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CHAPTER I
INTRODUCTION

The investigation described in this dissertation is partially
motivated by a desire to focus attention on certain deficiencies in
computer-assisted instruction (CAI) research. The current emphasis
in CAT research is on exploring and discovering new ways in which
humans and computers can interact. This involves the design of special
hardware and the implementation of new programming techniques (software).
The reader is referred to Wexler (1970) for a brief account of the

historical development of CAI. 1In his account, one can clear.y see that

the primary emphasis in CAI research projects has been system developmenw.

Most of the projects have been implemented under ideal operating condi-
tions for small and highly motivated groups of students, while little or
no attention has been given to evaluating the curriculum or the pedagogi-
cal methods used.

Usually, the system is designed to simulate some intuitive concept
of a "good teacher" and to "individualize instruction." The result has
been a large collection of complex, interesting, and, from a computer
scientist's point of view, valuable instructional systems. However,
little machinery is available to judge their educational value or
relevance in any systematic or quantitative way.

For several years, the CAI Laboratory at the Institute for
Mathematical Studies in the Social Sciences {IMSSS) has been offering

a course in mathematical logic. The availability of this course has

1
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made it possible to collect information on student behavior in elementary
mathematical logic, information which was unavailable before the advent of
CAI. This dissertation is a first attempt at an in-depth analysis of some
of the factors which contribute to problem difficulty in elementary
mathematical logic. The major focus of the study is to develop an under-
standing which might eventually lead to a quantitative theory of problem
solving in logic. This work is in the spirit of the analyses in elementary
mathematics to be found in Suppes, Jerman and Brian (1968) and in Loftus
(1970). My approach involves formally describing the relationship between
structural features of logic problems and problem difficulty, as well as
the development of models which predict difficulty as a function of
curriculum structure.

Unfortunately, the researcher interested in utilizing an operational
CAI system faces many novel problems. In the remainder of this chapter
I shall mention some of these problems because I consider them important
and relevant to discus.sions of CAI. However, it is not the purpose of
this dissertation to provide detailed discussion or present serious
evidence on these problems.

Not only does the computer provide us with the ability to create a
large number of new educational cnvironments, but it also provides us with
a capability for recording and preserving many aspects of student behavior.
However, the utilization of this data-collection capability presents
several problems. In a large-scale CAI system, such as the one at IMSSS
where many CAI programs are being run concurrently, it is possible to
become inundated with student-response data. As the volume of data
collected increases, system reliability goes down and computer-response

time goes up. Also, the time and overhead required to remove the data
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from high-cost, short-term devices to low-cost, long-term devices in-
creases. It is a serious mistake to overload the system by indiscrim-
inately recording every student response. To minimize the amount of data
collected, one must plan carefully what is required for a particular study.

This planning must involve another feature of computer systems,
namely, the finite probability of system failure and its effect on the
data. Systems can and do fail, and data are unavoidably lost because it
is not economically feasible to have duplicate backup facilities for
educational systems. As a result, it is not always possible to implement
carefully controlled experimental designs or paradigms on a large-scale
operational CAI system.

The problems facing the data collector are categorized under three
major headings. First, are problems which arise as a result of hardware
and/or software failure. The failure of any component may result in a
serious curtailment or cessation of operations. Failures usually have
an adverse effect on data collection, the chief effect being an
unrecoverable loss of a part of the data. Precautions can be taken to
minimize the loss of data, but the loss cannot be predicted or entirely
prevented. |

In a CAI classroom, the second major area of concern is the
student-proctor interaction. A proctor is the person who supervises
and aids students while they are at the computer terminals. In the CAI
system at Stanford University, personnel who serve as proctors vary
widely in training and background. In some elementary schools, there
are full-time proctors on duty, while at other schools with fewer ter-
minals, the classroom teachers serve as proctors. In college courses,
the teaching assistant usually serves as the proctor, or, in some cases,

3
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the proctor is a subject-area expert. Since there has been no attempt
to set up general guidelines for CAI proctors, they are likely to see
their roles differently and, thus, to differ in the amount and kind of
aid that they give to their students. If research done in CAI is to
have widespread application, then more thought must be given to standar-
dize the proctor's role. If the proctor also happens to be the teacher
of the course, he may sometimes see attempts at standardizing procedures
(at the terminals) as conflicting with his teaching goals. This conflict
must be reduced if we wish to use CAI as a research tool.
The third and final area of concern is curriculum writing,

particularly those parts of the curriculum written specifically for

the computer. Ideally, from the point of view of the educational
researcher, a curriculum should be designed to provide evidence for
evaluating the hypo.heses on which it is based. Frequently, teachers

of the cources and administrators may not share the researcher's zeal
for a neat experimental design. Often the curriculum already exists,
and curriculum writers are not inclined to rewrite their material for
the researcher's sake. In most cases, there is no empirical evidence
"to convince a teacher or curriculum writer that the changes will te of
benefit to his students. Thus, researchers often find it necessary to
develop techniques for examining already existing curricula. As the
understanding of a particular curriculum grows, the researcher may

be able to present more objective reasons why a particular curriculum
should be changed. Thus, a curriculum can be changed in ways which are
beneficial to the student and to the educational researcher.

Many of the difficulties mentioned above are sufficiently complex

to provide, in themselves, the basis for a major study. Therefore, as
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has been previously state, the scope of this investigation was limited
to the extent discussed in Chapter II, namely, the area of curriculum
study. I do feel that the problems mentioned in this section are

important, and I hope the discussion will stimulate further in-depth

study of them. ' :
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CHAPTER II
DEFINITION OF THE PROBLEM

The primary objective of this dissertation is to identify some of
the structural features of an elementary logic curriculum which affect
logic problem difficulty. A related task is to provide an adequate
behavioral measure of problem difficulty as well as an objective,
quantitative characterization of the curriculum structure. In this
chapter, a detailed description of the curriculum under consideration
is presented, followed by a discussion of problem difficulty and curri-
culum structure.

The study involves several aspects of the existing computer-based
logic instructional system (LIS) at Stanford University. The term 'logic
instructional system' is used to emphasize that this is the investigation
of a specific curriculum in the context of a large-scale CAI system. The
computer configuration under consideration is a modified Digital Equipment
Corporation (DEC) FDP-10 time-sharing system located at IMSSS.

Becoming operational at Stanford in 1963, LIS was originally
designed as a self-contained tutorial program to teach sentential lecgic
to bright elementary-school ch.ildren. It was first implemented on the
DEC PDP-1 system at DdSSS, and students traveled from the surrounding
elementary-school districts to the instructional iaboratory at Stanford

to take their logic lessons. Later, the students were able to take their

lessons on teletypes located in their schools.
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Since its inception, both the curriculum and the program have been
under constant modification and revision as new operational modes have
been added. In the fall of 1969, a version of LIS was implemented on
the PDP-10 system. In the spring of 1970, data-collection routines were
added by the author to the PDP-10 version. LIS, as described below, is
the current version of the program with data-collection capabilities.

The description of LIS will proceed as follows. First, a brief
description of the modes of problem presentation is given. These are
multiple-choice, truth-analysis, counterexample, and derive modes. An
example of each mode can be found in Appendix A. Next there is a
detailed discussion of the types of input which the students are allowed
to make and the manner in which LIS handles invalid student input. This
is followed by a discussion of the program clocks. Finally, an outline
of the subject matter of the LIS curricula is presented. 8Since this
study is concerned primarily with student performance, it is not
appropriate to include a detailed description of the organization and
logic of the operating program.

The multiple-choice mode needs little explanation. Students are
presented with a small body of text. The text is usually an explanation
of a concept followed by a question, or else it is a guestion on some

previously explained material. Then two or three lettered responses are

presented, and the student is required to type in the letter corresponding

to the correct response. If he types in the correct response, the com-
puter types correct and presents the next problem. If he types an
incorrect response, the computer types wrong, try again. This continues

until the student enters a correct response.

"
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In the truth-analysis mode, the student is required to compute the
truth value of a formula. In one form of truth analysis, the machine
assigns the value T or the value F to each sentential variable
occurring in the formula and then presents the student with each
subformula. The student types the truth value for each of these
subformulas. After he has assigned values to all subformulas, he is
presented with the whole formula, and he must type in its truth value.
If his answer is éorrect, he receives the next problem. If it is not,
he must repeat the problem.

In the otner form of truth-analysis problem the student is given
the truth value of the conclusions. His task is to assign truth values
to the sentence letters such that the conclusion takes on its given
value. As in the other type, the problem is repeated until the student
makes the correct truth assignments.

The counterexample mode is similar to the truth-analysis mode.
The student is presented with a formula and zero or more premises and
asked to make truth assignments such that the premises are true and the
conclusion false. He is presented with each variable, and he assigns a
truth value to it. Using his assignments, he computes the truth values
of each subformula and then of each premise. If any premise is found to
be false, he is required to restart the problem. If the premises are
true, he is presented with the conclusion and asked to compute its
truth value. If the conclusion is false, the computer types correct,

and he is presented with the next problem. If the conclusion is found

‘to be true, he must restart the problem.

In the derive mode, the student is required to construct a

derivation. For this purpose, he has at his disposal a large number of
8




rules of inference, axioms, and, eventuglly, theorems. A list of these

rules can be found in Appendix B. (For the sake of brevity, we use the
term 'rule' to denote 'rule of inference,' 'axiom,' and 'theorem' for the
remainder of this dissertation.) The student is permitted»to type any
rule which is logically valid at any step in a derivation. The rule need
not, in any sense, bring the student closer to the desired conclusion.
Thus, as long as the student continues to enter logically valid rules,
he is free to use any line of reasoning that he wishes. At present,
there is a 32-line limit on the length of a derivation, but for the
problems considered here this restriction is inconsequential.
Except for the rules IP, FIN, and DLL, each rule has the form
.n X X nj, where 1), I, and n3 are either integers or null, Xl is a

f1 P12
letter of the alphabet, and X, is a letter or null. To provide an

2
illustration of the way in which rules are used, we have included
Appendix C. It contains two typical derivation prcblems. The first
example is from senpential logic and contains an instance of the rule
IP. The second example is a typical algebra problem..

The rule DLL (delete last line) allows the student to "erase" his
last line. When the student types DLL, the computer deletes all of its
internal references to the line previously entered by the student. The
next line entered by the student is given the same number as the last
line deleted. The student is permitted to delete, sequentially, any
line that he has entered.

If a student attempts to enter a rule which is not logigally valid
or to enter a nonexistent rule or an improper rule format, he is given

an error message. These are one- or two-line messages typed to the

student which explain the nature of his mistake. Some typical error

. °1a




messages are included in Example 2 of Appendix C.

A fifth type of problem presentation asks the student to find either
a derivation or a counterexample {problem 505.25, Appendix A). The
student must decide whether the formula presented is true or false.

If he decides that a counterexample exists, he type CEX and the machine
enters the counterexample mode; otherwise, he types DER, and the machine
enters the derive mode. In either case, the computer does not evaluate
his choice. That is, if he types CEX and a counterexample does not exist,
he is still permitted to try to find one, and vice versa. |

There are three clocks in LIS which are relevant to this discussion.
These clocks may be thought of as alarm clocks. They are set by the |
program to "ring" or "fire" after some specific duration. When a clock i
fires, it signals the program to initiate some particular action.

Some problems contain hints which are_stored with the problem in
the problem file. If a student desires help, he may type H. A hint is %
available only if one has been written for the problem and the hint E
clock has fired. If a hint exists for a problem, but the clock has not i

;\ fired when a student types H, he is told to wait a little longer. If &

b there is no hint for a problem and the student asks for help, he is
told that no hint is available. The hint clock is set to fire 0.5
minutes after the beginning of a problem and after each response.

The problem clock is set to fire two minutes after the last

student input. If the student inputs any character prior %o this time,

the problem clock is reset. If the clock fires, the student is auto-

matically signed off the terminal and his session is terminated.

— A

The session clock is set when the student signs on. It fires

fifty minutes later. The student is then signed off at the completion
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-

R
Q . t 5
JAFuText provided by Enic

PR S




of his current problem, although the student may sign himself off, at

any time, by typing FIN. He is, of course, free to sign back on again

at any time, and then his session clock is reset to fifty minutes. §
The logic curriculum is arranged by lesson. Each lesson contains

a different number of problems and is designed to teach one or more

concepts. There are five series of lessons. The 100 and 200 series §
lessons were designed for elementary and junior high school students.

