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CHAPTER I

INTRODUCTION

The investigation described in this dissertation is partially

motivated by a desire to focus attention on certain deficiencies in

computer-assisted instruction (CAI) research. The current emphasis

in CAI research is on exploring and discovering new ways in which

humans and computers can interact. This involves the design of special

hardware and the implementation of new programming techniques (software).

The reader is referred to Wexler (1970) for a brief account of the

historical development of CAI. In his account, one can clearly see that

the primary emphasis in CAI research projects has been system developmem

Most of the projects have been implemented under ideal operating condi-

tions for small and highly motivated groups of students, while little or

no attention has been given to evaluating the curriculum or the pedagogi-

cal methods used.

Usually, the system is designed to sfmulate some intuitive concept

of a "good teacher" and to "individualize instruction." The result has

been a large collection of complex, interesting, and, from a computer

scientist's point of view, valuable instructional systems. However,

little machinery is available to judge their educational value or

relevance in any systematic or quantitative way.

For several years, the CAI Laboratory at the Institute for

Mathematical Studies in the Social Sciences (IMSSS) has been offering

a course in mathematical logic. The availability of this course has
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made it possible to collect information on student behavior in elementary

mathematical logic, information which was unavailable before the advent of

CAI. This dissertation is a first attempt at an in-depth analysis of some

of the factors which contribute to problem difficulty in elementary

mathematical logic. The major focus of the study is to develop an under-

standing which might eventually lead to a quantitative theory of problem

solving in logic. This work is in the spirit of the analyses in elementary

mathematics to be found in Suppes, Jerman and Brian (1968) and in Loftus

(1970). My approach involves formally describing the relationship between

structural features of logic problems and problem difficulty, as well as

the development of models which predict difficulty as a function of

curriculum structure.

Unfortunately, the researcher interested in utilizing an operational

CAI system faces many novel problems. In the remainder of this chapter

I shall mention some of these problems because I consider them important

and relevant to discussions of CAI. However, it is not the purpose of

this dissertation to provide detailed discussion or present serious

evidence on these problems.

Not only does the computer provide us with the ability to create a

large number of new educational environments, but it also provides us with

a capability for recording and preserving many aspects of student behavior.

However, the utilization of this data-collection capability presents

several problems. In a large-scale CAI systen, such as the one at IMSSS

where many CAI programs are being run concurrently, it is possible to

become inundated with student-response data. As the volume of data

collected increases, system reliability goes down and computer-response

time goes up. Also, the time and overhead required to remove the data

2



from high-cost, short-term devices to low-cost, long-term devices in-

creases. It is a serious mistake to overload the system by indiscrim-

inately recording every student response. To minimize the amount of data

collected, one must plan carefully what is required for a particular study.

This planning must involve another feature of computer systems,

namely, the finite probability of system failure and its effect on the

data. Systems can and do fail, and data are unavoidably lost because it

is not economically feasible to have duplicate backup facilities for

educational systems. As a result, it is not always possible to implement

carefully controlled experimental designs or paradigms on a large-scale

operational CAI system.

The problems facing the data collector are categorized under three

major headings. First, are problems which arise as a result of hardware

and/or software failure. The failure of any component may result in a

serious curtailment or cessation of operations. Failures usually have

an adverse effect on data collection, the chief effect being an

unrecoverable loss of a part of the data. Precautions can be taken to

minimize the loss of data, but the loss cannot be predicted or entirely

prevented.

In a CAI classroom, the second major area of concern is the

student-proctor interaction. A proctor is the person who supervises

and aids students while they are at the computer terminals. In the CAI

system at Stanford University, personnel who serve as proctors vary

widely in training and background. In some elementary schools, there

are full-time proctors on duty, while at other schools with fewer ter-

minals, the classroom teachers serve as proctors. In college courses,

the teaching assistant usually serves as the proctor, or, in some cases,



the proctor is a subject-area expert. Since there has been no attempt

to set up general guidelines for CAI proctors, they are likely to see

their roles differently and, thus, to differ in the amount and kind of

aid that they give to their students. If research done in CAI is to

have widespread application, then more thought must be given to standar-

dize the proctor's role. If the proctor also happens to be the teacher

of the course, he may sometimes see attempts at standardizing procedures

(at the terminals) as conflicting with his teaching goals. This conflict

must be reduced if we wish to use CAI as a research tool.

The third and final area of concern is curriculum writing,

particularly those parts of the curriculum written specifically for

the computer. Ideally, from the point of view of the educational

researcher, a curriculum should be designed to provide evidence for

evaluating the hypo,heses on which it is based. Frequently, teachers

of the cources and administrators may not share the researcher's zeal

for a neat experimental design. Often the curriculum already exists,

and curriculum writers are not inclined to rewrite their material for

the researcher's sake. Inmost cases, there is no empirical evidence

to convince a teacher or curriculum writer that the changes will be of

benefit to his students. Thus, researchers often find it necessary to

develop techniques for examining already existing curricula. As the

understanding of a particular curriculum grows, the researcher may

be able to present more Objective reasons why a particular curriculum

should be changed. Thus, a curriculum can be changed in ways which are

beneficial to the student and to the educational researcher.

Many of the difficulties mentioned above are sufficiently complex

to provide, in themselves, the basis for a major study. Therefore, as



has been previously state, the scope of this investigation was limited

to the extent discussed in Chapter II, namely, the area of curriculum

study. I do feel that the problems mentioned in this section are

important, and I hope the discussion will stimulate further in-depth

study of them.
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CHAPTER II

DEFINITION OF THE PROBLEM

The primary objective of this dissertation is to identify some of

the structural features of an elementary logic curriculum which affect

logic problem difficulty. A related task is to provide an adequate

behavioral measure of problem difficulty as well as an objective,

quantitative characterization of the curriculum structure. In this

chapter, a detailed description of the curriculum under consideration

is presented, followed by a discussion of problem difficulty and curri-

culum structure.

The study involves several aspects of the existing computer-based

logic instructional system (LIS) at Stanford University. The term 'logic

instructional system' is used to emphasize that this is the investigation

of a specific curriculum in the context of a large-scale CAI system. The

computer configuration under consideration is a modified Digital Equipment

Corporation (DEC) PDP-10 time-sharing system located at IMSSS.

Becoming operational at Stanford in 1963, LIS was origiaally

designed as a self-contained tutorial program to teach sentential logic

to bright elementary-school chIldren. It was first implemented on the

DEC PDP-1 system at MESS, and students traveled from the surrounding

elementary-school districts to the instructional laboratory at Stanford

to take their logic lessons. Later, the students were able to take their

lessons on teletypes located in their schools.
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Since its inception, both the curriculum and the program have been

under constant modification and revision as new operational modes have

been added. In the fall of 1969, a version of LIS was implemented on

the PDP-10 system. In the spring of 1970, data-collection routines were

added by the author to the PDP-10 version. LIS, as described below, is

the current version of the programwith data-collection capabilities.

The description of LIS will proceed as follows. First, a brief

description of the modes of problem presentation is given. These are

multiple-choice, truth-analysis, counterexample, and derive modes. An

example of each mode can be found in Appendix A. Next there is a

detailed discussion of the types of input which the students are allowed

to make and the manner in which LIS handles invalid student input. This

is followed by a discussion of the Rrogram clocks. Finally, an outline

of the subject matter of the LIS curricula is presented. Since this

study is concerned primarily with student performance, it is not

appropriate to include a detailed description of the organization and

logic of the operating program.

The multiple-choice mode needs little explanation. Students are

presented with a small body of text. The text is usually an explanation

of a concept followed by a question, or else it is a question on some

previously explained material. Then two or three lettered responses are

presented, and the student is required to type in the letter corresponding

to the correct response. If he types in the correct response, the cam-

puter types correct and presents the next problem. If he types an

incorrect response, the computer types wrong, try again. This continues

until the student enters a correct response.



In the truth-analysis mode, the student is required to compute the

truth value of a formula. In one form of truth analysis, the machine

assigns the value T or the value F to each sentential variable

occurring in the formula and then presents the student with each

subformula. The student types the truth value for each of these

subformulas. After he has assigned values to all subformulas, he is

presented with the whole formula, and he must type in its truth value.

If his answer is correct, he receives the next problem. If it is not,

he must repeat the problem.

In the other form of truth-analysis problem the student is given

the truth value of the conclusions. His task is to assign truth values

to the sentence letters such that the conclusion takes on its given

value. As in the other type, the problem is repeated until the student

makes the correct truth assignments.

The counterexample mode is similar to the truth-analysis mode.

The student is presented with a formula and zero or more premises and

asked to make truth assignments such that the premises are true and the

conclusion false. He is presented with each variable, and he assigns a

truth value to it. Using his assignments, he computes the truth values

of each subformula and then of each premise. If any premise is found to

be false, he is required to restart the problem. If the premises are

true, he is presented with the conclusion and asked to compute its

truth value. If the conclusion is false, the computer types correct,

and he is presented with the next problem. If the conclusion is found

to be true, he must restart the problem.

In the derive mode, the student is required to construct a

derivation. For this purpose, he has at his disposal a large number of

8
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rules of inference, axioms, and, eventually, theorems. A list of these

rules can be found in Appendix B. (For the sake of brevity, we use the

term 'rule' to denote 'rule of inference,' 'axiom,' and 'theorem' for the

remainder of this dissertation.) The student is permitted to type any

rule which is logically valid at any step in a derivation. The rule need

not, in any sense, bring the student closer to the desired conclusion.

Thus, as long as the student continues to enter logically valid rules,

he is free to use any line of reasoning that he wishes. At present,

there is a 32-line limit on the length of a derivation, but for the

problems considered here this restriction is inconsequential.

Except for the rules IP, FDT, and DLL, each rule has the form

n
1
.n
2
X1X

2
n
3'

where n
1,

n
2'

and n
3

are either integers or null
'
X
1

is a

letter of the alphabet, and X2 is a letter or null. To provide an

illustration of the way in which rules are used, we have included

Appendix C. It contains two typical derivation prcblems. The first

example is from sentential logic and contains an instance of the rule

IP. The second example is a typical algebra problem.

The rule DLL (delete last line) allows the student to "erase" his

last line. When the student types DLL, the computer deletes all of its

internal references to the line previously entered by the student. The

next line entered by the student is given the same number as the last

line deleted. The student is permitted to delete, sequentially, any

line that he has entered.

If a student attempts to enter a rule which is not logically valid

or to enter a nonexistent rule or an improper rule format, he is given

an error message. These are one- or two-line messages typed to the

student which exrlain the nature of his mistake. Some typical error

914



messages are included in Example 2 of Appendix C.

A fifth type of problem presentation asks the student to find either

a derivation or a counterexample (problem 505.25, Appendix A). The

student must decide whether the formula presented is true or false.

If he decides that a counterexample exists, he type CEX and the machine

enters the counterexample mode; otherwise, he types DER, and the machine

enters the derive mode. In either case, the computer does not evaluate

his choice. That is, if he types CEX and a counterexample does not exist,

he is still permitted to try to find one, and vice versa.

There are three clocks in LIS which are relevant to this discussion.

These clocks may be thought of as alarm clocks. They are set by the

program to "ring" or "fire" after some specific duration. When a clock

fires, it signals the program to initiate some particular action.

Some problems contain hints which are stored with the problem in

the problem file. If a student desires help, he may type H. A hint is

available only if one has been written for the problem and the hint

clock has fired. If a hint exists for a problem, but the clock has not

fired when a student types H, he is told to wait a little longer. If

there is no hint for a problem and the student asks for help, he is

told that no hint is available. The hint clock is set to fire 0.5

minutes after the beginning of a problem and after each response.

The problem clock is set to fire two minutes after the last

student input. If the student inputs any character prior to this time,

the problem clock is reset. If the clock fires, the student is auto-

matically signed off the terminal and his session is terminated.

The session clock is set wrien the student signs on. It fires

fifty minutes later. The student is then signed off at the completion

Is



of his current problem, although the student may sign himself off, at

any time, by typing FIN. He is, of course, free to sign back on again

at any time, and then his session clock is reset to fifty minutes.

The logic curriculum is arranged by lesson. Each lesson contains

a different number of problems and is designed to teach one or more

concepts. There are five series of lessons. The 100 and 200 series

lessons were designed for elementary and junior high school students.

The 400, 500 and 600 series lessons were designed primarily for college

students.

The 400 and 500 series lessons concentrate on the axioms for an

ordered field. The student begins with a review of sentential logic.

