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A Comparison of Three Methods of Analyzing Dichotomous
Data in a Randomized Block Design
Garrett K. Mandeville, University of South Carolina
Introduction and Review of Literature
Many situations arise in behavioral research vhere the data fit nicely into the
randomized block paradigm. For example, when information is available on an antecedent

variable such as aptitude, subjects may be "blocked" on the basis oFf these scores to

ED 064347

gain precision in comparing effects of the independent variable, e.g., teaching methods,
on the dependent variable, e.g., achievement. Often this randomized block design would
be an improvemerit over the completely randomized design. !'then a sinale subject responds
to a serfes of trials or to varying treatment conditions given in random order the term
repeated measures design is commonly used in the behavioral literature. In each case
the experimenter wishes to compare the strength of response for the treatments, trials,
etc., or test or estimate some contrast of their effects. The methods of analysis are
the same, however, and this is why the terminology randomized block paradigm was used
above.
tlhen the rcsponse variable is continuous, analysis of variance (ANOVA) or a
multivariate procedure would probably be used to analyze the data. A recent study by
Porter and McSweeney (1970) has considered the advantages of blocking in situations
where a non-parametric analysis is to be performed. It is this writer’s contention,
~ however, that many situations occur in behavioral research where the measurement is
of such quality as to invalidate any of these techniques. Of particular interest in
=q this study are situations where the dependent variable is dichotomous. A few examples
- are learning trails in which the subject makes either the correct or incorrect assoc-
- jations, maze runring in which & rat turns.wight or left, problem solving where the

problem is solved or not solved and attitude surveys in which the respondent agrees or
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disagrees. Sometimes the crude dichotomous response is obtained to facilitate speed.

T

Numerous examples of dichotomous dependent variables in psychological erperiments are
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given in Seegar and Gabrielsun (126€, p. 270), The question of how to analyze data
in a randomized block design when the dependent vartaeble is dichntomous is not dis-
cussed with any frequency in the appiied statistical literature.

Cochran (1950) presented the () test as a procedure for festing the hypothesis

“that in cach block, the response probabilities are constant for the various treatment

levels. (Mote that the terms blocks and treatments will be used for convenience here;
the reader should understand that blocks may represent a set of subjects grouped to-
gether or multiple measurements on the same subject, etc., and that treatments, which
might be more appropriately called treatment levels, are the conditions for which
comparisons of effects are desired. Also, for definiteness, let us assume that there
are I blocks and J treatments.) The Q statistic is based on a randomization argument,
i.e., if the treatments are no different, the Uy positive responses in block i could
have, with equal probability been arranged in any of the (3 ) ways. Under randomi-
zation, the responses have the same variances and because o} symmetry the covariances
between any response pairs are also equal. Tha sum of squared deviations among the
J treatment totals is. for large samples, shown to approximate a multiple of the x2
distribution.

Let us clarify the hypothesis tested with Q. Let ¢ij represent the "success"
probability associated with the application of the jth treatment in the ith block.
Then the null hypothesis of the Q test, is H01 P64 % 442 ° ...=¢14'for ial, 24.00451.

Note that the hypothesis of ANOVA is of lesser magnitude, i.e., Hozz 3:1= $:2-...= 6.

where 3& is the average success probability for the jth treatment. It should be clear

that Ho] is a composite of Ho2 and the hypothesis of no treatment x block interaction.

Seegar and Gabrielson (1968) consider data sets with varying amounts of treatment x
lock interaction and observe that, as on2 would expect, the Q test does have power

to detect situations where interaction exist, but Ho2 is true. It is probably true,

partly because of the unfortunate way Q is handled in secondary sources, that resear-
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chers do not realize the subtle differences in these hypotheses. Tukey's test for non-
additivity would provide one method for detecting an interaction of the multiplicative
type, but would probably be of 1imited usefulness in most applications in the behavioral
sciences where blocks are random. Other suggestions are given in Draper and Porter
(1970).

tlhen Cochran introduced the Q test, he presented some results comparing probabil-
jties obtained using the y2 distribution with the exact probabilities obtained using
randomization. The problems he studied were kept small to facilitate computation, the
number of treatments ranaing from 3 to 5 with from 6 to 16 blocks. In addition to
computing Q for these data sets, the F ratio for a randomized blocks ANOVA was also
computed. Cochran also computed Q' and F' which were values of these statistics correc-
ted for continuity and they were obtained by finding the next smaller value of the
statistic and averaging the two. For each of these statistics, then the appropriate
table was entered and the probability of a larger vaiue was obtained. These were then
converted to a percentage error by computing

100 (Tabular P-True P)/(True P)

Cochran stated that the F' was decidedly better than F and so he did noi present resuits
for F. Of the other three statistics, Q was suggested to be preferred. It exhibited
a negative bias, i.e., a tendency to underestimate the true probability when true P
was in the range of .2 to .02 and, overestimate the true probability (corresponding
to a conservative test) for true probabilities below .02. The corrected y2 had a
positive bias over the whole range of true probabilities while F' had a tendency towards
a negative bias.

Although it may strike the veader as being strange that Cochran would even con-
sider the F test in this situation, the following quote is 11luminating: "I had once

or twice suggested to research workers that the F test micht serve as an approximation
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even when the table consists of 1's and 0's'...this suagestion was received with
incredulity, the objection being made that the F test requires normality, and that a
mixture of 1's and 0's could not by an stretch of the imagination be recarded as norm-
ally distributed. The same workers raised no objections to a x2 test, not having
realized that both tests require, to some extent, an assumption of normality, and that
it is not cbvious whether F or x2 is more sensitive to this assumption" (1950, p.262).
Cochran further justifies consideration of F because of the widespread interest in

the application of analysis of variance to non-normal data and, although his results
are discouraging with regard to the F test, he notes that the application of F test
to more compliex tables should be kept in mind.

