half of Figure V.2 and the inputs and out-

puts are written above and below the horizontal line adjacent to the

appropriate transition arrows. In writing the boolean functions, the

variable z
ij

refers to the one digit message from the ijth C to CS and

is either 0 or 1; xij and yij refer to the first and second digits of

two digit messages from the ijth C to CS. The common notationr and
ij

are used for boolean product and sum respectively. The subscripts

will be omitted in the transition graphs since they are always the same.

The output from CS to the C's is written in the small square below the

horizontal line.

In the next time step the C's receive inputs simultaneously from

neighbors and CS. The process just described repeats so that activity

alternates between the C and CS level of th ,.! parallel computer. When

a recognition process is complete, a message may be sent from CS to

CS
2

, an automaton in the highest level that may respond to and/or direct

the operations of several independent CS's. The transition graph for

2
a CS is at the bottom of Figure V.2.

94

86

Messages to and from CS
2
's are written in diamond shaped

boxes next to the appropriate transition arrows. The details of

notation and operation will become clearer in the discussion of specific

examples that follow.

V.2 Straight Line Recognizer Based on CCF-Reduction

This design implements the CCF-reduction (described in Theorem

111.4) on the code of a configuration of excited C's on the grid. It is

based on the simultaneous deletion of O's from code segments followed

by the conversion of l's terminating long segments to O's and those

terminating short segments to l's.

The general sequence of operations is as follows. First, C's

excited by the pattern go into states corresponding to code digits based

on the locations of their nearest excited neighbors. C's corresponding

to l's then send messages to one of their neighbors. This message

propagates from each C corresponding to a code I along adjacent C's

corresponding to code O's, converting the latter to a state in which

they do not correspond to any code digit. When all such C's have been

h erased" in this manner, the remaining C's, which correspond to code

l's, are converted into states corresponding to O's or l's depending

on the number of steps it took for the message propagating along C's

corresponding to O's to reach them, i.e., depending on whether the l's

of the original code terminate long or short segments. If this number

of steps differs by more than one between any two adjacent l's, the

pattern is rejected since Theorem 11.2 excludes from line codes those

95

87

strings in which segment lengths differ by more than one digit. If this

condition is not violated, the propagation of messages from states

corresponding to l's starts over again and repeats until only the code

digit 1 is represented in the states of C's. Recognition is then

complete. Details follow.

Figure V.2 illustrates the determination of code O's and l's and

the test for octant compatibility of the corresponding nearest neighbor

configurations. Initially all C's are in state 0000, and CS and CS
2 are

both in state 0. Then, all C's excited by the pattern go into state 1000

send 1 to each of their four nearest neighbors and connect to CS,

sending the latter 0. All the events in the preceding sentence occur

simultaneously. CS, which received O's from all C's, responds in the

next time step by staying in state 0 and sending 0 to all C's

simultaneously. This is interpreted by each C as an instruction to

determine the configuration of excited nearest neighbors based on the

direction from which l's arrive that were sent by all C's to all their

nearest neighbors in the previous time step. That is, C's receiving

from right and left neighbors or upper and lower neighbors stay in

state 1000 and send 00 or 01 respectively to CS. C's receiving from

asymmetrically placed neighbors, on the other hand, go into state 1100

and send 10 or 11 to CS. Thus, the first digit of the C state holds

the information that the C is excited by the pattern and the second

holds the straight line code digit corresponding to the local neighbor-

hood configuration of excited C's. The first digit of the two digit

messages sent to CS at this time tells whether the configuration is a

96

CS
88

excited

con CSIII

2

(iloo)
00

reject

accept

(a)

Ez+ExYEx-i+E-iyExy=1
stop

7TXy+Mi4ini:y417.7&=.1(c)

<3> stop

Exyxy = 1
(d)

Figure V.2: Octant Compatibility Detector

I.,. .97

00

ETcyExy = 1

E-ccyExy = 1

(e)

(f)

(g)

89

run or bend, i.e., it is the corresponding code digit. The second

digit gives the orientation of the run or bend. Figure 11.2 illustrated

these run and bend configurations during the initial discussion of code

octant symmetries.

The preceding paragraph described only C's receiving l's from two

nearest excited neighbors. Those receiving from one, three, or four

neighbors go into state 1010. If the chain of excited C's corresponds

to a straight line, those C's receiving from one excited nearest

neighbor must be on the ends of the chain; their role in the recognition

process will be described later. If any C's receive l's from three or

four nearest excited neighbors, the pattern cannot correspond to a

straight line; such C's signal their presence by sending 1 to CS.

CS now examines the messages sent to it by the C's to determine

whether there are conflicts between the octants compatible with the

nearest neighbor configurations of excited C's. That is, if CS simul-

taneously receives 00 and 01 or 10 and 11, there must be bdo types of

run or two types of bends among the C's connected to the CS. Therefore,

from the discussion in 11.2, the pattern cannot be a straight line.

Also, if there are any C's with three or four excited nearest neighbors,

signaled by the arrival of a 1 at the CS from the C's, the pattern

cannot be a straight line. These bdo kinds of incompatibility with

straight line configurations are expressed by the boolean function in

transition condition (b) in Figure V.2. In this case, CS sends 0 to

CS
2
and halts. CS2

responds by going into state 1, rejecting the

pattern.

98

90

Now if all local configuri-ions are bends or all are runs, no

further processing is needed because the cell excitation pattern must

be that of a straight line. The boolean function in transition condition

(c) of Figure V.2 expresses this case, to which CS responds by sending

1 to CS
2

and halting. CS
2 responds by going into state 2, accepting the

pattern as a straight line.

If none of the conditions (a), (b) or (c) are met the pattern must

consist of runs of a single type and bends of a single type. The pattern

therefore corresponds to a string of code satisfying the octant

constraints but not necessarily the digit distribution constraints of

straight lines. Transition conditions (d), (e), (0, and (g) correspond

to the response of CS to the messages from C's indicating octants I, II,

III, IV respectively. The first digit of the two digit message sent

from CS to the C's at this time is the run type and the second is the

bend type of the octant compatible with all the messages sent to CS in

the previous time step (Figure 11.2 illustrates these run and bend

types). C's respond to this message by going into a state with the

same four digit label but subscripted by the message from CS. The

subscript determines the direction in which messages will be sent

between C's during code reduction. Only the case for message 00,

corresponding to octant I, is shown because in the other cases reduction

will be carried out in exactly the same manner, differing only in the

direction messages are sent.

Figure V.3 illustrates the CCF reduction for configurations of

cells compatible with octant I. The transition graphs for other

99

91

octants are derived by replacing the subscripts with those corresponding

to the run and bend types compatible with other octants'and reflecting

all the large X's containing input or output messages to and from C's

about the corresponding axes or diagonals. For example, the reduction

of a code corresponding to a line in octant III, is derived by using

the subscripts 11 and reflecting the large X's containing inputs and

outputs about the lines x=y and then x=0. This is easily understood by

looking at Figure 11.2.

Referring now to Figure V.3, C's in state 1000 correspond to runs,

and those in state 1100 correspond to bends. Thus, tracing the chain

of excited C's between the C's on the end in state 1010 yields the

binary code of definition 11.1 except that bend pairs correspond to two

digits instead of one. This duplication is eliminated by the 01 sent

from CS to C's in response to the l's CS received from C's in the

previous step. That is, C's in state 1100, corresponding to bends,

send 1 to their upper neighbors and 01 back to CS. CS, now in state 1,

responds by sending 00 back to the C's which is interpreted by bends

as an instruction to look for a 1 sent by their neighbors in the previous

time step. Those receiving such a 1, i.e., the upper member of each

bend pair, go from state 1100 to state 1001 and disconnect from CS.

Any C whose rightmost state digit is 1 is in a "conducting" state.

That is, it conducts messages it receives from one neighbor to its

other neighbor, effectively making these neighbors adjacent to each

other. C's in state 1000 receiving 00 from CS remain in that state

and send 0 to CS.

100

0 or 1
discon.

Figure V.3: Line Recognizer Based on CCF-reduction

accept

93

CCF-reduction can now begin. CS, which received a mixture of O's

and l's from the C's sends them all 1 while going into state 2. C's in

state 1100, corresponding to code l's, respond by sending 1 to their

upper neighbors and 1 back to CS. The 1 sent to the upper neighbor is

conducted through it to the first C corresponding to a code 0. Such C's,

in state 1000, respond to the 1 from a neighbor and 1 from CS by going

into the conducting state 1001 and disconnecting from CS. In this way

a single code 0 is removed simultaneously from each code segment. C's

in state 1000 that do not receive 1 from a neighbor send 0 back to CS.

As long as CS receives a mixture of O's and l's from the C's, indicating

there are still some code O's left, it continues to send l's to the C's,

instructing them to continue deleting equal numbers of O's from each

code segment.

If the lengths of code segments only differ by one digit the last

remaining C's corresponding to code O's will be deleted at the same time

as some C corresponding to a code 1 is receiving a 1 from a neighbor

for the first time. The latter event is represented in Figure V.3 as

a C in state 1100 going into state 1110 and sending 10 to CS. Since

the last remaining code 0 has been deleted, CS receives a mixture of l's

and 10's, but no O's. It responds by going into state 1 and sending 10

to the C's. This causes the C's in state 1110, corresponding to code

l's that received 1 from a neighbor and lie at the end of short segments

of the code, to go into state 1100. C's in state 1100, on the other

hand, correspond to code l's at the end of long segments since they did

not receive l's from neighbors. Therefore, they respond by sending 0 to

1G 2

94

to CS and going into state 1000, corresponding to code O's.

