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A Comparison of Three Methods of Analyzing Dichotomous

Data in a Randomized Block Design

Garrett K. Mandeville, University of South Cirolina

Introduction and Review of Literature

Many situation's arise in behavioral research Nere the data fit nicely into the
trN
-4"

randomized block paradigm. For example, when information is available on an antecedent

variable such as aptitude, subjects may be "blocked" on the basis of these scores to
C:3

LAJ gain precision in comparing effects of the independent variable, e.g., teaching methods,

on thP dependent variable, e.g., achievement. Often this randomized block design would

be an improvement over the completely randomized design. When a single subject responds

to a serfes of trials or to varying treatment conditions given in random order the term

repeated measures design is commonly used in the behavioral literature. In each case

the experimenter wishes to compare the strength of response for the treatments, trials,

etc., or test or estimate some contrast of their effects. The methods of analysis are

the same, however, and this is why the terminology randomized block paradigm was used

above.

Uhen the response variable is continuous, analysis of variance (ANOVA) or a

multivariate procedure would probably be used to analyze the data. A recent study by

Porter and McSweeney (1970) has considered the advantages of blocking in situations
mkt(

where a non-parametric analysis is to be performed. It is this writer's contention,
14.44

however, that many situations occur in beh3vioral research where the measurement is

of such quality as to invalidate any of these techniques. Of particular interest in

110.4 this study are situations where the dependent variable is dichotomous. A few examples

C.) are learning trails in which the subject makes either the correct or incorrect assoc-

° iations, maze runaing in which a rat turns right or left, problem solving where the

problem is solved or not solved and attitude surveys in which the respondent agrees or
litemq

disagrees. Sometimes the crude dichotomous response is obtained to facilitate speed.

Crq
Numerous examples of dichotomous dependent variables in psychological experiments are
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given in seogar and Gabrielsun ("GO, 11- 270). The question of how to analyze data

in a randomized block design when the dependent varlabla is dichntomnus is not dis-

cussed with any frequency in the applied statistical literature.

Cochran (1950) presented the 0 test as a procedure for testing the hypothesis

that in each block, the response probabilities are constant for the various treatment

levels. (Mote that the terms blocks and treatments will be used for convenience herel

the reader should understand that blocks may represent a set of subjects grouped to-

gether or multiple measurements on the same subject, etc., and that treatments, which

might be more appropriately called treatment levels, are the conditions for which

comparisons of effects are desired. Also, for definiteness, let us MUM that there

are I blocks and J treatments.) The Q statistic is based on a randomization argument,

i.e., if the treatments are no different, the u
i
positive responses in block i could

have, with equal probability been arranged in any of the (
ui

) ways. Under randomi-

zation, the responses have the same variances and because of symmetry the covariances

between any response pairs are also equal. Tha sum of squared deviations among the

J treatment totals is, for large samples, shown to approximate a multiple of the x2

distribution.

Let us clarify the hypothesis tested with Q. Let 44i represent the "success"

probability associated with the application of the jth treatment in the ith block.

Then the null hypothesis of the Q test, is Nol : = 442 a ...=440 for lull, 2,....,I.

Note that the hypothesis of ANOVA is of lesser magnitude, i.e., No2: -4)-.121

where IT is the average success probability for the jth treatment. It should be clear

that Nol is a composite of No2 and the hypothesis of no treatment x block interaction.

Seegar and Gabrielson (1968) consider data sets with varying amounts of treatment x

block interaction and observe that, as one would expect, the Q test does have power

to detect situations where interaction exist, but No2 is true. It is probably true,

partly because of the unfortunate way Q is handle in secondary sources, that resear-



chers do not realize the subtle differences in these hypotheses. Tukey's test for non-

additivity would provide one method for detecting an interaction of the multiplicative

type, but would probably be of limited usefulness in most applications in the behavioral

sciences where blocks are random. Other suggestions are given in Draper and Porter

(1970).

Uhen Cochran introduced the Q test, he presented some results comparing probabil-

ities obtained using the x2 distribution with the exact probabilities obtained using

randomization. The problems he studied were kept small to facilitate computation, the

number of treatments ranging from 3 to 5 with from 6 to 16 blocks. In addition to

computing Q for these data sets, the F ratio for a randomized blocks ANOVA was also

computed. Cochran also computed Q' and F' which were values of these statistics correc-

ted for continuity and they were obtained by finding the next smaller value of the

statistic and averaging the two. For each of these statistics, then the appropriate

table was entered and the probability of a larger vaiue was obtained. These were then

converted to a percentage error by computing

100 (Tabular P-True P)/(True P)

Cochran stated that the F' was decidedly better than F and so he did not present results

for F. Of the other three statistics, Q was suggested to be preferred. It exhibited

a negative bias, i.e., a tendency to underestimate the true probability when true P

was In the range of .2 to .02 and, overestimate the true probability (corresponding

to a conservative test) for true probabilities below .02. The corrected x2 had a

positive bias over the whole range of true probabilities while F' had a tendency towards

a negative bias.

Although it my strike the reader as being strange that Cochran would even con-

sider the F test in this situation, the following quote is illuminating: HI had once

or twice suggested to research workers that the F test might serve as an approximation



even when the table consists of l's and O's'...this suggestion was received with

incredulity, the objection being made that the F test requires normal;ty, and that a

mixture of l's and O's could not by an stretch of the imagination be regarded as norm-

ally distributed. The same workers raised no objections to a x2 test, not having

realized that both tests require, to some extent, an assumption of normality, and that

it is not Cbvious whether F or x2 is more sensitive to this assumption" (1950, p.262).

