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The Automatic Interaction Detector (AID) iJ discussed
as to its usefulness in multiple regression analysis. The algorithm
of AID-4 is a reversal of the model building process; it starts with
the ultimate restricted model, namely, the whole group as a unit. By
a uniqu,a splitting process maximizing the between sum of squares for
the cat-Igories of each variable while minimizing the error sum of
squares (within group sum of squares), AID-4 seeks out that variable
which has the largest between sum of squares and splits the original
group into two mutually exclusive groups on this variable at that
category where the maximum between sum of squares occurred. The major
advantage of using AID-4 is that the maximum squared composite
correlation is obtained without the task of attempting to identify
the various relevant combinations of linear and non-linear
interaction terms by trial and error necessary in the full model of
the multiple regression technique. (Author/DB)
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Multiple regression analysis is a powerful approach to the formula-

tion and the analysis of research problems, and the testing of hypotheses.

It is less restrictive than multiple correlational analysis; e.g., multiple

regression analysis does not assume that the predictor variables constitute

a multivariate normal distribution. The absence of this restriction permits

the introduction of categorical predictor variables. One use for such

variables is the establishment of mutually exclusive groups and the testing

of the hypothesis that knowledge of group membership at different levels

of a predictor variable improves the accuracy of prediction of a criterion

of interest. The automatic interaction detector improves the power and

efficiency of the application of multiple regression analysis through

the identification of optimal configurations of predictor variables for

criterion prediction. Joint familiarity with regression techniques and

0%
the application of the automatic inter&ction detector will provide the

research scientist with an effective tool. Without the automatic inter -

action detector, the establishment of optimally effective sets of predictor

404 variables is essentially a cut-and-try, guesswork process. With automatic

t70,

interaction detection, guidance is offered directly as to the optimal

prediction possible with the predictor set, and the identification of



reduced subsets of predictors which most closely approximate the total

validity of the full set of predictors. In this sense, AID-4 is a model

identifying process.

The multiple regression technique as illustrated by Bottenberg and

Ward (1963), starts with a k-category full regression model including all

the predictor variables (categorical and/or continuous) and the basic

procedure consists of testing for the significance of the difference

between the error sum of squares resulting when some of the least-square

weighted categorical memberships are not taken into account in the (LC -n)

category restricted model where n is the number of restrictions imposed

upon the full model. The test of significance is done by the F-statistic,

comparing the minimized error sum of squares of the full model with that

of the restricted model. This comparison indicates the extent to which

the eliminated n categorical memberships contributed to the accuracy of

predicting the criterion variable.

For a simple example, let us suppose that we have two predictor

varied. s x(1) with three levels, i.e., high school degree, undergraduate

degree and graduate degree; and x(2) with two levels, i.e., pilot or

CI)
navigator. The criterion variable is some test score on a 50-item test

kr:
and we have 60 individuals in the experiment. (The actual data was

taken from an example in Hays' Statistic, Holt, Rinehart and Winston,

C) 1963, p. 403.) The simple two predictor, one criterion multiple

(2) regression model is:

Modell y acou + a1x(1) aix(2) + el

2



which after the conventional multiple regression yields a

solution of R
2
= .7508 and a mimimized error sum of squares of q

1
=

1

1607.4670.

Testing for interaction one would include a product term in the

model:

Model 2 y = b0u + b1x(1) + b
2
x(2) + b3x(1) x(2) + e

2

Model 2 is the so called "full model" and Model 1 is the "restricted model."

It is restricted because we impose the restriction of b3 = 0 upon Model 2

thus obtaining Model 1. By comparing the minimized error sums of squares

of Model 1 and Model 2, ql and q2 respectively, one gets an indication

of the contribution of the product term (or "interaction") to the

predictive efficiency of the system. The solution of Model 2 gives an

R2 = .8184 and q
2
= 1171.8683.

2

The F-statistic is computed by:

411 (12)/1(4 3)F is 20.82
q21(60 - 4)

with df = 1 and 56. We can make further "guesses" about the predictor

variables. Let us assume that predictor x
(1)

has a quadratic component

and that the previously hypothesized interaction is also present. Our

model will look like:
2

Model 3 y n cou + c1x(1) + c2x(2) + c3x(1) x(2) + c4 [X0)1+ e3

The solution of Model 3 yields an R3 = .8423 and a minimized error sum

of squares q3 m 1017.7627. The F-statistic is:

8.33
q3 60 - 5)
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with df = 1 and 55. Adeitional possible models are listed below:
2

Model 4 y4 = dou + dlx(1) + d2x(2) + d3x(1)x(2) + d4 P2] + e4

R2 = .8184 q
4
= 1171.8683

4
2 2

Model 5 y5 = kou + k1x(1) + k2x(2)

R2 = .8423 q
5
= 1017.7627

5

It should be obvious at this point that had we had a more complex problem,

for example 40 predictor variables with 10 levels each, the guesswork

would have been futile and totally unreasonable. The number of possible

mutually exclusive categories in the model would be 10
40

, most of which

would be empty, considering that the total population of the earth is

approximately 4 x 109.

This was the reason for implementing and developing AFHRL's version

of AID-4. The algorithm of AID-4 is a reversal of the model building

process. Rather than starting with a full model, including all possible

predictors and their simple and complex interactions, AID-4 starts with

the ultimate restricted model, namely, the whole group as a unit. By a

unique splitting process maximizing the between sum of squares (BSS) for

the categories of each variable while minimizing the error sum of squares

(within group sum of squares) AID-4 seeks out that variable which has the

largest BSS and splits the original group into two mutually exclusive

groups on this variable at that category where the maximum BSS occurred.

