P
o

EER

o
Ay

K

m

M)
(e

! e i
A = B | Sy Y.
"" —_— ”" = |

MICROCOPY RESOLUTION TEST

N
ml

0

|

I —
MHH >

CHART

NATIONAL BUREAU OF STANDARDS-1963-A

ED 060 920

AUTHOR
TITLE

INSTITUTION

SPONs AGENCY
EUREAU NO
PUB DATE
GRANT

NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

1968 - June 30,

DOCUMENT RESUME
52 LI 003 611

Smith, Stephen F.; Harrelson, William

TMS: A Terminal Monitor System for Information
Processing. Final Report.

california Univ., Berkeley. Inst. of Library
Research.

Of firce of Education (DHEW), Washington, D.C. Rureau
of Research.

BR=7-1085

Sep 71

OEG-1-7~071085-4286

131p.; {0 References)

MF-$0.65 HC-$6.58

*Automation; Computer Programs; Data Bases;
Electronic Data Processing; *Information Processings;
*Information Retrieval; *Library Education; *Library
Science: Manuals:; On Line Systems; Research
*University of California Berkeley

The results of the second 18 months (December 15,
1970) of effort toward developing an Information

Processing Laboratory for research and education in library science
is reported in six volumes. This volume contains two parts. Part 1
includes: a user's guide - a guide to writing programs to TMS
(Terminal Moniter System) for information processing. Part II is a
system programmer's guide to the internal structure of TMS itself.
The information presented in Part II is of critical importance to
anyone interested in expanding or modifying the existing capabilities
of TMS. (Other volumes of this report are available as LT 003607

through 003610).

{(Author/NH)

U.S. DEPARTMENT OF HEALTH, Vel
EDUCATION & WELFARE -
OFFICE OF EDUCATION

THIS DCCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OF ORGANIZATION ORIG-
INATING IT POINTS OF VIEW OR OPIN-

IONS STATED DO NOGT NECESSAAILY FINAI-J P\EFGRT’
REPRESENT OFFICIAL OFFICE OF EDU- = - = .
¥ Project Wo. T7-1085)

CATION FOSIT!C'N OR POLICY .
~ Grant No. OEG-1-7-071085-1286

ED UoUYZU

e et e

F ZpMS: A TERMINAL MONITOR SYSTEM)/
FOR INFORMATION PROCESSING ,./

By

: étephen F., Smith

;v 'Institwte of Library Research LHDgi
7 University of Califernta o WA
Berkeley, CetiformizouT20

- t‘September 1971

The research reported herein was performed pursuant to a grant

with the Office of Education, U.S. Department of Hesalth, Education,
and Welfare. Contractors undertaking such projects under Govern-
ment sponsorship are encouraged to express freely their professional
Judgment in the conduct of the project. Points of view or opinions

you{ stated do not, therefore, necessarily represent official Office

- of Education position or policy.

e

_ . U.5. DEPARTMENT OF
o (;\ 'HEALTH, EDUCATION, AND WELFARE e
= = Ny AN
P i Office of Educaticn@l?,r)éu)) \ U,,J(,A/LJ (G OCJ'—t
= . "__.-Bureau of Research

1 Clak

TABLE OF CONTENTS

PART I: A GUIDE TO WRITING PROGRAMS FOR TMS

. Page

1. INTEODUCTION. 4 =« o« & s s o o s 2 2 2 s 2 s s o s « o = i« 3
1.1 Criteria Used in DesSigl. .. erscciesssncsssasssaasscnss 3
1.2 Basic Structure of the Bystem.....c.ovicerescnsesssss D
1.3 Services Provided.....vecseetsscsssssssenasssnccasacans O

2. SYSTEM CONVENTIONS. . o « v v ¢ +« o o« o o o « « = 2 o = » » » 9

2.1 Use of Save Areas and Initial Base Registers.......... 9
2.2 Use of FB and CR.cseasvensensssnnss b esesaresracncansns 9
2.3 Obtaining and Releasing Main Stérage..iiipm...‘......, 10
2.4% Opening and Closing Data Sets. . ivereeseserascinannansas 11
2.5 Terminal I/0...ssseensssnntonssssoosssssnssnnensssansns A2
2.5.1 WRITE OperationS.....sesssssasscsscsancancnansas 12
2.5.2 READ OperationS... .ceseneccossoacarsasssnsssasas 13
"2,5.3 Additional FeatUreS....ceececcccsnorarencsaseanns 13
2.6 Non-Terminal I/0.... s ceaeescssnnes et tiaseraneaaeaen . 13
2.7 Scheduling and Event Synchron1zat1on....,,,,..,.!g!.., 1k
3. SPECIFICATIONS FOR CODING TMS MACROS. + + « + = » « . 15
3.1 TMSCLOSE~—Close a Data Bet. ... vivecreveescncsnssessanse 15
3.2 TMSCSIO--Terminal Input/Output....civeerssssecssrssneas 15
3.3 TMSDLETE=~Delete a Load Module......ivenarreceasanasas 17T
3.4 TMSESETL--End Sequential Retrieval
(QISAM Input Only)..eeeeeseasvssnesessssnsnssscnssaenas 17

TMSFREEM-~Release Mainl StOrage..cocrsessssnssessssssss 1B
TMSGET~-0btain Next Logical Record (QIsSAM Input)...i.. 18
TMSGETM--Obtain Main Storage. .. ceceetcenonsrsntasseers 19
TMSHDCPY-~Frovide Hard Copy of CRT Output............. 20
TMSLOAD--Bring & Load Module into Main Storage........ 20
TMSLOG-~Create an Entry in the System Log...ieiciea... 21
TMSOPEN--Generate Data Control Block and Open a

Data Bet.iserssssersasncassnsonsassne feeserereraessaesans 282
TMSPRINT--Put a Line to Line Printer........cccecuiae... 28
TMSRETN-~Return to Calling Progralle.c..esevececescneses 28 :
TMSSAVE--Entry from Calling Program..........see0a0s.. 28 §
TMSSETL--Set Lower Limit of Sequential Retrieval

(QISAM Input Only)...vesusocoeasacsonassosnsssssonsens 30
TMSWAIT--Wait for an Bvenb....ccieenssesnesnsessananss 31

= o

W L LW W W W
Y =3 gvn

L L L L
o
Wbt M

L
e
)8

4, THE TOP-LEVEL CONTROL LANGUAGE. &2 + &+ s+ « s = s « « =« 33
L.l LogZing Tn.eeeecieeeeessnanasoccosocronssnnoansoannnanes 33
h.2 Specifying Programs......eeveecestacnssrsecnns S 1
b3 Logging OUb....viiuiinnisreautaiananenrannessanenneass 35

TABLE OF CONTENTS (Cont.}

Page
4.4 Error Exits from User ProgramS....«cssesssncsssasssnsss 35
4.5 Special OperationS.i.eececeessoersesssvssanscsscnansas 36
APPENDICES
Page

1. LIST OF PERMISSIBLE MACRO PARAMETERS. . . + « « « » = + . . 39

2, LIST OF SYSTEM MESSAGES & « v v v 2 o « o o o o o = « =+ « 43

3. CARRIAGE CONTROL CHARACTERS (1403 Line Printer) U7

PART IT: A PROGRAM LOGIC MANUAL FOR THE TERMINAL MONITOR SYSTEM

1. DETAILED SYSTEM STRUCTURE . - . « & & & = =« 2 5 2 = =« s « » =« 91

1,0, Commpunication RegioN.-cececascesssesscsssccsasssssonsnas o1
1.2 TFunction BlocK...e.vietetacsesaratvscccssscassnssnceans OF
1.3 Wait List and Weait List Extension......cciieenveesssess 52
1.4 Teleprocessing Data Event Control BlocK.......coe0ea4. 53

2., INTERNAL SYSTEM CONVENTIONS . . + . « + « & & & « « « « » « . 55

2.0 BSAVE AreasS....:cesesnsnsccssasssssasscassssnsasssssssanss 35
2.2 CR and FB PointersS...cccscescsccssssosusocscsvsssasencs 55
2.3 Chain of Core Storage BloCKS..:ceesesessessssssesnsses 96
2.4 Chain of Data Control BloCKS:::ieessenscesnsssccsssean 96
2.5 Types of I/0 and Data Sets Supported....v.cceeseseeas. 58
2.6 Queuing and DeEQUEULINE. .« vvorvsrsnsoscsavenssesesssncessse 59

3. INTRODUCTION TO MODULE FUNCTIONS. + + « « « o « « &« « o « + o 61

3.1 System InitializZabiofie..eesseececsoncocscoscnsnnnoasses BL
3.2 Wait Handling and DequeUing...ssssosensenensssansecsens DL
3.3 Communications with Computer Operator....eceesseeeses. 62
3.4 Communications with Terminal.....cceeeisnessescrnsens. 62
3.5 Obtaining snd Releasing Prime Storage...ccsvrioscesscss H2
3.6 Locating, Opening, and Closing of Data SetS.....v.es.. 63
3.7 Loading Requested Program8...cecccescsesessscnsossaass 03
3.8 Recovery from User Program ErrorS....ssesesssssassasss OU
3.9 Top Level Control...ccesessssssascsassssecsssssssssssss O

4, DETATLED MODULE DESCRIPTIONS. . « + v « & « & « o« s o o & & » 6T

[+)8
=3

L}'il TMSBEGIN Mgaljle-g--gi!ciiiiiiiiiiiiii;!;;goeggiiiii-ni

TABLE OF CONTENTS {Cont.)

TMSGMEM MOQULE « « v v v v ve v menrnsnnoen
TMSGTSLE MoAULE . o v v v s e onssvasenns

H PR e - v W

FLWh RO

DETAILED MACRO DESCRIPTIONS.

TMSLINK MS;GI‘D;--.;;....-;;.ag...a;ge

LRV RV RV, AV RV RV EV RV
W~ v W o

APPENDICES

TMS MODULE NAMES AND ENTRY POINTS . . .
COMMUNTICATION REGION~~'CR'.

FUNCTION BLOCK~~'FB'. «

. TELEPROCESSING DATA EVENT CONTROL BLOCK

LOAD MODULE ELEMENTS.« . .

STANDARD LIST OF I/0 MODULES.

TMESBLOCK Module..:csesserseocsarsecssnsnsas
TMSCLOSE ModUle.ccsccsnsrsscnsasonansssannns C
TMSCNSL Module. v seesnesvoanersosasosssnassnasascrases 1

LRI A]

FORMEB MACYO. ss sssasssensessssssssesscssasnsansecsasss
TABLES MABCTOu s suvsssnessscnsrssnssssaarassssnssssossna
TMSCIOSE MaAcCTO. ccessercussssecsesssssssssssssssss
TMSCSTIO MACIO. vt sseerensonssrsascsssasessasssanssesssallO
TMSFREEM MBCIO. .t c s st snennessasossssssosnsassass
TMSGETM MaCrO. ssseetecnnessssacsscsasssncsncsnssans

TMSOPEN MEBCT Ot + vt e v s et s e st snnssnseonsesssssnnnnes
TMERETHN MACTO .. ostraesnsesssasssssnessncsssssnssnssasaell
210 TMSSAVE MACTO: s s asesssecssnscnsscsnssensstsnnsas

Page
veess BT
..... 68

oo 19

TMSHSKE MOQULE . s v ss tsonnenesnnsannnnnnasacsassnssansns O2
TMSOPEN ModuUle. cves sesresasvsansasnonnsnssas
TMSPJOB Module .. icwveseseesacerascsnnssenans
TMSPLOAD Module. . cvcesosssnsnovaassannanss
TMSPURGE MCCUle. . uuresceconscesasannsaness
TMSTREND MoAUle .. oeeesssesssncncansssnsnns
TMSWAIT Module. .. .cvevesesnscesasssae

tee.- 99

ve...100

«v...108
.....108

P I I A
R I §
seseslll
PR I =)

eee..11h
cee..115

A W L e B bbb A

LIST OF FIGURES

1. ©Storage Block Chaining
2. Data Control Block Chaining.

3. FRB Quening . . . « « « s 2 s & s &

4, Structure of TMSGTSLE WORKAREA (1 per QISAM DCB)

5. Translate Tables « . « « + =

bt n a Ly

FOREWORD

This report contains the results of the second 18 months (December 15,
1968 — June 30, 1970) of effort toward developing an Information Pro-
cessing Laboratory for research and education in library science. The
work was supported by a grant (OEG-1-T-071085-4286) from the Bureau of
Research of the Office of Education, U.S. Department of Health, Edu-
cation, and Welfare and .also-by-the University_ of California. The
prineipal investigator was M.E. Maron, Professor of Librarianship.

This report is being issued as six separate volumes by the Institute
of Library Research, University of California, Berkeley. They are:

* Maron, M.E. and Don Sherman, et al. An Information Processing
Laboratory for Education and Research in Library Science: Fhase 2.

Contents—~Introduetion and Overview; Problems of Library
Science; Faeility Development; Operational Experience.

Mignon, Edmond and Irene L. Travis. LABSEARCH: ILR Associative
Search System Terminal Users' Manual,

Contents—-Basic Operating Instructions; Commands; Scoring
Measures of Assoclation; Subject Authority List.

* Meredith, Joseph C. Reference Search System (REFSEARQH)Ang;sf,Manug;.

Contents~-Rationale and Description; Definitions; Index and
Coding Key; Retrieval Frocedures; Examples.

Silver, Steven 5. and Joseph C. Meredith. DISCUS Interactive
System Users' Manual.

Contents—~-~Basic On-Line Interchange; DISCUS Operations;
Programming in DISCUS; Concise DISCUS Specifications;
System Author Mode; Bxercises.

* Smith, Stephen F. and William Harrelson. TMS: A Terminal Monitor
System for Information Processing.

Contents--Part I: Users' Guide ~ A Guide to Writing Programs
for TMS
Part II: Internals Guide - A Program Logic Manusal
for the Terminal Monitor System

* Alyer, Arjun K. The CIMARON System: Modular Progrems for the é
Organization and Search of Large Files. i

Contents--Data Base Selection; Entering Search Requests; Search A
Results; Record Retrieval Controls; Data Base Generation.

Because of the joint support provided by the File Organization Project
(OEG-1-T7-0T71083~5068) for the development of DISCUS and of TMS,.the volumes
concerned with these programs are included as part of the final report for
both projects. Also, the CIMARON System, whose development was supported by
the File Organization Project, has been incorporated into the Laboratory
operation and therefore, in order to provide a balanced view of the total
facility obtained, that volume is inecluded as part of this Laboratory project
report. (See Shoffner, R.M., et al., The Organization and Search of

Rihviographic Records in On-Line Computer Systems: Project Summary.)

[ERJ!:‘) {;ve

r
Full Tt Provided by ERIC. - R X

ACKNOWLEDGMENTS

Meny people - faculty, Institute staff, and students of
the School of Librarianship - helped to create the existing
Terminal Monitor System. ZEspecially notable among the pro-
grammers who developed and tested several utility modules are
Chekravarthi Ravi, Arjun Aiyer, and Rodney Randall. These
people and cothers also were instrumentsl in pinpointing and
correcting design weaknesses. Ralph Shoffner, Allan Humphrey,
and Don Sherman were key figures in preseribing additional
facilities necessary for the system's smooth operation.

Principal acknowledgements are due to both the School of
Librarianship of the University of Californis and the Office
of Education of the Department of Health, Education, and
Welfare, for making this work possible,.

In addition, we wish to thank and to commend the wark of
the Institute personnel who prepared these pages for publication:
Ellen Drapkin, Carole Fender, Bettye Geer, Linda Herold,

Jan Kumataka, and Rhozalyn Perkins.

—vi-

E

PREFACE

The cathode ray tube terminals of the Information Frocessing
Laboratory are linked to a remote IBM 360 computer. This computer
is run under the IBM Operating System, which allows several different
users to share simultaneously the rescurces of the machine. This
sharing is accomplished by establishing independent "partitions"
of main memory and allocating one partition to each active program.
The Operating System maintains control over and provides services
to the individual computer programs residing in the various par-
titions. This iz on a one-to-one basis; i.e., the Operating System
allows but one program to be active in a given partition at any
given time.

Since this 360 is not dedicated to serving the Information
Processing Laboratory, it is necessary that the entire network of
remote terminals appear to the Operating System to be a single
program residing in one partition. However, each remote terminal
must be able to call forth and use individual programs independently
of the simultaneous activity on other terminals. Thus, to serve
the needs of the Information Processing Laboratory, there must be
a means of running several independent programs simultaneously
within a single partition that is under th& control of the Opera-
ting System.

To meet this need, the Institute of Library Research has
developed the Terminal Monitor System (TMS). This is a system
program which provides the software interface between the Operating
System and applications programs running on individual terminals.
It provides terminal programs with access to the services offered
by the Operating System, and it also serves to represent the en-
tire network as a single program to the OUperating System.

This two-part volume of the final report on the Information
Processing Laboratory project describes the Terminal Monitor
System. Part I, an application programmer's guide to TMS,
tells how to use TMS facilities to write on-line application
programs that are to be run on the Laboratory network. Part IIX
is a system programmer's guide to the internal structure of
TS itself. The information presented in Part II is of critical
importance to anyone interested in expanding or modifying the
existing capabilities of TMS.

O

RIC L =vii-

Aruitoxt provided by Eic: [

A GUIDE TO WRITING PROGRAMS
FOR TMS

1. INTRODUCTION

This manual is intended for use by programmers writing appli-
cation programs to be run under the Terminal Monitor System (TMS).
As such, it gives a brief overview of system design and details the
programming conventions to be employed when using this system, as
well as the specifications for employing the system macro in-
structions. It also describes an elementary top-level terminal
control language that allows the user at a terminal to identify
himself (i.e., "log in") to the system, specify the problem pro-
gram that he wishes to work with, and recover from program errors.
A much greater level of detail regarding system design, the actual
expansién of Sygtem macro instructions, and details on the system

TMS,Ipt%rpal§_%g;§§-

This manual assumes on the part of the problem programmer a
moderate level of proficiency in writing Assembler Language pro-
grams to operate under 0S/360. This should inelude basic Assem-—
bler Language programming and the use of the Supervisor Services
and Data Management Services macro instructions. Specifically,
this manual assumes a working‘knowledge of the contents of the
following publications:

a. System 360 Principles of Operation, Form A22-6821
b. 08/360 Concepts and Facilities, Form C28-6535

c. 08/360 Assembler Language, Form C28-651L

d. 08/360 Assembler F Programmers Guide, Form C26-3756
e. 08/360 Job Control Language, Form C28-6539

f. 08/360 Supervisor and Data Management Services,
Form C28-66L46

g. 08/360 Supervisor and Data Management Macro Instruc-—
tions, Form C28-66LT

1.1 Criteria Used in Design

Several basic criteria have governed the de gn of T™MS. Pri-
mary among these has been the need to fit the system into rather
a small amount of main storage (compared to systems with similar
capabilities). Of nearly equal importance has been the need to
maintain complete compatibility with the IBM Operating Systen
(08/360) with minimal (hopefully none) alterations to 08 code. The

system has to be able to service the seversl users on the .individual

terminals in a quasi-simultanecus manner and give these users the
options of running different application programs or sharing the
same application program with little or no consideration as to
what the other users of the system may be doing at that particular

=3=
10

time. As a corollary, the system has to remain as immune as pos-—
sible to crashes by individual application programs and maintain
service to the remaining terminals while attempting to recover

from any problems encountered. Due to the past history of ILR
equlpment acquisitions and possible changes in the future, the
system must be able to deal with different types of terminals inclu-~
ding a mixture of keyboard and cathode-ray tube (CRT) terminals.
Insofar as is possible, the potential effects on the application
programmer of having to deal with different types of terminals
should be minimized. Finally, an elementary form of top-level con-~
trol language was found necessary to perform such housekeeping func-
tions as the identification of authorized users and the loading of
programs at their request.

The above criteria, in addition to consideration of the avail-
able menpower and resources, resulted in the following primary de-
sign decisions. First, the amount of monitor code in main storage
at execution time had to be minimized; thus all setup and shutdown
functions had to be separated out from this code and assembled as
separate load modules to be in main storage only during setup and
shutdown processes. The need for 08 compatibility and maximum
reliability required a system that would gtand between the user
and 0S/360 and edit all requests by application programs to reduce
or eliminate the possibility of system crashes in trying to serve
these requests. It was decided that as much as possible of the bur-
den of checking a user's service request for validity would be placed
on the assembly phase of application program development by building
extensive checking facilities into the various TMS macros and thus
eliminating the need for execution time checking in many cases.
Finally, space and manpower requirements dictated that while the
system exhibit certain features commonly found only in so-called
time-sharing systems or in OS/MVT the system itself would not be
designed in this manner; thus, the system design achieves a level
of complexity somewhere between the dedicated application telepro-
cessing system and the full time-sharing system.

These primary design decisions led in a fairly natural manner
to certain secondary design decisions. Since on a small computer
or in & small multi—prcgramming partition the greatest problem
likely to occur is running out of space, first priority had to be
given to detecting the impending occurrences of this problem and
avoiding them. 8Since the most uncontrollable situation with respect
to core allocation generally arises with the execution of an 08 OPEN
macro instruction certain steps had to be taken to minimize the
possible adverse effect of using this macro. One of the most impor-
tant was in pre-loading all of the necessary access method subroutines
into the TMS partition prior to starting execution of TMS. To mini-
mize the amount of core used up in this manner it was decided to
use only the basic access methods and to restrict availability to
a-subset of basic access methods services which would adequately
serve the various application programmers. With the loading of
access method subroutines under control, and the possibility of

automatic buffer allocation greatly reduced by limiting ourselves
to basic access methods, most of the remaining core allocation
problems became easily predictable and could be handled by doing
conditional GETMAIN's. Further, to minimize the amount of code
necessary to set up an OPEN macro instruction, the data sets were
limited to direct access data sets already allocated and cataloged
in the system catalog. Thus data set availability could be readily
checked and most data set parameterz would be obtained from the
varicus data set control bloecks (DSCB's).

To allow TMS to deal with many different types of terminals
ir a relastively uniform manner with minimal investments in specisal
programming the Basic Teleprocessing Access Method (BTAM) was se—
lected as the interface between TMS and the various terminals.

It was realized that most TM3S functions would keep control of
the computer or at least keep control of the TM5 partition for the
only to be serizlly reuseable. For those situations wvhere conflict
would exist between two or more user programs attempting to use
the same serially reuseable resource a simple queuing scheme employ-
ing a single chain of TMS "Function Blocks" was devised. (See
page 8 for a discussion of Function Blocks [FB'=s].)

1.2 Basic Structure of the System

To the application programmer, the Terminal Monitor System (TMS)
is 1) a collection of tables or blocks linked to each other and con-
taining all information about the system; and 2) a set of processing
routines which operate on these tables and programmer-supplied pa-
rameters to perform the necessary system services. Another part
of the system is a top-level supervisor, the phantom job, which
handles certain basic console operations. The application program-
mer's only interface with the phantom job is the fact that the phan-
tom job calls the application program as a subroutine of itself.

There is a monitor routine for each of the major functions
performed by TMS, plus some routines not directly accessed by the
application program. Interface between the program and the monitor
is accomplished by the use of special TMS macro instructions.

The basic block upon which the rest of TMS depends is the
Communication Region (CR). To the application programmer, the
prime use of this block is as a vector of entry point addresses
to the monitor routines. There is only one CR for the entire system.

The basic block for each terminal is the Function Block (FB).
This block contains such things asz: an auxiliary save area for the
application program associated with the terminal; the user identi-
fication code for the user logged in at that terminal; the appli-
cation program name; the terminal number; several bytes of flags
denoting terminal type and terminal and program status; pointers

to other control blocks in TMS; terminal I/0 information and work
areas; and pointers to chains of the main storage blocks and 0S
Data Control Blocks assocciated with that particular terminal.