The 400, 500 and 600 series lessons were designed primarily for college

students.

The 400 and 500 series lessons concentrate on the axioms for an
ordered field. The student begins with a review of sentential logic.

He is then given a set of axioms for addition of numbers that includes

Bl b i 5t by i A e s Aetada e 1. ¥

commutativity, associativity, and the properties of zero and negative
numbers. Using the axioms and rules of inference, he derives a number
of theorems on the addition of numbers. After a theorem has been
proved by a student, it becomes available to him for use in later proofs.
Following the section on addition, a similar treatment is given to
multiplication and fractions. The student next studies some properties
of the ordering relation "less than." The final section gives the same
axiomatic treatment to the Boolean or class algebra.

The 500 series concentrates on the review of sentential logic.

This series was implemented primarily to give the student practice in

presenting counterexamples to uasound arguments. It is the only series

of the college curriculum in which counterexample-mode problems can be g

found.

Finally, the 600 series was added in the fall of 1970 for use in

Philosophy 3, The Logic of Political Argument. It was designed to
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adhere in structure as closely as possible to the 500 series. Only the
semantic content of some of the problems was changed.

This study is concerned with examining the relationship between
the structural properties of logic problems and problem difficulty,
expressed as a function of student perforhance. In earlier studies of
this aature on elementary mathemgtics curricula, the proportion of
students who successfully completed a problem was used as a measure of
difficulty. In these earlier studies, the problems were such that the
correctness of a single response was a good indication of whether the
student had successfully performed the task required. In logic, the
"correct answer' or the derived expressioﬁ is not the object of interest.
The student must present evidence that he has coastructed a valid argu-
ment. The evidence takes the form of a valid derivation using the
rules of LIS. Further, the student is not permitted to advance to the
next problem until he has successfully completed his current one. Thus,
it would not be useful or meaningful to use proportion correct as an
indicator of problem difficulty. I had to look for other, less obvious,
measures of problem difficulty.

In the search for a measure of difficulty I was constrained to
gquantities measurable by our system. Since this was an investigation
of a college curriculum under actual teaching conditidns, it was desir-~
able to make the data collection invisable to the student. Thus, the

data available were the characters which the student typed to the
system, the times at which these characters were entered and the systenm's
response to the student. In the-ensuing paragraphs I consider some of

the alternative measures of difficulty, definable in terms of the

information at our disposal.
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First, the mean number of error messages per problem can be used
as a measure of problem difficulty. However, there are several possible
explanations why a student may enter a response which generates an error
message., First, error messages may occur as a result of typing errors,
such as a stvdent accidentally hitting the wrong key. Second, a student
may know which rule he needs to proceed but he may be unsure of how to
enter it in LIS. Or third, he may, in fact, have a faulty understanding
of a rule. To gain a more complete understanding of the reasons behind
behavior which results in error messages would require a far deeper
analysis of error messages than is plamned for this study. It is also
relevant to note that a student may be unable to do a problem and yet
generate no error messages. He can do this either by having no input
at all or by inputting rules which he knows, but which are irrelevant
to .a correct derivetion. However, the vrelationship of this measure with
the other measures defined below was examined. This measure will be
referred to as variable B5, in order to remain consistent with order
in which the variables were listed by the data reduction programs.

Next, consider the number of lines in the derivation--that is,
the number of correctly entered rules for a valid derivation. The
measure of difficulty is defined as the mean number of lines per proof-
per problem and referred to as varible Bl. This. criterion of difficulty
has two serious drawbacks. First, a proof for a problem may be very
short, yet the problem is considered, intuitively, difficult. Problems
which require "tricks" or unusuai approaches fall into this category.
Second, problems which require a large number of lines are sometimes
considered intuitively easy. The:se are pro‘;alems which require

straightforward applications of familiar rules.
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Third, consider the elapsed time from the start of a problem to its

solution, Define as & weasure of difficulty the mean latency to comple-
tion and denote it by B2, More precisely, the latency is the sum of the
latencies for each valid line entered by the student. (See Appendix D
for a more detailed description.) Unfortunately, one §f the objections
stated in the previous paragraph may be applied to this measure also.

Latency is an increasing function cof the number of lines in a proof.

Thus, "easy" problems which require many lines will have large latencies.

As a result, I was not @ble to distinguish between short, "tricky"
problems and longer, straightforward ones.

It seems more reasonable to believe that problem difficulty is
some function of problem length and latency. Thus, a fourth possibility

is the mean latency per line. This quantity is defined in two ways.

Variable B3 is defined as

T,
i

N
B3 = &
i=1 Lli

N,

where Lli is the number of valid lines entered by student i, Ti is
total latency to solution for student i and N is the number of
students solving the problem., Variable Bk is defined as

N T. -
BL'.‘-'--".z """":'I'.""' Ng

where L2, is (L1 - 2*DLL1), DLL, is the number of occurrences of the

rule DLL in the proof of student i and T, and N are as above. Both

i
of these measures are free from the objections mentioned above and agree

with one's intuitive feelings of problem difficulty.
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It is shown in Chapter IV that variables B3 and B4 are highly
correlated (.99). Note that B3 includes the false starts or irrelevant
paths which the student has decided to "erase" from his proof by the use
of DLL. B4, on the other hand, includes only those lines which the
student has decided will comprise his actual proof. Because of the
close relationship between these variables, variable B4 was chosen the
measure of difficulty in order to decrease problems of interpretation
in the analysis. Thus, the measure of difficulty is the corrected mean
latency per line.

Having defined the emperical measure.s of problem difficulty, we
now turn to a discussion of the variables or structural features of the
problems, which are indicators of problem difficulty. These variables
must be defined solely in terms of problem and/or curriculum structure
and not as a function of the student's performance. The variables are
divided into three distinct categories: (a) structural variables, (b)
"standard proof" variables, and (c) sequential variables. Each category
is discussed separately.

Structural variables are those features of a problem which can be
identified by visually examining the problem. These variables are
defined solely in terms of the symbols which appear on the teletype
prior to student input. A brief description of each follows.

1. The number of words in the problem. This is essentially

a measure of the amount of information to be processed
by the student. Symbolic logical connectives (V,&,m,-),
arithmetic operators, sentence letters, algebraic
variables, numerals, and parentheses are considered as

one word each. In studies on elementary-school
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mathematics (Suppes, Jerman and Brian, 1968), an
analogous variable was significant in predicting
performance on problems.

The number of symbols in the sentence to be derived.
This variable is intended to give one measure of the
logical complexity of the problem. The procedure for
obtaining a value for (2) is illustrated by the fol-
lowing example. Suppose the problem is

DERIVE: A <(5t4)+1- A < 5+((1+3)+1)

There are 23 symbols in the senfence, thus the value
of the variable is 23.

Number of occurrences of logical connectives in the
sentence to be derived. This variable is a slightly
different measure of the logical complexity of the
problem. To illustrate the procedure for obtaining
the value of (3), consider the following simple
example:

DERIVE: (R&S) —» R

There are two logical connectives, namely, & and - .
Thus, the value of the variable is 2.

The depth of nesting of the most deeply parenthesized
expression in the sentence to be derived. | This
variable is intended to reflect another aspect of
logical complexity. The value of this variable is
found by counting the number of left parentheses in
each expression of the sentence to be derived and

choosing the maximum value. If there are no
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pareritheses, the value is zero. To illustrate this

" yariable, consider again the problem:

DERIVE: A <(5+k)+1 —» A < 5+((1+3)+1) .

We find three parenthesized expressions, namely, (5+4),
((1+3)+1) and (1+3). (5+4) has one left parenthesis,
((1+3)+1) has two left parentheses and (1+3) has one
left parenthesis. The maximum value is two, thus-the
value of the variable is 2.

5. The number of px.'emises. This variable gives some measure
of the amount of information a student must take into
account and use while attempting a derivation. It seems
reasonable to assume that, as the number oOr premises
increases, difficulty will also increase.

6. Problem context (0,1). This variable is a reflection

of the context in which the problem occurs. The
variable has value one if it is a 500 series problem
and zero otherwise.

7. Explanatory material and/or a hint in the problem
statement (0,1). The varisble has value one if the
problem contains explanatory material, zero otherwise.

The "standard proof" variables have an element of subjectivity in
their definitions which the first group does not have. They require the
availability of a solution or proof for the problem. Since the solution
to a logic problem is not unique, there will be some degree of arbitrari-

ness in the selection of a "standard proof." For purposes of this study,

those proofs generated by the author will be considered standard.




Several criteria were used by the author in generating the standard i
proofs. First, the author worked through the entire set of problems
included in this study two times. The proofs generated the second time ‘
through are used as standard. An attempt was made to construct proofs
with a minimal number of lines. Alsb, within the constraint of pro-
ducing a minimal proof, an attempt was made to use rules and theorems
most recently introduced, wherever possible. It is the judgment of the
author that the gréat majority of the proofs produced are minimal in

the sense of containing the least possible number of lines.

et e o it e = A T =

It is true that .from a mathematical standpoint, it might be
desirable to demonstrate that the proofs are minimal. However, the proofs
are surely minimal in the majority of cases given and explicit proof

would make very little change in the interpretation of my results.

———— e e i aetn 7

All but one of the 'standard proof" variables are the number of

occurrences of certain rules used in the standard proof. These rules

are:

8. Affirm the antecedent. (AA)

9. Conditional proof. (CP)
10. Indirect proof. (IP)
1l1. Any axiom.
12. Any theorem. The material included in this study
contained only Theorems 1 through 6.

13. The number of lines in the proof.

The third group of variables is made up of the sequential
variables. These variables are meant to measure the effect of position
of the problem in the curriculum. It is reasoned that the greater the

number of rules available to the student, the more difficulty he will
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have in deciding which one to use. Also, the number of problems
completed will affect performance. The following variables are an
attempt to quantify these facts.

The first three are simply the number of rules, theorems, and

axioms available to the student for the problem. That is, the magnitude

of the number of available:

14. Rules of inference.

B o et b st AT R D ek A X Rk e g e e A St A i et it D e TS D
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15. Theorems.

16. Axioms.

The next and final variable provides a measure Of the "learning" _

for each rule. It is defined as:

17. The number of problems since the last introduction of

ke 88— i L i s w

a rule. This variable gives some measure of the amount

of practice a student has had on a particular rule.
Table 1 lists the measures discussed in this section. Also

included in Table 1 is a transformed variable, denoted 818, which is

Insert Table 1 about here

of importance in the analysis which follows. I have included it in

Table 1 in order to provide the reader with a complete list of structural

variables used. The significance of variable S18 is discussed in

Chapters III and IV.




I, Measures

Bl.,
B2,
B3,
Bl
B50

TABLE 1
Behavioral and Structural Variables

of Problem Difficulty

Mean number of lines per derivation

Mean latency to a correct solution

Mean latency per line

Correlated mean latency per line (difficulty)
Mean number of error messages per derivation

II, Measures of Problem Structure

A,

B,

Structural Variables

51,
52,
53.

Sk,

s5o
S6o
57,

Number of words per problem

Number of symbols in sentence to be derived
Number of occurences of logical connectives

in the sentence to be derived

Depth of nesting of the most deeply parenthesized
expression in the sentehce to be derived

Number of premises

Problem context ‘

Inclusion of explanatory material and/or hint

of the problem statement

Standard Proof Variables

s8.
89.
s10,
S11.
s12,
813.

Number of occurrences of affirm the antecedent (AA)
Number of occurrences of conditional proof (CP)
Number of occurrences of indirect proof (IP)

Number of occurrences of any axiom

Number of occurrences of any theorem

Number of lines in the proof

Sequential Variables

Sk,
S15,
S16.,
S17,

Number of rules of inference available

Number of theorems available

Number of axioms available

Number of problems since the last introduction
of a rule

Transformed Structural Variable

818.

S5 cubed
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CHAPTER III
DESCRIPTION OF THE STUDY AND THE MODELS

In this chapter I discuss the population utilized, outline the
method of data collection, describe certain characteristics of the
collected data, and outline the methods of analysis. The primary
objective of this analysis is to describe in a precise way the
relationship between the structural and behavior measures of difficulty
and to develop models which will enable us to predict student performance
from the structural features of the problems. A secondary objective is
to provide some general descriptive information about student performance
on the LIS.