One step of the CCF-reduction has now been carried out; long

segments have been replaced by O's and short segments by l's. CS, now

in state 1, receives a mixture of O's and l's and responds by going into

state 2, sending a 1 to all C's and thereby commencing another CCF-

reduction step by deleting a single 0 from each code segment as described

in the preceding paragraph. If the CS ever receives no messages from

code O's while it is in state 1, reduction is complete so CS sends 1 to

CS
2
and stops. That isIthere are no more code O's. CS

2
goes into s tate

2, accepting the pattern as a straight line. The number of times CS

entered state 1 is the number of levels in the CCF expansion of the slope

of that line, and the number of times CS entered state 2 between two

successive returns to state 1 is the length of the long segment at that

level, i.e., the CCF coefficient corresponding to that level. Therefore,

the number of steps necessary for recognition is the sum of the

coefficients plus the number of levels in the CCF expansion of the

slope of the line. Thus, although there is a sequence of steps, the

time (number of steps) required for recognition does not increase with

grid size or number of excited C's. Instead, it goes up with the

complexity of the continued fraction and the number of steps in general

is far less than the number required by sequentially processing a chain of C's.

If segment lengths of the code of the pattern differ by more than

one digit at any level, CS will receive both a 10 and a 0 while in

s tate 2, indicating that there are still code O's that have not been

deleted when the message propagating from a bend arrives at the end of

3

95

a short segment. This violation of Theorem 11.2 causes CS to go into

state 1, send CS
2

a 0 and stop. CS
2
responds by going into state 1 and

rejecting the pattern as not being a straight line.

Since the preceding recognition process takes place on a finite

grid, the C's terminating the chain of excited C's must be accounted for

during the reduction. Recall that such C's have only one excited

nearest neighbor . In particular, since any of these terminating C's

could represent either a 0 or a 1 of the code that is truncated by the

boundary of the grid or the end of a line segment, their behavior must

be compatible with both possibilities. These C's, in state 10101respond

to the 1 from CS by sending 0 to their upper and right neighbors. C's

in state 1000, corresponding to code O's, respond to this 0 from a

neighbor during CCF reduction by going into state 1001 and disconnecting

from CS. That is, the terminating C is treated as a code 1 by C's

corresponding to code O's. However when a C in state 1100, correspond-

ing to a code 1 receives a 0 from a neighbor it goes into state 0100

and continues to act like a code 1, sending 1 to its upper neighbor.

During continued deletion of code O's, caused by the continued sending

of l's from CS to the C's, this C in state 0100 acts as a barrier to

the O's it receives from its left. When the 10 comes from CS, causing

digits to be rewritten according to the CCF algorithm, the CS in state

0100 goes into state 1001, eliminating the barrier to O's coming from

the C in state 1010 terminating the left end of the chain of excited

Since there are now only conducting C's between it at the C in

state 1010 terminating the left end of the chain, this C formerly in

104«

96

state 0100 acts as a chain terminating C to its upper neighbor during

dhe next Ca reduction step.

Other designs for straight line recognizers are possible based on

the CF reduction or the reduction of Theorem 111.1. The transition

diagrams representing such parallel computersneed not differ greatly

from the design just described, for many of the operations common to

them all could be expressed by the same kinds of transitions. For

example, deleting or rewriting digits, two operations common to all

reductions, can be expressed as transitions into a conducting or non-

conducting state, respectively, in the left half of all the transition

graphs. Regardless of the particular reduction chosen and the transition

graph chosen to represent that reduction, it is important to note that

the structure and program of the individual C's and the CS unit over-

seeing their operation is fixed regardless of grid size or the size

and shape of the pattern projected onto the grid. The only things that

change when either grid size or pattern change are the number and

location of C's connected to the CS and the sequence of transitions in

the graphs of both kinds of units. Since the CS does not receive

information about the number and location of C's connected to it, changes

in such information do not effect the CS.

Following is a description of another kind of parallel computer

that recognizes straight lines. It is not based on code reduction but

on the code shift properties of a line that is translated on the grid.

105

97

V.3 Straight Line Recognizer Based on Shift Polygon

This design is based on the cyclic shift properties of straight

line codes under translation, described in IV.2. In this case the

pattern is moved relative to the grid and the resulting change in the

configuration of excited C's is used to determine whether the pattern is

a straight line. This mode of operation is markedly different from all

other parallel computers discussed in Chapters V and VI, which analyze

fixed patterns. It shows that pattern motion relative to the grid (such

as image motion relative to the retina during eye tremor or drift) can

be useful rather than detrimental in pattern recognition.

Recall that translating a straight line of slope p/q upwards 1/q

units results in the transposition of a 0 and 1 in each period of the

code, and this transposition yields the same result as a cyclic shift.

A succession of such translations thus yields a succession of the

corresponding cyclic shifts. The original code recurs after upward

translation by one unit, which corresponds to q cyclic shifts, each of

the same magnitude. According to Theorem IV.14, a straight line code

is the only binary string with this property. It is recognized by the

parallel computer as follows. Each C that is recently excited due to

the motion of the pattern sends a message in both directions along the

chain. If the pattern corresponds to a straight line, this message will

arrive at C's previously and more recently excited in the same number of

steps in all cases. That is, if the sequence of excitation of C's due

to pattern motion constitutes a palindrome in space (number of inter-

vening C's) and time (order in which C's are excited) the pattern is

106

98

accepted as straight line.

In order to see if a pattern satisfies the cyclic shift property

of straight lines outlined in the preceding paragraph, the projection

of the pattern on the grid must yield a configuration of excited C's

for which a code can be written. That is, the C's must have run and

bend configurations compatible with a single octant (see Figure 11.2

and surrounding text) and no C's can have more than two excited nearest

neighbors. In the preceding discussion of the line recognizer based on

the CCF reduction (section V.2) the above criteria were tested by the

parallel computer whose transition graph was given Figure V.2. The

same program is to be applied here. That is, the pattern is to be

rejected if it fails to satisfy the octant compatibility and number of

nearest neighbors criteria, and accepted as input for the straight

line recognizer otherwise. A complete discussion of that process was

given in section V.2 and will not be duplicated here. After the

processing corresponding to the transition graph in Figure V.2, all

excited C's go into state 0000, subscripted by the appropriate run and

bend type digits and further interactions are to be accounted for by

the transition graph in Figure V.4 whose description follows. The

transition graphs for other octants are derived by the same reflection

of nearest neighbor specification and subscript substitution as described

for Figure V.3.

Refer now to Figure V.4 Initially all C's are in state 0000 and

CS is in state 0. Excited C's go into state 1010, send 00 to CS and 0

to their upper neighbors. CS then goes into state 1, sending 0 to the

107

CS
99

E x =l
stop"

Exy=l

Ez=1

E51

Figure V,4: Straight Line Recognizer Based on Shift Polygon

108

100

C's. C's in state 0000 receiving 0 from a lower neighbor go into state

0100 and send 0 to CS. Since these latter C's are directly above the

C's excited by the pattern, they have the same configuration as the

excited C's. Thus they can be used later to see if after q shifts the

original configuration results. CS, now in state 1, receives O's from

all C's and stays in state 1. This exchange of O's between CS and C's

repeats indefinitely until the line is moved upward enough to excite

one of the C's in state 0100 which then goes into state 0010 and sends

1 to CS. This new excitation corresponds to a digit shift in the code.

CS responds by sending 11 to the C's causing those in state 0010 to go

into state 1000 and send 0 to CS. C's in state 1000, 1100, and 1110

represent those most recently excited, second most recently excited and

third most recently excited respectively, of those excited by the

pattern as it moves upward (i.e., the number of l's in the state is

the index of "recentness of excitation"). The way the computer checks

for equal spacing between successive shifts is to send a signal forward

and backward along the chain of excited C's, starting at the second

most recently excited C (in state 1100). If the most recently excited

and third most recently excited C receive this signal simultaneously

the spacing from first to second is the same as Erom second to third.

Obviously this process cannot begin until three successive sets of C's

formerly in state 0100 have been excited. Thus CS, on receiving all

O's, indicating that none of the C's have gone into state 1110, stays

in state 1 and sends 0 to the C's, which in turn send 0 back. The loop

is broken when a new C in state 0100 becomes excited and goes into

109 a

101

state 0010 as the line is moved upward. This triggers CS to send 11 to

the C'spconverting C's in state 1000 to state 1100. The third time a

set of C's in state 0100 is excited, CS again responds with a 11 to

the C's. Now there is a set of C's in state 1100 which respond to this

11 from CS by going into state 1110 and sending 11 to CS indicating that

there are now three successive sets of newly excited C's.

CS, in state 1, now begins comparing the number of C's between

digit shifts (corresponding to newly excited C's) by sending 01 to the

C's. This causes the C's in state 1100 to send 1 to all four nearest

neighbors and 01 to CS. On receiving 01, CS goes into state 0 and sends

1 to the C's, signalling them to pass the signal on. Those C's in

state 1010 receiving 1 from a lower or left neighbor and 1 from CS

send 1 to their upper and right neighbors and 1 to CS. Similarly, C's

in state 1010 receiving 1 from an upper or right neighbor send 1 to a

lower or left neighbor. C's in states 1000 and 1110 receiving 1 from

CS and nothing from neighbors send 01 to CS, causing it to stay in

state 0 and send 1 to the C's. Thus, these l's are propagated through

the excited C's until they reach a C in state 1000 or 1110. If any

C's in those two states are not receiving relayed l's at the same time

that others are, the number of C's between successive digit shifts is

not equal and CS responds by staying in state 0, sending 0 to CS2 and

stopping, thereby rejecting the pattern. That is, CS
2
goes into state

1. On the other hand, if all C's in state 1000 and 1110 do receive

relayed l's from neighbors simultaneously, they send 11 to CS, which

then sends 00 to the C's. If there are still some unexcited C's in

110

102

state 0100 they send 00 to CS which then goes into state 1 and sends 0

to the C's. When C's in state 1110 receive 00 from CS they go into

state 1010 and send 11 to CS. Thus there are now no C's in state 1110

left and CS receives O's from all C's in response to its 0. This

exchange of O's between CS and C's continues as in the very beginning

until a new C in state 0100 is excited by the upward moving line,

triggering the same sequence of events as described previously. If a

C in state 0000 is excited by the motion of the pattern, it sends 00 to

CS and goes into state 1010. CS responds by sending 0 to CS
2
which then

goes into state 1 and stops, rejecting the pattern.

