
ED 061 977

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

BUREAU NO
PUB DATE
GRANT
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIE S

ABSTRACT

DC, U ENT RESUME

52 LI 003 647

Silver, Steven S.
INTX: Interactive Assembler Language Interpreter
Users' Manual; Preliminary Programming manual and
Version II Extensions. Final Report.
California Univ., Berkeley. Inst. of Library
Research.
Office of Education (DHEW) Washington, D.C. Bureau
of Research.
BR-7-1083
Sep 71
0EG-1-7-071083-5068
34p.;(8 References)

MF-$0.65 BC-$3.29
*Computers; *Electronic Data Processing; nformation
Processing; Manuals; *On Line Systems; *Programing
Languages
Berkeley; *University of Cal fornia

INTX is an interactive programing and debugging
system operating under UCLA's URSA interactive console system.
Although originally designed as a debugging aid for interactive
processor development, the addition of an on-line Assembler makes it
a programing system in its own right. INTX operates only on the
Computer Commmnications 301 graphics display device making use of
automatic update and cursor positioning facilities. There are three
major divisions in the system: (1) Command analysis and
initialization, C2) Assembler-loader and (3) Interpreter -
disassembler. The command module displays an initial screen
describing functiDus available, current level of development, and
supervises the operation of all other components of the system. The
Assembler is a subset of Basic Assembler Language with extended
branch mnemonics which accepts standard assembly language and the EQU
pseudo operation. The interpretor module is deSigned to execute any
System/360 instruction except the SVC. Any instruction that could be
successfully executed by a program running in problem state is
supported. [Related documents are LI 003610, LI 003611, LI 003645, LI
003646 and LI 003648.] (Author/SJ)

LAJ

leel

U.S. DEPARTMENT OE HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON DR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

FINAL REPORT
Project No. 7-1083

Grant No. OEG-1-7-071083-5068

INTX:
INTERACTIVE ASSEMBLER LANGUAGE INTERPREJJER USERS MANUAL

Preliminary Programming Manual*
and

Version II Extensions**

By

Steven S. Silver

Institute of Library Research
University of California
Berkeley, California 94720

September 1971

The research reported herein was performed pursuant to a grant with
the Office of Education, U.S. Department of Health, Education, and
Welfare. Contractors undertaking such projects under Government
sponsorship are encouraged to express freely their professional judg-
ment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office of
Education position or policy.

U.S. DEPARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Bureau of Research

*date internal report produced: July 9, 1969
**date internal report produced: November 20, 1969

TABLE OF CONTENTS

PRELIMINARY PROGRAMMING MANUAL Eao.

Introduction
Assembler (ASMX#1)
Interpreter (INTX#2)
Interpreter Internals

Appendices:

1
3

5

9

I. Command Summary 11
Instruction Classes and Micro Programmed
Instructions. . = . .. 13

III. SVCX Instructions 14
IV. Error Messages. 18

VERSION II EXTENSIONS

Executer

SI= 3 21
svcx 4 23
svmc 11 24
svmc 35 25
svmc o. 26
Register Notation in Commanes Setting 26
ST, SS, and SF Stops 27
Instructions Executed Counter 27
Display of SyMbolic Instruction Counter . 27
First Line for Command Entry. 28
Message Handling . 28
Fetch Protection Extension 28
INX and ND 28

Assembler

USING, DROP ?c)

START and ORG 30
DSECT and CSECT = .. . 6..... 0 6 . 30
Constants 30
Error Messages. 31
Storage Reci4.rements 31
Data Set Checking 31

FOREWORD

This report contains the results of the second phase (July,
1968 - June, 1970) of the File Organization Project, directed toward
the development of a facility in which the many issues relating to
the organization and search of bibliographic records in on-line com-
puter environments could be studied. This work was supported by a
grant (0EG-1-7-071083-5068) from the Bureau of Research of the
Office of Education, U.S. Department of Health, Education, and Welfare
and also by the University of California. The principal investigator
was M.E. Maron, Professor of Librarianship and Associate Director,
Institute of Library Research; the project director and project manager
were, respectively, Ralph M. Shoffner and Allan J. Humphrey, Institute
of Library Research.

This report is being issued as seven separate volumes:

Shoffner, Ralph M., Jay L.
The Or anization and Searc
Computer Systems: Project

Cunningham, and Allan J. Humphrey.
of Bibliographic Records in_On-line

Summary.