He is then given a set of axioms for addition of numbers that includes

commutativitnassociativity, and the properties of zero and negative

numbers. Using the axioms and rules of inference, he derives a number

of theorems on the addition of numbers. After a theorem has been

proved by a student, it becomes available to him for use in later proofs

Following the section on addition, a similar treatment is given to

multiplication and fractions. The student next studies some properties

of the ordering relation "less than." The final section gives the same

axiomatic treatment to the Boolean or class algebra.

The 500 series concentrates on the review of sentential logic.

This series was implemented primarily to give the student practice in

presenting counterexamples to unsound arguments. It is the only series

of the college curriculum in which counterexample-mode problems can be

found.

Finally, the 600 series was added in the fall of 1970 for use in

Philosophy 3, The Logic of Political Argument. It was designed to



adhere in structure as closely as possible to the 500 series. Only the

semantic content of some of the problems was changed.

This study is concerned with examining the relationship between

the structural properties of logic problems and problem difficulty,

expressed as a function of student performance. In earlier studies of

this aature on elementary mathematics curricula, the proportion of

students who successfully completed a problem was used as a measure of

difficulty. In these earlier studies, the problems were such that the

correctness of a single response was a good indication of whether the

student had successfully performed the task required. In logic, the

M
correct answer or the derived expression is not the object of interest.

The student must present evidence that he has constructed a valid argu-

ment. The evidence takes the form of a valid derivation using the

rules of LIS. Further, the student is not permitted tO advance to the

next problem until he has successfully completed his current one. Thus,

it would not be useful or meaningful to use proportion correct as an

indicator of problem difficulty. I had to look for other, less dbvious,

measures of problem difficulty.

In the search for a measure of difficulty I was constrained to

quantities measurable by our system. Since this was an investigation

of a college curriculum under actual teaching conditions, it was desir-

able to make the data collection invisable to the student. Thus, the

data available were the characters which the student typed to the

system, the times at which these characters were entered and the systeWs

response to the student. In the ensuing paragraphs I consider some of

the alternative measures of difficulty, definable in terms of the

information at our disposal.

12
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First, the mean number of error messages per problem can be used

as a measure of problem difficulty. However, there are several possible

explanations why a student may enter a response which generates an error

message. First, error messages may occur as a result of typing errors,

such as a student accidentally hitting the wrong key. Second, a student

may know which rule he needs to proceed but he may be unsure of how to

enter it in LIS. Or third, he may, in fact, have a faulty understanding

of a rule. To gain a more complete understanding of the reasons behind

behavior which results in error messages would require a far deeper

analysis of error messages than is planned for this study. It is also

relevant to note that a student may be unable to do a problem and yet

generate no error messages. He can do this either by having no input

at all or by inputting rules which he knows, but which are irrelevant

to a correct derivation. However, the relationship of this measure with

the other measures defined below was examined. This measure will be

referred to as variable B5, in order to remain consistent with order

in which the variables were listed by the data reduction programs.

Next, consider the number of lines in the derivation--that is,

the number of correctly entered rules for a valid derivation. The

measure of difficulty is defined as the mean number of lines per proof

per problen and referred to as varible Bl. This, criterion of difficulty

has two serious drawbacks. First, a proof for a problem may be very

short, yet the problem is considered, intuitively, difficult. Problems

which require "tricks" or unusual approaches fall into this category.

Second, problems which require a large number of lines are sometimes

considered intuitively easy. These are problems which require

straightforward applications of familiar rules.
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Third, consider the elapsed time from the start of a problem to its

solution. Define as a measure of difficulty the mean latency to comple-

tion and denote it by B20 More precisely, the latency is the sum of the

latencies for each valid line entered by the student. (See Appendix D

for a more detailed description.) Unfortunately, one of the objections

stated in the previous paragraph may be applied to this measure also.

Latency is an increasing function of the number of lines in a proof.

Thus, "easy" problems which require many lines will have large latencies.

As a result, I was not able to distinguish between short, "tricky"

problems and longer, straightforward ones.

It seems more reasonable to believe that problem difficulty is

some function of problem length and latency. Thus, a fourth possibility

is the mean latency per line. This quantity is defined in two ways.

Variable B3 is defined as

T.

B3 = E
1=1 Ll .

3.

where Ll1 is the number of valid lines entered by student i, T. is
i

total latency to solution for student i and N is the number of

students solving the problem. Variable B4 is defined as

B = 4
4 y Ti

=1 L2

N

1

whereL2.is (L1 - 2*DLL ) MIL. is the number of occurrences of the

rule DLL in the proof of student i and T
i

and N are as above. Both

of these measures are free from the objections mentioned above and agree

with one's intuitive feelings of problem difficulty.

4
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It is shown in Chapter IV that variables B3 and B4 are highly

correlated (.99). Note that B3 includes the false starts or irrelevant

paths which the student has decided to "erase" from his proof by the use

of DLL. B4, on the other hand, includes only those lines which the

student has decided will comprise his actual proof. Because of the

close relationship between these variables, variable B4 was chosen the

measure of difficulty in order to decrease problems of interpretation

in the analysis. Thus, the measure of difficulty is the corrected mean

latency per line.

Having defined the emperical measures of problem difficulty, we

now turn to a discussion of the variables or structural features of the

problems, which are indicators of problem difficulty. These variables

must be defined solely in terms of problem and/or curriculum structure

and not as a function of the student's performance. The variables are

divided into three distinct categories: (a) structural variables, (b)

11

standard proof
ft

variables, and (c) sequential variables. Each category

is discussed separately.

Structural variables are those features of a problem which can be

identified by visually examining the problem. These variables are

defined solely in terms of the symbols which appear on the teletype

prior to student input. A brief description of each follows.

1. The number of words in the problem. This is essentially

a measure of the amount of information to be processed

by the student. Symbolic logical connectives (V,&,-1,-,),

arithmetic operators, sentence letters, algebraic

variables, numerals, and parentheses are considered as

one word each. In studies on elementary-school

20



mathematics (Suppes, Jerman and Brian, 1968), an

analogous variable was significant in predicting

performance on problems.

2. The number of symbols in the sentence to be derived.

This variable is intended to give one measure of the

logical complexity of the problem. The procedure for

obtaining a value for (2) is illustrated by the fol-

lowing example. Suppose the prdblem is

DERIVE: A <(54.4 )1-1-) A < 5+( (1+3)+1) .

There are 23 symbols in the sentence, thus the value

of the variable is 23.

3. Number of occurrences of logical connectives in the

sentence to be derived. This variable is a slightly

different measure of the logical complexity of the

problem. To illustrate the procedure for obtaining

the value of (3), consider the following simple

example:

DERIVE: (R&S) -)R

There are two logical connectives, namely, & and-4.

Thus the value of the variable is 2.

4. The depth of nesting of the most deeply parenthesized

expression in the sentence to be derived. This

variable is intended to reflect another aspect of

logical complexity. The value of this variable is

found by counting the number of left parentheses in

each expression of the sentence to be derived and

choosing the maximum value. If there are no



parentheses, the value is zero. To illustrate this

variable, consider again the problem:

DERIVE: A <(5+4)+1 A < 5+((1+3)+1) .

We find three parenthesized expressions, namely, (5+4),

((1+3)+1) and (1+3). (5+4) has one left parenthesis,

((i+3)+1) has two left parentheses and (1+3) has one

left parenthesis. The maximum value is two, thus the

value of the variable is 2.

5. The number of premises. This variable gives some measure

of the amount of information a student must take into

account and use while attempting a derivation. It seems

reasonable to assume that, as the number or premises

increases, difficulty will also increase.

6. Problem context (0,1). This variable is a reflection

of the context in which the problem occurs. The

variable has value one if it is a 500 series problem

and zero otherw se .

7. Explanatory material and/or a hint in the problem

statement (0,1). The variable has value one if the

problem contains explanatory material, zero otherwise.

The "standard proof" variables have an element of subjectivity in

their definitions which the first group does not have. They require the

availability of a solution or proof for the problem. Since the solution

to a logic problem is not unique, there will be some degree of arbitrari-

ness in the selection of a "standard proof." For purposes of this study,

those proofs generated by the author will be considered standard.

17
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Several criteria were used by the author in generating the standard

proofs. First, the author worked through the entire set of problems

included in this study two times. The proofs generated the second time

through are used as standard. An attempt was made to construct proofs

with a minimal number of lines. Also, within the constraint of pro-

ducing a minimal proof, an attempt was made to use rules and theorems

most recently introduced, wherever possible. It is the judgment of the

author that the great majority of the proofs produced are minimal in

the sense of containing the least possible number of lines.

It is true that from a mathematical standpoint, it might be

desirable to demonstrate that the proofs are minimal. However, the proofs

are surely minimal in the majority of cases given and explicit proof

would make very little change in the interpretation of my results.

All but one of the "standard proof" variables are the number of

occurrences of certain rules used in the standard proof. These rules

are:

8. Affirm the antecedent. (AA)

9. Conditional proof. (CP)

10. Indirect proof. (IP)

11. Any axiom.

12. Any theorem. The material included in this study

contained only Theorems 1 through 6.

13. The number of lines in the proof.

The third group of variables is made up of the sequential

variables. These variables are meant to measure the effect of position

of the problem in the curriculum. It is reasoned that the greater the

number of rules available to the student, the more difficulty he will

18
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have in deciding which one to use. Also, the number of problems

completed will affect performance. The following variables are an

attempt to quantify these facts.

The first three are simply the number of rules, theorems, and

axioms available to the student for the problem. That is, the magnitude

of the number of available:

14. Rules of inference.

15. Theorems,

16. Axioms.

The next and final variable provides a measure of the "learning"

for each rule. It is defined as:

17. The number of problems since the last introduction of

a rule. This variable gives some measure of the amount

of practice a student has had on a particular rule.

Table 1 lists the measures discussed in this section. Also

included in Table 1 is a transformed variable, denoted S18, which is

Insert Table 1 about here

of importance in the analysis which follows. I have included it in

Table 1 in order to provide the reader with a complete list of structural

variables used. The significance of variable S18 is discussed in

Chapters III and IV.
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TABLE 1

Behavioral and Structural Variables

I, Measures of Problem Difficulty

Bl. Mean number of lines per derivation

B2. Mean latency to a correct solution

B39 Mean latency per line
B. Correlated mean latency per line (difficulty)

B5. Mean number of error messages per derivation

II, Measures of Problem Structure

A Structural Variables

Sl. Number of words per problem
S29 Number of symbols in sentence to be derived

S3. Number of occurences of logical connectives
in the sentence to be derived

S4. Depth of nesting of the most deeply parenthesized
expression in the sentence to be derived

S5. Number of premises
S6. Problem context
S7. Inclusion of explanatory material and/or hint

of the problem statement

B, Standard Proof Variables

S8. Number of occurrences of affirm the antecedent (AA)

S9. Number of occurrences of conditional proof (CP)
S10, Number of occurrences of indirect proof (IP)

S11. Number of occurrences of any axiom
S12. Number of occurrences of any theorem
S13. Number of lines in the proof

C. Sequential Variables

S14. Number of rules of inference available
S15. Number of theorems available
S16. Number of axioms available
S17. Number of problems since the last introduction

of a rule

D. Transformed Structural Variable

S18. S5 cubed

20
25



CHAPTER III

DESCRIPTION OF THE STUDY AND THE MODELS

In this chapter I discuss the population utilized, outline the

method of data collection, describe certain characteristics of the

collected data, and outline the methods of analysis. The primary

objective of this analysis is to describe in a precise way the

relationship between the structural and behavior measures of difficulty

and to develop models which will enable uS to predict student performance

from the structural features of the problems. A secondary objective is

to provide some general descriptive information about student performance

on the LIS.

The population used in this study consisted of the 27 Stanford

University students who enrolled in Philosophy 157 in the summer quarter

of 1970, the period during which the data were collected. No special

procedures, other than normal departmental prerequisites, were used in

the selection of these students. The group consisted only of students

who had decided to take the course.

The curriculum under investigation consisted of 203 problems from

the computer-based segment of the course. Although the number of

students involved in the study is not large, a considerable quantity of

information has been collected for each student. Thus, I feel that an

ample amount of information is available to successfully accomplish the

objectives of this study, even though its generalizability to all

student populations is limited.
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The students were proctered during their sessions at the terminals

by the philosophy graduate students who gave the lectur3 portion of the

course. They received three hours of traditional classroom instruction

per week, in addition to the time which they spent at the computer

terminal. Also, there was always someone available who was familiar with

the computer system and the logic program and who was able to deal with

any operational difficulties.

