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C\J Multiple comparison procedures in recelit years have earned a prominent

role in the analysis and, interpretation of experimental research in the behav-

C3
loral scienfes. Most of these procedures are designed to either test individual

contrasts between means after the null hypothesis of no treatment differences

in ANOVA has been rejected or to test a selected set of mean contrasts which

are of apriori interest to an investigator in an experiment. Three popular

techniques which have primarily been employed for the first purpose are the

Tukey VISD method (1953), the Newman-Keuls test (Keuls, 1952; Newman, 1939) and

the Duncan multiple range test (1955). All of these tests have as their parent

statistic the studentized range statistic q (Pearson & Hartley, 1943; Student,

1927) defined by
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q (k, df2)

IfinsnW

where IL = the largest -of a set of k group means

is the smallest of a set of k group means

eaD
dfe the degrees of freedom for msw

C4'\
n the sample size for each group

V4) This statistic is distributed exactly as q with parameters k and df2 if the

following assumptions are satisfied: (1) The overall null hypothesis

Ho ytf1 ..,(425.-.94k is true (2) SamOles are independently selected at

random (3) Populations are.normally distributed 'and (4) Populations are

equally variable.
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It is generally conceded that the q statistic is less powerful overall

than the corresponding F statistic (Winer, 1962), but this finding assumes normal

distributions with equal variances. Surprisingly, when the above assumptions

are violated the robustness of q with respect to both power and Type I error is

relatively unknown (Games, 1971). Petrinovich and Hardyck (1969) do offer

limited evidence that q is robust under either non-normality or unequal variances

but their work was restricted to exponential populations and did not consider

various simultaneous violations of the two assumptions. In view of the wealth

of studies available that confirm the robustness of the t and F statistics

(See for example Boneau, 1960; Box, 1954; Donaldson, 1968; Norton, 1952) and

the extensive usage of the q statistic in conjunction with multiple comparisons

in ANOVA, it would appear that empirical investigations of the latter statistic

are long overdue. The present study was therefore directed at determining the

extent to which Type I error rate is affected by violations in the basic assumptions

of the q statistic. Monte Carlo methods were employed and a variety of departures

from the assumptions were examined.

Method

First, a sampling distribution of q with the assunptions inviolate { i.e.,

populations sampled were nornally distributed with nean 0 and variance 1 denoted

by N(0,1)} was simulated on an IBM 360/50 computer by generating 2000 values

of the statistic. This was done four times using initially 3 groups (k=3) with

5 scores in each group (n=5) and then the following three pairings: k=3, n=15;

k=5, n=5; k=5, n=15. These four combinations furnished a fairly representative

set of df
2
-values ranging from a rather small value of 12 to a moderately large

value of 70. In each set of 2000 values the percentage of q'3 exceeding the

theoretical tabled 95th and 99th percentiles for the appropriate k and df2 were

determined. Since all the assumptions were satisfied the long run expected
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values of these observed percentages were 5% and 1% respectively. Hence, these

observed quantities served as a valuable indicator of the pure chance discrepancy

one could expect between the nominal and obtained Type I error rates. Boneau

(1960) in his study on t reported that discrepancies as large as 1% above or

below the nominal 5% error rate are not uncommon when 2000 values of the statistic

were calculated with all assumptions satisfied.

Next, the variance assumption was violated. This was accomplished for

k=3 and n=5 by generating 2000 q's based on normally distributed populations

with means of 0 and variances of 1,1, and 2. This represented a rather moderate

departure from the variance assumption and certainly one that would be encountered

quite frequently in the behavioral sciences. The procedure was then repeated

with variances of 1,1, and 4 (a rather extreme violation). Additional sampling

distributions of q were generated blending similar variance violations with the

other three combinations of k and n. For example, when k=5 and n=5 the variances

used were 1,1,1,2,2 and 1,1,1,4,4. In all situations, the nominal and observed

error rates were compared.

The normality assumption was then violated. For this phase of the study

three distributions in standardized
form.were employed as populations: the

positively skewed exporential, the negatively skewed exponential, and the

rectangular (i.e., E4(0,1), E-(0,1) and R(O,1)}. La Order to 7enerate

random numbers distributed according to the above characteristics, the computer

first sampled from the rectangular
distribution of the random variable r in the

interval from 0 to 1. These results were then converted to the desired variates

by the following transformations:

x = -ln r-1 for E4(3,1)

y = ln r+1 for B-(0,1)

for 11(0,1)

where ln rrthe natural logarithm of r

x, y, and z = the desired standardized variates
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Sets of 2000 q's were generated and error rates were compared for situations

in which the populations were all Pox or all R(0,1) under each of the

four k and n combinations. Other sampling distributions were produced using

distributions that were not all identical as the underlying populations.

