
ED 063 776

AUTHOR
TITLE

TNSTITUTI3N
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 009 971

Siklossy, L.; And Othcrs
DATADRAW: A Command Languagn for ManirAilating and
Displaying Stacks, Queues, Lists and Trees.
Texas Univ., Austin. Computation Center.
National Science Foundation, Washington, D.C.
TSN-25
Aor 72
47o.

MF-$0.65 HC-$3.29
*Computer Science. *Data Processing; *Information
Processing; *Information Science; *Programiag
Languages
CDC 6600; DATADRAW

DATADRAW is a command language, written in FORTRAN
IV, to manipulate stacks, queues, lists and trees, and to display
them on the CDC 252 scope system attached to a CDC 6600. A DATADRA6
primer is given, and the algorithms for updating and displaying
structures are described. It is noted that DATADRAW was desigrA to
be a simple command language that students could use to farl/ .rize
themselves with data structures. (Author/RH)

0,1,-*-41K

rN

-N

DATADRAW: A ::::.wmani Language for Manipulating

and Displaying Stacks, Queues, Lists and Trees*

by

L. SiklOssy, L. Shroyer, and A. Blocher

April 1972 TSN-25

U.S. DEPARTMENT OF HEALTH. EDUCATION
& WELFARE

OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

*Work partially supported by Nrma Grant 15769.

THE UNIVERSITY OF TEXAS AT AUSTIN

COMPUTATION CENTER

DEPAREMENT OF COMPUTER SCIENCES

TABLE OF CONTENTS

Abstract

1. Introduction

2. A DATADRAW Primer

3. Semi-formal Definition of DATADRAW

3.1 Identifiers
3.2 EXIT
3.3 ACTIVE
3.4 STATUS
3.5 CREATE
3.6 KILL
3.7 DISPLAY
3.8 RENAME
3.9 PUT
3.10 COPY
3.11 DELETE
3.12 ADD
3.13 INSERT
3.14 PUSH and POP
3.15 TRAVERSE

4. Internal Representations

Page

1

2

8

9

10

10

10

11

12

13

14

14

14

15

16

16-2
16-3
16-3

17

4.1 Lists, Trees and Binary Trees 17

4.2 Stacks and Queues 18

4.3 Storage Management 18

4.4 Other Storage Areas 19

4.5 Note on Storage Efficiency 20

5. Notes on Some Algorithms used in DATADRAW 20

5.1 TREE and BTREE Information Management 20

5.2 DISPLAY of LISTs 21

5.3 DISPLAY of TREEs 23

5.4 DISPLAY of BTREEs 23-1
5.5 RANDOM Structure Generation 23-1

6. Synopsis of DATADRAW Commands 24

7. Error Messages 25

8. Acknowledgment 26

9. References 26

Figures 27

ABSTRACT

DATADRAW is a command language to manipulate stacks, queues, lists

and trees, and to display them on the CDC 252 scope system attached to

a CDC 6600. A DATADRAW primer is given, and the algorithms for updating

and displaying structures are described. DATADRAW is written in FORTRAN

IV.

1. INTRODUCTION

DATADRAW is a set of FORTRAN IV programs that per tit the user,

sitting at the CDC 252 scope terminal attached to the CDC 6600 computer,

to create, modify and draw data structures. At present, the permissible

structures are stacks, queues, lists and trees. These are some of the

most common data structures used in the information sciences.

The development of DATADRAW was motivated by three considerations:

1) to study efficient algorithms for generating, manipulating

and displaying data structures.

2) to provide a simple command language that students could use

to familiarize themselves with data structures. (The system

was used successfully for this purpose in the Fall of 1971).

3) to construct a system that "knows" data structures (in an

operative sense) and which could be used as the performance

program of a knowledgeable computer tutor El] .

In this report, we give examples of the use of DATADRAW, briefly

describe its syntax and semantics, and explain the more interesting

algorithms used. Section 2 is a primer on DATADRAW. Section 3 gives

a brief, but complete description of the command language. Section 4

explains storage management in DATADRAW. Section 5 describes some of the

algorithms used in DATADRAW. Section 6 is a synopsis of DATADRAW commands.

Section 7 listo the error messages generated by DATADRAW.

2 . A DATADRAW PRIMER,

2.1 Eata_in'AZOADRAW

To enter DATADRAW, run the following program for example;

2

5

ABCD123,John Doe
PASSWORD CARD
JOB,TM = 30.

RFL,77000.
ASSIGN,FM,FM.
READPF,3195, LGO.
LGO.

7/8/9card.

(ID card)

When this program has been executed, a light spot (called the column

indicator) will appear on the screen of the scope (if it is well focused).

At that point type

CLANG;

The semi-colon serves as a carriage return.

This command (pronounced KLANG) gives you access to the Command LANGuage.

We shall run through some manipulations of trees to exemplify some of the

capabilities of DATADRAW.

In case of typing errors, the characters is used to backspace,

while the character % is used to erase the whole input line. Wherever

a space occurs in a DATADRAW command, several spaces can be used. Error

messages are erased by a

Perhaps the easiest way to get started is to have DATADRAW create

a random tree for you. The command

CREATE TREE Tl RANDOM;

will create a TREE, and will name it Tl. Spaces can precede the ;.

Executing

STATUS;

will display in the top right corner of the screen all the structures

known to DATADRAW at that point. The display will be:

*Tl TREE

indicating that there is a TREE, named Tl. The * in front of Tl

indicates that Tl is the active structure, i.e. the one pre:Aantly

3

ABCD123,John Doe
PASSWORD CARD
JOB,TM = 30.
RFL,77000.
ASSIGN,FM,FM.
READPF,3195, LGO.
LGO.
7/8/9card.