There are two ways the parallel computer can stop. CS
2
halts in state

2 if the pattern is accepted as a line and halts in state 1 it it is re-

jected. The former is occasioned by the completion of relaying l's

from a C in state 1100 and the absence of any more unexcited C's in

state 0100. This occurs when CS is in state 0 and receives no 00

messages from the C's, indicating that all digit shifts were of equal

magnitude and the configuration is now the same as the original pattern.

This results in a 1 being sent to CS
2
which halts in state 2, accepting

the pattern as a straight line. Rejectionvas described in the preceding

paragraph.

C's with only one excited nearest neighbor are not accounted for

in this design because the related transitions would obscure the cyclic

character of the transition graph (Figure V.4) that corresponds to the

cyclic shift properties of the code. This discussi4m is nevertheless

complete for a line on an infinite lattice or on a finite grid in which

111

103

columns that are separated by some multiple of q columns are identified

and rows that are separated by the same multiple of q are also identified.

Then the finite grid has the connectivity of a torus, and the chain of

excited C's corresponding to a line is closed on that surface. In

contexts in which it is desirable to include C's with only one excited

nearest neighbor, e.g., recognition of a line segment on a grid, the

related transitions can be accounted for as in section V.2.

This kind of line recognizer could be used in the context of lines

as operators (described in IV.2.3). That is, each CS transition from

state 1 to state C is a response to a C that is freshly excited by

motion of the line, corresponding to a single cyclic shift in its code.

If the slope of the line is p/q, such a shift is caused by translation

of the line relative to the grid whose component perpendicular to the

line is (p
2
4q

2
)

-1/2
. If two lines with unequal slopes are connected

to two CS's of this type, the magnitude and direction of motion of the

pair of lines relative to the grid can be determined from the sequence

of transitions of these CS1s. That is, the two components of motion

perpendicular to the two lines uniquely determine that motion.

Notice that although this recognizer is based on the same line

code as the recognizer described in V.2, it uses a totally different

property of the code as the basis for recognition. In fact, the digits

of the code are not even represented in the states of C's during

recognition by the parallel computer based on the shift polygon. The

timing and spacing of changes in excitation of C's is used instead of

the configuration of local neighborhoods of excitation. The magnitude

112

104

of motion necessary for recognition is the unit cell, no matter what

the slope of the line. This kind of operation reminds one of a kind of

mechanism available to live retinas because it depends on the sequence

and timing of on-off type events during motion of a pattern relative to

the detector array and on a simple distance comparison scheme that

could be implemented by neighborhood interactions (such as lateral

inhibition).

V.4 Straight Line Generator

In Euclidean geometry, two points determine a unique line. The

parallel computer described here determines the grid cells that would

be crossed by a straight line connecting the lower right vertices of

two given grid cells. This operation could be useful in a variety of

contexts such as linear extrapolation and interpolation, generating the

code of a line whose slope is known, performing rational computations

on the slopes of lines represented by their codes, and solving systems

of linear equations.

The mode of operation here is quite different from that of the

line recognizers described in V.2 and V.3. Initially, the positions of

the two points to be connected by a line are found relative to each

other. This is done by having one of the excited C's excite a chain

of successive horizontal neighbors and the other a chain of successive

vertical neighbors until the two chains meet. The numbers of C's in

these vertical and horizontal chains ar respectively the numerator

and denominaor of the slope of the line to be constructed. These integers

113

105

are stored in separate shift registers. These could be made out of the

chains themselves, but this will not be done here both in order to

simplify the logical design of the cells and to facilitate their use in

later construction processes. Next, the code of the line is computed

by synchronizing the two registers and counting the number of full

cycles each makes. More precisely, suppose the slope is p/q. Then l's

in the code occur in columns reap , r2q51 q (see discussion of

Theorem III.1). The kth 1 occurs in column rkq/51, the number of

complete cycles of the p register needed to equal or exceed k cycles of

the q register. (k cycle of the p register consists of p single digit

shifts.) Hence the code is obtained by simultaneously shifting both

registers one digit at a time and writing a 0 each time the p register

completes a cycle and a 1 each time the q register completes a cycle,

omitting the 0 following in the latter case. Details follow.

There are three CS units, each connected to a different set of

C's on the grid. CS
1
and CS

2
are to be used to set up and operate

shift registers consisting of q and p excited C's on the grid. These

CS units have identical state transition graphs as do the C's connected

to them. However, there are no connections between CS
1
and CS

2
.

Furthermore, none of the C's connected to one of these CS's interacts

with the other CS nor the C's connected to it. CS
3

is connected to

C's that are part of the pattern to be constructed. These C's have no

connections with CS
1
or CS

2
nor with any of the C's that connect to

CS1 or CS2. CS
2

is connected to CS1, CS2, and CS3. It synchronizes

these CS's in determining the slope of and constructing the line.

114

106

q cells

cells

Figure V.5: Interconnections for Straight Line Generator

115

4

1

4

,i

1

107

(See Figure V.5 for the interconnections between these units.)

Figure V.6 refers to the determination of p and q and the storing

of their values in the shift registers. Initially CS3 is in 'state 0

and two C's are connected to it. One of these is in state 1000 and is

the grid square at which the line to be constructed starts. The other,

q columns to the right and p rows above the C in state 1000, is in state

1010 and is the grid square .at which the line is to end. CS and CS
1 2

are both in state 0 and each is connected to a single C in state 0110.

2
CS is in state O. From now on in this description consider only the

case where 0 <p < q. The other cases (changing the signs and reversing

the inequalities) have the same transition graphs as the one discussed

here, but different transition conditions and outputs derivable from

those here by appropriate reflections of the specification of messages

C's exchange with each other (discussed in V.2).

The operation starts with CS
2
sending 0 to CS , triggering the

3

determination of p and q. CS
3

then sends 0 to the C's connected to it

and 0 to CS
2

. The C's respond by sending 0 to a single neighbor; the

C in state 1000 to a right neighbor and the C in state 1010 to a lower

neighbor. C's receivirs these messages constitute the beginning of the

chains of C's that will meet q units to the right of the C at which the

constructed line is to start and p units below the C at which it is to

end (see Figur..s V.5).

The.chains are constructed as follows. A C receiving 0 from a

left neighbor is in the horizontal chain and goes from state 0000 to

1001, connects to CS , and sends it 0 (denoted "con 0 " in the transition
3

116

C

0

CS
3 108

Ez=0 Tz=1

C

CS
2

CS
1 '

CS
2

Figure V.6: Parallel Computer that Determines and Stores
Slope of Line to be Constructed

117

109

graph). Similarly, a C receiving 0 from an upper neighbor goes from

state 0000 to 1011 and sends 0 to CS3. As long as CS
3
receives 0 from

all C's connected to it, indicating that the two chains have not yet

met, it again sends 0 to the C's, telling them to continue increasing

the lengths of the chains. This increase is accomplished by the

original C's (those between which the line is to be constructed) in

states 1000 and 1010 sending 0 to their right and lower neighbor

respectively. This 0 passes through the conducting C's that were added

to the chains in the last step,to be received by C's in state 0000.

The latter respond by going into the conducting state 1001 or 1011 On

the end of the horizontal or vertical chain as described in the preceding

sentences.

These steps are repeated as the chains spread from the original C's,

intersecting after q steps. When this happens a C in the vertical

chain in state 1011 receives a 0 from both an upper and a left neighbor,

causing it to send 1 to its lower neighbor, 1 to CS3 and go into state

0100. The 1 from this C to CS
3
causes the latter to go into state 1

and send 1 to CS
2

and to the C's connected to CS3. It is the signal

that q has been determined and p is about to be determined. First

the 1 from CS to its C's causes those in state 1001 to go into state
3

0000 and disconnect from CS , i.e., the C's in the horizontal chain
3

are "erased" since they are no longer needed. At the same time C's in

state 1011 below 0100 (i.e., receiving 1 from C's above) also go into

state 0000 and disconnect from CS3. The C in state 0100 sends a 1 to

CS
3

and goes into state 0000 and the C's in state 1011 go into state

118

110

0100 and send 0 to their upper and lower neighbors and to CS .

3

The only C's now connected to CS
3

are the original two in states

1000 and 1010 and (p-1) C's in state 0100. The latter constitute the

vertical chain whose C's must maw be counted to determine the numerator

of the slope. CS in state 1 has just received l's and O's from the
3

C's (indicating the horizontal and vertical chains spreading from the

original C's have met) so it sends 0 to them and 0 to CS
2

. Each C in

state 0100 receiving a 0 from an upper and lawer neighbor sends 0 to its

upper and lower neighbors, 0 to CS
3
and stays in state 0100. C's in

state 0100 receiving 0 only from an upper neighbor and CS
3

go into

state 0000, send 1 to CS and disconnect from it. CS3, on receiving
3

any l's from its C's (indicating that there are still C's being erased

and therefore the evaluation of p is continuing) sends them 0, sends 0

to CS
2
and stays in state 1. Thus, C's in state 0100 continue to

"disappear" one at a time from the vertical chain. When the last of

them has reverted to state 0000, CS
3
receives only O's from its C's

causing it to send 1 to CS
2

and remain in state 1. CS
1

and CS
2
were

active throughout the activity just described in CS
3'

receiving

information via CS
2
in order to store the values of p and q. The

following paragraph and Figure V.6 give the details of their operation.

