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I. CODING: ITS PLACE AND PURPOSE

Your interviewers have piled your desk with
survey questionnaires that are filled with long, complex
responses. Or you are analyzing sex and race stereotypes
and have collected samples of textbook content. Or you
possess videotape records of classroom interactions
under different conditions, and you want to compare
them.

In these cases, and in others like them, you must
flow do some coding, since coding is the research task
that intervenes between data collection and analysis.
What follows is a simple and practical guide to help you
through the decision steps that mark the coding process.

Very simply, you code by (1) dividing your
material into units, (2) designing categories oat reflect
the research questions, (3) comparing the units with the
categories and placing each unit in the appropriate
category, and (4) counting the number of units classified
under each category. Then you have a profile of your
data comprised of frequencies of classifications for each
category. The frequency profile may be sufficient as a
test of your hypothesis or as an answer to your research
question, or you may want to compare it with other
quantitative data in order to reach conclusions.

For instance, in a study of sex stereotypes in
textbooks, you might compare the proportion of women
characters employed as "professionals" with the
proportion of men characters so employed. Further, the
adjectives used to describe male and female professionals
could be coded and analyzed.

The primary criterion of success in coding is
reliability, which will be discussed in detail later. Briefly,
if the coding is reliable, you can say that the pattern or
profile that has been abstracted from the data has been
abstracted objectively. If another person coded the same
data using the same procedures, that is, he would get the
same results. If the coding is reliable, your research can
be replicated. Unreliable coding, perhaps based on
mistaken interpretation of the categories, makes it
impossible to have confidence in your findings.

Wiao Does the Coding?

Coding is an important but generally unexciting
job. If you have the money, you will probably hire
others to do the bulk of it.

Doing It Yourself If you do the coding yourself,
you should attempt to establish a common
Mterpretation of your categories with another person.

Agreement between you and the other person could be
tested on a sample of the units to be coded. Working
with another person reduces the likelihood of
idiosyncratic coding, and allows you to legitimize your
results with a reliability statistic.

Hiring Several Coders. When you have several
coders, you should establish in them a common frame of
reference with respect to your categories. The coders
should all be in a state of readiness to actually perceive
the data in terms of the categories and to ignore
extraneous cues. Coding, after all, is nothing more than
the practice of controlled and applkd perception.

In training its coders, the Survey Research Center
at the University of Michigan (SRC, 1965) first has them
discuss the categories together and reach a group
interpretation that is consistent with the project
director's interpretation. Then each coder codes a
sample of questionnaires to bring problems to light. In
further discussion, these are ironed out. Coders who
cannot adopt the common frame of reference have to be
either re-trained or dismissed.

In later stages of coding, SRC employs
"check-coding" to monitor the reliability of individual
coders, to keep coders within the frame of reference,
and to identify problems created by unclear categories.
A percentage of each coder's questionnaires are re-coded
by a check-coder (another coder, the supervisor, or a
member of the analysis staff). Differences between
coders and check-coders are recorded, and disagreements
settled in discussion. The percentage of questionnaires
check-coded is likely to be larger near the beginning of
coding and then to level out. This percentage, which
varies from 10 to 30% of the questionnaires at SRC, is
also larger if the code has been giving difficulties or if
the findings of the study are especially important.

Hiring a Computer. Sometimes it is possible to hire
a computer to do your coding. Computers are best for
large scale repetitious counting tasks and poorest when
ability to judge between difficult coding choices is
required.

II. UNITIZING THE DATA

The unit is the smallest division or segment of
content that is to receive a score. You may decide to
code only simple units such as words or symbols. For
example, in comparing textbook descriptions of male
and female professionals, you might code
physical-appearance and competency adjectives. Or you



may wish to code complex units such as the themes that
underlie the words. Like most decisions, the unitization
decision involves a trade-off between different valuzs.
How to unitize your data must be determined in the
light of your research goals and your resources.

Simple Units. Deciding to use simple units permits
a high degree of coding efficiency and reliability. The
simple unit has clear syntactic boundaries. You have
only to locate the unit in order to classify it and coding
then becomes an easy counting task.