The logic data collection routines were added to the LIS in the

spring and early summer of 1970. They were designed and programmed by

the author. When the logic program was converted from the PDP-1 to the

PDP-10, no provisions for data collection were made. Thus, it was

necessary to modify certain sections of an already existing program.

These modifications required several steps. A special data

collection routine had to be written in assembly language and interfaced

with the logic program. It was decided to store the raw data on disk

files during the day and then to transfer each day's data to magnetic

tape, where it was kept for later reduction and analysis The necessary

programs were written and debugged in the spring of 1970.

During the time that the data were being collected, some data were

lost. As a result of long-term experience with the system (two years),

I feel justified in stating that data loss was in no way systematic.

However, to support this opinion rigorously would require a much more

definitive analysis of the system than is presently available, and I

feel that it would be neither feasible nor appropriate to include a

detailed analysis of the system in this study.

During the summer of 1970, while the data were being collected, a

second series of programs were written by the author. They were designed



a

to convert the raw data into a form acceptable by the standard Biomedical

Programs (BMD) used in the final stage of the analysis (Dixon, 1970).

These intermediate programs are described in detail in Appendix D.

The results presented in this study were obtained by means of two

BMD programs. First, the overall means, standard deviations and corre-

lations of all of the variables described in Chapter II were computed.

For this purpose, I modified the BMDO6M Canonical Analysis Program to

run on the MSS PDP-10 system (see Appendix D). An outline of the

computational procedure used may be found in the BMD Manual, pp. 207-213.

These results are discussed in Chapter IV.

The next step in the analysis was to describe formally the nature

and degree of the relationship between the behavioral and structural

variables. To do this, the canonical correlations and canonical co-

efficients were computed by means of BMDO6M. Although canonical

analysis is a well-known procedure, an outline of the model is provided

to avoid any ambiguity in terminology. The development follows that of

Morrison (1967).

Consider the two sets of variates: the behavioral variables and the

structural variables. Assume that the first set has p variates and the

second set has q variates. Suppose that the p q variates are from some

multidimensional population which has been partitioned such that:

It is assumed that:

E E
,

-E =
11 -a2

E E12 22

1. The elements of E are finite.

2 3

. 28
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2. E is of full-rank p + q.

3. The first r < min (13,6 characteristic roots of

EEEE
11 -12 - 22 -12

are distinct.

From this population, N-observation vectors have been randomly

drawn and the sample has been partitioned such that:

X' = (Xi 2.{.2) -S =
(41 P-12)

in conformance with the above.

S S-12 ...22

We wish to determine the linear compounds

such that the sample

u = al x
1

correlation of u
1

correlation of u
2

and v
2

is greatest

uncorrelated with u
1

possible pairs.

To do this,

Order the

v = b' X
1 -2

v
2 .

= b ' X
5 5 --2

and v
1

is greatest, the sample

among all linear compounds

and v
1

and so on for all s = min (p,q)

solve for X in

is s
is I

-
-12,22-12

xs11 1 = o-
roots from largest to smallest

canonical correlations.

where a. and b.
1 1

are

The coefficients

(S 1S '-.12-22-.12

(SI S 1S
-12-2a-12

C
1,

C
2'

...0
s

. These are the

are obtained from the equations

- C.S )a. = 0
-a 11 -a

- C.S )b. = 0
-a-22 -1

chosen to satisfy
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The final stage of the analysis was to fit a regression model in

order to predict problem difficulty as a function of xoblem structure.

Although the primary goal was to predict problem difficulty, regression

models using Bl and B2 as the dependent variables were also considered.

Thus, some idea of the predictive power of the structural variables with

respect to these other behavior measures was obtained.

The program used for the regression analysis was the BMD02R. This

program was fully implemented on the PDP-10 by IMSSS staff in June, 1970

and further modified by the author (see BMD Manual and Appendix D).

Since regression analyses are also a standard statistical procedure, it

does not seem appropriate to give a full description of the theory of

regression analysis here. However, the model is presented for purposes

of developing notation.

The general multiple linear regression model can be written as:

Y = X e

(n 1) (n p) (p x 1) (n x I)

where

Y.
1

X
10

.-=

. . X
1, p-1 00

e1

t=( t=(:
)

)

Y=( : X ( :

Yn X
np

X
n, p-1 0 e

nP-1

Y.are the mean problem difficulties for i-th problem.
1

Xij are the values of the p-1 structural variables 1 < j < p-1 .

Oi are the parameters to be estimated.

e.are the errors.
1

Xio = 1 for all i.
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We can write the normal equations as:

Assume E(e)= 0 and V(e) = I a
2

then the least squares estimators

B of § are

then

(X'X)-1 XTY .

Assume further that e N(0,I a2),

B M.V.N.(13,0.20CX)-1).

The AIWA table is shown in Table 2-

Insert Table 2 here

If the model is correct, NSREs = S
2

is an estimate of a
2

Define the

coefficient of multiple determination R
2

as:

R2 . (mly - ly -

This is usually interpreted as the proportion of variance accounted for

by the regression.

I shall now discuss the assumptions made in the regression analysis

and the -procedures used to check the validity of these assumptions for

our data. First, it is assumed that the model is linear in the parameters.

Since this was the first attempt at analysis of college student performance

on the LIS, no information was available to use as a guide in the selec-

tion of a nonlinear model. Thus, until definite information about the

form of the relationship between the variables is available, a linear

model is assumed.

26

31



TABLE 2

Analysis of Variance for Stepwise

Multiple Linear Regression

Source df SS MS

Regression P-1 b'X'Y - rii2 (b'X'Y - ni72)/p-1

Residual n-p Y'Y - b'X'Y (Y'Y - b'X'Y)/n-p

Total n-1 Y'Y - nY2
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The other assumptions concern the distribution properties of the

errors. If e is the vector of errors, then assume that E(e) = 0 and

V(e) = I a
2 that is, the errors are uncorrelated and have common

variance. An assumption that the e are normally distributed is not

necessary to obtain estimates of the parameters, but it is necessary only

in order to make tests of statistical significance. These assumptions can

be examined by plotting the residuals. The residuals are defined as:

R Y - Y. .

i i 1

If the fjtted model were correct, the residuals should have exhibited

tendencies that would seem to confirm the assumptions. My version of the

BMDO2R program allowed, as optional output, plots of (a) residuals versus

computed, (b) residuals versus the independent variables, and (c) depen-

dent variable versus the independent variables. I made all plots in order

to determine if the assumptions appeared to be violated. Where the

assumptions appeared to be violated, the plots were used to pinpoint the

sources of trouble and transformations on the existing variables were

used to correct for the violations.

In same cases the assumption V(e) = I a
2 appeared to be violated,

perhaps due to the fact that the measure of difficulty is essentially a

latency. Again we attempted to remedy this situation by a transformation.

Kruskal (1968) discussed a number of vaxiance-stabilizing transformations.

The various transformations suggested by Kruskal were considered, and I

selected the square-root transformai,ion as the one most useful for my

purposes. Kruskal also stated that many authors have remarked that

frequently (although not invariably) a single transformation also improves

normality, as well as stabilizing variance.
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In summary, the analysis was carried out as follows: first, the

behavioral data were reduced to a form usable by the standard statistical

routines . In the_ process, we output descriptive summaries of college

student performance on the LIS. Next the BMDO6M Canonical Analysis

program was used to obtain concise measure of the relationship between

the two sets of variables listed in Figure 1, Chapter II. Finally, using

the intuitively best measure of difficultycorreclated. mean latency per

lineas the dependent variable, I did a stepwise multiple linear

regression in order to develop a model which could account for problem

difficulty as a function of problem structure.
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CHAPTER IV

RESULTS

In this chapter I discuss the results of the analyses which were

described in detail in Chapter III. First, the summary statistics for

all the variables studied are presented. Next, we discuss some

interesting aspects of the data which do not appear in the summary tables.

These include a brief discussion of the problems which had extreme values

on the behavioral variables. Then we look at the correlations among the

variables and discuss the canonical analysis. This section concludes

with a discussion of.the.regression analyses.

Table 3 contains the mean, standard deviation and range for each

of the behavioral variables. Table 4 contains these statistics for the

structural variables. A brief discussion of several of the values found

in the tables will be informative.

Insert Tables 3 and 4 about here

First, in Table 3 note that the means of variables B3 and B4

differ by less than one unit and their ranges are identical. Thus, I

have assumed that these variables are slightly different measures for the

same underlying behavior. I have chosen to use variable B4 as the

_
'measure of diffici_ty

11

for the reasons given in Chapter II (p. 15).

A second interesting aspect of the results is the low error message rate,

variable B5. In fact, there were 26 problems for which there was no error

at all. This implies that the students were adept at using the rules they

had learned.
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TABLE 3

Means, Standard Deviations and Ranges

for Behavioral Variables

Variable Mean Standard Deviation Low High

Bl 4.55 3.32 1.00 15.80

B2 84.18 85.53 3.97 415.71

B3 15.77 7.54 3.70 47.25

16.43 8.34 3.70 47.25

B5 0.34 0.37 0.00 1.73



TABLE 4

Means, Standard Deviations and Ranges

for Structural Variables

Variable Mean Standard Deviation Low High

Si 19.99 20.28 '1.00 138.00

S2 11.64 6.19 1.00 31.00

S3 1.07 1.81 0.00 9.00

s4 1.03 0.91 0.00 5.00

s5 0.46 0.82 0.00 3.00

s6 0.22 0.42 0.00 1.00

S7 0.19 0.39 0.00 1.00

s8 0.24 0.59 0.00 3.00

s9 0.45 0.68 0.00 3.00

sl0 0.07 0.25 0.00 3.00

sli 0.25 0.52 0.00 2.00

S12 0.09 0.37 0.00 2.00

s13 3.84 2.85 1.00 15.00

s14 15.13 3.90 5.00 19.00

s15 0.37 1.14 0.00 6.00

si6 1.28 1.91 0.00 5.00

s17 5.44 4.88 0.00 23.00
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In comparing Bl, Table 3, with S13, Table 4, we see that the

students have been very successful in producing minimal proofs. However,

this must be considered in light of the fact that there were 51 problems

which could be solved by a one-line proof, a fact which was reflected in

the behavioral data where there were a total of 47 problems for which the

Bl value was less than 2.00. Further, the variance of Bl for some of the

longer problems is quite large indicating that fewer students produced a

minimal proof for these problems.

Tables 5 and 6 contain the problem statements and the standard

proofs for the seven problems having extreme values on the behavioral

measures. For the low values on variables Bl and B5, the problems were

chosen arbitrarily from those with the appropriate magnitude. Tables 5

and 6 provide insight into the features of the problems and curriculum

which give rise to extreme values on the behavioral measures. A

familiarity with these logic problems will add meaning to the discussion

of the analysis presented below. A brief explanation of each of these

problems is given followed by a discussion of the relationships among

the variables for these problems. Readers unfamiliar with the rules of

LIS may refer to Appendix B.

Problem 415032 received a value of 15.80 for Bl. It begins with a

hint telling the student that there is a certain redundancy in the rules

which he has available. At this point in the curriculum he has been

given all five axioms for addition plus the first three theorems. He

13 asked to derive 6 = 3 + 3. It is possible to produce a derivation

using the axioms and theorems, but, this will not result in the minimal

proof. To obtain the minimal proof the student must use the rules learned

earlier in the curriculum.

33



This problem requires 14 lines for its standard solution. In

addition, it would be considered a difficult problem on all of the

measures considered. It is ranked (15) on measure B2 with a latency

of 252.91 sec., (20) on measure B5 with .9 error messages and (85) on

measure B4 with 16.24 sec. per line. The problem involves five appli-

cations of the rule ND and appropriate algebraic manipulations and

algebraic substitutions which are accomplished in this case by the rules

AR, OE, CA, and RE.

Insert Table 5 about here

The problem ranked highest on measure B2 is 413010. Again this

problem would be considered very difficult on all of the measures.. It

is ranked (3) on measure B5 with 1.57 error messages, (8) on measure B4

with 37.86 sec/line, and (12) on measure Bl with 11.09 lines. In this

problem, the student is asked to derive the conditional: if A is less

than (5+4)+1 then A is less than 5+((1+3)+1). The student can easily

verify that it is true since obviously (5+4)+1 equals 5-1-((l+3)+1). One

approach could be to show that A < 10 -+A < 10 and then show

10.(5-1-4)+1.54.((1-1-3)+1) and substitute. However, this would require more

than seven lines. There are, of course, several other approaches.