In the beginning, CS
2
was in state 0 and sent 0 to CS

3
, which

responded by sending 0 to CS
2

. CS
2

responded in turn by sending 0 to

CS
1.

CS
1

continued receiving O's from CS2 as long as CS
3

sent O's to

CS
2

. CS
1,

on receiving 0 from CS
2

sent 0 to the C connected to it which

in turn sent 0 to its right neighbor. When a C in state 0000 received

119

0 from its left neighbor it connected to CS
1
and went into

state 0010. On receiving 0 from CS
1

any C in state 0010 sent

0 to its right Wshbor. Thus a sequence of q O's from CS3

2
to CS

2
resulted in a sequence of q O's sent from CS to CS

1
which in

turn resulted in q C's in state 0010 connecting to CS1. In this way,

a chain of q C's was connected to CS
1
, constituting a q digit register.

111

Next, a single 1 from CS
3

to CS
2
caused the latter to go into state 1.

This is the signal that the q register has been constructed and that the

p register must now be constructed. Then, the p O's from CS3 to CS
2

caused the latter to say in state 1 and send p O's to CS
2

. The effect

of these O's from CS
2

to CS
2
was the same as the effect of the O's from

CS
2
to CS

1
; namely, p C's in state 0010 became connected to CS

2
(see

Figure V.5). At this point, the numerator and denominator of the slope

of the line to be constructed have been determined and stored in the

C's connected to CS
2

and CS . The next task is to compute the code
1

from which the chain of excited cells will be constructed.

Refer now to Figure V.7, noting that states listed are the same

as in Figure V.6. The graphs are separated only for clarity and are to

be considered as superposed. On completion of the register construction

described in the preceding paragraph, CS3 sends 1 to CS
2

. The latter

responds by going into state 0 and sending 1 to CS
1
and CS . (Transition

2

at bottom of Figure V.6.) These l's to CS1 and CS2 are the signal to

begin shifting the registers in order to compute the code. This is

done by sending 00 to their C's, causing the C in state 0110 to send 1

to the corresponding CS and to its right neighbor (from now on, refer

to Figure V.7). At the same time both CS
1
and CS

2
go into state 1 and

120

CS
3

112

1 m or 00

Xtu

or X El

roJ

CS
2

01 <4

<01 4>2 ,

stop

stop

Figure V.7: Parallel Computer that Constructs a Line, Given
its Slope

121

113

send 1 to CS
2

. On receiving these l's from CS
1

and CS
2'

CS
2
stays in

state 0 and sends 1 to CS
1
and CS

2
. This exchange of l's between CS

1

CS
2

and CS
2

corresponds to repeated shifting in the registers storing

the values of p and q. This digit shifting in the C's connected to CS

and CS
2

is effected as follows. On receiving 1 from CS
1

(or CS
2
) and

nothing from a left neighbor, C's in state 0010 remain in that state

1

and send 0 to their left neighbors and 0 to CS1 (or CS2). C's receiving

1 from a left neighbor and 0 from a right neighbor as well as 1 from

CS
1

(or CS) send 1 to their right neighbors, 0 to their left neighbors
2

and 1 to CS (or CS). The 1 received from the left neighbor and sent
1 2

to the right by such C's constitutes a single shift in the register.

Since the C in state 0010 at the rightmost end of the registers does

not receive 0 from the right (because it has no active right neighbors)

its input is distinct from those that do. It is the only C that can

receive a 1 from its left neighbor and nothing from its right neighbor.

When this happens, the C in question sends 0 to C51 (or CS2) signifying

that a complete cycle of the register has just ended. For CS1 the

cycle is completed after q single digit shifts and for CS after p
2

single digit shifts as described above. At this time CS1 (or CS2)

receives O's from all the C's connected to it, causing it to send 00

to its C's and 0 to CS
2

. The 00 to the C's starts the register shift

over again. All succeeding exchanges between CS 2
and the two registers

can be summarized as follows. When C52 receives any messages from both

CS
1

and CS
2

it sends 1 to each of them. Thus, they continue shifting

cyclically uninterrupted.

122

114

While the registers are shifting as described in the preceding

paragraph CS
2

receives inputs from them which determine what it sends to

CS
3

to construct the chain of C's to be excited. When both CS and
1

CS
2

send CS
2

1
1

s, no message is sent to CS
3
, because neither register is

at the end of a shift and thus no code digit is forthcoming. Since p< q,

the first change that occurs in messages from the registers is when a

1 is received from CS
1

(the q register) and a 0 from CS
2

(the p register).

This corresponds to a 0 in the straight line code so a 0 is sent to CS3.

This condition will recur every p shifts of the p register (CS2) until

the q register completes a cycle (q single digit shifts), which

corresponds to an occurence of a 1 of the straight line code. When

that happens CS
2
receives a 0 from CS

1
and a 1 from CS

2
and goes into

state 1. It remains in state 1 as long as it receives 1 from both CS1

and CS . Finally it must receive 1 from CS
1
and 0 from

2

CS
2'

when it does it sends 1 to all three CS's and goes back into state

0, and the whole process continues. In this way CS2 sends in sequence

to CS3 the digits of the code for a line of slope p/q.

Now consider the C's which are to constitute the constructed line.

Before line construction starts CS
3

is in state 1 and is connected to

only two C's; the C in state 1000 representing the beginning of the line

to be constructed and the Cin state 1010 representing the end of that

line. On receiving the first 0 (corresponding to a code 0) from CS
2

,

CS sends 00 to the two C's connected to it and remains in state 1. The
3

C in state 1000 receives this 00 from CS
3

and sends a 1 to its right

neighbor and 11 to CS3. The C in state 1010 stays in the same state

123

115

until it receives 1 from a neighbor (indicating completion of the con-

struction, to be described later). When CS
3

receives the next 0 from CS
2

it stays in state 1 and again sends 00 to the C's. Now a C in state 0000

receives the 1 sent by its left neighbor (in state 1000) in the preceding

time step. This causes the C in state 0000 to go into state 1100, connect

to CS3, and send 1 to its right neighbor on receiving 00 from CS3. In this

way, a sequence of consecutive O's from CS
2

to CS
3
results in the construc-

tion of a horizontal row of C's in state 1100.

When CS
2
sends 1 to CS

3'
a bend (defined in 11.2) is constructed as

follows. First, CS3 goes into state 0 and sends 11 to the C's. C's in state

0000 receiving 1 from a neighbor go into state 1100 and send 1 to an upper

neighbor when they receive 11 from CS3. Recall that such C's sent 1 to a

right neighbor when they received 00 from CS
3

Thus, 11 from CS
3

to C's re-

sults in a vertical (upward) step in the construction and 00 results in a

horizontal (rightward) step. In the next time step CS3 goes back into state

1 and sends 00 to the C's, resulting in a horizontal step in the construction

exactly as described in the preceding paragraph. In summary, l's from CS
2

to CS
3
result in the construction of bends and O's result in the construction

of runs (defined in 11.2). Eventually, the C in state 1010 receives 1 from

a neighbor and sends 00 to CS
3'

indicating that construction of the "line"

connecting the two original C's is completed. CS
3

sends 00 to CS
2

which halts.

In conclusion, note that a trivial extension of the process that converts

codes to "lines" of excited C's as described in the preceding paragraphs per-

mits one to "draw" any curve whose code is known. The only additional inform-

ation needed is the specification of run and bend types, which can be handled

by providing appropriate "octant bits" (see 11.2).

124

116

V.5 Discussion of Parallel Computeys

A common mechanism in all the parallel computers discussed is the

following. Messages are passed simultaneously through many sets of C's

characterized by a particular set of states, When any of these messages

reach a set of C's characterized by another set of states, this causes

a CS to issue new instructions to the C's, This situation can be viewed

as the simultaneous operation of a collection of generalized shift registers.

In the straight line recognizer of V.2, code sevents play the role of

registers and l's of the code are the source of the end-of-shift message.

In the line recognizer of V.3 excited C's between those corresponding to

digits recently transposed act as registers and C's corresponding to digits

recently transposed are the source of the end-of-shift message. Finally,

in the straight line generator of V.4 shift registers are used explicity

to compute the code of a line. Although the use of registers is convention-

al in sequential computers, there are some novel features about their use

in the parallel computers described here, Parts of the pattern being re-

cognized act as registers, the number and size of registers is arbitrary,

and both may be changed at any time by suitable instructions from CS's.

Furthermore, many registers may be operated simultaneously under the con-

trol of a CS
2

to yield parallel computation. The kind of computation

to be carried out is determined by the interconnections and transition

graphs of C's, CS's, and C521 s. For example, consider the following gen-

eralization of the straight line generator described in V.4 to a computer

which multiplies (or divides) two rational numbers.

117

Let two rational numbers t/u and r/s be represented by the

codes of lines with slopes t/u and r/s. If the O's of these codes are

represented by C's in a conducting state and the l's by C's in the

register state 0010 the result is two registers of length t

and r, called R
t
and R. If, on the other hand, all code digits are

represented by register states the result is two registers of length u

and s, called R
u

and R
s

. Now, let R
t
and R

r
be synchronized by an

appropriate CS so that Rt shifts one digit each time a shift instruction

is received from CS
2
but R

r
shifts one digit only when R

t
has shifted

t digits. In this way the pair Rt, Rr goes throngh a complete cycle

after t'r shift instructions from CS2. Similarly, let R
u
and R

s
be

synchronized so that the pair goes through a complete cycle after u.s

shift instructions from CS
2

. These two pairs of registers now play the

role of the p and q registers of the straight line generator with the

output now being the code for tr/us. In case tr > us the code of the

reciprocal, us/tr, is generated by interchanging the roles of CS1 and

CS2, the two registers of Figure V.7.