In fact, computers can Code shuple units with
perfect reliability. A popular set of computer
procedures, the General Inquirer, can process natural
text and locate, count and tabulate text characteristics
(Stone, 1969; Goldhamer, 1969). The General Inquirer
now includes a family of dictionaries, data preparation
systems and analysis programs that are being used in all
the social sciences. Eat+ word in a General Inquirer
dictionary is characterized by denotative and
connotative tags that are relevant to the research. For
example, Holsti (1969) reports rssearch in which he
tagged words along three dimensions: positive-negative,
strong-weak and antive-passive. Words in the dictionary
also were assigned intensity ratings, from 1 to 3, along
each of the dimensions. Thus a particular word such as
accost" was tagged in the dictionary as follows:
negative (3), strong (2), active (2). Holsti's dictionary
was used in analyzing the statements of foreign policy
decision-makers.

This is how the General Inquirer works: You enter
the text to be analyzed into the computer on cards or
through typewriter terminals. The contexts of the words
can be taken into account as they are matched with their
counterparts in the dictionary. Then the words are
counted and weights are assigned to the tendencies that
interest the researchers. For example, John Foster
Dulles' beliefs about the Soviet Union were
characterized in terms of his negative affect towards that
country, and his image of its strength and activeness
(cited in Holsti, 1969).

Computer coding regt..ires special preparation of
the text. Thus the computer is economical only under
certain conditions: (a) when there is a large amount of
data including very frequent occurrence of simple units,
or (b) when the text will be re-analyzed by different
researchers, or (c) when the data will be used in
continuing studies, or (d) when the data are already
available in machine-readable form.

The Trade-Off While your choice to code simple
units permits high reliability (up to 100% if you use a

computer), you may at the same time be sacrificing
external validity. How much can word frequencies tell us
about our research questions? All social research that
bases its conclusions on frequencies of events is subject
to critical appraisal, but research relying on the coding
of simple units is especially vulnerable. For instance,
Holsti (1969) was skeptical about one researcher's
assumption that frequency of place names in a sample of
newspapers could be taken as an index of community
awar3ness.

Complex Units. Deciding to code complex units
may make your results more valid in that complex units
are probably better than simple units as operational
definitions of your concepts. For example, say you are
exploring sex stereotyping in textbooks: your results
will be closer to what you mean by "stereotyping.' if
you code themes such as "professional women are
unattractive" than if you just count the number of
unflattering adjectives that depict such women.

With complex units, the coder's task is two-fold:
be must first decide on the unit of the data to be coded,
and then hovv to classify the unit. Boundaries of
complex units are not self-evident; the coder must thus
make a series of unitization decisions. This extra labor
tends to lower intercoder agreement.

Unitizationdeciding, for example, how many
themes are in a stretch of data and where they begin or
endis a major hurdle. Studies have been reported in
which most of the errors in thematic coding were
attributable to unitization difficulties (Stempel, 1955).

Such errors can be reduced by coding only those
complex units that can be linked to observable events in
the data. Thus a complex behavioral orientation in
classroom interaction would only be coded if it included a
particular specific behavior. When coding complex units,
it is also especially important that coders understand
your explicitly stated categorization criteria and rules.

Paradoxically, you choose between simple and
complex units by balancing the values of reliability and
validity. A decision that increases reliability (a decision
to code simple units, for example) may reduce the
validity of the results, but without reliability there will
be no validity at all.

III_ CATEGORIZING THE DATA

In categorizing the data, it is essential to have a set
of categories that can produce answers to your research
questions while also being appropriate for the real data



with which you must work. The categories are the
analytical concepts. They should be abstract enough to
include all items (each item or unit being an
operationalization of the concept). The closer the
categories are to your theoretical purposes or
hypotheses, the more valid will be your results. That is,
the more likely it will be that your results explain the
world the way you say they do. On the other hand, the
rules of categorization have to be concrete enough and
close enough to your data to permit competent and
reliable coding.

Building the Category Set

Let's say you have a videotape record of a
teacher's behavior over a sample of class meetings. How
do you build a category set?

First, consider the hypotheses you are testing or
the profiles you are attempting to construct. A list of
categories should be exhaustive of these factors and
should also be exhaustive of the data. Your preliminary
list may include different teacher-asking behaviors,
teacher-supervising behaviors, teacher-assigning behaviors
and teacher-demonstrating behaviors.

Use the list to try to code a sample of the data.
Perhaps some of the categories are seldom used and,
upon reflection, don't appear to be essential. These
categories should either be subsumed within others that
are closely related, or dropped. (If such categories are
dropped, the "other" category will serve in their place.)
Similarly, when several categories seem to be measuring
the same data attributes, perhaps they should be
combined.

