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First, let us limit the territory to be explored. We are concerned

here only with fixed length mastery tests. Kriewall (1969) has considered

the adaptation of an acceptance sampling plan to mastery testing in mathe-

matics; his procedure fixes Type I and Type II error prdbabilities but allows

the number of items to vary, and thus is appropriate for variable length

mastery tests. In passing I would like to remark that Livingston's (1971)

comment that Kriewall's procedure assumes that the test items are homogeneous

in difficulty for each examinee seems to be in error. For such a sequential

test, Wald (1947, p. 88) defines a parameter 2: "Let devote the unknown

proportion of defectives in the lot." He then proceeds to define a random

variable which takes values of 0 and 1 and develops a sequential test of

H < 2'
0

H
1

: 2 > 2'

where 2' is a chosen error rate. For Wald 2 characterizes a lot (a possibly

finite population) and in no sense characterizes each unit being inspected, or

each item, as Livingston implies. Within Wald's scheme, to speak of the units

being homogeneous in diffuclty seems to be meaningless, each unit is either

defective or not as determined by the ;articular inspector. All of this trans-

lates readily into a procedure for testing an hypothesis about the proportion

of items in a lot a given student can pasb. I offer this point to Livingston

and Kriewall for further discussion.
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shall assume that fixed length mastery tests are intended to be used

in connection with a program of instruction. The interest is, through appro-

priate instruction, to bring one or more students to a mastery of a limited

and reasonably specific instructional objective or class of objectives in a

reasonable period of time. For aw such objective or class of objectives

the expectation is that a satisfactory (valid) mastery test will function to

sort students into two groups: those who have and those who have not "masteree

the objective or class of objectives.

Let us ask how we might assess the validity of such a mastery test and

in the process identify two areas or probl,ms that we merely mention and

then leave unexplored. We would like to be able to develop for a sample of

students the fourfold table that would result from classifying them as "true

masters" or "true nonmasters" based on criterion data, and as "indicated

masters" or "indicated nonmasters" based on the mastery test. Given such a

faurfold table for a sample of students, we would also like to choose a sta-

tistic to summarize the strength of this observed relation and possibly esti-

mate its strength in the population. There obviously are several such sta-

tistics from which we might choose, and equally obviously such a table pre-

sents an occasion for arguments concerning the appropriateness and the merits

of the several options. But arguments about appropriateness would turyi at

least in :part on conceptions of and an examination of the methods used to

gather criterion data and the methods used to gather the mastery test data,

and so the bases of these arguments would be laid before the actual choice

of an index was made. I wish to set this problem of the choice of a statistic

3



3

aside even though I recognize that what I propose with respect to gathering

mastery test data bears on it.

I also wish to set aside without adequate discussion questions concern-

ing the nature of the relevant criterion data and methods of gathering them.

For example, one is prompted to ask whether or not latent trait theory gives

an appropriate conception of a mastery criterion, and if it does whether

the relevant observations should be univariate or possibly multivariate

with a specified underlying covariance structure. In contrast one might

ask whether or not a transfer task is the appropriate model for a mastery

criterion, and if it is, what .drinciples are available for selecting, admin-

istering, and scoring such a task. Still another question concerns the

relevance of the experimental history of the student as a criterion datum.

Perhaps the notion of mastery testing is moving us in the direction of con-

sidering tutored and nontutored groups as criterion groups, and will require

that we develop a more explicit role in validicy studies for the data pro-

vided by the experimental or instructional history of the student. If, as

seems reasonable, mastery testing is to be validated for selection purposes--

i.e., selection for further instruction within an instruction network--then

the ultimate criterion may be the student's advancing through this network

or hierarchy to an end point.

Let us now turn to the question of what I shall call the efficiency of

a mastery test, am aware that this term is used in connection with classic

reliability theory, but at the outset I do not intend to imply that the term

efficiency means all that reliability means.
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A necessary characteristic of almultry test is that it sorts students

into two categories. If in addition the test is /aid, it will tend to sort

them into the correct two categories: that is, into the categories deter-

mined by the criterion data. In the absence of such criterion data, it may

be informative simply to examine how well the test sorts defined samples of

students into categories and possibly to measure its efficiency in this sense.

It is important to point ,lut that we are not breaking a new path here, since

as early as 1936 Richardson (1936) considered this problem of a "criterion

of two categories" using scores on a total test cut at various points as

the "criterion." His work relates the difficulty of a test element to the

prediction of a two-category criterion, employing certain distributional

assumptions. We shall attempt a similar development making somewhat differ-

ent assumptions.

Let us assume that a mastery test consists of K items and that a total

score on the test is derived by summing the number of correct items, which

gives 0 and K as the limits for any score. Let us also think of these items

as ones for which the student produces a response, rather than chooses a

given alternative. With total scores ranging possibly from 0 through K1

there are K different possible separationu into two groups on the basis of

total test score. For example, students who score K may be sorted into one

group and all others into the other group; students who score at least K-1

may be sorted into one group and all others into the other goup; etc. Thus,

there can be K different sorts. For any sort, let us develop an index that

ls suggested by Fisher's linear discriminant function for two groups (Fisher,

1936). The discussion by Tatsuoka (1971, chapter 6) is quite helpful since he

shows canonical correlation equivalents of discriminant functions.