The problem ranking highest on measure B5 is 414030. In this

problem the student must derive the statement that A+(3-1-(-A)) equals

1+(l+1), a statement which is obviously true. This problem is similar

to problem 415032 except that conditional proof is not required and the

student, at this point in the curriculum, has no theorems availdble to

him. As in the two previous cases, it would be considered a difficult

problem on the other measures also. It was (2) on measure B1 with 15.68

o9



TABLE 5

Problems Receiving Highest Value

on Behavioral Variables

415.32:

THERE ARE SOME SUPERFLUITIES AMONG OUR RULES, BUT SINCE WE ARE NOT AFTER

MATHEMATICAL ELEGANCE WE TOLERATE THEM. A SIMILAR SITUATION EXISTS IN

THE RULES OF SENTENTIAL LOGIC.

DERIVE: 6 -= 3 + 3

ND6 (1) 6 5 + 1

ND5 (2) 5 . 4 + 1

1.2RE1 (3) 6 . (4 + 1) + 1

3AR2 (4) 6 . 4 + (1 + 1)

ND2 (5) 2 = 1 + 1

5cE1 (6) 1 + 1 = 2

4.6aE1 (7) 6 = 4 + 2

ND4 (8) 4 3 +

7.8RE1 (9) 6 . (3 + 1) + 2

9AR2 (10) 6 . 3 + (1 + 2)

ND3 (11) 3 = 2 + 1

110E1 (12) 2 + 1 = 3

12CA1 (13) 1 + 2 = 3

lo.13RE1

(14) 6 3 + 3

CORRECT

413.10:

DERIVE: A < (5 + 4) + 1 -)A < 5 + ((1 + 3) + 1)

WP (1) A < (5 + 4) + 1

AS (A + B) + C = A + (B + C)

A:5

B:4

C:1 (2) (5 + 4-) + = 5 + (4 + l)



1.2RE1 (3)

NDh (h)

3.4RE1 (5)

5CA2 (6)

1.6cP (7)

CORRECT

405,23:

DERIVE: A = C

(1)

(2)

(3)

1.3AA (4)

3.1AA (5)

CORRECT

415.30:

DERIVE: A + (3

AI A + (-A) = 0

A:A (1)

LAE

:3 (2)

2AR2 ())

3CA2 (L)

A <

24-

A <

A <

A <

5

3

5

5

(5

+ (4 + 1)

+ 1

+ ( (3 + 1)

+ ( (1 + 3)

+ 4) + 1

+ 1)

+ 1)

A < 5 + ( (1 + 3)

A+B=A+C->B=C
B=C->A=C
A +B=A+ C

D = C

A = C

+ (-A)) = 1 + (1 + 1)

A + (-A) = 0

(A + (-A)) + 3 0 + 3

A 4- ((-A) -I- 3) = 0 -I- 3

A + (3 + (-A)) = 0 + 3

ZAfO= A
+ 0 = 3A:3 (')

5cA1 (6) 0 + 3 = 3

4.6RE1 (7) A (3 (-A)) = 3

ND3 (8) 3 = 2 + 1

7.8RE2 (9) A + (3 + (-A)) = 2 + 1

2 1 + 1ND2 (10)

9.10RE1

(11)

11AR1i (12)

CORRECT

=

A + (3 + (-A)). = (1 + 1) + 1

A + (3 + (-A)) = 1 + (1 + 1)

+ 1)



lines, (5) on measure B2 with 303.17 sec. and (65) on measure B4 with

18.20 sec. per line. This problem also requires the derivation of a

complex formula and involves the use of two axioms, AI and Z, as well

as some complicated algebraic manipulations and substitutions.

Problem 405023, which ranked highest on measures B4 and B3, differs

from the previous problems in two interesting ways. First, it does not

rank very high on the other measures. For B2, it is (65) with a latency

of 94.50. For B5, it is (117) with .07 error messages. For Bl, it is

(151) with 2.00 lines. This problem requires only two applications of

rule AA for its solution and, thus, does not seem intuitively difficult.

However, one might explain its observed difficulty by the fact that it

was preceded by 19 multiple-choice problems. This problem offers a

dramatic illustration of the effects of surrounding context on student

performance on a particular problem.

Insert Table 6 about here

Table 6 contains those problems which received the lowest values

on the behavioral measures. These problems have several features in

common and thus they are discussed as a group. First, they are all

problems which require only one line for their solution. Second, each

problem would be rated as "easy" on all of the behavioral measures.

Third, each problem has a value of zero on measure B5. For problems

412023 and 414004 the student is told exactly what he must type in

order to obtain the solution. The slightly higher than minimal latencies

for these problems are probably due to the time required for the student

to read the accompanying text. Problem 414005 is of precisely the same
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TABLE 6

Problems Receiving Lowest Values

on Behavioral Variables

412.23:

THERE IS A SHORT FORM OF CA SIMILAR IN SOME RESPECTS TO USES OF RE.

IN ORDER TO DERIVE A + B = 3 + 6 FROM THE PREMISE A + B = 6 + 3

SIMPLY TYPE '1CA2'.

DERIVE: A + B 3 + 6

(1) A + B 6 + 3

1CA2 (2) A + B 3 + 6

CORRECT

414.4:

TO USE THE Z AXIOM
1) TYPE 'Z' AND SPACE

2) AFTER THE COMPUTER TYPES IN THE AXIOM AND 'A:' TYPE

THE TERM YOU WANT TO REPLACE 'A'.

DERIVE: 5 + 0 = 5

2A+0. A
A:5 (1) 5+0=5

CORRECT

414.5:

DERIVE: 17 + 0 17

ZA+0= A

A:17 (1) 17 + 0 . 17

CORRECT



type as the preceding problem 414004, which introduces the Z axiom. The

only difference is that the student must type 17 instead of 5 for the

substitution into the axiom.

Tables 7, 8 and 9 contain the correlations of the behavioral

variables with one another, the structural variables with one another

and the behavioral variables with the structural variables, respectively.

These correlations were obtained as part of the standard output of the

BIADO64 program. The results have been separated into three tables for

ease of examination and discussion.

In Table 7, we find several interesting correlations which give

some insight into the nature of the relationships among the various

Insert Table 7 about here

measures of difficulty. First, observe that B1 is highly correlated with

B2 and B5 but not with B3 and B4. It is not surprising that latency and

error rate increase with the length of proof. However, it is reassuring

to see the correlation of B1 with B3 and B4 is not high, indicating that

our measure of difficulty is not a simple function of problem length.

The correlations between B2 and, B3 and B4, are seen to be somewhat

higher. The almost perfect correlation of B3 and B4 provides further

evidence that they are measuring the same underlying behavior and

further justification for the decision to choose only one of them as

the difficulty measure (B4). One final observation is that all of the

correlations among our behavioral measures are positive and equal to or

greater than .37.

Table 8 contains the correlations of the structural variables with

one another. Since these variables are defined solely in terms of

,
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TABLE 7

Correlations of Behavioral Variable

B1 B2 B3 B4 B5

B1

B2

B3

B4

B5

1. oo 0.90

1.00

0.37

0.64

1.00

o.4o

0.68

0.99

1.00

0.77

0.88

0.57

0.61

1.00



curriculum stru.cture, an examination of their correlations will provide

Insert Table 8 about here

some insight into certain features of the curriculum. The majority of

the correlations are low; only 22 of the 185 correlations have an absolute

value greater than .40. The large number of low correlations is desirable

because an attempt was made to define the variables so that they reflect

nonredundant features of the curriculum. Since it is impractical to

discuss each of the 185 correlations, only those variables which appear

to be of most interest are discussed.

In examining the correlations, we are able to distinguish two

patterns. First, a number of correlations are indicative of the 500

lessons. It should be recalled that these lessons deal with sentential

logic. This is reflected in the high correlations between 56 and S3,

S9, S10, For example, the high positive correlation between

S3 and 56 indicates that a greater number of logical connectives are

found in problems on logic than in problems on algebra. The correlation

between S6 and SI,. indicates more nesting of parentheses in the first part

of the curriculum and the correlation between 56 and S9 and 56 and. S10

suggest more frequent use of conditional proof (CP) and proof by

contradiction (IP). The high correlation between S6 and Sl1 reflects

the fact that most of the rules become available in the first part of

the curriculum. This is further supported by the high positive correla-

tions between S3 and S9, and S3 and no. There is also evidence that

the proofs are longer in the first part of the curriculum than in the

second part because of the correlation between S3 and_ S13 and a correla-

tion of 0.30 between S6 and S13.
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The second pattern consists of those high correlations which arise

as a result of the manner in which the variables are defined. For example,

there is a positive correlation between Sll and S16 because an axiom

cannot occur in a proof before the number of axioms available become

greater than zero. Similar explanations, based on the definition of

the variables, can be given for the correlations between S12 and S15,

S12 and S161 S14 and S16, S15 and S16, S1 and S7, S2 and S4 and S3 and 54.

Finally, two other correlations which appear in the analysis are

worth mentioning. First, there is a correlation of .48 between S5 and

S8. It appears that problems which use several occurrences of AA have

the greatest number of premises. An example of such a problem is problem

405023 in Table 5. Second, the high correlation betdeen S9 and S13

indicates that problems requiring conditional proof tend to be longer

than those not requiring the use of this rule.

The discussion now turns to an examination of the relationsbip

between the two sets of variables. The correlation between the

behavioral and structural variables can be found in Table 9. Next,

the relationship is described more formally by means of the canonical

correlation analysis. Finally, the predictive models obtained from the

Insert Table 9 about here

regression analyses are presented, first the models which have variables

B1 and B2 as the dependent variable and then in more detail, the model in

which difficulty (variable_...B is the dependent variable.

The correlations found in Table 9 between the two sets of variables

are rather low and in the majority of cases almost zero. The largest
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TABLE 9

Correlations Between Behavioral

and Structural Variables

B2 B3 B4 B5 B6

S1 -0.06 -0.03 0.05 0.05 0.01

S2 0.21 0.16 -0.03 -0.03 0.10

s3 0.44 0.37 0.17 0.18 0.25

sit 0.34 0.37 0.11 0.13 0.25

S5 -0.16 -0.08 0.24 0.27 -0.09

56 o.36 0.34 0.19 0.23 0.27

S7 -0.19 -0.13 0.07 0.07 -0.11

58 0.17 0.11 0.06 0.05 0.05

S9 0.44 0.34 0.09 0.11 0.25

S10 0.33 0.31 0.23 0.27 0.30

Sll 0.06 0.08 -0.03 -0.02 0.15

S12 0.05 0.05 0.05 0.o4 0.04

S13 0.93 0.74 0.27 0.27 0.60

S14 -0.13 -0.10 -0.07 0.08 -0.06

S15 0.09 0.08 0.09 0.07 0.07

516 0.08 0.08 0.0 0.01 0.09

S17 0.19 0.10 -0.0 -0.03 0.05



correlations are those between S13 and the behavioral variables Bl, B2

and B5. Also there are high correlations between the minimal number of

lines in a proof and the actual length, latency and number of error

messages for the proof.

Variables S31 S6 and S9 are also highly correlated with Bl, B2 and

B5. However, as is evident from Table 4, these structural variables are

also very highly correlated with each other and it is not easy to

interpret their effect on the behavioral variables from Table 9 alone.

Variable 510 also appears to be important. This variable is discussed

in more detail later.

The structural variables most highly correlated with the difficulty

variable B4 are S51 S10 and 5131 all .27. From Table 4, it can be seen

that these structural variables are not highly correlated with each other.

They play an important role in the regression model discussed below.

Note that most of the remaining structural variables have almost zero

correlations with B4. Thus, we are led to consider models which involve

linear combinations of the variables.

Table 10 contains the results of the canonical analysis.

Insert Table 10 about here

Behavioral variable B3 is omitted from the analysis for the reasons

discussed in Chapter II and above. Thus, there were four canonical

correlations and four sets of coefficients for the canonical variates.

