ED 063 776

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 009 9M

Siklossy, L.; And Othcrs

DATADRAW: A Command Languag~ for Manirulating and
Displaying Stacks, Queues, Lists and Trees.

Texas Univ., Austin. Computation Center.

Nat ional Science Foundatiorn, Washington, D.C.
TSN=-25

Aor 72

47p.

MF-$0.65 HC-$3.29

Computer Science *Data Processing; *Information
Processing; *Information Science; *Programiag
Languaqges

CDC¢ 6600; DATADRAW

DATADRAW is a command language, written in FORTRAN
IV, to manipulate stacks, queues, lists and trees, and to display
them on the CDC 252 scope system attached to a CDC 6600. A DATADRAW
primer is given, and the algorithms for updating and displaying
structures are described. It is noted that DATADRAW was desigr .d to
be a simple command language that students could use to faril ‘:rize
themselves with data structures. (Author/RH)

AR
=

A

s

T t)

S

FullToxt Provided by ERIC

DATADRAW : Conmand Language for Manipulating
and Displaying Stacks, Queues, Lists and Trees*

by

L. Sikléssy, L. Shroyer, and A, Blocher

April 1972 TSN-25 :

S et i RS A e e fea NI
IS0 et Ol s DY N S ST W TN P

U.8. DEPARYMENT OF HEALTM, EDUCATION A
& WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRODUCED
EXACTLY AS RECEIVED FROM THE PERSON OR
ORGANIZATION ORIGINATING IT. POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES
SARILY REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY ’

e

PN

el
S L S

*Work partially supported by NiMit Grant 15769,

Lo
ik

Ed
R0
i

THE UNIVERSITY OF TEXAS AT AUSTIN
COMPUTATION CENTER
DEPAKIMENT OF COMPUTER SCIENCES

')
- ERIC <

TABLE OF CONTENTS

Page
Abstract 1
1. Introduction 2
2., A DATADRAW Primer 2
3. Semi-formal Definition of DATADRAW 8
3.1 Identifiers 9
3.2 EXIT 10
3.3 ACTIVE 10
3.4 STATUS 10
3.5 CREATE 11
3.6 KILL 12
3.7 DISPLAY 13
3.8 RENAME 14
3.9 PUT 14
3.10 COPrY 14
3.11 DELETE 15
3.12 ADD 16
3.13 INSERT 16-2
3.14 PUSH and POP 16-3
3.15 TRAVERSE 16-3
4, 1Internal Representations 17
4.1 Lists, Trees and Binary Trees 17
4.2 Stacks and Queues 18
4.3 Storage Management 18
4.4 Other Storage Areas 19
4.5 Note on Storage Efficiency 20
5. Notes on Some Algorithms used in DATADRAW 20
5.1 TREE and BTREE Information Management 20
5.2 DISPLAY of LISTs - 21
5.3 DTSPLAY of TREEs 23
5.4 DASPLAY of BTREEs 23.1
5.5 RANDOM Structure Generation 23-1
6. Synopsis of DATADRAW Commands 24
7. Error Messages 25
8. Acknowledgment 26
9. References 26
Figures 27

ABSTRACT

DATADRAW is a command language to manipulate stacks, queues, lists
and trees, and to display them on the CDC 252 scope system attached to
a CDC 6600, A DATADRAW primer is given, and the algorithms for updating
and displaying structures are described. DATADRAW is written in FORTRAN

1V,

1. INTRODUCTL
DATADRAW is a set of FORTRAN IV programs that perit the user,

sitting at the CDC 252 scope terminal attached to the CDC 6600 computer,
to create, modify and draw data structures. At present, the permissible
structures are stacks, queues, lists and trees. These are some of the
most common data structures used in the information sciences.
The development of DATADRAW was motivated by three considerations:
1) to study efficient algorithms for generating, manipulating
and displaying data structures.
2) to provide a simple command language that students could use i
to familiarize themselves with data structures. (The system

was used successfully for this purpose in the Fall of 1971).

3) to construct a system that "knows" data structures (in an ‘“""""J
operative sense) and which could be used as the performance
program of a knowledgeable computer tutor [1] .

In this report, we give examples of the use of DATADRAW, briefly
describe its syntax and semantics, and explain the more interesting
algorithms used. Section 2 is a primer on DATADRAW, Section 3 gives
a brief, but complete description of the command language. Section &4
explains storage management iu DATADRAW, Section 5 describes some of the
algorithms used in DATADRAW. Section 6 is a synopsis of DATADRAW commands.

Section 7 lists the error messages generated by DATADRAW,

2. A_DATADRAW PRIMER
2.1 Entry in DATADRAW

To enter DATADRAW, run the following program for cxample:

Gl

ABCD123,John Doe (1D card)

PASSWORD CARD

JOB, ™ = 30,

RFL, 77000.

ASSIGN,FM, FM.

READPF, 3195, LGO.

LGO.

7/8/9card,
When this program has been executed, a light spot (called the column
indicator) will appear on the screen of the scope (if it is well focused).
At that point type
CLANG}
The semi-colon serves as a carriage return.
This command (pronounced KLANG) gives you access to the Command LANGuage.

We shall run through some manipulations of trees to exemplify some of the

capabilities of DATADRAW. §

st s e

In case of typing errors, the character £ is used to backspace,
while the character 7% is used to erase the whole input line. Wherever
a space occurs in a DATADRAW command, several spaces can be used. Error
messages are erased by a ";".

Perhaps the easiest way to get started is to have DATADRAW create

a random tree for you. The command

CREATE TREE T1 RANDOM; ;

will create a TREE, and will name it Tl. Spaces can precede the ;.
Executing f
STATUS;

will display in the top right corner of the screen all the structures
known to DATADRAW at that point. The display will be:

*T1 TREE

indicating that there is a TREE, named Tl. The * in front of Tl

indicates that Tl is the active structure, i.e. the one presently

ABCD123,John Doe (ID card)
PASSWORD CARD
JOB,T™™ = 30.
RFL,77000.
ASSIGN,FM,FM.
READPF, 3195, LGO.
LGO.
7/8/9card.
When this program has been executed, a light spot (called the column

indicator) will appear on the screen of the scope (if it is well focused).
At that point type
CLANG;
The semi-colon serves as a carriage return.
This command (pronounced KLANG) gives you access to the Command LANGuage.
We shall run through some manipulations of trees to exemplify some of the
capabilities of DATADRAW.