That is, NI(0;1), E*(0,1) and R(0,1) were introduced together as.an

underlying population pattern and e(0,1), e(0,1) and E-(0,1) were

introduced as another pattern. While the occurrence of this latter con-

figuration in practice would indeed be rare, it was nevertheless included

for the intrinsic purpose of exploring the effects of oppositely skewed

distributions.

In the final phase of the study the variance and normality assumptions

were violated simultaneously in a multitude of ways and the error rates were

compared. Particular importance was attached to this segment since simultaneous

violations are the rule rather than the exceptian.in the real world. The number

of different possible violations under these conditions, however, could easily

have become unmanageable. Thus, only situations were considered that incorpOrated

the extreme variances of 1,1, and 4 (or 1,1,1,4, and 4) into the population

patterns of the preceding phase of the studY.

Results

When the assumptions were satisfied, the observed Type I error rates for

the nonidnal 5% level were 5.1%, 5.9%, 5.2% and 4.8% respectively for the four

conditions kp3, no5; ko3, no15; ko5, no5; ko5, n=15. The 1% error rates were

1.3%, 1.1%, 1.6% and 1.0% respectively. The error rate of 5.9% for k=5 and

no5 would seem to confirm Boneau's statement (1960) that observed rates may

deviate as much as I% from the nominal 5% value when the assumptions are

fulfilled. All in all, however, these results not only justify the random

sampling procedure used but reaffirm one's faith in the mathematically deter-

mined tabled values of q.

4
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Table 1 presents the obseroed 5% and 1% error rates under violations of

the variance assumption. Introduction of the moderate violation of 1,1, and

2 (or 1,1,1;2,.and 2 When'k=5) had no distinvishable effect on the observed

error rates. The extreme variance violation of 1,1,'and 4.(or 1,1,1,4; and 4

wten kP5) produced 5% rates ranging from a low of 5.9% to a high of 6.9% for

the four k and n conditions. The 1% rates ranged from 1.6% to 2.0%. It thus

appears that a violation this severe may typically only produce increments as

high as 2% and 1% above the nominal 5% and 1% levels respectively.

When the populations were equally variable but all positively skewed

exponentials or all rectangular the dbserved error rates for the most part

dropped slightly below the nominal rates. Table 2 indicates that the 5% rates

ranged fnmn 3.8% to 4.5% for the exponential populations under the four sampling

conditions and from 4.2% to 5.5% for rectangular populations. Similarly, the

1% rates varied from .5% to .9% for exponential populations and from .8% to

1.3% for rectangular populations. Hence, these particular identical non-normal

populations seem to have a negligible effect on the Type I error rate.

Table 2 also ieports the Type .I error rates when non-identical distri-

butions were sampled. 4or the patterns involving N(0,l), R(0,i) and 0*(0,1)

the 52 rates ranged from 4.2% to 4.6% and the 1% rates were from .7% to .8%.

These values again are systematically below the nominal values but represent

very mild departures from expectation. Introduction of oppositely skewed

distributions (i.e., patterns involving H4(0,1), 0*(0,1) and E-(0,1)} pro-

duced rather surprising results. In all four sampling conditions, the obseryed

rates were below the nondnal rates but the smallest 5% rate was 3.4% and the

smallest 1% rate was .6%. Intuitively, one would expect this type of normality

violation to have a far greater effect on Type I error rate.

5
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The observed Type I error rates for a variety of simultaneous violations

of the normality and variance assumptions are given in Table 3. Since the

variance violation of 1,1, and 2 produced rates almost identical to those

obtained when the assumptions were satisfied, only the extreme variance violation

of 1,1, and 4 (or 1,1,1,4,4 Ilhen k=5) was considered in this philee. Mien

the population patterns exemplified by E+(0,1)., E+(r) ,1) and E+(0 ,4). were

used, the 52 rates ranged from 6.9% to 8.2% and the 1% rates from 2.0% to 2.3%.

The patterns characterized by R(0,1), R(0 and P.(0,4) yielded rates from

6.1% to 8.2% for the 5% level and from 1.5% to 2.9% for the 1% level. Thus

distributions that are all exponential or all rectangular under the extreme

variance violation appear to generate T ype I error rates that reach at most

only the 8% and 3% neighborhoods for the nominal 5% and 1% levels respectively.