If many units in the data seem classifiable only
under the residual "other" category, and if some of
these hold something in common, then new categories
may have to be added.

When you have finished, you may have combined
several teacher-asking behaviors into one, you may have
added categories to the set of teacher-assigning
behaviors, and you may have eliminated several
categories of teacher-supervising behaviors. If you have
done the job well, categories within each set will be both,
mutually exclusive and exhaustive. To put this another
way, there should be a categoryand only one
categoryappropriate for each unit of data (Selltiz et aL,
1959). Your categories will now be ready for use in
coding.

Relationship of Categories Within a Set

The relationship of categories within a set helps to
determine your choice of a reliability statistic and
affects the character of your data. If categories in a set
are arranged along a continuum, they form a scalar code.
If they are not so arranged, they form a
discrete-category code.

Scalar Code. In the scalar code, categories differ
only in the degree of magnitude of the variable being
classified. For example, SRC (1965) used a 5-point code
to classify answers to this question:

"In general, are you satisfied or dissatisfied with
the way the United States has been acting towards other
countries?"

(1) very ',atisfied
(2) satisfied
(3) both pro-and-con, or neutral
(4) dissatisfied
(5) very dissatisfied
(6) don't know, not ascertained, other

Responses lying along the "satisfaction"
continuum are grouped into the appropriate segments.
The number of segments in the set depends on research
needs and the coder's ability to make fine distinctions. A
scalar code can always be collapsed into fewer points if
it becomes necessary to raise intercoder agreement.

If the intervals separating each category along the
continuum cannot be specified as being equal, then your
code has an ordinal metric. If the intervals between the
categories are equal, then your code has an interval
metric. Later, when you calculate coding reliability,
your choice of the appropriate correlational statistic will
be based on this distinction.

Discrete-Categoly Code. When categories are not
ordered along any continuum, they form a
discrete-category code. The variety of categories is
limited only by the number of questions one seeks to
answer about his data and by the constraints discovered
in the process of building the category sets. This is true
whether the data pertain to love songs, political
speeches, chfldren's books, elements of classroom
interaction or newspaper editorials. The metric of
discrete-codes is nominal; that is, the coder decides
whether a unit fits under crile category or the other. The
categories are different, but do noi he along any
continuum. This attribute of discrete codes requires the
use of agreement statistics in calculating coding



reliability, as will be discuss d later

Designing the Discrete-Category Code

How should the discrete-code be designed to be
clear to coders? Should the categories be listed in a
"menu format, forcing the coder to run his eyes down
all of the list of alternatives before making his
classification of an item? Or can they be ordered more
effectively? Schutz (1958-59) listed sortie of the
problems with the menu format:

(1) It is difficult for a coder to keep six or eight
categories in mind at once. There are too many
categories to keep in focus and as a result selection
becomes subject to whim.

(2) When coders disagree about the classification
of an item into a menu of categories, it is difficult to tell
where in the decision process the coders diverged.

(3) Sometimes the categories only appear to be
parallel when in fact one takes precedence over another
and must be considered before the other in classifying a
unit of the d2ta.

Binary Method_ Schutz (1958-59) developed the
"binary method" to enable the researcher to provide a
decision strategy for his coders. The binary method is
comprised of a series of yes-no decisions by which all
possible categories for each response are eventually
exhausted. Larger categories or more general categories
are transformed into series of smaller ones. Criteria are
specified for each yes-no choice. The most general
dichotomy is listed first, progressing down to the most
specific categorical decision.

Schutz compared coding reliabilities produced by
menu format and the binary method. He used the
following categories to classify comic strip
environments: United States, rural, historical,
interstellar, urban and foreign. Arranged into a
dichotomous series, the categories looked like this:
Decision 1 Interstellar Earth
Decision 2 Foreign 1-United States
Decision 3 Historical LConternporary
Decision 4 Rural LUrban
As you may have guessed, Schutz found that agreement
among six coders improved measurably when the binary
method was used rather than a menu format.

The psychological advantage of ordering coding
decisions in a series of yes-no choices makes this form
useful even when no case can be made that the first
decision is more general than later ones.

4

Binary Code. Funkhouser (1966) used a binary
code which resembled Schutz's in that lower order codes
were subsumable into higher order ones. Suppose you
were studying high school girls' perceptions of women in
different occupational roles. Let's say you asked girls to
describe their images of women doctors. You might use
the following short binary code to categorize the
respondents' liking of the woman doctor model:

Does respondent (R
specifically mention
liking or disliking the
model?