In case of typing errors, the character £ is used to backspace,
while the character % is used to erase the whole input line. Wherever
a space occurs in a DATADRAW command, several spaces can be used. Error

messages are erased by a ";".

Perhaps the easiest way to get started is to have DATADRAW create
a random tree for you. The command
CREATE TREE T1 RANDOM;
will create a TREE, and will name it Tl. Spaces can precede the ;.
Executing
STATUS ;

will display in the top right corner of the screen all the structures
known to DATADRAW at that point. The display will be:

*T1 TREE

indicating that there is a TREE, named Tl, The * in front of Tl

indicates that Tl is the active structure, i.e. the one presuntly

looked at by DATADRAW,
To display the tree, enter the command:
DISPLAY;
The result is shown in Figure 1. The above command DISPLAYs the presently
active structure on the whole screen. It is equivalent to the command:
DISPLAY T1;
It is also possible to
DISPLAY TOP;
DISPLAY BOTTOM;
DISPIAY TOP RIGHT:
DISPLAY BOTTOM LEFT;
DISPLAY T1 TOP LEFT; etc.
and to give speéific coordinates:
DISPLAY 200 BY 300 AT 200 400;
The first two numbers give the width and height of a rectangle in which
the figure will be drawn; the last two numbers give the coordinates of
the bottom left corner of the rectangle. The whole scope screen is a
square 1024 by 1024, The bottom left corner has coordinates 0, 0; the
top left corner has coordinates 0, 1024, etc.

If Tl is no longer needed, do:
KILL T1;
which will delete Tl from the STATUS 1ist, and reclaim the memory cells
used by Tl. After the KILL command, Tl is no longer living, and
DISPLAY T1;
will result in an error.
The command:
KILL EVERYTHING;

will delete all created structures from the system.

7

The command:
EXIT;
will make you EXIT from DATADRAW to MAIN. To terminate your job, type:
DROP;
after having EXITed from DATADRAW,
After having KILLed T1, let us build smme additional structures.
We need to erase the screen. A * in column 1 is interpreted as a command
to erase the screen:

*3

The erasing * can be used in column 1 of any DATADRAW command, and is
executed before that command.

We now build up Figure 2 piece by piece:
line reference for Comments

*CREATE TREE TR (AAA); 1
DISPLAY TOP LEFT; 2
ADD NODE BBB BELOW AAA; 3
DISPLAY TR TOP RIGHT; 4
IN TR ADD NODE CCC = XXX LEFT BBR; 5
DISPLAY BOTTOM LEFT; 6

~

ADD NODE DDD = AAA RIGHT CCC;
DISPLAY BOTTOM RIGHT; 8

Figure 2 is the picture taken at that point.

A few remarks:

--nodes are specified by their labels, and may or may not have contents.
Node AAA has no contents; while DDD has contents AAA, Up to three
alphanumeric characters are allowed for names and labels. Alphanumeric
labels must begin with an alphabetic character. 1If longer names are given
to labels and contents, only the first three characters are kept. The

system will make sure that all 1ldbels in one structure are different.

5

Contents may be the same.
--the TR in line 4 is not necessary (see lines 2,6 and 8). The ACTIVE
structure is assumed, if not specified.
--similarly, IN TR (line 5) is not needed. If missing, the ACTIVE structure
is assumed.
--line 7 could have been replaced by
ADD NODE DDD = AAA LEFT BBB;
Let us modify the tree. We can change the contents of nodes:
* PUT IN CCC; (The * erases the screen)
PUT 123 in BBB;
We can delete nodes:
DELETE NODE DDD; and
DISPLAY TOP LEFT;
will result in the upper part of Figure 3.
ADD NODE DDD = XYZ RIGHT CCC;
DISPLAY BOTTOM;
will complete Figure 3.
It is possible to input a whole tree given in parenthesized notation.
The command at the bottom of Figure 3:
CREATE TREE TO3 (X(Y(Z) W)); followed by:
* DISPLAY LEFT;
results in the left-hand part of Figure 4. Notice that CREATE changed
the ACTIVE structure from TR to TO3. A STATUS command would display:
TR TREE
* TO3 TREE
in the top right corner.
It is possible tc ADD a TREE to another TREE. We shall make a copy

of TREE TR, and call the copy TO2.

tA

IN TR COPY AAA TO TO2;
At this point TO2 becomes active. We can do the ADD:
ADD TREE TO3 BELOW CCC;
DISPLAY TO2 RIGHT;
Figure 4 is a picture taken at this point.
It is possible to RENAME structures or nodes. Figure 5 is the
result of:
*ACTIVE TR;
DISPLAY TOP LEFT;
RENAME NODE Y AS GGG;
2UT AAA IN W;
DISPLAY BOTTOM;
Figure % shows how a sub-tree is RENAMEd. The tree on the LEFT
is called X24., To obtain the tree on the RIGHT, when TR is active, we
can do:
IN X24 RENAME TREE B12 AS X30;
ACTIVE X24;
DISPLAY RIGHT;
The new label must be a letter followed by two digits. Labels are obtained
by adding 1 (modulo 100) to the last two digits, and prefixing with the letter.
To change the name of the TREE X24 to LBJ, execute the command:
RENAME STRUCTURE X24 AS 1LBJ;
It is possible to copy a sub-tree. In Figure 7, if the TREE at the
L.EFT is FDR, we obtain the rest of the figure by executing:
ACTIVE FDR;
COPY SO3 TO XXX;

DISPLAY XXX TOP RIGHT;

10

After the COPY, XXX is active, hence we need not specify XXX for DISPLAY,
Figure 8 terminates our examples in this DATADRAW primer. After

the commands:

ACTIVE T3;

DISPLAY;

the command:

TRAVERSE PRE ;

was executed. The TREE T3 is traversed in PREorder. Successive semi-colonms,
i.e. ;'s, result in numbers pointing to the successive nodes encountered
during PREorder traversal.