The population used in this study consisted of the 27 Stanford
University students who enrolled in Philosophy 157 in the summer quarter
of 1970, the period during which the data were collected. No special
procedures, other than normal departmental prerequisites, were used in
the selection of these students. The group consisted only of students
who had decided to take the course.

The curriculum under investigation consisted of 203 problems from
the computer-based segment of the course. Although the number of
students involved in the study is not large, a considerable quantity of
information has been collected for each student. Thus, I feel that an
ample amount of information is available to successfully accomplish the
objectives of this study, even though its generalizability to all

student populations is limited.
21

26

et s o 5

- (RPN ERON P :




The students were proctered during their sessions at the terminals
by the philosophy graduate students who gave the lecturc portion of the
course. They received three hours of traditional classroom instruction
per week, in addition to the time which they spent at the computer
terminal. Also, there was always someone available who was familiar with
the computer system and the logic program and who was able to deal with
any operational difficulties.

The logic data collection routines were added to the LIS in the
spring and early summer of 1970. They were designed and programmed by
the author. When the logic program was converted from the PDP-1 to the
PDP-10, no provisions for data collection were made. Thus, it was
necessary to modify certain sections of an already existing program.

These modifications required several steps. A special data
collection routine had to be written in assembly language and interfaced
with the logic program. It was decided to store the raw data on disk
files during the day and then to transfer each day's data to magnetic
tape, where it was kept for later reduction and analysis The necessary
programs were written and debugged in the spring of 1970.

During the time that the data were being collected, some data were
lost. As a result of long-term experience with the system (two years),
I feel justified in stating that data loss was in no way systematic.
However, to support this opinion rigorously would require a much more
definitive aﬁalysis of the system than is presently available, and I

feel that it would be neither feasible nor appropriate to include a
detailed analysis of the system in this study.

During the summer of 1970, while the data were being collected, a
second series of programs were written by the author. They were designed

22
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to convert the raw data into a form acceptable by the standard Biomedical
Programs (BMD) used in the final stage of the analysis (Dixon, 1970).
These intermediate programs are described in detail in Appendix D.
The results presented in this study were obtained by means of two
BMD programs. First, the overall means, standard deviations and corre-
lations of all of the variables described in Chapter II were computed.
) For this purpose, I modified the BMD@6M Canonical Analysis Program to
run on the IMSSS PDP-10 system (see Appendix D). An outline of the
computational procedure used may be found in the BMD Manual, pp. 207-213.
These results are discussed in Chapter IV.

The next step in the analysis was to describe formally the nature
and degree of the relationship between the behavioral and structural
variables. To do this, the canonical correiations and canonical co-
efficients were computed by means of BMD@EM. Although canonical
analysis is a well-known procedure, an outline of the model is provided
to avoid any ambiguity in terminology. The development follows that of
Morrison (1967) .

Consider the two sets of variates: the behavioral variables and the
struoctural variables. Assume that the first set has p variates and the
second set has q variates. Suppose that the p + g variates are from some

multidimensional population which has been partitioned such that:

' | 21 I
po=(p>p)  Z=f (
2o Zoo

It is assumed that:

1. The elements of I are finite.

23
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2. © is of full-rank p + q.

L

3. The first r < min (p,q) characteristic roots of

1 !
Z 112102 o0 Zpp

L

are distinct.

From this population, N-observation vectors have been randomly

drawn and the sample has been partitioned such that:

S S
x'=(xl’—)~{2) S=(""’ll~l2 ,
- - ~ 8!, S

P12 222

in conformance with the above.

We wish to determine the linear compounds

—_ ! - 1
U, = 8 X vy = Dby X5

= a! RN
u, =2 X, Vo = b X,
u5=a§§l V5=P"§2 9

such that the sample correlation of u and vy is greatest, the sample

correlation of u, and Vo is greatest among all linear compounds
uncorrelated with u and vy s and so on for all s = min (p,q)
possible pairs.

To do this, solve for A in

l

1810820815 = A8yl = 0

Order the roots from largest to smallest Cl’ C2,...CS . These are the

canonical correlations. The coefficients are obtained from the equations

-1
(815850815 - 83811085 =0
1
(810850815 - £iSp0)B; = 2 >

where a; and bi are chosen to satisfy
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The final stage of the analysis was to fit a regression model in
order to predict problem difficulty as a function of problem structure.
Although the primary goal was to predict problem difficulty, regression
models using Bl and B2 as the dependent variables were also considered.
Thus, some idea of the predictive power of the structural variables with
respect to these other behavior measures was obtained.

The program used for the regression analysis was the BMDO2R. This

program was fully implemented on the PDP-10 by IMSSS staff in June, 1970

and further modified by the author (see BMD Manual and Appendix D).
Since regression analyses are also a standard statistical procedure, it
does not seem appropriate to give a full description of the theory of
regression analysis here. However, the model is presented for purposes
of developing notation.

The general multiple linear regression model can be written as:

Xn, p-1

are the mean problem difficulties for i-th problem.

. are the values of the p-1 structural variables 1 < j < p-l
are the parameters to be estimated.
are the errors.

=1 for all 1i.




We can write the normal equations as:

X'k8=X'L

Assume E(g)=0 and V(e) =1I & , then the least squares estimators

~

B of g are

Assume further that e .~ N(0,I 02)

then

B ~ M.V.N.(B10

The ANOVA table is shown in Table 2.

Insert Table 2 here

If the model is correct, MSRES = 82 is an estimate of 02 . Define the

coefficient of multiple determination R2 as:

R = (BX'Y - NP)/(X'Y - NF) .

This is usually interpreted as the proportion of variance accounted for
by the regression.

T shall now discuss the assumptions made in the regression analysis
and the procedures used to check the validity of these assumptions for
our data. First, it is assumed that the model is lirear in the parameters.
Since this was the first attempt at analysis of college student performance
on the LIS, no information was available to use as a guide in the selec-
tion of a nonlinear model. Thus, until definite information about the

form of the relationship between the variables is available, a linear

model 1is assumed.
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TABLE 2

Analysis of Variance for Stepwise

Multiple Linear Regression

Source arf SS MS
Regression p-1 L'X'Y - ni (b'X'Y - nYE)/p-l
Residual n-p 'Y -0'X'Y (Y'Y - 2'X'Y)/n-p
Total n-1 X'y - nY2
27
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The other assumptions concern the distribution properties of the
errors. If ¢ is the vector of errors, then assume that E(_c._:_) =9 and
V(E) = E_cr2 , that is, the errors are uncorrelated and have common
variance. An assumption that the ¢ are normally distributed is not
necessary to obtain estimates of the parameters, but it is necessary only
in order to make tests of statistical significance. These assumptions can

be examined by plotting the residuals. The residuals are defined as:
R. = Y - Y- .

If the fitted model were correct, the residuals should have exhibited
tendencies that would seem to confirm the assumptions. My version of the
BMD@2R program allowed, as optional output, plots of (a) residuals versus
computed, (b) residuals versus the independent variables, and (c) depen-
dent variasble versus the independent variables. I made all plots in order
to determine if the assumptions appeared to be violated. Where the
assumptions appeared to be violated, the plots were used to pinpoint the
sources of trouble and transformations on the existing variables were
used to correct for the violations.

In some cases the assumption V(e) = I o appeared to be violated,
perhaps due to the fact that the measure of difficulty is essentially a
latency. Again we attempted to remedy this situation by a transformation.
Kruskal (1968) discussed a number of variance-stabilizing transformations.
The various transformations suggested by Kruskal were considered, and I
selected the square-root transformavion as the one most useful for my
purposes. Kruskal also stated that many authors have remai'ked that .
frequently (although not invariably) a single transformation also improves

normality, as well as stabilizing variance.

28
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In summary, the analysis was carried out as follows: first, the
behavioral data were reduced to a form usable by the standard statistical
routines. In the process, we output descriptive summaries of college
student performance on the LIS. Next the BMDOGM Canonical Analysis
program was used to obtain 1 concise measure of the relat ionship between
the two sets of variables listed in Figure 1, Chapter II. Finally, using
the intuitively best measure of difficulty--correclated mean latency per
line--as the dependent variable, I did a stepwise multiple linear
regression in order to develop a model which could account for problem

difficulty as a function of problem structure.
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CHAPTER IV

RESULTS

In this chapter I discuss the results of the analyses which wvere
described in detail in Chapter III. First, the summary statistics for
all the variables studied are presented. Next, we discuss some
interesting aspects of the data which do not -appear in the summary tables.
These include a brief discussion of the problems which had extreme values
on the behavioral variables. Then we look at the correlations among the
variables and discuss the canonical analysis. This section concludes
with a discussion of ‘the. regression analyses.

Table 3 contains the mean, standard deviation and range for each
of the behavioral variables. Table 4 contains these statistics for the
structural variables. A brief discussion of several of the values found

in the tables will be informative.

Insert Tables 3 and 4 about here

First, in Table 3 note that the means of variables B3 and B4
differ by less than one unit and their ranges are identical. Thus, I
have assumed that these variables are slightly different measures for the
same underlying behavior. I have chosen to use variable B4 as the
"measure of difficiity" for the reasons given in Chapter II (p. 15).
A second interesting aspect of the results is the low error message rate,
variable B5. In fact, there were 26 problems for which there was no error
at all. This implies that the students were adept at using the rules they

had learned.
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TABLE 3

Means, Standard Deviations and Ranges

for Behavioral Variables

Variable Mean Standard Deviation Low _ High
Bl k.55 5.32 1.00 "15.80
B2 84.18 85.53 3.97 415.71
B3 15.77 7.5k 3.70 b7.25
Bh 16.43 8.3k 3.70 47.25
BS 0.3h4 0.37 0.00 1.73
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TABLE 4

Means, Standard Deviations and Ranges

for Structural Variables

Variable Mean Standard Deviation Low High
S1 19.99 20.28 .00 138.00
S2 11.64 6.19 1.00 31.00 ?
S3 1.07 1.81 . 0.00 9.00 ;
Sk 1.03 0.91 0.00 5.00 E
S5 0.46 0.82 0.00 3.00 %
S6 0.22 0.42 0.00 1.00 {
s7 0.19 0.39 0.00 1.00 :
s8 0.2k 0.59 0.00 3.00
S9 0.45 0.68 0.00 3.00
S10 0.07 0.25 0.00 3.00
S11 0.25 0.52 0.00 2.00
s12 0.09 0.37 0.00 2.00
S13 3,84 2.85 1.00 15.00
S1h 15.13 3.90 5.00 19.00
S15 0.37 1,14 0.00 6.00
S16 1.28 1.91 0.00 5.00
S17 5.4k 4.88 0.00 23.00
32
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In comparing Bl, Table 3, with S13, Table 4, we see that the
students have been very successful in producing minimal proofs. However,
this must be considered in light of the fact that there were 51 problems
which could be solved by a one-line proof, a fact which was reflected in
the behavioral data where there were a total of 47 problems for which the
Bl value was less than 2.00. Further, the variance of Bl for some of the
longer problems is quite large indicating that Tewer students produced a
minimal proof for these problems.

Pables 5 and 6 contain the problem statements and the standard
proofs for the seven problems having extreme values on the behavioral
measures. For the low values on variables Bl and B5, the problems were
chosen arbitrarily from those with the appropriate magnitude. Tables 5
and 6 provide insight into the features of the problems and curriculum
which give rise to extreme values on the behavioral measures. A
familiarity with these logic problems will add meaning to the discussion
of the analysis presented below. A brief explanation of each of these
problems is given followed by a discussion of the relationships among
the variables for these problems. Readers unfamiliar with the rules of
LIS may refer to Appendix B.

Problem 415032 received a value of 15.80 for Bl. It begins with a
hint telling the student that there is a certain redundancy in the rules
which he has available. At this point in the curriculum he has been
given all five axioms for addition plus the first three theorems. He
15 asked to derive 6 = 3 + 3. It is possible to produce a derivation

using the axioms and theorems, but, this will not result in the minimal

proof. To obtain the minimal proof the student must use the rules learned

earlier in the curriculum.

