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ABSTRACT

Attention has been drawn to the lack of standards for evaluating the degree

of goodness of fit of patterns resulting from a principal components analysis of

two data sets. An empirical sampling distribution of the statistic average trace

(E'E), as E is obtained in the orthogonal procrustes problem, for various orders

of A matrices was developed through a Monte Carlo approach. A method is presented

which can be used as a guideline in determining whether factor structures obtained

from two data sets are congruent.
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An Application of Inferential Statistics to

the Factorial Invariance Problem

Ernest N. Skakun, Thomas 0. Maguire and A. Ralph Hakstian

University of Alberta

The investigation of structure using factor analytic techniques has become

a common practice for many educational researchers. In most studies investigators

have been content with merely describing the structure of an educational phenomenon,

but in the past few years it has become more apparent that inferential statements

about structures are needed. For example, an investigator might apply curriculum

A to one group of students and curriculum /3 to another, following which he may

wish to make statements not only about possible differences in levels of achieve-

ment on various variables, but also about differences in the interrelationships among

the variables, ie. differences in the structure of the achievement. Or, as another

example, 14- may be useful to ask if retarded children possess the same degree of

difierentiated intellectual structure as normal children.

Statistically, the problem can be directly approached by looking at the

differences between covariance matrices, using methods described in Anderson (1958)

or Morrison (1967). However, there are situations in which significance tests on

covariance matrices would be inapplicable. The most obvious situation is one in

which the covariance matrix for one of the groups is not known, as for example if

one tries to compare an observed structure with one found in the literature. A

second situation arises when the investigator is interested in structural differences

independent of differences in metric. Here, a test for differences between cor-

relation matrices would be appropriate. Ueortunately no such test exists.

Finally the investigator may want to consider only differences in structure as they

are reflected in the so-called "common" portion of the test space, and not let dif-

ferences in uniqueness affect inferential decisions. For these situations, a test



for differences in factorial structure would be very useful.

In the psychometric literature, the problem has been seen as one of factorial

invariance, and a number of steps have been taken toward its solution. Based on

the nature of the data, four cases can be distinguished depending on whether the

same or different variables and whether the same or different individuals have been

observed in the two data sets. The most common situation, and the one of interest

in the present paper is the one in which the same variables and different individ-

uals form the basis of the aoalysis.

Several approaches have beell taken to the problem. In one, of which Tucker

(1951) is an example, coefficients of congruence have been defined as:

E lajp 2ajq
(I) /xi

2
lajp) (E2ajci)

where (1)pq is the coefficient of congruence between factor P in sample 1 and factor

q in sample 2, and a is the loading of variable j on fa..:tor p.
JP

A second type of approach was used by Kaiser, Hunka and Bianchini (1971)

(available in mimeo form in 1960) wherein they embedded one factor space in the

other so as to optimally aline the test vectors, then used the co3ine of the

angles between factors to indicate the similarity between the two factors.

In a third approach, Green (1952), and more recently Cliff (1966) and Schon-

emann (1966) developed the orthogonal Procrustes procedure which provides :n

orthogonal transformation of one structure to some best fit of another. Although

Cliff and Schonemann worked from different criteria; Cliff maximizing the con-

gruence coefficients and Schonemann minimizing the sum of squared differences

between the rotated matrix and the target, their two procedures yield identical

results.

In most studies that make use of the orthogonal Procrustes procedure to match
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structures, the degree of similarity has been assessed using the magnitude of the

angles through which one structure would have to be rotated in order to produce

a best fit with the other (see for example Taylor and Maguire (1967) ). However

the structures themselves are generally rotations of principal axis solutions and

are in a sense arbitrary. The "goodness" of a solution is most often a configural

judgement. That is, "goodness" is measured by result, not procedure. Therefore,

if two structures resulting from say principal components-varimax analyses of data

for two groups, do not resemble each other initially, it may be possible to rotate

one into close approximation with the other and in that case, even though the

transformation matrix indicated substantial rotation was necessary, the researcher

should conclude that the factor structures arc similar.

The prohlem that still faces the researcher is in answering the inferential

question of how dissimilar the matched structures should be before the implicit

null hypothesis of no difference between structures in the population, should be

rejected. hessleroade and Baltes (1970), looked at the problem by considering the

empirically derived sampling distrubution of congruence coefficients relating two

structures based on random data sets, after one structure had been rotated to con-

gruence to the other.