Since I am interested only in describing the dependencies among the

variables and do not intend to use the derived variates for later

analyses, I have not explicitly computed the canonical variates from
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TABLE 10

Canonical Correlations and Coefficients

Canonical Correlation = 0.94682261

Coefficients for the first set of variables:

-1.326259(B1) 0.284225(B2) 0.021786(B4)

Coefficients for the second set of variables:

0.073856(S1)

0.047831(S5)

0.005036(S9)

-0.93880(S13)

0.006210(S17)

-0.146555(S2)

-0.269110(S6)

-0.036156(S10)

-0.048610(s14)

Canonical Correlation = 0.52323435

0.123607(S3)

0.009731(S7)

0.050815(S11)

0.007074(S15)

Coefficients for the first set of variables:

-0.089763(B1) 0.224815(B2) -1.261107(B4)

Coefficients for the second set of variables:

0.101760(B1)

-0.157033(S5)

-0.030440(s9)

0.093578(s13)

0.048549(s17)

-0.290956(S2)

-0.951645(S6)

-0.313280(S10)

-0.322343(S14)

Canonical Correlation . 0.37973930

Coefficients for

1.844434(B1)

Coefficients for

-0.193068(sl)

0.051367(s5)

-0.011327(s9)

-0.177405(s13)

0.401779(s17)

0.164078(S3)

-0.321546(s7)

0.029467(sll)

-0.196313(s15)

the first set of variables:

-1.473808(B2) 0.818170(B4)

the second set of variables:

0.060709(s2)

-0.928428(s6)

-0.387504(s10)

-0.464047(s14)

1.114298(S3)

0.366820(s7)

-0.688379(m)

-0.006174(s15)

51

0.107016(B5)

0.057187(S4)

-0.018433(S8)

-0.035614(S12)

-0.084335(s16)

0.335463(B5)

-0.096213(S4)

0.324336(S8)

-0.020757(S12)

-0.139318(s16)

-1.291125(B5)

-0.114576(B4)

0.176483(S8)

-0.125276(S12)

0.685214(s16)



Canonical Correlation = 0.22914162

Coefficients for the first set of variables:

1.913588(B1) -4.001316(B2) 0.961281(B4) 1.651518(B5)

Coefficients for the second set of variables:

0.518413(n) -0.550062(s2) -1.176869(s3) 0.189711(s4)

-0.054340(s5) 1.058815(s6) -o.120565(s7) 0.280015(s8)

0.500092(59) -0.461083(510) 0.125329(s11) -0.316266(s12)

0.039960(513) 0.477343(514) 0.603351(s15) -0.321938(s16)

0.356688(517)

52



the coefficients. In the table, the canonical correlation is followed

first by the set of coefficients for the be

Bl, B2, B4 and B5, and then the coefficients

avioral variables, namely,

for the structural variables,

S1 through S17. In interpreting the coefficients in Table 6, one must

remember that the canonical correlations were ob ained from the

covariance matrix. Thus, the magnitude of the coefficients depends

on the magnitude of the variables considered. To i lustrate what this

means, consider variables B2 and B5 and their respective coefficients

for the canonical correlation 0.52. From Table 3, we see that the mean

for B2 is 84.18 and the mean for B5 is .34; the coeffici nts are .22 and

.34 for B2 and B5, respectively. Thus, on the average, B2

18.52 units to the canonical variate whereas B5 contributes

Ignoring the magnitudes of the variables, one would say that

contributes

only 0.77.

variable

B5 plays the more important role due to the larger magnitude of

coefficient but when the magnitudes of the contribution are cons

its

'dered,

it is B2 which makes, by far, the larger contribution to the canon

variate.

For the maximum canonical correlation .95, the canonical variat

ical

for the behavioral variables places the most weight on Bl and B2. The

canonical variate for the structural variables places the most weight

on Sl, S2 and S13. Essentially, the first variate is some measure of

the length of a problem, that is, a linear combination of number of lines

and latency. Similarly, its correlative in the concomitant variables is

a structural measure of length, where S1 and S2 are measures of the amount

of information to be processed and S13 is the minimal length of a proof.

Thus, the first correlation establishes a link between the behavioral

measures of length of a problem and their structural counterparts.

11.8



The magnitude of the correlation indicates that the relationship between

these variables is a very strong one.

The second canonical correlation 0.52 appears to place the greatest

weight on variables B2 and B4 for the behavioral variate and on variables

Sl, S2, and S14 for the structural variate. This case yields, primarily,

a comparison of "difficulty" expressed as a wcighted sum of B2 and B4

with "structural complexity" expressed as a weighted sum of S1 and S2,

information to be processed, and S14, availability of rules. The

variable S14 appears to make the greatest contribution to the structural

canonical variate.

The final two canonical correlations are rather low and, thus,

their corresponding derived variates are not of as much interest as

those described above. For both of these correlations, the most

important structural variables are S1 and S14. In addition, for the

0.38 correlation, variable S17 contributes heavily to the structural

variate and for the 0.23 correlation, variable S2 is the other heavily

weighted variable.

The procedure used for the regression analyses is considered next.

Using the results of the canonical correlation analysis as a guide, I

ran three separate regression analyses in which Bl, B2 and B4 were the

dependent variables. The plots described in Chapter III, p. 28 were

obtained as part of the output for these regressions. An examination of

these plots reveals that variables B2 and B4 appear to violate the homo-

scedasticity assumption. After applying a square-root transformation to

variables B2 and B4, we find that this assumption appears to be satisfied.

For example, Figure 1 shows the plot of the residuals versus

variable B4. One can observe a rather obvious dependence of magnitude



of residuals on magnitude of B4 (see dotted lines). In Figure 2, the same

plot is shown after applying the square-root transformation to B4. Notice

that the pattern, which was observed in Figure 1, no longer appears.

Insert Figures 1 and 2 about here

Several transformations were applied to some of the independent

variables also. However, none of the transformed variables, except for

the cube of S5, entered into the regression equations.

The regressions were redone, this time using variables B11 NriE. and

/PT as the dependent variables. The results for these regressions may be

found in Tables 11, 12, and 13. These tables give the step at which each

Insert Tables 11, 12, 13 about here

variable entered the regression, the value of R and R
2
at that step, the

increase in R2 due to the addition of that variable, the F-value required

for deletion and the final regression coefficient for the variable. It

would be pointless to discuss any variable which did not contribute at

least 1 percent to R
2
and such variables have been eliminated from t,he

models. The Anova tables are given only for the actual models used. They

contain the variables in the equation with the step that the variable entered,

the coefficient, the standard error of the coefficient and its computed t-

value, the multiple correlation coefficient, and the standard error of

estimate of Y.

Table 14 contains the results for variable Bl. Variable S13 accounts

for 86 percent of the variation in this case. Since S13 is the

Insert Table 14, about here
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6.096 10.690 15.2 85 19.879 24.4
8.3 93 12.987 1 7.5 82 22,176

. ..........
73 29,067
26.770

-13.13 . 1.
.
.

1 .
.

-9.82 . 11 1 1 .
11 1 1 1 1 .

. 1 1 1 24 1 1 .
. 1 2 2 1 .
. 111 111 1 .

-4.52 . 1 1 12 11 1 6

. 1 2 11 1 1 11 1 1 .
123 21234 1 1 1 1 1 .

23 1331 11 21 III .
1 1 31 111 1 1 1 .

-0.22 . 2 1 1 1 11 1 1 .
1 2 1 11 2 1 1 .

1 1 1 1 1 1 1 .
1 1 12 1 111 1 .

12 1 II .
4.0R . 1 2 1 1 .

12 .
.. 1 1 1 .
. 1 1 1 .
. 1 1 1 .

1 1 1 .
. 2 .

.

.

.
12.6a . 1 1 1 1 .

. 1 1 .
1 1 .

.

.
16.9a . 1 .

1 .
. 1 .

.
1 .

21,29 . 1 .
.

1 .
.

.
25.60 .

,

. 1

1

6.096 1 0.690 15.2 85 19.879 24.4 73 29.067
R.3 93 12.987 1 7.582 22.176 2 6.770

Figure 1

51
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TABLE 11

Summary Table for Variable Bl

Step
Num.

Variable
Ent. Rem.

Multiple
R 114"

Increase
in R2

F Value
For Del.

Last Reg.

Coefficients

1 S13 0.93150 0.86769 0.86769 1318.6469 1.16334

2 S12 0.93590 0.87591 0.00822 13.0515 1.16625

3 slo 0.93900 0.88172 0.00581 9.7616 0.90045

4 s8 0.94080 0.88510 0.00338 5.9794 -0.28200

5 s15 0.94170 0.88680 0.00169 3.0351 -0.23345

6 si6 0.94280 0.88887 0.00207 3.6043 0.06910

7 s6 0.94330 0.88981 0.00094 1.7474 2.69823

8 s3 0.94520 0.89340 0.00359 6.4 72o -0.36914

9 S2 0,94700 0,89681 0,00341 6,1304 0.07617

10 s5 0.94850 0.89965 0.00284 5.4828 0.28674

11 51 0.95000 0.90250 0.00285 5.7656 -0.01312

12 54 0.9500 0.90307 0.00057 1.0777 -0.18570

13 si4 0.95060 0.90364 0.00057 1.0770 0.07470

14 s17 0.95090 0.90421 0.00057 1.0968 -0.01728

15 s7 0.95100 0.90440 0.00019 0.3109 0.17845

16 ma 0.95100 0.90440 0.00000 0.1903 0.09323



TABLE 12

Summary Table for Variable ,A7

Step

Num.

Variable
Ent. Rem.

Multiple
R2

Increase
In R2

F Value
For Del.

Last Reg.

Coefficients

1 S13 0.78690 0.61921 0.61921 326.9081 1.17775

2 S10 0.80120 0.64192 0.02261 12.6375 2.30444

3 S12 0.81050 0.65691 0.01499 8.7281 1.70137

4 s18 0.81860 0.67011 0.01320 7.9325 0.09758

5 s8 0.82650 0.68310 0.01300 8.1053 -o.8o486

6 s6 0.83220 0.69256 0.0o945 5.9470 4.87922

7 sil 0.8,3750 0.7o141 0.00885 5.8126 0.62469

8 S2 0.84120 0.70762 0.00621 4.1587 0.12205

9 s5 0.84510 0.71419 0.00658 4.4065 o.88)o8

lo s3 0.84770 0.71860 0.00440 2.9721 -0.47333

11 514 0.84970 0.72199 0.00339 2.3257 0.15648

12 S1 0.85030 0.72301 0.00102 0.7322 -0.01469

13 S17 0.85110 0.72437 0.00136 0.8755 -0.03637

14 S7 0.85150 0.72505 0.00068 0.5108 0.43606

15 s9 0.85170 0.72539 0.0004 0.2904 0.22169

16 54 0.85180 0.72556 0.00017 0.0933 -0.12122

17 S16 0.85190 0.72573 0.00017 0.0432 0.05144

18 S15 0.85190 0.72573 0.00000 0.0330 -0.04807



TABLE 13

Summary Table for Variable 4ET

Step
Num,

Variable
Ent. Rem.

Multiple

H R

Increase
In R2

F Value
For Del.

Last Reg.

Coefficients

1 S15 0.27500 0.07563 0.07563 16.4435 0.09061

2 S5 0.36900 0.13616 0.06054 14.0246 0,68067

3 slo 0.43250 0.18706 0.05090 12.4530 0.66759

4 s8 0.47630 0.22686 0.03981 10.1854 -0.30851

5 s6 o.50680 0.25685 0.02998 7.9536 1.35355

6 s16 0.54620 0.29833 0.o4149 11.5861 0.02457

7 S2 0.56010 0.31371 0.01537 4.3769 0.02947

8 s7 0.57170 0.32684 0.01313 3.7903 0.37023

9 S12 0.57690 0.33281 0.00597 1.7321 0.18215

10 S5 0.58000 0.33640 0.00359 1.0083 -0.09061

11 S17 0.58230 0.33907 0.00267 0.7875 -0.01447

12 S14 0058480 0.34199 0.00292 0.8292 0.04600

13 S15 0.58620 0.34363 0.00162 0.5003 0.06032

14 Sl 0.58700 0.34457 0.00094 0.211-93 -0.00204

15 Sll 0.58740 0.34504 0.00047 0.1462 0.06531

16 s4 0.58760 0.34527 0.00023 0.0553 0.0150

17 s9 0.58760 0.34527 0.00000 0.0193 0.02255
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TABLE 14

ANOVA Table and Significant Variables for B1

Analysis of Variance:

DF Sum of Squares Mean Square F-Ratio

Regression 1 1935.42 1933.42 1392.39

Residual 201 279.20 1.39

Variables in Equation: (Constant . .295)

Step Computed

Variable Entered Coefficient Std. Error T-Value

s13 1 1.11 .03 37.00*

Number of steps 1

Multiple R 0.93

Multiple R2 0.87

Std. Error of Est. 0.10

*
p < .001



number of lines in the minimal proof, one can say, with the qualifications

mentioned on p. 33, that the students were quite successful in finding the

minimal proofs. The remaining variables account for only an additional

4 percent increase in R
2

. Thus, it appears that the more interesting

aspects of performance on the logic problems are not reflected in the

problem length.