For each terminal attached to the computer there exists a
buffer for terminal input/output. For terminals that share the
same communications link, these buffers are chained together and
shared between those terminals. Thus it is not safe to assume that
a particular I/O buffer address will always be associated with the
application program during the period that it is in opersation.

1.3 Servieces Provided

The Terminal Monitor System provides several services to facil-
itate the writing of application programs that will operate in a
multi-programmed environment interacting with their users via re=
mote terminals connected to the computer by communications lines
and employing, if necessary, direct access data sets. These ser=
vices generally teke the form of one or more TMS macro instructions,
which set up parameters and then transfer control to a suitable
portion of the TMS monitor. The necessary tables to control the

vided. Finally TMS provides an elementary top-level terminal con-
trol language to enable the housekeeping functions of user "log in"

and specified application program loading to be performed.

There are several operations that each application program
must perform in interfacing with the TMS such as obtaining new save
areas, linking save areas, establishing base registers, and main-
taining, if desired, pointers to various system tables. The macros
provided for this purpose are TMSSAVE and TMSRETN.

Central to the operation of a multi-programming system is the
ability for an individual application program to indicate that it
no longer requires control of the computer until some asynchronous
operation is completed, such as input/output. In TMS this function
as well as the function of synchronizing program operation with
these asynchronous operations is performed by the TMSWAIT macro
instruction.

In a dynamic multi-programmed environment such as TMS, care-
ful management of the main storage of the computer is necessary.
In order to free system resources as soon as possible after it is
determined that the application program no longer needs them (espec-
ially in the case where the user has lost control of his application
program) it is also necessary to keep careful record of what areas
of main storage are allocated to which spplication program. Both
of these functions are embodied in the TMSGETM and TMSFREEM macro

respectively.

13

The Terminal Monitor System provides access to bodies of ex-
ternal data by any of the three basic access methods for data pro-
vided under 0S; Sequential, Direct, and Indexed. 1In addition,
certain functions of the Queued Indexed Sequential Access Method
are simulated by TMS via the TMSSETL, TMSGET, and TMSESETL macro
instructions.

It is desirable both to simplify the manner of obtaining
access to data sets and to avoid the kind of errors that may re-
sult in the entire monitor run being abnormally terminated. In
addition, the tables associated with data sets are often one of
the. leading obstacles to writing re-entrant programs. The TMSOPEN
maero instruction combines the function of both the 05 DCB and
OPEN macro instructions. This macro instruction actually gener-
ates a DCB in specially obtained main storage and returns the
address of the opened DCB to the user program. The corresponding
macro TMSCLOSE is responsible for closing the data sets and freeing
those areas of core cbtained for the DCB and associated buffers.

2, BSYSTEM CONVENTIONS
2.1 Use of Save Areas and Initial Base Registers

In the use of save areas and initial base registers the Term-
inal Monitor System conforms almost exactly to the standards of
0S/360. Upon entry to the application program a save area, which
is to become the top of a save area chain, is pointed to by reg-
ister 13 (R8). Subsequent save areas must be linked to this save

save area at all times. The only varilance from standard 0S prac-
tice i1s that the first word of each save area contains the address
of the associated FB. As each save area is obtained, its first
word must therefore receive the contents of the first word of

the preceding save area. Code for maintaining this convention

and the linkage between save areas is generated as part of the
expansions of the TMSSAVE and TMSRETN macro instructions. These
macro instructions also contain provisions for either providing

an in-line save area, obtaining additional core storage for a save
area, or suppressing the generation of any save area at all.

As in all 0S programs, register 15 (RC) contains the entry
point address when control is passed to the user program. The
TMSSAVE macro instruction generates code to move this address into
a permanent base register of the user's choosing. The default
base register is register 12 (RB).

When it is necessary to make maximum usage of every register
gvailable, the application programmer may wish to use register 13
as a pointer to a general work area, of which the first T2 bytes
are reserved for the save area. In this case he may specify
SA=REMOTE and employ the SAINCR operand to specify the number of
additional bytes he wishes obtained. If this increment plus the
T2-byte save area is greater than 4095 bytes, a level 4 warning
message will be issued, but the necessary code will be generated.
In this case, it is the application programmer's responsibility
to provide additional base registers as needed.

2.2 Use of FB and CR

Upon entry to en application program from the top level mon-
itor, a pointer to the program's Function Block (FB) is provided
in register 11 (R9) and a pointer to the general Communication
Region (CR) is provided in register 10 (R8). Certain TMS macro
instructions generate code to alter byte settings in the FB; the
TB may also be used to locate the CR if a pointer to the CR is not
being maintained by the user program. The CR is prinecipally used
by application programs as a vector of addresses of monitor rou-
tines.

With respect to the FB, the application programmer has the
option of stating whether the program will or will not maintain
register 11 as the FB pointer. The application programmer may
encode RFB=NONE in the TMSSAVE macro instruction to indicate
that register 11 is not guaranteed to contain a peointer to the
FB at all times. If this is not coded, register 11 must point to
the FB whenever any code generated by a TMS macro instruction is
being executed. With respect to the CR pointer, the application
programmer may specify any register (including register 10) to
be the CR pointer by using the RCR operand of the TMSSAVE macro
instruction. If this operand is omitted, it is assumed that no
CR pointer will be maintained by the program. If the spplication
programmer does specify a register as a CR pointer, he must in-
sure that 1t contains the proper address whenever code generated
by a TMS macro instruction is executed.

A set of standard register equates and symbolic definitions
for the FB and CR are maintained on ILR.MACLIB. These may be
obtained by the COPY REGS, COPY FB, and COPY CR statements, respec-
tively. The register equate, FB, and CR definitions must be pro-
vided for every program that employs any TMS macro instruction.

2.3 Obtaining and Releasing Main Storage

In order to prevent system crashes due to running out of
main storage and to properly clean up after an application pro-
gram failure, TMS must maintain control over all main storage
allocations within its partition. The macro instructions used to
obtain and release main storage are almost identiecal to the R-type
GETMATIN and FREEMAIN macro instructions in 0S.

To obtain core storage, the TMSGETM macro instruction is used.
Its only parameter is either a symbolic expression representing

the number of bytes to be obtained or the designator, in parentheses,

of a register which contains the count of bytes desired. The sym~
bolic expression form of operand may be used only to request L095
bytes or less. Upon return from TMS, register 1 (RP1l) points to
the address of the storage obtained.

The macro instruction used to release main storage, TMSFREEM,
differs from FREEMAIN, its OS5 zcounterpart, in that it requiics
only one operand; the address of the area of maln storage to be
released. This parameter is supplied as either the symbolic address
of a full word of storage containing the address of the area to
be released, or the designstor, in parentheses, of a register con-
taining the address of the aresa. to be released. The length of
that it maintains. Thls aPprcach results in the restrlction that
any area of main storage obtained by TMSGETM macro instruection
must be released by a corresponding TMSFREEM macro instruction;
i.e., no area of main storage obtained as a single unit mey be
released in segments.

—10-

-

% Vel i B

2.4 Opening and Closing Data Sets

The operations of defining, opening, and closing data sets
in TMS are considerably different than the corresponding opera-
tions in 05. TMS takes advantage of the fact that all data sets
are already defined and allocated on direct access storage de-
vices with complete information in their data set control blocks
(DSCB's). Thus TMS has no need for an analogue for the 0S DCB
macro instruction. Instead the few parameters needed to complete

the definition of a data set are supplied as additional operands
in the TMSOPEN macro instruection.

For direct access (DSORG=DA) data sets the following options
are supported: READ, WRITE, CHECK, searching by bleock identifi-
cation, and searching by key. TFor indexed sequential data sets
(DSORG=IS) the following options are supported: READ, WRITE,
UPDATE, and CHECK. The GET, SETL, and ESETL macros are simulated
by corresponding TMS macro instructions. TMS does not presently
support general access methods for update so there exist no ana-
logues for PUT or PUTX. For partitioned data sets (DSCRG=PQO) the
following options are supported: READ and WRITE (NOTE and POINT
are implied). For sequential data sets (DSORG=PS) the following
options are supported: READ, WRITE, CNTRL, and FOINT.

A data set in TMS ig both defined and opened by uge of the
TMSOPEN macro instruction. Several of the operands of this macro
instruction have the same purpose and meaning as their counter-

parts in the OS5 DCE macro instruction. These include DSORG, MACRF,

EODAD, OFTCD, SYNAD, EQEA, PCIA, SIOA, CENDA, and XENDA. Of the
foregoing only the DSORG and MACRF operands are required. Since
TMS apeaks strictly in terms of data sets, the operand DSNAME is
used in TMSOPEN instead of the operand DDNAME that is used in the
05 DCB macro instruction. This cperand, which is required, spec=
ifies the major portion of the data set name. TIts parameter con-
sists of from 1 to 8 EBCDIC characters with no embedded blanks

or periods. In searching for the data set this name will be
appended to the gualifier ILR., and may be further qualified by
user or terminal-dependent information. This additional gqualifi-
cation is controlled by the QUALIFY keyword operand; some form of
additional qualification must be supplied for any output data set.
Specifying QUALIFY=BYNAME causes a period followed by the user's
identification code to be appended to the data set name. This
should be used for data sets which must be keyed through an in-
dividual user (such as DISCUS restart files). By specifying
QUALIFY=BYFBNO the problem programmer causes the characters ".FB"
to be appended to the data set name followed by the two digit

terminal number (which is unique for every terminal in the system).

This form of qualification is most useful for datas sets which are
not to be associated with a particular user but which must be
guaranteed to be unique within the system at any given moment
(such as off-line print files).

A e o5 i

1 e e L

In addition to obtaining storage for, and creating, the user's
DCB, the system will proceed to cobtain storage for 1 buffer and
insert the proper pointers into the DCEBUFCB address pointer.
DCEBUFCB will point to a standard OS 8-byte buffer control block
followed immediastely by one buffer of the proper length as indi-
cated in the BLKSIZE information stored in the DSCB. The acquis-
ition of this buffer by TMS may be suppressed by encoding the -
operand BUFFERS=NO, in which case the program will be responsible
for supplying its own buffer area.

Certain information usually supplied as OPEN macro instruction
parameters in OS5 is supplied in TMS by use of the FOR keyword
operand. This operand indicates for what type of processing the
data set is being opened. The permissable forms of this parameter
(not all of which apply to every data set organization) are INPUT,
INOUT, OUTIN, OUTPUT, and UFDAT, Each of these parameters has the
same result as specifying the corresponding parameter in an 0S5 OPEN
macro instruction.

The problem programmer has some measure of control over the
processing of any errors that occur during the data set location
and opening process. The default option is to go to TMSFURGE to
terminate the entire program. By specifying the RETURN=YES operand,
the user programmer may receive control back from the system with
an appropriate completion code in register 15 (RC).

For all forms of data set organization, the EXCPF access method
may be specified with or without appendages.

2.5 Terminal I/O

Communications between an application program and a remote
terminal are handled by the macro TMSCSIO. This macro supports
several different methods of specifying messages for output, the
basic read and write operations to the terminal, a set of device-
dependent operations (such as screen erase or typewriter carriage
return) and the choice of an immediate or deferred wait.

2.5.1 Write Operations

The message to be written is specified as the first positional
operand in one of three ways: - 1) the message text itself may be
provided, enclosed in apostrophes; 2) s symbolic address of the
message may be provided; or 3) the designator (enclosed in paren-
theses) of a register which contains the address of a message may
be provided. The fact that this iz a write operation is specified
by encoding WRITE as the first subparameter of the OP parameter.
The second and succeeding subparameters indicate additional device
dependent operations to be performed with the write. For cathode
ray tube (CRT) devices these include EBW for erase screen before
write, and/or NL for the new line before write. For mechanical
typevwriter-type terminals RBW for carriage return before write

-] P

A8

and/or RAW for carriage return after write may be specified. De-
vice-dependent operations for both CRT's and typewriter-type torm-
inals may be specified in the same write operation; the system wilil
determine which type of terminal is being serviced and ignore any
operation specified for the other type of terminal. This feature
may be used to obtain a measure of device independence in problem
programs .

Messages toc be written may appear in one of two formats.
Format 1 consists of a half-word count of the number of characters
in text followed immediately by the text itself. Format 2 con-
sists of the text alone; a separate character count is provided
elsewhere. If the message is a Format 2 message, its length must
be provided in the LENGTH operand. The LENGTH parameter may be
either a symbolic expression whose value is the message length
(1,021 bytes or less) or a register designator (in parentheses)
of a register which contains the length count. Absence of any
LENGTH operand indicates a Format 1 message.

2.5.2 Read Operations

Read operations are specified by coding READ as the first
positional subparameter of the OFP parameter. Upon conclusion of
the input-output operation, register 1 (RP1) peints to the first
character of the text read. Register 0 (RF0) conteins a count
of the number of characters of incoming text. Thiz count in-
cludes the end of transmission (EOT) character whici. appear: as
the last non-blank character in the buffer,

2.5.3 Additional Features

The problem programmer may ow rlap console I/0 with other
operations if he desires. Use of the WAIT=DEFER operand allows
processing to continue simultaneously with console input-output.
A separate TMSWAIT macro instruction must be coded by tiwe appli-
cation programmer to wait for the completion of console /0.
Coding WAIT=IMMED causes a call to TMSWAIT to be generated imme-—
diately following the call +o the console I/0 routine: this is
also the defmult option. If it is desired that return be made to
a point other than the instruction immediately following tue
TMSCSIO macro instruction, the programmer may provide a symbolic
address by using the RET keyword operand. Transfer is then made
to this address upon return from TMS.

2.6 Non-Terminal I/0

Input/output to user's data sets is accompliihed by using the
standard OS macro instructions with the restrictisn that only those
cwied by the TMS
n access methods

system may be employed. (For a discussion of whi
are supported, see "Opening and closing date set" above.) The
only exceptions to this rule are the followliag: (1) TMSWAIT must

=13=

be used in place of any WAIT or WAITR macro instruction; (2) if an
05 CHECK macro instruection is employed the maero instruction
TMSWAIT must immediately precede it, specifying the same DECE.

2.7 8Scheduling ard Event Synchronization
The release of the partition so that other TME users may use

events is accomplished in a way completely analogous to that of
05. In order that TMS may maintain complete control of the sit-
uation and make maximum utilization of the availasble resources,
a special system macro called TMSWAIT is employed. The ECB key-
word operand provides the symbolic address of the event control
block on which the spplication program is to wait. The default
specification is FBECB, which is used for waiting on terminal
I/0 operations. An optional keyword operand RET may be used to
provide the symbelic address of the next instruction to be
executed following return from the walt. Absence of this operand
indicates that the next instruction to be executed is that imme-
digtely following the TMSWAIT macro instruction.

Certain forms of terminal I/0 require processing following
the completion of the wait for I/0 to complete. Thus, another
keyword operand, OP, is used to indicate what form of console I/0O
we are waiting on. The permissible parameters for this operand
are READ, WRITE, CLEAR, and REWRITE. Depending upon TMS require-
ments, additional code may be generated following the branch to
the wait routine.

-1ll-

20

e i e B A et i .5

3. SPECIFICATIONS FOR CODING TMS MACROS

3.1 TMSCIQOSE -- Close a Data Set

The TMSCLOSE macro instruction causes the specified data set
to be closed and the main storage for the DCB and buffers (if sup=-
plied by TMSOPEN) to he released.

o e e - (data control block register)
[symbol] TMSCLOSE DCB data control block address

Data control block register
is the symbolic or literal definition of a register which
contains the address of the data comtrol block to be closed.
If (1) or (RP1) is designated, register 1 must contain the
DCBE address prior to invoking the macro instruction.

Data control block address
is the symbolic address of a full-word which contsinsg the
address of the data control block to be closed.

3.2 TMSCSIO -- Terminal Input/Output

TMSCSIO macro instruction causes an input or output operation
to be initiated at the terminal associated with the function block
pointed to by register 11 (RFB). Depending upon the parameters
of this macro instruction, a separate TMSWAIT macro instruction
may be necessary to test for completion of the operation.

[symbol] TMSCSIO Tpescage’ READ :
(message register){, OP = (|WRITE :
message address CLEAR

REWRITE

[,option],...)
[,LENGTH= (length register
length expressionf]

= JIMMED
[,WAIT= {DEFERB]

[,RET=return address]

-15-

s
4 3a z‘j

Message

is the message to be transmitted by a WRITE operation. The
LENGTH parameter must not be coded.

Message register

is the symbolic or literal definition of & register which
contains the address of a Format 1 or Format 2 message which
is to be transmitted by a WRITE operation. If (1) is desig-
nated, register 1 must contain the address of the message.
(See section 2.5 for description message formats.)

Message address
is the symbolic address of a Format 1 or Format 2 message

which is to be transmitted by a WRITE instruction.

OP = READ - read from the terminal
WRITE - write to the terminal
CLEAR - erase screen (CRT's only)
REWRITE - no meaning at present (for planning purposes only).

Option
is one of the following:
EBW - Erase the contents of the screen before writing (CRT's).
RAW ~ Return the carriage after transmitting the message
(Typewriters).
RBW - Return the carriage before transmitting the message
(Typewriters). .
NI, - Start the message on a new line (CRT's).
Length register
is the symbolic or literal designation of a register which
contains the length of a Format 2 message. If (0) is desig-
nated, register 0 must contain the length of the message.
Length expression
is any expression suitable for use in an LA instruction which
represenits the length of a Format 2 message.
WAIT=IMMED
causes generation of a call to the wait routine as part of
the macro expansion.
WAIT=DEFER

causes no generation of & call to the walt routine. A sepa-
rate TMSWAIT macro instruction is necessary.

-16-~

Return address
is the symbolic address to which control is to be returned
after execution of the macro instruction. If omitted, con-
trol passes to the next instruction in sequence.

3.3 TMSDLETE ~- Delete a load module

The TMSDLETE macro instruction causes the responsibility
count for the load module specified to be decreased by one, and
when the responsibility count reaches zero the core occupied by
the module is released and the request block dropped from the load
list. The module must have been loaded via the TMSLOAD macro in-
struction.

The corresponding user load list is updated, and the area occu~
pied by the load list element for this module is freed.

If the request specifies a name that is not on the user load
list, the requesting program 1s purged.

The TMSDLETE macro instruction is coded as follows:

=
o
=
£
non

[symbol] TMSDLETE

entry point name |
= address

where:
‘entry point name'

is the legal entry point name as specified in the TMSLOAD
macro instruetion.

'address'

is the symbolic address (or register containing this
address) of an entry point name.

3.4 TMSESETL -- End Sequential Retrieval (QISAM input only)

The TMSESETL macro instruction ends the sequential retrieval
of data from an indexed sequential data set, and causes the buffers
associated with the specified data control block to be released.

A TMSESETL macro instruction, or an end of data set indication must
separate TMSESETL macro instructions issued for the same data con-
trol block.

The TMSESETL macro instruction is written as follows:

[symbol] TMSESETL deb address

decb address
is the address (or register specification containing this
address) of the data control block for the indexed sequential
data set being processed.

3.5 TMSFREEM -~ Release Main Storage

The TMSFREEM macro instruction causes a block of main storage
cbtained by TMSGETM to be released.

[symbol] TMSFREEM A = (storage address register).

Storage address register
is the symbolic or literal definition of a register containing
the address of the block of main storage to be released.

3,6 TMSGET —- Obtain Next Logical Record (QISAM input)

The TMSGET macro instruction causes the monitor system to re-
trieve the next record and to return the main storage address of
the record in register 1, Control is not returned to the problem

program until the operation is complete.

The TMSGET macro instruction is written as follows:

[symbol] TMSGET dch address
(address register)

deb address
is the address of the data control block for the data set
being retrieved.

(address register)

the data control block address.

-18-

3 ,24

NOTE:
When contrcl is returned to the prcbleﬁ program, register O
should be tested for a completion code as follows:

If Reg O is: Reg 1 points to:

Frof Logical Record
Frh message: ""Record with specified key does
not exist!
F'8" message: ' I/0 errors"
NOTE:

For QISAM under TMS, the TMSOPEN macro instruction must specify
BUFFERS=NO.

3.7 TMSGETM -- Obtain Main Storage

The TMSGETM macro instruction causes a variable-length block
of main storage to be allocated to this terminal. The address of
this block is returned in register 1. The programmer may specify
that control passes back to the calling program in the event of
error.

E

. A _$(1ength value register) _
[symbol] TMSGETM Ly —§;length value expression)’ RETURN=

Length value register
is the symbolic or literal definition of & register which con-
tains the size in bytes of the desired block of main storage.
Length value expression
is an expression whose value represents the size in bytes of
the desired block of storage. When specified in this manner,
the size must not be greater than 4095 bytes.
RETURN = NO
indicates that control passes to the PURGE routine of the

RETURN = YES

indicates that control returns to the calling program under

‘all circumstances.

Return Code

0
L

The return code in register 15 iz as follows:

Mesning

The main storage requested was allocated.

No main storage was allocated.

bR i

3.8 TMSHDCPY -- Provide Hard Copy of CRT Output

The TMSHDCPY macro instruction provides the facility to ob-
tain a permanent copy of conscle I/0 operstions via the use of
the 1Lk03 1line printer.

The output to the printer recognizes all carriage control
characters inherent in the data and as many of the format charac-=
ters as feasible.)

The TMSHDCPY macro instruction is coded as follows:

o o _ . 777; _Mregister)
[symbel] TMSHDCPY MES = address, LENGTH —{ address

where:
MES = address
'address' is the symbolic specification of the address
(or register containing this address) of the start of
the text to be output. If this operand is omitted, the
text on the entire screen will be read and copied.

LENGTH = address
'gddress' is the symbolic or absolute specification of
the length of the text to be output. '(address register)'’
is the specification, in parentheses, of a register con-
taining this length. If MES is not coded, this operand
need not be.

The TMSHDCPY routines will return a return code in register 15

0 - processing completed normally

08 - processing partially completed, not enough core
12 = no processing done, not enough core
3.9 TMSLOAD —- Bring a Load Module into Main Storage

The TMSLOAD macro instruction causes the monitor system to
bring the load module containing the specified entry point into
main storage if a usable copy is not available. The responsibility
count for the load module is increased by one. Control is not
passed to the load module; instead, the main storage address of
the designated entry point is returned in register 0. The load
module remains in main storage until the responsibility count is
reduced to zero through the use of the TMSDLETE macro instruction.

—20—

26

'Y

The TMSLOAD macro instruction is written as follows:

[symbol] - TMSLOAD

EPNAME = gymbol
EPLOC = address of name

EFNAME =

is the entry point name in the load module to be brought into

main storage.

EPLOC =

is the main storage address of the entry point name desecribed
above, The name will be padded with blanks to eight bytes

if necessary.

When control is returned from the TMSLOAD macro instruction,
register 15 contains a return code as follows:

0 - sucrcegsful load

L - not enough core teo load program

8 - module missing from library

12 - module non-reentrant and already loaded

16 - I/0 error reading module directory

3.10 TMSLOG -- Create an Entry in the

The TMSLOG macro instruction will
log for the requesting program. It is
will want to create information of its
therefore, provision is made for up to
tion to be written.

System Log

ereate an entry in the system
expected that the program

own within this entry;

2024 bytes of user informa-

Each entry into the log is prefaced by a 16 byte leader as

follows:

Bytes: 2 2 4 8
Field: LEN FBNO. FENAME FEPNAME
where:

LEN is the total length of the entry including header

"FBNO. is the number of the terminal which had control when

the requsst was issued

FENAME is the name of the user logged in on that terminal

ERIC i

FBPNAME is the name of the program that was requested by the
terminal user (not necessarily the name of the pro-
gram issuing the macro)
Records are written RECFM=V and the BDW and RDW created by the system.