Cochran further justifies consideration of F because of the widespread interest in

the application of analysis of variance to non-normal data and, although his results

are discouraging with regard to the F test, he notes that the application of F test

to more complex tables should be kept in mind.

One important point which Cochran makes, which has been overlooked hy most secon-

dary sources is that 0 is invariant under deletion of what will be termed here as

"non-informative" blocks, i.e., blocks with responses of all O's or l's. Therefore,

the term "large samples" must be used with caution and many statements in textbooks

such as McNemer (1962) and Siegel (1956) are misleading in this regard.

A more recent study of the sampling distribution of Q for small samples was done

by Tate & Brown (1964, 1970). These writers clarify the fact that Q is not changed

upon deletion of non-informative blocks but point out that the F test is changed by

this deletion. This is because the degrees of freedom of the residual mean square

will change with the number of blocks in the experiment thus affecting both its value

and the reference F distribution. Using data from Fleiss (1965), Tate and Brown com-

pare results using F and Q and the exact probabilities from randomization. When no

rows are deleted, the percent errors of F and q are similar for the full table of the

Fleiss data but when non-informative rows are deleted, this one set of data suggests

that the F test has a negative bias. Tate and Brown go on and tabulate the exact

distribution of Q for designs with 3 treatment and from 3 to 12 blocks; 4 treatments

and from 2 to 8 blocks; 5 and 6 treatments and from 2 to 5 blocks. The tables are
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presented in Tate and Brown (1964). By comparing Q to the exact probabilities for

these tables these writers observe a negative bias in Q, but suggest that, when the

product of the number of (informative) blocks and treatments is 24 or more, the

approximation using Q is probably sufficient for most practical work.' This is based

on the observation that, for the distributions they consideree for which this was true,

median percent errors were in the range of 12% to 20%. For situations in which the

product is less than 24, the exact tables of Tate and Brown may be used. Tate and

Brown give no comparison of F and C for these distributions.

The other rather extensive study reported in the literature concerning Q is the

one already mentioned by Seegar and Gabrielson. These researchers were interested in

extending the Q test to a situation in which there was more than one measurement avail-

able for each treatment-block combination. An eytension of Q to this situation was

presented and it was compared to the ANOVA F test using the treatment x block mean

square as the error term. Although they did not consider it, a point in favor of the

F test in this design is that it allows both treatment effects and treatment x bloc!(

interactions to be tested whereas the extended version of the Q test which they sugges-

ted tested the same hypothesis as Cochran's original test. The results of this study

suggest that where Hol is true, Q (or the modification) can be used when the product

of the number of blocks and the number of replications per trcatment is in the range

10 - 20. The above test, however, requires that treatment x block interactions be

null for otherwise Ho
1
is false and the Q test will have power to detect this. In

these situation the F test, to test 1102, will still provich a reliable answer for

from 5 - 10 subjects. Seegar and Gabrielson point out that when Hol ( and therefore

1102 ) is true, the F test is as good as Q. The arcsin transformation was found to pro-

vide results which were very similar to those of the F test.

Although Cochran's results with F (and F') suggest that it leads to underestimates

of the true probabilities, it needs to be said that Seeger and Gabrielson did not find



this to be true in their study. There is a subtle difference in the methods used by

Seegar and Gabrielson and by this wTiter on the one hand and by Cochran and Tate and

Brown on the other. The method used here was to define critical regions using the

reference F or x2 distributions and tallying the instances of a significant value for

the statitstic. Thus, what becomes important is how the empirical (discrete) and

theoretical (Forx2) cumulative distributions compare at the selected points. In the

study to be reported here, the 90th, 95th, 97.5th and 99th percentiles of the F and x2

distributions were used to designate lower boundaries of critical regions for a = .10,

.05, .025 and .01. These were selected because they cover common significance levels

employed by educational researchers.

This writer decided to take a closer look at the properties of the F test in a

randomized block design with one replication per cell. This comparative study of the

F and Q tests seemed in order since the only comparisons available in the studies cited

above were limited to the few examples of Cochran and Tate and Brown and the few

simulations for one replication of Seeger and Gabrielson. The research is restricted

to one replicate because it was anticipated that researchers with more than one obser-

vation per cell would use an F test to allow for a test of interaction.

Some writers have suggested that recent results of Hsu and Feldt (1970) and

Lunney (1970) for ANOVA with dichotomous data in independent cells designs can be

applied to ANOVA in designs where the data are correlated. Because of the differences

in fixed and mixed ANOVA models, this writer suggests that a certain amount of caution

be exercised here. It is the feeling of this writer that the F test should be the

recommended procedure if it simply provides results which are as good as Q because;

(1) it is more flexible than Q and, therefore, more promising for complex designs,

(2) it is so frequently used, and therefore probably fairly well understood by educa-

tional researchers and :3) many computer programs are available to facilitate the
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analysis. For researchers who are mainly concerned with differences in average

success proportions, some form of F test should be recommended over Q because of the

power of the Q test if treatment x block interactions exist.



The Model and Test Statistics

A common specification of the model is Yil = u+ai + si + eij where the ai are

block effects and are randomly sampled from a normal population with mean zero and

2
variance alk, the oi represent fixed treatment effects (cifii=0) and residual variatia

is included in the c
ij°

Tne c
ij

are from a normal population with mean zero and

variance02andtheaiandthe.elj are independent (that is, within and between sets).