In DATADRAW, binary trees (or BTREEs), LISTs and TREEs can be
traversed in PREorder, POSTorder, ENDorder or LEVEL order.

A DISPLAY command must have been previously executed with no *

commands executed between the DISFLAY and the TRAVERSE.

3. Semi~-Formal Definition of DATADRAW

In this section we shall give the syntax and semantics of the commands
in DATADRAW. The treatment will not be completely formal. A mixture
of BNF notation and linguistic conventions will be used to describe
the syntax of DATADRAW. Square brackets indicate that a choice must be
made among several statements placed one below the other in the square
brackets. Curly brackets indicate that a choice can be made among several
statements placed one below the other in the curly brackets, but the

empty choice is also allowed.

DATADRAW commands are placed on a single line of input, which terminates

with a ";". The command is executed after the ':'" has been read. The

backspace character is: "='"; while the line delete character is: "%".

8

11

e A B e o LS Sl G DR

3.1 Iier Lfiors

3.1.1 O .mand words,

The following is arn alphabetic listing of command words:

ABOVE
ACTIVE
ADD
AS

AT
BELOW
BOTTOM
BTRL:Z
BY
COPY
CREATE
DELETE

DISPLAY

3.,1.,2 Constants

END
EVERYTHING
EXIT

IN

INSERT
KILL

LEFT
LEVEL
LIST

NODE

POP

POST

PRE

type : := BTREE | LIST | QUEUE | STACK | TREE

3.1.3 Variables

PUSH
PUT

QUEUE
RANDOM
RENAME
RIGHT

STAC
STATUS
TPUC {URE
70

TOP
TRAVERSE

TREE

"name" "cont' and "label" must be three character alphanumeric

identifiers, unless otherwise indicated.

Alphanumeric identifiers must

start with an alphabetic charactcer, unless they are purely numeric. For

ease of understanding, 'name' will be the name of a structure, 'label"

the label of a node, and "cont" the contents of a node.

Indices will

distinguish possibly different variables of a similar character. 'num"

must be an unsigned integer,

12

3.1.4 Special Charecters

A * as the first character of a command line is executed before the

command, and erases the screen.

3.2 E¥IT

3.2.1 Syntax
EXIT;

3.2.2 Semantics

The program exits from DATADRAW into MAIN, the program that activates
the scope. The command:

DROP;

wiil terminate the program.

3.3 ACTIVE

3.3.1 Syntax

ACTIVE name;

3.3.2 Semantics

At any time, at most one structure is ACTIVE, The command ACTIVE
makes the structure '"name" active. Certain commands, such as CREATIE,

change the ACTIVE structure.

3.4 STATUS

3.4.1 Syntax
STATUS;

3.4,2 Semantics

The name and type of each structure in the system are displayed
in the top right corner of the screen. A * is placed in front of the

ACTIVE structure.

Q 3.3 0

3.5 CREATE

3.5.1 Syntax

{list notationy
CREATE type %name}.

RANDOM iParameters}

3.5.2 Semantics

If name in missing, the label of the first node of the structure is
taken as the name of the structure.

The conventions of the list notation are as follows:

~«for TREES: the labels of the sons of a node are at the top level

of a list following the father. Examples:

(A=B (C=B (DEG) F =B)) is a tree with root A, contents B,

The two sons of A are C and F, both with contents B, and C has three sons

labelled D, E and G. The list notation for the tree in Figure 4,

RIGHT, would be: (AAA(CCC(X(Y(Z)W)) DDD = XYZ BBB = 123)).

--for LISTs: sublists of a node are parenthesized and follow the

node. Example: the list at BOTTOM RIGHT of Figure 9 could be input

as (AAA (BBB = N2 DDD = N2) CCC = N3).

-- for BTREEs (Binary TREEs): the conventions are the same as for

TREEs with two exceptions; (1) a maximum of two labels may appear

at any level of the list notation, and (2) the label following aﬁ

opn parenthesis is assumed to be a left son. If no left son exists,

then the character "#'" is used in its place to force the label

of the right son to be recognized. The list notation for the BTREE

at the bottom left of Figure 11 would be: (A (B = BB(#D(E))C)).

--for STACKS: a simple list is considered a stack, the right of the

list is the top of the stack.

--for QUEUEs: a simple list is considered a stack, the left of the

list is the front of the queue.

ERIC 11 14

There are five optional parameters IPL IPR IPLR NUM IALPHA in

RANDOM. Their range is as follows:

0% IPL,QSIPR, IPLR < 100; IPL + IPR + IPLR% 100; | < NUM € 50;{ < IALPHA < 26.

The parameterless call to RANDOM:

CREATE type $name} RANDOM;

is equivalent to the call:

CREATE type {name} RANDOM IPL1 IPR1 IPLR1 NUMI IALPHAL;

where:

IPLR1 = RAND(30,70); TEMP = RAND(10,30); IPL1 = RAND(0,100-IPLR1-TEMP);
IPR1 = 100-IPLR1-IPL1-TEMP; NUM1 = RAND(2,30); IALPHA = RAND(1,26); and
RAND(N,M) generates a random number between N and M. The meaning of these
parameters is tied to the random structure generator, which is described
in section 4.

Random stacks and queues are equivalent to generating a random list
of length N, where N = RAND(2,30).

CREATE will generate an error diagnostic if the "mame' given is
already in the STATUS table, independently of the type of the structure.
CREATE also checks for well-formedness, for example, for multiple identical
labels,

After a successful CREATE, the new name is entered in the STATUS

list, and the new structure becomes ACTIVE.