One important point which Cochran makes, which has been overlooked by most secon-
dary sources is that Q is invariant under deletion of what will be termed here as
"non-informative" blocks, i.e., blocks with responses of all 0's or V's. Therefore,
the term "large samples” must be used with caution and many statements in textbooks
such as McNemer (1962) and Siegel (1956) are misleading in this regard.

A more recent study of the sampling distribution of Q for small samples was dono
by Tate & Brown (1964, 1970). These writers clarify the fact that Q is not changed
upon deletion of non-informative blocks but point out that the F test is changed by
this deletion. This is because the degrees of freedom of the residual mean square
will change with the number of blocks in the experiment thus affecting both its value
and the reference F distribution. Using data from Fleiss (1965), Tate and Brown com-
pare results using F and Q and the exact probabilities from randomization. !hen no
rows are deleted, the percent errors of F and (! are similar for the full table of the
Fleiss data but when non-informative rows are deleted, this one set of data suggests
that the F test has a negative bias. Tate and Brown go on and tabulate the exact
distribution of Q for desians with 3 treatment and from 3 to 12 blocks; 4 treatments

and from 2 to 8 blocks: 5 and 6 treatments and from 2 to 5 blocks. The tables are
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presented in Tate and Brown (1964). By comparing Q to the exact probabilities for

these tables these writers observe a negative bias in Q, but suagest that, when the
product of the number of (informative) blocks and treatments is 24 or more, the
approximation using Q is probably sufficient for most practical work. This is based
on the observation that, for the distributions they considerec for which this was true,
median percent errors were in the range of 12% to 20%. For situations in which the
product is less than 24, the exact tables of Tate and Brown may be used. Tate and
Brown give no comparison of F and ( for these distributions.

The other rather extensive study reported in the literature concerning Q is the
one already mentioned by Seegar and Gabrielson. These researchers were intevested in
extending the Q test to a situation in which there was more than one measurement avail-
able for each treatment-block combination. An ertension of Q to this situation was
presented and it was compared to the ANMOVA F test using the treatment x block mean
square as the error term. Although they did not consider it, a point in favor of the
F test in this design is that it allows both treatment effects and treatment x blozX
interactions to be tested whereas the extended version of the Q test which they sugges-
ted tested the same hypothesis as Cochran's original test. The results of this study
suggest that where Ho] is true, Q (or the modification) can be used when the product
of the number of blocks and the number of replications per treatment is in the range
10 - 20. The above test, however, requires that treatment x block interactions be
null for otherwise Ho] is false and the Q test will have power to detect this. In
these situations the F test, to test Ho,, will still orovid: a reliable answer for
from 5 - 10 subjects. Seegar and Gabrielson point out that when Ho1 ( and therefore
Hoz) is true, the F test is as good as Q. The arcsin transformation was found to pro-

vide results which were very similar to those of the F test.

Although Cochran's results with F (and F') suggest that it leads to underestimates
of the true probabilities, it needs to be said that Seegar and Gabrielson did not find

“§a

5

il

adied L lnidge

- B

EE

Z'.-Z-‘f’j@%{'&u‘Ik&%ﬁﬂﬁﬁ%ﬁ%ﬁ%}wﬁ%ﬁm&ﬂ&m-.w.«.mmw.w.»._‘._u.w.........,.u.-....-‘._. R e e



this to be true in their study. There is a subtle difference in the methods used by

‘Seegar and Gabrielson and by this writer on the one hand and by Cochran and Tate and

Brown on the other. The wmethod used here was to define critical regions using the

reference F or y2 distributions and tallying the instances of a significant value for

the statitstic. Thus, what becomes important is how the empirical (discrete) and

theoretical (F ory2) cumulative distributions compare at the selected points. In the
study to be reported here, the 90th, 95th, 97.5th and 99th percentiles of the F and y2

distributions were used to designate lower boundaries of critical regions for o = .10,

.05, .025 and .01. These were selected because they cover common significance levels
employed by educational researchers.

This writer decided to take a closer look at the properties of the F test in a

randomized block design with one replication per cell. This comparative study of the

F and Q tests seemed in order since the only comparisons available in the studies citad
above were limited to the few examples of Cochran and Tate and Brown and the few

simulations for one replication of Seegar and Gabrielson. The research is restricted

to one replicate because it was anticipated that researchers with more than one obser-

vation per cell would use an F test to allow for a test of interaction.

Some writers have suggested that recent results of Hsu and Feldt (1970) and

Lunney (1970) for ANOVA with dichotomous data in independent celis designs can be

applied to ANOVA in designs where the data are correlated. Because of the differences

in fixed and mixed ANOVA models, this writer suggests that a certain amount of caution

be exercised here. It is the feeling of this writer that the F test should be the

recormended procedure §f 1t simply provides results which are as good as Q because;
(1) it 1s more flexible than Q and, therefore, more bromising for complex designs,
(2) 1t is so frequently used, and therefore probably fairly well understood by educa-

tional researchers and '3) many computer programs are available to facilitate the
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analysis., For researchers who are mainly concerned with differences in average
success proportions, some form of F test should be recommended over Q because of the

power of the Q test if treatment x block interactions exist.
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The Mode! and Test Statistics