33

e e 1o



This problem requires 14 lines for its standard solution. In
addition, it would be considered a difficult problem on all of the
measures considered. It is ranked (15) on measure B2 with a latency
of 252.91 sec., (20) on measure B5 with .9 error messages and (85) on
measure B4 with 16.24 sec. per line. The problem involves five appli-
cations of the rule ND and appropriate algebraic manipulations and
algebraic substitutions which are accomplished in this case by the rules

AR, CE, CA, and RE.

Insert Table 5 about here

The problem ranked highest on measure B2 is 413010. Again this
problem would be considered very difficult on all of the measures. It
is ranked (3) on measure B5 with 1.57 error messages, (8) on measure Bk
with 37.86 sec/line, and (12) on measure Bl with 11.09 lines. In this
problem, the student is asked to derive the conditional: if A is less
than (5+4)+1 then A is less than 5+((1+3)+l). The student can easily
verify that it is true since obviously (5+4)+1 equals 5+((1+3)+1). One
approach could be to show that A < 10 - A <10 and then show
10=(5+4)+1=5+((14+3)+1) and substitute. However, this would require more
than seven lines. There are, of course, several other approaches.

The problem ranking highest on measure B5 is 414030. In this
problem the student must derive the statement that A+(3+(-A)) equals
1+(1+1), a statement which is obviously true. This problem is similar
to problem 415032 except that conditional proof is not required and the
student, at this point in the curriculum, has no theorems available to
him. As in the two previous cases, it would be considered a difficult
problem on the other measures also. It was (2) on measure BL with 15.68

3k
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TABLE 5

Problems Receiving Highest Value

on Behavioral Variables

415.32;

THERE ARE SOME SUPERFLUITIES AMONG OUR RULES, BUT SINCE WE ARE NOT AFTER
MATHEMATICAL, ELEGANCE WE TOLERATE THEM. A SIMILAR SITUATION EXISTS IN
THE RULES OF SENTENTIAL LOGIC.

DERIVE: 6 = 3+ 3

D6 (1) 6=5+1
ND5 (2) 5 =4 +1
1.2RE1  (3) 6=(4+1)+1
3AR2 (4) 6 =4+ (1 +1)
ND2 (5) 2=1+1
5CEL - (6) 1L+1=2
4,6REL (7) 6=4+2
NDk 8) b=3+1
7.8REL  (9) 6=(3+1)+2
9AR2 (10) 6=34+(1+2)
ND3 (11) 3=2+1
11CE1  (12) 2+ 1=3
12CAL  (13) 1+2=3
10.13REL

(14) 6=3+3
CORRECT
413.10;

DERIVE: A< (5+4) +1o5A<5+ ((1L+3)+1)

WP (1) A< (5+U4)+1

AS (A+B)+C=A+ (B+C)

A:d |

B:lt

C:1 (2) (5+4) +1=5+(4%+1)




1.2RE1  (3) A<5 + (4 +1)

b (B k=341
3.4REL (S A<5+ ((3+1)+1)

5CA2 (6) A<5+ ((1L+3) +1)

1.6CP (7) A< (5+4) +1-oA<5+ ((1L+3)+1)
CORRECT

L05.23

P (1) A+B=A+4C-5B=C
P (2) B=C-o>A=C¢C
P (3) A+B=A+C
1.3AA (%) B=C
3.4AA (5) h=C
CORRECT
415.30
DERIVE: A+ (34 (-A)) =1+ (L +1)
AT A+ (-A) =0
A:A (1) L+ (-A) =0
1AE
i3 (2) (A+ (-A)+3=0+3
2AR2 (>) A+t ((-A) +3)=0+3
3cA2 (L) A+ (3+(-A) =0+3
ZA+0=A
A3 (<) A4+ 0=23
SCAL (6) 0O+ 3=73
4.6RE1 (7) A+ (3+ (-a)) =3
ND3 (8) 3=2+1
7.8RE2  (9) A+ (3+(-A))=2+1
ND2 (10) 2=1+1
9.10REL
(11) A+ 3+ (-A) =(1L+1)+1

1ARE  (12) A+ 3+ (-4) =1+ (1 +1)
CORRECT

. .36
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lines, (5) on measure B2 with 303.17 sec. and (65) on measure B4 with
18.20 sec. per line. This problem also requires the derivation of a
complex forﬁula and involves the use of two axioms, AI and Z, as well
as some comnlicated algebraic manipulations and substitutions.

Problem 405023, which ranked highest on measures Bl and B3, differs

from the previous problems in two interesting ways. First, it does not

rank very high on the other measures. For B2, it is (65) with a latency
of 94.50. For B5, it is (117) with .O7 error messages. For Bl, it is
(151) with 2.00 lines. This problem requires only two applications of
rule AA for its solution and, thus, does not seem intuitively difficult.
However, one might explain its observed difficulty by the fact that it
was preceded by 19 multiple-choice problems. This problem offers a

dramatic illustration of the effects of surrounding context on student

performance on a particular problem.

Insert Table 6 about here

Table 6 contains those problems which received the lowest values
on the behavioral measures. These problems have several features in
common and thus they are discussed as a group. First, they are all
problems which require only one line for their solution. Second, each
problem would be rated as "easy on all of the behavioral measures.
Third, each problem has a value of zero on measure B5. For problems

412023 and 414004 the student is told exactly what he must type in

order to obtain the solution. The slightly higher than minimal latencies

for these problems are probably due to the time required for the student

to read the accompanying text. Problem 414005 1is of precisely the same
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TABLE 6
Problems Receiving Lowest Values

on Behavioral Variables

412.23:

THERE IS A SHORT FORM OF CA SIMILAR IN SOME RESPECTS TO USES OF RE.
I ORDER TO DERIVE A + B = 3 + 6 FROM THE PREMISE A + B =6+ 3
SIMPLY TYPE '1CA2'.

DERIVE: A+ B =3+6

P (1) A+B=6+3
1CA2 (2) A+B=3+6
CORRECT

bk b

TO USE THE Z AXIOM
1) TYPE 'z' AND SPACE
o) AFTER THE COMPUTER TYPES IN THE AXIOM AND 'A;' TYPE
THE TERM YOU WANT TO REPLACE 'A'.

DERIVE: 5 + 0 =5

“A+0 =4

A5 (1) 5+0=75
CORRECT

414.5:

DERIVE: 17 + O = 17

ZA+ 0 =A

AsLT (1) 17 + 0 = 17
CORRECT




type as the preceding problem 414004, which introduces the Z axiom. The
only difference is that the student must type 17 instead of 5 for the
substitution into the axiom.

Tables 7, 8 and 9 contain the correlations of the behavioral
variables with one another, the structural variables with one ancther
and the behavioral variables with the structural variables, respectively.
These correlations were obtained as part of the standard output of the
BMDOGM progran:. The results have been separated into three tables for
ease of examination and discussion.

In Table 7, we find several interesting correlations which give

some insight into the nature of the relationships emong the various

Insert Table 7 about here

measures of difficulty. First, observe that Bl is highly correlated with
B2 and BS but not with B3 and B4. It is not surprising that latency and
error rate increase with the length of proof. However, it is reassuring
to see the correlation of Bl with B3 and B4 is not high, indicating that
our measure of difficulty is not a simple function of problem length.
The correlations between B2 and, B3 and Bk, are seen to be somewhat
higher. The almost perfect correlation of B3 and Bk provides further
evidence that they are measuring the same underlying behavior and
further justification for the decision to choose only one of them as
the difficulty measure (B4t). One final observation is that all of the
correlations among our behavioral measures are positive and equal to or
greater than .37.

Table 8 contains the correlations of the structural variables with

one another. Since these variables are defined solely in terms of
- 39
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TABLE 7

Correlations of Behavioral Variable

Bl B2 B3 B4 BS

BL | 1.00 0.90 0.37 0.40 0.77

B2 1.00 0.6% 0.68 0.88
B3 1.00 0.99 0.57
Bk 1.00 0.61
B5 1.00

W45




curriculum structure, an examination of their correlations will provide

Tnsert Table 8 about here

some insight into certain features of the curriculum. The majority of

the correlations are low; only 22 of the 185 correlations have an absolute
value greater than .40, The large number of low correlations is desirable
because an attempt was made to define the variables so that they reflect
nonredundant features of the curriculum. Since it is impractical to
discuss each of the 185 correlations, only those variables which appear

to be of most interest are discussed.

In examining the correlations, we are able to distinguish two
patterns. First, a number of correlations are indicative of the 500
lessons. It should be recalled that these lessons deal with sentential
logic. This is reflected in the high correlations between S6 and S3,
sk, S9, §10, S14. For example, the high positive correlation between
S3 and S6 indicates that a greater number of logical connectives are
found in problems on logic than in problems on élgebra. The correlation
between S6 and Sb indicates more nesting of parentheses in the first part
of the curriculum and the correlation between S6 and S9 and S6 and S10
suggest more frequent use of conditional proof (CP) and proof by
contradiction (IP). The high correlation between S6 and Sl reflects
the fact that most of the rules become available in the first part of
the curriculum. This is further supported by the high positive correla-
tions between S3 and 59, and S3 and S10. There is also evidence that
the proofs are longer in the first part of the curriculum than in the

second part because of the correlation between S5 and S13% and a correla-

tion of 0.30 between S6 and S13.
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The second pattern consists of those high correlations which arise
as a result of the manner in which the variables are defined. For example,
there is a positive correlation between S11 and S16 because an axiom
cannot occur in a proof before tﬁe number of axioms available become
greater than zero. Similar explanations, based on the definition of
the variables, can be given for the correlations between S12 and 515,
S12 and S16, S14% and S16, S15 and S16, SL and S7, S2 and Sh and S3 and Sk.
Finally, two other correlations which appear in the analysis are i
worth mentioning. First, there is a correlation of .48 between 85 and
S8. It appears that problems which use several occurrences of AA have
the greatest number of premises. An example of such a problem is problem
405023 in Table 5. Second, the high correlation between 89 and S15
indicates that problems requiring conditional proof tend to be longer
than those not requiring the use of this rule.
The discussion now turns to an examination of the relationship
between the two sets of variables. The correlation between the
behavioral and structural variébles can be found in Table 9. Next,
the relationship is described more formally by means of the canonical

correlation analysis. Finally, the predictive models cbtained from the

Insert Table 9 about here

regression analyses are presented, first the models wnich have variables
Bl and B2 as the dependent variable and then in more detail, the model in

which difficulty (variable B4) is the dependent variable.

The correlations found in Table 9 between the two sets of variables

are rather low and in the majority of cases almost zero. The largest
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TABLE 9

Cocrrelations Between Behavioral
and Structural Variables

B2 B3 Bl B5 B6

s1 | -0.06 -0.03 0.05 0,05 0.01
52 0.21 0.16 -0.03 -0.03 0.10

S3 o.bl4 0.37 0.17 0.18 0.25

Sk 0.3+ 0.37 0.11 0.13 0.25

ss | -0.16 -0.08 0.2% 0.27 -0.09

S6 0.3 0.3 0.19 0.23 0.27

s7 | -0.19 -0.13 0.07 0,07 -0.11
s8 0.17 0.11 0.06 0.05 0.05

s9 | o.44 0.3 0.09 0.11 0.25

510 0.33 0.31 0.23 0.27 0.30

S11 0.06 0.08 -0.03 -0.02 0.15
Sle 0.05 0.05 0.05 0.0k 0.04

513 0.95 O0.7% 0.27 0.27 0.60

sis+ { -0.13 -0.10 -0.07 0.08 -0.06
s15 | 0.09 0.08 0.09 0.07 0.07

s16 | 0.08 0.08 0.05 0.01 0.09

S17 0.19 0.10 -0.03 -0.03 0.05

b




correlations are those between S13 and the behavioral variables Bl, B2
and B5. Aiso there are high correlations between the minimal number of
lines in a proof and the actual length, latency and number of error
messages for the proof.

Variables S3, S6 and S9 are also highly correlated with Bl, B2 and
B5. However, as is evident from Table 4, these structural variables are
also very highly correlated with each other and it is not easy to
interpret their effect on the behavioral variables from Table 9 alone.
Variable S10 also apbears to be important. This variable is discussed
in more detail later.

The structural variables most highly correlated with theldifficulty
variable Bt are S5, S10 and S13, all .27. From Table 4, it can be seen
that these structural variables are not highly correlated with each other.
They play an important role in the regression model discussed below;
Note that most 6f the remaining structural variables have almost zero
correlations with Bf. Thus, we are led to consider models which involve
linear combinations of the variables.