The TMSLOG macro instruetion is coded as follows:

7 . , . 'message'
[symbol] LoG { message addreséi LEN = number

where:
"message'
is a literal string of the actual entry to be created

message address
is the address (or the specification in parentheses of
a register containing the address) of the log entry to
be created.

number

is the asbsolute or symbolic designation of the length
(or the specification in parentheses of a register con-
taining this length) of the entry to be created. Do not
inelude length of leader. If this operand is omitted,
or set to zero, only the 16 byte leader is written.

Only the combinations listed above are valid for the TMSILOG macro

instruction.

Upon return, register 15 (RC) contains a return code as follows:

0 - normal completion.

08 - DCB has not been opened (report to TMS system con-
sultant).

length supplied by processing program was invalid.

iz

16 - not enough core was available for creation of the
entry.

3.11 TMSOPEN == Generate Data Control Block and Open a Data Set

The TMSOPEN macro instruction causes the system to obtain core
for and generate a data control block for the data set named. Un-
less suppressed, one huffer is also provided preceded by a standard
buffer control bleck pointed to he DCBBUFCB. The program mey spec-—
ify that it is to receive control with a completion code in regis-
ter 15 (RC) in the event of an error. Upon normal completion, the

b

newly-generated DCB is pointed to by register 1 (RP1). If
BUFFERS=YES was specified, register 0 (RPO) points to the buffer

provided.
[symbol] TMSOPEN DSNAME = data set name, DSORG = data set f
organization code, 5
MACRF = (macro reference code [,...]) B
[,0PTCD = (option code)] é
[,5YNAD = synchronous error address] k.
[,EODAD = end-of-data address]
[INPUT
QUTPUT —~ s i
,FOR = INOUT ,BUFFERS = {YES
OUTIN NO %
UPDAT - i
i e o (BYNAME _(YEs
sQUALTFY E{?YFBNQ] s RETURN —{NO.} %

Data set name

is a one- to eight- character name that will become part of
the data set name used to search the system catalog and disk
volume tables of contents for a corresponding pre-allocated
data set. The basic set name generated will be of the form:

ILR. nnnnnnnn
where nnnnnnnn represents the name supplied as this parameter.

Data set organization code
is & two-or-three-character code representing the §;gania
zatlon of the data set. The permissable codes in TMS are:
DA,DAU - Direct access
IS - Indexed sequential
PO,POU
P5,PSU - Sequential

Partitioned

Macro reference code
is one of the combinations below, depending on data set organ-
ization and asccess method:

BSAM
c
(R l:,)
C
(w P)
(R [c],wWic])
(r [P].W[P])
BDAM
K
(R T [c])
KT
K
(w T [c])
KI K
K T
(R T [cC] W ich
KT
KT
BISAM
(r [c])W
(w [u]l I[c])
(R [ul [cl,w [u] [c])
QISAM
{(cLl,slxl1])}

Character Definition

c CNTRL

P POINT (implies NOTE)

R READ

W WRITE

Character Definition

c CHECK (abszence de-

notes WAIT)

I Search to be made by
bloek identification

K Search to be made
by key

R READ

W WRITE

Character Definition

C CHECK

R READ (implies
FREEDBUF)

U Records are to be
updated. If U is
coded with R, U must
be coded with W.

Charscter Definition
GL GET (Address of buffer
to be provided by the
control program

K Search to be made
by record or
generic key

] SETL

(NOTE: For QISAM, TMSOPEN must

specify BUFFERS = NO)

T] indicates optional character; select one from vertical stack
within { }; select one or none from vertical stack within [].

ERIC

IToxt Provided by ERI

=24

30

R

e 2

et At -

BPAM Character Definition

(R) R READ (implies NOTE
(w) and POINT)
(R,W) W WRITE (implies NOTE)

Option code
specifies optional services to be performed. These are o sub—
set of the services available under 0S. The permissable
combinations in TMS are: g

BDAM _ _ Charactexr Defini;ion
(W] [E] [F][i] A Specifies that actual deviece
] addresses are to be presented

("block address" operand) in
READ and WRITE macro instructions.

E Requests an extended search (more
than one track) for block or
available space. Ignored if A
is also coded. Refer to IBM
manual "Supervisor and D.M. Macro
Inst." for the discussion of
the LIMCT operand for a descrip-
tion of extended search.

Specifies that when feedback is
requested in a READ or WRITE
macro instruction, the device
address returned is to be of the
form presented to the control
program. If F is omitted, feed-
back is in the form of the actual
device address of the block.

=

R Specifies that relative block
addresses are to be presented
("block address" operand) in
READ and WRITE macro instructions.

W Requests a validity check for
write operations. If the device
is & 2321 data cell, validity
checking is always performed,
whether reguested or not.

[] indicates optional character; select one or more from vertical
stack within [].

-25-

a3l

B N S RO

If neither R nor A is coded, relative track addresses are assumed.

Definition
Requests a validity check for
write operations. If the de-

vice is a 2321 data cell,
lidity checking is always
formed, whether requested
not.

va-
per—
or

Definition

BPAM Charscter
W W
BSAM Character
U
u
W
wC
w

Synchronous error address

has the gsame function as in the 0S DCB.

End-of-data address

Printer with Universal Char-
acter Set fesature only -- un-
blocks data checks and allows
analysis by an appropriate
error analysis (SYNAD) routine.
If U is omitted, data checks
are blocked (not recognized
as errors).

Direct access device only

~- requests a validity check
for write operations. If the
device is a8 2321 data cell,
validity checking is always
performed, whether requested
or not.

has the same function as in the 0S DCB,

FOR = INPUT

indicates an input data set.

FOR = OUTPUT

indicates an output data set.

= INOUT

5

FO!
indicates

en output dats set.

FOR = QUTIN

indicates an output data set initially and, without reopening,

an input dats set.

-26-

a2

an input data/set initially and, without reopening,

FOR = UPDAT
indicates a data set to be updated in place.

BUFFER = YES
indicates that TMS is to provide a single buffer of the nec-
essary length.

BUFFERS = NO
indicates that the application program will provide its own
buffers.
QUALIFY = BYNAME
indicates that the final data set name generated will be:
ILR.nnnnnnnn . XxXxx
where nnnnnnnn is the name specified by the DSNAME operand
and xxxx is the user identification code for the current
user of the program.
QUALIFY = BYFBENO
indicates that the final data set name generated will be:
ILR .nnnnnnnn. FBxx

where nnnnnnnn is the name specified by the DSNAME operand
and xx is the terminal number for the current user of the

program.

RETURN = YES

indicates that in cas# of an error during TMSOPEN processing,
control is to be returned to the calling program. The contents
of register 15 (RC) indivate results of the OPEN as follows:

Return code M-zning
0 fuccessfully located and opened.
Y : Unable to locate the data set in the

system catalog or in the volume table
of contents of all DASD's on which
it resides.

8 Insufficient core remains to complete
open processing. :

iz Disastrous error during open processing.

RETURN = NO

indicates that in case of an error, control is to be returned
to the monitor.

3.12 TMSPRINT -~ Put & line to line printer
The TMSPRINT macro instruction causes a line to be printed on

the off-line printer. AlL output using this macro instruction is
clearly identified by a header preceding it.

[symbol] TMSPRINT area address
(address register)

where:
area address
is the address of a 133 byte line to be printed, whose
first character is the ASA printer control character.
(see Appendix 3);

(address register)

is the specification of a register which contains the
address of the line to be printed.

3.13 TMSRETN -~ Return to calling program

The TMSRETN macro instruction causes the restoring of the
registers which were saved by TMSSAVE when the program was entered.
Control is then returned to the celling program, (i.e., the moni-
tor). If TMSSAVE obtained main storage for a new save area, then
TMSRETN will release this storage.

[symbol] TMSRETN

3.1k TMSSAVE -- Entry from calling program

The TMSSAVE macro instruction causes the establishment of a
control section with the symbel in the name field being used as
the control section name. It generates code to save all regis-
ters in a standard save area, establish a new save area if de=
sired, and establish a base register. If a register is designa-
ted as a communication region pointer, code is generated to leoad
that register. If a remote new save area is called for, code is
generated to obtain core storage for that save area; otherwise,
the new save area is generated in-line.

-28.

34

[symbol] TMSSAVE [RBASE= base register]

[,RFB=NONE]

[.RCR=CR pointer register]
[,RWORK= work register]

LOCAL
,SA= 7(NONE
(REMOTE ,
L,SAINCR= length increment]

Symbol

is the name of the control section and entry point of the user
program.

Base register
is the symbolic or literal designation of a register to be 7
used as the first base register. If omitted, register 12 (RB)
is assumed.

RFB = NONE

indicates that the program will not maintain register 11 (R9)
as the pointer to the associated FB.

CR Pointer register

is the symbolic or literal designation of a register that
will contain the asddress of the communication region when-
ever a TMS macro instruction is invoked. If omitted, no
such register is estgblished and all TMS macro instructions
generate slightly slower code. Upon entry to the user pro-
gram, register 10 (R8) contains the communication region
pointe#.

Work register
is the symbolic or literal designation of a register that
will be used as a work register for establishing save aresa
linkage. If omitted, register 2 (RO) will be used.

SA=T.0CAT
indicates that the new save area is to be generated in-line
in the expansion of TMSSAVE. This makes the user program
non-reentrant.

SA=NONE

indicates no save area provided. Programmer must provide his
own.

-29-

3.15 TMSSETL -- Set Lower Limit of Sequential Retrieval (QISAM
input only)

The TMSSETL macro instruction causes the monitor system to
start processing the input request at the specified record. BSe-
gquential retrieval of records using the TMSGET macro instruction
continues from that peint until the end of the data set is encoun-
tered or a TMSCLOSE or TMSESETL macro instruction is issued. A
TMSESETL macro instructicn must be issued between TMSSETL in-
structions that specify the same data set.

The TMSSETL macro instruction can specify that retrieval is
to start at the beginning of the data set, at a specific record,
or at the first record of a specific class of records.

The TMSSETL meacro instruction is written as follows:

[symbol] TMSSETL {?cb address ;?
)

K, key address
KC, key address,
length

(address register

dcb address
is the address of the data control block for the data set

being retrieved

(address register)
is the specification in parentheses of a register containing
the data control block =address

B specifies to start at the beginning of the data set
K specifies starting at the record with the specified key
KC retrieve the first record of a specified key class

key address

is the symbolic name of & main storage location (or a regis-
ter containing this address) of the key of the record wished.
In the case of type KC, this is the address of the partial

key specifying the key class
length
is the length of the partial key given for the key class.

This may be an ebsolute decimal number, or the specification
of a register containing the value right adjusted in binary.

Q -30-.

36

3.16 TMSWAIT -- Wait for an event

The TMSWAIT macro instruetion causes the user program to be
dismissed until completion of the event associated with the desig-
nated event control bloeck. Only one event control can be walted
on at a time by any user program.

[ECB = event control block]
[,op operation code]
[,RET = return address]

[symbol] TMSWAIT

Event control block
iz the symbolic address of an event control block which con-
forms to all the rules of a standard 0S5 event control block.
If omitted, FBECB (the terminal input/output event control
block) is assumed.

Operation code
is one of the following:

READ - Upon completion of the wait, the terminal text length
(including EOT character) is in register 0 (RPO) and
the text address is in register 1 (RP1).

WRITE - No effect.
CLEAR - No effect.
REWRITE - No effect.

Return address

is the symbolic address to which control is to be returned
after éxécut;on of the macro instruction. If omitted, con-
trol passés to the next instruction in sequence.

4., THE TOP-LEVEL CONTROL LANGUAGE

In order that TMS may deal with a great many users and offer
each user the choice of which of many user programs he wishes to
operate under, a minimum form of executive program is necessary.
This program exercises complete control over the operation of the
system and interfaces with the terminal user via the top-level con-
trol language. Among the services provided by this top level
supervisor are: the 1dentification of a terminal user via the
process of "logging in"; the acceptance of a user program name,
and the loading of the assoc;ated user program; the notification
of the user when certain errors have occurred; and the gbility to
logically disconnect the individual terminal from the computer
when necessary.

4,1 Logging In

When TMS first begins operation the following message is

directed to each terminal:

TMS100I TMS IN OPERATION
followed immediately by the message: i
TMS101A WAITING FOR LOGIN

This latter message indicates that the supervisor is weaiting
for the user to identify himself at the terminal by typing in a
user identification code of up to four characters (this code will
have been assigned to each user by laboratory supervisory personnel)
The proper response to any reguest for input from the top level :
supervisor varies with the various types of terminals. For the :
Sanders Associate CRT displays the following seguence must be
followed: push the CLEAR button followed by the FORMAT TYPE button
then type in the desired response (in this case the user login ;
code) and depress the SEND BLOCK button. There are several re- ;
gponses to an attempt to login. The message:

TMS102I NOT ACCEPTED

indicates that the user identification code provided is not accepted
as valid. The message: ;

TMS103I NOT ACCEPTED., NAME ALREADY IN USE

indicates that while the user identification code supplied is valid,
a user at another terminal is already "logged in" under this code.
After either of the sbove two messages the message:

TMS101A WAITING FOR LOGIN

is reissued inviting asnother attempt to "log in". If the user

identification code has been accepted as valid the message:
TMS102I NAME LOGGED IN

is returned where name is the user identification code as recog-
nized.

L.2 B8pecifying Programs
Immediately after the message accepting the login the message:
TMS10LA SPECIFY PROGRAM

will appear. This indicates that the user is to respond with the
name of the user program that he wishes to have loaded and essigned
£o his terminal. The names and purposes of the individual user
programs are specified in a separate publication; each name will
be at least 1 but no more than 8 charscters in length. There are
several messages that may indicate difficulty in loading the re-
quested program. The message:

T™S107I PROGRAM NOT FOUND

indicates that the name supplied is not the name of a program
currently in the TMS library. The messeage:)

TMS108I FROGRAM NON-REENTRANT AND ALREADY IN USE. WAIT OR TRY ANOTHER

has & more complex meaning. This message indicates that the pro-
gram does exist but that it may only be used by one terminal at

a time and is already being used at another terminal. The user
should wait until the other user has exited the program and repeat
his request for the program or he should request another program
that he can use in the interim. The final error message that may
appear is:

TMS109I NOT ENOUGH CORE TO LOAD PROGRAM

This indiecates that insufficient maein storage remsins in the com-
puter to load the executable code of the program requested. Each
of the ghove three messages is immediately followed by the mes-
sage:!

TMS104A SPECIFY PROGRAM

which invites the user to try again. In the event that the pro-
gram is successfully loaded the next message will be generated
by the user program itself. To understand the purpose of such
messages users should consult the documentastion of the individual :
user programs. Depending upon the individual user program and ;
assuming that no errors have occurred in the operation of the user i
program in the interim the user will specify in some manner that i

b BTt B K

-39

he wishes to exit from that user program and return to the top
level supervisor, If this is done properly the message:

TMS106I NORMAL EXIT FROM USER PROGRAM
will appear followed by a report of the message:
TMS104A SPECIFY PROGRAM

this allows the user to specify a new program for execution or
to leave the system.

L.3 Logging Out

The processing of indicating to TMS the user has finished
at this particular time and wishes to leave the system is called
"logging out". The user is able to log out at any time when the
last message appearing at the terminal is:

TMS10LA SPECIFY PROGRAM

Instead of specifying a program the user responds with the word
LOGOUT. If this is correctly done the system will respond with
the message:

TMS105I NAME LOGGED OUT
followed by the message:
TMS101A WAITING FOR LOGIN

which indicates that a new user may now sit down at the terminal
and identify himself to the systen.

4.4 Error Exits from User Programs

If TMS detects some form of error in the user program that
threatens the integrity of the system it will force that user
program to cease execution and return control to the supervisor.
A series of messages will be returned to the terminal. The first
one or two messages will generally be preceded by a TMS message
identifier with a number in the range 150-199. These indicate
the particular form of error encountered and are summarized in

Appendix 2. These specific messages are then followed by the more

general message:
TM3110I ABNORMAL RETURN FROM USER PROGRAM VIA PURGE ROUTINE

Receipt of this message verifies that an error has occurred and
that the program has been terminated, all mein storege obtained
by the program has been released, and all data sets opened by
the program have been closed. This message is Tollowed by the

i

U R e e b T

mesgagé:
TMS10LA SPECIFY PROGRAM

which invites the user to restart the same program, start a new
program, or "log out" from the system.

4.5 Special Operations

Under certain circumstances it becomes necessary to logically
disconnect an individual terminal from the computer. This is best
done only by persons with a thorough working knowledge of the sys-
tem since at the current time this disconnection is irreversible.
This operation may be performed only when the last message received

from TMS is:
TMS101A WAITING FOR LOGIN

instead of responding with a user identification code the user
responds with the word DISCONNECT. The terminal ceases operation
at this point and no further message is received from the system.
A confirmation is typed out at the computer; if there is any
question about the success of the disconnect procedure the com-
puter center operator may be contacted and requested to examine
his console printout. When all terminals have been DISCONNECTed,

-36-

B §

St e itk

e b 5 S et i b

APPENDICES %

-37-
e ¥or

L P

X X X =¥ WETLSIL
| |
X X X SS3IpPPE qop TLASTIAT,
X X X | = 0014
X | | = SHYNAE ATTTASHT
7 [
uoT3dTIVSIP OJDBM O JIFad | = JdH
uotqdrIossp OJOBU D} ISJOI = IHd
ﬁ
. |
uoTydraosep cacem 09 JaJod = LIYM
X 7 ¥ X1 X = HISNAT |
| ” ”,
UWoTPITIOSSP OI0BW O3 J9Jod = do |
saydoaysode uTylTM s8essawm fuw sdessow ”W 0TI SOSHL
|
| X | X = 900 | ASOTOSHI
aan | wa | (9) | (0 |) 2w | _
NOO@y X4 , - , S@IVIII0 | HOILONILSNI
ARL-Y , , OVH
HALSTOm ogovH
SY NALITHM

SI}eWeIRJ OJORJ STQISSTUISJ JO 4STT

:T ¥ipuaddy

O

Aruitoxt provided by Eic:

E

NS

X X X ,, SSSJdppE SUTT LHTHISHL
uoT3dII08sp 0I0%W 09 J8Jad NHJOSHL
| 7
X | X X X = NAT
,7 : ,
I x| ¥ X SSaJppe oF8ssom |
seydoaysods utylTH a¥BSsam Lus s@Bssal DOISHEL
X X X = J01dd
X = ENVNdE | aQVOTISHL |
|
W
¥ X | X X = HIDHAT
X X X W = SHW | AIDTHSHL
uoT3dTa0S9p OJ0WW 0 I8 = NIy
X Xy X | x| = AT WLADEHT,
} , ” , N ”
ﬁ f ﬁ
X | X | X SS2IPPE QOp LEOSH, |
i | |
914} |
L | HdiL , cT |
ol Rl NUO T RGO T I I el
Hoo@y | XY | c)| oEq | NOTIONILSNT
HIRL-Y | UTLSToT ! SANTHHIO OOYH °
SV NALLIUM

Aruitoxt provided by Eic:

E

b0

X | = IZg
W ”
UOTIONIGSUT-0JIOBW 07 JIaIal = d0
X X X = €00 LIVASHT
X | X X yjBusT foy
X X 7 X SSSIppPB A9y
uo13dTJ0S9p OJOBW 0F J9JaJ1 adfq
X X X SS3JppPR Q0P TIESSHEL
X | X = YONIVS
uoT3dTI0SSp OJOBE 09 JI9J3d = qIy
uoT3dTIOSSP CIDBW 0] JaJad = ¥g
f |
I X = YoM
| ,
| | x X = 40¥
, X X = ESYTY TAVSSHT,
UMOYS SB UIFLTIM HLAHSHT
, P
TdAL | AL (21| »n1a
| |_... 1 . | T 3
NOoOQy | ¥H (#) , (0 -2} | oda WES
NIRL~Y 1 | SATEId0 ROTEONHISHT
HALSTO® | OHOVH o
SY NAIILIIM w

a5

Sy

Aruitoxt provided by Eic:

E

APPENDIX 2
Iist of Bystem Messages

TMS 150 I - PROGRAM ENDED WITH STORAGE OR DATA SET STILL ATTACHED

System action: Close all DCB's left and free all storage.

Programmer response: Make sure that an exit from the program
is not forced which leaves DCB's open or
storage still attached.

TS 151 I - INSUFFICIENT MAIN STORAGE LEFT TO SATISFY TMSGETM REQUEST

System action: User purged.

Programmer response: Wait until storage is freed by sanother
program and try again, or reduce the asmount
of storage requested.

™S 152 I - TMSFREEM REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS

System action: User purged.

Programmer response: Make sure the program has not incorrectly
modified its storage pointers. If this
happens consistently, the program is prob-
ably at fault; if erratically, report to
system consultant.

TMS 153 I - ATTEMPT TO OFEN AN UNAVAILABLE/UNCATALOGUED DATA SET

The system has detected that the data set name specified in a
TMSOPEN request is not catalogued or, if catalogued, is unavailsble
to the user because:

1. The data set is qualified;

2. The data set cannot be shared; or

3. The data set does not exist

4, An I/O error was discovered reading the catalogue or DSCB

System action: User purged.

Programmer Response: In case (1), catalogue the data set; in
case (2) or (3), create or change the
attributes of the data set. In case (L),
report to the system consultant.

TMS 154 I - INSUFFICIENT MAIN STORAGE LEFT TO COMPLETE OPEN OF A DATA SET

System action: User purged

Programmer response: Wait until rain storage is freed by another
. program and try again.

18

TMS 155 I - DISASTROUS ERROR IN TMS OPEN

The system has detected an unrecoverable error in the TMSOFPEN
processing.

System action: User purged.

Programmer response: Make sure that the parasmeters supplied
in the TMBOPEN macro instruction are
consistent with the attributes of the
data set.

TMS 156 I - TMSCLOSE REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS

The system has detected that the address supplied in a TMSCLOSE
request is not the address of a DCB which was obtained via a TMSOPEN
macro instruction.

System action: User purged.

Programmer response: Make sure the program has not incorrectly
modified the register or area containing
the address of the data control block.

TMS 157 I - END OF DATA DETECTED WITH NO EODAD SPECIFIED

An end of data condition has been detected with no end of data
address specified in the data control block.

System action: User purged.

Programmer response: Modify the TMSOPEN request to include the
EODAD parameter.

TMS 158 I - SYNCHRONOUS ERROR DETECTED WITH NO SYNAD SPECIFIED

exit spec1f1ed in the data contrcl block.

System action: User purged.

Programmer response: Modify the TMSOPEN request to inelude
the SYNAD parameter.

TMS 159 I - INSUFFICIENT CORE LEFT FOR DEBUGGING

The user specified that he wanted to use the debugging faéility,
but not enough core was availeble for this.facility to be used.

System action: User purged.

Programmer response: Wait until main storage is freed by another
user and try again.

=L
a7

TMS 160 I - ERROR DETECTED IN TMS. USER PURGED WITH SNAP

The system has detected a program error within itself.

System action: User is purged with a snap dump.

Programmer response: none

TMS 161 I - ERROR DETECTED IN TMS. USER PURGED, SNAP UNSUCCESSFUL

The system has detected a program error in itself.

System action: User purged, snap dump was unsuccessful.

Programmer regsponge: .mone.

TMS 162 I - ERROR DETECTED IN PROGRAM, USER FURGED

The system has detected a program error in the user program,
but a debugeging reguest was not specified.

System action: User purged.

Programmer response: modify program if error 1s known, or
request debugging facility and try again.