A cormon specification of the model is Y,ij = uhay + B + €3 where the a, are
block effects and are randomly sampled from a normal population with mean zero and
variance ai, the 53 represent fixed treatment effects (ziej=0) and residual variatiua
is included in the €4 The €43 are from a normal population with mean zero and
variance ci and the a, and the €43 are independent (that is, within and between sets).
This model leads to correlations between measurements within a block which are the
same and this, therefore, becomes an assumption in the "univariate" ANOVA solution of

the problem.

ithout hnine intn the detail of reproducine comnutatienal forrulas, vhich are
well known to most, some comparisons vill ho drwvn'between the O and F statistics.
In order to compute th~ O and the F statistic, the followino two sums of squares were
obtatnnd: SST, tho sum of squaras duc to tr-atments, and SSE, thg arror sum of squares

Then formulas for Q and F are Q = 1(J-1) SS{/[SS; + SSg] and F = ﬁg%-e [SST/(J-I)]/
[sSg/(1-1)(3-1)]. The null distribution of the O static approaches x* ;_, as I
increases (this assumes that some "informative” vectors have a positive probabi 11 ty)
and the F statistic was compared to the F distribution with J-1 and (I-1)(J-1) degrees
of freedom. Manipulations carried cut to allow comparison of F and Q yield
0/(3-1) = MSy .
-] E+. 11/

This statistic, of course, can be referred to the FJ_1’“'d1str1but10n. Paralleling
a discussion of D'Agostino (1971) we observe that the denominators of F and 0/(J-1)
differ only slightly, and we will expect that, for large numbers of blocks, test size
results for the two methods will be very similar. However, it appears as though,
when treatment affects are non-null, the denominator will be inflated and power of
Q relative to F, will be lovered.

A more general model than the one above is to consider the observations in a

block, the Y11. '12' cose YiJ’ to be a vector observation from a J-variate normal
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distribution with mean vector by and general covariance matrix ty. The hypothesis

of interest, in this more general case, is that the elements of uy are equal, i.e.,

that uy-l = Nyz

space of J-1 contrasts (differences are the most straightforward) using a transfor-:

= ... = Mg The problem is solved by transformina the Y's to a

mation matrix C which has J-1 independent contrasts as rows. Then X = CY and the
hypothesis above becomes Uy = 0 which can be tested using Hotelling's T2 statistic,
I Y’Sx -1 Actually a simpler computational form is given by Rao (1965) as
T2=I(I-l) [ A, +XX;|/ | A =11 where A, is the sum of products matrix for the
transformed variables. The multivariate statistic used heve was [I-J+1] Tzl[(l-l)
(3-1)] which is distributed as an F with J-1 and I-J+1 degrees of freedom if the
hypothesis is true. The reader is reminded that I in the above formulas is the

number of blocks not the identity matrix.
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Data Generation and Parameter Selection

The generation of a dichotomous response ‘ector requires a researcher to specify
a model which allows various degrees of dependéﬁéy tobe manifest in the responses., If
this study were dealing with continuous variables, the multivariate normal distribution
would probably be the model used because of the many statistical procedures which
assume that the data are sampled from it. In this study a multivariate normal distri-
bution was assumed to be latent in the data, i.e., the assumption was that underlying
each response was a normally distributed continuous random variable. This continuous
variable was then compared to a fixed "cutting score" and if the response surpassed
it a one was recorded; otherwise the response was taken to be a zero. The cutting
score was determinded by the success proportion associated with the particular mea-
surement involved.

The problem of selecting the multivariate normal distributions to be used for
the generation of the latent variables amounted to selecting correlation matrices,
because the means and variances for the dichotomous variables are determined by the
success proportions used. !fhen only two measurements are made in each block, only
one correlation needs to be specified and the four values taken for this parameter
were .0, .2, .5 and .8. The use of the zero correlations, or no association between
the two measurements, will provide information on the 2xtent to which applying an
analytic technique for correlated data will penalize the researcher when in fact
the data are unrelated. The use of a maximum correlation of .8 was justified because
it is unusual when larger correlations occur in practice 1in educational rcsearch.

For more than two measurements, however, more than one measure of assoctation
needs to be selected. For three measurements, for example, there are three pair-
wise corrclstions which need to be specified. For the major portion of the study,

these pairwise correlations were all taken to be 2mi2? and again the values of .0,
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.2, .5, and .8 were used. lhat this means is that fcr the latent variables for most

of the results presenc~¢ here, the ANOVA assumpticn of equal correlations among the
variables was satisfied. For the portion of the investication dealing with type 1
error, i.2., when the success proportions for the treatments were equal, the popula-
tion covariance matrices for the dichotomous variables also satisfied this assumption.
However, when power was investigated, 1.e., the success proportions were not the

same for all treatments, the covariance matrix does not satisfy the pattern assumption
of equal variances and covariances.

The number of treatments in a block was taken to be 2, 3, 6 and 10. Again, it
was thought that this would provide a range for this parameter which would include
most practical cases in educational experimentation. An exception would be a situation
where each response was an item response in a test. In this case, of course, tests
with more than ten items would be commonplace. However, it is not generally of
interest to a researcher to determine whether the items in a test are of the same
difficulty. The number of blocks was taken to be 5, 10, 20, and 30. It was antici-
pated that whatever large sample effects which were to be observed would be manifest
for samples of size 30.

For the investigation of type I arror, the null hypothasis s true, and the
success proportions for all treatments are the same. To span the range of success
proportions from 0 to 1 is unnecessary since by redefining success and failure,
results for the range O to .5 can be applfed to the range .5 to 1. The values of ,
the constant success proportion, which were used in this study were .1, .3 and .5.