(ID card)

When this program has been executed, a light spot (called the column

indicator) will appear on the screen of the scope (if it is well focused).

At that point type

CLANG;

The semi-colon serves as a carriage return.

This command (pronounced KLANG) gives you access to the Command LANGuage.

We shall run through some manipulations of trees to exemplify some of the

capabilities of DATADRAW.

In case of typing errors, the characters is used to backspace,

while the character % is used to erase the whole input line. Wherever

a space occurs in a DATADRAW command, several spaces can be used. Error

messages are erased by a

Perhaps the easiest way to get started is to have DATADRAW create

a random tree for you. The command

CREATE TREE Tl RANDOM;

will create a TREE, and will name it Tl. Spaces can precede the ;

Executing

STATUS;

will display in the top right corner of the screen all the structures

known to DATADRAW at that point. The display will be:

*T1 TREE

indicating that there is a TREE, named Tl. The * in front of Tl

indicates that T1 is the active structure, i.e. the one pre,ently

3

6

looked at by DATADRAW.

To display the tree, enter the command:

DISPLAY;

The result is shown in Figure 1. The abave coamand DISPLAYs the presently

active structure on the whole screen. It is equivalent to the command:

0 DISPLAY Tl;

It is also possible to

DISPLAY TOP;

DISPLAY BOTTOM;

DISPLAY TOP RIGHT:

DISPLAY BC1TOM LEFT;

DISPLAY T1 TOP LEFT; etc.

and to give specific coordinates:

DISPLAY 200 BY 300 AT 200 400;

The first two numbers give the width and height of a rectangle in which

the figure will be drawn; the last two numbers give the coordinates of

the bottom left corner of the rectangle. The whole scope screen is a

square 1024 by 1024. The bottom left corner has coordinates 0, 0; the

top left corner has coordinates 0, 1024, etc.

If Tl is no longer needed, do:

KILL Tl;

which will delete Tl from the STATUS list, and reclaim the memory cells

used by Tl. After the KILL command, Tl is no longer living, and

DISPLAY Tl;

will result in an error.

The command:

KILL EVERYTHING;

will delete all created structures from the system.

The command:

EXIT;

will make you EXIT from DATADRAW to MAIN. To terminate your job, type:

DROP;

after having EXITed from DATADRAW.

After having KILLed Tl, let us build snme additional structures.

We need to erase the screen. A * in column 1 is interpreted as a command

to erase the screen:

The erasing * can be used in column 1 of any DATADRAW command, and is

executed before that command.

We now build up Figure 2 piece by piece:
line reference for Comments

*CREATE TREE TR (UtA); 1

DISPLAY TOP LEFT; 2

ADD NODE BBB BELOW AAA; 3

DISPLAY TR TOP RIGHT; 4

IN TR ADD NODE CCC = XXX LEFT BBB; 5

DISPLAY BOTTOM LEFT; 6

ADD NODE DDD = AAA RIGHT CCC;

DISPLAY BOTTOM RIGHT; 8

Figure 2 is the picture taken at that point.

A few remarks:

--nodes are specified by their labels, and may or may not have contents.

Node AAA has no contents; while DDD has contents AAA. Up to three

alphanumeric characters are allowed for names and labels. Alphanumeric

labels must begin with an alphabetic character. If longer names are given

to labels and contents, only the first three characters are kept. The

system will make sure that all libels in one structure are different.

5

Contents may be the same.

--the TR in line 4 is not necessary (see lines 2,6 and 8). The ACTIVE

structure is assumed, if not specified.

--similarly, IN TR (line 5) is not needed. If missing, the ACTIVE structure

is assumed.

--line 7 could have been replaced by

ADD NODE DDD = AAA LEFT BBB;

Let us modify the tree. We can change the contents of nodes:

* PUT IN CCC; (The * erases the screen)

PUT 123 in BBB;

We can delete nodes:

DELETE NODE DDD; and

DISPLAY TOP LEFT;

will result in the upper part of Figure 3.

ADD NODE ADD = XYZ RIGHT CCC;

DISPLAY BOTT0h;

will complete Figure 3.

It is possible to input a whole tree given in parenthesized notation.

The command at the bottom of Figure 3:

CREATE TREE T03 CK(Y(Z) W));' followed by:

* DISPLAY LEFT;

results in the left-hand part of Figure 4. Notice that CREATE changed

the ACTIVE structure from TR to T03. A STATUS command would display:

TR TREE

* TO3 TREE

in the top right corner.

It is possible to ADD a TREE to another TREE. We shall make a copy

of TREE TR, and call the copy T02.

6

IN TR COPY AAA TO T02;

At this point T02 becomes actixe. We can do the ADD:

ADD TREE T03 BELOW CCC;

DISPLAY T02 RIGHT;

Figure 4 is a picture taken at this point.

It is possible to RENAME structures or nodes. Figure 5 is the

result of:

*ACTIVE TR;

DISPLAY TOP LEFT;

RENANE NODE Y AS GGG;

PUT AAA IN W;

DISPLAY BOTTOM;

Figure C, shows how a sub-tree is RENANEd. The tree on the LEFT

is called X24. To obtain the tree on the RIGHT, when TR is active, we

can do:

IN X24 RENAME TREE B12 AS X30;

ACTIVE X24;

DISPLAY RIGHT;

The new label must be a letter followed by two digits. Labels are obtained

by adding 1 (modulo 100) to the last two digits, and prefixing with the letter.