=7:
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By a "sort" we mean that the sample has been sorted into two groups on

the basis of some cutting p1/4,4nt on the total score for the K items. itie can

then, following Fisher, develop two K by K matrices, B and W. (See Tatsuoka,

p. 158-159). The matrix W is the pooled within groups sum of squares and

cross prodacts of the item responses. The matrix B equals T-W, where T is

the sum of squares and cross products of the item responses, ignoring the

separation into two groups. Then given the group membership, the Fisher

discriminant function is

v' B v X,
v' W v

where v is a column vector of weights, chosen to maximize X . Instead of

using these weights, let us use an a :ze_t_ori vector of equal weights, 1, and

form the function

B 1

which is a special case (equal weights) corresponding to using the total

score (sum of the item scores) to discr ninate the two groups. Generally

A is less than X.

Now X
c

turns out to be a function of the sum of squares associated

with the two group analysis of variance. It is

where SS
b

and SSw
refer to the analysis of the total scores on the K items

for the two groups. We also know that in general the Fisher discriminant
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function can be related to a canonical correlation between the given variables
2

(items) and a dummy variable indicating group membership. In genera', if p

is the squared canonical correlation, then

and
, 2 A"

An analogous treatment of Ac yields

or

A
, 2,1 =
"C 1 +

SS
b

P
2
=

C 00
b

SSw

Tbis coefficient is equivalent to the squared Pearson product-moment corre-

lation between total score on the test and the dummy variablc designating

the sort. Thus it is the squared point biserial correlation coefficient.

Sorting into two (non empty) groups on the basis of total test score

necessarily yields a positive valve for SSb and thus a positive valve for p2 .

The upper limit of T.A can be +1 when SSw
= 0; this could occur, for ex-

ample, when only two different total scores appeared in the se-aple and we

sorted into the obvious two groups. Such a situation would correspond to

a perfect 2121 coefficient and thus is not in conflict with the well-known

principle that the point biserial cannot take values of t 1.

The coefficient p2 for a given sort based on total score neasures the

extent to which the sum of the K item scores (0, 1 scores) can discriminate

the two groups defined by the sort. It is a measure of efficiency in this

sense and has two features that make it an analog of a classic reliability



coefficient. One is that it can be conceived as the ratio oftrue score

variance to observed score variance for a particular definition of true

score. To achieve this correspondence, assign to each individual in the

upper group atrue score equal to the mean of the upper group and to each

individual in the lower group a true score equal to the mean of that lower

group. Then p2c will be the ratio of the variance of these assigned true

scores to the variance of the dbserved scores. Note that p2 was defined

originally without reference to true score variance and that we have now

simply answered the question of haw true scores might be conceived to make

p
2 an analog of the classic reliability coefficient.

The second feature is that the largest p
2 for a given test is an upper

limit to the validity of the mastery test when validity is measured in an

analogous fashion. nrst note that for a K item test there are K different

sorts into two groups based on total score and that there is a value of

associated with each sort. Suppose now we have a dichotomous criterion

and use this, rather than total score, to sort students into two groups.

If we now measure in a similar fashion the extent to which the sum of the

item scores can discriminate the two criterion groups we find that this

coefficient cannot exceed the largest 1J 2 . It may of course be substantially

smaller. It also is true that if the two criterion groups are not equal in

number, the upper limit will be some less than the maximum and correspond-

ing to a sort into two groups with the same relative frequencies.

It is possible to deduce some generalizations about maximum values of

p2. For example, for symmetric distributions the maximum value of p2 occurs
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when the proportion in the upper (or lower) group is close to one-half and

decreases as this proportion diverges from one-half. For symmetric distri-

butions of equal range, a rectangular distribution gives a larger maximum

p2 than does a normal distribution. It is intuitively obvious that a tr-
c

shaped distribution has a larger maximum coefficient than does a re^tangular

distribution of the same range. Interestingly, a rectangular distribution

of small range has a larger maximum coefficient than does a rectangular dis-

tribution of large range, though the difference may be small.

Ou:o identification above of the manner in Which true scores should be

conceived in order to make p
2 a ratio of true and Observed score variances

suggests that the corresponding item model is one in which items are uncor-

related within the upper group and also within the lower group. This is a

"local independence" condition and corresponds to the notion that no latent

trait that is a linear function of the item scores should distinguish among

the individuals within a group (either upper or lower). If items are un-

correlated within both groups, then the population correlation between two

items (equivalently, between an item and the sum of other items) for the

combined populations is necessarily simply a function of diff..:rences in means

for the two populations. This type of analysis leads to the notion of ex-

perimental induced correlation or "reliability" which others have been aware

of.

This is perhaps enough discussion to indicate one means of dealing with

mastery tests. The discussion may, hopefully, stimulate both theoretical

and empirical work.
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