For success proportions smaller than .1, it is anticipated that, unless sample sizes
are extremely large, a researcher should probably consider some alternative method
of analysis.

Taking a1l combinations of the four values of J, the number of treatments (2, 3,
6, and 10) and I, the number of blocks (5, 10, 20, and 30) sixteen different designs
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were initially to be considered. Due to limitations on computer time, the 10 treat-
ment by 30 block design was eliminated. For each of the vemaining fifteen designs,
simulations were run for each level of o, the correlation among the measurements in a
hlock (.0, .2, .5 and .8) in combination with each value of ¢, the constant success
proportion (.1, .3, and .5). Therefore, twelve simulations occurred for each design.
In addition, for 3 and 6 treatments. a non-patterned correlation matrix was constru-
cted and this was used in conjuncfion with each of the three ¢values. These runs
were limited to designs with 10 and 20 blocks.
To describe how the simulation took place the following listing of the steps
involved in the determination of empirical test size is presented’
1. Values of I, the number of blocks, and J, the number of treatments, were
set.
2. A correlation matrix R either constant with intercorrelations of .0, .2,
.5, and .8 or a non-patterned matrix in a few special cases, was specified.
3. The vector of success proportions with all elements equal to ¢ = .1, .3
or .5 was selected.
4. A sample vector was generated from a multivariate normal distribution with
covariance matrix R.

5. Each response was converted to a one 1f it surpassed the (1-¢)th percentile

of the standard normal distribution. Thus for ¢=.3, any latent variabies larger

than the 70th percentile of the standard normal distribution, i.e., larger
than .52, were converted to a one; otherwise a zero was recorded. In this
way, each continuous response vector was converted to a vector of 0's and
1's.

6. The quantities necessary for computation of the three test statistics were
accumulated.

7. Steps 4 - 6 were applied for data for each of the I blocks.
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8. The values of the three statistics, Q, F, and " were obtained.

9. The boundaries for frequency distributions for each of the three statistics
were computed. Of importance here are the 96th. 95th, 97.5th and 99th
percentiles which were obtained for each of the three reference distributions.
This step in the program was bypassed after the first data set vas generated.

10. The computed statistics were cast into the frequency distributions set
up in step 9.
11. Steps 4 - 10 were performed 1000 times.
The resulting empirical proportions above each of these percentiles are to be taken
as estimates of true type I error (test size) for the test procedure.

For consideration of power the only alteration in the procedure was that, in
step 3, a non-null proportion vector was read into the computer which would, under
certain normal theory considerations, yield power of .60 and .80 for type I error
of .05 or .01. Thus, the four combinations of c. and 1-8 required four simulations
for a given design and R matrix.

Pefore discussing the results a word about how non-informative blocks were |
handled in this investication is in order. From a logical point cf view, these data ;;
vectors supoort the null hypothesis since, within them, no Jdifferences between the
treatments are manifest. If the measurement scale had not been so crude, these scores
would probably have been "closer together" than scores for blocks which exhibitad
variation. The retention of these vectors, which causes the estimated probabilities
to increase and, therefore, the statistical tests to become more conservative, is one
way to take account of such data. The retention of deqrees of fre:dom in the denom-
{nator of F for these vectors is along the lines of Cochran's suggestion that, since
F as he computed it tended to be 1iberal and x2, with essentially infinite degrees
of freedom in tie denominator, tended to be conservative, possibly some artificial

number of these "non-informative" vectors would yield an empirical distribution which
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provided a better fit to its theoretical counterpart. This researcher was not con-
triving to find out whether an appropriate mixture of these non-informative vectors
could be identified but rather if, when sampling over a wide range of parameters, this
effect that Cochran suggested does actually tend to produce better results usino the

F test rather than the Q test. Along these same lines Meyer (1967) has shown that the
unconditional size of McNemar's test (Q test for J = 2) is less than nominal « unless
"non-informative" vectors have probability zero. A1l of these considerations led

this investigator to retain the ordinary degrees of freedom in the denominator of the

F test used.
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Results

In table 1 the reader will find summary results of the main portion of the
investigation dealing with test size. The values in the table desianated by AVE are
averages of the proportions of times that the computed statistic exceeded the corres-
pondina percentile of the appropriate reference distribution. The averages were taken
over the 12 runs coming from the combinations of the four levels of interdependency
among the observations in a block (p) and the three levels of success proportions (g).
The rows of this table denoted PCT are the average relative (percent) errors. Again
each average is based on 12 relative errors and, for a aiven run, the relative error
is (p-a)/a where p is the empirical type I error and o is the nominal type I error.
The quantity E is the average of these relative errors for these four selected upper
percentiles.

Looking at the E values, an immediate observation is that, using this measure
of fit of the empirical and theoretical distributions, the F test has a smaller
average error than either Q or M for each design considered. It is also true that
Q out performs M on this basis. Comparing Q and F for a moment we observe that the
advantages of F over Q are largest for designs where the number of treatments is
large relative to block size. For example, the largest difference in the E values
is for the 10 treatment by 5 block design where E 1s 60% for the QO test and 29% for
the F test.