This model leads to correlations between measurements within a block which are the

same and this, therefore, becomes an assumption in the "univariate" ANOVA solution of

the problem.

l'ithout onipft into the dctail of roproducino comnutational formulas, which are

well known to most, some comparisons will Pv drawn between the n and F statistics.

In order to compute thn and the F statistic, the followino two sums of squares were

abtaineo: nsT, tho sum of squams duc to tmatmcnts, and SS
E

, thc error sum of squares
m
ST

Then formulas for Q and F are Q = I(3-1) SST/DST + SSE] and F
rupE

[SSEAI-1)(J-1)]. The null distribution of the Q static approaches x4 J.1 as I

increases (this assumes that some "informative" vectors have a positive probability)

and the F statistic was compared to the F distribution with 3-1 and (I-1)(3-1) degrees

of freedom. Manipulations carried cut to allow comparison of F and Q yield

(1/(J-1) = MS
T

ru.n 14SE+ft1y/I

This statistic, of course, can be referred to the FJ.19,1 distribution. Paralleling

a discussion of D'Agostino (1971) we observe that the denominators of F and 01(3-1)

differ only slightly, and we will expect that, for large numbers of blocks, test size

results for the two methods will be very simdlar. However, it appears as though,

when treatment affects are non-null, the denominator will be inflated and power of

Q relative to F, will be lowered,

A more general model than the one above is to consider the observations in a

block, the Yil, Y12, .... Yu, to be a vector observation from a J-variate normal

..s.



distribution with mean vector py and general covariance matrix ty. The hypothesis

of interest, in this more general case, is that the elements of Vy are equal, i.e.,

that Ily1 ge uy2 = = pyj. The problem is solved by transformine the Y's to a

space of J-1 contrasts (differences are the most straightforward) using a transfor-

mation matrix C which has J-1 independent contrasts as rows. Then lc m cy and the

hypothesis above becomes px = Q which can he tested using Hotelling's T2 statistic,

12
x
'it Actually a simpler computational form is given by Rao (1965) as

T231(1-1) [1 Ax #11/ Ax11111] where Ax is the sum of products matrix for the

transformed variables. The multivariate statistic used here was [I-J+1] T2/[(I-1)

(J-1)] which is distributed as an F with J-1 and I-J+1 degrees of freedom if the

hypothesis is true. The reader is reminded that I in the above formulas is the

number of blocks not the identity matrix.

P.9..



Data Generation and Parameter Selection

The generation of a dichotomous response .-ector requires a researcher to specify

a model which allows various degrees of dependcley tobe manifest in the resnorses. If

this study were dealing with continuous variables, the multivariate normal distribution

would probably be the model used because of the many statistical procedures which

assume that the data are sampled from it. In this study a multivariate normal distri-

bution was assumed to be latent in the data, i.e., the assumption was that underlying

each response was a normally distributed continuous random variable. This continuous

variable was then compared to a fixed "cutting score" and if the response surpassed

it a one was recorded, otherwise the response was taken to be a zero. The cutting

score was determinded by the success proportion associated with the particular mea-

surement involved.

The problem of selecting the multivariate normal distributions to be used for

the generation of the latent variables amounted to selecting correlation matrices,

because the means and variances for the dichotomous variables are determined by the

success proportions used. When only two measurements are made in each block, only

one correlation needs to be specified and the four values taken for thts parameter

were .0, .2, .5 and .8. The use of the zero correlations, or no association between

the two measurements, will provide information on tilt Actent to which applying an

analytic technique for correlated data will penalize the researcher when in fact

the data are unrelated. The use of a maximum correlation of .8 was justified because

it is unusual when larger correlations occur in practice in educational research.

For more than two measurements, however, more than one measure of association

needs to be selected. For three measurements, for example, there are three pair-

wise correlations which need to be specified. For the major portion of the study,

these pairwise correlations were all taken to be 2miel and again the values of .0,



.2, .5, and .8 were used. Mat this means is that for the latent variables for most

of the results presentPd nere, the ANOVA assumption of equal correlations among the

variables was satisfied. For the portion of the investigation dealing with type I

error, i.e., when the success proportions for the treatments were equal, the popula-

tion covariance matrices for the dichotomous variables also satisfied this assumption.

However, when power was investigated, i.e., the success proportions were not the

same for all treatments, the covariance matrix does not satisfy the pattern assumption

of equal variances and covariances.

The number of treatments in a block was taken to be 2, 3, 6 and 10. Again, it

was thought that this would provide a range for this parameter which would include

most practical cases in educational experimentation. An exception would be a situation

where each response was an item response in a test. In this case, of course, tests

with more than ten items would be commonplace. However, it is not generally of

interest to a researcher to determine whether the items in a test are of the same

difficulty. The number of blocks was taken to be 5, 10, 20, and 30. It was antici-

pated that whatever large sample effects which were to be observed would be manifest

for samples of size 30.

For the investigation of type I error, the null hypoth3sis is true, and the

success proportions for all treatments are the same. To span the range of success

proportions from 0 to 1 is unnecessary since by redefining success and failure,

results for the range 0 to .5 can be applied to the range .5 to 1. The values of $

the constant success proportion, which were used in this study were .1, .3 and .5.

For success proportions smaller than .1, it is anticipated that, unless sample sizes

are extremely large, a researcher should probably consider some alternative method

of anatysis.