Rather than using congruence coefficients to assess the similarity, the focus

of the present study was on the differences that exist between two matrices after

rotation. Schonemann adopted the same emphasis in his development of the ortho-

gonal Procrustes procedure. Given a matrix Ai (of order n, variables by r compon-

ents) and a target matrix A2, an orthogonal transformation matrix T (of order r by
-

r) is applied to Al to rotate it to a configuration as similar to A2 to possible.



In matrix form this is expressed by:

A
1
T = A2 + E

where E is the matrix of differences between the rotated A
1
and A

Schonemann's solution provides a T such that the trace of E'E (tr (E'E) ) is a

minimum. Since tr (E'E) is the criterion for the rotation used in the present

study, it was decided to use tr (E'E)/nr (average trace) as the statistic des-

cribing the goodness of fit.

In the present study attention was restricted to principal components

analysis as it still appears to be the most commonly used "factoring" procedure

despite several decades of development of other factor models.

In summary, the purpose of the present investigation was to develop an

empirical sampling distribution from one type of match procedure. Components

were matched using Schonemann's (1966) procedure, and the average trace was used

as the statistic for describing goodness of fit. Based on the null hypothesis

that two samples are drawn at random from a population exhibiting a particAlar

component structure, an attempt was made to develop a distribution of the average

trace.

Method A population component score matrix*, of order 1000 people by 20 components

was produced so thet the scores on each component were approximately normally dis-

tributed with mean zero and standard deviation of one. All correlations between

components were constrained to zero. This matrix of component scores serve as

t!le source for the samples used in this study. Various orthogonal component

pattern matrices (A) were selected from the literature for use as population

matrices. By multiplying Z = FA', we had in Z, the scores of 1000 people on n



variables such that if a full component analysis were performed on the implied

correlation matrix derived from the scores of Z, an orthogonal variant of the

matrix A would be returned. For the remaining part of this section an A matrix

of order five variables by three components will be used an an example to clarify the

procedure.
A

Two samples of 50 component scores (F) were drawn with replacement from

the first three columns of F. These two samples of order 50 by 3 were designated

by F1 and F2. For each sample of 50 component scores, a product matrix was formed

by Z = FA'. Thus two observation matrices Z and Z
2
of order 50 by 5 were pro-

-1

duce& The procedure thus far is based on the idea that two samples of size

50 drawn from Z = FA' (that is the population of variable scores) is the same as

drawing two samples of F and forming Z = FA'

For each Z thus formed, correlations were computed among the five variables

A

to produce a correlation matrix (R) of order 5 by 5. It is important to remember

that each R would be of rank 3. That is, neither psychometric error or uniqurness

were added. This phase of the investigation was concerned only with the effects

of sampling error on the average trace.

A component pattern matrix A was calculated by taking all of the components
A

from the R matrix. Thus from the correlations among the variables of ZI an Ai

was calculated and likewise an A2 from Z
2'

Each A was of order 5 variables by 3

components, and the two A's represented two samples from the same population.

Employing Schonemann's procedure, the two component patterns Ai and A2 were matched.

Additional component score samples were drawn pairwise and the entire process was

repeated until 1000 matches had been performed. The average trace was computed

for every match so that in all, 1000 values were obtained. These 1000 values



were taken as an empirical sampling distribution given the true null hypothesis

that A and A2
were both estimates of a common A matrix. The entire procedure was

repeated for 22 different population A matrices selected from the literature to

reflect variability in order and structure. References for the A matrices used

may be found in Appendix A.

Results for the Complete Component Analysis

For several of the population matrices, the procedure was repeated using sam-

ples of size 100 and 150. In such cases the sampling distribution was made up of

only 500 cases.

mkvice"
Frequency distributions of the average for the different A matrices were

obtained, and the 25, 50, 75, 90, 95 and 99 percentile points were determined.

In addition the maximum value of the average trace was recorded. The order of the

various matrices used and the percentile points for samples of 50, are shown in

Table 1. Table 2 shows the effects of increased sample size on ten of the matrices.

Frequency polygons were plotted for the 5 x 3, 10 lk 3, and 20 x 6 matrices.

4of
These are shown in Appendix B. Frequency polygons were also plotted some of the

matrices subjected to increased sample size. These are shown in Appendix C.

