ED 061 977
AUTHOR
TITLE
INSTITUTION
SPONS AGENCY
BUREAU NQ
PUB DATE
GRANT

NOTE

EDRS PRICE
DESCRIPTORS
IDENTIFIERS

ABSTRACT

DUOUMENT RESUME
52 LTI 003 647

Silver, Steven S.

INTX: Interactive Assembler Language Interpreter
Users?! Manual; Preliminary Programming Manual and
Version IT1 Extensions. Final Report.

California Univ.,, Berkeley. Inst. of Library
Research.

Of fice of Education (DHEW),
of Research.

BR-7-1083

Sep 71

QEG-1-7-071083-5068
34pa.; (8 References)

Washington, D.C. Bureau

MF-$0.65 HC-$3.29

*Computers; *Electronic Data Processing; *Information
Processing; Manuals; *On Line Systems; *Programing
Languages

Berkeley; *University of california

INTX is an interactive programing and debugging

system operating under UCLA'S URSA interactive console system.
Although originally designed as a debugging aid for interactive
processor development, the addition of an on-line Assembler makes it
a programing system in its own right. INTX operates only on the
computer Communications 301 graphics display device making use of
automatic update and cursor positioning facilities. There are iaree
major divisicns in the system: (1) Command analysis and

initialization,

{2) Assenmbler-loader and (3) Interpreter -

disassembler. The Ccommand module displays an initial screen
describing functions available, current level of development, and
supervises the oparation of all other components of the system. The
Assembler is a subset of Basic Assembler Language with extended
branch mnemonics which accepts standard assembly language and the EQU
pseudo operation. The Interpretor module is designed to execute any
System/360 instruction except the SVC. Any instruction that could be
successfully executed by a program running in problem state is
supported. [Related documents are LI 003610, LI 003611, LI 003645, LI
003646 and LI 003648.] (Author/SJ)

ED 061977

003

647

Al.5. DEPAKTMENT OF HEALTH,
EDUCATION & WELFARE

OFFICE OF EDUCAFION FINAL REPORT
THIS DOCUMENT HAS BEEN REPRO- - :
DUCED EXACTLY AS RECEIVED FROM Project No. 7-1083
THE PERSON OR ORGANIZATION ORIG- N W 4 o e O -
INATING IT. POINTS OF VIEW OR OPIN- Grant No. OEG-1-T7-071083-5068

IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

INTX:
INTERACTIVE ASSEMBLER LANGUAGE INTERFRETER USERS' MANUAL

Preliminary Programming Manual¥
and

By

Steven 5. Silver

Institute of Library Research
University of California
Berkeley, California 9LT720

September 1971

The research reported herein was performed pursuant to a grant with
the Office of Bducation, U.S. Department of Health, Education, and
Weliare. Contractors undertaking such projects under Government
sponsorship are encouraged to express freely their professional judg-
ment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office of
Education position or policy.

U.5. DEFARTMENT OF
HEALTH, EDUCATION, AND WELFARE

Office of Education
Burean of Research

¥date internal report produced: July 9, 1969 7
¥¥date internal report produced: November 20, 1969

i !

TABLE OF CONT

_PEELIMINARY PROGRAMMING MANUAL
Introduction . . v s s 4 e s
Assembler {ASMX#l) e e e e
Interpreter (INTX#2)
Interpreter Internals.

Appendices:
I. Command Summary . .
IT. Instruction Classes
Instructions. . . .
ITTI. 8VCX Instructions .
IV. Error Messages. . .

VERSION IT EXTENSTONS

Executer

SVCX 3. . « 4 .4 .. .
svex b oo 0L 0 L.
SVCX 11 &« v v« & . . .
SVCX 35 .« + ¢ o . . .
SVEX 0. v o v v v e .

ST, 88, and SF Stops. i'.

and Micro
. L] L] - L]

IﬁstTuctiéﬂs Executed Counter . . .

Display of Symbolic Instruction

First Line for Command Entry. . . .

Megsage Handling.
Petch Protection Extension.
INX and ND.

Assembler

USING, DROP
START and ORG
DSECT and CSECT
Constants
Error Messages. « = « . =
Storage Reqrirements. . .
Data Set Checking

L) . . * .