Table 15 contains the results for the regression using the square

root of total latency, 45.2 as the dependent variable. In this case,

Insert Table 15 about here

the model was able to account for 68 percent of the variation in total

2
latency with six variables. The value for R is significantly nonzero

at p < .01.

The most important variable and the first to enter the equation

is variable S13, the number of lines in the minimal proof. It is not

surprising that the amount of time spent on a problem is very strongly

dependent on its length. However, the other variables included in this

model begin to give insight into some of the other factors affecting the

time a student spends on a problem.

The second variable to enter the equation is variable S10, the

number of occurrences of IP in the standard proof. The increase in

latency may be attributed to two factors. First, the rule requiring

three arguments, is complicated to use; the error rate for problems

requiring the use of the rule IP was, in general, higher than for other

problems. Second, a student must spend time to discover the contradiction

needed for the indirect proof.
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TABLE 15

ANOVA Table and Significant Variables for

the Square-Root of B2

Analysis of Variance:

DF Sum of Squares Mean Square F-Ratio

Regression 6 2556.52 426.09 73.57

Residual 196 1135.17 5.97

Variables in Equation: (Constant = 2.99)

Variable

Step
Entered Coefficient Std. Error

Computed
T-Value

s6 6 1.22 0.50 4.18**

s8 5 -1.06 0.34 2.82*

S10 2 2.27 0.78 2.91*

S12 3 1.63 0.47

s13 1 1.21 0.07 17.28**

s18 4 0.15 o.o4 3.75**

Number of Steps 6

Multiple R 0.83

Multiple R2 0.68
Std. Error of Est. 2.41

p < .01
**

p < .001
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The third significant variable to enter the equation is S12, the

number of occurrences of a theorem in the minimal proof. The increase

in latency due to the presence of theorems in a proof may be explained

as follows. Unlike rules and axioms, there are no mnemonics for the

theorems. If a student feels that a theorem is appropriate, he must

first consult his theorem sheet to see if there is such a theorem and

to find its number (e.g., TH3). Thus, except in the improbable event

that a student has memorized the theorem numbers, these problems require

more time, even though they are not necessarily more difficult.

The transformed variable S18, the cube of the number of premises,

enters the equation next. This variable represents, in part, the

information to be processed by the student before he solves the problem.

Each additional premise greatly increases the amount of time spent on

the problem.

The fifth significant variable to enter the equation is S8, the

number of occurrences of AA in the minimal proof. Note that this

variable has a negative coefficient. This variable was also significant

in the regression equation obtained for where it also received a

negative coefficient. An interpretation for it is given in the

discussion below.

The final variable in the model for latency is S6, the problem

context. This variable indicates that on,the average, the problems

in the CEX portion of the curriculum require more time.

None of the remaining variables contribute as much as 1 percent

to R
2

as can be seen from Table 12. Thus, they are not included in

the model for latency.
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Table 16 contains the results of the regression which used /AT

square root of latency per line, as the dependent variable. Those

Insert Table 16 about here

variables which contribute over 1 percent to R
2

and are significantly

nonzero were chosen for the model. With the seven variables meeting this

criterion, the model was able to account for :53 percent of the variation.

Although this value for R2 is not as impressive as the values in the pre-

vious two cases, the F-ratio of 12.735 is significant for p < .01.

Further, an examination of the important variables in this first attempt

to predict problen difficulty has revealed some of the important structural

features which may be further broken down and explored in future studies

of this nature. Some possibilities are considered in Chapter V. But

first, the results of the present analysis are presented.

Variable S13, the number of lines in the standard proof, is the

first variable to enter the equation. It accounts for 8 percent (see

Table 13) of the total variation. Thus; the length of a proof is an

indicator of difficulty, but it does not assume the overwhelming

importance which it had in the two previously discussed models.

The second variable to enter is S5, the number of premises, and it

accounts for an additional 6 percent of the variation. The great majority

of problems in which premises are given are to be found in the CEX portion

of the curriculum. Hence, this variable may also be accounting for part

of the effect due to problem context along with the information to be

processed.

Variable S10, the number of occurrences of IP in the standard proof,

which accounted for an additional 5 percent of the variation, enters the

60

6'0 lo I



TABLE 16

ANOVA Table and Significant Variables for

the Square-root of B4

Analysis of Variance:

DF Sum of Squares Mean Square F-Ratio

Regression 58.62 8.37 12.74

Residual 195 128.23 0.66

Variables in Equation: (Constant = 2.66)

Step

Variable Entered Coefficient Std. Error

Computed
T-Value

52 7 0.02 0.01 2.20
*

55 2 0.68 0.09 7.5e*

s6 5 0.87 0.19

s8 4 -0.40 0.12 3.33*

slo 3 0.70 0.26 2.69*

813 1 0.07 0.03 2.33*

816 6 0.14 0.04 3.50*

Number of Steps 7

Multiple R 0.56

Multiple R2 0.33

Std. Error of Est. 0.81

p .01
**
p .001
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equation next. In addition to the extra time required to use this rule

(see p. 571 a problem involving the use of IP requires a different

kind of behavior on the part of the student than that required in a

straight derivation problem. The results imply that this difference is

significant and results in increased difficulty.

The only variable to have a negative coefficient is variable S8,

the number of occurrences of AA in the standard proof. This variable

accounts for 4 percent of the variation. Table 9 shows that this variable

is highly correlated with S5, thus making it somewhat difficult to inter-

pret. Note further that the AA rule was used predominantly in the CEX

portion of the curriculum and only in those problems which could not be

solved by means of a counterexample. That is, AA appeared only in

DERIVE-type problems. Thus, this variable might be interpreted as

accounting for the fact that in context of the CEX portion of the

curriculum, derive problems are easier than CEX problems.

Variable S6, the fifth variable to enter the regression equation,

receives the largest coefficient. This is further evidence that problems

in the CEX portion of the curriculum were more difficult than those in the

remainder of the curriculum.

The sixth significant variable to enter is S16, the number of axioms

available to the student. This variable gives a measure of the amount of

information at the disposal of the student. This is the only case in

which one of the "availability" variables (S14-S16) played a significant

role.

Finally, the last significant variable to enter the regression

equation is S2, the number of words in the sentence to be derived.
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This variable is another measure of the information which must be

processed by the student.

Seven significant variables which account for 33 percent of the

variation in problem difficulty are identified. The first two, S2, the

number of words in the sentence to be derived, and 85, the number of

premises, are measures of the amount of information which must be

processed by the student in order to solve the problem. S6 specifies

whether a problem is included in the CEX part of the curriculum. The

next three, S8, SlO and 513, are standard proof variables and reflect

the nature of the required derivation. The final significant variable

is S161 a measure of the amount of information available to the student,

in this case the number of axioms.

In the next chapter, the results presented above are discussed. The

discussion includes some of the implications and a possible extension of

regression model.
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CHAPTER V

DISCUSSION

The investigation described in the previous chapters was the first

attempt to examine college student performance on LIS. In this chapter,

we first comment upon the significant variables in the predictive

difficulty model and define several new variables suggested by the

results. Next we mention some of the other important results of our

analysis and discuss the possibility of extending the regression model

to a process or automaton model.

For purposes of the ensuing discussion, the seven significant

variables are categorized under four major headings. The first category

is problem context containing variable 56. The next category contains

variables S2 and 55, which reflect the information which the student

must process. The third category comprises three variables, namely,

the standard proof variables S10, 58 and 513. The final category

provides a measure of the available information with S16. One may write

the predictive model as follows:

4/137 = .87S6 .0252 .68S5 - .4os8 + .70510 + .07s13 + .14s16.

First consider problem context. The results show, without doubt,

that the location of a problem in the curriculum is important. If a

problem is in the CEX portion of the curriculum it is more difficult.

In order to explcre further the effect of a problem's position in the

curriculum, I ran two additional regression analyses. In one analysis

the dependent variable was ,ART for the 45 problems in the CEX portion

of the curriculum, in the other analysis the dependent variable was NUT



for the remaining 158 problems. These analyses did not provide any

additional information on the important features which predict problem

difficulty. Thus, the procedure of grouping the two parts of the curri-

culum together did not adversely affect the results or mask the effect of

any important variable.

It would also be of interest to determine if there is a sequential

effect. If a sequential effect exists, the difficulty of a problem would

be affected by the nature of the immediately preceding problem. In other

words, if a DERIVE problem is more difficult when preceded by a CEX

problem than when preceded by another DERIVE problem, we say there is a

sequential effect. Define a (0,1) variable Nl
*
which takes the value

one if the preceding problem is of a different type and zero otherwise.

The second category deals with the information to be processed.

Although five variables, Sl-S5, have already been defined to provide

a measure of this aspect of the problem, only two of them, S2 and S5,

are significant in our model. Variable S2 is the number of symbols in

the sentence to be derived. Although this is very crude measure, the

variable is significant in predicting difficulty. A more refined

measure of the information in the sentence to be derivedwould be of

great value. However, the manner in which this information might be

quantized is by no means obvious. As a step in the direction of

capturing some of the information in the sentence to be derived, consider

the following variable,N2, which retains the information provided by S2

while providing additional information about the sentence. Assign

parentheses a base value of zero, all sentence letters, variables and

Technically, N1 is a standard proof variable.



constants a base value of one, unary operators a base value of two and

binary operators a base value of three. Then the value of a symbol is

its base value times the depth of nesting where we define the depth of

nesting as S4 -I- 1. The value of N2 is the sum of the values of all of

the symbols in the sentence to be derived, The following example is

provided to illustrate N2. Suppose the problem is:

1 3 0 1 3 1 0 3 1 3 1 3 0 1 3 0 0 1 3 1 0 3 1 0

DERIVE: A<( 5 + 4 ) +1-4A<( 5 + ( (1+ 3 ) +1)

1 3 0 2 6 2 0 3 1 3 1 3 0 2 6 0 0 3 9 3 0 6 2 0

The number above the sentence are the base values of the symbols, the

numbers below are the actual values. Their sum is 56, thus the value

of N2 is 56. In future studies of this nature, more energy must be

spent in trying to characterize the information in the sentence to be

derived.

The second significant variable in this category is S5, the number

of premises. As mentioned previously, since premises occur chiefly in

the CEX portion of the curriculum, this variable may reflect, in part,

the effect of problem context. In any case, the occurrence of premises

in a problem does result in a considerable increase in difficulty and

some of this increase is certainly due to the additional amount of

information to be processed. Since the results indicate that premises

are important, it would be of value to try to obtain a deeper under-

standing of the effect of premises. To do this we propose two new

variables, N3 and N4. If there are no premises, N3 and N4 are zero.

Before proceeding, one must distinguish between relevant and irrelevant

premises. An irrelevant premise is one which is not used in the solution

of the problem. With this distinction in mind, define N3 as the sum of
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the N2-values of each of the relevant premises and N4 as the sum of the

N2-values of each of the irrelevant wemises. These two new variables

determine the effect of relevant and irrelevant premises on difficulty.

They also provide a measure of the complexity of the premises.

The third category contains variables relfecting the nature of the

required derivation, namely, the standard proof variables. In the model

the three significant standard proof variables are S8, S10 and S13. The

most important variable throughout the analysis has been S13, the number of

lines in the standard proof. The other two significant standard proof vari-

ables involve the number of occurrences of specific rules in the standard

proof, namely, AA and IP. Thus, one is led to consider trying other vari-

ables which reflect the nature of the required rules in a derivation, without

going to the obviously impractical extreme of a separate variable for each

rule. Define N5 as the number of different rules used in the standard deri-

vation. Second, define N6n as the number of rules in the standard proof

which require n arguments. This variable was suggested by the importance

of variable S10.