Tables 1 and 2 about here

In all of the cases studied, the sampling distribution of the average trace

was characterized by a large positive skewness. This was not unexpected given the

composition of the statistic. In an effort to reduce the skewness, and make the

distribution more symetric, a square root transformation was made on the average

trace and the distribution of the transformed variable, the square root trace,



determined. The mean, standard deviation, skewness and kurtosis for each transformed

sampling distribution are shown in Table 3.

Table 3 about here

The characteristics of sampling distributions of the oquare root trace were

correlated with same of the characteristics of the original pattern matrices (A),

in an attempt to isolate those parameters of the A matrices that most influenced

the characteristics of the sampling distribution. The parameters selected were

number of variables, n, of components, r, number of elements nr , average trace
00 MD

(A'A), variance of the elements in A, variance of the column sum of squares of A,

and the variance of the average sum of squares in columns of A. The correlations are

shown in Table 4.

Table 4 about here

From Table 4 it can be seen that the number of factors was highly related to

both the mean and standard deviation of the sampling distributions generated in the

present study.

In an effort to determine the effect of sample size on the square root of the

trace statistic, a comparison was made of the means and standard deviationsof the

sampling distributions of the square root trace as the sample size increased from

50 to 100 to 150. It was found that both the means and standard deviations decreased

by the reciprocal of the square root of the ratio of the sample sizes.

After several attempts the means of the empirical sampling distributions

were found to be fairly well approximated by:

10



where N is the sample size.

The approximate value for the standard deviation is given by:

1

(12Nr)I/2

The sampling distribution of the square root trace statistic was approximated

by a normal distribution and the 95th and 99th percentile points were estimated

(12Nr) 112
21 I

1.645 1
1 ir 1

N
2.326 1 1

(12Nr)
1/2 4

using:

and

A comparimn of the observed and approximated 95th and 99th percentile points is

shown in Tables 5 and 6.

Tables 5 and 6 about here

Effects of Incomplete Components Analysis In the present study, the effects of

sampling error on the square root trace statistic were investigated. In all cases,

a complete components solution was used, so that neither psychometric error nor

factorial uniqueness affected the data. A preliminary investigation of the effects

of these influences indicates that their effects on the sampling distribution is

important. For the two 20 by 6 structures, the effects of an incrwlete compon-

ents analysis was investigated by carrying out the sampling procedure, but using

only the first two components of the R, matrix. The process was then repeated for

3, 4, and 5 components. The same procedure was applied to one of the 10 by 4

structures. In each case 350 matches were carried out.



Initial results indicate that the incomplete component solution affects the

critical values obtained using the normal approximation by a factor of approximately

1100 - percentap of variance accounted for + 1

number of components used + 1

This factor will be called the variance factor. A comparison of observed per-

centile values and those obtained by multiplying the critical values obtained using

the normal approximation by the variance factor are shown in Table 7. The percentage

of variance accounted for was estimated from the sample data.

Table 7 about here

Examples Three examples were selected from the literature to demonstrate the ap-

plication of the technique. In two of the examples the null hypothesis should

be tenable. In the third it is not.

Bechtoldt (1961) split a sample of 425 cases into two random groups. The

subjects had been measured on 17 primary mental abilities. In this example,

the null hypothesis is known to be true and the test should not reject. From the cor-

-relation wtrtces supplied in the article, 6 components were extracted in ac-

cordance with the procedure used there. Approximately 95%. of the variance was

accounted for by the 6 components.

For a full components analysis, the critical value (at the J05 level) would be

given by:

1.645 x 1
+

7r 2:2 112
.0554

Cligmabm6.)1/2
(.1%14mA,

Since only 95% of the variance was accountld for, this value was corrected by



multiplying by a factor of

1

'.2
(100 - 95) + 1 = 1.84

+ 16

to produce a value af .102. The observed value of the square root trace stat-

istic was .0728. Thus the null hypothesis was not rejected.

A second example was taken from Rosenbaum et. al. (1971). Semantic differential

data were gathered from 33 supporters of Johnson and 33 supporters of Goldwater on

11 scales. The subjects were asked to evaluate 6 concepts on the 11 scales and the

interscale correlation matrices were calculated based on the mean scale values

obtained over concepts for each of the two groups. Twi. components were selected,

accounting for approximately 50% of the variance.