Shoffner, Ralph M. and. Jay
and Search of Biblio ra hi

L. Cunningham, eds. The Organization
Records: Com onent Studies,

Aiyer, Arjun K. The CIMARON SYSTEM: Modular Programs for the
Organisation and Search of Lar e Piles.

Silver, Steven S. INTX:
Interpreter Users' Manual.

Interacti e A seMble- Lan a

Silver, Steven S. FNIS:_ Users' Guide to th
S stem for Natural Language Documents

Format Maniiulati on

Silver, Steven S. and Joseph C. Meredith. DISCUS Interactive
S stem Users' Manual.

Smith, Steven F. and William Harrelson. TMS: A Terminal Monitor
S stem for Information Processing.

Because of the joint support provided by the Information Process-
ing Laboratory Project (0EG-1-7-071085-4286) for the development of
DISCUS and of TMS, the volumes concerned with these programs are in-
cluded as part of the final report for both projects. Also, the
CIMARON system (which was fully supported by the File Organization
Project) has been incorporated into the Laboratory operation and
therefore in order to provide a balanced view of the total facility
obtained, the volume is included as part of the Laboratory project
report. (See Maron, M.E. and Don Sherman, et al. Am_Inf=matLaa
Processing Laborato for Edu ation and Research in Libra Science:
Phase 2. ILR 1971.)

INTX

Interactive Assembler Language Interpreter

Under URSA

Preliminary Programming Manual

Supported By

The Campus Computing Network
The Office of Zducation

Steven 5, Silver
Institute of Library Research

University of California, Los Angeles, Berkeley

INTRODUCTION

INTX is an interactive programming and debugging system
operating under UCLA's URSA interactive console system. Although
originally designed as a debugging aid for interactive processor
development, the addition of an on-line Assembler makes it a

programming system in its own right.

HARDWARE

INTX operates only on the Computer Communications 301
graphics display device making se of automatic update and cursor
positioning facilities.

ORGANIZATION

There are three major divisions in the system:
Command Analysis and Initialization,

2) Assembler-Loader,
3) Interpreter-Disassembler.

The rest of this document will describe the functions and
attributes of each of these divisions. See figure 1 for a system
organization chart.

commAND MODULE IINTXL

The Command module displays an initial screen describing
functions available and current level of development. The
Command module also supervises the operation of all other
components of the system.

when either the Assembler or Interpreter need control
commands analysed they must transfer control to the command
module. In the case of the Assembler, control is not passed back
unless specificely requested. The Command module will pass
ontrol to the Interpreter after it has performed command

analysis.

FIGURE 1

SYSTEM STRUCTURE

URSA

SELECTOR

A

Command Module
V and Monitor

INTX#2

Interpreter
Executor

INTX#3

Debugger
Entry

INTX

INTX##I

INTX##A

INTERPRETER)
STORAGE
AREA

J

USER
PROGRAM
STORAGE
AREA

-2-

ASMX#1

Assembler

ASSEMBLER (ASMX01)

The Assembler is a subset of Basic Assembler Language with
extended branch mnemonics. The pseudo operations currently
available are EQU, DS, and DC. The Assembler is invoked by
typing "ASM" in the command module and it will not normally
relinquish control until it has finished assembling. 2he source
input data set must be a standard KEYPUNCH (URSA program editor)
data set (i.e. DCBe(RECFM=PB,BLK5IZE=400,LRECL=80)).

ASSEMBLER EXTERNAL DESCRIPTION

The assembler accepts standard assembly language and the EQU
pseudo operation. Any legal 360 Assembler statement will be
accepted with the following restrictions:
1)No literals,
2)No implied lengths,
3) No multiplication o r division in statement construction.

There is minimal error checking. Only undefined symbols
will suspend assembler processing (until interrupt is pressed).
The system has a maximum capacity of 100 symbols and a 2K
over-all erogram length limitation.

INITIALIZATION

A program storage area into which the program will be loaded
for execution is obtained.

The data set to be processed is identified by completing the
partial data set name on the console screen. Pressing interrupt
will begin processing.

-3-

PASS I

During the first scan of the input source a symbol table is
generated and EQU statements are analysed. Register 15 is
assumed to be the base register by this version of the Assembler.

PASS II

The operand field of each statement is analysed and symbolic
references are resolved. Errors are ignored and a best guess is
assembled in lieu of correct code. As each statement is analysed
it is loaded into the program storage area.

When this pass is completed register 15 is set equal to the
start of the program. Control is returned to the command module
with a "start execution" command supplied.