Taking all combinations of the four values of J, the number of treatments (2, 3,

6, and 10) and I, the number of blocks (5, 10, 20, and 30) sixteen different designs



were initially to be considered. Due to limitations on computer time, the 10 treat-

ment by 30 block design was eliminated. For each of the remaininn fifteen designs,

simulations were run for each level of to, the correlation among the measurements in a

block (.0, .2, .5 and .8) in combination with each value of 41, the constant success

proportion (.1, .3, and .5). Therefore, twelve simulations occurred for each design.

In addition, for 3 and 6 treatments. a non-patterned correlation matrix was constru-

cted and this was used in conjunction with each of the three svalues. These runs

were limited to designs with 10 and 20 blocks.

To describe how the simulation took place the following listing of the steps

involved in the determination of empirical test size is presented:

1. Values of I, the number of blocks, and J, the number of treatments, were

set.

2. A correlation matrix R either constant with intercorrelations of .0, .2,

.5, and .8 or a non-patterned matrix in a few special cases, was specified.

3. The vector of success proportions with all elements equal to s = .1, .3

or .5 was selected.

4. A sample vector was generated from a multivariate normal distribution with

covariance matrix R.

5. Each response was converted to a one if it surpassed the (1-s)th percentile

of the standard normal distribution. Thus for sm.3, any latent variables larger

than the 70th percentile of the standard normal distribution, i.e., larger

than .52, were converted to a one; otherwise a zero was recorded. In this

way, each continuous response vector was converted to a vector of O's and

l's.

6. The quantities necessary for computation of the three test statistics were

accumulated.

7. Steps 4 - 6 were applied for data for each of the I blocks.

-12-

12



8. The values of the three statistics, Q, F, and m were obtained.

9. The boundaries for frequency distributions for each of the three statistics

were computed. Of importance here are the 90th, 95th, 97.5th and 99th

percentiles which were obtained for each of the three reference distributions.

This step in the program was bypassed after the first data set was generated.

10. The computed statistics were cast into the frequency distributions set

up in step 9.

11. Steps 4 - 10 were performed 1000 times.

The resulting empirical proportions above each of these percentiles are to be taken

as estimates of true type I error (test size) for the test procedure.

For consideration of power the only alteration in the procedure was that, in

step 3, a non-null proportion vector was read into the computer which would, under

certain normal theory considerations, yield power of .60 and .80 for type I error

of .05 or .01. Thus, the four combinations of a and 1-0 reouired four simulations

for a given design and R matrix.

Before discussing the results a word about how non-informative blocks were

handled in this investigation is in order. From a logical point of view, these data

vectors support the null hypothesis since, within them, no differences between the

treatments are manifest. If the measurement scale had not been so crude, these scores

would probably have been °closer together" than scores for blocks which exhibited

variation. The retention of these vectors, which causes the estimated probabilities

to increase and, therefore, the statistical tests to become more conservative, is one

way to take account of such data. The retention of degrees of freedom in the denom-

inator of F for these vectors is along the lines of Cochran's suggestion that, since

F as he computed it tended to be liberal and x2, with essentially infinite degrees

of freedom in tLe denominator, tended to be conservative, possibly some artificial

number of these "non-informative" vectors would yield an empirical distribution which

13-
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provided a better fit to its theoretical counterpart. This researcher vas not con-

triving to find out whether an appropriate mixture of these non-informative vectors

could be identified but rather if when sampling over a wide range of parameters, this

effect that Cochran suggested does actually tend to produce better results using the

F test rather than the Q test. Along these same lines Meyer (1967) has shown that the

unconditional size of McNemar's test (Q test for J a 2) is less than nominal a unless

"non-informative vectors have probability zero. 411 of these considerations led

this investigator to retain the ordinary degrees of freedom in the denominator of the

F test used.

141



Results

In table 1 the reader will find summary results of the main portion of the

investigation dealing with test size. The values in the table designged by AVE are

averages uf the proportions of times that the computed statistic exceeded the corres-

ponding percentile of the appropriate reference distribution. The averages were taken

over the 12 runs coming from the combinations of the four levels of interdependency

among the observations in a block (p) and the three levels of success proportions (0.

The rows of this table denoted PCT are the average relative (percent) errors. Again

each average is based on 12 relative errors and, for a given run, the relative error

is (p-a)/a where p is the empirical type I error and a is the nominal type I error.

The quantity ris the average of these relative errors for these four selected upper

percentiles.

Looking at the r values, an immediate observation is that, using this measure

of fit of the empirical and theoretical distributions, the F test has a smaller

average error than either Q or M for each design considered. It is also true that

Q out performs M on this basis. Comparing Q and F for a moment we observe that the

advantages of F over Q are largest for designs where the number of treatments is

large relative to block size. For example, the largest difference in the r values

is for the 10 treatment by 5 block design where ris 60% for the 0 test and 29% for

the F test.