Table 10 contains the results of the canonical analysis.

Insert Table 10 about here

Behavioral variable B3 is omitted from the analysis for the reasons
discussed in Chapter II and above. Thus, there were four canonical
correlations and four sets of coefficients for the canonical variates.
Since I am interested only in describing the dependencies among the
variables and do not'inﬁend to' use QPe derived variates for later

analyses, I have not explicitly computed the canonical variates from
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TABLE 10

Canonical Correlations and Coefficients

Canonical Correlation = 0.94682261

Coefficients for the first set of variables:

-1.326259(B1) 0.284225 (B2) 0.021786(BY4) 0.

Coefficients for the second set of variables:

~ 0.073856(s1) -0.146555(s2) 0.123607(S3) 0.
0.047831(S5) -0.269110(S6) 0.009731(S7) -0.
0.005036(S9) -0.036156(810) 0.050815(S1l) -0.

-0.933880(S13)  -0.048610(S1k4) 0.007074(S15)  -O.

0.006210(S17)

Canonical Correlation = 0.52323435

Coefficients for the first set of variables:

-0.089763(B1) 0.224815 (B2) -1..261107(BY4) 0

Coefficients for the second set of variables:

0.101760(B1) -0.290956(82) 0.164078(83) -0
-0.157033(S5) -0.951645(S6) -0.321546(s7) 0.
-0.030440(S9) -0.313280(510) 0.029467(S11) -0.

0.093578(513) -0.322343(S14) -0.196313(S15) -0.

0.048549(SLT)

Canonical Correlation = 0.37973930

Coefficients for the first set of variables:

1. 844434 (B1) -1.473808(B2) 0.818170(Bk4) -1.

Coefficients for the second set of variables:

-0.193068(S1) 0.060709(S2) 1.114298(s3) - -0.
0.051367(S5) -0.928428(86) 0.366820(S7) 0.
-0.011327(S9) -0.387504(S10)  -0.688379(S11)  -O.

~0.177405(S13)  -0.464047(S14)  -0.006L74(S15) 0.

0.401779(S17)
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107016(B5)

057L87(sk)
018433(s8)
035614 (S12)
084335 (516)

.335463(B5)

.096213(Sk)

324336(38)
020757(S12)
139318(S16)

291125 (B5)

114576(BY4)
176483(s8)
125276(S12)
685214 (S16)



Canonical Correlation = 0,22914162

Coefficients for the first set of variables:
1.913588(B1) -l ,001316(B2) 0.961281(B4)

Coefficients for the second set of variables:

0.518413(S1) -0.550062(S2) -1.176869(83)
-0.054340(85) 1,058815(56) -0.120565(S7)
0.500092(S9) -0.461083(510) 0.125329(S11)

0.039960(S13) 0.b77343(S1k)  0.603351(S15)
0.356688(S17) |

b7
52

1.651518(35)

0.189711(Sk)
0.280015(S8)

- -0.316266(512)

-0.321938(516)



the coefficients. In the table, the canonical correlation is followed
first by the set of coefficients for the behavioral variables, namely,
Bl, B2, B4 and B5, and then the coefficients for the structural variabies,
S1 through S17. In interpreting the coefficients in Table 6, one must
remember that the canonical correlations were obtained from the
covariance matrix. Thus, the magnitude of the coefficients depends

on the magnitude of the variables considered. To illustrate what this
means, consider variables B2 and B5 and their respective coefficients
for the canonical correlation 0.52. From Table 3, we see that the mean
for B2 is 84.18 and the mean for B5 is .34; the coefficients are .22 and
.34 for B2 and B5, respectively. Thus, on the average, B2 contributes
18.52 units to the canonical variate whereas B5 contributes only O.77.
Tgnoring the magnitudes of the variables, one would say that variable

BS plays the more important role due to the larger magnitude of its
coefficient but when the magnitudes of the contribution are considered,
it is B2 which makes, by far, the larger contribution to the canonical
variate.

For the maximum canonical correlation .95, the canonical variate
for the behavioral variables places the most weight on Bl and B2. The
canonical variate for the structural variables places the most weight
on S1, S2 and S13. Essentially, the first variate is some measure of
the length of a problem, that is, a linear combination of number of lines
and latency. Similarly, its correlative in the concomitant variables is
a structural measure of length, where S1 and S2 are measures of the amount
of information to be processed and S13 is the minimal length of a proof.
Thus, the first correlation establishes a link between the behavioral

measures of length of a problem and their structural counterparts.
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The magnitude of the correlation indicates that the relationship between
these variables is a very strong one.

The second canonical correlation 0.52 appears to place the greatest
weight on variables B2 and Bt for the behavioral variate and on variables
S1, S2, and Sl for the structural variate. This case yields, primarily,
a comparison of "difficulty" expressed as a wcighted sum of B2 and B4
with "structural complexity" expressed as a weighted sum of S1 and S2,
information to be processed, and S14, availability of rules. The
variable S1k appears to make the greatest contribution to the structural
canonical variate.

The final two canonical correlations are rather low and, thus,
their corresponding derived variates are not of as much interest as
those described above. For both of these correlations, the most
important structural variables are Sl and Sl%. In addition, for the
0.38 correlation, variable S17 contributes heavily to the structural
variate and for the 0.23 correlatioh, variable S2 is the other heavily
weighted variable,

The procedure used for the regression analyses is considered next.
Using the results of the canonical correlation analysis as a guide, I
ran three separate regression analyses in which Bl, B2 and B4 were the
dependent variables. The plots described in Chapter III, p. 28 were
obtained as part of the output for these regressions. An examination of
these plots reveals that variables B2 and Bl appear to violate the homo-
scedasticity assumption. After applying a square-root transformation to
variables B2 and Bl, we find that this assumption appears to be satisfied.

For example, Figure 1 shows the plot of the residuals versus

variable B4. One can observe a rather obvious dependence of magnitude
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of residuals on magnitude of B4 (see dotted lines). In Figure 2, the same

plot is shown after applying the square-root transformation to Bt. Notice

that the pattern, which was observed in Figure 1, no longer appears.

Insert Figures 1 and 2 about here

Several transformations were applied to some of the independeﬁt
variebles also. However, none of the transformed variables, except for
the cube of S5, entered into the regression equations.

The regressions were redone, this time using variables Bl, ,\/ﬁ and
J_B’I as the dependent variables. The results for these regressions may be

found in Tables 11, 12, and 13. These tables give the step at which each

Insert Tables 11, 12, 13 about here

variable entered the regression, the value of R and R2 at that step, the
increase in R2 due to the addition of that variable, the F-value required
for deletion and the final 'regressio.n coefficient for the variable. It
would be pointless to discuss any variable which did not cbntribute at
least 1 percent to R2 and such variables have been eliminated from tlne
models. The Anova tables are given only for the actual models used. They
contain the variables in the equation with the step that the variable entered,
the coefficient, the standard error of the coefficient and its computed t-
value, the multiple correlation coefficient, aﬁd the standard errdr of
estimate of Y.

Table 14 contains the results for variable Bl. Variable S13 accounts

for 86 percent of the variation in this case. Since S13 is the

Insert Table 1ll, about here
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PLOT: RESIDUALS(Y=AXIS) VS COMPUTED Y (X<-AXIS)
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PLOT: RESIDUALS(Y-AXIS) VS COMPUTED Y (X <-AXIS)
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TABLE 11

Summary Table for Variable Bl

Step Variable Multiple . Increase F Value Last Reg.
Num.  Ent. Rem. R R in R For Del.  Coefficients

1 S1% 0.93150 0.86769 0.86769 1318.6469 1.16334

2 S12 0.93590 0.87591 0.00822 15.0515 1.16625

3 S10 0.93900 0.88172 0.00581 9.7616 0.90045

4 s8 0.94080 0.88510 0.00338 5.979k -0.28200

5 515 0.94170 0.88680 0.00169 3.0351 -0.233h45

6 516 0.94280 0.88887 0.00207 5.6043 0.06910

7 S6 0.9433%0 0.88981 0.00094 1. 7h7h 2.69823

8 S3 0.94520 0.89340 0.00359 6.4720 -0,36914

9 S2 0.94700 0,89681 0,00341 6,130k 0.07617

10 S5 0.94850 0.89965 0.00284 5.4828 0.28674

11 S1 0.95000 0.90250 0.00285 5.7656 -0.01312

12 ok 0.95030 0.90307 0.00057 1.0777 -0.18570

13 S1k 0.95050 0.9036k4 0.00057 1.0770 0.07470

14 S17 0.95090 0.90421 0.00057 1.0968 -0.01728

15 S7 0.95100 0.90440 0.00019 0.3109 0.17845

16 S11 0.95100 0.00000 0.1903 0.09323

- trampt e o G0 Bre e o Ve
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TABLE 12

Summary Table for Variable ,/B2

Step Variable Multiple2 Increage F Value Las’? l?eg.
Num. Ent. Rem. R R In R For Del. Coefficients
1 S13 0.78690 0.61921 0.61921  326.9081 1.17775
2 S10 0.80120 0.64192 0.02261 12.6375 2, 30kkL
3 S12 0.81050 0.65691 0.01499 8.7281 1.70137
4 S18 0.81860 0.67011 0.01320 7.9325 0.09758
5 S 0.82650 0.68310 0.01300 8.1053 -0.80486
6 S6 0.83220 0.69256 0.00945 5.9470 4, 87922
7 S1l 0.83750 0.70141 0.00885 5.8126 0.62469
8 S2 0.84120 0.70762 0.00621 4.1587 0.122C5
9 S5 0.84510 0.7L419 0.00658 4. 4065 0.88%08
10 S3 0.84770 0.71860 0.004k40 2.9721 -0.47333
11 S1h 0.84970 0.72199 0.00339 2.3257 0.15648
12 S1 0.85030 0.7230L 0.00102 0.7322 -0.01469
13 SL17 0.85110 0.72437 0.00136 0.8755 -0.03637
1 S7 0.85150 0.72505 0.00068 0.5108 0.43606
15 S9 0.85170 0.72539 0.00034 0.2904 0.22169
16 Sk 0.85180 0.72556 0.00017 0.0933 ~0.12122
17 S16 0.85190 0.72573 0.00017 0.0432 0.05144
18 S15 0.85190 0.72573 0.00000 0.0330 ~0.04807




TABLE 153

Summary Table for Variable /Bl

Step Variable Multiple 5 Increase F Value Last Reg.
Num. Ent. Rem. R R Tn R2 For Del. Coefficients
1 S1% 0.27500 0.07563 0.07563  16.4435 0.09061
2 S5 0.36900 0.13616& 0.06054 14.0246 0.68067
3 S10 0.43250 0.18706 0.05090 12.4530 0.66759
4 s8 0.47630 0.22686 00.03981 10.185k -0.30851
5 S6 0.50680 0.25685 ().02998 7.9536 1.35355
6 S16 0.54620 0.29833 0.24%1k49 11.5861 0.02457
7 52 0.56010 0.31371 0.01537 4.3769 0.02947
8 ST 0.57L70 0.3268k4 0.01313 3.7903 0.37023
9 S12 0.57690 0.33281 0.00597 1.7321 0.18215
10 S3 0.58000 0.33640 0.00359 1.0083 -0.09061
11 S17 0.58230 0.33907 0.00267 0.7875 -0.,01kL7
12 S1k4 0.58480 0.34199 0.00292 0.8292 0.04600
13 515 0.58620 0.34363 0.00162 0.5003 0.06032
14 Sl 0.58700 0.34457 0.00094 0.24%93 -0.00204
15 S11 0.58740 0.34504 0.00047 0.1kh62 0.06531
16 Sh 0.58760 0.34527 0.00023 0.0553 0.03150
17 s9 0.58760 0.34527 0.00000 0.0193 0.02255
55
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TABLE 1%

ANOVA Table and Significant Variables for Bl

Analysis of Variance:

DF Sum of Squares Mean Square F-Ratio
Regression 1 193%5.4k2 1935 .42 1392.39
Residual 201 279.20 1.39

Variables in Equation: (Constant = .295)

Step Computed
Variable Entered Coefficient Std. Error T-Value
S13 1 1.11 .03 37.00"
Number of steps 1
Multiple R 0.93
Multiple R® 0.87
Std. Error of Est. 0.10

.X.
p < .001

56

&A.



number of lines in the minimal proof, one can say, with the qualifications
mentioned on p. 33, that the students were quite successful in finding the
minimal proofs. The remaining variables account for only an additional
L percent increase in R2. Thus, it appears that the more interesting
aspects of performance on the logic problems are not reflected in the
problem length.