Fourteen situations were examined that involved the extreme variance

violation with non-identical populations. When the normal, exponential, and

rectangular distributions were used within the same pattern (six situations

in Table 3), the maximum observed rates were 7.7% and 2.7% respectively for the

5% and 1% levels. Except for two notable exceptions, the eight situations

involving oppositely skewed exponentials within the same pattern produced

parallel results. The two exceptions (i.e., g÷(0,1),.E+(0,4) and r (0 ;4)

for .ri:=5 and n=15) resulted in observed rates that were surprisingly

close to their nominal values. This occurrence so amazed the authors that both

situations were rerun on the computer. The second run produced 5% rates of

5.4% and 5.7% respectively for the situations and 1% rates of 1.4% and 1.2%

respectively. Hence, the original results appear to be no fluk or quirk of

chance. It should be pointed out that these two situations actually arose by

accident. The variances of 1,4, and 4 for the respective populations was in-

tended to be 1,1, and 4 which, of. course, T7as routinely used 'throughout the

study. The former set of variances essentially reflects the same deiree of

6
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departure from the assumption but when combined with the given population

sequence produces two oppositely skewed distributions with the same variance.

The latter set of variances, on.the other hand, results in two oppositely

skewed distributions with different variances.

Finally, an attempt was made to assess the role of the sample size (n)

and the number of groups (k) in the distortion of Type I error rate under

the various violations. Two trends were noticeable wben all 46 situations

of the three tables were examined. In the cases in which three populations

weat sampled (k=3), a situation with a sample size of 5 tended to produce a

larger deviation from the 5% nominal rate Chan a corresponding situation with

a sample size of 15. Also when the cases involving a sample size of 15 were

considered, a situation involving 5 populations tended to produce a larger

deviation from the 5% nominal rate than a corresponding situation involving

3 populations. No trends were discernable at the 1% level.

Discussion

Multiple comparison techniques based on the studentized range statistic

currently enjoy intuitive appeal among researdh practitioners in the behavioral

sciences. The present study has unveiled yet another attractive property. It

appears that q, like t and F, withstands remarkably well violations of the

homogeneity of variance and normality assumptions wbert Type I error rate Is the

criterion. The extreme variances of 1,1, aad 4 for normal populations (Table.1)

produced error rates up to only 6.9% and 2.0% for the nominal 5% and 1% levels

respectively. Violations of only the normality assumption using exponential and

rectangular distributions (Table 2) resulted in rates systematically but

negligibly below the nominal levels. In the 16 situations considered in this

phase, the smallest observed error rates were 3.4% and .5% for the nominal 5%

and 1% levels respectively. Twenty-two simultaneous violations of both

7
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assumptions (Table 3) led to maximum rates of 8.2% and 2.9% respectively.

The two exceptional situations of Table 3 (i.e., EI(O,l), E+(Q,4) .

and E-(0,4) for n=5 and n=15) are Worthy..of'.additional zotment. As indicated

in the table and further supported by replication, the observed error rates

associated with these situations were very close to the nominal 5% and 1%

levels. .1be cause of this strange occurrence is open to speculation. One

possible explanation lies in the opposing forces that are operating in these

violations. That is, oppositely skewed exponentials depress the error rate

and unequal variances elevate the rate. When this phenomenon is considered

along with a coincidental blend of the particular variance magnitudes and the

placeamnt of the two equal variances in the oppositely skewed distributions,

it is conceivable that some sort of rare balance was achieved. Some support

for this conjecture was gained when another violation was constructed which

incorporated an even more extreme variance set of 1,9, and 9 into the same

distributions. Here for n=5, the observed rates jumped to 8.5% and 3.0%

for the 57. and 1% nominal levels respectively. In this case, it appears that

the severity of the variance violation has overwhelmed the combined effect of

the other forces. For comparative purposes, the variances 1,1, and 9 were

employed with the same distributions using n=5 (an equivalent variance

violation with the oppositely skewed distributions having different

variances). The resulting error rates were much larger -- 11.7% and 4.9%

respectively. The principle that emerges from these findings is that when two

overall variance violations are equivalent, the presence of two oppositely skewed

distributions with equal variances within one pattern represents a less

serious violation than the presence of two oppositely skewed distributions

with unequal variances within the other pattern. Horeover, this effect seems

to be more pronounced for k=3 than for k=5 (see the last four situations in

Table 3).
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Although this study has investigated quite extensively the robustness

of q when Type I error is the criterion, much more research is needed on this

popular but little understood statistic. For example, additional woik is

necessary on the robustness of q when power is the criterion. Also the effect

of unequal group sample sizes on Type I error and power needs to be examined.

This problem is of prime importance because the assumption of equal n's has

always been a serious limitation in the application of the studentized range

statistic. Another factor which merits some thought is the effect of kurtosis

on the robustness of q. This study did not consider various bell-shaped non-

normal distributions with varying degrees of kurtosis.