TMS 200 I - ERROR OCCURRED AT RELATIVE LOCATION XXXXXXX

This message occurs in conjunction with one of the above as
information for the programmer only in deciding where in the pro-
gram the error occurred.

APPENDIX 3
Carriage Control Characters
(1403 line printer)

b - Single space before printing

+ ~ No space before printing

0 - Double space before printing

- — Triple space before printing

1 - Eject to line 6 before printing

2 - Skip to next 1/2 page (1ine #9 or #36)

Skip to next 1/3 page (line #8, #26, or #LL)

Lo
|

to next 1/4 page (line #7, #21, #35, or #49)

=
I
(4]
B
[N
d

to line 66 before concave paper fold

o))
!
[0
~
[

g

7 - Skip to line 66 before convex paper fold
8 - Skip to line 1

9 - Skip to line 61

All other characters are interpreted as blank.

.48 M-

T

PART IT

A PROGRAM LOGIC MANUAL FOR THE
TERMINAL MONITOR SYSTEM

O

ERIC

Aruitoxt provided by Eic:

l. DETAITED SYSTEM STRUCTURE

The structure of TMS closely parallels the structure of 0S/360
and other complex operating systems implemented on 360-type machines.

The system consists of a set of tables and a set of processing modules

(or sub-programs). There are several types of tables, each con-
taining information on the current state of the system itself, the
application programs running under it, and the computer's resources.
All tables can be located from other tables by a system of pointers.
The processing modules have two prinecipal tazks: to maintain and
update the tables; and to request the IBM Operating System to per-
form certain tasks; (i.e., transmit a message to a particular ter-
minal).

The remainder of Section 1 will discuss the tables peculiar
to TMS and the interrelationships of these tsbles. Subsequent
sections will introduce the processing modules and deal with their
operation in detail.

1.1 Communication Region

The Communication Region (abbreviated CR) is, in essence, the
key table of the system. As its name implies, it facilitates system
communication by combining in one place pointers to virtually every
other table and processing module in the system. The CR is im-
portant when a processing module must re-establish pointers to
all systems tables, such as in processing I/0 interrupts. The
Communication Region may be located in one of two ways when no
pointers exist: via the entry point TMSCRADR in the module
TMSBEGIN; or by first locating a function block via word O of any
save area and then using the back pointer to the CR found in the FB.

The CR contains several entry point addresses, primarily to
those processing modules whiclh may be accessed directly by appli-
cation programs by use of TMS macros. These are TMSWAIT, TMSCSIO,
TMSPURGE, TMSPLOAD, TMSGMFM, TM3SNAP, TMSOPEN, and TMSCLOSE.
Several CR entries are used in wait list processing. These
are a pointer to the wait list itself, a pointer to the current
last entry, and a halfword containing a count of bytes in the
basic wait list. A dummy Event Control Block is kept in the CR
to indicate that a shared resource for which some processing
module is waiting has been freed. The head of the chain of func-
tion blocks queued for a shared resource and the pointer to the
chain of all function blocks are both maintained in the CRH.
Pointers to the Data Control Blocks (DCB's) for the TMS Library,
Snap, and Log Data Setz are kept in the CR. Finally, several
bytes of flags and a Program Interruption Element (PIE) save
area are maintained in the CR. :

—-51-

514

E

Q

1.2 Function Block

The Function Block (FB) is the major system table associated
with a particular terminal device. Another approach is to consider
each FB to be associated with a particulsr invocation of an applica-
tion program (either separate, or sharing the program with other
FB's). 1In this context, the top-level supervisor program may be
considered to be a sort of super-program, and any application program
a sub-program of it. The FB maintains most of the information
unique to a particular terminal device and the program that is
controlling it currently. In addition, it maintains direct pointers
to those tables used most often in communication between the appli=
cation program snd TMS, 05/360, and the communication hardware.

A major part of the FB is g l6-word save area used to save
the contents of all general registers when the FB does not have
control of the CPU (i.e., is in TMS WAIT status). Individual
byte fields are reserved for general FB flags, last-entry informa-
tion, and FB queue flags. Pointers are maintained to the CR, the
next FB on the chain of all ¥FB's, the next FB on the chain of FB's
for the same communication line, the next FB on the chain of queued
FB's, the start of the application program's storage block chain,
the start of the application program's Data Control Block Chain,
the Data Event Control Block for the associated communications
line, and the attached communication buffer.

Many communications-related items are kept in the FB. These
include an Event Control Block for terminal I/0, the terminal list
offset used to locate the entry for the associated hardware ter—
minal, a copy of the polling/addressing characters for a multi-
drop terminal, the BTAM relative line number, the terminal number
in EBCDIC, the current operation code for a terminal read/write
operation, and various line length and position counts. Finally,
the lb-character user name and the nsme of the current application
program are kept in the FB for accounting and control purposes.

1.3 Wait List and Wait List Extension

The wait list forms the hub of TMS operation and is the reason
that TMS is able to multiprogram in a single partition. The main
portion of the wait list is exactly what the name implies: 2
standard 08/360 multiple-event wait 1list. The wait list extension
is the same length as, and immediately follows, the last position
of the wait list itself. Each word of the wait list extension is
associated with the corresponding word in the wait list and can be
located by adding the wait list offset fPom the CR to the address
of the wait list entry. The wait 1list and wait list extension both
consist of a stutic (or fixed-length) component followed by
a dynamic (or variable-length) component.

Three distinct sections which must be recognized by the TMSWAIT
routine actually comprise the wait list. 'The first section con-—
sists of points to specialized TMS Event Control Blocks. First

RIC LT | .f

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

comes an Event Control Block pointer for input from the operator's
console, followed by a pointer to the gueuing Event Control Block
loecated in the CR. The corresponding entries in the wait list
extension are not used. The second section consists of a pointer

to each communication line Event Control Block. To indicate that
these are line Event Control Blocks, the first byte of the cor-
responding word in the wait list extension is set to hexadecimal
ITF'. These first two sections comprise the fixed-length com-

ponent of the wait list. The third section consists of a pointer

to an Event Control Block for each FB which is currently in wait
status. This section varies in length as FB's are added to or
dropped from the list, so it is being reordered constantly. The cor-
responding entries in the wait list extension point to the associated

1.4 Teleprocessing Data Event Control Block

The Teleprocessing Data Event Control Block (TDECB) is the
major system table associated with a particular communication
channel. As such, it can be shared by more than one communication
terminsl, and thus may be pointed to, and shared by, several FB's.
The TDECB is the principal table used by 0S/360 BTAM (Basic Tele-
processing Access Method) to control all data communications ac-
tivities. The first word of each TDECB, scmetimes called the
line ECB, is pointed to by the wait list. This is how TS knows
when a communication operation has completed.

The first 40 bytes of the TDECB are a standard IBM 08/360
BTAM DECB. The contents and uses of the fields therein are docu-
mented in the IBM publications regarding BTAM, so they will not
be desceribed here. The remainder of the TDECB consists of fields
specific to TMS. There are several pointers: one to the head of
the chain of FB's associated with this TDECB; three to the various
code translation tables for the particular class of communication
devices served; and one to the terminal 1list, which is a list of
entries giving the polling characters and control flags for the
several terminal devices associated with this TDECB. Several bytes
and halfwords are used for both bit flags and counts that describe
the type of communication devices being serviced; some of the
devices' hardware parameters such as character capacity; and the
current state of the communication channel and the terminals attached
to it. Finally, a save area for some fields is provided for use
when read polling must be interrupted Tor a write operation
and then must be resumed. =

~53-

FB.

O

ERIC

Aruitoxt provided by Eic:

2. INTERNAL SYSTEM CONVENTIONS

This section describes the various conventions that all TMS
modules and all application programs must follow if TMS is to
function properly. Each subsection describes a convention or
several related ceonventions regarding a particular TMS function.

2.1 Save Areas

To the application programmer, the rules for using save areas
are the same as for 05/360, except that the contents of the first
word of the existing save area must be copied into the first word
of a newly-obtained save area. This insures that Register 13
will always point to a word containing the address of the rele=-

vant FB.

save areas associated with it. The first save area on this chain
is cobtained and formatted by the 'phantom job" when it is entered.
Since the phantom job is entered once for each FB and is completely
re—-entrant, the independence of the variocus save area chains is
assured.

Most TMS functions involve receiving a request from an appli-
cation program, editing and checking the reguest for validity,
and then requesting 0S/360 to perform certain tasks in order to
satisfy the original reguest. This approach requires the use of
two save areas: one to save application program registers upon
entry to TMS, and one to save TMS registers upon entry to 05/360.
One of these save areas is provided by the .save ares chain asso-
ciated with the FB (i.e., the save area pointed to hy register 13):
the other save area is the first 16 words of the FB itself. 1In
practice, a TMS processing module that is entered by an applicaticn
program first saves registers in the usual manner while it locates
the FB. It then moves the saved information into the FB save
area and stores the contents of Register 13 at the end. The save
area pointed to by register 13 is then free for use by 05/360.

2.2 CR and FB Pointers’

As the two crucial blocks involved in every TMS activity, the
CR and FB must be reachable in many ways. The CR and FB may be
located under any of the following conditions:

a., The TMS execution-time monitor TMSEXEC is first entered
from 0U8/360. The address of the CR has been placed in register
1 (parameter register) by the TMS startup routine TMSHSKP.

b. A TMS processing module is called from an application pro-
gram., Register 13 points to a save area, the first word of which
contains the FB address. The FB contains a pointer to the CR.

H
i
b
a
1
]
K]
j
4

¢. A module in TMSEXEC must operate upon all FB's. The CR
address is obtained from the entry point TMCRADR in TMSBEGIN. The
chain of all FB's is found from CRFECHN, and each FB is operated
upen in turn.

d. The communications transmission end routine TMSTREND is
entered from TMSWAIT and must locate the FB corresponding to the
terminal just contacted. The address of the TDECB block is known
upon entry to TMSTREND. This block has a pointer to the chain of
all FB's associated with that particular line. Each FB in this
chain is checked until the one matching the last active entry in
the BTAM terminal 1list is found.

e. The Event Control Block (ECB) that an application program
has been waiting on is posted complete., and TMSWATT must return
control of the machine to that program. When TMSWAIT locates the
address of the proper ECE in the wait list, the corresponding
word in the wait list extension points to the associated FB.

f. A shared resource for which one or more FB's are waiting
has Jjust become free, and the next FB to use it must be found.
The CR address is known, and the CR points to a chain of queued
FB's. The dequeuing routine travels down this chain of FB's
until it locates the first FB whose queue flags indicate a need
for the resource in question.

2.3 Chain of Core Storage Blocks

In order for TMS to "clean up" after an application program
has gotten into trouble, it must be able to free all main storage
obtained by that particular invocation of the application program.
This process reqguires that the size and location of every block of
main storage for a particular FB be known to the system. This
is accomplished by a system of chaining together all blocks of
storage. :

All storage that is requested directly by an applieation
program is obtained through TMS. The system adds 8 bytes to the
request as recelved from the application program and passes it
on to 08/360. When the request is satisfied, TMS uses the first
8 bytes of the stcrage block as a special chaining prefix as
indicated in Fig. i. When an application program requests the
freeing of main storage, TMS checks the chain to verify that the
storage is actually associated with the program.

2.4 Chain of Data Control Blocks

© For a particular invocation of an application program that
gets into trouble, TMS must have & method for closing all Data
Control Blocks (DCB's) for the same reasons that require the ability
to free all main storage blocks. The solution of this problem is
quite similar to that employed for the main storage problem. ‘

~56-
20

FIG. 1
STORAGE BLOCK CHAINING

Block Block
FB Address Address
Received Given to
from 08 Application
Program
o &
, - — Address of| Count of bytes ;;
54 | _FBBLKCHN next block| incl. Prefix _ _
»® o® X X
FIG. 2
DATA CONTROL BLOCK CHAINING
Start of
B Actual DCB
] Entries (not
necessarily DCB
Address
_ _ 0 1l ok ,
» ' ' off- | Address of|
58 FBDCECHN siset | next block 7 g

=57~
{1§2£§{;

Every DCB for a data set that is opened by an application pro-
gram 1s constructed by TMS in main storage freshly obtained for
that purpose. Frior to the first byte of usable DCB information,
TMS inserts a L-byte prefix pointing to the next DCB for that FB
and providing an offset to generate the true DCB address. The
actugl arrangement is shown in Figure B. The offset is a value
which is subtracted from the address of the first byte following
the L-byte prefix to give the actual DCB address for use by
0S/360. The length of the DCB is implied by bits within the DCB
which describe the type of data set that it represents.

2.5 Types of I/0 and Data Sets Supported

The Terminal Monitor System supports a subset of all of the
I/O options and data set type supported by 03/360. This subset was
chosen to give the broadest possible range of data set handling
capabilities consistent with the basic objectives of ™S. For
card readers, printers, and magnetic tapes were omitted since TMS
is designed to deal with only direct storage device and communication
terminals. The requirement that TMS retain all contrel over WAIT
scheduling, as well as the stringent limitetions on overall systems
size dictate that TMS limit itself to only the basic (as opposed to
the queued) access method. In general, these restrictions are en-
forced by code in the TMSOPEN macro which refuses to recognize any
options not allowed by TMS.

Although it is not stated in any documentation available to
the casual user, TMS does support the EXCP access method with or
without appendixes. This access method, thus, is available for
use by highly skilled personnel in implementing specialized or
unique functions under TIMS. The basic sequential access method
(BSAM) is available along with CONTROL and NOTE/POINT features.

The CONTROL feature is intended only for use in file positioning,
and not for such specialized functions as line skipping on a
printer or stacker selection in a card reader or card punch. The
options permitted under BSAM include the control of data checks

for a printer with a universal character set feature and the WRITE
validity check. The basic direct access method (BDAM) is supported
for searching by block ID and searching by key. The CHECK specifica-
tion is also permitted. Optional services supported under BDAM
inelude extended search, write validity check, feedback eontrol,
and the use of actual device addresses or relative block addresses
in place of the standard TTR addressing scheme. The basic index
sequential access method (BISAM) is supported only for reading

and updating; the use of CHECK is also supported. No BISAM options
are supported under TMS. Finally, the basic partitioned access
method (BPAM) is supported for basic reads and write. The only
BPAM option supported is a write validity check.

As the preceding indicates, TMS supports the four basic
types of data set organization: sequential, partitioned, index
sequential, and direct. The sequential partition and direct
data sets may be either movable or unmovable. The types of I/0

S

processing support include INPUT, OUTPUT, INOUT, OUTIN, and UPDAT.
These parameters have the same meaning as in the 0S OPEN macro
instruction.

2.6 Queuing and Dequeuing

The terminal monitor system contains some resources which are
shared by the application programs, but which may not be used by
two or more programs simultaneously. The official IBM terminology
for such a resource is "serially reusable." Rather than use the
relatively complex ENQUE/DEQUE facility of 0S5/360, TMS incorporates
its own fairly simple queuing and dequeuing facility. Enqueuing is
primarily a function of the processing module which represents or
controls the serially reusable resource in guestion. Dequeuing
is primarily the responsibility of the TMSWAIT processing module.
Two words in the CR and one word in each FB are used for queuing
control. The various processing modules use the CR dummy ECB
to indicate when a shared resource which is being waited for has
become free. The particular shared resource, which is now free,
is indicated by setting a bit, in addition to the completion hit.
The CRQUEUE pointer points to the chains of queued FB's. The
first byte of this word, alsc known as the CR queue flag area,
has a bit set on for every shared resource that is currently
being waited for. In this respect, it is the logical OR of all
the analogous fields in all FB's. The FB queue pointer is used
to point to the next FB on the queue. The first byte of this
word, also known as the FB queue flag, will have only one bit set
on (in addition to the end-of-queue bit, if necessary) which will
indicate the particular resource for which the FB is waiting.
These relationships are illustrated in Fig. 3.

Placing an ¥FB on the queue involves appending the FB to the
end of the queue chaih, setting the proper bit in the FB queue flag
area, and ORing this FB queue flag area with the CR queue flag
area. When the processing module which is releasing a shared
resource wishes to detect whether another FB requires this resource,
it merely checks the CR queue flag area. The assignment of a new
FB to the shared resource is accomplished by searching down the
chailn of queued FB's until the first gueued FB with the proper
bit set on is located. This FB is then removed from the chain,
but the bit representing the shared resource is not reset in the
CR queue flag area. Since more than one FB may have been waiting
for the resource, this bit is reset only when a search of the chain
has failed to turn up any FB with the corresponding bit sets.

—-59-

a8

64 (ko)

CR

FIG. 3
FB QUEUING

Flags]ﬁ CRQUEUE

Queuvead
for
System log

FB
/\>0
80 (;0%’ Flags | FBQUEUE
~
~
-~
« .
(FB
0
Flags FBQUEUE
P
FB
, (Last on
Flags 000000 chain)

-60-

<59

3. INTRODUCTION TO MODULE FUNCTIONS
2.1 System Initializaticn

System initialization consists of setting up all the special-~
ized TMS system tables, opening certain system data sets, and
loading several programs’, principally IBM access method modules
intc upper core. With initialization completed, control is
passed to the processing routines in the execution time load module.
Three processing modules are involved in system initialization.
Two of these, TMSHSKP and TMSBLOCK, comprise the systew initiali-
zation load module. The third module, TMSBEGIN, is a small pro-
cessing module in the execution time load module, and it provides
the main entry point to the execution time load module. TMSHSKP
contains a great bulk of the code for system initialization. It
performs all initialization operations except those that require
information available only within the execution time load module,
such as the entry point addresses of the wvarious execution time
processing routines. TMSBLOCK is the basic skeleton for most of the
T™™MS tables. 1t is a separate processing module, so that any
changes in the configurations of communication devices serviced
by TMS may be accomplished merely by reassembling TMSBLOCK. Among
the tables for which skeletons are provided in TMSBLOCK are FB's,
TDECB's, DCB's for all communication lines and system data sets,
all communication buffers, all terminal lists, and all transla-
tion tables. TMSBLOCK has three entry points: the entry point
TMSBLOCK, which points to the first word of the skeleton; the
entry point TMSBLGTH, which i1s a word containing the length of
the skeleton in bytes; and the entry point TMSLSTFB, which points
to the start of the last FB skeleton assembled which will be the
head of the FB chailn.

The TMSBEGIN module performs the last few steps associated
with system initialization and then turns control over to the
TMSWAIT module to begin executing each FB im turn. It too has
three entry points: TMSBEGIN, which is the entry point to the
final initialization code and by extension to the entire time load
module; TMSCRADR, which is single word containing = pointer to
the CR for use by any other execution time processing module that
needs it; and TMSSYSV, which is a standard 18 word save area used
to save the register contents upon entry to the execution time load
module. T

3.2 Wait Handling and Degueuing

A1l wait list handling and scheduling of the next FB to gain
control of the CPU 1s handled by the processing module, TMSWAIT.
It is intended to be the only module that ever relinquished its
control of the CPU to a lower priority partition. Since the TMS
dequeuing method employs a pseudo-ECB, TMSWAIT is responsible
also for locating the next FB that requires the shared resource
and for passing control to the relevant processing module. TMSWAIT
has two entry points: +the entry point TMSWAIT, which is used for

entry from application programs; and the entry point TMSDWAIT,
which is used for a direct entry to the wait moduie from other pro-
cessing modules. The two separate entry poinits are necessary be-
cause direct entry into the wait module does not inwvolve sawving
register in an FB.

3.3 Communications with Computer Operator

The TMSCNSI is responsible for the receipt and execution of &ll
commands from the central computer operator and the reissuing of
the WTOR to reset TMS for the receipt of the next command. Any
other processing module may transmit a message to the computer
operator, as long as it does not wait for a response. The TMSCNSL
routine has two entry points: TMSCNSL, which is entered from
TMSWAIT when the console ECB indicates that a message has been
received from the central computer operator; and TMSREADY, which
is entered from TMSBEGIN to complete system initialization by
issuing the first WIOR of the TMS run.

3.4 Communications with Terminals

A1l transmission of messages to and from remote terminals is
handled by two processing routines. The first, TMSCISO, is used
for the initiation of 2l terminal input/output operations. The
second, TMSTREND, is entered from TMSWAIT when 0S/360 indicates in
one of the line ECB's that some terminal I/0 operation has been
completed. This routine performs all operations associated with
the completion of terminal I/0. IMSCISO performs such operations
as determining whether or not the communication line is currently
free, queuning the operation if it is not; selecting the buffer;
performing code translation for outgoing messages; setting up the
TDECB for the transmission; and invoking 0S/360 BTAM to initiate
the actual I/0Q operation. It has four entry points: TMSCISO,
which is entered from an application program or another processing
module to initiate reading or writing; TMSWRDEQ, which is entered
from TMSWAIT to initiate writing by an FB just removed from the
FB queune, where it had Peen placed until the line became available
for a write operation; TMSRDRST, which is entered from TMSWAIT to
restart a read polling operation on a multi-terminal line inter-
rupted for a write tranzmission to cone of the terminals; and
TMSCSIOR, which attempts recovery from certain types of transmission
errors.

The TMSTREND routine performs such operations as checking for
transmission errors, performing code translation on incoming mes-~
sages, and determining which terminal originated an incoming
message so that it may post the I/0 operation complete in the ECB
for the proper FB., It has one entry point, TMSTREND.

3.5 Obtaining and Releasing Prime Storage

#11 obtaining and releasing of prime storage for application
programs is handled by the TMSGMFM processing routine. This rou-

-62—

< o |

tine maintains the system convention regarding the chain of cors
storage blocks for each F¥B and performs validity checking against
this chain. It also preserves the integrity of TMS by converting
an application program's unconditional request for primary storage
to a conditional request for primary sturage on behalf of the moni-

tor system. Thus, 1t retains control of the situation if the re-~
quest for storage cannot be honored by 0S/360. This routine has

a single entry point, TMSGMSM; the type of operation desired is
determined by its parameters.

3.6 Locating, Opening, and Closing of Data Sets

There are two classes of data sets in TMS: system data sets
and application program data sets. System data sets include the
TMS library, snap and log data sets, and all communication lines.
By their very nature, their reguirements are known in advance, and
they are opened by the TMSHSKP routine. The remainder of the data
sets are opened and closed in response to requests from application
programs. Since the opening and closing of data sets offer many
opportunities for system crashes, all of this activity is performed
for application programs by two processing routines: TMSOPEN and
TMSCLOSE .

TMSOPEN performs such functions as checking that a data set
of the proper name exists and that all volumes containing it are
available to the system; checking that all volumes listed as
containing the data set have a proper entry for that data set; ob-
taining primary storage for and constructing s DCB for that data
set; maintaining the system convention of a chain of DCB's for the
application program's FB; forming a JFCB for the data set (since
the TMS deck does not include a DD card for every data set); ob-—

“ taining primary storage for a buffer if necessary; and issuing the
08/360 OPEN macro for the data set and verifying the successful
completion of the open process. This routine has one ent:ry point,
TMSOPEN .

The TMSCLOSE routine performs such functions as: checking
request walidity; issuing the 0S/360 CLOSE macro; freeing any
buffer space obtained by TMSOPEN; and removing the DCB from the DCB
chain and releasing the primary storage that had been obtained for
it. It has two entry points: TMSCLOSE, which is entered from an
application program; and TMSPCLOS, which i1s entered from the
TMSPURGE routine to close data set with a slightly different parameter
structure and no validity checking.