To change the name of the TREE X24 to LBJ, execute the command:

RENAME STRUCTURE X24 AS LBJ;

It is possible to copy a sub-tree. In Figure 7, if the TREE at the

LEFT is FDR, we obtain the rest of the figure by executing:

ACTIVE FDR;

COPY S03 TO XXX;

DISPLAY XXX TOP RIGHT;

7

10

After the COPY, XXX is active, hence we need not specify XXX for DISPLAY.

Figure 8 terminates o'er examples in this DATADRAW primer. After

the commands:

ACTIVE T3;

DISPLAY;

D the command:

TRAVERSE PRE;

was executed. The TREE T3 is traversed in PREorder. Successive semi-colons,

i.e. ;'s, result in numbers pointing to the successive nodes encountered

during PREorder traversal.

In DATADRAW, binary trees (or BTREEs), LISTs and TREEs can be

traversed in PREorder, POSTorder, ENDorder or LEVEL order.

A DISPLAY command must have been previously executed with no *

commands executed between the DISPLAY and the TRAVERSE.

3. Semi-Formal Definition of DATADRAW

In this settion we shall give the syntax and semantics of the commands

in DATADRAW. The treatment will not be completely formal. A mixture

of BNF notation and linguistic conventions will be used to describe

the syntax of DATADRAW. Square brackets indicate that a choice must be

made among several statements placed one below the other in the square

brackets. Curly brackets indicate that a choice can be made among several

statements placed one below the other in the curly brackets, but the

empty choice is also allowed.

DATADRAW commands are placed on a single line of input, which terminates

with a ";". The command is executed after the ";" has been read. The

backspace character is: "Ls"; while the line delete character is: "7.".

8

3.1 Ice,: ifial
04.0111111..

3. 1. 1 .":t mand u.orsis.
P.M aaa/MMIrGO. vY%

The following is an alphabetic listing of command words:

ABOVE END PUSH

ACTIVE EVERYTHING PUT

ADD EXIT QUEUE

AS IN RANDOM

AT INSERT RENAME

BELOW KILL RIGHT

BOTTOM LEFT STACK

BTRLE LEVEL STATUS

BY LIST STPUCkURE

COPY NODE TO

CREATE POP TOP

DELETE POST TRAVERSE

DISPLAY PRE TREE

3.1.2 Constants

type : := BTREE 1 LIST I QUEUE I STACK 1 TREE

3.1.3 Variables

"rime" "cone and "label" must be three character alphanumeric

identifiers, unless otherwise indicated. Alphanumeric identifiers must

start with an alphabetic character, unless they are purely numeric. For

ease of understanding, "name" will be the name of a structure, "label"

the label of a node, and "cone the contents of a node. Indices will

distinguish possibly different variables of a similar character. num

must be an unsigned integer.

3.1.4 Special Charsclug

A * as the first.character of a command line is executed before the

command, and erases the screen.

3.2 EMIT

3.2.1 Synim

EXIT;

3.2.2 Semantics

The program exits from DATADRAW into MAIN, the program that activates

the scope. The command:

DROP;

will terminate the program.

3.3 ACTIVE

3.3.1 Syntax

ACTIVE name;

3.3.2 Semantics

At any time, at most one structure is ACTIVE. The command ACTIVE

makes the structure "name" active. Certain commands, such as CREATE,

change the ACTIVE structure.

3.4 STATUS

3.4.1 Syntax

STATUS;

3.4.2 Semantics

The name and type of each structure in the system are displayed

in the top right corner of the screen. A * is placed in front of the

ACTIVE structure.

3,5 CREATE

3.5.1 liyala

<list notation>
CREATE lam itname}

RANDOM parame tera}

3.5.2 Semantics

If name in missing, the label of the first node of the structure is

taken as the name of the structure,

The conventions of the list notation are as follows:

--for TREES: the labels of the sons of a node are at the top level

of a list following the father. Examples:

= B (C = B (D E G) F = B)) is a tree with root A, contents B.

The two sons of A are C and F, both with contents B, and C has three sons

labelled D, E and G. The list notation for the tree in Figure 4,

RIGHT, would be: (AA.A(CCC(X(Y(Z)W)) DDD = XYZ BBB = 123)).

--for LISTs: sublists of a node are parenthesized and follow the

node. Example: the list at BOTTOM RIGHT of Figure 9 could be input

as (AAA (BBB = N2 DDD = N2) CCC = N3).

-- for BTREEs (Binary TREEs): the conventions are the same as for

TREEs with two exceptions; (1) a maximum of two labels may appear

at any level of the list notation, and (2) the label following an

opmparenthesisis assumed to be a left son. If no left son exists,

then the character "lk" is used in its place to force the label

of the right son to be recognized. The list notation for the BTREE

at the bottom left of Figure 11 would be: CA (B = BB(*D(E))C)).

--for STACKS: a simple list is considered a stack, the right of the

list is the top of the stack.

--for QUEU1s: a simple list is considered a stack, the left of the

list is the front of the queue.

There are five optional parameters IPL IPR IPLR NUM IALPHA in

RANDOM. Their range is as follows:

0 IPL,OSrpii IPLR S 100; IPL + IPR + IPLR 100; I 4 NUM .4: 50;1 ¶ IALPHA S 26.

The parameterless call to RANDOM:

CREATE lat Ilamel RANDOM;

is equivalent to the call:

CREATE Int Sname1 RANDOM IPL1 IPR1 IPLR1 NUM1 IALPHA1;

where:

IPLR1 = RAND(30,70); TEMP RAND(10,30); IPL1 = RAND(0,100-IPLR1-TEMP);

IPR1 = 100-IPLR1-IPL1-TEMP; NUM1 RAND(2,30); IALPHA = RAND(1,26); and

RAND(N,M) generates a random number between N and M. The meaning of these

parameters is tied to tne random structure generator, which is described

in section 4.