For 33 subjects in each group, and a full components analysis, the critical

value (p=.05) would be .145. The variance factor was 5.08. Thus the critical

value becomes abo%t .74. The observed value of the square root trace statistic

was .2061 indicating a tenable null hypothesis. This conclusion agrees with the

authors' conclusion which uas based on subjective grounds.

Delaney (1970) measured 50 normals and 50 retarded boys on 12 Divergent

production variables. Six components were extracted in each group accounting for

about 75% of the variance. The observed value of the square root trace statSstic

was ;2967. The critical value, after the variance factor has been applied is .13.

The null hypothesis of similarity of structure of divergent production abilities

can be rejected at the .05 level.

Conclusion The motivation for the present study was to provide a temporary, stop-

gap answer for the problem of testing for similarity between component structures.

The investigators could be accused of blind empiricism, or worse, of playing with

13
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numbers. We plead guilty on both accounts. However, the results provided here

are not an end point, but are a beginning. The sampling distribution of the average

trace statistic seems to follow a chi square distribution (just as a sum of squares

should), but because of the lack of independence among the elements making up the

trace, it was difficult to find a way of standardizing the distribution. The

distribution of the square root of the trace statistic could be reasonably ap-

proximated by a normal distribution, and appeared to behave well with changes in

sample size. Admittedly, the effects of the number of roots used in the analysis

are net yet well determined. Future efforts might usefully be confined to sit-

uations where error and uniqueness have been incorporated, and roots greater than

one have been retained.

Two practical problems that remain even with this modest technique are the

problem of different sample sizes, and differences in the variance factors of the

two samples. No attempt has been made to deal with the first problem, although

the harmonic mean might be an appropriate value to use. As for the second concern,

the average of the two sample variance factors seems to work fairly well. Clear-

ly, if the variance factors are greatly different, the correlation matrices them-

selves must be different and the null hypothesis is likely false.

14



References

Anderson, T.W. An introduction to multivariate statistical analysis.

New York: Wiley, 1958.

Bechtoldt, H.P. An empirical study of the factor analysis stability hypothesis.

Psychometrika, 1961, 26, 405-432.

Cliff, N. Orthogonal rotation to congruence. Psychometrika, 1966, 31, 33-42.

Delaney, J.0. Structure of intellectual and divergent production abilities

in the lower intellectual range. Unpublished doctoral dissertation,

University of Alberta, 1970.

Green, B.F. The orthogonal approximation of an oblique structure in factor

analysis, Psychometrika, 1952, 17, 429-440.

Kaiser, H.F. Hunks, S.M. and Bianchini, J.C. Relating factors between studies based

upon different individuals. Multivariate Behavioral Research,

1971, 6, 409-422.

Morrison, D.F. Multiveriate statistical methods. New York: McGraw-Hill, 1967.

Nesselroade, J.R. and Baltes, B.P. On a dilemma of comparitive factor analysis:

A study of factor matching based on random data. Educational and Psychological

Measurement, 1970, 30, 935-948.

Rosenbaum, L.L. , Rosenbaum, W.B. and McGinnies. E. Semantic differential

factor structure stability across subject, concept, and time differences.

Multivariate Behavioral Research, 1971, 6, 1-10.

Schonemann, P.H. A generalized solution of the orthogonal Procrustes problem.

Psychometrika, 1966, 31, 1-10.

Taylor, P.A. and Maguire, T.O. Perceptions of some objectives for a science curriculum.

Science Education, 1967, 51, 489-493.

Tucker, L. R A method of synthesis of factor analysis studies. Personnel

Research Section Report, No. 984 (1951) Washington, D.C. Department of the Army.



1.

2.

3.

4.

Appendix A

Population Pattern Matrices

Five variables - three components

Harman, H. Modern factor analysis,
Press, 1967, p. 137.

Chicago: University of Chicago

Hunka, S. An Investigation of Five
University of Alberta, 1969.

Textbook Variables, Edmonton:

Morrison, D.F. Multivariate statistical methods, New York:
Book Company, 1967, p. 254.

Morrison, D.F. Multivariate statistical methods, New York:
Book COmpany, 1967, p. 255.