Does R make indirect
evaluation by mention-
ing physical or social
attributes of model (i.e.,
attractiveness, marital
status, popularity, per-

nality)?
YESI INN code 5

Do the attributes men-
tioned imply a favor-
able evaluation?

-code 3
Do the attributes men-
tioned imply an unfavor-
able evaluation?

IYESI -code 4
-code

0

YES]

Does R like
the model?

NO

YES-I-code 1

Does R dis-
like the VYESr 7.ode 2
model?

INOkode 0

(Extra decisions, and codes, could be added to
take care of neutral or "both like and dislike"
si tuations.)

Funkhouser noted that the binary code led to
improved reliability with two previously troublesome
category sets. It also led to data collapses that had not
been obvious in earlier codes. In general, recasting the
codes in binary form causes researchers to make a more
rigorous inteor..Itation of the data. They frequently
structure decision points in terms of higher order
concepts that had not been apparent in the original
codes.

IV. CALCULATING RELIABILITY

Satisfactory intercoder agreement, or reliability, is
the central ci iterion of success in coding. It
demonstrates that a coder's work is based on a shared,
rather than idiosyncratic, interpretation of the



categories. Reliability is measured by testing the
equivalence of results when different coders classify the
same data using the same set of categories.

Because reliability calculations are meant to serve
as a diagnostic for the researcher, many researchers
devise their own specific methods of computing
reliability. The researcher wants to know whether his
coders are agreeing enough (he decides how much is
enough), whether his categories are ambiguous in places,
and where. A low reliability coefficient, no matter how
it is calculated, should cause the researcher to change
either his coders or his code, whichever appears to be at
fault. Viewed in thie light, it is clear that the
"significance" of the reliability coefficient is not at
questionit matters only that reliability be high enough
for the purposes of the research. A commonly required
level of agreement is .85, but each researcher has to
decide if he needs a higher or lower figure.

What the Statistic Should bo. To be most useful, a
reliability statistic should do the following:

(1) It should take into account all the data that
are available. It should control for attributes of the data
that might affect the calculation.

(2) It should provide information about the
sources of low reliabilitywhether the problem is in the
code or in the coders.

(3) It should take into account the distribution of
classifications used by each coder. How many categories
there are and how much each is used will affect the
percentage of agreement that is expected by chance,
thus also affecting th,.: meaning of the intercoder
agreement figure that is obtained. In a category set
comprised of two categories, one would expect by chance
alone a 50% agreement between coders. If there were four
categories in the set, then 25% agreement by chance
would be expected. The higher the expected agreement
by chance, then the higher the required obtained
agreement should be.

(4) The statistic should be appropriate to the
metric of the data. Statistics meant for nominal, ordinal
or interval codes should be applied accordingly.

(5) In the case of ordinal and interval codes, the
statistic should take into account "near-misses" in
addition to simple disagreements. If one coder, on a
5-point scale, scores a statement as "5," his disagreement
with another's score of "4" is one of degree and is less
than his disagreement with another's score of "3."

Since no single reliability calculation fulfills all of
these requirements, you may wish to use more than one
statistic to assess your coding reliability.

The following section describes in greater detail
the various reliability calculations. The reader who is not
right now confronted with a need for these statistics
may wish to turn to Section V, the conclusion.

Formulas

A. Correlation
When the category set is scalar, you should employ

a correlational reliability calvelation. Correlation takes
into account degrees of disagreement, thus meeting the
"near-miss" criterion.

(A scalar code is one in which something coded 2
has more of what is being considered than does
something coded 1. To put it another way, a continuum
exists.)

When two coders have produced interval data
using a scalar code (where the intervals separating each
eategory along the continuum are equal), the best
reliability statistic is Pearson's product-moment
correlation coefficient (r). You can find the formula for
"r" in any standard statistics text. With the "r," you are
correlating the decisions of two coders across the array
of coded items. Low correlation ieetween the coders due
to differences between the scores they have given to the
same units indicates problems in the code or in the
coders.

When two coders have produced ordinal data using
a scalar code (where the intervals separating categories
along the continuum vary in size), a rank correlation
coefficient such as Spearman's rho should be used to test
reliability. The formula for "rho" can be found in
standard texts on statistics (see Siegel, 1956). This
statistic should also be used if the data produced by
interval codes are severely skewed. As with the "r," with
"rho" you are correlating the decisions of two coders
across the array of coded items.