Looking at the relative error as a function of nominal type I error we observe,
as might be expected, that the errors increase as we go further out in the tail of
the distribution, i.e., the fit of the empirical and theoretical distributions is
poorer for o = .01 than .05. This trend is more noticeable for Q than for F and, to
a large extent, this accounts for the smaller E for F for designs with two or three
treatments. As a matter of fact, for two and three treatment designs, AVE and PCT
values are almost identical for « = .10 and .N5. The finding of Cochran that Q has
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a positive bias above the 98th percentile is substantiated; the largest value of

AVE for o« = .01 is .008 for the 10 x 20 design and most of the other values are sub-
stantially smaller. Although the corresponding value of AVE for the F test only
achieves .01 for the 10 x 20 design, the majority of values for designs of modest

size were as large as .008. Finally, the expected result that as the number of blocks
increases the fit of the empirical and theoretical distributions is better, is observed

This writer somewhat arbitrarily selected the value of 20% relative error as a
value which may be reasonably allowed in most educational experimentation. For tests
at the 5% level this would correspond to average test size between .04 and .06. Con-
sidering 5% level F tests, the designs which satisfied this criterion led to the
simple rule of those with 60 or more total observations, i.e., 2 x 30, 3 x 20, 3 x 30,
6 x 10, etc. As pointed out above, for a = .05, F and Q do not differ for two and
three treatments. It is also true that for six and ten treatments, the differences
are minor so that, by bending the rule to allow PCT values of up to 22%, all of these
designs satisfy the criterion for the Q test. As has been noted earlier, the F test
tends to provide a better fit than Q in the uprer tail of the distribution. However,
for « = .01, no simulations produced PCT values of less than 20% for either F or Q.
For the F test, for the eight designs with 60 or more observations these relative
errors range from 26% to 47% with a median of 35%. The corresponding minimum and
maximum values and median for Q are 30%, 60% and 45%.

Not much has been said about the multivariate test using the test statistic
denoted as M. It should be clear that, on the basis of the summary results presented
in this table, the multivariate test has 1ittle to recommend it. As the discussion
proceeds, certain characteristics of the multivariate test will be noted.

Although these results were somewhat encouraging, this writer noted that sample

size recomnendations based on these data would be misleading. The reason for this
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is that, certain values of the parameters used in this investigation lead to “"effective'
sample sizes which are considerably less than the actual number of sample observations
generated. The point is that "non-informative" responses, have no affect on the
computation of either Q or the sums of squares for the F statistic. In Cochran's inves-
tigation of the small sample distribution of Q, he used eight different data sets,
usually with about 3 or 4 treatments and 10 blocks. Cochran used only "informative"
data in his investigation and found average errors of about 14% for .05 level test.
Thus, with about 30 to 40 total observations, Cochran reported results which were
somewhat better than those obtained heve with 60 or more total observations.

In an attempt to bring the results of Cochran and those summarized here into
closer agreement, this writer developed the notion of using "effective” sample size
(Ne) as a criterion on which to categorize the 12 runs for each design. Effective
sample size in this context refers to the number of "informative" response vectors
generated. Since Ne is a random variable for a given set of parameters p and ¢,
the quantity which was selected to be used as a gross index of the number of "inform-
ative" responses was the expected or average value of Mg, which will be dencted E(Ne).

The computation of E(Ne) was carried out in the following manner. First, for
a given configuration of p and ¢, it is necessary to know the probability of a
"non-informative" response (HN). For some cases, this could have been done easily
by hand. For example, for ¢= .5 and p = .0, the probability of either (0,0) or (1,1)
response in a two treatments design is .52 + .52 = .§, This calculation is straight-
forward since p » 0 which, for the normal distribution, implies independence of the
continuous latent varfables. It is readily seen that the two binary variables are
also independent. For those cases when p was not zero, the probability My of a
"non-informative" response vector was estimated by generating 10,000 such samples on
the computer. This method seemed to be sufficient considering the purposes for which

this information was being obtained.
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Using the value of My the effective sample size should follow a binomial distri-
bution with the "nominal" sample size and 1-m, as parameters. For example for ¢ = .5,
p = 0 and "nominal" sample size of five, the distribution of Ne is:

Effective Sample 0 1 2 3 4 5
Size QNE)

Probability Pr(Ne) 1/32 5/32 10732 10/32 5/32 1/32

The expected value of M, was then computed in the usual fashion as E(Ne) =zN, Pr(Ne).

In the example given this computation yields an expected sample size of 2.5. The
careful reader will observe that, in some simulations, it is 1ikely that all vectors
will be non-informative. This situation leads to an indeterminate value for all
three of the statistics. For the data on test size presented here, these data sets
were taken as supporting the null hypothesis, and therefore, in the empirical size
computations, 1000 is retained as the base.

By comparing the results of individual runs to the E(Ne), this writer decided to
jsolate for further consideration those runs with E(Ne) greater than six. That these
runs are well behaved, is verified by Table 2 in which average empirical size results
are given for those runs which satisfied the criterion. 'e note that the results
are more in line with those presented by Cochran. In fact, the median relative error
for Q for a = .05 is 14%, the figure which Cochran reported. Again, the phenomena
that F and Q have similar characteristics for o = .10 is verified. For smalier
values of a, however, the median average test size and relative errors for F and Q
become increasingly different. For the two smallest values of nominal a, the relative
error of Q is smaller than that of F in only one comparison.

For F the largest relative error for a= .025 is 22% and most of the errors for

a = .01 are 30% or less. For the multivariate statistic we observe that for 3 treat-

ments the procedure is fairly well behaved but that for 6 or more treatments, although

AVE values are close to nominal a in some instances, percent errors are very large.

This is due to a strange mixture of runs, most of which produce empirical type I error

which either grossly exceed or underestimate the nominal values, but which produce

]

[PPYPRP R

g




gverages which are reasonably close to those values. One of the reasons that the
results for the 6 and 10 treatment designs with 20 or fewer blocks lead to conservative
procedures is that there were many instances when M was indeterminate. These were
counted, the reader will recall, as instances for which the null hypothesis would be
accepted.