Six vaIiables - three components

5. Morrison, D.F. Multivariate statistical methods, New York:
Book Company, 1967, p. 243.

6. Morrison, D.F. Multivariate statistical methods
Book Company, 1967, p. 255.

Eight variables - two components

New York:

McGraw-Hill

McGraw-Hill

McGraw-Hill

McGraw-Hill

7, Harman, H. Modern factor analysis. Chicago: University of Chicago

Press, 1967. p. 164.

Ten variables - four components

9. Mosychuk, H. Differential home environments and mental ability patterns,
Unpublished Doctoral Dissertation. University of Alberta. 1969.

10. Noble, G. A study of Children's perceptions of intrinsic teaching
machines and programmed instruction. Programmed Learning and
Educational Technology, 1968, 5, 142-150.

Eleven variables - six components

11. Kraus, J. and Walker, W. A pilot study of factors in MAIS "patterns"

in diffuse brain atrophy. American Journal of Mental Deficiency,

1967-68, 72, 900-904.



Twelve variables - four components

12. Hogg, J. A principal components analysis of semantic differential
judgements of single colors and color pairs. The Journal of General
Psychology, 1969, 80, 129-140.

13. Eyre, J. H. The prediction of bocational suitability from secondary
modern school report cards. British Journal of Educational
2systalogy, 1966, 36, 48-50.

Twelve variables - six components

14. Lovell, K. and Gorton, A. A study of some differences between backward
and normal readers of average intelligence. British Journal of
Educational Psychology, 1968, 38, 240-248.

Thirteen variables - three components

15. Glass, G.V. and Maguire, T.O. Abuses of factor scores, American Educational
Research Journal, 1966, 3, 297-304.

Thirteen variables - four components

16. Morrison, D.F. Multivariate statistical methods, New York: McGraw-Hill
Book Company, 1967, p. 242.

Sixteen variables - three components

17. Hallworth, N.J., An analysis of C.W. Valentine's reasoning test for higher
levels of intelligence. British Journal of Educational Psychology, 1963,
33, 41-46.

18. Ohnmacht, F.W. Achievement, anxiety, and creative thinking. American
Educational Research Journal, 1966, 3, 131-138.

Eighteen variables - three components

19. Taylor, P. A. and Maguire, T.O. Perceptions of some objectives for
a science curriculum. Science Education 1967, 51, 489-493.

Eighteen variables - five components

20. Walberg, H.J. The structure of self-concept in prospective teachers,
The Journal of Oucation Resear h, 1967, 61, 83-85.
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Twenty Variables - six components

21. Hallworth, H.S. Personality ratings of adolescents: A study in a

comprehensive school. British Journal of Educational Psycholosy,

1964, 34, 171-177.

22. Evanechko, P.O. Context and connotative meaning in grade five.

Unpublished master's thesis. University of Alberta, 1968.
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TABLE 1

SELECTED PERCENTILE POINTS AND MAXIMUM VALUE OF THE

CUMULATIVE FREQUENCY FOR AVERAGE tr (E'E)*

IN11.=111111W10.4.1111101110.=

Percentile Maximum
Value

MATRIX
NUMBER

ORDER 25 50 75 90 95 99

1 5x3 0015 0029 0054 0089 0119 0189 0330

2 5x3 0023 0041 0069 0104 0129 0195 0300

3 5x3 0011 0022 0038 0059 0074 0117 0225

4 5x3 0027 0046 0075 0104 0132 0202 0345

5 6x3 0021 0038 0064 0095 0116 0147 0180

6 6x3 0011 0023 0039 0060 0075 0122 0165

7 8x2 0009 0023 0049 0)86 0111 0178 0420

8 8x2 0008 0018 0037 0053 0087 0131 0210

9 10x4 0041 0061 0084 0112 0133 0175 0225

10 10x4 0031 0045 0065 0087 0102 0138 0195

11 11x6 0049 0064 0082 0102 0113 0133 0210

12 12x4 0019 0030 0045 0061 0074 0112 0195

13 12x4 0026 0042 0067 0093 0113 0148 0240

14 12x4 0035 0046 0060 0074 0086 0112 0135

15 13x3 0030 0050 0070 0117 0145 0232 0315

16 13x4 CO22 0034 0050 0068 0082 0118 0240

17 16x3 0030 0051 0081 0121 0145 0210 0300

18 16x3 0016 0028 0045 0069 0085 0118 0225

19 18x3 0014 0026 0044 0067 0091 0141 0240

20 18x5 0046 0063 0086 0113 0131 0161 0240

21 20x6 0045 0060 0076 0095 0110 0152 0210

22 20x6 0058 0073 0093 0114 0127 0149 0210

*Decimals have been omitted and appear before the four digit numbers.
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TABLE 2