Random stacks and queues are equivalent to generating a random list

of length N, where N = RAND(2,30).

CREATE will generate an error diagnostic if the "name" given is

already in the STATUS table, independently of the tut of the structure.

CREATE also checks for well-formedness, for example, for multiple identical

labels.

After a successful CREATE, the new name is entered in the STATUS

list, and the new structure becomes ACTIVE.

3.6 KILL

3.6.1 Syntax,

n
KILL

ame

EVERYTHING
41.110.

3.b.2 Semantics

12

KILL name, removes the structure "name" from the STATUS list

and regains all Lhe storage space used up by the structure. If name

was ACTIVE, no structure will be ACTIVE after the KILL.

KILL EVERYTHING; removes all structures from the STATUS list and

cleans up memory. Since no structures are left, none can be ACTIVE.

3.7 DIMAX

3.7.1 SYntaN

DISPLAY 1.namel

3.7.2 Semantics

DISPLAY will draw the structure name on the screen, independently

of what is already on the screen (so overwriting is possible). If name

is missing, the ACTIVE structure is assumed.

The optional numerical parameters specify a rectangle num]. BY num2

with lower left corner at the point with coordinates (num3 num4). The

other specifications are abbreviations for specific values of the numerical

parameters.

Abbreviation Num., Num
2

Num
3

Num
(wideh) (height) (x) (y)

4

BOTTOM 1

BOTTOM LEFT
BOTTOM RIGHT
LEFT
RIGHT

missing
TOP RIGHT

TOP
TOP LEFT

OP{T
BOTTOM

3
RIGHT

numl BY num2 AT num3 num4

.3

990 450 33 123

495 450 33 123

495 450 528 123

495 900 33 123

495 900 528 123

990 450 33 573

495 450 33 573

495 450 528 573

990 900 33 123

The entire screen is: 1024 BY 1024 AT 0 0.

The DISPLAY routines are explained in section 5.

13

16

3.8 RENAME

3.8.1 _Syntax,

IN name) RENAME I 'node label AS labe
pied

l
2'

RENAME STRUCTURE name AS nam
1

e29

3.8.2 Semantics

If IN namell is missing, the name of the ACTIVE structure is

assumed.

In the first version of RENAME, if the second option is NODE, a

search is made for a label equal to labell in the structure namel. If

found, this label is replaced by labe12. If label1 is not found, a

message is given. If the second option is type, label2 must be a letter

followed by two digits, as for example C34. The structure (i.e. subtree

or sublist) rooted at label
1
is traversed in PREorder and labels changed

to C34, C35, etc. COl follows C99. In the second version of RENAME,

only the name1 of the data structure is changed to name2. This is the

only meaningful RENAME for stacks and queues.

3.9 PUT

3.9.1 Syntax,

:wIN name PUT ..cont. IN label;

3.9.2 Semantics

1
If iIN name is missing, the name of the ACTIVE structure is assumed.

A search is made for a node label equal to "label". If "label" is

found, its contents are replaced by that given in the command. If label

is not found, a message is given.

3.10 COPY

3.10.1 ,Syntax

bN namel 1 COPY label TO name
2'

3.10.2 Semantics

If IN name
1

is missing, the name of the ACTIVE structure ia

assumed. A search is made for a node label equal to label in namel

of the ACTIVE structure. If label is found, the substructure rootel

at label is copied to a new structure called name2. Name2 will be

active after the COPY. If label is not found, a message is given.

If name
2

is not a unique name, a messarrf Is given.

3.11 DELETE

3.11.1 For a queue,.

IN name DELETE;

If rtIN nameS is missing the ACTIVE structure is assumed. The

front of the queue is DELETEd.

3.11.2 For a TREE or BTREE.

c IN name DELE C-TTE REE- label;

tNODE

If IN namI is missing, the ACTIVE structure is assum,!.
If the,second4option is missing, NODE is assumed.
The substructure rooted at "label" in "name" is deleted. If label

is not found, a message is given.

3.11.3 For a LIST.

IN name DELETE
1/4 NODE

label;

If VN names is missing, the ACTIVE structure is assumed.

If the second option is missing, NODE is assumed. When NODE is

assumed or specified, three cases can occur:

a) if "label" is linked by a right link from some other node,

"label" and everything linked under it is deleted. (The left

brother of "label" is linked to the right brother of "label"

(if any) by a right link).

15 18

b)

c)

If label is linked by a down link from some other node, "label"

and everything linked to the right of it is deleted. The

(up) father of "label" is linked to the (down) son of "label"

(if any) by a down link.

If label is the root node, the complete structure is deleted.

If LIST is used as the second option, the complete substructure

rooted at "label", in "name", is deleted. If label is not found, an

error mesgage is given.

3.12 ADD

3.12.1 For a queue.

)1 IN name k ADD cont;

If c11 name.'4 is missing, the ACTIVE structure is assumed.

II cone is ADDed to the rear of the queue.

3.12.2 For a BTREE

SIN nazi ADD
NODE labellt=coneil T1

'
[BTREEname

2
I:RIGH

2
LEFT label

If IN name
1

is missing, the ACTIVE structure is assumed.

If the "BTREE name
2
" option is chosen, an existing BTREE named

name
2
will be added as the left or right substructure of the node

labe12. If label2 is not found an error message is given.

If the "label
1
" option is chosen, a single node named label

1
is

created as a left or right son of labe12.

3:12.3 For a TUE

a .=gcontl] [VDWIT]
label

2
;

1

I namel
[NODE

lbell ADD
TREE name

2N PAW

If 'aIN named is missing, the ACTIVE structure is assumed.