Looking at the relative error as a function of nominal type I error we observe,

as might be expected, that the errors increase as we go further out in the tail of

the distribution, i.e., the fit of the empirical and theoretical distributions is

poorer for a m .01 than .05. This trend is more noticeable for Q than for F and, to

a large extent, this accounts for the smaller rfor F for designs with two or three

treatments. As a matter of fact, for two and three treatment designs, AVE and PCT

values are almost identical for a m .10 and .05. The finding of Cochran that Q has



a positive bias above the 98th percentile is substantiated; the largest value of

AVE for m a .01 is .008 for the 10 x 20 design and most of the other values are sub-

stantially smaller. Although the corresponding value of AVE for the F test only

achieves .01 for the 10 x 20 design, the majority of values for designs of modest

size were as large as .008. Finally, the expected result that as the number of blocks

increases the fit of the empirical and theoretical distributions is better, is observed

This writer somewhat arbitrarily selected the value of 20% relative error as a

value which may be reasonably allowed in most educational experimentation. For tests

at the 5% level this would correspond to average test size between .04 and .06. Con-

sidering 5% level F tests, the designs which satisfied this criterion led to the

simple rule of those with 60 or mote total observations, i.e., 2 x 30, 3 e20, 3 x 30,

6 x 106 etc. As pointed out above, for cs a .05, F and Q do not differ for two and

three treatments. It is also true that for six and ten treatments, the differences

are minor so that, by bending the rule to allow PCT values of up to 22%, all of these

designs satisfy the criterion for the Q test. As has been noted earlier, the F test

tends to provide a better fit than Q in the upper tail of the distribution. However,

for a m .01, no simulations produced PCT values of less than 20% for either F or Q.

For the F test, for the eight designs with 60 or more observations these relative

errors range from 26% to 47% with a median of 35%. The corresponding minimum and

maximum Values and median for Q are 30%, 60% and 45%.

Not much has been said about the multivariate test using the test statistic

denoted as M. It should be clear that, on the basis of the summary results presented

in this table, the multivariate test has little to recommend it. As the discussion

proceeds, certain characteristics of the multivariate test will be noted.

Although these results were somewhat encouraging, this writer noted that sample

size recommendations based on these data would be misleading. The reason for this

16



is that, certain values of the parameters used in this investigation lead to "effective'

sample sizes which are considerably less than the actual number of sample observations

generated. The point is that "non-informative" responses, have no affect on the

computation of either Q or the sums of squares for the F statistic. In Cochran's inves-

tigation of the small sample distribution of Q9 he used eight different data sets,

usually with about 3 or 4 treatments and 10 blocks. Cochran used only "informative"

data in his investigation and found average errors of about 14% for .05 level test.

Thus, with about 30 to 40 total observations, Cochran reported results which were

somewhat better than those obtained here with 60 or more total observations.

In an attempt to bring the results of Cochran and those summarized here into

closer agreement, this writer developed the notion of using "effective" sample size

(Ne) as a criterion on which to categorize the 12 runs for each design. Effective

sample size in this context refers to the number of "informative" response vectors

generated. Since Ne is a random variable for a given set of parameters p and 0,

the quantity which was selected to be used as a gross index of the number of "inform-

ative" responses was the expected or average value of Me, which will be denoted E(Me).

The computation of E(Ne) was carried out in the following manner. First, for

a given configuration of p and , it is necessary to know the probability of a

"non-informative" response (nel). For some cases, this could have been done easily

by hand. For example, for 0= .5 and p = .0, the probability of either (0,0) or (1,1)

response in a two treatments design is .52 +
52

= 5 This calculation is straight-

forward since p 0 which, for the normal distribution, implies independence of the

continuous latent variables. It is readily seen that the two binary variables are

also independent. For those cases when p was not zero, the probability RN of a

"non-informative" response vector was estimated by generating 10,000 such samples on

the computer. This method seemed to be sufficient considering the purposes for which

this information was being obtained.



Using the value of nN, the effective sample size should follow a binomial distri-

bution with the "nominal" sample size and 1-nN as parameters. For example for = .5,

p = 0 and "nominal" sample size of five, the distribution of Ne is:

Effective Sample 0 1 2 3 4 5

Size (NIL

Probability Pr(Ne) 1/32 5/32 10/32 10/32 5/32 1/32

The expected value of Ne was then computed in the usual fashion as E(Ne) =ENe Pr(Ne).

In the example given this computation yields an expected sample size of 2.5. The

careful reader will observe that, in some simulations, it is likely that all vectors

011 be non-informative. This situation leads to an indeterminate value for all

three of the statistics. For the data on test size presented here, these data sets

were taken as supporting the null hypothesis, and therefore, in the empirical size

computations, 1000 is retained as the base.

By comparing the results of individual runs to the E(Ne) this writer decided to

isolate for further consideration those runs with E(Ne
) greater than six. That these

runs are well behaved, is verified by Table 2 in which average empirical size results

are given for those runs which satisfied the criterion. 4e note that the results

are more in line with those presented by Cochran. In fact, the median relative error

for Q for a = .05 is 14%, the figure which Cochran reported. Again, the phenomena

that F and Q have similar characteristics fora = .10 is verified. For smaller

values of a, however, the median average test size and relative errors for F and Q

become increasingly different. For the two smallest values of nominal a, the relative

error of Q is smaller than that of F in only one comparison.

For F the largest relative error fora= .025 is 22% and most of the errors for

a .01 are 30% or less. For the multivariate statistic we observe that for 3 treat-

ments the procedure is fairly well behaved but that for 6 or more treatments, although

AVE values are close to nominal a in some instances, percent errors are very large.

This is due to a strange mixture of runs, most of which produce empirical type I error

which either grossly exceed or underestimate the nominal values, but which produce



averages which are reasonably close to those values. One of the reasons that the

results for the 6 and 10 treatment designs with 20 or fewer blocks lead to conservative

procedures is that there were many instances when M was indeterminate. These were

counted, the reader will recall, as instances for which the null hypothesis would be

accepted.