3.7 Loading Requested Programs

Since the loading of user requested programs can result in sys-
tem aborts if (1) the program requested is not present or (2) insuf-
ficient primary storage remains to accommodate the program within
the IMS partition, the processing routine TMSPLOAD is used. TMSPLOAD
performs the following functions: executing an 0S/360 BLDL macro
to insure that the desired load module exists and to obtain its length

_63- ’

. igrQSZZ

in bytes; searching the FB chain for an already loaded copy of the
same program which is re-entrant (thus insuring that additional
primary storage will not be required); testing to insure that there
will be sufficient primary storage for both the program to be loaded
(if necessary) and the load rcutine; and invoking the 0S/360

LOAD macro instruction to complete the loading process. This
routine has one entry point, TMSPLOAD.

"3.8 Recovery from User Program Errors

When a running application program has caused an error con-—
diticn which is detected by one of the TMS processing modules, and
the application programmer himself does not provide for recovery
from this error situation, TMS must terminate the application pro-
gram so that all system resources used by that application program
again are made available for the remainder of the system. It is
also highly desirable that the terminal user be notified in a
uniform manner of the various types of errors. All these func-—
tions are performed by the TMSPURGE processing routine. This rou-
tine svecifically performs the following functions: +the closing
and fraying of all attached DCB's; the releasing of all primary
storage obtained by the application programs; the locating of the
topmost save area on the save area chainj; the issuing of a suitable
error message selected from a table of error messages by a parameter
to the purge routine; and the returning to the phantom job module
(TMSPJOB) to indicate an abnormal exit from the application
program. It has a single entry point, TMSPURGE.

3.9 Top Level Control

In a system where there is a choice of many different applica-
tion programs, there must be a top level control program which
handles the initial dialog between the terminal user and the
system. Such a program invokes the various programs in response
to the user's request and handles the transitions between not
only application programs but also successive users at the same
terminal. To maintain simplicity and flexibility., this particular
program is not considered a processing module like the remainder of
TS, but rather is treated as Just another application program.

The only difference between this and other application programs

is that it has been loaded as part of the system initialization
process, and all the FB save areas have been preset to return to
the entry point of this program as if it has Jjust called TMSWAIT
to wait on an event which is now complete. One of the names thst
has been coined for this pseudo application program is "phantom Job,"
and from this the program module takes its name, TMSPJOB. Some
of the functions performed by TMSPJOB are: issuing the initial
sign-on message to each terminal when TMS begins operation; re-
questing, receiving, and verifying the user's identification code
as part of the job in process; requesting and receiving the name
of the application program that the user desires to employ:
calling TMSPLOAD to bring the program into primary storage;
initializing the F3 for use of the TMSDEBUG routine if the user so
desires; passing control to the requested application program and

6l
3

eventually receiving control back from the program by either a nor-
mal or an abnormal return; logically disconnecting the terminal
from the system at the user's request; and accepting the user's
log-out when he is finished and conditioning the system to accept
the log-in of a new user from the same terminal. This routine has
one entry point, TMSPJOB.

-65-~

4. DETAILED MODULE DESCRIPTIONS
L.,1 TMSBEGIN Module

The TMSBEGIN module has three entry pcints. The main entry
point is TMSBEGIN, which is used to initiate TMS execution time
processing and which becomes the main entry point of the load
module TMSEXEC. The entry point TMSCRADR obtalns the communication
region address if it cannot be located by &ny other method. The
entry point TMSSYSSV is used to gain @dccess to the TMS system save
area if other modules need to reach it.

This module customarily receives control by being transferred
to and from TMSHSKP by means of an XCTL macro instruction. As is
customary, it does =z standard OS SAVE macro instruction and
links the main TMS system save area to the save area pointed to by
the system. TMSEXEC has provided the pointer to the communication
region (CR) in register 1 (RP1). This address is now moved to
register 10 (RCR) and installed in the area pointed to by TMSCRADR.

A vector of entry point addresses to the various TMS processing
modules is maintained at location ADDRVEC. This consists of a
series of V-type address constants in the same order as defined in
the CR dummy section (DSECT). The length of this address vector
is found as the value of AVLENGTH. This address vector is moved
to the first part of the communication region by means of a single
MVC instruction.

Since certain serially reusable system resources may be re-
quested by more than one applications program at the same time, a
queuing methodology is supported. The key to signaling when a
resource has been freed is the gqueuing event control block. The
address of this event control block is placed in the second position
of the wait list at this time. This procedure is explained in
detail in the description of the TMSWAIT module.

The only function left in the monitor initialization process
is the issuing of a ready message to the console typewriter by
means of a WILOR macro instruction, so that the operator may exercise
control over the system from his console typewriter. Since this
process is one that is repeated every time the operator employs
the console typewriter, a branch is taken to the special entry point
TMSREADY in the TMSCNSL module.

L.2 TMSBLOCK Module

The purpose of the TMSBLOCK module is to assemble itself into
the terminal block skeletons and &@ssociated pointers for use by the
TMSHSKP module. This module has three entry points: the entry
point TMSBLOCK represents the beginning of the combined terminal
block skeletons; the entry point TMSLSTFB provides the address of

-6
0SS

the last FB generated in the TMSBLOCK module; and the global char-
acter variable &PREVFB is used to obtain the name of the last FB
generated by the FORMFB macro.

The principal portion of terminal block skeleton generation is
performed by repeated calls of the FORMFB macro. Detalls on this
macro's parameters and the code that it generates may be obtained
from the section entitled "Use of the FORMFB Macro." All invocations
of FORMFB should be placed between the headings "START OF MACRO
CALLS TO DEFINE TMS BLOCKS" and "END OF MACRO CALLS TO DEFINE TMS
BLOCKS" with no other intervening macro instructions, machine
operations, or assembler pseudo-instructions which alter the loca-
tion counter placed within this area. TFollowing the area in which
TMS blocks are defined come the various translation tables which
are needed to convert code from the internal EBCDIC to the various
transmission codes employeda by the different communications -de-
vices. Each table is 256 bytes long and 1s labeled with the
characters IECT followed by the four zharacters used in the INTRAN,
OUTTRAN, or INTRLC keyword operands of the relevant FORMFB macro
instruction.

L.,3 TMSCLOSE Module

TMSCLOSE is a service module of the Terminal Monitoi System
designed to close down user files. It begins with a standard store
multiple of the user's registers into the save area he has provided.
The function block of the user is located, and the register is
copied, from his save area into location FBSAVE in the FB. The
address of the data control block (DCB) is copied from register 1
into register RDCB; register RDCB is then used to provide addressability
for the dsect IHADCB. The chain of DCB's is then checked to make
sure that this DCB address 1s on that chain. Location FBDCBCHN
in the FB is checked for zeroces. If it is all zeroes, then the
chain is empty, and a branch is taken to location DISASTER. The
chain, if not empty, indicates the presence of DCB's. In this
case, the address of the DCB chain is loaded into register RPREV
at location TESTDCBl, register RWORK is cleared, and the control
word for the next DCB is loaded into register RWORK2 from the
location currently pointed to by register RPREV. Register RWORK2
now points to the control word in front of the next chained DCB.
(See description of TMSOPEN for construction of DCB.) The nega-
tive offset at this address is loaded into register RWORK1 and
used to compute the true address of the start of the DCB. This
address is then compared to the address given on entiry to the pro-
gram. If equal, this is the DCB the user wished to close, and con-
trol is passed to location TESTDCB2. Otherwise, register RPREV is
loaded from the address to which it currently points. This step
will give the address of the next DCB. This address i1s checked for
zeroes. Zeroes here indicate that there are no more DCB's chained
to this FB. If this is the case (an incorrect DCB address passed
tc TMSCLOSE), a branch is tsken tc location DISASTER. Otherwise,

-68-
66

since the address of the next chained DCB is in register RPREV, a
branch is taken back to location TESTDCBLl to test the next DCB.

At location TESTDCBZ2 the location DCBMACRF irn the DCB is tested for
indications of a QISAM DCB. If this was a QISAM DCB, the module
TMSGTSLE must be deleted. If this was not, a branch is taken to
location CLOSE.

At location CLOSE an 0/S CLOSE macro instruction is issued,
specifying the location of the DCB. The next task after closing
the file is to free the core obtained for this DCB. To do this,
location DCBBUFCE is tested for the presence of a hexadecimal Ol.
If it is present, it implies the existence of a buffer pool con-
nected to this DCB which also must be freed along with the core of
the DCB itself. If it is not present, a branch is taken to location
FREEDCB. Assuming there is a buffer pool connected to this DCB,
the pointer to this buffer pool is picked up from location DCBBUFCB
and placed in register RPTR. The number of buffers in the buffer
pool is picked up from four bytes off the address currently in
register RPTR and placed into register RCTR. The number of buffers
(now in register RCTR) is multiplied by the buffer size which is
found at six bytes off the address currently in register RPTR.

The alignment of the buffers is tested by testing location DCBBFALN
for the presence of a hexadecimal 0l, which indicates fullword
instead of doubleword alighment. If location DCBBFALN does not
contain a hexadecimal 01, there is doubleword alignment, and a
branch is taken to location BUFFERL. If buffer alignment is on

a fullword, register RCTR is incremented by 4, and control then
falls threough to location BUFFER1. At location BUFFER1 the length
of the buffer pool currently in register RCTR is incremented by 8
to account for the buffer control block. This length is placed
into register RPO, and the address of the buffer control block
currently in register RPTR is placed into register RP1l, and an 0/s
FREEMAIN macro instruction is issued to free the core for the buffer
pool. Control then falls through to location FREEDCB.

Once the core for the buffer control block and the buffer pool
have been released, the task is to free the core for the data con-
trol blocks themselves. Since the length of a data control block is
dependent upon the access method, location DCBMACRF must be tested
‘to find the access method used. At location FREEDCB in the program,
location DCBMACRF in the user's DCB is tested for the presence of
a bit indicating the EXCP access method (DCBBITE). If this bit is
"not present, a branch is taken to location FREEDCBl. Assuming this
access method is EXCP, register WORK1 is loaded with a value of 56.
(This is 52 bytes for the EXCP DCB plus four bytes for the chain
word.) Location DCBMACRF is then tested for the presence of a bit
indicating that appendages were needed for this access method. If
this bit is not present, a branch is taken to location FREEDCB>. If
it is present, register WORK1l is incremented by 20 bytes, and a
branch is taken to location FREEDCBS.

At location FREEDCB1l, location DCBDSORG is tested for the
presence of a bit indicating an Index sequential data set
(DCBBITIS). If this bit is not present, a branch is taken to
FREEDCB2. Assuming the bit is present, register RWORK1 1s loaded
with a value of 2hk for the 236 bytes of the ISAM DCB, plus four
bytes for tte chainword, plus four bytes used by TMSGTSIE. A
branch is then taken to location FREEDCES.

At location FREEDCB2 location DCBDSORG is tested for the pre-
sence of a bit indicating the direct access method (DCBBITDA).
If this bit is not present, a branch i1s taken to location FREEDCB3.
Otherwise, register RWORK1l is loaded with a value of 92 for the 88
bytes for the direct access data control block plus L bytes for the
chainword. A branch is then taken 10 location FREEDCBS.

At locstion FREEDCE3 location DCBDSORG is masked for the pre-
sence of a bii indicating the physical sequential access method
(DCBBITPS). If this bit is not present, location DCBDSORG does
not contain a valid bit representation of the access method. A
branch is then taken to location DISASTER. If this is a physical
sequential data set, register RWORK1l is loaded with a value of 92
for the 88 bytes for the data control block plus the 4 bytes for
the chainword. At location FREEDCB5 the DCB chain is updated by
moving 3 bytes from the area pointed to by register RBLOCK (which
contains the address of the data control block immediately following
the one Just closed) and moved to the address contained in register
RPREV. This action completes the chaining of the previous data
control block to the succeeding data control block. Register RPO

is loaded from register RWORK1l which containe” ' - ~i7e of the
data control block area to be freed. Reg? loaded from
register RBLOCK which contains the addres ne .. to be

freed. Then an 0/S FREEMATN macro instruct. ... L. issued.

Control then falls through to location RETURN where a standard
load multiple of the user's registers from location FBSAVE occurs,
and a branch register return through register RR. At location
DISASTER, register RP1 is loaded with a value of 28 to indicate
entry from TMSCLOSE, and register RD is loaded with a V-type
address constant of the entry point of TMSPURGE. A BR instruction
is issued specifying register RC.

Location TMSPCLOS is an alteranate entry point to TMSCLOSE. This
is an entry from TMSPURGE. On entry, register RP1 points to the
chain element word rather than to the DCB. At location TMSPCIOS,
the registers are stored into location FBSAVE. Register 15 is
used for temporary addressability of location TMSPCLOS which enables
an address constant specifying the entry point TMSCLOSE to be
loaded into register RP. This provides permanent addressability
for the program. Register RWORK1l is then cleared. The negative
offset from the chainword is then inserted into register RWORKL.
From this the address of the DCB may be found easily, and control
is passed to location TESTDCB2.

oo

68

O

ERIC

Aruitoxt provided by Eic:

L.y TMSCNSL Module

The TMSCNSL module has two entry points. The principal entry
point, TMSCNSL, is entered from the TMSWAIT module when the console
DCB indicates that a message has been received from the computer
operator. The message test which has been enclosed between apostrophes
in the operator's response via the REPLY command is found in the
internal buffer named RPLAREA. To test for the content of the message,
a simple series of CLC instructions is used to compare the contents
of the reply buffer t see if it matches a particular key word. v
If the first word of the response does not match any of the valid
command words, control falls through to the routine labeled WHAT,
which issues the message

TMS101I COMMAND NOT RECOGNIZED. IGNORED.

and then falls through to that portion of code headed by the label
TMSREADY.

If the response from the operator matches the key word "DUMP,"
a user ABEND with a code of 300 is executed in order to obtain a
core dump and terminate operation of the monitor.

The remainder of the module consists of code to condition the
monitor system for the next response from the computer operator.
This code 1s headed by the label TMSREADY, which is also the secondary
entry point to this module. The code zeroces out the first byte of
the console DCB area RPLECB and sets the response buffer RPLAREA to
all blanks. The WTOR macro instiruction is then invoked to write the
message

TMS100I READY

on the console typewriter and direct OS to place the operator's
response into the buffer labeled RPLAREA. The final operation

is to place the address of RPLECB into the first position of the wait
list. This is done every time, even though it is necessary that

this be done only on the first call of TMSREADY from TMSBEGIN in
order. to complete the system initialization. The only exit from

this module is direct branch to the direct wait entry point TMSDWAIT
in the TMSWAIT module.

4.5 TMSCSIO Module

The TMSCSIO module has four entry points: TMSCSIO, TMSWRDEQ,
TMSRDRST, TMSCSIOR. The main entry point to the routine is TMSCSIO.
The entry point begins with a standard store multiple into the user's
save area, locating the function block, moving the stored registers
to location FBSAVE, and establishing addressability to the program.
At this entry point also the flags are set to indicate a normal
exit. Addressability to the communication region is provided by

-1

49

o oL B TN el it o hmen b €

SRR NN

s

loading register RCR from location FBCR. Loading register RDECE
from location FBDECB in the function block provides =ddressability
to the data event control block. Ioading register RLUB from location
DECDCBAD in the data event control block provides addressability

to the data control block. The function block entry flag is then
set to indicate entry into TMSCSIO. After the entry, the next task
is to find whether a buffer is attached to this function block by
checking location FBBUFPTR for the presence of zeroes. If there

is no buffer attached to this function block, a branch is taken to
location IOENTRY4. If there is, register RBUF is loaded with the
address in location ¥BBUFPTR. Location FBBUFPIR is then cleared

to zero, and the buffer is indicated to be the last by setting =a
flag (BUFFLAST). Register RPTR is loaded with the address in
register RBUF offset +L4 to point to the buffer itself rather than to
the buffer control block. The length of the last message sent or
received is loaded into register RPTR, and this length plus U

(if it's a shared line) is used to clear this buffer to blanks. The
clearing operation takes place in the loop at locations IOENTRY1
through IOENTRY3. At location IOENTRYL the task is to test whether
the request is a read or write operation. This is done by testing
location FBRWOP for the presence of a flag indicating the write
operation (FBRWRITE). If this flag is present, a branch is taken
to iocation WRITE. If it is not, the read operation is resumed

and a branch is taken to location READ.

At location WRITE the return address from the write queuing
subroutine is set into register RR, and location DECUFLGS is
tested for a bit indicating that writing is in progress (DECUFWIP).
If writing is in progress, a branch is taken to location WRQUEUE to
place this function block on the writing queue. If writing is not
in progress, location DECUFLGS is tested for the presence of a bit
indicating read polling in progress (DECUFRIP). If read polling
is no? - progress, a branch is taken to location WRITE8. If
pol ing . 1n progress, it must be stopped for the other terminals
on tlie sne line so that this message may be sent. Register RR is
loaded with the address WRITEO to indicate a different return from
the write queuing subroutine, and a branch is taken to the write
queuing subroutine at location WRQUEUE.

A%t location WRQUEUE the queuing flags in the communication re-
gions at location CRQFLGS are tested to see if the queue is empty
(CRQEND). If it is not empty, a branch is taken to locstion QUEUEL.
If it is empty, the address of the current function block is stored
at location CRQUEUE. TIocation CRQFLAGS is set with a bit indicating
that there is a function block queued for the write operation, and
a branch is taken to location QUEUEL. If the queue was not empty at
location QUEIEl, location CRQFLAGS is set with a bit indicating a
function block queued for write (CRQWRITE), and the address of =he
first queued *anction block is loaded from location CEQUEUE int >

register RWOL _. At locatior QUEUE2 a loop is executed to find the
end of the quw=ae. When the end of the queue is found, a branch

r;ﬁ%%;

is taken to location QUEUE3. At location QUEUE3 the end-of-queue
flag for the function block already queued is turned off. The queuing
flags of the former FB are merged with the address of the new last
entry and stored in the pointer. The flags indicating end-of-queue
and a function block gqueued for write (FBQEND and FBQWRITE, respec-
tively) are moved into location FBQFLAGS. The waiting-to-write

count at location DECWWCNT is incremented by one, the waiting-to-
write bit (DECUFWIW) is set on in location DECUFLGS, and a branch

is taken to the return address that was previously loaded in register
RR. If writing was already in progress, this location is TMSDWAIT.
If read polling was in progress, this location is WRITEO.

At location WRITEO, the polling reset flag (DECUFPRS) is turned
on in location DECUFLGS. The address of the data event control
block is loaded into parameter register 1, and a RESETPL macro
instruction is issued to stop polling on the line. When control
is returned from this macro, register RC is tested for a return
code of O to indicate a successful polling halt. If the polling
halt was not successful, a branch is taken to location ABEND.
Otherwise, a brarch is taken to location TMSDWAIT. If read polling
was not in progress at the entry to this routine, a branch is takem
to location WRITES where the terminal list entry for this console
is loaded by obtaining the address of the terminal list from locatizm
DECTLIST, placing this address into register RWORK1l, and adding the
terminal list offset for this function block from location FBTLOFF
to the address in register RWORK1l. The address in register RWORK1 :is
now the address of the terminal list entry for this console. Using
this address, the skip bit for this entry is turned off, and location
FBRWOP is tested to see if the length for the message is already
in register RPO. If it is, a branch is taken to location WRITE21.
If it is not in register O, it is obtained from the start of the
text and put into register RLNTH, and a branch is taken to the
common coding at location WRITE22. At location WRITE21l, register
RPTR is loaded with the message address from parameter register 1, B
and re;.ister RLNTH is loaded with the length from parameter register ©O.

At location WRITE22 the process is to locate an output buffer.
To do this, register RCTR is cleared to 0. The address of the buff=r
control block is put into register RBUF from location DCBBUFCB,
and at location WRITELl a loop is executed to chain through the buffir
chain to find a buffer that is free. If no buffer is free, a branc-
is taken to location ABEND with a value of L4l at location CRABCODE.
If a buffer is available, control falls through to location WRITEZ2
where flags are set in the buffer control block for that buffer to
reserve the buffer. These flags indicate (1) buffer in use and
(2) bufrer waiting for output (BUFFINUS and BUFFWRTG, respectively).
Register RBUF is shifted by four bytes to point to the start of
the buff=+ itself rather than to the control block. ILocation DECZECYEE
is test:d ‘o see whether the terminal is a typewriter or not. If
it is nct - typewriter, a branch ic tsken to location WRITE3. If =%
is a typ= ~er, location FBRWOP is tested to se¢e if carriage retur
before te . vas specified (FBRWCEBW . If not, a branch is taken to.

-73- R
A

location WRITE3. If it was specified, the length of the last mes-
sage 1s loaded into register RWORKZ2, register RWORK1 is c¢cleared, and
s halfword of zerces is stored into location FBIMLNTH, which is the
last line length. The value currently in register RWORKZ2 is divided
by 10 to find the inches of carriage travel. The prefix length is
added to the value in register RWORK2 to find the total prefix length.
Register RWORK1l is loaded with a buffer address from register RBUF.
The length value in register B®WORK2 is temporarily decremented by 1,
and this value is used to move a carriage return prefix into the
buffer by an execute instruction specifying a move instruction at
location MOVECR. The value in register RWORK?2 is reincremented by

1 and this value added to the cumulative length in register RCTR.
The text of the message is to be moved into the buffer at location
WRITE3 by first testing register RLNTH for the presence of a zero
length. If the length of the text is zero, a branch is taken to
location WRITEL. Register RLNTH is then tested for a maximum

length value. If it is over this maximum length, a branch is

taker to location PURGEl. The address of the buffer is then loaded
into register RWORK1l, and the length of the existing text from
register RCTR is added to it. Also, the length value in register
RLNTH of the existing message is added to the cumulative length
counter register RCTR. The length of the outoging message is

stored into location FBLMLNTH.

At location WRITE30 the length value in register RLNTH is
used in a move loop to move the total message jnto the output buffer.
When the message has been moved, control falls through to location
WRITEL4 where, if the terminal is a typewriter and a carriage return
after text was specified, the same code that was issued for car-
riage return before text is executed. If the terminal is not a
typewriter, or carriage return after text was not specified, a
branch is taken to location WRITEL where the type of terminal is
tested again to see 1f the terminal is a display. If it is not,
a branch is taken to location WRITESA. If it is a terminal, the
buffer address in register RBUF is loaded into register RWORKL
and the length of the existing text in register RCTR is added to
it. This address is one beyond the end of the message, and if the
terminal is a display, an end of text character is placed at that
position, and the message length bumped by 1. At location
WRITESA, the cumulative length in regisver RCTR is put into register
RINTH, and the final buffer address is put into location RPTR. The
translation table address is loaded into register RWORK1l, and at
Iocation WRITE6 and WRITE7 a translate loop is executed to trans-
Iate the outgoing message. The write-in-progress flag is then
tmrned on at location DECUFLGS (DECUFWIP). The buffer length from
register RINTH is stored in the data event control block at loca-
=<on DECLNGTH. The address of the buffer is stored into location
LZL.REA, The polling address from location DECTLIST is loaded
int register RWORK1l, and the offset for this function block from
locsrsion FBTLOFF i1s added to it. This address, pointing to the
tarrm:inal list entry for this function block, is stored at location
IZCEATRY. The relative line number for this terminal is moved

O

ERIC

Aruitoxt provided by Eic:

from location FBRLN to location DECRLN, and if the terminal is

a display, a branch is taken to location WRITE9. Otherwise,

the type of operation in the data event control block is set to
indicate a write initiel with reset (DECWTIR) for a typewriter,
and then the CRT display code is skipped by branching to location
WRITEll.