L3 * - L
= = = - L
]] - - -
- - o . -
- - - - a
-] = - -
= = L L -
= * L] - .
- L3 L] - .
—i—

Prégrammé&r

Setting

Counter

[
=

=
o £ W

21
23
ok
25
26
26
27
27
27
28
28

28

20
30
30
30
31
31
31

FOREWORD

This report contains the results of the second phase (July,
1968 - June, 1970) of the File Organization Project, directed toward
the development of a facility in which the many issues relating to
the organization and search of bibliographic records in on-line com—
puter environments could be studied. This work was supported by =a
grant (OEG-1-T-071083-5068) from the Bureau of Research of the
Office of Education, U.S. Department of Heaith, Education, and Welfare
and alse by the University of California. The principal investigator
was M.E. Maron, Professor of Librarianship snd Associate Director,
Institute of Library Research; the project director and project manager
were, respectively, Ralph M. Shoffner and Allan J. Humphrey, Institute
of Library Research.

This report is being issued as seven separate volumes:

< Shoffner, Ralph M., Jay L. Cunningham, and Allsn J. Humphrey.
The Organization and Search of Bibliographic Records in On-liine
Computer Systems: Project Summary.

- Shoffner, Ralph M. and Jay L. Cunningham, eds. The Organization
and Bearch of Bibliographic Records: Component Studies.

- Ajyer, Arjun K. The CIMARON SYSTEM: Modular Programs for the
Organigzation and Search of Targe Files.

* Bilver, Steven 8. INTX: Interactive Agsembler Language
Interpreter Users' Manual.

« Bilver, Steven 5. FMS: Users! Guide to the Format Manlpu;atlan
SBystem for Natural Language Documentsg

* S8ilver, Steven 8. and Joseph C. Meredith. DISCUS Interactive
System Users' Manual.

* Smith, Steven F. and William Harrelszon. TMS: A Terminal Monitor
System for Information Processing.

Because of the Joint support provided by the Information Process-
ing Laboratory Project (OEG-1-7-071085-4286) for the development of
DISCUS and of TMS, the volumes concerned with these programs are in-
cluded as part of the final report for both projects. Also, the
CIMARON system (which was fully supported by the File Organization
Project) has been incorporated into the Laboratory operation and
therefore in order to provide a balanced view of the total faeility
obtained, the volume iz included as part of the Léboratcry Eroject
report. (See Maron, M.E. and Don Sherman, et al.]
Frocessing Labaratcry for Education and Resesrch in L;brarv Sclence

Phase 2. ILR 1971.)

[, T ey

INTX

Interactive Assembler Language Interpreter

Under URSA

Preliainary Programming Manual

Supparted By

The Campus Computing Network
The 0Office of Education

~ Steven S. Silver
Institute of Library Research o
University of cCaliformnia, Los Angeles, Berkeley

—iii-

INTRODUCTION

INTX 1is an interactive programming and debugging systes
operating under UCLA's URSA interactive console systea. Althouagh
originally designed as a debugging aid for interactive processor
development, the addition of an on~-line Assembler makes it a
programming system in its own right.

HARDWARE

INTX operates only on the Computer Communications 301
graphics display device making Jse of automatic update and carsor
positioning facilities.

There are three major divisions in the system:

1) Command Analysis and Initialization,
2) Assembler~Loader,
3y Interpreter—lisasseunbler.

The rest of this docuwment will describe the functions and
attributes of s2ach of these divisicns. See figure 1 for a systenm
organization chart.

COMMAND MODULE (INTX)

The Command module displays an initial screen describing
functions available and current level of developnent. The
Command module also supervises the operation of all other
conponents of the system.

Whan either the Assembler or Interpreter need control
conmmands analysed they must transfer control to the commani
module. In the case of the Assembler, control is not passed back
unless specificely reguested. The Command module will pass
control to the Interpreter after it has performed command
analysis.