An alternative method of determining whether there are any systematic tendencies

for either of these procedures to be biased, is to count the instances in which the

empirical proportion is larger thar the nominal a. This was done for the 0 and F

test for each of the four values of a and the results are presented in Table 3. Since

the multivariate test using M had exhibited such poor characteristics up to this

point, results for it were not tabulated. An asterisk in this table signifies that,

for more than half of the runs, empirical size exceeded nominal a. The columns

headed "chance" in this table are simply one half the number of runs and indicate

what would be expected if the nominal type I error values were the medians for the

empirical proportions. The overall results indicate that, with the exception of the

F test for a m .10, for both procedures the empirical proportions tend to be less

than the nominal 4lues. However, the results for F are much nearer to the chance

results for all nominal a. When these data are exhibited by number of treatment

levels, the general statments made earlier are verified. For 2 or 3 treatments,

the main advantage of F over Q is for a less than .05; for 6 or more treatments,

F exhibits less bias over the whole range of a under consideration. The slight

tendency for empirical size to exceed nominal a for F for 3 treatments at a m .10

does not appear serious. There is also a tendency for the advantage of F over Q

to diminish, except for sMall a, for designs with 30 observations. Two summary

statements which seem in order are that (1) the F test provides a better approx-

imation to nominal a for small a (a less than .05) and (2) for designs with the

treatment to block ratio large (e.g., 6x10, 6x20, 10x10 and 10x20) the F distribution

also provides a better fit for the other nominal type I errors under consideration.



Although results of individual runs will not be presented here because of the

extensive number of tables which would be involved, a brief discussion of major

points of information which they provide will be given. They are: (1) the runs

excluded by the expected sample size greater than six criterion were the runs with

large p and/or small values. For all three procedures described here, these tests

were conservative. (2) For some smaller designs such as the 2x10, 2x20, 3x10 and

6x5, results using F will be reasonable if the data are not "pathologicaP!. That is,

the fit of the variance ratio distribution appears to be adequate if the occutince

of a success is not very rare and,at theieme time:thevariables are highly related.

(3) Results for the M statistic are very inconsistent for different combinations of

p and . For mildly correlated or uncorrelated data, the m statistic exhibited a

very serious tendency for empirical size to grossly exceed nominal type I error.

This tendency increased with block size and was not diminished as the number of blocks

increased. Probably the most serious instance of this was for the 6x30 design and

the p = .0, 0 = .1 run where the four empirical proportions were .226, 162, .101 and

.049. The average relative error here is 273%. Although the writer has presented

more complete infOrmation on the 11 statistic elsewhere (Mandeville, 1969), they have

not been presented here in the interest of space and also because of the deficiencies

already noted in the procedure.

Additional runs of test size were made for the three treatment and six treatment

designs using non-patterned correlation matrices. These matrices weTe not chosen to

be particularly exceptional, and, when taken in combination with the 2 .5 values,

yielded e values which were approximately .97 for three treatments and .95 for six

treatments. The quantity e, introduced by Box (1954a, 1954b), is a measure of

deviation from pattern and e = 1 for patterned matrices. Sample sizes of 10 and 20

were used in combination with null success proportions of .1, .3 and .5 and these

results are tabulated in tables4 and 5. Results of these runs are in reasonable
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agreement with those for constant correlation matrices. For example, for three treat-

ments the average correlation in the non-patterned matrix was near .5 so that compar-

isons with results for the runs with constant correlation of .5 are suggested. For

the F statistic and the 3x20 design, the average errors are 24%, 18% and 11% for

= .1, .3 and .5, respectively. Although not tabled here, the corresponding values

for a constant ci of .5 are 35%, 16% and 21%.

For the 6x10 design, however, the indication is that the non-patterned correlation

structure lead to more conservative results for 0 = .1 and .3 than the corresponding

results for a patterned correlation matrix with p = .2. The average correlation in

the six treatment correlatd:on matrix is about .3.

Designs which were investigated with respect to empirical power included those

studied as regards test size with the exception of designs with 5 and 30 blocks. Thus

designs with 2, 3, 6 and 10 treatments were investigated for sample sizes of 10 and

20 blocks. Sample size 5 'las eliminated since the results on test size I.Pere penerally

negative for such small samples unless a large number of treatments was involved. It

was also the feeling of the writer that elimination of samples of size 30 would not

greatly reduce the implications of this phase of the study.

Mon-null vectors of proportions were obtained which exhibited linear departure

about the central value 0c
= .5 and which would give theoretical (normal theory) power

of .60 and .80 for tests run at the 5% and 1% levels. Although the normal theorY

assumptions were certainly not appropriate for the situation, this method was used

so that, in the event that empirical power values were in agreement with the nominal

values, it would be possible to recommend that a researcher use standard procedures

for sample size computations. The constant correlation p was varied as before, taking

the values of .0, .2, .5 and .8. To allow some generalization of the results, the

combination Oc = .3 and p = .2 was also included. For some sample sizes, no set of

proportions between 0.0 and 1.0 could be found which satisfied certain size and power

21-21-



combinations. This only occurred for sc = .3, however. In addition, the non-patternec

correlation matrices were used in conjunction with A a .5. Examples of some non-nullfc

proportions vectors used are given in Table 6. The reader interested in the details

of the method used to obtain the non-null proportions vectors is referred to Mandeville

(1969).

Because of the poor results obtained for the multivariate test, no power results

will be presented here for the M statistic. Tables 7 through 10 contain power results

foe the Q and F tests. Dashes in these tables indicate that linear non-null propor-

tions vectors do not exist for that combination of a, 1-0 and the other parameters.