By slightly changing the programs of the cellular automata described

in the preceding sectionsit is possible to change their purpose from

straight line recognition and generation to the detection of other

geometric and topological properties of patterns of excited cells on

the grid. In many cases it is only necessary to change some of the

transitions without increasing the number of states. One of the

simplest topological properties of patterns of interest in a variety of

contexts is connectivity. In the next chapter is the design of a

126

118

parallel computer that identifies connected sets of excited C''s on the

grid and assigns each to a separate CS. Multiple connectedness, suitably

restricted to take grid resolving power into account, can also be

determined.

127

CHAPTER VI: PARALLEL COMPUTERS TO RECOGNIZE CONNECTIVITY AND OTHER
PROPERTIES

Two related properties of general importance in pattern recognition

are connectivity and the presence of boundaries. The projection of a

three dimensional object on a two dimensional surface is a connected

region. Distinct objects project distinct (i.e., not connected to each

other) images, unless they happen to lie along the same line of project-

ion. The boundary of a connected region is important because it is the

locus of transition between presence and absence of the image of an

object. The parallel computers in this chapter detect the connectedness

(VI.1) and find the boundaries (VI.2) of sets of excited C's on the grid.

In addition, the design of a parallel computer that yields the approxi-

mation of boundaries by straight line segments is given in VI.3. The

latter combines the line recognizer of V.2 with some new programs which

could be useful in the recognition of polygons.

VI.1 Separation of Distinct Connected Regions

A connected region on the lattice will be defined here as a set

of excited C's with the following property. There is a path from any

C in the set through successive nearest neighbors in the set to any

other C in the set. The parallel computer to be described here assigns

each distinct connected region to a distinct CS. The mode of operation

follows.

Initially, all excited C's are in a conducting state and connect

to a single CS. Then, the CS instructs a single excited C connected to

119

128

120

it to send a message to all of its nearest neighbors. Since all excited

C's are in a conducting state this message will spread to all C's in or

bounding the connected region containing the source of the message and

no others. By virtue of the conduction this spread occurs in a single

step. After the message has spread throughout the connected region the

excited (conducting) C's receiving it detach simultaneously from the

original CS and attach to a new CS that henceforth interacts only with

the C's of this single connected region. Meanwhile, the original CS

continues to find connected regions in the set of remaining C's and

assign them to distinct CS's until all C's have been detached from

the original CS. Details follow.

Initially, all CS's are in state 0 and C's are in state 0000 and not

tiel to any CS's. There are no C52's in this design (see Figure VI.1).

When the pattern is projected on the grid, C's excited by the pattern

go into state 1001, attach to CS0 and send 0 to it. CS0, on receiving

0 from all C's attached to it, sends 01 to a single C and 1 to all

others. The C receiving 01 responds by sending 1 to each of its four

nearest neighbors, 1 to CS0, and going into state 1000. C's in state

1001 receiving 1 from CS0 send 0 back to it and stay in state 1001.

Now, CS0 in state 0 receives a single 1 and some O's from the

C's and goes into state 1. The 1 it receives is an indication

that message spreading has begun. CS
0

then sends 1 back to the C's.

Since all excited C's are in the conducting state 1001, any C in the

region connected to the C which started the message spreading (by

sending 1 to its four nearest neighbors) receives 1 from some of its

129

C

co

excited
con

CS
0

115

ED disCS
0 '

conCS . El
i

IR

ii
ErdisCS

0'
conCS cg

1

CSo
121

to one C, al. to all others

Csi

1

clls
i
's

z=1
stop

0

Figure VI.1: Parallel Computer that Recognizes Connected Regions

130

122

neighbors. Such C's respond to the simultaneous inputs of 1 from

neighbors and 1 from CS0 by sending 1 back to CS0, and detaching from it.

They then attach to CS
1,

which is discussed below. C's in state 1001

outside the connected region receive no l's from neighbors and thus

remain in state 1001 and send 0 to CS .

0

The CS.'s constitute a collection of CS's with arbitrary (but

fixed) capabilities, e.g., line recognizers. What is relevant here is

the manner in which each connected region is attached to a distinct CSi.

Their transitions relevant to that operation are illustrated in Figure

VI.1. The interconnections are shown in Figure VI.2. All CSi's

receive a common input from CS , and each CS. sends an output to CS
i+10 1

TheremustbeasmanyCS.'s as there are distinct connected regions on

the grid.

Refer now to Figure VI.1. Initially CS1 is in state 2, CS2 is in

statelandallotherCS.'s are in state O. The first input to the

CS.'s occurs when C's detach from CS
0,

i.e., when the first connected

region has been found by CS0. The C's in this region send l's to CS0

while C's in other regions attached to CS0 send it O. CS0, in state 1,

responds by going into state 0, sending 1 to the C's still attached to

itandOtotheCS.'s. Only CS
2'

which is in state 1, is responsive to

this input; thus it goes into state 2, ready to accept the C's from the

next connected region to be detached from CS0. On transition CS2 sends

0 to CS3, which causes the latter to go into state 1, priming it for

later notification from CS that a third connected region has been
0

found. In this manner, assignment of each distinct connected region to

131

123

Figure VI.2: Interconnections for Assigning Regions to CS's

132

124

a distinct CS is propagated. CS simply repeats the activities described
0

until it receives only l's from the C's attached to it, indicating that

all C's have been accounted for as belonging to appropriate connected

regions.

The multiplicity of connectedness (one plus the number of "holes"

in a region) can be found by applying the program just described to the

complement of a connected region on the lattice. The number of distinct

connected regions (components) in the complement, i.e., the number of

CS.'s to which C's are attached, is the multiplicity of connectedness.

For a finite grid note that there is no essential loss in generality,

from a topological point of view, if the region under consideration is

taken as one containing none or a connected set of grid border cells.

Doing this avoids bothersome discussion of multiple "pockets" between

the region and the grid border. Note also that ambiguities with reapect

to topological characterizations of regions may stem from finite resolv-

ing power of the grid. They can be removed by using topologically equi-

valent regions. Often simple translation or magnification is sufficient.

The connectedness detector described in the preceding paragraphs

has a much simpler design than the perceptrons, Turing machines, and

iterative arrays designed to solve the same problem which are reviewed

in part II of Minsky and Papert (1969). By virtue of the conducting

C's, the operation here is more parallel as well. The programming and

number of steps in computation are independent of grid size or the size

and shape of the components. Only three time steps are required per

component. During the first a message spreads in one connected region.

:

133

125

During the second C's in that region only respond to the spreading message.

During the third they detach from CS0.

VI.2 Determination of Boundaries of Connected Regions on the Grid

The boundary of a simple closed donnected region in the plane

contains a great deal of information about that region. For example,

Green's theorem permits calculation of a surface integral in terms of

a line integral over the boundary of the surface. If a computation can

be carried out on the cells on the boundary of a connected region of

excited cells on the grid instead of on each cell in that region, the

substantial reduction in the number of cells involved can speed up the

computation if much "sequentiality" is involved. Natural visual systems

seem to be very sensitive to boundaries, perhaps in part for this

reason.

A boundary can be given directly by specifying the cells it crosses

(excites). In that case it can be considered part of either of two

mutually exclusive sets which, together with the boundary, comprise the

whole grid. It is generally convenient to regard a boundary so presented

as part of the set with fewest grid border cells. In the following

discussion the boundary is given by selecting the appropriate ones of a

set of excited cells constituting a connected region. Note that this

boundary is not the same as the boundary of its complement. The two

boundaries are "neighbors", and thus coincide in the limit of vanishing

cell size.

134

126

The following is the design of a parallel computer that effectively

erases C's from the interior of a connected region of excited C's on the

grid by sending them into a non-excited state. The resulting configur-

ation is the grid's approximation to the curve bounding some simple

closed connected region in the plane. This curve will be called the

boundary in the following discussion and is not to be confused with the

resulting configuration of excited C's.

At first sight, any C surrounded on all four sides by excited

neighbors appears to be in an interior region and therefore subject to

erasure. However, any C with exactly two excited nearest neighbors must

have a boundary passing through two of its sides, i.e., those two sides

it shares with neighbors. If one of these neighbors has four excited

neighbors, one of its sides must be crossed by the boundary exiting its

neighbor. Similarly, any C with only 1 excited neighbor must be crossed

by the boundary through the side it shares with its neighbor. If this

neighbor has four excited neighbors, it must nevertheless be crossed by

the boundary through the side it shares with its neighbor. Thus, to

erase only C's that do not contain the boundary, those C's with four

nearest neighbors adjacent to C's with one or two nearest neighbors

must not be erased. Figure VI.3a illustrates this situation.

Figure VI.3b is the transition graph of the parallel computer that

erases all four-neighbor C's that are not adjacent to one- or two-

neighbor C's. C with exactly j excited nearest neighbors is called

a j-neighbor C here.) Initially all C's are in state 0000 and CS is

in state 0. When the pattern is projected on the grid, all C's excited

135

a)

b)

becomes

(no. in cell = no. of
excited nearest neighbors)

excited

con

`
NI N,7

.NREEffik

127

CS

1 from 3 neigh02

1 from 1 or 2 neighg]

ED

Figure VI.3: Parallel Computer to Recognize "Boundaries"

136

128

by it go into state 1000, send 1 to all four nearest neighbors and 0

to CS. CS then stays in state 0 and sends 0 to the C's connected to it.

Those C's receiving a 1 from three neighbors and 0 from CS stay in

state 1000 and send 1 to CS. Simultaneously, C's receiving a 1 fram

one or two neighbors stay in state 1000, send 1 to CS and 1 to all four

of their neighbors. Those C's receiving a 1 from all four neighbors and

0 from CS go into state 1110 and send 1 to CS.

When CS receives l's from the C's it goes into state 1 and sends

1 back to the C's. C's in state 1110, (with four excited nearest

neighbors) respond to this 1 from CS by going into state 1000 if they

receive a 1 from any neighbors and into state 0000 and disconnecting

from CS otherwise. The interior C's are therebylerasee All other C's

simply stay in state 1000 when they receive the 1 from CS and send 1

back to CS. CS then halts, and the process is complete.