3.6 KILL
3.6.1 Syntax
KILL name
EVERYTHING

3.6.2 Semantics

2 45

Mot S80S, T s RAET

NI s P T e B AN VB i S e Tl i o e AR A fre T s e e

LRVRIVPN NP S, 3 30

KILL name, removes the structure "name' from the STATUS list
and regains all ithe storage space used up by the structure. If name
was ACTIVE, no structure will be ACTIVE after the KILL.

KILL EVERYTHING; removes all structures from the STATUS list and

cleans up memory. Since no structures are left, none can be ACTIVE.

3.7 DISPLAY
3.7.1 Syntax
TOP 1.EFT
DISPLAY iname BOTTOM \)RIGHT

num, BY num2 AT num3 num4

1
3.7.2 Semantics
DISPLAY will draw the structure name on the screen, independently

of what is already on the screen (so overwriting is possible). If name

is missing, the ACTIVE structure is assumed.
The optional numerical parameters specify a rectangle num, BY num,
with lower left corner at the point with coordinates (num3 num&). The

other specifications are abbreviations for specific values of the numerical

parameters.
Abt veviation Num Num2 Num3 Num4
(width) (heifht) (x) (y)
BOTTOM 990 450 33 123
BOTTOM LEFT 495 450 33 123
BOTTOM RIGHT 495 450 528 123
LEFT 495 900 33 123
RIGHT 495 900 528 123
TOP : 990 450 33 573
TOP LEFT 495 450 33 573
TOP RIGHT 495 450 528 573
missing 950 900 33 123

The entire screen is: 1024 BY 1024 AT 0 O.

The DISPLAY routines are explained in section 5,

13

16

3.8 RENAME

3.8.1 Syntax

gm namel} RENAME [‘m"e] label. AS label.;
type 1 2

RENAME STRUCTURE namel AS name2;

3.8.2 Semantics

If 9IN namei% is missing, the name of the ACTIVE structure is
assumed.

In the first version of RENAME, if the second option is NODE, a
search is made for a label equal to label1 in the structure name, . 1f
found, this label is replaced by labelz. 1f label1 is not found, a
message is given. If the second option is type, label2 must be a letter
followed by two digits, as for example C34. The structure (i.e. subtree
or sublist) rooted at label1 is traversed in PREorder and labels changed
to C34, C35, etc. COl follows C99. In the second version of RENAME,

only the name, of the data structure is changed to name,. This is the

only meaningful RENAME for stacks and queues.

3.9 PUT

3.9.1 Syntax

%IN name} PUT 2cont‘s IN label;

3.9.2 Semantics

If EIN name} is missing, the name of the ACTIVE structure is assumed.

A search is made for a node label equal to "label". If "label" is
found, its contents are replaced by that given in the command. If label
is not found, a message is given.

3.10 COPY
3.10.1 Syntax

{ IN namel\g COPY 1label TO name, ;

*,

P NPT Y S ORI RURE O

T

3.10.2 Semantics

If ‘}IN namelwx

assumed. A search is made for a node label equal to label in name,

is missing, the name of the ACTIVE structure i;

of the ACTIVE structure. If label is found, the substructure roote.l
at label is copied to a new structure called name, . Name2 will be
active after the COPY. If label is not found, a message is given.

1f name, is not a unique name, a messarc ig given.

3.11 DELETE

3.11.1 For a queue.

g IN name 5 DELETE ;
If iIN names_ is missing the ACTIVE structure is assumed. The

front of the queue is DELETEd.

3.11.2 For a TREE or BTREE.
'REE
¢ ~ (BrREE
lIN name § DELETE TREE label;
{NODE

1f ~IN namek is missing, the ACTIVE structure is assumcd.
1f the~second:bption is missing, NODE is assumed.

The substructure rooted at "label' in '"name" i{s deleted. I1f label

is not found, a message is given.

.11.3 For a LIST.

3 -

! . LIST

} IN names DELETE label;
{ NODE

%}N name} is missing, the ACTIVE structure is assumed.
I1f the second option is missing, NODE is assumed. When NODE is
assumed or specified, three cases can occur:
a) if "label" is linked by a right link from some other node,
"label" and everything linked under it is deleted. (The left
brother of "label" is linked to the right brother of '"label"

(if any) by a right link).

ERIC 5 48

P P e e e e e e

e el i o el et S B st @

b) If label is linked by a down link from some other node, '"label"
and everything linked to the right of it is deleted. The
(up) father of '"'label" is linked to the (down) son of '"label"
(1f any) by a down link.

c) If label is the root node, the complete structure is deleted.

If LIST is used as the second option, the complete substructure

rooted at '"label", in "name", is deieted. If label is not found, an

error message is given.

3.12 ADD

3.12.1 For a queue.
r

IN name ¢ ADD cont;

)
1f S?N nameg is missing, the ACTIVE structure is assumed.

~

"cont'" is ADDed to the rear of the queue.

3.12.2 For a BTREE

BTREE name LEFT label,;
&IN namess ADD [NODE 1an:¢2e11 {=cont}1 [RIGHT] 2

If 1IN name, is missing, the ACTIVE structure is assumed.

1f the "BTREE namez" option is chosen, an existing BTREE named
name,, will be added as the left or right substructure of the node
1abe12. If label2 is not found an error message is given.

1f the "labell" option is chosen, a single node named label1 is

created as a left or right son of labelz.

\ TREE name ggggw bel :

}IN “a‘“elhg ADD [NODE 1§be11{=cont}] [p | labelys
lf"le namel} is missing, the ACTIVE structure is assumed.

I1f the "TREE namez" option is chosen, an existing TREE named name,,
will be added according to the following rules.

If the BELOW option is chosen, the structure is added as the

16

79

. v g e
e LN S R R A & g Lr il st B2 e T e L g e, v .

O et Wt e MOt R B v

o7 P i AR 2

rightmost son of 1&be12. If the LEFT (or RIGHT) option is chosen,
the structure is added to the father of 1abe12 and to the immediate
left (or right) of 1abe12.

1f the "label.," option is chosen, a single node named label1 is

1
created and added according to the above conventions for BELCL,

LEFY or RIGHT.