If the "TREE name2" option is chosen, an existing TREE named name2

will be added according to the following rules.

If the BELOW option is chosen, the structure is added as the

16

:'.. 9

rightmost son of labe12. If the LEFT (or RIGHT) option is chosen,

the structure is added to the father of label
2
and to the immediate

left (or right) of labe12.

If the "label
1
" option is chosen, a single node named label

1
is

created and added according to the above conventions for HELM,

LEFT or RIGHT.

3.12.4 For a WM

LIST
Allet label

1
=cont =OW label

2NODE '

LEFT
RIGHT

If [In name} is missing, the ACTIVE structure is act:um:en. If the

second opticn is missing, NODE is assumed.

When NODE is assumed or spocified, several cases can occur:

a) label
2
has no son (or right brother) and BELOW (or RIGHT) are

chosen. If the BELOW option is chosen, and the node labelled

label2 has no son (i.e. has no down link), the node labelf(=cont)

is added as the son of labe12. (Similarly, if the RIGHT option

is chosen, and label2 has no right brother (i.e. has no right

link), the node label]. =cont is added as the right brother

of label)

b) label
2
already has a son (or right brother) and BELOW (or RIGHT)

are chosen. If the BELOW option is chosen and label
2
already

has a son (i.e. a down link) then this son (with all its

descendants and right brothers) is deleted, and label,. 1-=cont

becomes the new right brother of labe12. Note that in both of

these cases, a single node may replace an entire structure.

c) If the LEFT option is chosen, ADDition can only occur if label2

has no left brother. If label
2

is not the root of the list,

16-1

20

label
1
b-comes the new leftmost son of the father of label

2'

while label2 becomes the right brother of Isbell. If label,

is the root, label1 becomes the new root and label2 becomes

the right brother of label]:

Similarly, if the ABOVE option is chosen, ADDition can only

occur if there is no down link to labe12. This implies that,

unless label
2

is the root, it has a left brother. Label
1
becomes

the new right brother of this left brother, while label2 becomes

the son of /Abell. If label2 is the root, label1 becomes the

new root, and label2 becomes its son.

The above conventions were chosen for their intuitive appeal.

They are not standard. In fact, no standard conventions seem

to exist!

When LIST is used as the second option, the ABOVE and LEFT options

have no meaning and result in an error message. In the case of the

BELOW and RIGHT options, the operations described in a) and b) above

occur with the exception that the entire list structure named label1

is added instead of a single node. Obviously, label
1
may not have contents

in this case.

3.13 INSERT

INSERT is only meaningful as an operation on LISTs.

3.13.1

NODE) labe 11 c..=cont

V. GeV

ABOVE
BELOW
LEFT
RIGHT

lbw awl

labe
/2'

IN name INSERT

3.13.2 Semantics

If IN name is missing, the ACTIVE structure is assumed. The second

option, NODE, is always assumed, whether present or not.

The single node Isbell 1:=con;) will be INSERTed ABOVE,BELOW,LEFT

or RIGHT of the node label
2

if the appropriate preconditions are

tr".4 16-2

satisfied:

a) ABOVE (or LEFT). There must be a down (or right) link to label2

from some node labe13. Label3 is linked down (or right) to

labell, which is linked down (or right) to labe12.

b) BELOW (or RIGHT). There must be a down (or right) link from

label2 to some node labe13. Label2 is linked down (or right)

to labell, which is linked down (or right) to labe13.

3.14 PUSH and POP

PUSH and POP are addition and deletion operations on STACKs.

3.14.1 Syntax

IN name
[POP
PUSH cont ;

3.14.2 Semantica

If IN name is missing, the ACTIVE structure is assumed. (It must

be a STACK.)

POP deletes the top element of the STACK. An empty STACK may not

be POPped.

PUSH adds cont as the contents of the new top of the STACK. The

STACK becomes one cell longer.

3.15 TRAVERSE

TRAVERSE can be used on TREEs, BTREEs and LISTs.

3.15.1 Syntax

END
LEVEL.]

TRAVERSE
IPOST
LPRE

3.15.2 Semantics

The last structure displayed is TRAVERSEd in endorder, level order,

postorder or =order. Successive pressing of the character'? will

result in arrow--numbered 1,2,3,...-- to point to the nodes in the

order in which dey are visited by the trave,:sal.

16-3
22

TRAVERSE makes use of a table containing the absolute screen

coordinates of the structure that has been DISPLAYed last.

Figure 8 shows the PREorder traversal of a RANDOM tree.

23 16-4

4. Intprnal Representations.

A common M x 8 array is used by all the data structures.

4.1 Usts, Trees and Binary Trees.

LISTs, TREES and BTREEs make the same use of the first four columns

of the storage array.

Column 1 2 3

LIST

TREE

BTREE

name of
node

content Link 1.

11

11

11

1/

11

11

DOWN

SUB

LEFT

4

ILink 2

RIGHT

}TED

RIGHT

In a TREE, the SUB points to the left-most son of a node, while

PRED points to the next brother to the right. The other links should

be obvious.

4.1.1 TREEs and BTREEs

Columns 5 to 8 have similar meanings for TREEs and BTREEs:

Column 5 6 7 8
,......

TREE

BTREE

right-most
son

(not used)

father

father

weight

weight

level

level
...........

In both cases, the level of a node is one plus the length of the path

leading to the root of the tree. The root of the tree has level 1, its

sons level 2, etc.

Wetgi-c are used in the display routines.

--1.EES. The weight of a node is obtained recurs7ely as follows:

a) he weight of a terminal node is 1.

b) Le we-.et of a non-terminal node is the sum of the weights

scU.3.