SVCX

The INTX instruction set makes use of the SVCX operation to
invoke certain system functions supplied by the Interpreter. It
is a four byte instruction having a HEX 51 operation code. The
low order bits describe the operation to be performed. The
appendix gives a detailed explaination of the function of each
SVCX thus far implemented.

INTERPRETER (INTX*2)

The Interpreter module is designed to execute any System/360
instruction except the SVC. Any instruction that could be
successfully executed by a program running in problem state is
supported. If a program check occurs, a message describing the
failure appears on the screen and processing is suspended. The
program under interpretation does not control its own execution
for more than one instruction.

SVC=SVCX

sVC's are not supported for tha following reasons:

1 Control over a program is usually lost after an SVC is
issued,

2) Many SVC's are highly installation and operating system
release dependente making implementation difficult,

3) System integrity can not be guaranteed during an SVC.

To provide functions usually performed by SVC's the SVCX has
bean defined. Detailed functional descriptions of this
instruction will be found in the appendix. Since SVCX is a
built-in function of the Interpreter its functioning code is not
a part of the users program code.

COMMAND ENTRY

Control states within the Interpreter are usually modified
by explicit command. Commands are entered on the top line of the
screen. When interrupt is pressed the Command module will change
the state of the Interpreter.

FIGURE 2

INTERPRETIVE DISPLAY LAYOUT

COMMAND ENTRY LINE

FLOATING POINT

REGISTERS

GENERAL

PURPOSE

REGISTERS
SENSE AND STATE

INFORMATION

DISASSEMBLED INSTRUCTION

INFORMATIVE MESSAGES

STORAGE DUMP DISPLAY

MACHINE DISRLAX

The interpreter will display the 16 general purpose and 4
floating point registers, the condition code byte and instruction
counter, the HEX and disassembled version of the instruction lust
executed, and a core dump of a selected area of storage. See
figure 2 for the screen lay..;ut

The progress of the execution of a program can be monitored
during each execution cycle by entering YE) (Yes Display) mode.
This mode is automatically assumed if a program check occurs.
High speed execution can be resumed if ND (No Display) is
specified.

cOHE DISPLAY CONT/QL

The core dump display_is controlled by commands which sat
tha Dump's starting address directly, indirectly, based on the
contents of a register, or based on the addtess of the
instruction currently being executed. See the appendix for
information on how to use these functions. The starting address
of the display is always aligned to the next lowest full word
boundary.

SPEED OF EXECUTION

The speed of display mode execution is controlled by the wr"
(Time) command. Execution is delayed a specific number of
seconds between instruction cycles. The next instruction can be
executed by pressing interrupt or waiting for the time
specification to elapse. Setting a large time estimate will
essentially allow lAingle stepping through a program. rurning off
display mode will override the time specification and speed up
execution.

EXECUTION CONTROL

The ranges of execution may be redefined but the area in
which a program may store may not. Commands are available to
modify the instruction counter and the contents of the general
purpose registers.

STORAGE. AND FETCH PROTECT

Programs are permitted to execute and store only within the
boundaries defined by the physical code loaded by the Assembler.
All instructions that store or fetch information from storage are
validity checked to make certain they reference core only within
the established bounds. Branch addresses are pre-calculated
calculated and checked before use.

INTX uses the pecking order established in the URSA time
sharing system in the following way; Non-systems programmers
cannot access data (fetch) or branch outside of their program
area. If systems programmers wish the fetch protection option
they may use the PSET command.

INCONSISTENCIES

The Interpreter wil1 give faithful results in all cases
except the BAL and BALR instruction. It is possible in this case
for the instruction length to be in error since not all
Instructions are directly executed. The condition code and
branch address are correct

INTERPRETER INTERNALS

oPERATION CODE ANAIYSIS

A software defi ed inutruction counter points to the
instruction to be executed. The one byte operation code is used
as an index into a table, each entry of which contains the
character form of the operation, special flags controlling
execution, and a displacement classifying each operation into one
of ten types of instructions (in addition to error). This
information is used by the Interpreter to disassemble the
instruction.

DISASSEMBLY AND REGISTER ALLOCATION

Disassembly is based on the different formats for
representing an instruction by the Assembler (i.e. RR, SI, SS,
etc). As the instruction is being disassembled, registers are
fed into an allocation scheme which converts the requested
register into a real register reference. The resulting real
reqister is not within GPR's 10 through 15. These 6 are reserved
by the Interpreter for maintaining control over the program under
execution.