3.12.4 For a LIST

AR T r
- 18T ABOVE |
{_IN name { ADD) label % =con£§ BELOW label,;
NOCE 1 2
LEFT
RIGHT
- .

If {In name} is missing, the ACTIVE structure is asc:uwwred. If the
second opticn is missing, NODE is assumed.

When NODE is assumed or spccified, several cases can occur:

a) label, has no son (or right brother) aund BELOW (or RIGHT) are

2
chosen. If the BELOW option is chosen, and the node labelled

label2 has no son (i.e. has no down link), the node labelr{l=conﬁ}

is added as the son of 1abe12. (Similarly, if the RIGHT option
is chosen, and label2 has no right brother (i.e. has no right
link), the node label, { =cont % is added as the right brother
of labelzb

b) 1label, already has a son (or right brother) and BELOW (or RIGHT)

2
are chosen. If the BELOW option is chosen and 1abe12 already
has a son (i.e. a down link) then this son (with all its
descendants and right brothers) is deleted, and label1 éq=cont {
becomes the new right brother of 1abe12. Note that in both of
these cases, a single node may replace an entire structure.

c) If the LEFT option is chosen, ADDition can only occur if 1abe12

has no left brother. If 1abe12 is not the root of the list,

16-1

<0

label, becomes the new leftmost son of the father of 1abe12,

1

while label, becomes the right brother of labell. If label,

2

is the root, label1 becomes the new root and label2 becomes

the right brother of labell.
Similarly, if the ABOVE option is chosen, ADDition can only

occur if there is no down link to labelz. This implies that,
unless labélz is the root, it has a left brother. Label, becomes
the new right brother of this left brother, while label2 becomes
the son of labell. 1f label2 1s the root, label1 becomes the

new root, and label, becomes its son.
The above conventions were chosen for their intuitive appeal.
They are not standard. In fact, no standard conventions seem
to exist.
When LIST is used as the second option, the ABOVE and LEFT options
have no meaning and result in an error message. In the case of the
BELOW and RIGHT options, the operations described in a) and b) above
occur with the exception that the entire list structure named label,
1s added instead of a single node. Obviously, label1 may not have contents
in this case.
3.13 INSERT
INSERT is only meaningful as an operation on LISTs.
3.13.1 Syntax -

ABOVE
IN name { INSERT gNODE } label ifcont} BELOW label,;
1 LEFT 2

L.RI GHT_

3.13.2 Semantics

If IN name is missing, the ACTIVE structure is assumed. The second
option, NODE, is always assumed, whether present or not.

The single node label1 {'=con£} will be INSERTed ABOVE,BELOW,LEFT

or RIGHT of the node label, if the appropriate preconditions are

2

.4 16-2

F+ 8.

[

satisfied:

a) ABOVE (or LEFT). There must be a down (or right) link to label2
from some node 1abe13. Lahe13 is linked down (or right) to
label,, which is linked down (or right) to 1abe12.

b) BELOW (or RIGHT). There must be a down (or right) link from
label2 to some node 1abe13. Label2 is linked down (or right)
to labell, which is 1linked down (or right) to 1abe13.

3.14 PUSH and POP
PUSH and POP are addition and deletion operations on STACKs.

3.14.1 Syntax
POP .
%’N nameg PUSH cont ’

3.14.2 Semantics

1f IN name is missing, the ACTIVE structure is assumed. (It must
be a STACK.)
POP deletes the top element of the STACK. An empty STACK may not
be POPped.
PUSH adds cont as the contents of the new top of the STACK. The
STACK becomes one cell longer.
3.15 TRAVERSE
TRAVERSE can be used on TREEs, BTREEs and LISTs.
3.15.1 Syntax
{END
TRAVERSE l;;ggl‘ ;
PRE
3.15.2 Semantics
The last structure displayed is TRAVERSEd in endorder, level order,
postorder or preorder. Successive pressing of the character '} will
result in arrow--numbered 1,2,3,...~-- to point to the nodes in the

order in which they are visited by the trave:sal.

| 16-3
a2

TRAVERSE makes use of a table containing the absolute screen
coordinates of the structure that has been DISPLAYed last.

Figure 8 shows the PREorder traversal of a RANDOM tree.

<3 16-4

N LA o S S A R B S S i SR S AR P b w
e . ® L e :

e

4, Internal Representations.

A common M x 8 array is used by all the data structures.

4.1 Lists, Prees and Binary Trees.

LISTs, TREEs and BTREEs make the same use of the first four columns

of the storage array.

Column 1 2 3 4
name of content Link 1 Link 2
node
LIST " " DOWN RIGHT
TREE " " SUB PRED
BTREE " : " - LEFT RIGHT

In a TREE, the SUB points to the left-most son of a node, while
PRED points to the next brother to the right. The other links should

be obvious.

4.1.1 TREEs and BTREESs

Columns 5 to 8 have similar meanings for TREEs and BTREEs:

Column 5 6 7 8

TREE right-most father weight level
son

BTREE (not used) father weight level

Tn both cases, the level of a node is one plus the length of the path
leading to the root of the tree. The root of the tree has level 1, its
sons level 2, etc.
Weigits are used in the display routines.
--1.EES. The weight of a node is obtained recurs’vely as follows:
a) -he weight of a terminal node is 1.
b; vhe we-g'% of a non-terminal node is the sum of the weights

wTs sOnNs,

17

--BTREEs. The weight of a node is an integer obtained recursively
as follows:
a) the weight of a terminal node is 1.
b) the weight of a nen-terminal node is:
weight of the heaviest son + max (weight of lightest sop ,
1/4, weight of heaviest son),
where the result of the multiplication is truncated.
The weight of a non-existent son is 0.

4.1.2 1LISTs.

Columns 5 to 8 for LISTs give information to the LIST disylay routine.