At location WRITEQ the operation type at location FBRWOP is
tested to see if pre-erase was specified. If it was, a branch
is taken to location WRITE10. Otherwise, the type of operation
at location DECTYPE+1l is set to indicate a write initial with
reset (DECWTIR), and a branch is taken to location WRITEll. If
pre-erase was specified at location WRITElO, the operation type
at location DECTYPE+1l is set to indicate a write erase with reset
(DECWTSR), and control falls through to location WRITEll. At
location WRITE1]l the data event control block is cleared to zero.
and the write to the terminals is issued by issuing an 0/S WRITE
macro instruction. After control is returned from this macro
instruction, register RC is tested for a return code of 0 to
indicate a successful start of write. If it was not, a branch
is taken to locetion ABEND with a value of 42 at location CRABCODE.
If the start of write was successful, a branch is taken to the
exit routine at location RETURN.

If the indicated operation at location IOENTRYL was a read
operation, a branch is taken to location READ. At location READ
register RWORK1l is loaded with the address of the terminal list
obtained from location DECTLIST in the data event comtrol block.
To this value is added the terminal offset found at location
FBTLOFF. The skip bit at the resultant location is turned off,
the type field of the data event control block (DECTTYPE) is
tested for the presence of a bit indicating several terminals on
the line, and a branch is tasken to location READO. If there are several
terminals on this line, the active polling count at location
DECAPCNT is incremented by 1.

The data event control block flags at location DEBUFLGS are
tested for bits indicating either a read in progress or molling
interrupt (DECUFRIP and DECUFPIN, respectively). If pal¥ing is
or was im progress, a branch 1s taken to locationr RETUEWN to return
to The caller, as nothing more needs to be done. If pclling was
not in progress, it must be initiated, amd contrcl fall= through
to location READO to locate an input buffer. The addr=ss of the
buffer control block is obtained from the Zata crmtrol hiock, and
the Tirst buffer is tested for the presence of a flag indicating
buffer in use (BUFFINUS). If the buffer is not ir use. a branch
is taken to location READ2. If it is in use, a loop s executed to
chain down through the buffers to find a Free on=. TIf one can not
be found, a branch is taken to location AEFEND wi“hk a valme of 43
at location CRABCODE for the abnormal end zode in: the communication
region.

78

|
i
!
:
{

At location READ2 the fiags on the newly-located buffer are
set to indicate buffer in use and buffer waiting for input
(BUFFINUS and BUFFWTIN, respectively.) Register RBUF is
incremented by 4 to point to the start of the buffer. Next, the
data event control block flags are tested for the presence of a
bit indicating write in progress (DECUFWIP). If it is in progress,
a branch is taken to location READL to put the read parameters
into a save area. If it is not in progress, the operation code
of a write initial (DECRTI) is moved into the type field of the
event control block to set the operation code for this operation.
At location READ21 the length field is set into the data event
centrol block from location DCBBUFL. The buffer address now in
register RBUF is stored into location DECAREA. The terminal list
address is moved from location DECTLIST to location DECENTRY. The
relative line number for this terminal is glso moved from the
function block at location FBRLN to the data event control block
at location DECRLN. The data event control block flags are set
to indicate read in progress. The data event control block is
cleared, and an O/S READ macro instruction is issued. After the
macro instruction is issued, polling is in progress, and a branch
is taken to location RETURN.

If, at locaticn READZ2, the line is found not to be free, a
branch is taken to location READY4 to save the current parameter
set for a later restart of the read operation. At location
READL location DECRSAVE+10 is tested for the presence of flags
indicating that a restart parameter set already exists. If it
does, there is a fatal error, and a branch is taken to location
ABEND with a value of U5 at location CRABCODE. Otherwise, the
first byte of the operation code, a hexadecimal zero. is moved
to location DECRSAVE in the restart parameter save area. The
second byte of the operation code, a read initial (DECRTI) is
moved to location DECRSAVE+1l. Likewise, the buflfecr lengiu from
TCBBUFL, the buffer address in register RBUF, the terminal polling
list address from location DECTLIST+1, and the relstive Iine
number from location ¥FBRLN are moved into respectively higher
locaetions in the parameter save area. The data event control flags
are set to indicate polling interrupte® (DECUFPIN) and a branch
taken to location RETURN to exit To the caller.

At location RETURN the program flags are tested for a bit
indicating a direct entry to the wait routine is to be taken.
If it is there, a branch is taken 4o locatiom TMSDWAIT for a
special exit. Otherwise, the fumction block entry flags are
clesred, the user's registers from Jocation FBSAVE are restored,
and a branch taken back to the user routine. At location TMSDWAIT
the register RC is loaded with a V-=Sype address constant specifying
the location TMSDWAIT, and a branch is taken using register RC.

Location PURGEl loads parametesr register 1 with a value of
56 and branches to location PURGE. Location PURGE loads register

~76-
74

RC with a V-type address constant

for TMSPURGE and branches to that

location. ILocation ABEND issues an 0/S ABEND macro instruction

specifying a user completion code

Location TMSWRDEQ is another

of T7T7T with a dump to be taken.

entry point to the TMSCSIO

routine entered from the TMSWAIT routine when the TMSWAIT routine.

finds that more than one terminal

has issued a write request at

the same time. The entry is directly from the routine TMSWAIT
and serves a function of dequeuing the already enqueued write

operation for the second terminal.

temporary addressability by using

This entry point provides
the address in register RC.

It also provides permanent addressabilility by loading the base
register, Register RB, with the value of an address constant

specifying the location TMSCSIO.
for a normal exit; addressability

The program flags are reset
to the data event control

block, the data control block, and pointers to the message address

and the message length are loaded.

is decremented by 1, and if it is
location WRITE to issue the write
waiting to write count (DECWWCNT)
block flags are reset to indicate
write, and a branch is then taken

The waiting-to-write count
not 0, a branch is taken to
for this terminal. If the
was zero, the data event control
no more functions waiting to
to location WRITE.

TMSRDRST is another entry point directly from the routine
TMSWAIT. It is similar in function to the entry point TMSWRDEQ
because it is used when the routine TMSWAIT finds that when one
function block had issued the read operation, the write was
already in Progress, and the parameters must h=-2 been saved.

When the write operation has finished, the rcutine TMSWAIT use-
this entry point to starbt up the read that was gueued at a previous
time. It provides temporary program addressability by using the
address in register RC, loads the base register RB with an address
constant specifying the address TMSCSIO, loads the pointer to both
the data event control block and the daia control block into
registers RDECB and RDCB, respectively, and branches to location
READO to set up a new read.

Location TMSCSIOR is another entry point used by TMSWAIT
when the end-of-transmission routines indicate an I/0 error by
setting a flag in the function block (FBXMTERR). This routine
also establishes temporary amnd permanent addressability and
loads the pointers to both the data event control block and the
dota control block into registers RDECB and RDCB, respectively.
Tt then clears the function block event control block to prevent
dispatch the next time TMSWAIT is entered, and then tests to find
which operation resulted in a permanent I/0 error. If it was a
write operation, a branch is taken directly to location WRITE1l
to reissue the write. At this point the data event control block
still contains the information it had when the write was issued.
If the operation was a read rather than a write, the sense byte
at location DECSENSQO is tested for indications that the error was

77
¢

PR

timeout, lost data, or intervention required. If it was any of
these, special processing 1is needed., so a branch 1is taken to
location CSIOERR1l. If it was not one of these, a read retry
operation code 1s moved into location DECTYPE+l. A buffer address
is loaded into register RBUF from location DECAREA, and a branch
is taken to location READ21 to reinitialize the read operation
for a read retry.

At location CSIOERR1 the type field of the data event control
block is tested for a bit indicating multiple terminals on this
line. If there are not multiple terminals, a branch is taken
to location CSIOERRZ to skip the following code. If there are
multiple terminals, the active polling count is loaded into
register RWORKl, decremented by 1, and restored. The address
in pointer is updated to correspond to the terminal list entry
that was last being polled, and a write positive acknowledge
operation is issued to the terminal. The write positive acknowl-
edge is tested for successful completion, and if it was not
successful, the operation is retried 10 times. If it was
successful, a branch is taken to locaticn CSIOER12.

At location CSIOER12 an O/S WAIT macro instruction is issued
to wait for the completion of this write positive acknowledge.
Rather than exitirsg to the routine TMSWAIT, a wait is issued heve
"+ 2ause the monit. system rmust remain in control at this time.
-ontrol then fall .ough to luzation CSIOERRZ2 where the read-in-
rsre. ess and wrilte-in-progress are turned off. A cumulative
length counter is cleared and the buffer address obtained from
location DECAREA. The buffer is released, and message pointers
are set up in register RLNTH and RPTR. The read and write operation
flags at location FBRWOP are set to indicate a write operation
with pre-erase, carriage return before write, and carriage return
after write (FBRWRITE, FBRWPE, FBRWCRBW, and FBRWCRAW). A branch
is then taken to location WRITE2 %o issue a system message to the
screen in question, indicating = p=rmanent uncorrectable I/0 error
and requesting the reissuance cf tie last message.

s
76

4.6 TMSGMFM Module

The function of TMSGMFM is to obtain or free main. storage
upon request of a user program. The routine will either obtain
a block of storage and append it to the storage chain in the
Function Block (FEBLKCHN), or it will free a specified block
of storage previously obtained by a TMSGETM and update the
storage chain appropriately.

Upon entry, TMSGMFM saves the caliling program's registers
in a temporary save area. Then immediately upon location of
the Function Block, the registers are moved to the FBSAVE area.
Next, the GMFM entry flag is set in the FB, and register 1
(RP1) is tested for a zero condition. If register 1 contains
zero, the intended operation is a. GETMAIN, and the requested
size is in register @#. If register 1 is non-zero, the intended
operation is a FREEMAIN, and register 1 contains the address
of the area to be freed.

The TMSGETM routine first checks to see if return with a
condition code is requested. If yes, a special return flag is
set on. The routine then bumps the requested GETMAIN size by 8
bytes to cover the storage chain and issues & standard condition-
al GETMAIN. If the GETMAIN was successful, the size of the
block is stored in the second word of the area, and the previous
last entry on the storage chain (FBBLKCHN) is stored in the
first word of the area. The address of the newly obtained
storage block is then loaded into FBBLKCHN. The address of the
first byte available to the user (i.e., the first byte following
the 8 byte storage chain) is loaded into register 1, and control
is returned to the user.

In returning to the user who obtained the requested storage,
the GMFM entry flag is set off, the registers are restored from
the FBSAVE area, and control is returned. I1f core was not
avallable, however, two options are possible. If return is
requested, register 15 is loaded with the return code of h, and
control is returned as normal. If return is not requested,
control is passed to TMSPURGE with a return code of 8, which
will purge the user and indicate insufficient main storage left
to satisfy a TMSGETM request. —_—

Upon entry, TMSFREEM decrements the address supplied by the
user by 8 bytes. The storage chain is then searched for the
resulting address. When the block is found, it is freed, and
the storage chain is compressed, deleting the freed block. If
the address is not found in the storage chain, control is passed
to TMSPURGE with a return code of 12, which will purge the
user and indicate that the TMSFREEM request. does not specify a
legitimate gddress. Otherwise, return is returned as in TMSGETM.

L. 7 TMSGTSLE Module

TMSGTSLE is m service module of TMS designed to simulate 0/S
QISAM while saving approximately TK bytes of storage. Like
other 0/S access method modules, it is loaded by the OPEN routines
(in this case, the TMSOPEN routine) and, therefore, is passed
dynamically in and out of storage depending on usage by a user
program. Like other 0/S access method modules, it is coded in a
re—enterable fashion. The program is invoked by the use of
TMSGET, TMSSETL, or TMSESETL macro instruction.

At entry to the program, register 1 will contalin the DCB
address and a flag in the top byte to indicate GET, SETL, or
ESETL. Register O will contain data which vary depending on the
option selected.

The TMSGTSLE module has one entry point named TMSGTSLE. The
module begins with a store multiple of register 14 through 12 in
the user's save area, and then tests register 1 for a minus value
indicating SETL function. If register 1 is minus, a branch is
taken to location SETLROUT.

At SETLROUT the key address and key length specified for the
TMSSETL macro are transferred to register 2, and the DCB address
is transferred to register 3. A TM3GETM macro instruction is
then issued to obtain an area of core equal in size to the block-~
size of the file plus four hundred. These four hundred bytes
will contain a save area and work space for other routines. When
the save area is created, it is linked via standard linkages to
the user's save area, the address placed into register 13, the
FB address placed into the first word of the save area, and
register O and 1 restored from 2 and 3, respectively. The
registers O and 1 are then stored at location REGY and REGLl in the
work area, the READ macro instructions parameters moved to the
work area, and a flag set to indicate no reads as yet. A condition
code of hexadecimal 80 is stored at location ABSRDIND to be used
later in an execute of a branch on condition instruction. This
is equivalent to a condition of equal. Location REG@ + 1 is then
tested for zero. A zero here indicates that option B of TMSSETL
was requested, and location ABSRDIND is changed to indicate
unconditional branch (hex 'FO'). Next, the logical record length
and blocksize are loaded into registers 2 and 5, respectively, and
the blocking factor is computed by a divide. The result is stored
at location BLKFACT. Then the key length, blocksize, and buffer
address are loaded into registers 5, 3, and 6, respectively. If
option B was indicated, the key area is zeroed, the address is
loaded into register 9, and a branch is taken to location 21. If
option B is not selected, the address of the key (stored at REG@)
is loaded into register 11 and the key length (decremented by 1)
is used to move the key to the key area at location KEYBUMP.
Control then falls through to location L1.

-80-

o)

At Jocation L1l, the DCB address is located from REGl, and
the address of the work area (called LOCAL) is stored in a TMS-
supplied fullword at location 240 of the beginning of the DCB.
At. location RETURN, the parameter registers are stored in the work
area save area, reglster 13 is restored, and control then falls
through location OUT to a TMSRETURN macro instructicn.

If, at entry to TMSGETSLE, register 1 is not minus, the
address of the work area is obtained by loading register 10 from
the address contained in register 1 plus 2L40. TILocal addressability
of the work area (LOCAL) is established by using this address. The
top byte of register 1 is then tested for the presence of a
hexadecimal 40. If it is not present, 2 branch is taken to the
ESETL routine at location ESETLROU. If present, GET is indicated
and a branch is taken to location READOUT.

At location ESETLROU, the save area chain is changed to
indicate the last save area, the work ares is freed by issuing
a TMSFRERM macro instruction, and a branch is taken to location
OUT for a return to the user.

At location READOUT the parameter registers are loaded from
the work area save area where they were stored @t the end of the
SETI, routine. The read indicator at location RDIND is tested for
a hex 'Ol' to indicate if a read has been issued or if one needs
to be. If location RDIND equals hex '0l', a branch is taken to
the routine to locate the next record at location RECFND. If
not, a READ macro instruction is issued and tested for completion
with a WAIT macro instruction. A normal completion is tested by
masking apprcpriate bits in the DECM. If completion is normal,
control is passed to RECFND. If not, control passes to IDERRORS
which loads a completion .code, and the address of a message and
returns to the user.

At location RECFND the key length, or partial key length, is

obtained from the work area and used to compare the key to the

first key in the block read-in. The code at location ABSRDIND

is then used as a branch code. If the B option is specified in

the TMSSETL macro, ABSRDIND always indicates a branch to location ;
MATCH. If option K or KC is selected, ABSRDIND indicates branch 4
only on equal condition. If the key is not the same, register 4, %
containing the number of records per block, is decremented by one 4
and tested for zero. A zero here indicates record not found and z
an error condition code and message are returned to the user. If 3
register 4 is not zero, the record length is added to the current 3
record pointer to point to the next record, and & branch is taken 1
to location EXE to re-enter the loop to locate the proper record. A

If control is passed to location MATCH, then the proper record 3
has been found. Thus, the key no 1onger matters and so is set. to
hexadecimal F's. ILikewise, ABSRDIND is set to 'F@' to indicate
unconditional branch. Control will now pass directly to MATCH upon ;

e et s P

-81~

9

entry if GET is specified. The record heing pointed to is then
tested for MATCH against a key of hex F's to see if this is the
end—-of-file. If it is, the address of the users EODAD routine

is loaded and a return made to that peint. If it does not iIndicate
end-of-file, register 4 is tested to see if it is the last record
in the buffer. If not, register 1 is loaded from register 6 to
give the record address to the user, register. 6 incremented to
point to the next record for the next issuance of the TMSGET macro
instruction, and the count of records remaining in register 4
decremented by one. At CLOUT register 1 is spaced by 16 to
account for the block header, registers ¢ and 1 stored at the
sppropriate place in the save area, and control passed to RETURN
to return to the user.

If the count of remaining records indicates the next reccrd
in the buffer is the last, control is passed to location LASTREC.
Here, location RDIND is set to zeros to indicate that a read will
be needed next time, and the key is obtained for the READ by
picking up the last key in the present block and adding one to it.
The number of records remaining is reset to the blocking factor,
the pointer to the current record loaded, and the address in
register 6 set to the beginning of the buffer. A branch is then
taken to location CLOUT to store the registers and return to the
user.

4.8 TMSHSKP Module

The TMSHSKP module begins with a standard 0/S regigter save
sequence. A save area within the housekeep routine is linked to
the save area provided by the O/S monitor. The routine then issues
the message:

TMSO00I ILR TERMINAL MONITOR SYSTEM INITIALIZING
to the computer operator.

The next major operation is the loading of a predetermined
subset of access method modules into main storage where they will
reside for the duration of TMS operation. The list of modules to
be loaded is given as a BLDL list labeled ILOADMODS. The first
half of the list is a binary count of the number of entries in
the list. This count must be altered if the number of entries in
the 1list is changed. The standard list of I/0 modules is given as
Appendix 4. The load process is initiated by issuing a BLDL
specifying the load list as parameter. A completion code of 4 from
the BIDL macro indicates that one or more modules are missing. The
routine beginning at label MISSING loops “*»r -9h the BLDL list,
testing for a zero record field which ..» .« . a missing module.
For each missing module encountered, the mos: ze:

TMSO00II T™S INITTALIZING ERROR. UNABLE TO I iCATE MODULE XxXXXXXXX

is issued to the computer operator (xxxxxxxx% represents the name of
the missing module). When this loop is complete, the program is ab-
normally terminated with a user code of 001. A return code of 8 from

52

80

FIG. L
STRUCTURE OF TMSGTSLE WORKAREA (1 PER QISAM DCB)

BLOCKSIZE)

o 1
s T SAVEAREA =
T2 2~ READLI ~
100 KEYBUMP -~
Van
356 WORK
360 REGY
364 REG1
368 KEYLENG]
372 BLKFACT E
376 ABSRDIND 3718 (unused) ,
380 \f: BUFFER - 4
NAME BYTES USE 1
SAVEAREA T2 SAVEAREA FOR TMSGTSLE 5
READL1 28 AREA FOR LIST FROM PARAMETERS FOR READ ;
KEYBUMP 256 AREA FOR KEY . 3
WORK 4 WORK AREA FOR MASKING REGISTER CONTENTS i
REG® 4 ADDRESS OF KBEY + LENGTH FOR TYPES K, KC, SETL .
REGL 4 ADDRESS OF DCB FOR THIS WORKAREA :
KEYLENG 4 "OT USED AT PRESENT :
BLKFACT I “CKING FACTOR FOR THIS FILE :
ABSRDIND INDICATOR FOR BRANCH INSTRUCTIONS (SEE j
DOCUMENTATION) |
BUFFER (VARTABLE, EQUALS INPUT AREA FOR ONE BLOCK FROM FILE |
]
15,
i

&1

the BIDL macro indicates an I/O error occurred while attempting
to read the module directory. Control is passed to the code

Zabeled TOERROR which writes the message:
TuSN02T TMS INITIALIZING ERROR. I/0 ERROR WHILE READTING MODULE

. FETTORY

=+ :he computer. operator. The program is then abnormally terminatec

v ik a user code of 002. A completion code of O from the BLDL macrc
1icates the successful location of all routines. Cozrol passes
.+ +he code at label LOAD which first loops through th= E.DL list
. then issues a LOAD DE call for every entry in the Iist:.

The next major operation is to establish the ccrmmum: :gition

o

-zzion (CR). TFor the purposes of this code, the lengtk «f ~he
-munication region to be obtained is represented by <. = velue
CRLENGTH, defined in the CR dsect. An R-type GEITMAI. wmmcro is

s: 2ed to obtain the core. The core is cleared withk a gir. .= XC
.ruction (which implies a CR length of 256 bytes or lessz). The
ir2ss of this newly obtained area is placed in RCR, umd zu.ressa-
ity is established using the CR dsect. Finally, tke emci-af-

-zzue flag is turned on in CRQFLAGS.

In addition to data sets for each communication line TMS also
responsible for providing three other data sets: ths -~Tstem
srary, the snap, and the system log data sets. The kousekeep
atine contains the skeleton DCB's for these cata sstz which ar=
izeled LIBDCB, SNPDCB, and LOGDCB, respectively. Trf= combined
sngth of the three DCB skeletons is represented by the value of
" BLGTHS, which is used to provide the length specificstion for
~» R-type GETMAIN macro instruction. If the core is obtained, a
op is employed to move the skeletons into upper corz & double-
wprd at a time. Space is provided at label OPENLIST for pointers
¢~ the three DCB's mentioned above plus up to 100 poimters to line
I.3's. The pointers to the library, snap, and log DCB's are
-dated within this open list and also placed in their proper
vc:gitions in the CR. Register RPTR is initialized to painmit to the
zrrent last entry of the open list and will be updated as line DCB

zddresses are added to it.

The most important operation of the housekeep rouzZme is to
set up terminal control blocks and buffers in main stor=ge for
use by the TMS execution-time routines. Both the. skel=tons for
these terminal control blocks and certain parameters =re supplied
by the TMSBLOCK module. The combined length of all terminal contzol
block skeletons is obtained via the entry point TMSBLGTH. As
before, this length is used in an R-type GETMATIN macro irstructicm.
Once the core is obtained, the start of the combined terrdinal
block skeletons is located via entry point TMSBLOCK, amd —the
“~rrminal block skeletons are moved into upper nain stor=e= a
ubleword at a time. The rest of the processinz consiztsn of
-oceeding through the wvarious chains de. ned ir th2» tesminal ccztrol

-

ERIC 8-

block skeletons and updating all addr=sses to polnt to the new
copy of terminal conirol block skeletons in upper main storage.
This means tkat to every address must be added an increment
representing the difference between the copy of the skeletcms

in upper core and the original location of the skelebons. This
increment is computed amd placed in the register RIKCR. The
incrementing process begins by Tinding the original address of
the l=st FB in the chain via the entry point TMSLSTFB in module
TMSBLOCK. This address is incremented and stored in the CRFBCHN
word in the ~ommunication region. 3irce this now gives the
address of a new FB, the various pcinters within the FB are
*neremented. Az each new FB is encountered, a halfword in the

CR, CRWLX is - ..remented to accumulate a count of the number of
TB's in the sy=izm. This will be used later in setting up the
wait list. T%& zmrocessimg of all FB's 1s assured by following
the chain of "2'= down to its cuaclusion. Whenever we process the
first FB for . —~articular commucication line, control is passed to
the code, stz .ag at lebel TBLOCKS. which processes the newly
located DECB. Tris ccde also increments register RLCT by four to
increment the zommt oF communicaticn lines in the system. From
here control masses to code for processing the newly located DCB
end appending -he DCB address to the vector of DCB addresses in
OPENLIST. Es=h =ddress is inserted by turning off the end-of-list
bit in the preceding fullword, inserting the address in the
current fullsword., and turning on the end-of-list bit in the same
fullword. The -~ther major operation is to move the DCBBUFCB
pointer contemts into the associated communicating line DECB and
reset DCBBUFCBE to x'000001'. This is done to prevent the BTAM
dynamic buffering module IGGO19MS, which is never needed, from
being loaded by the OPEN routine. Following DCB processing, contrcl
falls through to process those buffers associated with the DCB by
updating the buffer chaining addresses. Control is then returned
to the middle of TB processing at location TBLOCK2. Processing
of FB's coniinues as described above until the list FB is processed.
Control is then passed to location WLIST.