By using an allocation technique the user is not required to
use a subset of the real register set. All sixteen registers
appear to be available for use.

In most cases the result of execution will be obtained with
little actual Interpreter instruction modification. For example,
any arithmetic operation not using a register above 9 will
execute "as is".

EXECUTION

The parsed and reconstru ted instruction is placed into an
instruction storage block that is terminated by a BALR 15,10.
Register 15 will contain, after execution, the resulting
condition codes. Register 10 will be preloaded with the
addresses to which control is to return to the Interpreter. If
the instruction has not been flagged as being invalid the
Interpreter will branch to the instruction block. Control is
either returned to the address pointed to by register 10, passed
to a branch address within the freshly reformed instruction, or
passed to the SPIE routine after its execution caused a program
check. Model 91 imprecise interrupts are correctly handled.

MICRO-PROGRAMMED INSTRUCTIONS

If the instruction is one of the twelve instructions that
may either gain or seize control (BC, BXLE, etc) or which have
strange properties (STM, EX, etc) then a pseudo micro-programmed
version is executed in place of the instruction itself. The net
result will be equivalent.

APPENDIX I C3MMAND SUMMARY

IC-address Set the instruction counter to the value
specified.

ICR=register....Set the instruction counter to the value
contained in the register specified.

(regist r)=value....S t a General Purpose Register.

T=value..Set the speed of execution.

YD.M.W.Allow the display of the state of the machine
whi/e interpreting.

ND..rurn off the machine state display.

HE=address Set the high limit of ex cution.

LE=address....... . . Set the low limit of execution.

ASM Transfer control to the Assembler.

IX Interpret with execution.

INX.... Interpret and scan with no execution.

PSET Reset fetch protect for system programmers.

X Use experimental modules (RESTRICTED).

D=address ore dump display at address spacified.

DI=address Core dump display starting at address pointed
to by full word at address specified.

DR=register.........Core dump display starting at address
contained in register specified.

DE Core dump display starting at the address
pointed to by the instruction counter
(default mode).

Address, register, and value information can be supplied by
combining the operators 4- and -,*, and either decimal or

hexadecimal (base 16) data where decimal information must be
followed by a period (.). * is the current value of the
instruction counter when used to set a register or the
instruction counter, or the last address displayed by the core
dump routine. There must not be any embedded blanks in the
command.

EXAMPLE: (1+C-120=44+FM-15. is a valid input format for
setting the value of register 1 equal to'the cur ent value of the
instruction counter 4- FFO.

APPENDIX II INSTRUCTION CLASSES AND MICRO PROGRAMMED
INSTRUCTIONS

CLASSESI IBM C28-46574=5 alin

RR1 OP R1,R2

RR2 OP R1

RR3 OP I

RX1 OP R1,D2(X2,B2)

R51 OP R/,R3,D2(B2)

R52 OP R1,D2(B2)

5I1 OP D1(B1),I2

5I2 OP D1(B1)

551 OP D1(L1,B1),D2(L2,B2)

552 OP D1 (L, 81) 0 D2 (82)

MICRO PROGRAMMED IN_TRUCTIONS

SVCX BALR SAL 8CR BC BCTR BCT BXH BXLE EX LM SPM STM

-1 -

APPEN- IX III SVCX INSTRUCTIONS

DIRECTORY:

SVCX FUNCTION

........ . -Console Communication.

1 Indirect execution of INTX command

2 Non-fatal transfer to DEBUGGER (URSA SPIE
routine).

SVCX 0 CONSOLE INPUT/OUTPUT

Calling Sequence:
LA loLIST
SvcI 0

LIST DC Flwrite_addrg
DC Pwwrite_length,
DC Fgread_addrt
DC Foread_lengthg
DC H'02 length of read
DC WO' reserved

write_addr..........location of area from which data will be
written starting at the top left-most corner
of a screen after an erase.

write_length...true length of write to be performed. If
this is zero the write will be ignored.

read_addr location of area to which data will be
transfered. Transfer will start from the
location of the cursor as left by the
previous write.

read lenqth the maximum number of characters to be
transfered by the read. If zero no read will
be done.

length read...... .. .the number of characters actually read by an
issued read.

reserved will contain status flags relative to
console I/0 operations.

NOTE:

All standard INTX storage and fetch protection will
observed in I/0 operations.