Column 5 6 7 8 W
LIST horizontal D | horizontal L | vertical D { vertical L
displacement | displacement displacement displacement

Columns 5 to 8 for TREEs and BTREEs are updated as nodes or structures
are ADDed, INSERTed or DELETEd from the structure. For LISTs, columns
5 to 8 are filled in only prior to the DISPLAY of the LIST.

4.2 STACKs and QUEUEs.

The same M x 8 array sf:orage is used for STACKs and QUEUEs as for
LISTs, TREEs and BTREEs. OF the eight columns, seven are used for storing
contents of the structure, while the eighth column is used as a link to
the next index of the array in which the structure continues. Special
contents (-1) are used to indicate the enrd of a structure in a particular
row of the storage array.

4.3 Storage Management

Originally, the storage array is linked through the 3rd column to
form available space. DATADRAW commands to CREATE, COPY, ADD and INSERT
obtain array elements from available space. Commands that DELETE or KILL

return released array indices to available space. There is no garbage

collector since all garbage collection is done locally and immediately upon

s P

LR wisTENT -

release of space.

4.4 Ocher Storage Areas

Besides the main storage array described above, there are smaller

storage areas in DATADRAW:

a) The STATUS list.

b) A storage area for the absolute scope coordinates needed to
display a structure. They depend on the region of the scope
on which the structure will be displayed. The absolute
coordinates of only one structure are kept at any one time:
it is the last structure which was displayed.

¢) An error array which contains all the error diagnostics
(see section 7).

d) An array used by the scan routine that reads DATADRAW commands.
The contents of this array are interpreted in context, and
executed by the DATADRAW monitor.

e) A working stack is used tc traverse structures.

f) A hash table is used when a structure is ADDed to another
structure, to check for duplicate node labels. The hashing
technique assures that if a structure with M nodes is ADDed
to a structure with N nodes, then approximately M + N comparisons
need to be made, instead of the approximately M x N if every
node of one structure is checked against every node of the
other structure.

The buckets of the hash-table are linked lists formed from elemeﬁts

of the main storage area. Seven columns are used for storage, and the
eighth column for the list linkage in case more than seven elements hash

into the same bucket.

19

i
Q fo

g) Several storage areas are needed for interaction with the scope
hardware.

4.5 Note on Storage Efficiency.

Since the words of the CDC 6600 have 60 bits, an estimated saving
of 75% of the memory used by the structures couid be achieved by packing
name, contents and links. This saving would result in somewhat increased
computing time, taken up by packing and unpacking operations. A storage
array having a row length of 500 has been used, and was amply sufficient,

so that memory savings were not required.

5. _Notes on some Algorithms used in DATADRAW

In this section we describe some of the more interesting algorithms

used in DATADRAW. We have mentioned the hashing technique used to check
for conflicts among labels of two structures when one of these is added
to the other. The traversal routines we shall mention can be found in

Knuth{ 2} . The management of available space is standard.

5.1 TREE and BTREE Information Management.

As TREEs and BTREEs are changed, the weight and level information

is updated, as well as the linkage information, of course. It is interesting

to notice that, as a node is added, only the weights of the ancestors
need to be modified. The process is simple:

For TREEs:

-~if a node is added RELOW a terminal node, no updating is needed.

--if a node is added LEFT or RIGHT, an increment of 1 for the weights

of all the ancestors is made.

--if a TREE with a root of weight M is added BELOW terminal node L,

updating occurs only if M >» 1, in which case (M ~ 1) is added to the

20

Bal)
'S

bl B o T RS R IR B ek R LB e s

TS AR T

e M o A SRR L i

weights of L and its ancestors.

--if a TREE with a root of weight M is added LEFT or RIGHT of node

L, all the ancestors of L have their weights increased by M.

For BTREEs, the updating operations are similar, except that the updating
might not rise to the root. This can be seen as follows: the formula
used for updating includes a max. Therefore, the increase of the weight
of a son may not affect the weight of a father if the weight of the other
son is sufficiently large.

Originally, weights were computed before display by traversing a
BTIREE in endorder.

If a subTREE rooted at L is deleted from a TREE, no updating is
necessary if the weight of the father of L was 1. Otherwise, ail the
ancestors of L have their weights decreased by (weight of L) -~1. For
BTREEs, if a subBTREE is deleted, updating may not rise to the root,
again because of the way in which weights are calculated.

5.2 DISPLAY of LISTs.

It is easiest to explain the LIST DISPLAY routine by considering
an example: take the figure at BOTTOM RIGHT of Figure 9. The LIST
is traversed in PREorder. First, node AAA is encountered. Parametric
coordinates for the lower left corner of the box labelled AAA are
determined. The coordinates are relative to the top left corner of the
area In which the structure will be displayed. The horizontal displacement
-x- is counted from left to right; the vertical displacement -y- is
counted from top to bottom. The size of the box is 2D by D, while the
vertical and smallest horizontal separations between boxes are L. Hence
the coordinates of box AAA are (0,D). The traversal moves to box BBB,

which has coordinates (0,2D + L). No additional DOWN links are

encountered and a RIGHT link is taken to node DDD. The coordinates of

o ;3&; 21

box DDD are (2D +L, 2D + L). Since node DDD is terminal, the traversal
climbs back to node CCC. At this point, the horizontal coordinate of
the rightmost box encountered in the LIST is kept: it is (2D + L).
The horizontal coordinate of node CCC will be 2D + L to the right of
that: 2D for the size of the box (here DDD) and L for the horizontal
displacement. Hence the coordinates of CCC are (4D + 2L, D). In this
way, we are assured that any subLIST rooted at CCC will not be displayed
over some previous part of the structure.

After the coordinates of the boxes are obtained in terms of D and
L, actual values of D and L are calculated, If the horizontal size of
the LIST is mD + m'L, and its vertical size is nD + n'L, and if the
area in which it is to be displayed is XSIZE x YSIZE, then two methods
could be used to calculate the values of D and L:

a) Solve the two simultaneous equations:

mD + m'L = XSIZE
nD + n'L = YSIZE
for the unknowns D and L.
b) Assume a fixed ratio L = kD, and select
D = min(XSIZE/(km + m'), YSIZE/(kn + n')).