VI.3 Straight Line Approximation of Curves

The following is a generalization of the straight line recognizer

described Ili V.2. Since there will be several CS's operating together,

the line recognizing CS is called CSL. The purpose of this design is

to partition a chain of excited C's that does not represent a straight

line into a sequence of chains, each of which corresponds to a straight

line segment. The result of computation is the grid's approximation by

straight line segments of a curve projected on it.

CSL differs slightly from the recognizer in V.2. If a violation

of the segment length constraint of Theorem 11.2 occurs
'

CS
L

does not

simply stop and reject the pattern as a non-straight; it halts to

129

disconnect just enough C's so that those remaining do not violate that

constraint. It then resumes CCF reduction on the remaining string.

Details follow.

We consider the special case where the input consists of a chain

of 1 and 2-neighbor C's whose run and bend configurations are compatible

with a single octant. General inputs are discussed in VI.4.

There are three CS's and one CS
2

in this design. CS
L
performs

the CCF reduction, CSstr determines the substring of C's to be detached

from CS
L
when a violation of the segment length constraint occurs, and

CS
h

holds those C's which are detached from CS
L

by CS
str

. CS
2

is used

tostart and stop the entire process (see Figure VI.4 for connections

between these units). Since the nearest neighbor configurations of the

C's are compatible with a single octant, the transition graphs in the

following discussion are for octant I. The graphs for other octants

may be derived by reflecting the specification of nearest neighbor

messages between C's exactly as described in V.2.

Refer now to Figure VI.5. Initially all C's are in state 1000

and connected to CS
h
which is in state 0. CS and CS

2
are in state 0

str

and CS
L

is in state 2. CS
2
starts the computation by sending 1 to CS

h

which then sends 01 to all the C's connected to it. On its receipt the

C's send 1 to each of their four nearest neighbor and 0 back to CS
h

.

CS
h

then sends 1 to CS
L
and 0 to the C's, which makes them determine

their nearest neighbor configurations on the basis of the l's sent them

in the previous time step. Just as in the straight line recognizer

described in V.2, run C's go into state 1000, bend C's into state 1100

138

C -level

130

Figure VI.4: Interconnections for Straight Line Approximation

C

X or X1E3

disCS
h
,conCS

X ED
disCS

h'
conCS

L

disCS
h'

conCS
L

)4 or XED 1_10
disCS

h'
conCS

LdisCS
h'

conCS
L

1r

(1010)

CS
2

start

'Oh

131

CS
h

or<l52

ED

rrz=1

4(3>cs2

<4ST,Ci

Figure VI.5: Parallel Computer that Holds C's not Currently
Being Processed by Line Recognizer or Illegal
String Truncator

140

132

and conducting C's into state 1001 in response to the 0 from CS . That

is, the second digit of the states of run and bend C's corresponds to

the appropriate straight line code digit. The C's terminating the

chain, i.e., those receiving a 1 from only one nearest neighbor, are

handled differently in order to distinguish which end of the chain of

C's each lies on. This is done by sending the right end C (the C

receiving 1 from a left or lower neighbor) into state 0110 and the left

end C (receiving 1 from an upper or right neighbor) into state 1010.

As soon as the C's go into their run, bend, or end states they detach

from CS
h
and connect to CS ("disCS " and "conCS

L
" in Figure VI.5).

CSL is in state 2 and receiving 1 from CSh. It stays in state 2 and sends

1 to the C's. The C's respond as they did in the line recognizer of

Figure V.3, i.e., a 0 is deleted from each code segment. 2he further

behavior of CS
L
is the same as that of CS in Figure V.3, i.e., O's are

deleted from segments and l's terminating long and short segments are

rewritten as O's and l's respectively when there are no more Ots to be

deleted. Refer now to Figure VI,6, Except for the transitions shown

there, those of CS
L

are the same as those in Figure V,3. This avoids

repetitious discussion of Figure V,3 and shows what changes are needed

to yield the present design.

There are two major changes. First, the messages 0 and 11 cause

the C's to detach from CS
L
and connect to CS

h
or CS

str
respectively.

Second, this also applies to C's in the conducting state, 1001, They do

not disconnect from CS
L
on digit deletion. Ws now discuss the CS design

modifications necessitated by these changes.

141

C

m
disCS

L'
conCS

11
disCS conCS

str

[ip
disCS

L'
conCS

str

m
disCS

L'
conCS

str

u

disCS
L'

conCS

El
disCS

12
conCS

str

(anythin but 0110,1010)

rao
disCS

L'
conCS

h

m
disCS ,conCSstr

C sL

o

o

133

Figure VI.6: Straight Line Recognizer Used in the Approximation
of Curves by Line Segments

14 2

134

The first new mode of operation occurs when CSL receives a 10

and 0 simultaneously from its C's, indicating there is a violation of the

segment length constraint of Theorem 11,2, Instead of halting and rejecting,

CS
L

to sends 11 to the C's connected to it and 1 to CS
str

. The C's

disconnect from CS
L
and connect to CS

str'
which then determines where

the string can be truncated in order to eliminate violation of the segment

length constraint. The C in state 0110 is an exception. It is on the

right end of the chain and so must be in the substring rejected by

truncation. It goes into state 1000, disconnects from CS
L
and connects

to CSh.

We now describe what happens after the C's connect to CSstr, A

three letter alphabet is introduced representing their states. Strings

over that alphabet, representing a left-to-right ordering of the excited

C's, are then processed to truncate the "illegal" part.

Let 0 stand forC'sin state 1000 (code O's), 1 for C's in state 1100

(code l's) and 2 for C's in state 1110. A string is generated by

successively tracing the C's connected to CSstr starting at the left end

C (in state 1010) and proceeding through nearest neighbor C's to the right

end C (in state 0110). The empty symbol is written for a C in the

donducting state (1001) and the end states (1010 and 0110). Intuitively,

these symbols may be regarded as a length classification of code segments,

i.e., 0 and I represent long and short segments respectively and 2

represents a "too short" segment, Strings not violating segment length
a

constraints of straight line codes (called legal strings here) consist

of O's and l's or l's and 21s or strings of a single digit, The set of

. 143

135

legal strings is given by the regulaikexpression (0 + 1)* + (1 + 2)*.

Strings violating the segment leugth constraint (called plepl strings)

contain both O's and 2's. Since an illegal string necessarily contains

both O's and 2's, the first occurrence of the secondta appearinthe string

marks the beginning of the portion to be truncated. The legal portion is

reconnected to CSL (detached from CSstr) and the illegal portion to CSh.

Refer now to Figure VI.7 which shows how CSstr accomplishes the

foregoing. CS
str

(in state 0) receives 1 from CS
L'

stays in state 0, and

sends 0 to the C's connected to it. The left terminating C (in state 1010)

sends 0 to its right and upper neighbors, C's in state 1100 (string symbol

1) go into the conducting state 1101, and all other C's remain in their

current states. All C's send 0 (not to be confused with string symbol 0!)

to CS
str

which then sends 1 to all C's and goes into state 1, Suppose

0 is the first of the symbols 0 and 2 to occur in the string (the other

case will he described later). Then the leftmost C in state 1000 (left-

most string symbol 0) will receive the message 0 sent by the left

terminating C (in state 1010) in the preceding time step. This 0 from a

neighbor and 1 from CS causes the C to send 1 to CS and remain in
str str

state 1000. All other C's remain in their current states and send 0 to

CS .

str

When CS
str

receives O's and 1 from C's it goes into state 2, and

sends them 10. C's in state 1000 (string symbol 0) then go into the

conducting state 1001 and all others stay in their current states and

send 0 to CSstrI At the same time, the left terminating C an state 1010)

IN.E.M.11

* See Chapter 4 of Ginzburg (1968) for definitions and notation of regular
expressions.

)(
disCS ,conCS

hstr

941)152-ED

U-4)0 fjj

disCS ,conCS CD
str

0
disCS

str,

conCS
L
122

disCS
str,

conCS
L
CD

0 [jai

disCS
str

conCS

aacil

0
disCS

str,
conCS

disCS
str,

conCS Eg

C 0110

Figure VI.7: Parallel Computer that Truncates Illegal Substring

137

sends 0 to its right and upper neighbors. Since all C's corresponding to

string symbols 1 and 0 are now in conducting states, the 0 sent from the

left terminating C in the preceding sentence will be conducted through the

chain of C's to the leftmost C in state 1110 (string symbol 2), The

longest legal substring starting from the left then corresponds to the

set of C's receiving this conducted 0. The transition graph (Figure

VI.7) expresses the preceding as follows. CSstr, in state 2 and receiv-

ing 0 from all C's, sends them 11 and goes back into state 0, The left

terminating C and all C's that receive 0 from it and 11 from CS
att.

disconnect from CS
str

and connect to CSL. Those in conducting states

revert to their original nonconducting states (i,e the rightmost digit

of their states changes from 1 to 0), On connecting to CSL, the C's

send it the messages they would send if CCF-reduction were in progress,

From the discussion of Figure V.3 recall that during CCF-reduction C's in

state 1000 send 0, those in state 1100 or 1010 send 1. In addition, the

C in staite 1110 which is connecting to CSL goes into state 0110 and sends

1 to CSL, CSL, in state 2, resumes CCF-reduction as described in V,2,

C's corresponding to symbols in the truncated (illegal) portion

of the string did not receive 0 from a neighbor when CSstr sent them

11. Thereupon they go into state 1000, detach from CSstr and connect

to CSh at the same time as the C's of the legal substring connect to CSL.