1' -1 ^e -r . 4 ir

17

.1,211. pal r

--BTREEs. The weight of a node is an integer obtained recursively

as follows:

a) the weight of a terminal node is 1.

b) the weight of a nen-terminal node is:

weight of the heaviest son + max(weight of lightest soh ,

1/4. weight of heaviest son),
where the result of the multiplication is truncated.

The weight of a non-existent son is 0.

4.1.2 LISTs.

Columns 5 to 8 for LISTs give information to the LIST disOay routine.

Column 5 6 7 8

LIST horizontal D
displacement

horizontal L
displaceuent

vertical D
displacement

I

vertical L
displacement

Columns 5 to 8 for TREEs and BTREEs are updated as nodes or structures

are ADDed, INSERTed or DELETEd from the structure. For LISTs, columns

5 to 8 are filled in only prior to the DISPLAY of the LIST.

4.2 STACKs and QUEUEs.

The same M x 8 array storage is used for STACKs and QUEUES as for

LISTs, TREEs and BTREEs. Of the eight columns, seven are used for storing

contents of the structure, while the eighth column is used as a link to

the next index of the array in which the structure continues. Special

contents (-1) are used to indicate the end of a structure in a particular

row of the storage array.

/ 34. Storage Management

Originally, the storage array ts linked through the 3rd column to

form available space. DATADRAW commands to CREATE, COPY, ADD and INSERT

obtain array elements from avsilable space. Commands that DELETE or KILL

return released array indices to available space. There is no garbage

collector since all garbage collection is done locally and immediately upon

18

release of Apace.

4.4 Ocher Storage Areas

Besides the main storage array described above, there are smaller

storage areas in DATADRAW:

a) The STATUS list.

b) A storage area for the absolute scope coordinates needed to

display a structure. They depend on the region of the scope

on which the structure will be displayed. The absolute

coordinates of only one structure are kept at any one time:

it is the last structure which was displayed.

c) An error array which contains all the error diagnostics

(see section /).

d) An array used by the scan routine that reads DATADRAW commands.

The contents of this array are interpreted in context, and

executed by the DATADRAW monitor.

e) A working stack is used tc traverse structures.

f) A hash table is used when a structure is ADDed to another

structure, to check for duplicate node labels. The hashing

technique assures that if a structure with M nodes is ADDed

to a structure with N nodes, then approximately M + N comparisons

need to be made, instead of the approximately M x N if every

node of one structure is checked against every node of the

other structure.

The buckets of the hash-table are linked lists formed from elements

of the main storage area. Seven columns are used for storage, and the

eighth column for the list linkage in case more than seven elements hash

into the same bucket.

19

g) Several storage areas are needed for interaction with the scope

hardware.

4.5 Note on Storage Efficiency.

Since the words of the CDC 6600 have 60 bits, an estimated saving

of 75% of the memory used by the structures could be achieved by packIng

name, contents and links. This saving would result in somewhat increased

computing time, taken up by packing and unpacking operations. A storage

array having a row length of 500 has been used, and was amply sufficient,

so that memory savings were not required.

5. NosorteAlsorithi.:LELIAZDAfilisedititID

In this section we describe some of the more interesting algorithms

used in DATADRAW. We have mentioned the hashing technique used to check

for conflicts among labels of two structures when one of these is added

to the other. The traversal routines we shall mention can be found in

Knutht 23 . The management of available space is standard.

5.1 TREE and BTREE Information Managementl

As TREEs and BTREEs are changed, the weight and level information

is updated, as well as the linkage information, of course. It is interesting

to notice that, as a node is added, only the weights of the ancestors

need to be modified. The process is simple:

For TREEs:

--if a node is added PELOW a terminal node, no updating is needed.

--if a node is added LEFT or RIGHT, an increment of 1 for the weights

of all the ancestors is made.

--if a TREE with a root of weight M is added BELOW terminal node L,

updating occurs only if M> 1, in which case (4-- 1) is added to the

20

C1.01

weights of L and its ancestors.

--if a TREE with a root of weight M is added LEFT or RIGHT of node

L, all the ancestors of L have their weights increased by M.

For BTREEs, the updating operations are similar, except that the updating

might not rise to the root. This can be seen as follows: the formula

used for upeating includes a max. Therefore, the increase of the weight

of a son may not affect the weight of a father if the weight of the other

son is sufficiently large.

Originally, weights were computed before display by traversing a

BTREE in endorder.

If a subTREE rooted at L is deleted from a TREE, no updating is

necessary if the weight of the father of L was 1. Otherwise, all the

ancestors of L have their weights decreased by (weight of L) -1. For

BTREEs, if a subBTREE is deleted, updating may not rise to the root,

again because of the way in which weights are calculated.

5.2 DISPLAY of LISTs.

It is easiest to explain the LIST DISPLAY routine by considering

an example: take the figure at BOTTOM RIGHT of Figure 9. The LIST

is traversed in PREorder. First, node AAA is encountered. Parametric

coordinates for the lower left corner of the box labelled AAA are

determined. The coordinates are relative to the top left corner of the

area in which the structure will be displayed. The horizontal displacement

-x- is counted from left to right; the vertical displacement -y- is

counted from top to bottom. The size of the box is 2D by D, while the

vertical and smallest horizontal separations between boxes are L. Hence

the coordinates of box AAA are (0,D). The traversal moves to box BBB,

which has coordinates (0,2D + L). No additional DOWN links are

encountered and a RIGHT link is taken to node DDD. The coordinates of

box DDD are (2D +L, 2D + L). Since node DDD is terminal, the traversal

climbs back to node CCC. At this point, the horizontal coordinate of

the rightmost box encountered in the LIST is kept: it is (2D + L).