The final category contains one significant variable, S16, the number

of axioms available to the student. This variable provides some measure

of the amount of information which the student has available to solve the

problems. This variable brings to mind another issue, namely, the effect

that "learning" a rule has on difficulty. For example, would variable

S16 be significant if there had been data on a much more extensive

portion of the curriculum, that is, if the study included all of

the theorems on addition? By that time, presumably the axioms would

have been well "learned" and perhaps variable S16 would no longer be of

importance. At the present juncture in the research on student performance
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on logic problems, one may reasonably relegate such considerations to the

status of "second-order" effects, but in the more refined stages of analysis

they must be seriously considerd.

The following is a list of the suggested new structural variables:

N1 Sequential variable (0,1). Takes the value one

if the preceding problem is of a different type,

zero otherwise.

N2 Measure of complexity of sentence to be derived.

N3 Measure of the complexity of relevant premises.

N4 Measure of the complexity of irrelevant premises,

N5 Number of different rules used in derivation.

N6n Number of rules in the standard proof requiring

n arguments.

In addition to providing some first insights into the factors

affecting problem difficulty, the present study yielded several other

valuable results. First, the study resulted in a precise and intuitively

satisfying definition of problem difficulty and provided a method of

measuring it in terms of student protocols. Second, a large data base

of student performance in elementary mathematical logic has been establi

from which it is possible to extract much more detailed information. I

hoped that other researchers and those interested in the teaching of 1

will make use of this data base to further their understanding of stu

performance.

The effort to understand problem solving in mathematical logic

not stop with regression models. Suppes (1969) pointed out that "t

conceptual weakness of the regression models is that they do not pr

an explicit temporal analysis of the steps being taken by a studen

a
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solving a problem." He then gave an example from research on arithmetic

performance of elementary-school students which illustrates how an

automaton model provides a natural tool for the analysis of data in

arithmetic-problem solving.

Any mature theory of problem solving must account for the temporal

sequence which a student goes through in solving a problem. That is, it

must provide meaningful dynamic links of the variables which affect prob-

lem difficulty, variables such as those identified in this study. An

automaton model would appear to be one of the more interesting possibilities

for this purpose. Since all automata are, at least theoretically, program-

mable on a computer, the terms "automata" and "computer" will be used

interchangably in the sequel.

The development of such models is possible, but the form that they

should take is not yet clear. At present, there exist a number of com-

puter programs which are able to prove theorems, i.e., solve problems

such as those in the curriculum we have studied. However, the problems

involved in developing the models arg quite serious. First, we must find

a theorem prover which "solves" problems in a manner analogous to the logic

student. For example, a theorem prover based on the resolution principle

(Robinson, 1965) is not appropriate. Then to analyze the student data,

we must go from a deterministic model to a probabilistic one, that is, we

must parameterize the model in such a way that it provides a good account

of the performance data. In the case of arithmetic problems the struc-

tural variables identified in the regression models were of great value

in parameterizing the atuomaton model.

I fully realize that the results presented here are still a long

way from providing a fully adequate account of problem-solving in
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mathematical logic. I do, however, feel that I have taken an important

initial step and gained some valuable insights into factors involved in

performance on logic problems.
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APPENDa A

Examples of the different problem modes on the LIS

I. Multiple choice:

502.1:
DT THIS LESSON YOU WILL LEARN HOW TRUTH OR FALSITY OF A COMPLEX

FORMULA IS RELATED TO THE TRUTH OR FALSITY OF ITS SUBFORMULAE. FOR

INSTANCE, IF S IS FALSE, THEN., S IS ...

A) TRUE

B) NCT TRUE

A

CORRECT

502.2:
IF S IS TRUE, THEN S IS ...

A) TRUE

B) NCT TRUE

CORRECT

II. Truth analysis mode:

503.23:

FIND THE TRUTH VALUES OF THE FOLLOWING:

S&(R&S)

T S

F R

LET'S COMPUTE THE TRUTH VALUES FOR ALL SUBFORMULAE
AND THEN FOR THE FORMULA ITSELF

F R&S

F S&(R&S)

CORRECT

502.36:

FIND THE TRUTH VALUE OF THE FOLLOWING:
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(--1 Qv 1 R)v (W)

T Q
T R

LET'S COMPUTE THE TRUTH VALUES FOR ALL SUBFORMULAE

AND THEN FOR THE FORMULA ITSELF

F Q
F

F QV R

'Y (-1 Qv R )

T Q4R
F (CAR)

( Qv R )11 QAGR )

C ORREC T

III. Counterexample mode:

505 .17:

FIND A COUNTEREXAMPLE: -)R

(1) GVR

(2) R - > (Q S)

(3) (S -,R) -0 Q

CEX YOU ARE LOOKING FOR A COUNTEREXAMPLE. THUS, THE

CONCLUSION MUST BE FALSE AND THE PREMISES TRUE.
NOW ASSIGN CONSISTENT TRUTH VALUES TO THE REMAINING

SENTENCE LETTERS.

LET US CHECK TO SEE IF YOUR TRUTH ASSIGNMENTS MAKE

THE PREMISES TRUE AND THE CONCLUSION FALSE.

T QVR

f S -)11

YOUR ASSIGNMENT MAKES ALL THE PREMISES TRUE.

LET'S CHECK THE CONCLUSION.

Qi!eS -4 R

CORRECT
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505 .15 :

FIND A COUNTEREXAMPLE: IR
(1) 1 QV 1 R

(2) Q
CEX YOUR ARE LOOKING FOR A COUNTEREXAMPLE. THUS, THE

CONCLUSION MUST BE FALSE AND THE PREMISES TRUE.

NOW ASSIGN CONSISTENT TRUTH VALUES TO THE REMAINING

SENTENCE LETTERS.

LET US CHECK TO SEE IF YOUR TRUTH ASSIGNMENTS MAKE

THE PREMISES TRUE AND THE CONCLUSION FALSE.

Q
R

1 QV 1 R

YOUR ASSIGNMENT MAKES ALL THE PREMISES TRUE.

LET S CHECK THE CONCLUS ION.

R

CORRECT

IV. Derive mode:

505.25:

DER DIE OR FIND A COUNTEREXAMPLE: Q1TR

(1)

(2) S R

(3)
DER

OK...CONSTRUCT A DERIVATION OR PROOF.

1 . 3AA (4)
LI.FD (5) j?Q)1/(R)

CORRECT



413 .33:

DERIVE : A=6 5+2 =A+1

WP (1) A=6

1AE
: 1 (2) A+1=6+1
2CE1 (3) 6+1=A+1
NI6 (4) 6=5+1

577RE1 (5) (5+1)+1=A+1
5 AR2 (6) 5+4+1) =A+1
102 (7) 2=1+1
7CE1 (8) 1+1=2
6. 8RE1 (9) 5-1-2=A-1-1

1 . 9CP (10) A=6 --> 5+2=A+1

CORRECT
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APPENDIX B

A List of The Rules of Inference, Theorems and

Axioms Used in LIS

1. Sentential Variables:C4R,S,U,W

2. Rules of Inference:

(a) AA: Affirm the Antecedent,

(b) WP: Working Premise,

(c) DN: Double Negation,

(d) FC: Form a Conjunction,

(e) RC: Right Conjunct,

(0 LC: Left Conjunct,

(g) FD: Form a Disjunct,

(h) DD: Deny Disjunct, and

(0 DLL: Delete last line.

3. Derivation or Proof Procedures:

(a) CP: Conditional Proof, and

(b) IP: Indirect Proof.

1. Numerical Variables: A,B,C,D,E.

2. Rules of Inference:

(a) ND: Number Definition,

(b) CE: Commute Equals,

(c) AE: Add Equals,

(d) SE: Subtract Equals,

(e) LT: Rule of Logical Truth, and

(0 RE: Replace Equals.



3. Axioms for Addition:

(a) CA (Commute Addition): A+B=B+A

(b) AS (Associate Addition): (A+B)+C=A+(B+C)

(c) Z (Zero Axiom): A+0=A

(d) N (Negative Number Axiom) : A+ ( -B) =A-B

(e) AI (Additive Inverse Axiom): A+(-A)=0

4. Theorems on Addition:

Theorem 1: 0+A.A

Theorem 2 : ( -A) +A=0

Theorem 3: A-A.0

Theorem 4: 0-A.-A

Theorem 5: 0=-0

Theorem 6: A-0=A

Theorem 7: A+B=A+C B=C

Theorem 8: A+B.0 -,A=C-B

Theorem 9: A=C-B -*A+B=C

Theorem 10: A+B.0 A.-B

Theorem 11: A=-B -* A+B=0

Theorem 12: A+B.A B=0

Theorem 13: - ( -A) =A

Theorem 14: (-(A+B))+B.-A

Theorem 15: -(A+B).(-A)-B

Theorem 16: ( -A) -B.(-B)-A

Theorem 17: -(A-B)=B-A

Theorem 18: (A-B)-C=A+((-B)-C)

Theorem 19: (A-B)-C=A-(B+C)

Theorem 20: A+(B-A)=B

Theorem 21: A- (A+B)=-B

Theorem 22: (A-B)+(B-C)=A-C

5 . Additional Rules of Inference:

(a) ME:

(b) DE:

Multiply Equals, and

Divide Equals.



6. Axioms for Multiplication:

CM (Commute Multiplication):

MS (Associate Multiplication):

MU (Multiplication by Unity):

MI (Multiplicative Inverse):

FR (Axiom for Fraction):

U (Unity Axiom):

DL (Distributive Law):

7. Theorems on Multiplication:

Theorem 30: 1XA=A

Theorem 31: -1 A=0 -) (1/A)XA:=1

Theorem 32: 1/1=1

Theorem 33: A/1=A

Theorem 34: 1 A=0 -) A/A=1

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

AXB=BXA

(AXB)XC=AX(BXC)

AX1=A

A=0 -) AX(1/A) = 1

-1 B=0 -) A/B=AX(1/B)

-1 1 = 0

AX(B+C)=(AXB)+(AXC).

35: 1 B=0&A/B=0 -) A=COCB

36: (B+C)XA=(BXA)+(CXA)

37: AX0=0

38: 1 A=0 --> 1/A=0

39: A=0 -) 0/A=0

40: A=O&AXB= 1 -) B=1/A

41: A=O&AXB=A -) B=1

42: B=0 -) (A/B)XC=(AXC)/B

43: 1 B=0 -) (A/B)XC=(C/B)XA

1+1+ B=0& n D=0 -) (A/B)X(C/D)=(C/B)X(A/D)

--1A=0& -1 B=0 -) (A/B)X(B/A)=1

--IA=O&AXB=AXC -) B=C

A=0&AXB=0 -> B=0

AXB=0 -) A=0& B 0

--1A=0& B=0 AXB=0

--1A=0&-1 B=0 -)B/(AXB)=1/A

51: A=0& -1 B=0 -) (CXB)/(M)=C/A

52 : B=084 D=0)&03=C/D .A.XD =CXB

53: 1 B=O&A=BXC -) A/B=C

54: AX( -B) =- (AXB)

55: ( -A)X ( -B) =.AXB

Theorem 45:

Theorem 46:

Theorem 47:

Theorem 48:

Theorem 49:

Theorem 50:

Theorem

Theorem

Theorem

Theorem

Theorem

1%.
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8. Ordering Axioms:

(a) NS (Asymmetry): A<B-)-IB<A

(b) AD (additivity): A < B -4 MC < B+C

(c) MD (Multiplicativity): A < B&O < C AXC < BXC

(d) TR (transitivity): A < B&B<C--)A< C

(e) CN (connectivity): AP -4 A < BVB < A

9. Theorems on Inequalities:

Theorem 60: A < A

Theorem 61: A=B A < B&-,B< A

Theorem 62: A < B A=B& -1B < A

Theorem 63: A < 0 -) 0 < - A

Theorem 64: 0 < - A -4 A < 0

Theorem 65: A+B < A+C -) B < C

Theorem 66: A < B -) - B < -A

Theorem 67: -B < - A -4 A < B

Theorem 68: A +( -B) < A -I- (-C) -4 C < B

Theorem 69: C < B -4 A + (-B) < A + ( -C)