More Than Two Coders. If there are more than t o
coders, then you should calculate reliability with a
statistic that includes the scores of all the coders. One
waY would be to average the correlations between all
possible pairs of coders. This could become tedious: for
example, 10 coders produce 45 pairs to be averaged. An
easier way would be to use an N-coder or multi-coder
correlational statistic such as the Kendall Coefficient of
Concordance W which you can find in Siegel (1956).
This coefficient computes the rarik correlation of the
codes across all pairs of coders (W is the linear function
of the average rho between au possible pairs of
rankings).



Weakness of Correlation. The weakness of
correlational reliability coefficients is that they do not
tell you whether the classifications by two or more
coders are identicalonly that they are proportional.
Thus a perfect correlation of +1.0 is possible when
coders never once agree, but where one is consistently a
notch higher or lower than the other. This is illustrated
in computing the correlation between coders 1 and 2,
where coder 1 scores each unit in the data lower than
coder 2 by a single point each time:

Items Scores
C'oder I Coder 2

Unit of data (A) 5 6
Unit of data (B) 1 2
Unit of data (C) 7 8

Unit of data (D) 3 4
Unit of data (B) 4 5

Using a standard formula to compute the correlation (r)
between the two coders, it can be shown that the
correlation equals +1.

Thus correlation, which meets the "near-miss"
criterion, can be deceptive. You still will want an
indication of actual agreement between coders.

B. Agreement Statistics
Agreement statistics will be described in the

context of nominal data produced by discrete-category
codcs. They can be used, however, with ordinal or
interval data as checks on correlational coefficients.

In general, agreement reliability coefficients
measure the proportion of actual agreements between
coders over the total possible number of agreements.
When it is computed using a cross-tabulation of coders'
classifications, the simple proportion of agreements
clearly has both face validity and diagnostic value.

Assume a pair of coders, coding 25 units into 3 (A,
B, C) categories. The cross-tabulation table of their
scores might be constructed like this:

Coder Y A 2 Agreement
11 diagonal

5 0 4
C B

Categories Coder X

Classifications in which coders agree lie on the
agreement diagonal-5 agreements in cell (C, C), 7 in Cell
(B, B), and 3 in cell (A, A). The other cells mark the

frequencies of specific disagreements. For example,
there are four units for which coder X scored an "A"
while coder Y scored a "C." The proportion of
agreement, the number of agreements (15) divided by
the number of possible agreements (25) is .60, which
may or may not be satisfactory, depending on the
researcher's goals.

The matrix has diagnostic value because the
researcher can see that category A gives more trouble
than B, or C. There are nine occasions of error involving
A, and there seems to be a particular difficulty
distinguishing between A and C. The matrix, or
cross-tabulation table, reveals any systematic
disagreement between coderswith ordinal data, for
example, it would show whether one coder was giving
consistently higher (or lower) scores than another coder.
A refinement of this kind of diagnostic is the
Random-Systematic-Error (RSE) coefficient, which will
be explained later.

While it does have face validity, the simple
proportion of agreement statistic does not take into
account the distribution of classifications in the category
set. Nor does it correct for the fact that the fewer the
categories there are in the set, the higher the chance that
agreement will occur. That is, an .85 level of agreement
will mean less when there are fewer categories in the set,
and the researcher may be falsely confident that he has
achieved satisfactory reliability.

Most Popular Agreement Statistic. Probably the
most popular agreement statistic is Scott's Pi (Scott,
1955) which Holsti (1969) recommends. It accounts
both for the number of categories and for the extent to
which each is used. The formula is:

Pi = P agreement) - Pe (expected % agree ent by chance)
1 - Pe

Pe is calculated by (a) collating the codings of both
coders on a random set of responses that both have
coded, (b) computing the proportions of scores which
are placed by both of them together in each category of
the set, (c) squaring the proPoitions, (d) and summing
them.

For example, in the cross-tabulation table shown
above, the proportions of scores in categories A, B, and
C are 30, .36 and 34. Squared and summed, Pe = 34,
which is the expected agreement if each coder had
classified the responses randomly. The obtained
proportion of agreement is .60. Then Pi, which may vary
from 0 .0 to 1 .0 regardless of the number of categories,



equals:

.60 - 34
1 - .34

Clearly, Scott's Pi is a more conservative statistic
than the simple proportion of agreement. It is closest to
the proportion of agreement when there are many
categories, each used by coders with equal frequency,
producing minimum agreement expectable by chance.
Deviation from this rectangular distribution increases Pe,
and thus reduces Pi.