The horizontal coordinate of node CCC will be 2D + L to the right of

that: 2D for the size of the box (here DDD) and L for the horizontal

displacement. Hence the coordinates of CCC are (4D + 2L, D). In this

way, we are assured that any subLIST rooted at CCC will not be displayed

over some previous part of the structure.

After the coordinates of the boxes are obtained in terms of D and

L, actual values of D and L are calculated. If the horizontal size of

the LIST is mD + m'L, and its vertical size is nD n'L, and if the

area in which it is to be displayed is XSIZE x YSIZE, then two methods

could be used to calculate the values of D and L:

a) Solve the two simultaneous equations:

mD + m'L = XSIZE

nD + n'L = YSIZE

for the unknowns D and L.

b) Assume a fixed ratio L = kD, and select

D = min(XSIZE/(km + m'), YSIZE/(kn + n')).

For esthetics, we let D:= min (D,DMAX) and L:= min(L,LMAX) so that enormous

boxes and/or links are not drawn.* The boxes must be sufficiently large

so that contents can be read, hence D)ODMIN, and the links sufficiently

long, L>LMIN, so that the boxes are not too crowded together. If the

structure is too big, the minimum sizes of boxes or links do not allow

the structure to be displayed, and an error message results. A larger

scope area should be given, or parts of the structure DELETEd.+

TOP LEFT in Figure 2 is a case where the size of the box was limited.
+ We are implementing a partial DISPLAY routine which will display as

much of the routine as there is room in the prescribed scope area,
and give information on the parts that could not be displayed.

28 22

Subject to the restrictions on maximum and minimum sizes of boxes

and links, method a) will fill the whole display area allotted to the

screen; while method b) will fill either the vertical or the horizontal

coordinates, but seldom both. Methodb) has been used for LISTs, with

k = 2, while a variant of method a) has been used for TREEs and BTREEs.

After actual values of D and L have been calculated, absolute scope

coordinates are determined and stored in a display table. Scope commands

are initiated to draw the structure. The absolute coordinate table is

used by the TRAVERSE commands.

It should be noted that the parametric coordinates are determined

by a single traversal of the structure, which is a minimum. Moreover,

if we wish to display the structure in different areas of the screen,

the parametric coordinates need not be recalculated: only the absolute

coordinates must be obtained.

5.3 ;DISPLAY of TREEs

The tree display routine makes use of the weights associated with

each node of the tree. The weights (see section 4.1.1) are defined such

that each terminal node has a weight of one and all other nodes have

weights equal to the sum of the weights of their sons. The weights are

used by the display routine to determine the relative horizontal spacing

of nodes. The relative vertical spacing of nodes is determined by dividing

the display zone height by the number of levels within the tree (but

limiting this value to some maximum to avoid very long branches). The display

zone height, width and location on the screen are input parameters for

the display routine.

The relative positions of nodes within the display zone are determined

in the following manner:

23

30

(1) The root node is displayed at the top center of the display

zone. The left boundary is set to the left boundary of the display zone.

(2) The tree is traversed in preorder with the use of a stack.

(3) Each node is displayed, as it is visited, at the current vertical

and horizontal position. The vertical position is decreased each time

a sub link is followed and reset from the stack each time the stack is

popped. The horiz-mtal position is calculated as the current left bound-

ary plus one-half the product of the father's width and the ratio of the

weight of the son to the weight of the father. The current father's

width is reset each time a sub link is followed. The current left bound-

ary and the father's width are reset from the stack when it is popped.

5.4 DISPLAY of BTREEs

The binary tree display is done by the same routine as the tree

display and in the same manner with the exception of the handling of the

weights. The weight of a node of a BTREE was given in section 4.1.1.

From the formula giving the weight, it is seen that light or non-existent

nodes still contribute to the woight of their bather, thereby insuring

that all LEFT and RIGHT links will be drawn slanting left and right from

the vertical.

5.5 RANDOM Structure Generation.

Building a RANDOM stack or queue is trivial. Hence, we restrict

our discussion to the single algorithm that builds RANDOM trees, btrees

and lists. The RANDOM command uses five parameters IPL IPR IPLR NUM and

IALPHA. The range of these parameters is given in section 3.5.2. These

parameters are optional in the call to RANDOM and, if missing, are replaced

by default values calculated randomly by DATADRAW (see section 3.5.2).

23-1

The meanings of the parameters are:

IPL: probability of building a Linkl.

IPR: probability of building a Link2.

IPLR: probability of building both Linkl and Link2.

NUM: number of nodes in the structure.

IALPHA: numeric value of the alphabetic character used for labelling

the structure. (If IALPHA equals 2, the nodes will be labelled B01,

B02, B99.)

The probabilities are integers in the closed interval (0,100).

We then calculate:

P1 = (100 - IPLR - IPL - IPR) * 0.01

P2 = P1 + IPL * 0.01

P3 = P2 + IPR * 0.01

The links and nodes are generated by the following algorithm:

1. A node is generated and becomes the current node. NCTR:=1;

2. IF NCTRIt NUM, THEN EXIT;

3. A real random number P is generated, with 0.0 P S1.0;

4. IF P1, no links are generated, the current node is placed

in the array of terminal nodes. Go to 9.

5. If Plc: P S' P2, a left link is generated from the current node,

and a new node is attached to the link. The new node is placed in the

array of the terminal nodes. NCTR:=NCTR+1. Go to 9.

6. If P21; Pz-L: P3, a right link is generated from the current node,

and a new node is attached to the link. The new node is placed in the array

of terminal nodes. NCTR:=NCTR+1. Go to 9.

7. If (NCTR + 2):>. NUM, go to 10.

8. Both left and right links are generated from the current node,

and new nodes attached to the links. The new nodes are placed in the array

of terminal nodes. NCTR NCTR + 1.