Theorem 70: A < O&B < C AXC < AXB

Theorem 71: A < O&AXB < AXC -) C < B

Theorem 72: 0 < A&AXB < AXC -4B < C

Theorem 73 0 < 1
Theorem 711: A < 0 -) < 0

Theorem 75: 0 < A&(B < O&C < 0) AXB < BXC

Theorem 76: A < < B&O < C) AXB < BXC

Theorem 77: B=O&O < AP3 -) 0 < AXB

Theorem 78: B=O&O < AXB -) 0 < A/B



Boolean or Class Algebra

1. Class Variables:

2. Axioms:

(a) CU (Commute Union); GUH =HUG

(b) CI (Commute Intersection): Gnii =HnG
(c) UI (Union Identity): GUO = G

(d) II (Intersection Identity): Gn X =G

(e) DU (Distribute Union): G U (H n K) = (G u H) n (G u K)

(f) DI (Distribute Intersection): G n (H K) = (G n H) u (G n K)

(g) EM (Excluded Middle): G U (-G) = X

(h) RD (Reduction): G n (-G) = 0

(i) UC (Associate Union): (G U H) UK = GU (H U K)

(j) IA (Associate Intersection): (G n H) nK=Gn (H n K)

(k) SA (Subclass Axiom): G n (-H) = 0 )GCH
(1) CS (Converse of Subclass): G c H G n (-H) = 0

3. Theorems:

Theorem 161: Gu ((-G) nH) = G U

Theorem 162: Gn((-G) uH) = GnH
Theorem 163: GUG = G

Theorem 164: G n G = G

Theorem 165: G U X = X

Theorem 166: G n 0 = 0

Theorem 167: G U (G n H) = G

Theorem 168: G n (G U H) = G

Theorem 169: G n (-H) = O&G n H = 0 G = 0

Theorem 170: G U (-H) = X&G U H = X G = X

Theorem 171: G U H = 0 G = 0

Theorem 172: G n = X ) G = X

Theorem 173: GUH=GUK&GnH=G11K)H=K
Theorem 174: (G U H = X&G U K = X)&(G n H = O&G n K = 0) H = K

Theorem 175: (G U H = G&G UK = G)&(G n H = O&G n K = 0) H = K

Theorem 176: (G U H = X&G U K = X)&(G n H = G&G n K = G) H = K

Theorem 177: -( -G) = G



Theorem 178: -X=0

Theorem 179: GUH=GnH-)G=H
Theorem 180: G n (H n K) = (G n (G n K)

Theorem 190: G c G

Theorem 191: 0 c G
Theorem 192: G c X

Theorem 193: G C H&H G = H

Theorem 194: G C H G U H = H

Theorem 195: GUH =H-)GcH
Theorem 196: G U (-H) = X -> G C H

Theorem 197: G C H (1-H) = X

Theorem 198: G C H GnH=G
Theorem 199: GnH=G c H

Theorem 200: G C H&H C K G C K

Theorem 201: G c H -H c -G

Theorem 202: G c H&G c -H G = 0

Theorem 203: G C fl&-G C H -41-1 = X

Theorem 204: GcGUH
Theorem 205: GnHcG
Theorem 206: G K&H GUHCK
Theorem 207: G H&G K -4 GcHnK
Theorem 208: G C H -)11 = G U (H fl (-G))



APPENDDC C

Two Examples of Derivation Problems from LIS

This appendix contains two examples of derivation problems from

LIS. Example 1 is typical of the sentential logic problems. Example 2

is typical of the algebra problems.

An explanation of the lines of the derivation in Example 1 follows:

(1) (5)

(6)

(7)

(8)

(9)

These are the given premises to be used in deriving the

logical sentence R.

The student introduces the denial of the sentence to be

derived. To do this, he uses the working premise rule, WP.

LIS indents this premise and all liw,s following it until

the student proves a contradiction and uses the indirect

proof rule, IP, to derive the denial of what he entered on

this line. See the explanation for line 14 (below).

Line 1 is a disjunction and the newly introduced line 6 is

the denial of one of the disjuncts. The DD rule (Deny

Disjunct) allows the student to establish the truth of the

other disjunct S.

Line 2 is the conditional
nif

not Q, then not S. Line 7

states that S is true, so the student used deny consequent,

DC, to prove that Q is true.

The antecedent of the conditional in the line 3 premise is in

the form of a double negation (not (not Q)): the student has

proved that Q is true in line 8, so he uses double negation,

DN, to derive this antecedent.

Now he uses the affirm the antecedent rule, AA, to derive the

consequent of line 3.

He uses double negation again, now on the premise line 4.

He uses affirm the antecedent again to derive not W.



(13) He uses deny disjunct again, this time on the disjunct on

line 12 to get not S.

(14) He has derived a contradiction with the help of the working

premises he introduced. On line 7 he has S is true. On

line 13 he has not S is true. He uses the indirect proof

rule, IP, to establish the denial of not R, the working

premise on line 6.

Insert Table 1 about here

Now we give a detailed explanation of the steps in the derivation

of Example 2. There are no premises and the student is being asked to

prove Theorem 22 which will then become available to him for use in

later proofs.

(1)

(2)

(3)

(5)

The student introduces the negative number axiom, N. The

computer prints out the axiom and then allows the student

to substitute expressions for A and B. In this case, the

student types A for A and B for B.

Line 1 is an equation, so the student can commute about

To do this, he uses the commute equals rule, CE, where the

first 1 is the line number and the second 1 is the occurrence

nuMber of the ..

The student wishes to add something to both sides of the

equality on line 2. To do this, he uses the add equals

rule, AE, where the 2 is the line number of the equation.

The computer types a colon after which the students types

the expression to be added. The computer then types line

3.

On the next line the student attempts to type a rule which

the computer does not recognize.

The student again uses the negative number axiom.

He applies CE to line 4.

84.

e9



(6)

(7)

The student now uses the replace equals rule, RE. He wishes

to replace an occurrence in line 3 of the left-hand side of

the equation in line 5 by the right-hand side of the equation

in line 5. There is more than one occurrence of (B-C) in

line 3 and the student specifies which one he wants replaced

by the occurrence number, 1.

On the next line he decides to erase line 6. He does this

by using DLL, delete the last line.

He again uses RE, this time for the second occurrence of

(B-C). The student wishes to associate addition to the

right in line 6. To do this, he lases the associate right

rule, AR. He wants to associate about the second plus sign,

hence he uses 2 as the occurrence number. Since this is not

possible) he'xeceives an error message.

(8) He again tries AR, only this time the occurrence number of

the plus sign is 3.

(9)
He associates left about the third plus sign using AL.

(10) He uses the negative number axiom again.

(11) He now makes use of a theorem which he had proved earlier.

A theorem is used in a manner analogous to the axioms. On

the next line he misuses RE and receives the appropriate

error message.

(12) He correctly uses RE.

(13) He makes use of theorem 1.

(14)-(15) Two more uses of RE establish the desired theorem.

Insert Table 2 about here



TABLE 1

Example 1

4 00 .1

DERIVE R

(I) RVS

(2) Q > S

(3) -4 (u nw)
(4)

(5)
WP (6)

1. 6DD (7)
2 . 7DC

a-51
(8)

(9)

Q,

1 (-1 Q)
3.9AA (1o) U W

(ia)
(12) Wlo.".11AA

5 .121A) (13) S

-67.T3IP (14)

CORRECT
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TABLE 2

Example 2

417.31:

HERE IS THEOREM 22
DERIVE: (A-B) + (B-C) = A-C

N A + (-B) = A-B

A:A

B:B (1) A + (-B) = A-B

10E1 (2) A-B = A + (-B)

2AE

: B-C (3)
(A-B) + (B-C) = (A + (-B)) + (B-C)

NU

NU IS NOT A RULE

N A + (-B) = A-B

A:B

B:C (4) B (-C) = B-C

401 (5) B-C = B + (-C)

3.5RE1 (6) (A-B) + (B + (-c)) = (A + (-B)) + (B-C)

DLL

3.5RE2 (6) (A-B) + (B-c) = (A +(-B)) + (B + (-c))

6AR2

YOU MAY NOT ASSOCIATE RIGHT AROUND +. SIGN NUMBER 2

6AR3 (7) (A-B) + (B-C) = A + ((-B) + (B + (-C)))

7AL3 (8) (A-B) + (B-c) = A + ( ( (-B) + B) + (-C) )

N A + (-B) = A-B

A: A

B: C (9) A -I- (-C) = A-C

TH2 (-A) + A = 0

A:B (10) (-B) + B = 0

8.10RE2

THERE ARE NOT 2 OCCURRENCES OF ( -B) + B m LINE:8



8.1oRE1

(11) (A-13) + (B-C) = A + (0 + (-C) )

TH2 0 + A = A

A: -C (12) 0 + (-C) = -C

11.12RE1

(13) (A-B) + (B-C) . A + (-C)

13.9RE1 (14) (A-B) + (B -C) = A-C

CORRECT
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APPENDDCD

Description of Data Analysis Programs

In this appendix we describe the programs, written by the author,

which were used to reduce and analyze the data.

Logic Program

Each day during the summer of 1970, a file was created for each

logic student on the PDP-10 disk file system. iles were identified on

the disk by a file name (up to six characters) and a file extension (up

to three characters) written as NNNNNN.EEE. The name chosen for each

student file was the student's account number, the extension was the

date. Thus, logic student L1125 on July 13 had his data recorded on a

file named L1125.713. At the end of each day, the student data files

were transferred to magnetic tape. The format of these files is given

in Table 1.

Insert Table 1 about here

Data Reduction

In the fall of 1970, a series of programs were written to convert

the raw data into a format acceptable to the BMD programs. We give here

a brief description of these programs, indicating the programming

language used in each case.

PASS1 - PDP-10 assembly language

Input: daily student data files

(1) combined the data in the individual student files

described above into one data file per student.
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PASS2 - SAIL*

Input: output files from PASS1

(1) created a separate file for each logic problem.

PASS3 - SAIL

Input: output files from PASS2

(1) Extracted the following information from each problem file:

(a) problem number

(b) number of students who attempted the problem

(c) number of students for whom there was complete data

on the problem. As mentioned in Chapter III, some data

were lost due to system or machine failures, so that there

were incomplete data for some students on some problems.

(d) mean and standard deviation of the number of lines

in a complete derivation for the problem. Here and below

we define the mean as:

Mean = = ( E Xi)/N
i=1

and the standard deviation as:
1

(

1/1

N
Stan. Dev.= E (X. - 502)/N-1

1

where N is the number of students completing the

problem.

(e) mean and standard deviation of latency to solution.

(f) mean and standard deviation of latency per line.

(g) mean and standard deviation of corrected latency per

line.

Stanford Artificial Intelligence Laboratory's Algol-like language.
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(h) mean and standard deviation of number of error messages.

(i) mean and standard deviation of number of DLL's.

(j) mean and standard deviation of number of restarts.

(2) created ASCII files of the above information formated for

printing on a teletype or displaying on a CRT. These could

also be used as input for the BMD programs.

COMB - Fortran

Input: output from PASS3 and a file containing the values of the

structural variables which were typed as input by hand on

the CRT's.

(1) combined the two input files into one file containing both

the behavioral and structural variables.

SORT - Fortran

Input: output from PASS3

(1) produced a rank-ordering of the problems for each of the

five behavioral measures.

Analysis

In addition to writing the above programs, I also implemented the

BMDO6M program on the PDP-10 and modified the already existing BMDO2R

program to produce the plots mentioned in Chapter III.
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TABLE 1

Format Of Raw Logic Data

The first four words of each student file were:

wordl: Student account number
word2: Date
word3: Start time
word4: New day code - 761616161616

Whenever the student was restarted, the above four words were put in

his file.

The first words for every problem were:

wordl: New problem code - 716161616161

word2: Problem start time
word3: Problem and lesson number
words 4-n: Problem type codes

These were followed by response codes. For each student input these were:

wordl: response code - 767676767676
words 2-n-1: Student response in ASCII
wordn: Latency to response

Each time a student timed out, the following information was recorded:

wordl: TIMOUT
word2: Time of the time-out

Each time a student asked for a hint and the hint clock had not fired,

the student received one of the following two messages. For "A HINT IS

NOT AVAILABLE NOW" we recorded:

wordl: NOTNOW
word2: Time of message

When the student received "imam A LITTLE LONGER", we recorded:

wordl: KEEPON
word2: Time of message

When the student received an error message, we recorded:

wordl: ERRORS
word2: Error message number
word3: Contents of an accumulator containing information about the error

word4: Time of the error

At the end of each problem, we recorded:

wordl: Problem end code- 766766766766
word2: Time of end of problem

Finally, at the time that each student was signed off, we recorded:

wordl: Sign-off code - 776776776776
word2: Time of sign-off
word3: 747474747474
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