The results indicate that the F test is more powerful than Q for the designs with

2 or 3 treatments if a 1% level of significance is used and for either the 5% or 1%

level for designs with 6 or more treatments. Of course, these results parallel thoge

found in the earlier part of the investigation and are, therefore, not surprising.

However, it is also noted that the F test yields empirical power which is in good

agreement with, although generally slightly less than, normal theory power.

For the F statistic, the largest deviations of empirical from normal theory

power results occurred for the two treatments designs. For both sample sizes, the

largest average deviation occurred when normal theory power was .60 for 1% testx These

average empirical power values are .529 and .570 and represent deviations of .071 and

.030 from the normal theory value of .60.

The ranges of the observed empirical power values were simdlar for F and Q and

decreased for larger numbers of treatments so that they were seldom larger than about

.050 for 6 and 10 treatments. This result is also consistent with the facts brought

out earlier that Q is testin.g the more general hypothesis which includes treatment x

block interaction and that the denominator of Q may be slightly inflated by the mein

square for treatments. This effect should be most readily observed when the treatment

mean square is large and the number of blocks is small, i.e., for a m .01 and

Tables 7 - 10 verify that In these cases the advantages of F over Q is greatest.
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The limited attempt to generalize the results using oic m .3 and the non-patterned

correlation matrices have produced results which are in reasonable agreement with those

for 41c 111 .5 and patterned correlation matrices.

Summary and Conclusions

Considering test size, :fesigns with 60 or more total observations were found to

lead to average relative error for F and Q of about 20% or less for 5% tests. Results

for F and Q were similar for a .05 for 2 or 3 treatment desirns. For designs with

6 or more treatments, the F test lead to to empirical size closer to nominal a than did

the Q test. For a = .01 the F test out performed Q but relative errors for both

statistics were often as large as 40%. Uhen only designs and parameter specifications

for which the average effective sample size was 6 or more were considered, the results

were in good agreement with those reported by Cochran. For these cases the advantage

of the F test for ci es .01 was again observed. Men non-patterned correlation matrices

were used in conjunction with small null values, there was a slight tendency for the

resulting test procedures to be more conservative than those with patterned correlation

matrices.

As would be predicted from the results on test size, when power was considered,

the F test prowl to be more powerful than Q for .01 and for designs with 6 or

more treatments this effect was observed for 5% tests also. The empirical power for

F was generally slightly less than the nominal value but the results were close enough

so that the use of standard parametric procedures to estimate sample size requirements

seems justified.

This research was begun in hopes of allowing a recommendation that ANOVA procedure

be used instead of Q for dichotomous data in a randomized block design. In addition

to these two procedures a multivariate test was also considered. In the comparisons

that have been made, the F test has:



1. Provided, for 5% tests, empirical size which has been as close to the nominal

value, or closer to it than has been obtained for either Q or M.

2, Yielded empirical size closer to nominal size for a = .01 than has been

obtained for either Q or M.

3. Provided a maximum average percent error of about 20% for 5% tests when the

total number of observations is 60 or more.

4. Yielded a median average relative error of about 10% for a m .05 and 25% for

a = .01 for designs with average effective sample size of 6 or more.

5. Proved to be more Powerful than Q for 1% tests for all designs considered.

6. Proved to be as powerful or more powerful than Q for 5% tests.

7. Yielded empirical power which was in good agreement with power predicted from

normal theory calculations.

On the basis of these results the F test is recommended over Q or M when all of

the following situations are met:

1. The researcher is mainly concerned with comparing average treatment effects.

2. Sixty or more total observations are available.

3. The interrelationships between the variables may be assumed to be reasonabty

constant.

4. The average success proportion is in the range .1 to .9.

5. The data might reasonably be thought of in terms of a normal ogive or

logistic scaling model.

6. True type I errors my deviate by about 20% relative error for a se .06 and

by 40% or less for a .01 tests. By way of warning the reader should realize

that, for either the F test or the Q test, certain large data sets can lead

to results which deviate considerably from those obtained by the exact

procedure. Thus, as pointed out by Tate and Brown, "114hen the true significanc

level is needed, it would seem neccessary to construct the exact sampling

24



distribution." (1964, p. 18)

7. If power against linear non-null proportions vectors is of interest to the

researcher, it is suggested that sample size computations based on normal

theory considerations can be recommended.

The writer feels that these rules are somewhat conservative but suggest that further

work possibly of an analytic nature, te done to determine the extent of the dependence

of the results on points 3 and 5 above. It is hoped that work on generalizations to

two treatment dimensions would also be forthcoming.
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Table 4 -- Empirical upper tail probabilities for three test statistics
for the 3x10 and 3x20 designs using a non-patterned correlation matrix.

Sample Statis-1

Size tic 1

Nominal Type I Error
.10 .05 .025 .01

.1 044 013 001 000 i 82

Q .3 099 C53 012 004 30

.5 111 052 016 004 28

. 1 044 013 001 000 82

10 F .3 101 053 014 005 23

.5 116 052 021 007 17

. 1 004 001 000 000 99

.3 055 019 008 002 64

.5 065 018 003 001 69

20

.1 090 043 019 (103 30

.3 094 051 026 008 8

.5 104 058 022 004 23

1 091 043 019 005 24

.3 098 051 029 015 18

.5 105 058 028 011 11

1 053 013 004 000 76

.3 098 039 017 007 22

.5 117 051 025 009 7



Table 5 -- Empirical upper tail probabilities for three test statistics

for the 6x10 and 6x20 designs using a non-patterned correlation matrix.