Table 15 contains the results for the regression using the square

root of total latency, J§§, as the dependent variable. In this case,

Insert Table 15 about here

the model was able to account for 68 percent of the variation in total
latency with six variables. The value for R2 is significantly nonzero
at p < .0l.

The most important variable and the first to enter the equation
is variable S13, the number of lines in the minimal proof. It is not
surprising that the amount of time spent on a problem is very strongly
dependent on its length. However, the other variables included in this
model begin to give insight into some of the other factors affecting the
time a student spends on a problem.

The second variable to enter the equation is variable S10, the
number of occurrences of IP in the standard proof. The increase in
latency may be attributed to two factors. First, the rule requiring
three arguments, is compliéated to use; the error rate for problems
requiring the use of the rule IP was, in general, higher than for other
problems. Second, a student must spend time to discover the contradiction

needed for the indirect proof.




TABLE 15

ANOVA Table and Significant Variables for

the Square-Root of B2

Analysis of Variance: .

DF Sum of Squares Mean Square F-Ratio
Regression 6 2556.52 426.09 73.57
Residual 196 1135.17 5.97

Variables in Equation: (Constant = 2.99)

Step Computed

Variable Entered Coefficient Std. Error T-Value

s6 6 1.22 0.50 y,18**
{ S8 5 -1.06 0.3k 2.82"

S10 2 2,27 0.78 2,917
512 3 1.63 0.47 347
S13 1 1.21 0.07 17.28%*
518 b 0.15 0.0k 3,75%%

Number of Steps 6

Multiple R 0.83

Multiple R® 0.68

Std. Error of Est. 2.41

*
p < .0l
*%
P < .001

.58




The third significent variable to enter the equation is 812, the
number of occurrences of a theorem in the minimal piroof. The increase
in latency due to the presence of theorems in a proof may be explained
as follows. Unlike rules and axioms, there are no mnemonics for the
theorems. If a student feels that a theorem is appropriate, he must
first consult his theorem sheet to see if there is such a theorem and
to find its number (e.g., TH3). Thus, except in the improbable event
that a student has memOrizéd the theorem numbers, these problems require
more time, even though they are not necessarily more difficult.

The transformed variable S18, the cube of the number of premises,
enters the equation next. This variable represents, in part, the
information to be processed by the student before he solves the problem.
Each additional premise greatly increases the amount of time spent on
the problem.

The fifth significant variable to enter the equation is 88, the
number of occurrences of AA in the minimal proof. Note that this
variable has a negative coefficient. This variable was also significant
in the regression equation obtained for Vﬁﬁ,'where it also received a
negative coefficient. An interpretation for it is given in the
discussion below.

The final varisble in the model for latency is 86, the problem
context. This variable indicates that, on the average, the problems
in the CEX portion of the curriculum require more time.

None of the remaining variables contribute as much as 1 percent
to R2, as can be seen from Table 12. Thus, they are not included in

the model for latency.
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Table 16 contains the results of the regression which used Bl ,

square root of latency per line, as the dependent varieole. Those

Insert Table 16 about here

variables which contribute over 1 percent to R2 and are significantly
nonzero were chosen for the model. With the seven variables meeting this
criterion, the model was able to account for 33 percent of the variation.
Although this value for R2 is not as impressive as the values in the pre-
vious two cases, the F-ratio of 12.735 is significant for p < .0l.

Further, an examination of the important variables in this first attempt
to predict problem difficulty has revealed some of the important structural
features which may be further broken down and explored in future studies

of this nature. Some possibilities are considered in Chapter V. But
first, the results of the present analysis are presented.

Variable 813, the number of lines in the standard proof, is the
first :;ariable to enter the equation. It accounts for 8 percent (see
Table 13) of the total variation. Thus, the length of a proof is an
indicator of difficulty, but it does not assume the overwhelming
importance which it had in the two previously discussed models.

The second variable to enter is S5, the number of premises, and it
accounts for an additional 6 percent of the variation. The great majority
of problems in which premises are given are to be found in the CEX portion
of the curriculum. Hence, this variable may also be accounting for part
of the effect due to problem context along with the information to be
processed.

Variable S10, the number of occurrences of IP in the standard proof,

which accounted for an additional 5 percent of the variation, enters the




TABLE 16
ANOVA Table and Significant Variables for

the Square-roat of Bl

Analysis of Variance:

DF Sum of Squares Mean Square F-Ratio
Regression 7 58.62 8.37 12.7h
Residual 195 128.23 0.66

Variables in Equation: (Constant = 2.66)

Step Computed
Variable Entered Coefficient Std. Error T-Value
82 T 0.02 0.01 2,20"
S5 2 0.68 0.09 7.56""
6 5 0.87 0.19 b, 66%*
s8 h ~0.40 0.12 3.33
S10 3 0.70 0.26 2.69%
S13 1 0.07 0.03 2.33*
S16 6

0.1k 0.0k 3,50%

Number of Steps 7
Multiple R 0.
Multiple R® 0
Std. Error of Est. O

.0l

*
%
¥
p .00l




equation next. In addition to the extra time required to use this rule
(see p. 57, a problem involving the use of IP requires a different
kind of behavior on the part of the student than that reguired in a
straight derivation problem. The results imply that this difference is
significant and results in increased difficulty.

The only variable to have a negative coefficient is variable S8,
the number of occurrences of AA in the standard proof. This variable
accounts for # percent of the variation. Table 9 shows that this variable
is highly correlated with S5, thus making it somewhat difficult to inter-
pret. Note further that the AA rule was used predominantly in the CEX
portion of the curriculum and only in those problems which could not be
solved by means of a counterexample. That is, AA appeared only in
DERIVE-type problems. Thus, this variable might be interpreted as
accounting for the fact that in context of the CEX portion of the
curriculum, derive problems are easier than CEX problems.

Variable 86, the fifth variable to enter the regression equation,
receives the largest coefficient. This is further evidence that problems
in the CEX portion of the curriculum were more difficult than those in the
remainder of the curriculum.

The sixth significant variable to enter is S16, the number of axioms
available to the student. This variable gives a measure of the amount of
information at the disposal of the student. This is the only case in
which one of the "availability" variables (S14-516) played a significant
role.

Finally, the last significant variable to enter the regression

equation is 82, the number of words in the sentence to be derived.

2
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This variable is another measure of the information which must be
processed by the student.

Seven significant variables which account for 33 percent of the
variation in problem difficulty are identified. The first two, 82, tfle
number of words in the sentence to be derived, and 85, the number of
premises, are measures of the amount of information which must be
processed by the student in order to solve the problem. S6 specifies
whether a problem is included in the CEX part of the curriculum. The
next three, 88, 510 and 813, are standard proof variables and reflect
the nature of the required derivation. The final significant variable
is S16, a measure of the amount of information available to the student,
in this case the number of axioms.

In the next chapter, the results presented above are discussed. The
discussion includes some of the implications and a possible extension of

regression model.
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CHAPTER V

DISCUSSION

The investigation described in the previous chapters was the first

attempt to examine college student performance on LIS. In this chapter,

we first comment upon the significant variables in the predictive
difficulty model and define several new variables suggested by the
results. Next we mention some of the other important results of our
analysis and discuss the possibility of extending the regression model
to a process or automaton model.

For purposes of the ensuing discussion, the seven significant

variables are categorized under four major headings. The first category

is problem context containing varicble S6. The next category contains
variables S2 and S5, which reflect the information which the student
must process. The third category comprises three variables, namely,

the standard proof variables S10, S8 and S13. The final category

provides a measure of the available information with S16. One may write

the predictive model as follows:
JBY = .8786 + 0282 V+ 6885 - ,4088 + .70810 + .07S13 + .1h4S16.

First consider problem context. The results show, without doubt,
that the location of a problem in the curriculum is important. If a
problem is in the CEX portion of the curriculum it is more difficult.
In order to explcre further the effect of a problem's position in the
curriculum, I ran two additional regression analyses. In one analysis
the dependent variable was ,BF for the 45 problems in the CEX portion

of the curriculum, in the other analysis the dependent variable was ,/ﬁ’:
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for the remaining 158 problems. These analyses did not provide any
additional information on the important features which predict problem
difficulty. Thus, the procedure of grouping the two parts of the curri-
culum together did not adversely affect the results or mask the effect of
any important variable.

Tt would also be of interest to determine if there is a sequential
effect. If a sequential effect exists, the difficulty of a problem would
be affected by the nature of the immediately preceding problem., In other
words, if a DERIVE problem is more difiicult when preceded by a CEX
problem than when preceded by another DERIVE problem, we say there is a
sequential effect. Define a (0,1) variable N1" which takes the value
one if the preceding problem is of a different type and zero otherwise.

The second category deals with the information to be processed.
Although five variables, S1-85, have already been defined to provide
a measure of this aspect of the problem, only two of them, S2 and S5,
are significant in our model. Variable S2 is the number of symbols in
the sentence to be derived. Although this is very crude measure, the
variable is significant in predicting difficulty. A more refined
measure of the information in the sentence to be derived would be of
great value. However, the manner in which this information might be
guantized is by no means obvious. As a step in the direction of
capturing some of the information in the sentence to be derived, consider
the following variable, N2, which retains the information provided by 8z
while providing additional information about the sentence. Assign

parentheses a base value of zero, all sentence letters, variables and

*
Pechnically, N1 is a standard proof variable.

Kz
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constants a base value of one, unary operators a base value of two and
binary operators a base value of three. Then the value of a symbol is
its base value times the depth of nesting where we define the depth of
nesting as Sk + 1. The value of N2 is the sum of the values of all of
the symbols in the sentence to be derived. The following example is
provided to illustrate N2. Suppose the problem is:

130131031313013001310310
DERIVE: A< (S5+h )+15A<(5+((1+3)+1)
130262031313026003930620

The number above the sentence are the base values of the symbels, the
numbers below are the actual values. Their sum is 56, thus the value
of N2 is 56. In future studies of this nature, more energy must be
spent in trying to characterize the information in the sentence to be
derived.

The second significant variable in this category is 85, the number
of premises. As mentioned previously, since premises occur chiefly in
the CEX portion of the curriculum, this variable may reflect, in part,
the effect of problem context. In any case, the occurrence of premises
in a problem does result in a considerable increase in difficulty and
some of this increase is certainly due to the additional amount of
information to be pi'ocessed, Since the results indicate that premises
are important, it would be of value to ﬁry to obﬁain a deeper under-
standing of the effect of premises. To do.this ﬁe propose two new
variables, N3 and Nk. .If there are no premises, N3 and. N4t are zero.
Before proceeding, one must distinguish between relevant and irrelevant
premises. An irrelevant premise i‘s one which is not uséd in the solution

of the problem. With this distinction in mind, define N3 as the sum of
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the N2-values of each of the relevant premises and N4 as the sum of the
N2-values of each of the irrelevant premises. These two new variables
determine the effect of relevant and irrelevant premises on difficulty.
They also provide a measure of the complexity of the premises.

The third category contains variables relfecting the nature of the
required derivation, namely, the standard proof variables. In the model

the three significant standard proof variables are $8, §10 and S13. The

most important variable throughout the analysis has been S13, the number of

lines in the standard proof. The other two significant standard proof vari-

ables involve the number of occurrences of specific rules in the standard

proof, namely, AA and IP. Thus, one is led to consider trying other vari-

ables which reflect the nature of the required rules in a derivation, without

going to the obviously impractical extreme of a separate variable for each

rule. Define N5 as the number of different rules used in the standard deri-

vation. Second, define Nén as the number of rules in the standard proof
which require n arguments. This variable was suggested by the importance
of variable S10.