Scott's Pi is particularly useful because it enables
others to assess your reliability knowing that the number
of categories and extent of their use have been taken
into account. The Pi permits researchers to compare the
coding retiabilities achieved in different studies.

Refined Diagnostic. Scott's Pi is an excellent
summary statistic but does not tell the researcher very
much about where the problems arc if the Pi is low.
Parker and Funkhouser (1968) developed the
Random-Systematic-Error (RSE) coefficient to
supplement Pi. The RSE shows whether a low reliability
coefficient (preferably Scott's Pi) is due to coder error
(lack of training, misunderstanding; frame of reference
difficulty) or to ambiguous codes. Its diagnostic power is
based on the logic that errors resulting from a defective
code tend to scatter about the range of possible
disagreements, while those errors resulting from coder
error tend to occur in systematic patterns. In brief, the
RSE tells whether and to what extent error patterns are
systematic, and thus whether the problem is with the
code or with the coders.

The following illustrative matrix might be
constructed for two coders on the same set of responses,
with 6 categories and 50 units to classify:

Categories Errors
WO

A 6 10 2 4
B 0

Coder Y C 1 1 15 4 Agreement
D 1 1 4 Diagonal
E 5 3 2
F 3 L 2

6 0 6 2 0 0 (Errors-Fx)

B C D E F (Categories

Coder X

RSE's are computed for the single cells in the matrix
that do not fall on the agreement diagonal, and for the
marginal cells labelled Fy and Fx. The single cells show
the number of times that units were classified as
belonging to one category by one coder, and belonging
to another category by the other coder. Thus the cell (A,
C), marked with an asterisk in the matrix, shows that
there were four errors in which Coder Y classified a unit
as belonging to category A, while Coder X classified it as
belonging to Category C.

The marginal cells, Fx and Fy, are the sums of the
errors added row-wise and column-wise.

Parker and Funkhouser (1968) provide the
formula to compute the RSE's for single cells and
marginal cells. It suffices to say here, to demonstrate the
logic of this diagnostic, that:

(1) if the RSE in single cells is above a certain
point determined in the computationthe demarcation
pointthen disagreements are systematically falling into
single cells, which may indicate coders' disagreement
over a particular type of response;

(2) if either marginal RSE is above the
demarcation point, then disagreements are
systematically falling into certain categories with respect
to one of the codersthis may be the result of
misinterpretation or misuse of the code;

(3) if both marginal RSE's are high, it may be the
result of both coders making systematic errors, or it may
be an artifact of high RSE's in single cells;

(4) when RSE in single cells and the two marginal
RSE's all fall below their demarcation points, then the
fault for a low reliability coefficient probably lies in
defective code .

All the agreement statistics discussed thus far are
designed for two-coder situations. If there are more than
two coders, the statistics have to be modified. One way
you could do this would be to compute the Pi for all
possible pairs of coders and then average the reliability
estimates across these pairs. However, to avoid the
tediousness of this exercise, it is better to apply N-coder
agreement statistics when there are more than two
coders.

N-Coder Agreement Statistic. Stempel (1955)
developed a calculation that indicates the degree to
which any single coder is in agreement with the
majority, and that estimates overall reliability by
averaging the coders agreement scores. Each coder's
agreement score equals the percentage of responses
where the coder agreed with the majority. Where there is



no majority on an item, then each coder is given a no
agreement" mark.

Stempel's computation has diagnostic value
because it points out the performances of individual
coders against a common criterion. It also highlights
problem categories, which can be identified in the
matrix of items by coders.

V. CONCLUSION

In this brief and simple guide to coding, you have
read about the place and purpose of coding in the
research process, about the trade-offs involved in

unitizing your data, about building and designing
category sets, and about the theory and practice of
calculating coding reliability.

Clearly, there are pitfalls and complexities, but
these should not discourage you. Rather you should
consider yourself fore-warned and thus fore-armed.

Many educational and social researchers are now
working in areas where data are extremely rich but
cannot be pre-structured for collection and analy-
sis.

Thus coding, often considered a mundane task,
becomes an essential research tool. The researcher who
chooses well at each decision-point in coding is the one
who will get the most out of his data.
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