29

LIST

SVCX 1 PROGRAM CONTROLLED COMMAND ENrRY

Calling Sequence:
LA 1,LIST
sVCX 1

DC Clintx_commandst
DC X909

intx_commands.......Any command sequence that could normally be
entered on the top (command) line of the INrx
interpreter.

SVC(2 CONTROLLED ENTRY TO DEBUGGER

Calling Sequence:
SYCX 2

COMMENT

1NTX registers 2 through 10 are moved into the real
registers and module iNTX#3 is entered which gets a 0C3 program
check. INTX#2, the Interpreters is not affected by the DEBUGSIER
entry.

APPENDIX IV ERROR MESSAGES

OC1 Operation P
0C2 Priviliged-operation P
0C3 Execute P
0C4 Protection P
005 Addressing P
006 Specification P
007 Data P
On Fixed-point-overflow P
0C9 Fixed-point-divide P
OCA Decimal-overflow P
OCB Decimal-divide P
OCC Exponent-overflow P
OCD Exponent-underflow P
OCE Significance P
OCF Floating-point-dioide P

Out of execution area X
Software detected protectiong X
SVC suppressed X
Bad sVCX instruction X
Object of execute X

***** message waiting. Please type °end'
Software fetch violation
Protection 1
Addressing I
Specification I
Data I
Fixed-point-overflow I
Fixed-point-divide I
Exponent-overflow I
Exponent-underflow I
Significance I
Floating-point-divide I

INTX

Interactive Assembler Language Interpreter

Under URSA

Version II extensions

Supported By

The Campus Computing Network
The Office of Education

OEG -1 -7-071083 Hayes

DISCUS Pro ect

Steven S. Silver
Institute of Library Research

University of California, Los Angeles, Berkeley

SVCX 3 CARD IMAGE DISK INPUT/OUTPUT

Calling sequence:
LA 1, IST
12NCX 3

LIST DC A(address_of_80_byte_buffer)
DC Flrelative_card number'
DC A(card_not_founa_exit)
pc A(addr_of_VOL_DSN_field)
DC XItype_of_I/Of
DS XL3 reserved

address_ _80_byte_buffer....DS 80C an area which holds the card
being operated opon.

relative_card_number an integer which indicates t e card
to be operated opon (1 is the first card)

card_not_found_exit... the address specified receives
control of the card seguence number specified does not
exit.

addr_of_VoL_DSN_field.., a 50 byte field having the following
format:
DC CL60volume_namel or XL6100g for cataloged.
DC CL44gfully_qualified data set_name2

type_of_I/0 a one byte field with one or more of
the following bits on:

X201, read a card
X102' write a card
1004, reestablish the data set reopen it

based on Ehe VOL_DSN field)

reserved reserved for .future expansion

-21-

24

NOTE:

11 only one USN -VOL field may be in effect at one ti e.

2) the first reference to a data set will be eguivelent
to having X804, type specified in addition to the read
or write flag.

3) storage and fetch protection are observed.

4) major errors cause "bad svcx insti:uction" messages
to appear.

5) pre_established URSA KEYPUNCH data sets are used:
DCB=ARZCFB=PB,BLKSIZE=400,LRECL=80)

6) blocks can not be added to the end of a data set by
this SVCX.

SVCX 4 URSA CONSOLE SYSTEM DATA

Calling sequence:
LA 1,LIST
SVCX 4

LIST DS F address_of_your_FCA
DS 6C your_job_number
DS 3C your_initials

address_of_your_FCA A full word pointing to the start of
the 4K block of storage reserved for the console being
used.

your_job_number The l_b number being charged for
your c nsole use.

The three byte form of the initials
used to sign on to the console system. The last
position will be blank if two character initials were
used.

NOTE: Storage protection is observed.

-23-

SVCX 11 TIME OP DAY

Calling sequence:
SVCX 11

NOTE:

1) Equivelent to an S macro: TIME DEC.

2) Registers 0 and 1 are modified by this SVCX.

-24-

Calling sequence:
LA 1,LIST
SVC1 35

LIST DC Belengt
DS
DC Cimessagef

SVCX 35 WTO

message+_41

length _message_+_4. .A half word containing the length of
the complete data list.

message The message you wish to output to
the operator console.

NOTE:

1) The message is typed on the operators console with the prefix
message code "CSM300I".

2) Reserved exclusively for systems programmers.