; 1

FIGURE 1

SYSTEM STRUCTURE

URSA
SELECTOR
Command Module
_ N 4~ and Monitor
INTX ’

——ed TNTXHHT

CINTXHEA |je———————
*, - -
_ _ . 3
INTX# 2 : ASMXH1
S U, S L
Interpreter 1 aINTERﬁiﬁEER{ i) o
Executor . 1 STORAGE Assembler
) 1 AR.EA i !
- - - - ! P s oom e o o o e ol !
i 1
INTX#3 : ;
i
IE e e o - === R
¥, USErR ™
Debugger ! ERDG -
Entry . STORAGE
=T . AREA .
-2-

ASSEMBLER (ASMX#1)

The Assembler is a subset of Basic Assembler Language with
extended branch mnemonics. The pseudo operations currently
available are EQU, DS, and DC, The Assembler is invoked by
typing "™ASM" in the command module and it will not normally
relinquish control until it has finished assembling. The sourca
input data set must be a standard KEYPUNCH (URSA program editor)
data set (i.e. DCB=(RECFM=FB,BLKSIZE=LUOO,LRECL=80)).

ASSEMBELER EXTERNAL DESCRIPTION

e e s e e i o e S e e s i man e e S e e e T S ety e S

The assembler accepts standard assembly language and thz EQU
pseudo operation. Any legal 360 Assembler statement will be
accepted with the following restrictions:

1) No literals,
2)No implied lengths,
3) No multiplication or division in statement construction.

There is minimal error checkinq. Oonly undefined symbols
will suspend assembler processing (until interrupt is pressed).
Th= system has a maximum capacity of 100 symbols and a 2K
over—all rrogram length limitation.

- L £

A program storage area into which the program will be loadel
for execution is obtained.

The data set to be processed is identified by completing the
partial data sat name on the console screen. Pressing interrupt
will begin processing.

bpuring the first scan of the input source a symbol table is
generated and EQU statements are analysed. Register 15 is
assumed to be the base register by this version of the Assesbler.

BASS 11

The operand field of each statement is analysed and symbolic
references are resolved. Errors are ignored and a best guess 1is
assembled in lieu of correct code. As each statement is analysed
it is loaded into the program storage area.

When this pass is completed register 15 is set equal to the
start of the progranm. Control is returned to the command module
with a "start execution®” command supplied.

SVCX

The INTX instruction set makes use of the SVCX operation to

invoke certain system functions supplied by the Interpreter. Lt
is a four byte instruction having a HEX 51 operation code. The
low order bits describe the operation to be performed. The

appendix gives a detailed explaination of the function 2f each
SVCX thus far implemented.

INTERPRETER (INTX#2)

The Interpreter module is designed to execute any System/360
instruction except the SVC. Any instruction that coald be
successfully executed by a program running in problem state is
supported. If a program check occurs, a message describing the
failure appears on the screen and processing is suspended. The
program under intecrpretation does not control its own execution
for more than one instruction.

=N 8 -_¥_L]

SVC's are not supported for tha following reasons:

1y Control over a program is usually lost after an SVC is
issued,
2) Many SVC's are highly installation and operating systeam
release dependent, making implementation difficult,
3) System inteqrity can not be guaranteed during am SVC.
To provide functions usually performed by SVC's the SVCX has
bean defined. Detailed functional descriptions of this
instruction will be found in +the appendix. Since SVZX is a

built-in function of the Interpreter its functioning coda is not
a part of the users program code.

Control states within the Interpreter are usually modified
by explicit command. Commands are entered on the top line of the
screen. When interrupt is pressed the Command module will change
th2 state of the Interpreter.

FIGURE 2

INTERPRETIVE DISPLAY LAYOUT

COMMAND ENTRY LINE
FLOATING POINT
REGISTERS
GENERAL
- PURPOSE
REGISTERS
SENSE AND STATE
INFORMATION
DISASSEMBLED INSTRUCTION
INFORMATIVE MESSAGES
STORAGE DUMP DISPLAY

-6-

10

MACHLINE DISPLAY

The Interpreter will display the 16 general purpose and 4
floating point registers, the condition code byte and instruction
counter, the HEX and disassembled version of the instruction Jjust
executed, and a core dump of a s2lected area o2f storage. See
figare 2 for the screen latv.ut.

The progress of the execution of a progranm can be monitorel
during each execution cycle by entering YD (Yes Display) mode.
This mode 1is automatically assumed if a program check occurs.
High speed execution can be resumed 1f ND (No Display) is
specified.