Sample Statis-

Size tic .10 .05 .025 .01

069 021 007 001 63

098 051 026 011

073 034 016 005 36

Nominal Type I Error

073 031 013 004 41

10 107 065 031 015 28

083 040 025 008 14

000 000 000 000 100

045 017 006 003 67

047 015 007 000 74

068 036 012 004 43

Q 3 098 051 023 009 6

.5 089 045 018 010 12

1 073 039 015 006 32

20 F 3 103 055 031 013 17

.5 093 048 022 012 11

1 053 017 003 000 75

M .3 102 048 021 009 8

.5 092 039 017 008 I 21

33
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Table 7 -- Empirical power for the Q and F tests for designs with

2 treatments. Non-null proportions vectors would yield theory power

for the F test of .60 and .80 at each of a m .05 and .01.

tatistic

Nominal a .05 .01 , .05 .01

3.4-11;-Th-inr-rir-------T--4-1Ana ower for coffliiirlrogerfo71'
Size wc p .60 .80 .60 .80 .60 .80 .60 .80

.5 .0 559 688 421 583 559 688 586 754

.5 .2 552 761 352 547 552 761 553 753

10 .5 .5 600 785 290 508 600 785 525 732

565 826 476 708

598 796 279 - 598 796 507 -.3 .2

AVE
RANGE

575 771 320 530 575 771 529 737

048 138 163 102 041 138 110 046

.5 .0 523 751 509 691 561 774 612 771

.5 .2 560 746 494 699 574 768 596 786

20 .5 .5 553 784 474 730 554 785 547 797

.5 .8 625 846 490 754 625 046 508 763

.3 .2 586 778 518 736 594 781 587 793

AVE 569 781 497 722 502 791 570 782

RANGE 102 100 044 063 071 078 104 034

Note: On this and succeeding tables the dash °-" indicates that,

due to the restrictions on the 0-va1ues, no ron-null vector exists.



Table 8 Empirical power for the Q and F tests for design with 3 treatments.

Non-null proportions vectors would yield normal theory power for the F test

of .60 and .80 at each of a m .05 and .01.

.M1==a1MIMIMIMIll11..11111.01100.0101111111.MMEN

Statistic!

nominal u .05 .01 .05 .01

Sample
Size

10

Nominal Power for F Nominal Power for F

p i .60 .80 .60 .80 .60 .80 .60 .80

.5 .0 586 778 510 685

.5 .2 599 762 473 672

.5 .5 586 823 455 657

.5 .8 576 811 397 660

.3 .2 616 810 -

.5 MP 586 799 462 684

AVE 591 797 459 672

RANGE 040 061 113 028

586 778 599 762

599 762 568 745

586 823 556 763

576 811 545 772

616 810 -

586 799 57F 769

591 797 569 762

030 061 054 027

20

.5 614 800 568 732 614 800 613 779

.5 .2 619 775 549 772 619 775 603 809

.5 .5 591 803 525 749 591 803 586 798

.5 .8 632 806 561 768 632 806 623 804

.3 .2 586 810 554 754 586 810 609 802

.5 NP 588 791 540 728 588 791 5'.78 768

AVE 605 798 550 751 60! 798 605 793

RANGE 046 035 043 044 046 035 037 041



Table 9 -- Empirical
6 treatments. Non-n
power for the F test

Sample
Size

Nominal a

c p

power for the Q and F tests for designs with
ull proportions vectors would yield normal theory

of .60 and .80 at each of a = .05 and .01.

.05 .01 .01

Nominal Power for F Nominal Power for F

.60 .80 .60 .80 .60 .80 .60 .80

10

.5

.5 .2

.5 .5

.5 .8

.3 .2

.5 NP

AME
RANGE

580 747

552 765

543 769

496 732

568 778

557 758

549 758
084 046

500 729 610

502 725 594

514 721 590

471 683 536

473 607

531 741 599

499 720 589
060 058 074

786 584 818

799 599 805

791 612 791

765 572 768

806 581

770 598 792

786 591 795
041 040 050

20

.5

.5 .2

.5 .5

.5 .8

.3 .2

.5 NP

AVE
RANGE

604

573

577

574

615

588

589
042

801

777

769

797

793

786

787
032

559

563

584

566

541

522

556
062

755

746

750

780

771

747

757
044

619

587

592

601

632

609

607
045

809

794

789

810

808

794

801

021

597

612

624

610

597

556

599
068

788

773

780

811

801

775

788
038



Table 10 -- Empirical power for the 0 and F tests for designs with
10 treatments. Non-null proportions vectors would yield normal theory
power for the F test of .60 and .80 at each of m = .05 and .01.

Statistic

Nominal m .05 .01 .05 .01

Sample
Size

Sc p

INominal Power for F
.60 .80 .60 .80

Nominal Power for F
.60 .80 .60 .80

10

.5 .0

.5 .2

.5 .5

.5 .8

.3 .2

AVE
RANGE

559 758 533 720

542 767 525 734

568 764 532 715

515 723 482 707

540 756 514 -

545 754 517 719
053 044 050 027

587 788 597 774

579 794 597 795

611 799 602 799

548 757 578 749

580 790 617 -

581 786 598 779
063 042 039 050

20

.5 .0

.5 .2

.5 .5

.5 .8

.3 .2

AVE
RANGE

576 786 557 771

567 780 559 768

590 756 563 799

578 771 584 761

594 786 548 767

581 776 562 773
027 030 036 038

593 800 588 796

589 794 590 797

609 765 590 816

592 781 611 784

613 794 585 793

599 787 593 797
024 035 026 032