An alternative method of determining whether there are any systematic tendencies
for either of these procedures to be biased, is to count the instances in which the
empirical proportion is larger thar the nominal a. This was done for the O and F
test for each of the four values of o and the results are presented in Table 3. Since
the multivariate test using M had exhibited such poor characteristics up to this
point, results for it weve not tabulated. An asterisk in this table signifies that,
for more than half of the runs, empirical size exceeded nominal a. The columns
headed “chance® in this table are simply one half the number of runs and indicate
vhat would be expected if the nominal type I error values were the medians for the
empirical proportions. The overall results indicate that, with the exception of the
F test for a = .10, for both procedures the empirical proportions tend to be less
than the nominal values. However, the results for F are much nearer to the chance
results for all nominal «. When these data are exhibited by number of treatment
levels, the general statments made earlier are verified. For 2 or 3 treatments,
the main advantage of F over Q is for a less than .05; for 6 or more treatments,

F exhibits less bias over the whole range of o under consideration. The slight
tendency for empirical size to exceed nominal o« for F for 3 treatments at o = 10
does not appear serious. There fs also a tendency for the advantage of F over Q

to diminish, except for small a, for designs with 30 observations. Two summary
statoments which seem in order are that (1) the F test provides a better approx-
imation to nominal o for small a« (a less than .05) and (2) for designs with the
treatment to block ratio large (e.g., 6x10, 6x20, 10x10 and 10x20) the F distribution

also provides a better fit for the other nominal type I errors under consideration.
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Althouch results of individual runs will not be presented here because of the
extensive number of tables which would be involved, a brief discussion of major
points of information which they provide will be given. They are: (1) the runs
excluded by the expected sample size greater than six criterion were the runs with
large p and/or small ¢ values. For all three procedures described here, these tests
were conservative. (2) For some smaller designs such as the 2x10, 2x20, 3x10 and
6x5, results using F will be reasonable if the data are not “pathological’. That is,
the fit of the variance ratio distribution appears to be adequate if the occug&nce
of a success is not very rare and at the secme time. the variables are highly related.
(3) Results for the M statistic are very inconsistent for different combinations of
o and ¢. For mildly correlated or uncorrelated data, the ¥ statistic exhibited a
very serfous tendency for empirical size to grossly exceed nominal type I error.

This tendencv increased with block size and was not diminished as the number of blocks
increased. Probably the most serious instance of this was for the 6x30 design and

the p = .0, ¢ = .1 run where the four empirical proportions were .226, 162, .101 and
.049. The average relative error here is 273%. Aithough the writer has presented
more complete information on the M statistic elsewhere (Mandeville, 1969), they have
not been presented here in the interest of space and also because of the deficiencies
already noted in the procedure.

Additional runs of test size were made for the three treatment and six treatment
designs using non-patterned correlation matrices. These matrices were not chosen to
be particularly exceptional, and, when taken in combination with the ¢ = .5 values,
yielded ¢ values which were approximately .97 for three treatments and .95 for six
treatments. The quantity ¢, introduced by Box (1954a, 1954b), is a measure of
deviation from pattern and ¢ = 1 for patterned matrices. Sample sizes of 10 and 20
were used in combination with null success proportions of .1, .3 and .5 and these

results are tabulated in tables4 and 5. Results of these runs are in reasonable
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agreement with those for constaﬁt correlation matrices. For example, for three treat-
ments the average correlation in the non-patterned matrix was near .5 so that compar-
jsons with results for the runs with constant correlation of .5 are suggested. For
the F statistic and the 3x20 design, the average evrorS are 24%, 18% and 11% for
$=.1, .3 and .5, respectively. Although not tabled here, the corresponding values
for a constant o of .5 are 35%, 16% and 21%.

For the 6x10 design, however, the indication is that the non-patterned correlation
structure lead to more conservative results for ¢ = .1 and .3 than the corresponding
results for a patterned correlation matrix with o = .2. The average correlation in
the six treatment correlat’on matrix 1s about .3.

Designs which were investigated with respect to empirical power included those
studied as regards test size with the exception of designs with 5 and 30 blocks. Thus
designs with 2, 3, 6 and 10 treatments were investigated for sample sizes of 10 and
20 blocks. Sample size 5 was 2liminated since the restlts on test size vere gencrally
negative for such small samples unless a large number of treatments was involved. It
was also the feeling of the writer that elimination of samples of size 30 would not
greatly reduce the implications of this phase of the study.

Non-null vectors of proportions were obtained which exhibited linear departure
about the central value ¢c = .5 and which would give theoretical (normal theory) power
of .60 and .80 for tests run at the 5% and 1% levels. Although the normal theory
assumptions were certainly not appropriate for the situation, this method was used
so that, in the event that empirical power values were in agreement with the nominal
values, it would be po#sible to recommend that a researcher use standard procedures
for sample size computations. The constant correlation p was varied as before, taking
the values of .0, .2, .5 and .8. To allow some generalization of the results, the
combination 0. 3andp = .2 was also included. For some sample sizes, no set of

proportions between 0.0 and 1.0 could be found which satisfied certain size and power
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combinations. This only occurred for ¢, = .3, however, In addition, the non-patternec
correlation matrices were used in conjunction with 4. = .5. Examples of some non-null
proportions vectors used are given in Table 6. The reader interested in the details
of the method used to obtain the non-null proportions vectors is referred to Mandeville
(1969).

Because of the poor results obtained for the multivariate test, no power results
will be presented here for the M statistic. Tables 7 through 10 contain power results
#or the Q and F tests. Dashes in these tables indicate that 1inear non-null propor-
tions vectors do not exist for that combination of o, 1-g and the other parameters.