The next major Jjob to be done is to prepare the initial @
configuration of the wait list and to load the '"phantom job". :
Because they are highly interdependent, these tasks are performed
together.. First, the length of the list must be determined. The
accumulated count of FBR's is obtained from CRWLX. This count is
incremented by 2: one for the console wait list entry and one for
the queuing/wait list entry. The resulting count is multiplied by
four to give a result in bytes, which is then incremented by the
contents of register RLCT, representing the number of bytes needed 1
for pointers to the communication line event control blocks. The ‘
final tol=l is stored in CRWLX to serve as the wait list offset.
This totaZ is then multiplied by two to obtain the overall length
of +he wa® list and used in an R-type GETMAIN macro instruction. '
L sy iz prrformed to zero out the core so cbtained a doubleword {
Eie “ums . . BLDL mecro instruction is issued to locate the

directary entry of thz "phantom job" module TMSPJOB. In case of

-error Guring The BLDL., branches are taken back to the code that

loaded the I/ access method modules in order to report the error
to th= cperatcr sznd abnormzlly terminate the program. If the BLDL
is suczcessful, = ILOAD DE macro instruction is issued to bring the
"phantom job" #mto core. A loop is then performed to move the line
event control mlicck aidresses into their section of the wait list
and to s~t a ¥_=g in the corresponding wait list extension locations
in order %o shcw tha' thsy represent line event control blocks,

not terminal ews=nt comtrcecl blocks. This flag pattzrn consists of
all one wits in The F=rst byte and all zero bits in the remaining
three bytes of “he fullwmrd.

Zx= last cperatdion is to proceed through the entire chain of
ZTunctiicia blocks setbtinmg I wvarious locations im the FBSAVE area and
enterimg a pointer ftw ==t FBECB in the wait l1ist with the
corresponding FB adizr=ss In the wait list extersion. The completion
bit also is set om Iz tke FBECB to ready the DB for dispatching when
execu=ior of th= syse== begins. At the end of this loop, CRWLLAST
will e polnting to ths "last entry in the wait list, and the end-
Sf-1ist bit will =75 = set on for the last entry in the wait list.
The ef¥ect of all tifiz iz to prepare all function blocks to begin
execiion with ~egizwers 12 (RB), 14 (RR), and 15 (RC) pointing
to tm= start of the "phamrtom job", register 10 (RCR) pointing to
the -~ommunicatior region :and register 11 (RFB) pointing to the
fun-~t " on block. This is -the initial execution state for every
terzinal in the system.

"he next operation to be performed is the OPENing of all DCB's
curr=atly defined irn the system, coupled with a certain amount
of 2:3t-0OPEN processing. The open parameter list labeled OPENLIST
has :-een completely mrepared by previous code. All that is
necessary to open DCB's in parallel is to issue the OPEN macro
ims>ruction, with this 13st as the parameter. Post-OPEN processing
cons>sts of a loop to make one more pass through the chain of
all F3"s. For every B that is. the first on the chain on its
comrirrication line, code is entered to both move the buffer
pointer from the DECEB to the DCBBUFCB pointer and clear the DECB for
use Dy the system. Tiais reverses the earlier action which prevented
the ZTAM dynamic buffering module from being loaded inadvertently
at OEEN time. The remainder of the process is executed only if
the FB represents a terminal on a multi-d@rop line. ¥n this case
the BTAM operation "send ack" is initiated to send an EOT character
down the lim= to initialize the remote devices (in the present
case, the Ssmders displays). If for any reason the attempt to
issue the BTAM write operation is not successful, the program
abnormelly t=rminates with the user code of 003, which indicates
further difficulty i: the iine. The program waits for a positive
responze from this cmeraticn before proceeding on to the next FB.

The final operstions zre to inform the operator that the

84
-86-

terminal monitor system is beginnir: its normal 2peration and to
transfer zonirol to the executor porwicn ¢ the system, The
message:

TMSO003I TLR TERMINAL MONITOR SYSTE™ STARTED

is writt=—m on the comsole tyvewritar. The commumiccs.: on Iesizm
address is placed in register 1 (=f1). The poimter . : the "ML
library DCB is placed in the ¥CT parzmmeter list., =u! th=s XTTL
macro instruction is invcked. Tixis exit from TMSESID W causes tThe
TMSEXEC load module to overlzy Iir~ectly the houseke :p routine and
begin execution.

k.o TMSOP=H Module

TMSOZEN is a module of TMS cesignmed to construrct and spen a
user datz comtrol block with only a knowledge of thz data set
nzme. Tr=refore, TMSOPEN differs from 0/S standards which Tecuire
a DD name, the access method, and the MACE= paramets=rr of == DCB.

The module begins with a stemderd stcre multipls irzo the
user's supply SAVE area. The address of the user's Tunction block
is obtain=d from the first word of his save area, whith provides
addressability to his FB. The store registers are th=n zorfed
from his save area into location FBSAVE, and the user®s save
area is thereby freed for use as the save area of the THSOEEN
routine. The entry point to the module is obtaimed from register
RC, loaded into register RB, and used to provide addresszbility
for the programmer. The address of the commnication region 1s
loaded imto register RCR from location FBCE and used ©o provide
addressability for the communication. TRegister RP1 is loaded into
register T=ARM and used %o provide addressability for the remote
parameter 1ist. At this point, the task is to search for a
catalog emtry for the data set nzmes specified Dy the user. The
location DSNAME is cleared to blanks, and the aiddress of the data
set neme is obtained from the parameter area. Likewise, the
length of the data set name is .cbtained from th= parameter area.
These two values are loaded into registers RPTE and register RCTR,
respectively. If the specified access method I= EXCP with appendages
required, a special branch is taken to locatiom CSEARCHE.. At this
point, the data set name and the dats set length addresses sre
loaded from special addresses im the parameter area intc the proper
registers.

Control then falls through tn loestion CSEERCHB, where the
length of the data set name is tested for validEty. If Zke length
is zero or negative, a branch is #aken to location DISASTER. Other-
wise, the length is used in an eX=zwte instruction to mrwe the
data set name to the parameter amrea for the catalog search. The
parameter=s specified by the users are tested to se= if k= data

set is guslified by a user name. If not, a branch is t==m to
location CSEARCH1. If it is to & gualified, a period is moved
into the first [r=tion after ti= data set name., amd the Tame

currentiy in the user's function block is aprended to the 3ata
set name. Ccntrol then passes to location CEEARCH2. At -ocation

RN

ERIC er
RIC | e

(C7ZARCH1 wi1e pmram=ter flags are Tewted to s=ze if —~ke user wants
tu gqualifs <he === ==t name by tF: "unctiom block number. If
mut, comtrol is mussel to locatic IBEARCH2. If It is To be
gu=zlified. the —Tzracrers'.FB' ar= noved to the first positions
eter the #ata ==t name. Then, ¥ = termwinal number from location
FRTERMNO i= move:d To the first rposiition following the characters
T IRB', Corsrol tkem Falls througk tc location CSEARCHE2.

At loratic: JEZIRCH2, a catalong sesrch is deme by issuing an
3/ LOCATE macyrn I—srruction speciyirng = pzrameter list called
BYTAME. The ressulizs of this macrc imstraction are tested wupon
resurn by = Draz:zch tzihle. If the re%mrn code is zero, then a
cz=zalog encry hms De==m found so a br.amch is taken to location
CBZ’ARCH3. BrancZes =z—e takem to lonszzions DISASTER or CMISSING
if the correct woizms= was mot found, ‘he entry was ot found, the
Fimzl entry was mpt the d=zta set nalll=. or various c=er error
cczditions exiss. £ Jocation CSEE(T=3, a search = made to see
th=st all volumes for this data set z.re mounted. The location
TITTPTR iz tested tw mee if a pointer to the tas . Z/D table
alr=ady exists. If not, this addr=ss is found t:- the use of an
0,8 EXTRACT macrs imstruction. Comi—=l then Tal ' s through to
locatian CEZARCHY wi=re the volume c:mt is loadei from the catalog
entry at lozstion WOEKAREA. A pointe is loaded to poirt to the
first volume entry, =m3 another poinwer is set to point to the
first DD entry. Ths=s= pointers are ZPTR and RTICT, =e=spectively.
Since, under the Terwinal Monitor Sy=tem, DD names === mames to
correspond to tize veTume they specify, DD name ILRC- will specify
a volume ITROL. A m=tch merely has to be done betws==n the wvolume
name specified in th= catalog and t&== DD name currenily pointed
to by register FTIOT. Once the volime serial number matches the
DD name, controll is passed to lovsSion CSEARCHTY. JIf the volume
serial nunmber do=s not match the TD name, the register RTIOT is
bumped to poinmt to the next DD entyyr. A fuliword of kilnary zeros
at the address currently pointed te Ty register RTIOT imdicates
that an ertry does mot exist. The==fizre, there is n.. ID card
glven for the wolume Tequested. % branch is then tEs=m to
location VMISSING ®o indicate Thetr this volume is go==. If a DD
entry exists, ont=cl is pas==& o locmtion CBEARCH6:To try
mgain o matich the wrlume seriz) -number to e DD neme.

At location CSEARCHT, =fter & check to see thaf the volume
is mounted prom=<y., = test is m=de, through the use of an 0/S
OBTETN macro Ir=crwstiom, Tor zhe =xistence of a data set control
block with the mam= specified by tizs user. L& branch is tmken using
the return cod=, #z =m index to a —ranch table, to-=ither location
CSEARCE if the d=te ==t camtrol block iz foumd, or veriously, to
locations DISAZTER o CMISSING, dep=nding upon the 21774 conditions.
At location CSEARCH the pointer to the volume entr- in the catalog
enzry is bumned to poimi to the rexs volume =ntry. ‘wgister RCTR.
ccatzining the number of volume entwies, is decrem=:x=d by one,
arxd a branck is tzken to location CSEARCHS to estai _ish that this

&5
-88-

wvolume is mountel . rze the volume count im register RCTE becomes
zero, control pesss=s Torough to a section of code which will com-
pute the requ-red lengths ci the data controil block based upon

the access mezhod —equ=sted. Tke first test is to see i1f the access
method reques—sed wms EACP. This is dore by testing location

PWMACKE in the parzmeter ares supplied by the user for the pre-

sence of a he-adecimz 80 (P3ITE). If this bit is not present, a
branch is taken tc location FORMDC3L to tezt for the next access
method, If i= is -cre==nt, register IWORKL is loaded with a value of
56 for the 52 bytez. for the EXCP acrms=ss method data control block
plus 4 bytes for ti== dsta comtrel block chiainword regquired by the
Terminial Monitor System. Register RWORKZ is cleared to zero, and
location PMACRF is heswed to see if =ppendages have been reguested
for this access methec=. If not, a branch is taken to location
FORMDCB5 to ot=air the core for the DCB. If appendages have been
requested, a lsag=h <2 20 is added to the walue in register RWORK1,
and a branch is taksr to location FORMIIBES.

At location TOEMIIBl, locztion PDSORG is the remote parameter
area is tested for whe presence of a hezadecimal 80 (PBITIS) to
indicate tThe request for the index sequential acecess method. If
this bit is not present, a branch is taiken %to location FORMDCB2
to test for the nez sccess method. IF the imdex sequential
access method has T=en requesied, r=gister BWORK1l is loaded with
a vaiune of 24k for the 236 bytes reguired for the index sequential
access method, plus & Sytes for the chainword, plus L bytes used
by the Termimzl Moritor System module TMSGISLE. Register RWORK?2
is loaded wit: a velne of 16 for the negative offset of the DCB.

A branch is then taker to location FORMDCES5 to obtain the core
for this DCB.

At loecmt. . or: FOEMBCB2, PUSORG is te=st=d for the presence of =z
hexadecimelr 29 (PBITDA) indicating the dirsct ace=ss method. If
this bit is nct presem:, a branch is taksxx teo location FORMDCB3.
IF the direct uscrcess method has beer reguested, register WORKIL
iz lozded with a walm of 92, regist=r TIWORKZ2 is loaded with a
velwe of 16, =ad a Bremch is taken o loc=tiom FORMDCBS. At
locetion FORMDCB3, TDSCRG is tested For thw presence of a hexa-
decin=]l. ~; (PEITS) iIndfrcating that tk= phgsical sequential access
methio€ has besn re~=es=sd. If this BEE is not pre=sent, a branch
is +taken to locaticn DEISASTER, since 211 awrcess methods have now
been Fested. If this it is present, register RWORK1 is loaded
with & valu= of 92, and register RWORK2 i=s cleared to zero. Con-
trol then fzlls through to location FORMDRCES.

4% location VORMOTES regi.cter BPC iz losded fyom register :
FWORK1l, amd ‘then an 0/% ZETMATIN mac—< Instruction is issued 4
sp=2ifying that th= lensth of core <z be obtaimed Zs now in regis-
w=r 0. The address of the core obtained is to be placed intc loca- p
tion CUTZEADDR. Upon the return frcam this macro instruction, the E

87

—89-

et b b AR bt o= e

return cods in register RC is tested for a successful completion,
and if register RC is not ZerD, @ branch is taken to location
NOCOREL to indicate core not availsble. Control passing to the
next instrmction implies succsssfuil completion, and register RDCB
is lozded with the =ddress at location COREADDR. Register RWORK1
is stored at location DCBELM:-W is case the lepgth of this data
control block could be wsed in ar emergency flush. Register
RWORK1 is incremented by 1 and used in an execute instruction to
clezr the cbtained core to zero. From location FBDCBCHN the
pointer to the next data control block is moved into the chailn
element word poimted to by register RDCB. The negative offset in
register RWORK2 is placed at the top byte of the word pointed to
by register EDCB. Register RDCB is then placed at location
FBDCBCHN, and the chaining of this DCB with the other DCBs connect-
ed to this function block 1s complete. Once the data control
block offset has been subitracted from it, register RDCB is used
to provide addressability to the data control block through an 0/S
DCBD macro fmstruction.

At this poiImt it is necessary to obtain the Job. File Control
Block (JFCB} for the volume or volumes upon which the data set
resides,and 0/S GETMAIN macro instruction is issued specifying a
length value of 46L4. This iIs to test whether enough core remains
for the RDIFCB. Upon return from the GETMAIN, register RC is
tested for zero, which iIndicates normal completion of the GETMATH
macro instruction. IFf register RC is not zero, the GETMAIN is
not successful, and & brzmch is taken to location WOCORE3. TIf the

SETMAIN is successful., s FREEMAIN macro .instruction is issued to
free the core obtaimned@ Ty the GETMAIN. The Data Set Control
Elock for the first woimme of the data set then is reobtained using

an 0/S OBTAIN macro imstrmuction. If this macro instruction is

not successful, & bramch is taken tov location DISASTER. If it is
successful, a dummy D n&Eme is constiucted at location DSVOLS first
by clearing this loczticn to blanks and then by moving in the
first wvolume mumber from location VOLUME. Location WORKAREA is
tested to see if there is more than one volume. If there is only
one volume, & branch is taken to location FNDJFCB1l to find the Job
file control block. TIf there is more than one volume, location
DSVOLS plus b4 is shifted over one byte so that the volume number
of the ney: volume upon which this data set resides may be
appended te this volume number (i.e., if the data set is resident
on the velmmes ITRO3 snd ITRO0S5, the DD name constructed would be
TLR35). This is accomplished by obtaining the number of volumes
and looping through to @ppend the next volume number until the
count of volumes im register RC is diminished to zero. Control
then falls through to location FNDJFCB1.

At Jocation FNDJFCBl the DD name at location DSVOLS is moved
to location DCBDDNAM in +he data control block. The address of
the exit list and the open flags are placed into the DCB, and the

RS

~90-

DCB address is placed into location OPENPARM. The top byte of
location OPENPARM is set to a hexadecimal 80, indicating the end
of the open list. An RDJFCB macro instruction has been issued to
bring the Job File Control Block for this specified DD name into
core a. an addressable location. Addressability to the Data Set
Control Block (DSCB) and the Job File Control Block (JFCB) is then
provided through the use of USING assembler instructions. Next,
the data set name is moved into the JFCB, and if the data set is
qualified, a branch is taken into location SETJFCBl. If it is
not qualified, location JFCBIND2 is set to indicate a shared data
set (JFCBISHR), and a branch is taken to location SETJFCB2. At
location SETJFCBl1, JFCBIND2 is set to indicate an old data set
(JFCBIOLD); control then falls through to location SETJFCB2.

At location SETJFCB2, the data set organization indicator
is moved from location PDSORG in the user's supply parameter
area to location JFCBSORG in the Job File Control Block. The
volume count of this data set is loaded into register RCTR from
location WORKAREA in the DSCB for this data set. This number is
stored both in location JFCBNVOL, which holds the number of volume
serial numbers, and in location JFCBVICT. Using the count in
register RCTR, the volume serial numbers are then moved from
location WORKAREA + 2 in the data set control block work area to
location JFCBVOLS by Ioping through decrementing register RCTR
until register RCTR is zero. The key length for the data set is
then moved from location DSIKEYIL in the DSCB to location DCBKEYLE
in the data control block. The data set organization is likewise
moved into the data control block at location DCBDSORG, and the end
of the data address is moved from the parameter area from location
PEODAD to the data control block at location DCBEODAD. The record
format for this data set is moved from location DS1RECFM in the
Data Set Control Block to location DCBRECFM in the data control
block. The data set organization specified in the user's parameter
area at location PDSORG is tested for an index sequential data set
(PBITIS). If this is not an index sequential data set, a branch is
taken to location SETDCBO. If it is, location PMACRF + 1
in the user's supply parameter area is tested to see if the TMSGTSLE
flag is set (a hexadecimal 80). If it is not set, a branch is taken
to location SETDCBO. The setting of this flag means that the user
is going to employ the queued index sequential access method, which
requires the loading of the service module TMSGTSLE. If the flag
is set, location PMACRF (the user's macro instruction references)
is moved to location DCBMACR in a data control block. Location
DCBMACR + 1 is ANDED with a hexadecimal value of TF to turn off the
TMSGTSLE flag in the data control block. This flag is used only by
the TMSOPEN routine. A standard linkage is then set up to the routine
TMSPLOAD with register 1 pointing to a location containing the name
TMSGTSLE. Before a linkage to this routine is established, the
registers saved by TMSOPEN at location FBSAVE are temporarily stored
in location TEMPSAVE. Then a standard BALR instruction is issued.
Upon return from the TMSPLOAD routine, the registers at location

.89

TEMPSAVE are restored to location FBSAVE, and the success or failure
of the lcoading of the routine TMSGTSLE is determined by testing
register RC for the presence of a zero. If register RC is not

zero, the program was not loaded successfully, and a branch is

taken to location NOCORE3. If it is successfully loaded, the entry
point of the routine currently in register RPO is stored at

location CRGTSLE in the communication region. A branch is taken

to location SETDCB@ + 6 to avoid repeating the macro reference
field's move to the data control block.

At location SETDCBO the macro instruction reference parameter,
which the user supplied at location PMACRF in the parameter area,
is moved to location DCBMACR in the data control block. Location
PMACRF is tested for the presence of a bit indicating EXCP access
method (PBITE). If it is present, a branch is taken to location
SETDCB2. Otherwise, the option codes at location POPTCD are moved
to location DCBOPTCD from the user's parameter area to the data
control block. ILikewise, the synad routine address supplied by
the user at location PSYNAD is moved to location DCBSYNAD. If this
is not an index sequential data set, a branch is taken to location
SETDCB1. If i. is an index sequential data set, the numeric
portion of location PARMFLGS is moved to location DCBMAC for the
index sequential macro instruction reference extension. Then, the
relative key position is moved from location DS1RELKP in the Data
Set Control Block to location DCBRKPN in the Data Control Block.

At location SETDCB1 the blocksize is moved from location DS1BLKL
to location DCBBLKSI (all locations starting with the prefix DSl
indicate that this location is in the Data Set Control Block;
likewise, locations starting with the prefix DCB indicate that this
location is in the Data Control Block). The data set organization
at location PDSORG is tested for a bit indicating a direct access
data set (PBITDA). If this is a direct access data set, a branch
is taken to location SETDCB3. If not, the logical record length is
moved from location DS1LRECL to location DCBLRECL, and then a
branch is taken to location SETDCB. At location SETDCB2, location
PMACRF is tested for a bit indicating that appendages are required

. with the EXCP access method (PBITAPP). If appendages are not
required, and this bit is not present, a branch is tsken to
location SETDCB3. Otherwise, location POPTCD specifying the option
code is moved to location DCBOPTCD; likewise, the appendage
identification codes are moved from location PAPPIDS to location
DCBEOEA. Control then falls through to location SETDCB3.

Here location PMACRF is tested again to see if the EXCP access
method is specified and, if so, a branch is taken to location
OPEN. Otherwise, location PARMFLGS is tested to see if the user
wants to prevent buffer generation (PNOBUFFS). If the user does
want buffer generation prevented, a branch is taken to location
BUFFERL. Otherwise, the blocksize for this data set is loaded into
register RWORK1l from location DCBBLKSI. The quantity now in

90

¢

-92-

register BWORK1 is made into an integral number of doublewords.

by appropriate right and left shifts. Location PDSORG is tested
for a bit indicating an index sequential data set. If this is

not an index sequential data set, a branch is taken to location
BUFFERL. If it is an index sequential data set, the key length of
the record is obtained. Ten bytes for the length field and

15 bytes for the padding are added to the key length and then
rounded down to a multiple of 8. This quantity is added to

the basic buffer length in register RWORK1l, and control falls
through to location BUFFER1. At location BUFFERI1, the buffer
length currently in register RWORK1 is stored at location DCBBUFL.
The quentity in register RWORK1 is incremented by 8 bytes for the
buffer control block, snd buffer aligrment is tested by examining
location DCBBFLAN to see if the user kas specified fullword,
rather than doubleword alignment. If the user has not specified
fullword alignment, a branch is taken to location BUFFER2. If

he did specify fullword alignment, register RWORK1l is again
incremented by 8. Control then falls through to location BUFFER2
where the buffer size is transferred to register RPO, and a
GETMAIN macro instruction is issued specifying that this length be
obtained. The success of this GETMAIN is measured by testing reg-
ister RC for a return code of zero. If this register does not
contain zero, a branch is tsken to location NOCORE3. If the
GETMAIN was successful, the address of the core obtained is stored
at location DCBBUFCB. and both the buffer control block and the
pointer field of the first buffer ar= cleared to zeros. A buffer
count of 1 is placed in both the buffer control block and in the
data control block at location DCBBUFNO. The buffer length is
moved from location DCBBUFL to the buffer control block. The
address of the first available byte past the buffer control block
is obtained and put into register RWORK1l. Once again, buffer
alignment is tested, and if fullword alignment is not requested,

a branch is taken to location BUFFER3. If it is requested, the
address of the first available byte is incremented by four to point
to the first fullword past the buffer control block that is not
also doubleword alignment. Control then falls through to location
BUFFER3 where the address of the first available byte is stored,
not only in the first fullword of the buffer control block, but
also at location FBSAVE plus 8 corresponding to register RPO. A
branch is then taken to location OPEN. If, at location BUFFERL,
the user specifies prevention of the buffer generation, a
hexadecimal 0l is moved to location DCBBUFCB + 3 to indicate no
buffers. Control then falls through to location OPEN where a
GETMAIN is issued to see if enough remains for the resident OPENJ
processing routines. The normal completion of these GETMAINs

is determined by testing for the presence of a O return code in
register RC. If the return code is not 0, a branch is taken to
location NOCORE3. If it was successful, a FREEMAIN macro instruc-
tion is issued to release the core obtained by the GETMAIN, and
then an OPEN macro instruction type J is issued. On return from

91

—93-

e i)

this macro instruction, DCBOFLGS is tested for -a hexadecimel 10,
which indicates that the OPEN was unsuccessful. If there is no
hexadecimal 10, a branch is taken to location DISASTER to indicate
the failure of the OPEN. However, if it was successful, register
RDCB containing the address of the data control block is stored

at location FBSAVE + 12 corresponding to register RP1. Location
PMACRT + 1 is tested for a hexadecimal 80, which indicates that
this data control block is for the gueued index sequential access
method. If this bit is not present, a branch is tszken to location
RETURN. If it is present, the top bit of location DCBMACRF + 1

is turned on to tell the CLOSE routines that the module TMSGTSLE
is resident and must be deleted. Control then falls through to
location RETURN, where a return code of 0 is loaded into register
RC. Control then falls through to location RETURN1l, where
register RC is stored in location FBSAVE + L4, which corresponds

to register RC. A standard return of LM and BR instructions are
used.