SYSTEM CHANGES

svcx-0 CHAnGES-

1) An automatic time sequencing feature has been added:
DC Flwrite_length°

is replaced by:
DC Hgtime-out_wait'
DC H/write_length'

Where fttime-out_timeu is the time in seconds to wait until a
console interrupt,is simulated. A real console interrupt
overrides this parameter. A specification of less than
three seconds is reset to 300 seconds (five minutes)

2) The full 800 character screen may now be used.

REGISTER SOTAIION

The contents of the general purpose registers can be
used in the calculation of values used by the command
module. A single Hex or Decimal value surrounded by
parenthasis will be treated as the contents of the
eguivelent register.

For example: IC = (14.)-(A)-34.* means set the
instruction counter to the value contained in register 14
less the contents of register 10 less 3 plus the value of
the instruction counter at the start of execution of the
command.

STORAGE REFERENCE STOPS

To aid in program debugging three "stop on storage
condition" commands are available. Each must be set by
command to a particular absolute address location.

SI stops the machine when the instruction counter
exactly matches the value specified

SS stops when
completed.

SF stops when
completed.

a store at a particular location is

a fetch from a specified location is

Each stop may be disabled by setting it equal to zero.
The stop time is 1 minute or the last value of T, which ever
is longer, as with all severe errors.

INS RUC.TIONS-EXECUTED COUNTER

NX holds the number of successfully executed
instructions since the last time NX was set. It can be set
to any value by command and is initially set to zero when
execution begins-

HIGH-AND WVALES OF STORAGE ANp.EX,ECUTION

All storage and fetch protection checking are based on
the limits of storage which are now displayed. Only
execution boundaries may be changed. Storage limits may not
be changed.

.DISPLAY 67-SYMBOLIC INSTRUCTION COUNTER

If an INTX assembly was done to generate the code to be
executed the symbol table from the assembly is left in core
during the execution run. In addition to the Hex instrution
counter the closest low value of labeled statement in the
blank CSECT is also displayed with any appropriate
displacements.

1 START LA R1,B(R2)

2 START

Statement 2 might generate the following information

BC 15 4(0,14) START+4

rIasT LINE-COMMAND-ENTRY

line:

During execution any command entered on the first line
of the display screen will be executed no matter what the
state of the program under execution. The cursor must be on
the first line of the screen for data to be treated as
command input.

NES AGE HANDLING.

When a message is sent to someone in INTX an
explanitory error message will appear. The user may choose
to ignore this if he wishes but it is advisable to leave
INTX to find out the contents of the message.

_EETCH PROTECTION EXTEN_SION

Anyone can now reference any area of low core -- lower
than the address CVTNUCB in the CVT -- without a fetch
protection exception.

INX and ND.

INX will now suppress the execution of instructions and
suppress the incrementing of the instruction counter (IC).
Execution may continue by issuing either an IX or ND
command.

NE now also implies the execution of IX. Execution

continues at high speed when ND is specified.

-29-
j. 4.

CHANGES TO THE ASSEMBLER

USING AND _CROP

Usings are now required for all programs. Register 15
will still point to the start of the program but the user
must supply - using indicating this fact. The using may
specify up to 2 registers. Drops are limited to no more than
3 registers at a time.

ST:ART AND OR_G

In this assembler ORG and START are exactly the same.
Each modifies the instruction counter within its own csect
(or dsect). As in the OS assembler a blank operand Is
assumed to refer to the highest value in the csect or dsect.

DS CT AND CSECT

A total of up to 10 csects and dsects may be used
including the initial unspecified blank csect. Multiplecsects are loaded in the order in which they are first
referenced. Dsects are treated exactly like csects except
loading is suppressed.

CONSTANTS.

A, V and Y constants are now operational. Multiple
constants may be specified in a single statement with the
following restrictions:

1) commas may not be used within the quoted or
parenthasised lists of arithmetic constants.

2) constants of the form nALm(*) will use the value

calculated at the start of the expression and the same value
will be propogated for each iteration.

ER_RO_Ft MESS_AGES

The assembler now issues error messages for most malor
syntactical errors along with a pointer to the approximate
area of the error. Job control language in the intx program
will not cause an error to be Issued or executable code to
be generated.

ST_OHAG_E li:E_QUIHEMENT8

Programs can vary in size between 2 and 8 thousand
bytes. There is a fixed 4 thousand byte overhead for a
symbol table passed to the executer for better debugging
displays.

DATA SET CHECKING

Any data set with a second index level of CCN will be
treated as a public data set (for assembly input only). Any
user may reference a data set with this structure.