For example, given an 80 variable problem with 10 categories per variable,

if the maximum BSS was found in Variable 9 and between categories 1, 2,

3 and 4, 5, 6, 7, 8, 9, 10; the original Group 1 will be split into two
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mutually exclusive groups: (a) Group 2 consisting of those individuals

whose response to Variable 9 was 1 or 2 or 3, and (b) Group 3 consisting

of the remainder of the individuals whose response to Variable 9 was 4, 5,

6, 7, 8, 9 or 10. In actuality, AID-4 has identified the first level full

model consisting of 2 groups. The test of significance is an F-test

comparing the minimized error sum of squares of the full model (2 groups)

and the restricted model (original 1 group). The test of significance

for the first split is equivalent to an F -test obtained by a one-way

analysis of variance comparing the 2 groups on the criterion variable.

The process continues until a specified stop-criterion is reached. Each

time a split occurs, the resulting j mutually exclusive groups represent

the full model, and the minimized error sum of squares of this model is

compared with the error sum of squares of the previous model, consisting

of (i-1) mutually exclusive groups. The final split represents an optimal

full model which could have been hypothesized before starting to impose

restrictions. Going from the final model with the last split towards

the original unsplit group, each unsplit group represents an additional

restriction.

For our example, the AID-4 splitting process is illustrated in

Figure 1. Going down the branches of the tree-pattern, one can identif7

the simple and complex interactions of the optimum polynomial multiple

regression equation. We know that we have predictor variables x
(1)

and

x(2) . The first two splits occurred on x
(1)

, x
(1)

respectively, hence

we have an x"/ term. The first three splits occurred on
I.
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pi] 2
x(2) respectively, hen [

ce we have an x" x(2) term. The second branch

from the left is identical to the first identifying the same [x(1)]
2

x (2)

term. The third branch from the left split on x
(1)

, x (2) respectively,

hence we have an [x(1) ° x(1 term.

Thus, the optimal model is:

Model 6

y pip +
p2x(2) p3x(1)x(2) [x(12 p112. x(2)

= pix(1)

which yields, after conventional solution, an R
2 = .9003 which is the same

as AID-4 arrived at after the final split. Note that Model 6 does not

2

contain a term [1cl which is consistent with the previous findings

namely that Model 3 and Model 5 were identical (the only difference

being that Model 5 contained
2

X"1 ).

The major advantage accruing to the task scientist using AID-4 is

obtaining the maximum squared composite correlation without the task of

attempting to identify the wirious relevant combinations of linear and

non-linear interaction terms by trial and error necessary in the full

model of the multiple regression technique. AID-4 automatically identifies

these terms. The means of the final categorical group are the proper

weights to be assigned for each of those groups in predicting the criterion

variable. An additional major advantage is that out of a regression

analysis with a large number of predictor variables, there may be only

a small subset of predictor variables which are of significance in the

prediction system. AID-4 identifies such a subset of predictors

automatically. Finally, the branching pattern facilitates interpretation

of the results. In our sample example, it is much more meaningful to
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identify Group 6 on Figure 1 as pilots who have advanced academic degrees

and who have a predicted score of 46.40, than in a polynomial regression

equation where one would have to square "educational level" and multiply
2

it by "pilotness" in order to identify the term [X(1] x(2). In

a large prediction system, attempts to identify and include all possible

combinations of interaction terms represents a practical impossibility

without the help of AID-4.

Many additional and useful bits of information are provided by the

output of AID-4, some of which are: (1) at each split, the increased

present total explained variance (R2) is printed, together with a

statistical test of significance for the difference between the error sum

of squares of the new model and the previous model prior to the split;

(2) the splits occur in a descending order of importance, that is, the

first split identifies that variable which contributes the most to the

explained variance; the second split identifies the second variable or

a subset of the first split as the next most important contributor to

the explained variance; and so on. This hierarchy is very helpful

especially if after a few splits a reasonably high R
.2 is d5tained, thus

giving the researcher an option of using only a few predictors in the

prediction system; (3) the branching pattern Of splits reflects trends

of characteristics specific to the groups split; that is, it can serve

as an "eyeball" pattern analysis. Following the path of each branch of

the split-tree, one can identify major characteristics of the final

groups on which they differ the most in light of the criterion measure;



'(4) cross-validation and double cross-validation options which either

splits the original sample into two random samples or takes two given

samples, treats each sample separately, determining an optimal split

pattern for each and the associated R
2

. Then it forces the split pattern

of Sample 1 upon Sample 2 and vice-versa computing a squared composite

correlation for these forced splits. The differences between the optimal

R2 for each sample and the corresponding squared composite correlation

obtained by forced splitting is a good indicator of the stability of the

system; (5) selective or "partial" effects of the predictors are

identified such that even if the so-called "main effect" of a particular

variable in a complex analysis of variance results in a non-signifL:ant

F-ratio, AID-4 selectively indicates the level on the other variable(s)

at which this non-significant effect becomes significant.

Copies of the write-up and program (to be loaded on a tape provided

by the user) can be obtained by written request from Dr. Janos Koplyay,

Chief, Statistical and Computer Technology Section, APHRL/PHSX, Lackland

AFB, Texas 78236.
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