The results indicate that the F test is more powerful than Q for the designs with
2 or 3 treatments if a 1% level of significance is used and for either the 5% or 1%
level for designs with 6 or more treatments. Of course, these results parallel those
found in the earlier part of the investigation and are, therefore, not surprising.
However, it is also noted that the F test yields empirical power which is in good
agreement with, although generally slightly less than, normal theory power.

For the F statistic, the largest deviations of empirical from normal theory
power results occurred for the two treatments designs. For both sample sizes, the
largest average deviation occurred when normal theory power was .60 for 1% tests. These
average empirical power values are .529 and .570 and represent deviations of .071 and
.030 from the normal theory value of .60.

The ranges of the observed empirical power values were similar for F and Q and
decreased for larger numbers of treiatments so that they were seldom larger than ebout
050 for 6 and 10 treatments. This result is also consistent with the facts brought
out earlier that Q is testing the more generai hypothesis which includes treatment X
block interaction and that the denomimator of Q may be slightly inflated by the mean
square for treatments. This effect should be most readily observed when the treatment
mean square is lgrge and the number of blocks is small, i.e., for a = .01 and I=10.

Tables 7 - 10 verify that in these cases the advantages of F over Q is greatest.
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The limited attempt to generalize the results using o = .3 and the non-patterned
correlation matrices have produced results which are in reasonable agreement with those
for o ® .5 and patterned correlation matrices.

Summary and Conclusions

Considering test size, designs with 60 or more total observations were found to
lead to average relative error for F and Q of about 20% or less for 5% tests. Results
for F and 0 were similar for ¢ = .05 for 2 or 3 treatment desions. For desions with
& or more treatments, the F test lead to to empirical size closer to nominal o than did
the Q test. For o = .01 the F test out performed Q but relative errors for both
statistics were often as large as 40%. !hen only designs and parameter specifications
for which the average effective sample size was 6 or more were considered, the results
were in aood agreement with those reported by Cochran. For these cases the advantage
of the F test for a = .01 was again observed. I!'hen non-patterned correlation matrices
were used in conjunction with small null ¢ values, there was a slight tendency for the
resulting tast procedures to be more conservative than those with patterned ccrrelation
matrices.

As would be predicted from the results on test size, when power was considered,
the F test proved to be more powerful than Q for ¢ = .01 and for designs with 6 or
more treatments this effect was observed for 5% tests also. The empirical pover for
F was generally slightly less than the nominal value but the results were close enough
so that the use of standard parametric procedures to estimate sample size requirements
seems justified.

This research was begun in hopes of allowing a recommendation that ANOVA procedure
be used instead of Q for dichotomous data in a randomized block desian. In addition
to these two procedures a multivariate test was also considered. In the comparisons

that have been made, the F test has:
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Provided, for 5% tests, empirical size which has heen as close to the nominal
value, or closer to it than has been obtained for either Q or M,

Yielded empirical size closer to nominal size for o = .01 than has been
obtained for either Q or M,

Provided a maximum average percent error of about 20% for 5% tests when the
total number of observations is 60 or more.

Yielded a median average relative error of about 10% for o = .05 and 25% for
a = .01 for designs with average effective sample size of 6 or more.

Proved to he more powerful than Q for 1% tests for all designs considered.
Proved to be as powerful or more powerful than Q for 5% tests.

Yielded empirical power which was in good agreement with power predicted from

normal theory calculations.

On the basis of these results the F test is recommended over Q or M when all of

the following situations are met:

1.
2.
3.

The researcher is mainly concerned with comparing average treatment effects.
Sixty or more total observations are available.

The interrelationships between the variables may be assumed to be reasonably
constant.

The average success proportion is in the range R

The data might reasonably be thought of in terms of a normal ogive or

logistic scaling model.

True type I errors may deviate by about 20% relative error for a = .05 and

by 40% or less for a = .01 tests. By way of warning the reader should realize
that, for either the F test or the Q test, certain large data sets can lead

to results which deviate considerably from those obtained by the exact
procedure. Thus, as pointed out by Tate and Brown, "ihen the true significanc

level is needed, it would seem neccessary to construct the exact sampling
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&istribution.“ (1964, p. 18)

7. If power against linear non-null proportions vectors is of interest to the
researcher, it is suggested that sample size computations based on novrmal
theory considerations can be recommended.

The writer feels that these rules are somewhat conservative but suggest that further
work possibly of an analytic nature, te done to determine the extent of the dependence
of the results on points 3 and 5 above. It is hoped that work on generalizations to

two treatment dimensions would also be forthcoming.
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Table 4 -- Empirical upper tail probabilities for three test statistics
for the 3x10 and 3x20 designs using a non-patterned correlation matrix.

Sample Statis- Nominal Type I Errvor \
Size tic ¢ .10 .05 025 01 | E
! L {
oo 044 013 001 000 ; 82
Q .3 099 €53 012 004 30
5 m 052 016 004 28
.1 044 013 001 000 82
10 F .3 101 053 014 005 23
5 116 052 021 007 17
| 004 001 000 000 99
M .3 055 019 008 002 64
.5 065 018 003 001 69

.1 090 043 019 no3 39
Q 3] 094 051 026 008 8
5 104 058 022 004 23

.1 09 043 019 005 24
20 F 31 098 051 029 015 18
5 105 058 028 on n

.1 053 013 004 000 76
M 31 098 039 017 007 22
SNz 051 025 009 7
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Table 5 -- Empirical upper tail probabilities for three test statistics
for the 6x10 and 6x20 designs using a non-patterned correlation matrix.