The final category contains one significant variable, S16, the number
of axioms available to the student. This variable provides some measure
of the amount of information which the studemnt has available to solve the
problems. This variable brings to mind another issue, namely, the effect
that "learning" a rule has on difficulty. For example, would variable
S16 be significant if there had been data on a much more extensive
portion of the curriculum, that is, if the study included all of
the theorems on addition? By that time, presumably the axioms would
have been well "learned" and perhaps variable S16 would no longer be of
importance. At the present juncture in the research on student performance
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on logic problems, one may reasonably relegate such considerations to the
status of "second-order" effects, but in the more refined stages of analysis
they must be seriously considerd.
The following is a list of the suggested new structural variables;
N1  Sequential variable (0,1). Takes the value one
if the preceding problem is of a different type,

zero otherwise,

N2 Measure of complexity of sentence to be derived.
N> Measure of the complexity of relevant premises.
NL Measure of the complexity of irrelevant premises.
NS Number of different rules used in derivation.

N6én Number of rules in the standard proof requiring
n arguments.

In addition to providing some first insights into the factors
affecting problem difficulty, the present study yielded several other
valuable results. First, the study resulted in a precise and intuitively
satisfying definition of problem difficulty and provided a method of
measuring it in terms of student protocols. Second, a large data base
of student performance in elementary mathematical logic has been established
from which it is possible to extract much more detailed information. It is
hoped that other researchers and those interested in the teaching of logic
will make use of this data base to further their understanding of student
performance,

Phe effort to understand problem solving in mathematical logic should
not stop with regression models. Suppes (1969) pointed out that "the main
conceptual weakness of the regression models is that they do not provide

an explicit temporal analysis of the steps being taken by a student in
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solving a problem." He then gave an example from research on arithmetic
performance of elementary-school students which illustrates how an
automaton model provides a natural tool for the analysis of data in
arithmetic-problem solving.

Any mature theory of problem solving must account for the temporal
sequence which a student goes through in solving a problem. That is, it
must provide meaningful dynamic links of the variables which affect prob-
lem difficulty, variables such as those identified in this study. An
automaton model would appear to be one of the more interesting possibilities
for this purpose. Since all automata are, at least theoretically, program-
mable on a computer, the terms "automata" and "computer" will be used
interchangably in the sequel.

The development of such models is possible, but the form that they
should take is not yet clear. At present, there exist a number of com-
puter programs which are able to prove tﬂéorens, i.e., solve problems
such as those in the curriculum we have studied. However, the problems
involved in developing the models are quite serious. First, we must find
a theorem prover which "solves" problems in a manner analogous to the logic
student., For example, a theorem prover based on the resolution principle
(Robinson, 1965) is not appropriate. Then to analyze the student data,
we must go from a deterministic model to a probabilistic one, that is, we
must parameterize the model in such a way that it provides a good account
of the performance data. In the case of arithmetic problems the struc-
tural variables identified in the regression models were of great value
in parameterizing the atuomaton model.

I fully realize that the results presented here are still a long

way from providing a fully adequate account of problem-solving in
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mathematical logic. I do, however, feel that I have taken an important

initial step and gained some valuable insights into factors involved in

performance on logic problems.
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APPENDIX A

Examples of the different problem modes on the LIS

I. Multiple choice:

502.1:
IN THIS LESSON YOU WILL LEARN HOW TRUTH OR FALSITY OF A COMPLEX

FORMULA IS RELATED TO THE TRUTH OR FALSITY OF ITS SUBFORMULAE. FOR
INSTANCE, IF S IS FALSE, THEN - S IS ...

A) TRUE
B) NOT TRUE
A
CORRECT
502.2;
IF § IS TRUE, THEN S IS ...
A) TRUE
B) NOT TRUE
B
CORRECT

II. Truth analysis mode:
503.23:

FIND THE TRUTH VALUES OF THE FOLLOWING:
S&(R&S)

T S

F R
LET'S COMPUTE THE TRUTH VALUES FOR ALL SUBFORMULAE
AND THEN FOR THE FORMULA ITSELF

R&S
S&(R&S)

I+=3] =

CORRECT
502.36:

FIND THE TRUTH VALUE OF THE FOLLOWING:

T3
s '8




ILET'S COMPUTE THE TRUTH VALUES FOR ALL SUBFORMULAE
AND THEN FOR THE FORMULA ITSELF

- Q
= R

- QV R

Q&R
— (Q&R)

1R 3 -31 = =

CORRECT

= (-~ QV ~R)

— (= QV - R)V — (Q&R)

III. - Counterexample mode:

505.17:

FIND A COUNTEREXAMPLE: Q%S - R

P (1) QVR

P (2) R->(Q—-8)

P (3) (s »R) »Q

CEX YOU ARE LOOKING FOR A COUNTEREXAMPLE. THUS, THE
CONCLUS ION MUST BE FALSE AND THE PREMISES TRUE.
NOW ASSIGN CONSISTENT TRUTH VALUES TO THE REMAINING
SENTENCE LETTERS.

T Q

F R

T S
LET US CHECK TO SEE IF YOUR TRUTH ASSIGNMENTS MAKE
THE PREMISES TRUE AND THE CONCLUSION FALSE,

T QVR

T Q-3S

T R-(Q - S)

# S - R

T (S-R) - Q
YOUR ASSIGNMENT MAKES ALL THE PREMISES TRUE.
LET'S CHECK THE CONCLUSION.

z Qs

F Q&S - R

CORRECT
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505.15:

FIND A COUNTEREXAMPLE: - R

P (1) - QV =R

P (2) - Q

CEX YOUR ARE LOOKING FOR A COUNTEREXAMPLE, THUS, THE

i=31=

I-3i={e3

F

CORRECT

CONCLUSION MUST BE FALSE AND THE PREMISES TRUE.
NOW ASSIGN CONSISTENT TRUTH VALUES TO THE REMAINING
SENTENCE LETTERS. '

Q
R

LET US CHECK TO SEE IF YOUR TRUTH ASSIGNMENTS MAKE.
THE PREMISES TRUE AND THE CONCLUSION FALSE.

- Q
- R
- QV - R

YOUR ASSIGNMENT MAKES ALL THE PREMISES TRUE,
LET'S CHECK THE CONCLUS ION.,

- R

IV. Derive mode:

505.25:

DERIVE OR FIND A COUNTEREXAMPLE: QVR

S —-Q
S

s N S

(1
(2
(3
OK. ..CONSTRUCT A DERIVATION OR PROOF.

(&) A
(5) (Q)V(R)
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413,33;
DERIVE:

WP
1AE
11
2CEl
NDG
3 . IRE1
5AR2
ND2
7CEL
6.3REL
1.9CP

CORRECT

A=6 - 5+2=At1

A=6

|
N

A+1=6+1
6+1=A+1
6=5+1
(5+1)+1=A+1
5+(1+1)=A+1
2=141
1+1=2
: 5+2=A+1.
A=6 - 5+2=At1

H P ¥ o W W W Y s Voo W 8 o~
O\ O3 V1T F\Wwi
Nt Sragt” gt Nt Nt et Nt vt “oge®

P
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1.

APPENDIX B

A List of The Rules of Inference, Theorems and

Axioms Used in LIS

Sentential Variables:Q,R,S,U,W
Rules of Inference:

(a) AA: Affirm the Antecedent,
(b) WP: Working Premise,

(c) DN: Double Negation,

(d) FC: Form a Conjunction,
(e) RC: Right Conjunct,

(f) 1C: Left Conjunct,

(g) FD: Form a Disjunct,

(h) DD: Deny Disjunct, and
(i) DLL: Delete last line.

Derivation or Proof Procedures:
(a) CP: Conditional Proof, and

(b) IP: Indirect Proof.
Numerical Variables: A,P,C,D,E.

Rules of Inference:

(a) ND: Number Definition,

(b) CE: Commute Equals,

(¢c) AE: Add Equals,

(d) SE: Subtract Equals,

(e) LT: Rule of Logical Truth, and
(f) RE: Replace Equals.

T

."1,_3-5:
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3, Axioms for Addition:
(a) CA (Commute Addition): A+B=B+A
(b) AS (Associate Addition): (A+B)+C=A+(B+C)
(¢) 2 (Zero Axiom): A+0=A
(d) N (Negative Number Axiom): A+(-B)=A-B

5 o a dmee o ANt £ e B P =

(e) AT (Additive Inverse Axiom): A+(-A)=0

4, Theorems on Addition:
Theorem 1:  O+A=A
Theorem 2:  (-A)+A=0
Theorem 3: A-A=0
Theorem 4: 0O-A=-A
Theorem 5: 0=-0
Theorem 6: A-0O=A
Theorem 7:  A+B=A+C - B=C
Theorem 8:  A+B=C - A=C-B
Theorem 9: A=C-B - A+B=C
Theorem 10: A+B=0 - A=-B
Theorem 11: A=-B - At+B=0
Theorem 12: A+B=A - B=0
Theorem 13: -(-A)=A
Theorem 14: (-(A+B))+B=-A
Theorem 15: -(A+B)=(-A)-B
Theorem 16: (~A)-B=(-B)-A
Theorem 17: -(A-B)=B-A
Theorem 18; (A-B)-C=A+((-B)-C)
Theorem 19: (A-B)-C=A-(B+C)
Theorem 20: A+(B-A)=B
Theorem 21;: A-(A+B)=-B
Theorem 22: (A-B)+(B-C)=A-C

5. Additional Rules of Inference:

(a) ME: Multiply Equals, and
(b) DE: Divide Equals.
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6. Axioms for Multiplication:
(a) CM (Commute Multiplication): AXB=BXA
(b) . MS (Associate Multiplication): (AXB)XC=AX(BXC)
(¢) MU (Multiplication by Unity): AX1l=A
(d) MI (Multiplicative Inverse): - A=0 - AX(1/8)=1

(e) FR (Axiom for Fraction): - B=0 — A/B=AX(1/B)
(f) U (Unity Axiom): -1=0
(g) DL (Distributive Law): AX(B+C)=(AXB)+(AXC).

7. Theorems on Multiplication:
Theorem 30: 1XA=A
Theorem 31: = A=0 - (1/A)XA=l
Theorem 32: 1/1=1
Theorem 33: A/1=A
Theorem 34: = A=0 - A/A=1
Theorem 35: - B=0&A/B=0 — A=0XB
Theorem 36: (B+C)XA=(BXA)+(CXA)
Theorem 357: AX0=0
Theorem 38: = A=0 — = 1/A=0
Theorem 39: = A=0 - 0/A=0
Theorem 40: = A=O%AXB=1-» B=1/A
Theorem 41: — A=0&AXB=A - B=l
Theorem 42: = B=0 — (A/B)XC=(AXC)/B
Theorem 43: = B=0 — (A/B)XC=(C/B)XA
Theorem 4%: = B=0& — D=0 - (A/B)X(C/D)=(C/B)X(A/D)
Theorem 45: — A=0& — B=0 — (A/B)X(B/A)=1
Theorem 46: — A=O&AXB=AXC — B=C
Theorem 47: — A=0&AXB=0 - B=0
Theorem 48: = AXB=0 — — A=0&% =B O
Theorem 49: = A=0&% — B=0 — - AXB=0
Theorem 50: — A=0& — B=O — B/(AXB)=1/A
Theorem 51: = A=0% — B=0 — (CXB)/(AXB)=C/A
Theorem 52: (= B=0& — D=0)&A/B=C/D — AXD=CXB
Theorem 53: — B=0O&A=BXC — A/B=C
Theorem 54: AX(-B)=-(AXB)
Theorem 55: (-A)X(-B)=AXB

N




8. Ordering Axioms:

(a) NS (Asymmetry): A<B -5—-B<A

(b) AD (additivity): A< B - AHC < B4C -

(c) MD (Multiplicativity): A < B&0 < C - AXC < BXC
(d) TR (transitivity): A<B&B<C-5A<C

(e) CN (connectivity): A/B - A <BVB <A

9. Theorems on Inequalities:

Theorem 60:
Theorem 61:
Theorem 62:
Theorem 63:
Theorem 6k:
Theorem 65:
Theorem 66:
Theorem 67:
Theorem 68:
Theorem 69:
Theorem T70:
Theorem Tl:
Theorem T2:
Theorem 73

Theorem Th:
Theorem T75:
Theorem 76:
Theorem 7T7:
Theorem 78:

- A<A

A=B » 2 A< B&-B<A
A<B-o5=-A=B&-~B <A
A<0-50<-A
0<-A-5AK<DO

AtB < MC 5B <C
A<B--B<-A
-B<-A-5A<B
A+(-B) <A+ (-C) -C<B
C<B-A+ (-B) <A+ (-C)