9. A node is randomly removed from the array of terminal nodes.

This node becomes the current node. Go to 2.

10. IF P34(0.2 THEN EXIT ELSE go to 3.

It is seen that nodes are added somewhat randomly around the structure,

until the structure reaches a predetermined number of nodes.

Note that this unique random structure builder is used for TREEs,

BTREEs and LISTs. Section 4.1 shows hew Linkl and Link2 are interpreted

for each of the three structures. (There is only one difference: no

Link2 is built from the root of a TREE.)

6. ,Synopsis of DATADRAW commands.

ACTIVE name;

iIN name}
1

NSERT]

BTREE
LIST
NODE
TREE .

.

IN name
1
1 COPY label TO name;

CREATE am 3.namel <list
RANDOM IPL IPR IPLR NUM IALPHAI

-\

label
1

=cont

ABOVE
BELOW
LEFT

label
2 '

RIGHT

name} DELETE
NODE

label;
LIST

TREE

TOP
DISPLAY name BOTTOM\

LEFT
RIGHTI

num,. BY num2 AT num3 num4

EXIT;

ABOVE

1
BELOW

IN name INSERT NODE labe 11 =cont
LEFT
RIGHT

KILL
[name

EVERYTHING] ;

IN name
[FOP
FUSH cont

IN name PUT cont IN label;

IN namel

.

RENAME
[NODE.]

Saat
labe 1

1
AS labe 1

2 '

RENAME STRUCTURE name
2

AS name
3

;

STATUS;
END

TRAVERSE LEVEL

PRE
POST

.ty2e : : = BTREE I LIST I QUEUE I STACK TREE

labe
12'

Convention:
A * in column 1 of a command (possibly empty) erases the screen.

As given in this synopsis, some of the commands are semantically inacceptable.

24

7. Error Messages

The following are the error messages encountered !n DATADRAti Most

of them are self-explanatory.

NO STRUCTURES EXIST

NO ACTIVE STRUCTURES

STRUCTURE NAME ALREADY ENISTS

NO ROCM IN DIRECTORY FOR STRUCTURE

The status table can contain at most 20 names. KILL some structures.

NO ROOM IN STORAGE FOR STRUCTURE

Linked storage space is full.

QUALIFIER INCORRECT

IN name incorrectly used.

ERROR IN SYNTAX

UNRECOGNIZED COMMAND

DISPLAY COORDINATES OUT OF BOUNDS

The rectangle you gave is not inside the screen.

STRUCTURE DOES NOT EXIST

LEFT NODE ALREADY EXISTS
Used for binary trees.

RIGHT NODE ALREADY EXISTS

IMPOSSIBLE

Catch all.

STRUCTURE TOO LARGE FOR DISPLAY AREA

NODE ALREADY EXISTS

IMPOSSIBLE--DUPLICATE NODE NAMES

In trying to add one structure to another, it was found that some of

the node names were common.

REQUESTED OPERATION INVALID

SYSTEM ERROR

This is a challenging error.

WORKING STACK OVERFLOWED

You must have created an exceedingly long list somewhere.

8. Acknowledgment

J. Peach helped us in the early stages.

9. References

1. Siklossy, L. Computer Tutors that know what they teach.

Proc. Fall Joint Compu.er Conf., 251-255, 1970.

2. Knuth, D. The Art of Computer Programming, Vol. 1. Addison-

Wesley, Reading, MA. 1968.

26

Figure 1

27

k

AAA

,

AAA

AAA

Bea

I 1

AAA

,

CCC BB CCC ODD

DISPLAY BOTTOM RIGHT;
Figure 2

28

38

AAA

AAA

CREATE TREE 103 (X CY (Z) W))

Figure 3

29

39

DISPLAY T02 RIGHT

Figure 4

30

40

AAA

DISPLAY BOTTOM

'1

Figure 5

31

81

81

KDC

81

YEI

913
D9C

81

WSH

X812

910

91

91

VR9

FXD

82
NJH I IS

DISPLAY RIGHT;

82

82
YGR

82

120 DEG

Figure 6

32

4"tko

X3

FEJ

X3

/CDC

X3

TY8

X31

DOC

X3

WSH

810

H,E1

E11

NJM

X3

VR9

FXD

X3

NJH

X4

Cia:11

X4

X4

DEG

SO 1

DISPLAY XXX TOP RIGHT;

Figure 7

33

43

GO 1 TREE
JO 1 LIST
LE LIST
NEM TREE

* 1! TREE

Figure 8

34

44

&AA

AAA

BBB

N2

CCC

N3

$DISPLAY BOTTOM RIGHT

AM

* vr

BBB

N2

AAA

BBra,/:
DOD

)1242 I

Figure 9

35

45

CCC

f N3

4-2

NxT NEW NXT NEW

IDISPLAY BOTTOM RIGHT

Figure 10

36

46

N01

I8JV

XC2

L1NTI

X08 11 2 2

FRONT

X03 XO8

@Tail

COI

IKRLI.113X

X C 6 X18 XCIE)

lYmuj
CO2

;I,/ F4151
OJK

X 1 5

REAR

1107 1106 1106 1104 1103 1102 1101

RO7

RO6

RO5

RO4

R03

RO2

ROI

CO3 0

BHT

CO,

NAN

CI

GED

C2

, 0

1

LXJ

DB

OPR

23 CI C

LINO BP0 PJZ

I C2

tfKK °OR IFBV

C2

DON

F1411

C I 0

OMR

C13 Cl
UCF 109111

Figure II. LIST,TREE,QUEUE,STACK and BTREE
37