Sample Statis- Nominal Type I Error
Size tic | ¢ .10 .05 025 01 E
A 069 021 007 001 63
4] .3 098 051 026 on 5
51 073 034 016 005 36

073 031 013 a4 - 4
107 065 031 015 | 28
083 040 025 008 14

000 000 000 000 | 100
045 017 006 003 67
047 015 007 000 74

068 036 012 004 43
098 051 023 009 6
089 045 018 010 12

073 039 015 006 32
103 055 031 013 17
093 048 022 012 n

053 017 003 000 75
102 048 021 009 8
092 039 017 008 | 21
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Table 7 -- Empirical power for the Q and F tests for desions with
2 treatments. Non-null proportions vectors would yield theory power
for the F test of .60 and .80 at each of « = .05 and .01.

~ Statistic Q | F
Nominal o .05 01 .05 .01
Sample Nominal Power for F q‘ Nominal Power for F
Size % o | .60 .80 .60 .80, .60 .80 .60 .80
.5 .0 | 550 688 421 583 | 550 €83 586 754
5 .2 i 582 761 352 547 552 761 553 753
10 5 5 ! 600 785 200 508! 600 785 525 732
5 .8 | 565 82 258 481 565 826 476 708
3 .2 | 508 796 279 - | 598 79 507 -
AVE 576 771 320 530| 575 M 529 737
RANGE 048 138 163 102]| 041 138 110 046
5 .0 | 523 751 509 691| 561 774 612 N
5 .2 | 560 746 494 699| 574 768 596 786
20 5 .65 | 553 784 474 730| 554 785 547 797
5 .8 | 625 846 490 754| 625 846 508 763
3 .2 | 58 778 518 736| 594 781 587 793
AVE 560 781 497 722| 582 791 570 782

RANGE 102 100 044 063! 071 078 104 034

Note: On this and succeedina tables the dash "-" indicates that,
due to the restrictions on the ¢-values, no ron-null vector exists.
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Table 8 -- Empirical power for the Q and F tests for design with 3 treatments.
Mon-null proportions vectcrs would yield normal theory power for the F test
of .60 and .80 at each of o = .05 and .01.

Statistic! 0 % F

tominal o .0 .01 .05 .01

Sample i Mominal Power for F Nominal Power for F
Size ¢, p | .60 .80 .60 .80 .60 .80 .60 .80
5 .0 i 586 778 510 685 | 586 778 599 762
5.2 § 599 762 473 672 | 599 762 568 745
5 .5 :586 623 455 657 | 586 823 556 763
10 5 .8 ! 576 811 397 660 | 576 811 545 772
3 .2 'e6 0 - - |66 80 - -
5 NP % 586 799 462 684 | 586 799 57F 769
monTmBanes
6§ .0 | 614 800 568 732| 614 800 613 779
5 .2 | 619 775 540 772| 619 775 603 809
5 .5 | 501 803 525 749 501 803 586 798
0 § .3 | 632 806 561 768| 632 806 623 80
3 .2 |58 810 6554 754 586 810 609 802
5 NP | 588 791 540 728 588 791 528 768
AVE 605 798 550 751| 605 798 605 793

RANGE 046 035 043 044] 046 035 037 041
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Table 9 -- Empirical power for the Q and F tests for designs with
6 treatments. Non-null proportions vectors would yield normal theory
power for the F test of .60 and .80 at each of o = .05 and .01.

e — -

Statistic Q — F
Nominal o .05 .01 .05 01
gample Mominal Poﬁéfoor F Mominal Power for F
Size b P 60 .80 .60 .80 .60 .80 .60 .80
5 .0| 580 747 500 729 | 610 786 58 818
S5 .2 652 765 502 725 594 799 599 805
5 5| 543 769 514 721|590 791 612 7N
10 5 .8 496 732 471 683 536 765 572 768
3 .2 | 568 778 473 - | 607 806 58I -
5 NP | 557 758 531 741 : 599 770 598 792
AR AL
5 .0 604 801 559 755 619 809 597 788
5 .2 | 573 777 563 746 587 794 612 773
5 .5 | 577 769 584 750 | 592 789 624 780
“ 5 .81 574 797 566 780, 601 810 610 81
3 .2 1615 793 541 7N 632 808 597 80
5 NP | 588 786 522 747 609 794 556 775
oBREDEIRRE
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Table 10 -- Empirical power for the Q0 and F tests for designs with
10 treatments. Non-null proportions vectors would yield normal theory
power for the F test of .60 and .80 at each of « = .05 and .01.

Statistic ; Q F
Nominal « ; .05 .01 .05 .07
Sample Nominal Power for F Nominal Power for F
Size % ° .60 .80 .60 .80 | .60 .80 .60 .80
bS5 .0 | 569 758 533 720 | 587 788 597 774
b5 .2 | 542 767 525 734} 579 794 597 795
5 5 | 568 764 532 715 611 799 602 799
10 5 .8 | 5156 723 482 707 | 548 757 578 749
.3 .2 | 540 756 514 - |58 79 617 -
AVE 545 754 517 719 | 681 786 598 779
RANGE 053 044 050 027 | 063 042 039 050
5 .0 | 576 786 557 771 | 593 800 588 796
5 .2 | 567 780 559 768 ] 589 794 590 797
5 .5 [ 590 756 563 799 | 609 765 590 816
« b5 .8 | 578 7711 584 761] 592 781 611 78
3 .2 504 786 548 767 § 613 794 585 793
AVE 581 776 562 7731599 787 593 797
RANGE 027 030 036 038 ( 024 035 026 032

Py