CORE

I"‘

[SP

e

AY CONTROL

The core dump display is controlled by commands which sat
th2 Dump's starting address directly, indirectly, based on tha
conptants of a register, or based on the address of <the
instruction currently being executed. See the appendix for
information on how to use these functions. The stacrting address
of the display is alvays aligned to the next lowest full wvord
boundary.

The speed of display mode execution is controclled by the ®TH®
(Time) command. Execution is delayed a specific number of
seconds between instruction cycles. The next instruction can be
executed by pressing interrupt or waiting for the time
specification to elapse. Setting a large time estimate will
essentially allov =ingle stepping through a program. Turning off
display mode will override the time specification and speed up

execution.

33 ‘11,

The ranges of execution may be redefined but the area in
which a program may store may not. Commands are available to
modify the instruction counter and the contents of the general
purpose registers.

Programs are permitted to execute and store only within the
boundaries defined by the physical code loaded by the Assembler.
All instructions that store or fetch information from storage are
validity checked to make certain they reference core only within
the established bounds. Branch addresses are pre-calculated
calculated and checked before use.

INTX uses the pecking order established in the URSA time
sharing system in the following way; Non-systems programmers
cannot access data {fetch) or branch outside of their program
area. If systems programmers wish the fetch protection option
they may use the PSET command.

INCONSISTENCIES

The Interpreter will give faithful results in all cases
except the BAL and BALR instruction. It is possible in this case
for the 1instruction length to be 1in error since not 1all
instructions are directly executed. The condition code ani
branch address are carrect.

{3 g 12

INTERPRETER INTERNALS

A software defined instruction counter points to the
instruction to be executed. The one byte operation code is used
as an index into a table, each entry of which contains thea
character form of ¢the operation, special flags controlling
execution, and a displacement classifying each operation intd one
of ten types of instructions (in addition to error). This
information is used by the Interpreter to disassemble the
instruction.

Disassembly is based on the different formats for
representing an instruction by the Assembler (i.e. RR, SI, SS,
etz). As the instruction is being disassembled, registers are

fei into an allocation scheme which converts the reguastai
register into a real reqister reference. The resulting real
register is not within GPR*'s 10 througqh 15. These 6 are resasrvel
by the Interpreter for maintaining control over the program under
exacution.

By using an allocation technigue the user is not reguired to
use a subset of the real register set. All sixteen registers
appear to be available for use.

In most cases the result of execution will be obtained with
little actual Interpreter instruction modification. For example,
any arithmetic operation not wusing a register above 9 will
execute Mas is". :

= ;f s_,b‘
['\ " . ’ "-i-;

,!.._A

The parsed and reconstructed instruction is placed into an
instruction storage block that is termwinated by a BALR 15,10.
Register 15 will contain, after execution, the resulting
condition codes. Register 10 will be preloaded with the
addresses to which control is to return to the Interpreter. If
the instruction has not been flagged as being invalid the
Interpreter will branch to the instruction block. Control is
2ither returned to the address pointed to by register 10, passed
to a branch address within the freshly reformed instruction, or
passed to the SPIE routine after its execution caused a progran
check. Model 91 inmprecise interrupts are correctly handled.

MICRO-PROGRAMMED INSTRUCTIONS

— e = = - =4 -

If the instruction 1is one of the twelve instructions that
may either gain or seize control (BC, BXLE, etc) or which have
strange properties (STM, EX, etc) then a pseudo micro-programmed
version is executed in place of the instruction itself. The net
result will be eguivalent.

. -10-
R £

APPENDIX I COMMAND SUMMARY

IC=addreSSceacecee.==52t the 1instruction counter to the value
specified.

ICR=register.eaee...ss3et the iast:uction counter to the value
contained in the register specified.

(register)=value....5et a General Purpose Register.

T=valu€.ccecsesausssSet the speed of execution.

while interpreting.
NDecessascsassssanases=lUrn off the machine state display.
HE=addresSS.a.eceas=s-=--.5€t the high limit of execution.
LE=addresSS..assssasa5et the lovw limit of executicn.
ASM..ccessesesscasssTransfer control to the Assembler.
IXauaenuesmseasnasassesllDterpret with execution.
INXueeneaswanaseeuwnwelnterpret and scan with no execution.
PSET.evsae=sessssvss RESet fetch protect for system prcocgrammers.
Xecceosenossnssassseaosllse experimental modules {(RESTRICZTED) .
D=addresS...ssvses-.sc0re dump display at address spacified.