For esthetics, we let D:= min (D,DMAX) and L:= min(L,LMAX) so that enormous
boxes and/or links are not drawn.* The boxes must be sufficiently large
so that contents can be read, hence DPDMIN, and the links sufficiently
long, I.>LMIN, so that the boxes are not too crowded together. If the
structure is too big, the minimum sizes of boxes or links do not allow
the structure to be displayed, and an error message results. A larger

scope area should be given, or parts of the structure DELETEd.+

* TOP LEFT in Figure 2 is a case where the size of the box was limited.

+ We are implementing a partial DISPLAY routine which will display as
much of the routine as there is room in the prescribed scope area,
and give information on the parts that could not be displayed.

' El{fC‘ 25 22

Subject to the restrictions on maximum and minimum sizes of boxes
and links, method a) will fill the whole display area allotted to the
screen; while method b) will fill either the vertical or the horizontal
coordinates, but seldom both, Methodb) has been used for LISTs, with
k = 2, while a variant of method a) has been used for TREEs and BTREEs.

After actual values of D and L have been calculated, absolute scope
coordinates are determined and stored in a display table. Scope commands
are initiated to draw the structure. The absolute coordinate table is
used by the TRAVERSE commands.

It should be noted that the parametric coordinates are determined
by a single traversal of the structure, which is a minimum. Moreover;
if we wish to display the structure in different areas of the screen,
the parametric coordinates need not be recalculated: only the absolute
coordinates must be obtained,

5.3 DISPLAY of TREEs

The tree display routine makes use of the weights associated with
each node of the tree. The weights (see section 4,1.1) are defined such
that each terminal node has a weight of one and all other nodes have
weights equal to the sum of the weights of their sons. The weights are
used by the display routine to determine the relative horizontal spacing
of nodes. The relative vertical spacing of nodes is determined by dividing
the display zone height by the number of levels within the tree (but
limiting this value to some maximum to avoid very long branches). The display
zone height, width and location on the screen are input parameters for
the display routine.

The relative positions of nodes within the display zone are determined

in the following manner:

23

30

(1) The root node is displayed at the top center of the display
zone. The left boundary is set to the left boundary of the display zone.

(2) The tree is traversed in preorder with the use of a stack.

(3) Each node is displayed, as it is visited, at the current vertical
and horizontal position. The vertical position is decreased each tiwe
a sub link is followed and reset from the stack each time the stack is
popped. The horiz-mtal position is calculated as the current left bound-

ary plus one~half the product of the father's width and the ratio of the

» LSRRI e sl

weight of the son to the weight of the father. The current father's
width is reset each time a sub link is followed. The current left bound- f%
ary and the father's width are reset from the stack when it is popped.

5.4 DISPLAY of BTREEs

The binary tree display is done by the same routine as the tree
display and in the same manner with the exception of the handling of the
weights. The weight of a node of a BTREE was given in section 4.1.1. é
From the formula giving the weight, it is seen that light or non-existent E
nodes still contribute to the w:ight of their father, thereby insuring
that all LEFT and RIGHT links will be drawn slanting left and right from
the vertical.

5.5 RANDOM Structure Generation.

Building a RANDOM stack or queue is trivial. Hence, we restrict
our discussion to the single algorithm that builds RANDOM trees, btrees
and lists. The RANDOM command uses five parameters IPL IPR IPLR NUM and
IALPHA. The range of these parameters is given in section 3.5.2. These
parameters are optional in the call to RANDOM and, if missing, are replaced

by default values calculated randomly by DATADRAW (see section 3.5.2).

23-1

AT
LW =

The meanings of the parameters are:
IPL: probability of building a Linkl,
IPR: probability of building a Link2.
IPLR: probability of building both Linkl and Link2.
NUM: number of nodes in the structure.
TALPHA: numeric value of the alphabetic character used for labelling
the structure. (If IAILPHA equals 2, the nodes will be labelled BO1l,
BO2, +s.., B99.)

The probabilities are integers in the closed interval (0,100).
We then calculate:

Pl

(100 - IPLR = IPL - IPR) * 0.01

P2 = P1 + IPL * 0.01

P3 = P2 + IPR * 0.01

The links and nodes are generated by the following algorithm:

l. A node is generated and becomes the current node. NCTR:=];

2, IF NCTR = NUM, THEN EXIT;

3. A real random number P is generated, with 0.0 € P <1.0;

4, IF P=<-Pl, no links are generated, the current node is placed

in the array of terminal nodes. Go to 9.

5. If P1<K PSS P2, a left link is generated from the current node,

and a new node is attached to the link. The new node is placed in the

array of the terminal nodes. NCTR:=NCITR+l. Go to 9.

6. If P2< PX P3, a right link is generated from the current node,

and a new node is attached to the link. The new node is placed in the array

of terminal nodes. NCTR:=NCTR+l. Go to 9.

7. If (NCTR + 2) > NUM, go to 10,

23-2

32

e

% i iR) Gt (R R s BA A

RV JULIES FRYERREIES CEE A HRL IRV

AR AR IV b i et

8. Both left and right links arve generated from the current node,
and new nodes attached to the links. The new nodes are placed in the array
of terminal nodes. NCTR := NCIR + 1.

9. A node is randomly removed from the array of terminal nodes.
This node becomes the current node. Go to 2.

10, IF P3< 0.2 THEN EXIT ELSE go to 3.

It is seen that nodes are added somewhat randomly around the structure,
until the structure reaches a predetermined number of nodes.

Note that this unique random structure builder is used for TREEs,
BTREEs and LISTs. Section 4.1 shows hew Linkl and Link2 are interpreted
for each of the three structures. (There is only one difference: no

Link2 is built from the root of a TREE.)