Now consider the case where 2 is the first of the symbols 0 and

2 to occur in the string, Consider Figure VI.7 when CSstr is in state 1

and C's corresponding to Code symbol 1 are conducting, When the left

terminating C (in state 1010) sends 0 to its upper and right neighbors,

146

138

no C in state 1000 (string symbol 0) will receive it. Thus, CS
str

receives

only O's from the C's instead of the O's and 1 it received when 0 was the

first of the symbols 0 and 2 to occur in the string. In this case, CSstr

sends 01 to the C's when it goes into state 2, C's in state 1110

(string symbol 2) go into the conducting state 1111, Except for this

difference (namely C's corresponding to 2's conduct instead of C's

corresponding to O's), truncation of the illegal string proceeds exactly

as described in the preceding case, Notice that this truncation process

requires only four time steps no matter how long the string is, correspond,

ing to the successive transitions of CSstr into states 00 10 2, and 0.

The truncation process just described is repeated every time CSL

receives 10 and 0 simultaneously from the C's connected to itt i,e., when

the segment length constraint of Theorem 11,2 is violated, Eventually,

the set of C's connected to CS
L

constitutes a chain compatible with a

straight line. This occurs when CS
1,,

in state 2 receives only l'a from

its C's, indicating CCF reduction is complete, Recall that in the line

recognizer described in V.2 the completion of reduction caused CS to

halt. Here, however, recognition of the substring connected to CSL may

be complete but the rejected substrings, attached to C310 need processing.

The C's disconnect from CS
L

and connect to CS
h'

Those in states 0110

and 1010 (C's on the right and left ends of the chain recognized as a

straight line by CSL) go into state 0010, They correspond to the ends

of the straight line segment represented by the intervening Cs. The

latter go into conducting state 1111.

147

a

139

The message 1 sent from CS
L

to CS
h

acts as a request for new C's to be

processed. It causes CS
h

(refer to Figure VI.5) to send 01 to its C's.

Those in state 1000 then send 1 to all four nearest neighbors and 0 back

to CS
h

This causes CS
h

to send 0 to the C's which then determine their

nearest neighbor configurations and connect to CS
L'

and repeat the process

described in the opening paragraphs of V1.3, The C's in state 0010 and

1111 connected to CS
h

have already been processed by CS
L

therefore they

do not disconnect from CS
h

but simply send it 0 when they rece.lve 0 from it,

When the only C's attached to CS
h

are those that have been recognized as

belonging to a straight line segment by CSL, CSh receives only l's from

the C's and the entire process is complete, CS
h

then sends 1 to CS
2

which.

goes into state 1 and halts, signifying that the given chain has been

approximated by straight line segments, The Os in state 0010 connected

to CS
h

correspond to vertices in this polygonal approximation of the chain,

and a set of adjacent C's in state 1111 corresponds to a straight line

segment approximating part of the original chain,

The interplay of the CS's described in the preceding paragraphs

may be summarized as follows. CSL carries out straight line code

reduction on the collection of C's connected to it. When an error

condition arises, indicating that the C's cannot have been excited by a

single straight line, all C's disconnect fram CSL and connect to CS ,

str

The latter then finds the longest substring of C's, starting from the

left, that does not violate a straight line constraint (a necessary but

not sufficient condition for a straight line), This legal string of

C's is returned to the control of CS
L

which resumes code reduction; and the

148

140

C's truncated from the string are connected to CS
h
where they await further

instructions. These instructions come when CS
L

has successfully completed

code reduction on all C's connected to it. These latter C's (representing

the substring of reduced code) are disconnected from CSL and connected to

CSh. Next, as yet unprocessed C's connected to CSh are detached from it

and connected to CS
L
whereupon code reduction commences on this new group

of C's. When the entire chain has been reduced to straight line subchains

in the above manner, the process is finished,

VI.4 Aspects of Polnon Recwition

Several of the parallel computers described in Chapters V and VI

could be combined to recognize more complex patterns, such.as those

consisting of collections of lines. Polygon recognition is an example of

such a task. Two kinds of complexity introduced by considering such

patterns are the increase in number of parts to be processed and the

interaction of those parts in regions where the C's excited by them over-

lap. The increase in number of parts of the pattern will be discussed

in the following paragraph and the interaction of parts later.

If a pattern consists of a number of disconnected parts, they can

be assigned to separate CS's by the connected regions computer described

in Al. Suppose each of these parts is a line to be recognized by a CS

such as described in V.2. The computation can be carried out either by

simultaneously applying as many CS's as there are lines or by applying

one CS to the lines sequentially. The former approach can use an array

of CS's associated with the layer of C's. The structure of the CS's is

141

even simpler than the C's (fewer states and transitions). Since each line

projected on the grid excites many C's, the number of CS's necessary to

simultaneously recognize many lines is correspondingly less than the number

of excited C's. The time required for recognition is the maximum required

for any of the individual lines. If the same CS is used for each line in

succession, the total recognition time is the sum of the time required for

each line. As each line recognition is highly parallel (see V.2),

computation time generally remains much less than for a sequential scan

of C's even in this case.

Consider now the projection on the grid of two polygon sides that inter-

sect at a vertex (Figure VI.8). If the angle these sides make at the vertex

is 1800, the single line they constitute can be recognized by the simple

CS of V.2. If the angle is less than 1800, but still so obtuse that both

lines have slopes compatible with a single octant, the more complex combin-

ation of CS's of VI.3, is needed to recognize the pair (Figure VI.8b),

Making the vertex angle more acute yields slopes of the adjoining sides

that must be in two distinct octants (Figure VI.8c). Recognizing this case

requires a CS that operates much like CSstr of VI.3. That is, a legal

(compatible with a single octant) string here is a string of runs of one

type and bends of one type. Such strings can be found by sending a message

that conducts along the chain from a C on one end of the chain. Just as

the CS , the chain is truncated at the C where the conducted messagestr

first encounters an illegal symbol, i.e., a run or bend type conflicting

with those already encountered. The substring to the left of the illegal

symbol consists of runs and bends compatible with a single octant and can

160

Figure VI.8: Grid Cells Crossed by Lines That Meet at Obtuse Angles

143

be connected to a line recognizer like CS/ in V.3. The string to

the right of and including the illegal symbol is then processed exactly as

the original string. The details and transition graph are omitted as

they are similar to those of CSstr. Now suppose the vertex angle is so

acute that the nearest neighbors of the C's excited by one of the sides

are excited by the other side as well. Figure VI.9 illustrates such a

case for a line whose slope is in octant I; the Os excited by the side

in question are boldly outlined. The C's near the vertices, excited by

the adjacent sides, are more faintly outlined. The close approach of

the lines to each other near the vertex converts some 2-neighbor C's

to 3- and 4-neighbor C's.

If the path of the lines through excited C's is not knowna priori

but is to be inferred from the configuration of excited C's, there is an

ambiguity as to which of these 3- and 4-neighbor C's it traverses. That

is, a path traced through a 2-neighbor C must enter through the side

shared with one excited neighbor and exit through the side shared by the

other excited neighbor; a path traced through a 3- or 4-neighbor C which

has entered one side may exit through one of several sides. This ambiguity

can be resolved by first identifying 2-neighbor C's crossed by the line

outside the ambiguous region and then adjoining 3- and 4-neighbor C's, one

at a time, that lie in a direction moat likely to be on the line. For

example, in Figure VI.9, trace the upper side to the right and adjoin

an upper neighbor to a C if it is excited. If it is not, then adjoin

the right neighbor. In case both excited right and upper neighbor occur,

pick the upper neighbor and reject the right neighbor. This procedure

152

Left

Vertex

r4 1.=, ti
:e-

V' fr.! N ittEl
r4 LI _MI

P. kl
to "41

ki

Right

Vertex

144

Figure VI.9: Interference of Excited Neighborhood Configurations

Near Acute Vertices

153

145

assures that the uppermost path is taken through C's in the ambiguous

region, and the direction (upward and to the right) is compatible with

octant I slopes. For the lower side, adjoin the C to the right if it is

excited and the C above otherwise, i,e., pick the lowest path through

the ambiguous region.

Although this procedure is sequential, the number of C's in ambiguous

regions is generally small unless the vertex angle is near 00. Such sharp

angles are unusual in most polygon recognition contexts. Therefore, the

path ambiguities can usually be resolved in a small number of steps.

A more parallel method of resolving ambiguities based on the constraints

of location and orientation of 3- and 4-neighbor C's on upper and lower

sides has been examined. For example, note that a 3-neighbor C whose

left neighbor is unexcited cannot occur on the upper side. Such C's can

be immediately adjoined to the lower side no matter where they occur,

along with their right and lower neighbors. The details of this process

will be omitted as they are tediously long though straightforward.

A plane polygon contains a finite number of finite line segments,

each of which shares its end points with exactly two others. For

simplicity let there be no intersections other than end points. An

analogous definition can be constructed for patterns to be recognized

as polygons on a grid. Suppose a pattern of excited C's has been broken

into chains of C's compatible with straight lines. The C's terminating

these chains correspond to vertices, and each of them terminates two

chains, but a"clump" of neighboring C's may have equal claims to be

terminators.

154

146

Criteria for polygon recognition on the grid must admit ambiguitites

due to the finite resolving power of the grid. The recognition algorithm

must fit a set of straight line segments to the closed, connected

sequence of cells representing the polygon by the approximation

algorithm of V1.3, keeping only those with the smallest number of

segments.

155

CHAPTER VII: CONCLUDING REMARKS

This study has investigated some pattern recognition capabilities

of devicea consisting of arrays of cooperating elements acting in

parallel. The problem of recognizing straight lines in general position

on the quadratic lattice has been completely solved by applying parallel

acting algorithms to a special code for lines on the lattice. The

experience of designing parallel computers embodying these algorithms

led to the design of other parallel computers to recognize connectivity,

detect boundaries, and approximate curves by straight line segments.