DI=addresSS.cessass==.cOre dump display starting at address pointed
to by full word at address specified.

\n‘

DR=regisSteree.cece-e=--Core dump display starting akt address

contained in register specified.

DEevcucccacsssasnsnesCdEe dump display starting at the address
pointed to by the instruction counter
{default mode).

s, register, and value information can be supplied by
the operators + and ~-,¥, and either decimal or

hexadecimal (base 16) data wvhere decimal information must be

followed by a period (=) « * 1is the current value of the
instruction counter when used to set a register or the
instruction counter, or the last adiress displayed by the cora
dump routine, There wmust not be any emrbedded blanks in the

command.

EXAMPLE: (1+4C-12.)=%+FFF-15. is a valid input format for
setting the value of register 1 equal to the current value of the
instruction counter + FFO.

APPENDIX IIX INSTRUCTION CLASSES AND MICRO PROGRAMMED

INSTRUCTIOMNS
CLASSES: (see IBM C28-6514=3 pl17)

RR1 0P R1,R2
RR2 OP R

RR3 op I

RX1 OP R1,D2(X2,B2)

RS1 OP R1,R3,D2(B2)

RS2 OP R1,D2(B2)

SI1 OoP D1(B1),I2

5I2 op pD1(B1)

ss1 op D1(L1,B1),D2(L2,B2)
ss2 oP D1(L,B1),D2(B2)

FER RN EE R R W AW I W NN NN NI N I I I N R

SVCX BALR BAL BCR BC BCTR BCT BXH BXLE EX LM SPM STHM

-13-

1’7

APPENDIX IIX SVCX INSTRUCTIONS

DIRECTORY:

oijQiiiiiiiii---”i.gccnsale c@lmnﬁicatiﬂﬂ-
lTesosesssssseasessasssIndirect execution of INTX commands.

giiiii-jé:igé:i‘ni-‘ﬂnaﬁéfatal tzanSfer to DEBUGGER ‘UESA SPIE
: routine).

- 18

SVCX O CONSOLE INPUT/OUTPUT

Calling Sequence:
LA 1,LIST
SVCX (0]

LIST DC F'write_addr?
pC F'write_length'
Dc F°read_addr*
DC F'read_length?
DC H*0' length of read
pC H'0' reserved

write_addrececescese.clocation of area from which data wili be
written starting at the top left-most corner
of a screen after an erase.

write_length..c.....tfue length of write to be performed. If
this is zero the write will be ignored.

read_addCessecssae=alOocation of area to which data will be
transfered. Transfer will start from the
location of the cursor as left by the
previous write.

read_lengthe..scvs=ssthe maximum number of characters ¢to be
transfered by the read. If zero nd read will
be done.

length readeeee.--=-.the nuamber of characters actually read by an
issuved read.

reservedeeccsssenses Will contain status flags relative ¢to
console I/0O operations.
NOT

Itwy

All standard INTX storage and fetch protection will be
observed in I/0 operations.

=15-

19"

SVCcx 1 PROGRAM CONTROLLED COMMAND ENTRY

Calling Sequence:

LA 1,LIST

sSvCx 1
LIST DC C'intx_commands?'
DC Xtov

intx_commandsS...s.s+.Any command sequence that could normally be
entered on the top (command) line of the INIX

interpreater.

r
j
:
|
i
:

«l6-

f 20

SYCX 2 CONTROLLED ENTRY TO DEBUGGER

Calling Seguence:
SYCX 2

INTX registers 2 through 10 are pwmoved into the reaal
registers and module iNTX#3 is entered which gets a 0C3 praogram
check. INTX#2, the Interpreter, is not affected by the DEBUG3ER
entry.