23-3

33

[TR Y 1 S

O G R

6. Synopsis of DATADRAW commards.

ACTIVE name; BTREE’ r‘ABOVE
{IN name} ADD] LIST label 5 =cont BELOW label,;
INSEle NODE 1 LEFT 2

TREE J L_RIGHT

%IN name1§ COPY label TO name;

-,

€1list notationd
CREATE type ina‘“e} RANDOM {m, IPR IPLR NUM IALPHA}
BTREE
LIST
{IN name} DELETE NODE label;
TREE
- TOP LEFT
DISPLAY {“ame f EBOTTOM RIGHT ’
num1 BY num2 AT num num
EXIT;
ABOVE
- BELOW .
{IN namel INSERT {NODE} label, {-cont} LEFT label,;
RIGHT
1 - .
name
KilL {#VERYTHING ’
) POP .
S(m nameé [PUSH cont] ?
giN name‘§ PUT cont IN label;
IN name RENAME | VODE label. AS label. ;
1 type 1 2
RENAME STRUCTURE name2 AS name3 3
STATUS ; -
[END
TRAVERSE LEVEL H
POST
PRE
— i |

type : : = BTREE | LIST | QUEUE | STACK | TREE

Convention:
A * in column 1 of a command (possibly empty) erases the screen.

As given in this synopsis, some of the commands are semantically inacceptable.

24

7. Error Messages

The following are the error messages encountered in DATADRAW Most

of them are self-explanatory.

NO STRUCTURES EXIST
NO ACTIVE STRUCTURES
STRUCTURE NAME ALREADY EXISTS
NO ROCM IN DIRECTORY FOR STRUCTURE
The status table can contain at most 20 names. KILL some structures.
NO ROOM IN STORAGE FOR STRUCTURE
Linked storage space is full.
QUALIFIER INCORRECT
IN name incorrectly used.
ERROR IN SYNTAX
UNRECOGNIZED COMMAND

DISPLAY COORDINATES OUT OF BOUNDS

The rectangle you gave is not inside the screen.
STRUCTURE DOES NOT EXIST
LEFT NODE ALREADY EXISTS Used for binary trees.
RIGHT NODE ALREADY EXISTS
IMPOSSIBLE

Catch all.

STRUCTURE TOO LARGE FCR DISPLAY AREA
NODE ALREADY EXISTS
IMPOSSIBLE~--DUPLICATE NODE NAMES

In trying to add one structure to another, it was found that some of

the node names were common.

REQUESTED OPERATION INVALID
SYSTEM ERROR

This is a challenging error.
WORKING STACK OVERFLOWED

You must have created an exceedingly long list somewhere.

8. Acknowledgment

J. Peach helped us in the early stages.

9. References

1, Siklc{ssy, L. Computer Tutors that know what they teach.
Proc. Fall Joint Compu.er Conf., 251-255, 1970.

2. Knuth, D. The Art of Computer Programming, Vol. 1. Addison-

26

36

A0t s T TREE

AOR . A0

o] s ez

A0S

AO? A0 Ald A R4 At A

nes | fone | fowe | fiov || ™ BFX

A09 AlS AlS
o] foxn Lot
Al Al9 A2

XCN bo: | juie

A7
UM

Figure 1

27

LA S |
T

AAA AAA

568
AAA AAA
cce BB ccc oDD

DISPLAY BOTTOM RIGHT;

Figure 2

38

AAA

cceC 8B
123
AAA
ccC DDD
XvZ 1es3

CREATE TREE TO03 (X(Y(Z) W))

Figure 3

29

39
e

Full Tt Provided by ERIC.

X AAA

cCC oo 88

xvz [123

|
| |

DISPLAY T02 RIGHT

Figure 4

30

. 40
ERIC

Full Tt Provided by ERIC.

X
\{ L J
r4

X
GGG ‘

AAA
Z
. DISPLAY BOTTOM
Figure 5
31
44

ERIC

Full Tt Provided by ERIC.

B!
NJH]
B1
B1S
D8C |
B
WSH
B Bh
[KDC FXD |

Bt¢/ B! 8N B2 By

re] [tve] [xBF] [NuH] [11S

DISPLAY RIGHT;

ERIC

Full Tt Provided by ERIC.

B24/ B2 BAE
xJ7] [FNZ] [DEd]

Figure 6

32

X381
X3
wSH
X3
XDC |
X34/ X3% X

FEJ]ITVB] {XBF

NJM]

X3

NJM | {118

FOM

DISPLAY XXX TOP RIGHT;

Figure 7

33

33

14801

28X

Go1
JOt
Le
NEW
T3

TREE
LI1ST
LIsST
TREE
TREE

64807

KDC
#10 /8ep14] 981 114815 /1281
7 irpy TVB XBF NUH 11s

Figure 8

34

44

AAA AAA

cccC

00D

(]

N2
AAA cCC AAA
—) NS
8B
N2
BB ||,
N2
sDISPLAY BOTTOM RIGHT
®
Figure 9
35
* 45

EC

Full Tt Provided by ERIC.

AAA ccC NxT NEW
; ,
o s ARU |
A cce

N2 ———E'—E ooD e

N2 Ne —)ne
NXT NEW NXT NEw
ARU | P ARy
N R1T
] a Em
2 DDD EEE |
N2 | N2 N2
8 EEE

ve e]

$DISPLAY BOTTOM RIGHT

Figure 10

36

16

X01 X03 X06 cot
BJVF {283} EnN KRL
xg2 Xg6 X186 xde co2) ‘ c1o
INT Fvul—Fon [UF] —
L Fom] [oAn
Xga Xx08 X12 X186 '
y Gl
ko] @iz [HH cos COg 08 cOp cC1f
xq7 [BHX) (W HT] orn] [ucF][osx
vF 1] |
co9 23 c14/ c\s
[NKH | unojlsrollrJi
C11 6 cih ce
[FUH] [HKK] [=#n] [FBY¥
c2g/ ¢y c2}
G20 [0GN]
A
REAR
FRONT
no?| nes| wnos| wnos] nmos| nmo2| no2 8
88
RO7
D
ROB
R0O5
£
.
RUO4
R03
RO2 ,
RO!

Figure 11. LIST,TREE,QUEUE,STACK and BTREE

37

a7