SELECTED PERCENTILE POINTS AND MAXIMUM VALUE FOR AVERAGE

tr(E'E)* FoR VARIOUS SAMPLE SIZES

1 4 7

5x3 5x3 8x2

50 0015* 0027 0008

25 100 0005 0014 0005

150 0004 0008 0005

50 0029 0046 0018

50 100 0012 0024 0010
150 0009 0017 0009

50 0054 0075 0037

75 100 0019 0037 0017
150 0013 0027 0014

50 0089 0104 0063
90 100 0030 0055 0033

150 0019 0040 0024

50 0119 0132 0087
95 100 0039 0068 0042

150 0026 0045 0031

50 0189 0202 0131

99 100 0060 0097 0063
150 0039 0066 0054

1 50 0330 0345 0210

M 105g gg: glg; ggg

MATRIX

8 9 10 17. 18 21 22

$12 10x4 10x4 16x3 16x3 20x6 20x6

0009 0041 0031 0030 0016 0045 0058

0006 0019 0013 0015 0007 0021 0027

0005 0012 0073 0084 0005 0015 0019

0023 0061 0045 0051 0028 0060 0073

0012 0028 0022 0025 0014 0028 0037

0010 0020 0015 0017 0011 0021 0024

0049 0084 0065 0081 0046 0076 0093

0026 0041 0030 0040 0025 0039 0046

0014 0028 0024 0028 0017 0027 0030

0086 0112 0087 0121 0069 0095 0114

0045 0055 0043 0059 0038 0049 0057

0027 0037 0029 0041 0026 0031 0040

0111 0133 0102 0145 0085 0110 0127

0063 0064 0052 0072 0048 0056 0062

0036 0042 0036 0050 0029 0039 0043

0178 0175 0133 0210 0118 0152 0149

0095 0086 0067 0107 0067 0072 0074

0063 0053 0045 0072 0041 0045 0049

0420 0225 0210 0300 0225 0210 0210

5gg5 gg790

0120
0090

0090
0045

0105
0075

0090
0060

*Decimals have been omitted and appear before the four digit numbers



TABLE 3

Characteristics of the Sampling Distribution of the Square Root Trace

MATRIX

NUMBER

NUMBER NUMBER
OF OF

VARIABLES COMPONENTS

MEAN STANDARD

DEVIATION SKEWNESS KURTOSIS

1 5 3 .057 .027 .914 .974

2 5 3 .067 .026 .614 ,361

3 5 3 .049 .020 .869 1.283

4 5 3 .071 .025 .589 .602

5 6 3 .049 .021 .612 .310

6 6 3 .063 .024 .320 -.402

7 8 2 .045 .025 .751 .449

8 8 2 .052 .030 .893 1.011

9 10 4 .078 .021 .346 .057

10 10 4 .068 .019 .336 .301

11 11 6 .081 .014 .283 -.025

12 12 4 .056 .017 .644 .978

13 12 4 .067 .021 .49 .164

14 12 4 .067 .014 .292 .133

15 13 3 .073 .027 .711 .798

16 13 4 .061 .017 .593 1.129

17 16 3 .074 .026 .588 .316

18 16 3 .054 .021 .624 .537

19 18 3 .053 .021 .905 1.099

20 18 5 .081 .018 .456 .122

21 20 6 .078 .015 .571 .771

22 20 6 .086 .014 .294 .032



TABLE 4

Correlations Between Characteristics of the Sampling Distributions

of the Square Root Trace and the Characteristics

Of the A .Metrices

1

2

3

4

5

6

7

8

10

11

1 2

-.402

3

-.689

.597

4

-.520

.207

.838

5

.479

-.521

-.219

-.040

6

.758

-.831

-.633

-.326

7

.670

-.709

-.422

-.178

8

-.659

.671

.589

.346

-.424

.581

.632

.491

10

-.503

-.609

.416

.480

11

-.819

.265

.743

.703

.583 .866

.865

-.784

-.689

-.759

-.439

-.538

.4.910

.817

.326

-.244

.041

-.004

.251

-.395

-.546

-.491

.651

.541

.472

Characteristics of Sampling Distribution of Square Root Trace

1. Mean

2. Standard Deviation

3. Skewness

4. Kurtosis

Characteristics of

5. Number of

6. Number of

7. Number of

8. Trace (A'

9. Variance

10. Variance

11. Variance

A. NAttices

Variables

^omponents

E).ements in A

A)

of the Elements of A

of (the Column Sum of Squares of A )

of (the Column Sum of Squares of A .1. n)
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TABLE 5