=17-

AT ' 31

W

oc1
0ocz2
0Cc3
ocu
0C5
oce
oc7
ocs
0co
oca
oCB
occ
0CD
OCE
OCF

APPENDIX IV ERROR

Operation
Priviliged-operation
Execute

Protection

Addressing
Specification

Data
Fixed—-point-overflow
Fixed-point-divide
Decimal-~overflow
Decimal-divide
Exponent-overflow
Exponent-underflow
Significance
Floating-point-di-ide
Out of execution area

MESSAGES

Software detected protectiong

SVC suppressed
Bad SVCX instruction
Object of execute

**x%%* pessage waiting. Please type end?

Software fetch violation
Protection

Addressing
Specification

Data
Fixed-point-overflow
Fixed-point-divide
Exponent—overflow
Exponent—-underflovw
Significance
Floating-point-divide

R R -V R R

Bt b b e ey

I NTX
Interactive Assembler Language Interpreter

OUnder URSA

Version II extensions

Supported By

The Campus Computing Network
The Office of Education

OEG—1-7-071083 Hayes

DISCUS Project

Steven S. Silver
Institute of Library Research
University of California, Los Angeles, Berkeley

-19-

<3

SVCX 3 CARD IMAGE DISK INPUT/OUTPUT

Calling sequence:
T.A 1, LIST
SZVCX 3

LIST DC A (address_of_80_byte_buffer)
LC F'relative_card_number?®
DC A (card_not_found_exit)

CC A(addr_of_VOL_DSN_field)

DC X%type_of_TI/0!

Ds XL3 reserved

address_of_80_byte_buffer....DS 80C an area which holds the card
being operated opon.

relative_card_number......-...an integer which indicates the card
to be operated opon (1 is the first card)

card_not_found_eXit..se-.sssssthe address specified receives
contrcl of the card segquence number specified does not
exit.

addr_of VOL_DSN_field.......-2 S0 byte field having the following
format:
DC CL&'volume_name' or XL6'(00' for cataloged.
DC CLu4u*fully _qualified_data _set_name'

type_Of 1/0uceesassnscsessas-a ONne byte field with one or more of
the following bits on:

Xx*o1 read a card
Xr02°" write a card
X*t0o4 reestablish the data set (i.e. reopen it

based on i he VOL_DSN field)

reSerVeAeeescecesessnensssass-T@served for .future expansion

21—

24

NOTE:

1)

2)
to
or

3)

L)
to

3)

6)

only one DSN-VOL field may be in effect at one time.

the first reference to a data set will be egquivelent
having X'04¢'* type specified in addition to the read
write flagq.

storage and fetch protection are observed.

major errors cause "bad svcx instruction™ messages
appear.

pre_established URSA KEYPUNCH data sets are used:
DCB= (RECFB=FB,BLKSIZE=400,LRECL=80)

blocks can not be added to the end of a data set by

this SvVCX.

SVCX 4 URSA CONSOLE SYSTEM DATA

Calling sequence:
LA 1,LIST
SVCX 4

LIST DS F address_of__your_FCA
Ds 6C your_Jjob_number
DS 3C your_initials

address_of_your_FCA...-.22.--A full word pointing to the start of
the UK block of storage reserved for the console being
used.

your_job_number...e.s=sse2==+--.The job number ‘being charged for
your console use.

your _initialS..vsscssses2222.The three byte form of the initials
used o sign on to the console systen. The last
position will be blank if two character initials were
tsed. - :

NOTE: Storage protection is observed.

5VCX 11 TIME OF Day

Calling sequence:
SVYCX 11

NOTE:
1} Equivelent to an 5 macro: TIME DEC.

2) Registers 0 and 1 are modified by this SVCX.

-2

SVCX 35 WTO

Calling sequence:
LA 1,LIST
SVCX 35

LIST DC H'length_of_ wmessaqge_+_4°"
D5 H
DC C'*message!

length_of _message_+_l.c.asas-A half word containing the length of
the complete data list.

IESSAJEC eeesnvsnseasesssssessaThe message you wish to output to
the operator coansole.

NOTE:

1) The message is typed on the operators console with the prefix
message code "“CSM300I".

2) Reserved exclusively for systems progranmers.

SYSTEM CHANGES

1) An automatic time sequencing feature has been added:
DC F'write_length!
is replaced by:
DC H'time—-out_wait"*
DC H*write_1length?

Where "time-out_time" is the time in seconds to wait until a
console interrupt is simulated. A real console interrupt
overrides this parameter. A specification of less than
three seconds is reset to 300 seconds (five minutes).