A < 0&B < C - AXC < AXB

A < O&AXB < AXC »C < B

0 < AXAXB < AXC »B < C

0<1

A<0-51/A<0

0 < A&%(B < 0&C < 0) — AXB < BXC
A < 0&(0 < B&0 < C) -» AXB < BXC
-~ B=0&0 < A/B - 0 < AXB

— B=0&0 < AXB -0 < A/B
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Boolean or Class Algebra

1. Class Variables: G,H,M,K,L
2. Axioms:
(a) CU (Commute Union): cUH=HUG
‘ (b) CI (Commute Intersection): GNH=HNG
(¢) UI (Union Identity): cUo =G
() II (Intersection Identity): GMNX =G
(e) DU (Distribute Union): cUMENK) = (cUH) N (¢ UK)
(f) DI (Distribute Intersection): G (H UXK) = (G NH) U (cNEK)
(g) EM (Excluded Middle): ¢ U (-6) =
(h) RD (Reduction): aN(-¢) =0
(i) UC (Associate Union): (GUH) UK =cUHUK)
(j) IA (Associate Intersection): (G HNK=6¢N(HNK)
(k) SA (Subclass Axiom): ¢ (-H) =0 ->GCH
(1) cs (Converse of Subclass): GCH-G6MN (-H) =0
3, Theorems:
Theorem 161: G U ((-G) NH) = GUH
Pheorem 162: GN ((-G) UH) =GNH
Theorem 163: GUG = G |
Theorem 164: GG =G
Theorem 165: GUX =X
Theorem 166: G(10 =0
Theorem 167: G U (GNH) =G
Pheorem 168: GN(GUH) =G
Theorem 169: G (-H) = 0&GMNH=0-G =0
Pheorem 170: G U (-H) = X&G UH =X -»G =X
Theorem 171: GUH =0-5G =0
Theorem 172: GMNH =X ->G6G=X
Pheorem 173: GUH =GCUKG NH=GNK->H=K
Theorem 17%: (GUH = X% UK = X)&(GNH = 0& NK = 0) »H =K |
Pheorem 175: (GUH = G& UK = G)&GNH = 0&G NK = 0) »H =K
Theorem 176: (¢ UH = X% UK =X)&GNH=06GNK=G6) »H =K
Pheorem 177: -(-G) = G
|
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Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem
Theorem

Theorem

178:
179:
180:
190:
191;
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203
20k
205:
206:
207
208:

-X=0

GUH=GNH->G =H
GNHNK) = (GNH) n (G NK)
GCG

0CaG

GCX
GCHWMICG-G=H
GCH->GUH=H
GUH=H->GCH
GU(-H) =X >GCH
GCH-G-H) =X
GcH-GH =3
GNH=G->GCH
GCHHCK>GCK
GCH--HC -G

GCH&G C-H-G =0
GCH&-GC H-oH=X
GCGUH

GNHCG
GCKHCK->GUHCK
GCHGCK->GCHNK
GCH-H=6UMHN (-G))




APPENDIX C

Two Examples of Derivation Problems from LIS

This appendix contains two examples of derivation problems from
LIS. Example 1 is typical of the sentential logic problems. Example 2
is typical of the algebra problems.

An explanation of the lines of the derivation in Example 1 follows:

(1) - (5) These are the given premises to be used in deriving the

logical sentence R.

(6) The student introduces the denial of the sentence to be
derived. To do this, he uses the working premise rule, WP.
LIS indents this premise and all lin~s following it until
the student proves a contradiction and uses the indirect
proof rule, IP, to derive the denial of what he entered on

this line. See the explanation for line 1% (below).

(7) Line 1 is a disjunction and the newly introduced line 6 is
the denial of one of the disjuncts. The DD rule (Deny
Disjunct) allows the student to establish the truth of the

other disjunct S.

(8) Line 2 is the conditional "if not Q, then not 8." Line 7
states that 8 is true, so the student used deny consequent,

DC, to prove that Q is true.

(9) The antecedent of the conditional in the line 3 premise is in
the form of a double negation (not (not Q)): the student has
proved that @ is true in line 8, so he uses double negation,

DN, to derive this antecedent.

(10) Now he uses the affirm the antecedent rule, AA, to derive the

consequent of line 3.

(11) He uses double negation again, now on the premise line L.
(12) He uses affirm the antecedent again to derive not W.
83




(13) He uses deny disjunct again, this time on the disjunct on
line 12 to get not S.

(1) He has derived a contradiction with the help of the working
premises he introduced. On line 7 he has S is true. On
line 13 he has not S is true. He uses the indirect proof
rule, IP, to establish the denial of not R, the working

premise on line 6.

Insert Table 1 a2bout here

Now we give a detailed explanation of the steps in the derivation
of Example 2. There are no premises and the student is being asked to

prove Theorem 22 which will then become available to him for use in

later proofs.

(1) The student introduces the negative number axiom, N. The
computer prints out the axiom and then allows the student
to substitute expressions for A and B. In this case, the

student types A for A and B for B.

(2) Line 1 is an equation, so the student can commute about =.
To do this, he uses the commute equals rule, CE, where the

first 1 is the line number and the second 1 is the occurrence

number of the =.

(3) The student wishes to add something to both sides of the
equality on line 2. To do this, he uses the add equals
rule, AE, where the 2 is the line number of the equation.
The computer types a colon after which the students types
the expression to be added. The computer then types line

3,

On the next line the student attempts to type a rule which

the computer does not recognize.
(4) The student again uses the negative number axiom.

(5) He applies CE to line 4,
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(6)

(7)

(8)

(9)
(10)

(11)

(13)
(I4)-(15)

The student now uses the replace equals rule, RE. He wishes
to replace an occurrence in line 3 of the left-hand side of
the equation in line 5 by the right-hand side of the equation
in line 5. There is more than one occurrence of (B-C) in
line 3 and the student specifies which one he wants replaced

by the occurrence number, l.

On the next line he decides to erase line 6. He does this

by using DLL, delete the lest line.

He again uses RE, this time for the second occurrence of
(B-C). The student wishes to associate addition to the
right in line 6. To do this, he uses the associate right
rule, AR. He wants to associate about the second plus sign,
hence he uses 2 as the occurrence number. Since this is not

possible; he.receives .an error message.

He again tries AR, only this time the occurrence number of

the plus sign is 3.
He associates left about the third plus sign using AL.
He uses the negative number axiom again.

He now makes use of a theorem which he had proved earlier.
A theorem is used in a manner analogous to the axioms. On
the next line he misuses RE and receives the appropriate

error message.
He correctly uses RE.
He makes use of theorem 1.

Two more uses of RE establish the desired theorem.

Insert Table 2 about here

8
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TABIE 2

Example 2

bh17.31:

HERE IS THEOREM 22
DERIVE: (A-B) + {B-C) = A-C

N A+ (-B) = A-B

A:A

B:B (1) A + (-B) = A-B

1CEX (2) A-B = A+ (-B)

2AE

: B-C (3) (A-B) + (8-C) = (A + (-B)) + (B-C)
lL0j

NU IS NOT A RULE
N A+ (-B) =A-B

:C (4) B + (-C) = B-C
4CcE1 (5) B-C =B + (-C)
3.5RE1 (6) (A-B) + (B + (-C)) = (A + (-B)) + (B-C)
DLL
2.2BE2 (6) (A-B) + (B-C) = (A +(-B)) + (B + (-C))
6AR2

YOU MAY NOT ASSOCIATE RIGHT AROUND .+ SIGN NUMBER 2

6AR3 (7) (A-B) + (B-C) = A+ ((-B) + (B + (-C)))
TAL3 (8) ~ (a-B) + (BC) = A+ (((-B) +B) + (-C))
NA+ (-B) =A-B
A: A
B: C 9) A+ (-C) = A-C
TH2 (-A) + 4=0
A:B (10) (-B) +B=0
8.10RE2

THERE ARE NOT 2 OCCURRENCES OF (-B) + B :IN LINE-8 -




8.10REL

(11) (A-B) + (B-C) = A+ (0 + (-C))
TH2 O+A=A
A: -C (12) 0+ (-C) = -C
11.12RE1

(13) (A-B) + (B-C) = A+ (-C)
13.9REL (14) (A-B) + (B-C) = A-C
CORRECT
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APPENDIX D

Description of Data Analysis Programs

In this appendix we describe the programs, written by the author,
which were used to reduce and analyze' the data.
Logic Program

Each day during the summer of 1970, a file was created for each

iles were identified on

logic student on the PDP-10 disk file system.

the disk by a file name (up to six characters) and a file extension (up
to three characters) written as NNNNNN.EEE. The name chosen for each
student file was the student's account number, the extension was the

date. Thus, logic student L1125 on July 13 had his data recorded on a

file named L1125.71%. At the end of each day, the student data files

were transferred to magnetic tape. The format of these files is given

in Table 1.

Insert Table 1 about here

Data Reduction

Tn the fall of 1970, a series of programs were written to convert

the raw data into a format acceptable to the BMD programs. We give here

a brief description of these programs, indicating the programming

language used in each case.
PASS1 - PDP-10 assembly language
Input: daily student data files

(1) combined the data in the irdividual student files

described above into one data file per student.
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PASS2 - SATLY
Input: output files from PASS1

(1) created a separate file for each logic problem.
PASS3 - SAIL

Input: output files from PASS2

(1) Extracted the following information from each problem file:
(a) problem number
(b) number of students who attempted the problem
(¢) number of students for whom there was complete data
on the problem. As mentioned in Chapter III, some data
were lost due to‘system or machine failures, SO that there
were incomplete data for some students on some problems.
(d) mean and standard deviation of the number of lines
in a complete derivation for the problem. Here and below

we define the mean as:

N
Mean =X = ( Z Xi)/N
i=1

and the standard deviation as:

N 1
Stan. Dev.:wJ( = (X; - i)z)/N-l

i=1

where N is the number of students completing the
problem.

(e) mean and standard deviation of latency to solution.
(f) mean and standard deviation of latency per line.

(g) mean and standard deviation of corrected latency per

line.

*
Stanford Artificial Intelligence Laboratory's Algol-like language.
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(h) mean and standard deviation of number of error messages.
(i) mean and standard deviation of number of DLL's.
(j) mean and standard deviation of number of restarts.

(2)  created ASCII files of the above information formated for
printing on a teletype or displaying on a CRT. These could

also be used as input for the BMD programs.

COMB - Fortran
Input: output from PASS3 and a file containing the values of the

structural variables which were typed as input by hand on

the CRT's.

(1)  combined the two input files into one file containing both
the behavioral and structural variables.
SORT - Fortran

Input: output from PASS3

(1) produced a rank-ordering of the problems for each of the
five behavioral measures.
Analysis
In addition to writing the above programs, I also implemented the
BMDOAM program on the PDP-10 and modified the already existing BMDO2R

program to produce the plots mentioned in Chapter III.
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TABLE 1

Format of Raw Logic Data

The first four words of each student file were:

wordl: Student account number
word2: Date

word3’: Start time

wordl: New day code - 761616161616

Whenever the student was restarted, the above four words were put in
his file.

The first words for every problem were:

wordl: New problem code - 716161616161

word2: Problem start time

word3: Problem and lesson number

words 4-n: Problem type codes O

These were followed by response codes. For each student input these were:

wordl: response code - T67676767676
words 2-n-1l: Student response in ASCII
wordn: Latency to response

Bach time a student timed out, the following information was recorded:
wordl: TIMOUT
word?2: Time of the time-out

Each time a student asked for a hint and the hint clock had not fired,

the student received one of the following two messages. For "A HINT IS
NOT AVAILABLE NOW' we recorded:

wordl: NOTNOW

word2: Time of message

When the student received 'THINK A LITTLE LONGER", we recorded:
wordl: KEEPON

word2: Time of message

When the student received an error message, we recorded:

wordl: ERRORS

word2: Error message number

word3: Contents of an accumulator containing information about the error
wordl: Time of the error

At the end of each problem, we recorded:

wordl: Problem end code- 766766766766
word2: Time of end of problem

Finally, at the time that each student was signed off, we recorded:
wordl: Sign-off code - TT76776776776

word2: Time of sign-off

word3: Tu7hThThThTh
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