Comparison of Observed and Approximated 95
th

Percentile

Points for the Sam lin Distribution of the S uare Root Trace Statistic

N=50 N=100 N=150

Ltrix r Observed Approximated Observed Approximated Observed Approximated

1 3 .1091 .1001 .0624 .0707 .0510 .0578

2 3 .1136 .1001

3 3 .0860 .1001

4 3 .1149 .1001 .0825 .0707 .0671 .0578

5 3 .1077 .1001

6 3 .0866 .1001

7 2 .1053 .0976 .0794 .0690 .0600 .0564

8 2 .0933 .0976 .0648 .0690 .0557 .0564

9 4 .1153 .1044 .0800 .0738 .0648 .0603

LO 4 .1009 .1044 .0721 .0738 .0600 .0603

Ll 6 .1063 .1141

12 4 .0860 .1044

13 4 .1063 .1044

L4 4 .0927 .1044

15 3 .1204 .1001

16 4 .0905 .1044

17 .1204 .1001 .0848 .0707 .0707 .0578

18 3 .0922 .1001 .0693 .0707 .0539 .0578

19 3 .0954 .1001

20 5 .1144 .1092

21 6 .1049 .1141 .0748 .0806 .0624 .0659

22 6 .1127 .1141 .0787 .0806 .0656 .0659



TABLE 6

Comparison of Observed and Approximated 99
th

Percentile Points

for the Sampling Distribution of the Square Root Trace Statistic

N=50 14=100 14=150

Matrix r Observed Approximated Observed Approximated Observed Approximated

1 3 .1375 .1162 .0775 .0822 .0624 .0671

2 3 .1396 .1162

3 3 .1082 .1162

4 3 .1421 .1162 .0984 .0822 .0812 .0671

5 3 .1212 .1162

6 3 .1104 .1162

7 2 .1334 .1173 .0975 .0829 .0794 .0677

8 2 .1144 .1173 .0794 .0829 .0735 .0677

9 4 .1323 .1183 .0927 .0836 .0728 .0683

10 4 .1175 .1183 .0818 .0836 .0671 .0683

11 6 .1153 .1254

12 4 .1058 .1183

13 4 .1217 .1183

14 4 .1058 .1183

15 3 .1523 .1162

16 4 .1086 .1183

17 3 .1449 .1162 .1034 .0822 .0849 .0671

18 3 .1086 .1162 .0818 .0822 .0640 .0671

19 3 .1187 .1162

20 5 .1269 .1216

21 6 .1233 .1254 .0848 .0887 .0671 .0724

22 6 .1221 .1254 .0860 .0887 .0700 .0724



TABLE 7

Comparison of Observed 95
th

and 99
th

Percentile Points

of the Square Root Trace Statiatic with the Values

Obtained from the Normal Approximation Multiplied by the Variance Factor

( 350 matches )

Matrix

Number

Number of

of

Components Variance

Variance

Factor

Obs 95
th

Percentile

Approximated

95
th

Obs 99
th

Percentile

Approximated

99
th

9 2 68 4.27 .46 .42 .54 .50

3 84 3 .36 .30 .42 .35

4 100 1 .11 .10 .12 .12

21 2 64 4.46 .45 .44 .48 .52

3 80 3.24 .24 .32 .29 .38

4 90 2.41 .19 .25 .23 .29

5 96 1.82 .18 .19 .20 .23

6 100 1 .10 .11 .12 .13

22 2 57 4.78 .45 .44 .51 .56

3 72 3.65 .38 .32 .43 .42

4 84 2.79 .32 .25 .35 .33

5 93 2.17 .25 .19 .27 .26

6 100 1 .10 .11 .12 .13
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Appendix B

Frequency Polygons for Average Trace E'E
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Appendix C

Frequency Polygons for Average Trace E'E

Showing Effects of Changes in Sample Size
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C - Sample size of 50
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