2) The full 800 character screen may now be used.

REGISTER NOTATION

The contents of the general purpose registers can be
used in the calculation of values used by the command
module. A single Hex or Decimal value surrounded by
parenthasis will be treated as the contents of the
equivelent register.

For exanmgle: IC = (14.)=(A) =3 +* means set the
instruction counter to the value contained in register 14
less the contents of register 10 less 3 plus the value of
the 1instruction counter at the start of execution of the
cogmand.

-26—

To aid in program debugging three f'stop on storage
condition" commands are available. Each wnust be set by
copmand to a particular absolute address location.

SI stops the machine when the instruction counter
exactly matches the value specified

SS stops when a store at a particular location is
completed.

SF stops when a fetch from a specified location is
completed.

Each stop may be disakled by setting it egual to zero.
The stop time is 1 minute or the last value of T, which ever
is longer, as with all severe errors.

INSTRUCTIONS EXECUTED COUNTEE

lm‘

N X holds the number of successfully executed
instructions since the last time NX was set, It can be set
to any value by command and is initially set to zero vhen
execution begins.

HIGH AND

:

VALUES

M

OF STORAGE AND EXECUTION

All storage and fetch protection checking are based on
the 1limits of storage which are now displayed. Only
execution boundaries may be changed. Storage limits may not
be changed.

DISPLAY OF SYMBOLIC INSTRUCTION COUNTER

s

If an INTX assembly was done to generate the code to be
executed the symbol table from the assembly is left in core
during the execution run. In addition to the Hex instrution
counter the closest low value of labheled statement in the
blank CSECT is also displayed with any appropriate
displacements.

1 START LA R1.B({R2)
2 B START

Statement 2 might generate thke following information
line:

BC 15, 34 (0, 14) START+4

During execution any command entered on the first 1line
of the display screen will be executed no matter what the
state of the program under execution. The cursor must be on
the first 1line of the screen for data to be treated as
command input.

MESSAGE

o

NDLI NG

When a message 1is sent to someone in INTX a
explanitory error message will appear. The user may choose
to ignore this if he wishes but it is advisable to leave
INTX to find out the contents of the message.

\m =

FETCH PRQTECTION EXTENSION

Anyone can now reference any area of low core ~-— lowver
than the address CVTNUCB in the CVT —-— without a fetch
protection exception.

INX and ND-

INX will now suppress the execution of instructions and
suppress the incrementing of the instruction counter (1IC) .
Execution may continue by issuing either an IX or ND
command.

NC now also implies the execution of IX. Execution

~28- 31

%

continues at high speed when ND is specified.

CHANGES TO THE ASSEMBLER

Usings are now reguired for all programs. Register 15
will still pc;nt to the start of the program but the user
must supply : using indicating this fact. The using may
specify up to 2 registers. Drops are limited to¢ no more than
3 registers at a time.

START AND ORG.

In this assembler ORG and START are exactly the sane.
Each modifies the instruction counter within its own csect
(or dsect). As in the 0S assembler a blank operand is
assumed to refer to the highest value in the csect or dsect.

DSECT AND CSECT

A total of up to 10 csects and dsects may be used

including the initial unspecified blank csect. Multiple
csects are 1loaded in the order in which they are first
referenced. Dsects are treated exactly like csects except

loading is suppressed.

CONSTANTS

A, V and Y constants are now operational. Multiple
constants may be specified in a single statement with the
following restrictions:

1 commas may not be used within the gquoted or
parenthasised lists of arithmetic constants.

2) constants of the form nALm(*) will use the value =*

=30-

23

calculated at the start of the expression and the same value
will be propogated for each iteration.

ERROR MESSAGES

The a=sembler now issues error messages for most nmajor
syntactical errors along with a pointer to the approximate
area of the error. Job control language in the intx program
will not cause an error to be issued or executable code to
be generated.

STOBAGF REQUIREMENTS

Programs can vary in size between 2 and 8 thousand
bytes. There is a fixed 4 thousand byte overhead for a
symbol table passed to the executer for better debugging
displays.

DATA SET CHECKING

Any data set with a second index level of CCN will be
treated as a public data set (for assembly input only). Any
user may reference a data set with this structure.

—-31-

34