_a
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TABLE 1

Observed Type I Error Rates Under Violations

of the Variance Assumption

Sample Conditions Population Pattern 5% Rate 1% Rate

k=3, n=5

1:=3, n=15

k=.5, n=5

k=5, no215

11(0,1); 11(0,1); 11(0,2)

11(0,1); 11(0,1); 11(0,2)

three N(0,1); two N(0,2)

three 11(0,1); two 11(0,2)

5

5.0%

6.1%

5.6z

1.2%

1.17.

1.1%

1.2%
OMNI

k=3, n=5 11(0,1); 11(0,1); 11(0,4) 6.5% 2.07.

k=3, n=15 11(0,1); N(0,1); 11(0,4) 5.9% 1 .6%

k=5, n=5 three N(0 ,1); two 11(0,4) 6.9% 1 8%

=5, n=15 three 11(0,1); two 11(0,4) 6.9% 2 . 0%
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TABLE 2

Observed Type I Error Rates Under Violations

of the Normality Assumption

13

Sample Conditions Population Pattern ' 5% Rate I% Rate

k=3, n=5 All populations 0-(O ,1) 3.8% .7%

kl=3, n=15 All Tiopulations E+(0,1) 4.5% .5%

k=5, n=5 All populations E+(0,1) 4..2% .9%

10,25, ner15 All populations E+(0,1) . 4.5% .8%

k=3, na5 All populations R(0,1) 4.8% 1.2%

1013, n=15 All populations R(0,1) 4.8% .8%

kam5, nos5 All populations R(0,1) 5.5% 1.3%

k.=5, n=15 All populations R(0,1) 4.2% 1.1%------ ......
k=3, n=5 N(0,1); R(0,1); E+(0,1) 4.3% .8%

It=.3, n=15 N(0,1); R(0,1); E+(O,1) 4.4% .8%

k =5 ii=5 N.(0,1); two R(0,1); two E4(0,1) 4.2% .8%

k =5, n=15 N(0,1); two R(0,1); two E+(O,1) 4.6% .7%

k'=3, nas5 E4(0,1); E+(0,1); E-(0,1) 34%

k =3, n-15 E4*(0,1); E+(0,1); E-(0,1) 4.6% .8%

k.so5, na5 three E+(0,1); two E-(0,1) 4.4% .9%

k=5, ny215 three E4(0,1); Wo E'(0,1) ., 3.9% .6%

13
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TABLE 3

Observed Type I Error Rates Under Simultaneous Violations

of the Variance and Normality Assumptions

Sample Conditions Population Pattern 5% Rate 117. Rate

k=3, na5 E+(0,1); E-1*(0,1); E+(0,4) 8.1% 2.0%

k=3, n=15 E+(0,1); E+(0,1); E+(0,4) 6.9% 2.3%

k=5, n=5 three E+(0,1); two t(0,4) 8.2% 2.0%

k=5, n=15 three Ef(0,1); two E+(0,4) 7.4% 2.2%

k=3,..n=5 R(0,1); R(0,1); R(0,4) 7.8% 2.6%

k=3, n=15 R(0,1); R(0,1); R(0,4) 6.1% 1.5%

k=5, n=5 three R(0,1); two R(0,4) 8.2% 2.9%

k=5, n=15 three R(0,1); two R(0,4) 7.4% 2.4%
___-----

k=3, n=15 N(0,1); R(0,1); E+(0,4) 6.8% 2.1%

k=5, non5 N(0,1); two R(0,1); two El.(0,4) 7.1% 2.12

k=5, n=15 N(0,1); two R(0,1); two E+(0,4) 7.7% 2.0%

k=5, n=5 N(0,1); R(0,1); R(0,4); E+(0,1); E+(0,4) 7.2% 2.3%

k=5, n=15 N(0,1); R(0,1); R(0,4); E+(0,1); E+(0,4) 7.6% 2.7%

E+(0,1); E+(0,4); E-(0,4) 5.1% 1.5%

k=3, n=15 e(0,1); El-(0,4); E-(0,4) 5.5% 1.2%

k=3, ne5 CE(0,1); E+(0,1); E-(0 4) 7.0% 2.22

k=3, n=15 E+(0,1); E+(0,1); E-(0,4) 7.2% 2.8%

k=5, n=5 two E+(0,1); E+(0,4); E-(3,1); E-(0,4) 6.3% 1.9%

k=5, nos15 two Ei.(0,1); rE(0,4); C-(0,1); r(0,4) 7.37. 2.62

k=5, n$25 three E(0,1); two r(0,4) 7.3% 2.2%

k=5, n=15 three E(0,1); two E-(0,4) 7.7% 2.0%
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