The use of cell synchronizers (CS's) did more than avoid

synchronization problems. They were responsible for "executive

decisions", and represent a higher level of hierarchical organization

than the C's. Although a C and a CS are both finite state automata,

their respective roles in the designs of recognizers here are quite

different. Each C operates on inputs from its four nearest neighbors

while the CS operates on inputs from a large collection of C's whose

locations need not be given. In this sense the C's perform local

computations and the CS performs "global" operations. This separation

of roles resulted in considerable economy in logical complexity and

computation time.

The saving in logical complexity occurs in the designs of the C's

and CS. When all C's are to perform the same operation, their states

need not be cluttered by what is common to all, it can be embodied in

a single CS message to all C's. Similarly, a global property (such as

147

156

148

connectedness, linearity) to be recognized by a CS may be held by a large

number of possible configurations of excited cells. If the CS were to

account for the number and position of such configurations, it might

need many more states than there are cells on the grid, since the set of

sets sharing a property like connectedness is virtually a power set of

the set of grid cells. This is one of the weaknesses of the perceptron

which, with its fixed connections, must in some way account for all

possible configurations of cells sharing the detected property.

The introduction of sequentiality from the alternation of C and

CS operations is not drastic, for the C's operate in parallel. After

each mass C operation the CS's determine what mass operation is

performed next. This kind of joint operation yields greater flexibility

in the capabilities of the array than purely parallel operation.

157

2 oo
ffl

LEI

ORIGIN OF THE CODE

Professor Jerome Rothstein

It is usual for a Ph.D. dissertation to rely heavily on the

published papers of the candidate's advisor. In this case the relevant

work was unpublished. I asked Mr. Weiman to include it in his

dissertation as the text could not have been self-contained otherwise.

He in turn asked me to write a capsule history of the genesis and

development of the ideas so well exploited by him in constructing

various cellular automata for pattern recognition and parallel

computation. One of the reasons I agreed to do this is the instructive

interplay between apparently unrelated fields the story brings out.

The straight line code had its origin in an entirely different

context. Circa 1939-41, while a graduate student in physics, I sought

a transparent example to clarify the points at issue in ergodic theory

(from the viewpoint of elementary statistical mechanics). I hit on the

idea of examining the trajectory of a specularly reflected perfect

billiard ball in a square box, or what is the same thing, the path of

a light ray in a square mirror box. Ergodicity shows up as a uniform

distribution of reflection points along the box sides. I immediately

realized that only lines with rational slopes gave periodic trajectories,

so that non-ergodic situations had measure zero, that approximations

of reals by rationals was important here, and chat uncluttered diagrams

could be drawn by treating the ray as a straight line on an infinite

quadratic lattice whose cells were copies .1f the box. Successive

149

150

pieces of the reflected path were congruentrespectively to successive

segments lying within the cells on the plane. It was trivial to prove

that length of path for a complete period depends only on the slope, and

that the numbers of reflections by horizontal (H) and vertical (V) sides

in a period was also invariant. Varying the initial point only permutes

the string of H's and V's cyclically within the period. I realized that

there was a one-to-one correspondence between rational numbers and a

particular subset of the periodic strings over H and V, i.e., that I

had a binary code for straight lines. To explore it further I was led

to study some number theory, went through Hardy and Wright, perceived

the relation of the subject to Farey series, continued fractions, and

Minkowski's geometry of numbers, and saw how old the original problem

and example were (Kronecker's theorem, p. 388 HO.

World War II led to other activities and a career in government

and industry. The foregoing was virtually forgotten for almost thirty

years, but was revived in an interesting way. My interest in statistical

mechanics never abated, and the explosion of information theory since

1948 led me to consider informational generalization of physical entropy.

It was natural to investigate 4well-informed heat engines", their use

in modeling biological systems, and slowly to shift into biophysics and

into computer and information science. This culminated in 1967 in a

joint appointment at the Ohio State University in both those departments.

Exposure to open problems of visual systems, neural models, pattern

recognition, formal languages, cellular automata, and parallel operations

led to thinking about suitable simplified abstractions for dealing with

160

151

some of the crucial difficulties in bite-size pieces. This eventually

narrowed down to the field giving this dissertation its title, and

for reasons set forth in the introduction, to straight line recognition

by a quadratic array of automata. The choice was probably subconciously

influenced by the early development described above. In any event, it

had a de,ja-vu feel to it, jogged my memory, and I found odd sheets,

scraps, and notebooks containing the old work, with all its student

naivete. In a very short time the basic code properties became clear

to me, including the affine invariance property, the implied existence

of simple recognition algorithms, and its suitability as a start in

building logical languages adapted to cellular automata, pattern

recognition, discretized geometry, and problems of parallel operation.

As Mr. Weiman began to develop from an assistant to a collaborator

his contributions started to grow. To a first, and rather good,

approximation, he designed the cellular automata to exploit the theory

I developed. He did make some contributions to the theory however, like

the results on negative continued fractions and the proof of code

uniqueness given a shift pattern, and I made some to the cellular auto-

mata (choice of problem, topological background, some details, and the

usual advisory and critical functions). I expect the field to become

a fruitful one and look forward to many contributions by Mr. Weiman in

the future.

161

152

BIBLIOGRAPHY

Amoroso, S., Lieblein , E. and Yamada, H. "A Unifying Framework for the

Theory of Iterative Array Machines" Association for Computing

Machinery Symposium on Theory of Computing, p. 259, 1969, ACM.

Block, H. D. "The Perceptron: a Model for Brain Functioning" Reviews

of Modern Physics, Vol. 34, No. 1, pp. 123-135, 1962.

Burks, A. W. (Editor) Essays on Cellular Automata, University of

Illinois Press, Chicago, 1970.

Caianiello, E. R. (Editor) Neural Networks (Proceedings of the School

on Neural Networks, June 1967, in Ravello, Italy) Springer-Verlag,

New York, 1968.

Codd, E. F. "Propagation, Computation, and Construction in Two-

Dimensional Cellular Spaces", University of Michigan Ph.D. thesis,

1965. Published as book Cellular Automata, Atademic Press,

New York, 1968.

Duda, Richard O. liane Current Techniques for Scene Analysis" Technical

Report 46, Stanford Research Institute, Artificial Intelligence

Group, October 1970.

Fu, K. S. Sequential Methods in Pattern Reco nition and Machine

Learning, Academic Press, New York, 1968.

Garner, H. L. and Squire, J. S. "Iterative Circuit Computers", in

A. A. Barnum and M. A. Knapp (Eds.) Proceedings of a Workshop

on Computer organization, pp. 156-181, New York, Spartan Books,

1963.

16 2

153

Ginzburg, Abraham Algebraic Theory of Automata, New York, Academic Press,

1968, (10CM Monograph Series).

Gonzalez, R. "A Multi-Layer Iterative Circuit Computer", IEEE Transactions

on Electronic Computers. EC-12, 5(1963) , pp. 781-790.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers,

(Fourth Edition) Oxford, Clarendon Press, 1965.

Holland, J. H. "A Universal Computer Capable of Executing an Arbitrary

Number of Sub-programs Simultaneously' Proceedings of the Eastern

Joint Computer Conference, Boston, pp. 108-113, 1959.

Holland, J. H. "Universal Embedding Spaces for Automata" in Norbert

Wiener and J. P. Schade, (Eds.) Cybernetics of the Nervous System,

(Progress in Brain Research 12), New York, Elsevier, pp. 223-243, 1965.

Khovanskii, Alexey Nikolaevitch The Application of Continued Fractions

and Their Generalizations to Problems in Approximation Theory.

(Translated by Peter Wynn), P. Noordhoff, N. V. Groningen,

Netherlands , 1963.

McCulloch, W. S. and Pitts, W. H. "A Logical Calculus of the Ideas

Immanent in Nervous Activity", Bulletin of Mathematical Biophysics,

Vol. 9, pp. 127-247, 1943.

Minsky, Marvin and Papert, Seymours.., M.I.T. Press, Cambridge,

Mass., 1969,

Murtha, John C. "Highly Parallel Information SysteWs" in Franz L. Alt

and Morris Rubinoff (Eds.), Advances in Computers V.7,

London, Academic Press, p. 2, 1966.

163

154

Patrick, Edward A. Fundamentals of Pattern_Recognition, Prentice-Hall,

Inc., Englewood Cliffs, N.J., 1972.

Perron, 0. pie Lehre von den KettenbrUchen, Chelsea, New York, 1950.

Ratliff, F. Mach Bands: Quantitative Studies on Neural Networks in

the Retina, Holden-Day, Inc., San Francisco, 1965.

Rektorys, Karel (Editor), prvey of Applicable Mathematics, M.I.T. Press,

Cambridge, Mass., 1969.

Roberts, L. G. 1Machine Perception of Threee-Dimensional Solid", in

J. T. Tippett, et al., (Eds.) Optical and Electro-Optical

Information Processinsk, M.I.T. Press, Cambridge, Mass., pp. 159-

197, 1965.

Rosenblatt, F. frinciples of Neurodvnamics, Spartan Books, New York,

1962.

Sebestyen, G. S. Decision Making Processes in Pattern Recognition.

The MacMillan Co., New York, 1962.

Sierpinski, W. Elementary Theory of Numbers, Panstwowe Wydawn. Naukowe

(Polish Federal Scientific Publishers) Warsaw, 1964.

Von Neumann, J. (A. W. Burks, Ed.) Theory of Self-Reproducing Automata,

University of Illinois Press, Urbana, Illinois, 1966.

Wall, H. S. Analytic Theory of Continued Fractions, D. Van Nostrand

Co., New York, 1948.

Yamada, H. and Amoroso, S. "Tesselation Automata", Information and

Control Vol. 14, pp. 299-317, 1969.

164

COMPUTER $
INFORMFITION

SCIENCE
RESEFIRCH CENTER 165

.I.

i

)