At location CMISSING corresponding to location VMISSING,
register RP1 is loaded with a value of 16, register RC is loaded
with a return code of L4, and a branch is taken to location PURGE.
At location NOCOREl, the core for the buffer pool must be freed.
The necessary freeing of the core for the buffer pool is done at
location NOCOREl by obtaining the pointer to the buffer pool from
location DCBBUFCB; finding from this location the number of buffers;
multiplying this number of buffers by the buffer size; testing
for fullword alignment and, if fullword alignment was specified,
adding 8 bytes; adding 8 bytes for the buffer control block; and
freeing the core of this size with the use of a FREEMAIN macro
instruction. Control then falls through to location NOCORE3,
where the DCB length is loaded from location DCBELMLN. The address
of the data control block from location FBDCBCHN, the data control
block chain, is updated by moving the current entry in the chain
to location FBDCBCHN. A FREEMAIN macro instruction is then issued
for the core held by the data control block. At location NOCOREL,
register RP1 is loaded with a wvalue of 20, register RC is loaded
with a return code of 8, and a branch is taken to location PURGE.
At location DISASTER, register RP1 is loaded with a value of 2.4,
register RC is loaded with a return code of 12, and a branch is
teken to location PURGE.

At location PURGE. location PARMFLGS is tested for a value of
hexadecimal 80, indicating that the user wants control to return
to himself with the relevant condition code should anything fail
in the TMSOPEN routine. If this bit is present, a branch is taken
to location RETURN1. Otherwise, register RC is loaded with the
entry point of the routine TMSPURGE, and a branch register instruc-
tion 1f taken on register RC.

4,10 TMSPJOB Module

The TMSPJOB module has only one entry point, and its charac-—
teristics are somewhat different from those of other entry points.
The primary distinction is that permanent addressability is set
up in register 12 (RB) prior to entry into this routine. This is
done because initial entry into this routine is not made by a
specific branch from another routine. Instead, this routine is
dispatched for this particular FB as if some third routine has
caused the posting of a wait, simulated to have occurred Jjust
before the beginning of the phantom job code.

Since the base register, the FB pointer, and the CR pointer
are all assumed to have their proper contents when entering TMSPJOB,
addressability is established immediately by means of the necessary
USING instructions. R-type GETMAIN then is issued for a T2-byte
area which will become the topmost save area for the FB pointed
to be RFB. This entire new save area is cleared, and the FB
pointer then is stored in the first word so that it may be propa-
gated to succeeding save areas by code generated by the TMSSAVE
macro instruction. The TMSCSIO macro instruction is then invoked
to write the message:

TMS100I - TMS IN OPERATION
to the terminal associated with the current FB. Control then
passes to the next block of code.

The next major section of code headed by the label LOGIN asks
for, receives, and then processes the user's identification code.
A call is first made to the console I/0 routine to issue the
nmessage:
TMS101A - WAITING FOR LOGIN
to the terminal involved. This issuance is followed immediately
by a request to read a response from the terminal. A check is
first made to see if the response is the word DISCONNECT, which
indicates that the user wishes the terminal logically disconnected
from the system. If this match is true, a branch is made to the
code at label DISCONCT which issues a WTO to write on the console
typewriter the message:
TERMINAL nn DISCONNECTED BY USER
where nn is the terminal number in ECBDIC which has been generated
by the TMSHSKP routine and placed in the function block at FBTERMNO.
The terminal disconnected flag FBDSCNCT is set on in FBFLAGS. Then
the FBECB first byte is set to all zeros, and the macro TMSWAIT
is invoked. Since there is no outstanding operation to post the
FBECB complete, this effectively puts the terminal in a permanent
wait condition. If the response from the user terminal is not the
word DISCONNECT it is assumed to be a user identification code.
The last non-blank character in the reply is found. Since this
is assumed to be the EOT character, it is set to blank in order not
to interfere with comparisons of responses which have three charac-
ters or less with the table of authorized user identification codes.
The valid user identification codes are found in the list labeled
USERLIST. The nunber of entries in this list is placed RCTC, and

33

' -95-

the address of the first entry in the list is placed RPTR. Prior
to a check of the user list, however, a pass is made down the FB
chain to see whether the user ID that has been sent back is
identical to the contents of FBNAME in any FB. If an identical
match is found, the message:

TM103T- NOT ACCEPTED NAME ALREADY IN USE :

is sent to the user termlnal, indicating that acceptance of the
user ID as supplied would result in duplicate concurrent user ID
names. A branch is then taken back to LOGIN to reissue the
invitation to log-in and read a new response from the terminal.

If the user identification code does not duplicate the code found
in any other FB, a loop is. executed to compare the user ID code
against a list of wvalid user ID codes. If this loop is exited with-
out a match, the message:

TMS102I- NOT ACCEPTED

is sent to the user terminal, and a branch is taken to LOGIN to
invite another attempt to log-in. If there is a match, the branch
is taken to ULCHECKZ2 where the user name is moved to FBNAME, and the
message:

TMS102T—~ nnnn LOGGED IN

is sent to the user terminal with the user name in place of nnnn.
Control then falls through to the next block of coding.

The next section of coding beginning with the. label SPECIFY
determines which program the user wishes to execute under TMS and
brings it into main storage if there is enough space. This routine
first issues the message:

TMS104A- SPECIFY PROGRAM

to the user terminal and then reads the response. When & response

is received, a check is made first to see whether the initial 6
characters of the response equal the word LOGOUT. If so, a branch

is taken to location LOGOUT, where the message:

TMS105T~ nnnn LOGGED OUT

is sent to the user terminal with the user name replac1ng nnnn.

The area FBNAME is then restored to blanks, and a branch is made to
IOGIN to invite log-in by the next user. If the response is not the
word LOGOUT, the first eight characters of the response are assumed
to represient the name of a program in the TMS library. As in the
log-in routine, the last character of the response message is changed
from EOT to blank in order not to interfere with comparisons. The
pointer to the program name in register 1 (RP1l). is also copied into
register 0 (RPO) to save it. The address of the TMSPLOAD module is
" then found from the communication region, and a subroutine call is
made to this routine. Upon return from this routine, the completion
code may have one of four values. A completion code of zero indicates
a successful load of the program. Branches are made to the code
labeled ENTER. ENTER moves the program name in the reply buffer to
the double word FBPNAME to be used later in deleting the program, and
then it enters the program as a normal subroutine call. A return
code of four from the program load routine means there is not enough
main storage to complete the load; in this case a branch is taken to

~96-

S 1 R S BN S N i 11 s 5w e e i 02 g et Areraeie® 8 1 B N B AT g et e

NOCORE where the message:

TMS109I—~ NOT ENOUGH CORE TC LOAD PROGRAM

is sent to the user terminal, and a branch is taken to SPECIFY to
invite the user =ither to respond with the name of another program
or to log-out. A completion code of eight upon return from the
program load routine indicates that a specified load module could
not be found in the library. A branch is taken to the cecde label=d
NOMODULE where the message:

TMS10T7I- PROGRAM NOT FOUND

is sent to the user terminal, and a branch is made either to
SPECIFY to invite another try to spsll the program nzme prop=rly
or to load another program. A completion code of twelve upcm
return from the program load routine means that a program with the
specified name was already found in main storage but was found not
to be a re-enterable module. In this case- a branch is taken to
the code labeled NONRENT, where the message:

TMS108I~- PROGRAM NOT RE-ENTERABLE AND ALREADY IN USE. WAIT OR TRY
ANOTHER

is sent to the user terminal, and a branch is made to SPECIFY

to allow the user to try another program or log-out. If there is
a completion code of 16 from the program load routine, there is a
severe input/output error in attempting to load the program. A
branch is taken to the code labeled IOERROR, which consists of a
halfword of binary zeros. This will force an immediate program
check and abnormal termination with a dump.

As mentioned previously, in the normal sequence of events the
program is located successfully and loaded into storage, and a
subroutine call is made to the program from the TMSPJOB module.
Normal termination of the user program consists of a standard
subroutine return via a register 14 (RR). A normal return via the
TMSPURCE module is a return to a point U bytes past the point
indicated by the contents of register 14. In TMSPJOB, the two
full words immediately following the BALR used to enter the
applications program consist of a branch instruction to the code
labeled NORMAL followed by a branch instruction to the code labeled
PURGED. The code labeled NORMAL checks the pointers FBBLKCHEN
and FBDCBCHN to see that all storage obtained by the application
program has been released and all DCBs opened by the application
program have been closed. If either or both of these criteria are
not met, a branch is made to the code at PURGE which executes a
subroutlne call to TMSPURGE with a value of 4 in the error index
parameter supplied in register 1. Control then drops through to
the code with the label PURGED. If the above criteria have been
met, control passes on to code which writes the message:

TMS106I- NORMAL EXTT FROM USER PROGRAM

on the user terminal. Control continues on to code labeled DELETE ,
which issues a DELETE EPLOC macro instruction with the contents of
FBPNAME as parameter, thus deleting the application program and
and removing it from main storage if necessary. This delete

35

-O7-

operation is followed by both the clearing of FBPNAME to blanks
and a branch to SPECIFY to ask the user to either specify a new
rrogram or Jlog-out.

There ars two ways the TMSPJOB detects that some form of
error has occurred during operation of the application program.
The first is the return to TMSPJOB from TMSPURGE by an affset of
L bytes from the normal return point. The other is a narmal
subroutine return from the TMSPURGE routine that was directly
invoked by TMSPJOB at location PURGE. In either case control
ewentually passes to the code labeled PURGED, which issues the
massage:

T™SI10T- ABNORMAL KETURN FROM USER PROGRAM VIA PURGE ROUTINE
and takes a direct branch to thk2 code labeled DELETE to delete
the program that had been loaded.

L.,11 TMSPLOAD Module

The function of the TMSPLOAD module is to load a user program
at the request of another TMS module. TMSPLOAD begins by storing
the calling module's registers in the FBSAVE area and setting
the TMSPOLOAD entry flag on. The name of the program to be loaded,
which is pointed to by register 1 (RPl), is then stored into the
BLDL l1list. TMSPLOAD then checks to see if sufficient core is
available for the BLDL routine (406 bytes). If core is not avail-
able, control is returned to the calling routine with a completion
code of 4 in register le (RC). Otherwise, the BLDL (SVC8) is
issued, and the load list is built. If the BLDL returns with a
completion code of 8, contrcl is returned to the calling module with
a completion code of 16 in register 15. This indicates that a
permanent I/0 error was detected during the directory search.

If the BLDL returns with a completion code of U4, control is
returned to the calling module with a completion code of 8 in
register 15. This indicates thalt the requested module could not

be found. If the BLDL returns with a completion code of @,
TMSPLOAD searches the FBCHAIN for an already-loaded copy of the
program. If it finds a copy loaded, and the program is flagged

not re-—-enterable, control is returned to the calling module

with a completion code of 12. This indicates that the load request
was for a not re—enterable module that was already loaded. If
TMSPLOAD finds a copy of the program loaded, and the program is
flagged re-enterable, the program is loaded via the load SVC (sves8),

. which merely bumps the use count by one. The entry point of the

loaded module is then stored in the FBSAVE area for the terminal
requesting the load, and control is returned to the calling module
with a completion code of zero.

If no copy of the requested program is found in the FBCHAIN,

TMSPLOAD checks to see if sufficient core is available to load
a copy of the requested program plus the forty (40) bytes required

6.

-98-

for the associated request hlock. If core is not availdble, control
is returned to the calling module with a completion code of L.
Otherwise, the program is loaded via the loed S7C (SVC 8), the entrr
point is stored im the FBSAVE zresa, and control is returned to the
calling module with a return czods of zero.

L. 12 TMSPURGE Module

The function of TMSPURGE is to. delete a user progra~ currently
running on one of the termirals. free all storage guoTen by the
user program and close all files opened by it. Sincs comtrol will
not be returned to the user after TMSPURGE, the user’s registers
are not saved. Upon entry, the TMSPURGE entry flag is set on.
Next the pointer to the message indicating the reason for entering
PURGE is set up using the offset received in register 1. The save
area chain is then traced to the highest save area, and the registers

are restored to their condition prior to entering the program being
purged.

PURGE then begins closing all attached DCB's by following the
DCB chain (FBDCBCHN) located in the FB and entering TMSPCLOS with
all of the DCB addresses on the chain. The end of the DCB chain
is indicated when FBDCBCHN equals zero. When all DCB's are closed,
PURGE begins freeing all attached storage areas obtained by
TMSGETM by following the storage chain (FBBLKCHN) located in the
FB.

When all attached DCB's are closed and all attached storage is
freed, the error message indicating the reason for entry to PURGE
is displayed. This is followed both by computing the relative
address of the error detected and by displaying the error location
message. Finally, control is given to TMSPJOB with an offset of
four from the normal return point to PJOB. This results in
deleting the user program and displaying the abnormal return from
user program via PURGE routine message, followed by the request to
specify program.

The messages issued by TMSPURGE are as follows:
TMS150I - PROGRAM ENDED WITH STORAGE OR DATA SET STILL ATTACHED.
TMS151T - INSUFFICIENT MAIN STORAGE LEFT TO SATISFY TMSGETM REQUEST

TMS152I - TMSFREEM REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS
TMS153I - ATTEMPT TO OPEN AN UNAVAILABLE/UNCATALOGED DATA SET

TMS154T - INSUFFICIENT MAIN STORAGE LEFT TO COMPLETE OPEN OF A DATA SET

TMS155I - DISASTROUS ERROR IN TMSOPEN
TMS156I - TMSCLOSE REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS
TMS157I - END ¥ DATA DETECTED WITH NO EODAD SPECIFIED

9P
-99-

b RS LR

TMS158T — STNCH:STWOUS TEROR DETECTED WITH NO SYNAD SPECI=TED

r 131591 - INSUF: “CIENT CORE LEFT -OE DEBUGGING

121607 — ERPROR DETE TED IN TMS. (SER PURGED WITH SNAP

T 27617 — EPROR DETECTED IN TMS. TUSER PURGED, SNAP UNSUCCESSFUL
= 3627 - ERROR DETEZTEL N PROGRLM. USER PURGED.

TF=->00I - ERROR OCCURRED AT RELATTVE ZOCATION XXXXXXXX

L_.1= TMSTREND Module

The TMSTREWD mcduls has two entry points. The main entry
peirt =s TMSTREND, which is used for entry into the program from
TMSWATT when an input-output operation for the communication line
is complete. The second entry point, TMSCHEND, is a simple BR
return through register 15 (RR), and is nct called by any other
TME module.

Since control is passed only to and from other TMS modules,
tie user's registers are not saved on entry. TMSTREND assumes
that on entry register 1 (RP1l) points to the DECB for the communi-
cation line, and after establishing permanent addressability,
establishes addresszbility for the DECB and corresponding DCB for
the line, the FB, ard the CR.

~ After initialization of the =ppropriate base registers, the
TUECB is checked to see which operation was in progress so that
either the address of the polling characters may be found for a
read, or the addressing characters may be found for a write. 1In
either case, unless there is only o-ne terminal, a skip bit is
set in the current polling entry wnose address is found at
location DECPOLPT or DECADRPT in the DECB.

The next section of code, starting at location CEENTRY2
after the skip bit has been sebt, locates the FB for which the
operation is complete. This is done first by loading register
RWORK2 with the address of the terminal 1list from location DECT-
LIST in the DECB, and then subtracting it from register RWORKL,
which was previously loaded from either DECPOLPT or DECADRPT. The
result in RWORK1l is the offset to the terminal list entry, which
is compared to the offset specified at location FBTLOFF in the
current FB being processed. If equal, the proper FB has been found,
and a branch is taken to CEENTRL. If it is not the proper FB, a loop
is executed to follow the chain of FB's to the end, checking each
one. If no proper terminal offset is located, an ABEND is executed
with a user completion code of 777, and a code of 50 is placed
at location CRABCODE in the CR.

Once the FB has been lonated, the buffer address is loaded
into register RBUF from DECAREA and documented by four to point

98

-100~-

to the buffer contrcl word. Locaticn DECUFLAGS is then tested to
find which operation was in progress, anc a branch is taken to
either CEREAD or CEWRITE for corressponding read or write operations.
If DECUFLAGS indicates either both or neither operation in progress,
a 51 or 52, respectively, is placed in CRABCODE, and ABEND is
issued.

The code at location CEREAD begins by checking that the flags
in the buffer contrcl word indicate buffer-in-use (BUFFINUS) and
buffer-waiting-for-input (BUFFWIIN) before proceeding. If these
flags are not set, a 53 is placed in CRARCODE. and an ABEND is
issued. Then location DECTLAGS is tested for megative response
(DECFNEGR) which indicates that channel end is due to polling
reset. If this flag is on, a2 branch is taken to CEREAD5; if this
flag is off, there is an incoming message. Register RBUF is then
incremented by four to point past the buffer control word to the
start of the message. The maximum length of the message is loaded
into RCTR from DECLNGTH, and the residual count at DECCOUNT is
subtracted from it to find the actual lerngth stored at FBLMLNTH
in the FB. This length then is used also to translate the incoming
message. I1f there are multiple terminals, the pointer to the mess-
age is spaced over the header and the lemgth adjusted by four.

At CEREAD3 the buffer address is stored in FBBUFPTR, and the
text offset is computed by a simple subtract and stored in
FBBUFOFF. The buffer flags indicating waiting for input are turned
off (BUFFWIIN), and buffer attached to FB (BUFFATFB) are turned on.
The DECUFLGS are reset to turn off read in progress (DECUFRIP) and
polling reset (DRCUFPRS). The active polling count is reduced by
one if there is more than one terminal, and a positive acknowledge
is written to the sending terminal. A return is made to entry
point TMSDWAIT in the TMSWAIT module. If there are not several
terminals on the line, at location CEREADY, the completion code is
moved to location FBECB. Location DECSDECB then i1s set to zero,
and a return made to entry point TMSDWAIT.

If channel end is due to polling reset, control passes to
location CEREADS where flags at DECUFLGS are tested for read-in-
progress, waiting-to~-write and polling-reset (DECUFRIP, DECUFWIW,
and DECUFPRS). The negative response flag, skip bit, read-in-
progress flag, and polling-reset flag are turned off, and the poll-
ing interrupted (DECUPIN) flag is turned on. The line ECB is zeroed,
and the operation type, buffer length, buffer address, terminal
polling list address, and relative line number are stored at
location DRCRSAVE to be available for later polling restart. The
dummy ECB in the CR is then set to indicate operation complete and
line available for write, and a return to TMSDWAIT is made.

If the operation tested at CEENTRYh is a write, control passes
on to location CEWRITE. The type of operation flag at location
DECTYPE+1 is tested to see if the operation is a write positive

33

=101~

et b dar ot £ e at wn n L e L animeEora's s e e el o

acknowledge. If it is, control pmss==s %o CEWRITET, where the
write in progress =nd ackmowledge flags are turned off. The
completion code is moved to locziizm FBECB, the line ECB is
zeroced, and & branch is taken to CEWZITE3. If the operation is
not a write positive acknowlsdge, tT= completion code is moved

to the FB ECB. @nd the lines =78 {DECZDECB) is zeroed. The buffer
pointers are reset and the Tuffer is filed with blanks. The write
in progress flag is reset =md, if a trznsmission error is being
processed, comtzol is passed to CEWRLTET to process as a positive
ackmowledge. Otherwise, at CEWRITE3 there is a test to see if a
write is queued Tor the line by marking location DECUFLGS with
DECUFWTW. If a write is gqueued, a return is made to TMSDWAIT.

If a write is not waiting, DECUFLGS is marked to test for polling
interrupt. If polling was interrupted, control moves to CEWRITES.
If not, the active pollinz coumt (DECAPCNT) is tested for zero.

If there are no other reads ir progress, a return is made to
TMEDWATIT ; otherwise, a return is made to the read polling restart
routine (TMSRDRST).

At CEWRITES the polling imterrupt flag is turned off, and the
operation code, buffer length, buffer address, terminal polling
list address, and relative line number are restored to the data
event control block. The read-in-progress flag is set, and a
READ macro instruction is issued for the line. Control then
returns to TMSDWAIT.

If, at CEENTRYL, a transmission error is detected, control
passes to location CEERROR. If the error already is being
processed, and it is the second time through, control passes to
an ABEND macro instruction with a 58 placed at location CRABCODE.
The data event control block channel status word status is tested
for channel end, device end, and unit check flags, and if not
present, control is passed to ABEND with a 59 in CRABCODE. The
data event control block first sense byte (DECSENSO) is tested for
timeout, lost data, or data check and, if any are indicated, a branch
is taken to CEERROR2. If none are indicated, control passes to
ABEND. At CEERRORl, the transmission error flag at location FBFLAGS
(FBXMTERR) is set, and the read or write in progress flag and the
skip bit are turned off. The FB ECB is then posted complete with
the error, the line ECB is zeroed, and a return is made to TMSDWAIT
via CERETURN.

The return and location CERETURN is a simple load of a V-type
address constant specifying the entry point TMSDWAIT into register
RR, followed by a simple branch register on register RR.

4,14 TMSWAIT Module

The TMSWATT module has two principal entry points. The
first entry point, TMSWAIT, is used for entry into the module from
application programs. A subsidiary entry point, TMSDWAIT, is
used as a direct entry into the wait module, bypassing certain

160

register saving and restoring conventions used in calls frocm
application programs. Depending on the status of the wait list,
this module may exit to an epplication program — the TMSCNEL
module to process a message from the computer. operator, the
TMSCSIO module to initiate console input-output for a newly-freed
line, or the TMSTREND module to perform end-of-transmission
processing for a communication line which has just finisfied its
I/0 task.

On entry through entry point TMSWAIT from an application
program the contents of registers 14 (RR) through 12 (RB) are
stored temporarily in the save areas pointed to by register 13
(RS). The address of the RB is obtained from word zero of this
save area. Once FB addressability is established, the contents
of the registers which were saved upon entry are moved to the
corresponding FBSAVE. At this time the contents of register 13
are also saved in FBSAVE. Permanent addressability to the wait
module is established, and the CR address is loaded into register
10 (RCR) from FBCR. The code beginning at location ENQUEUE places
the ECB address supplied in register 1 (RP1) onto the end of the
wait list. This is done by loading the address of the last wait
list entry from location CRWLLAST into register FLAST, increment-
ing by U4, and using the resulting address to store the new ECB
address into the wait list. The contents of CRWLX, the wailt list
offset, are added to RLAST to find the correspoiding area in the
wait list extension. The FB address is stored in this area. The code

begiming at location WAIT sets the end-of-wait-list indicator into the
high order byte of the current last word of the wait list. The pointer

to the wait list in area CRWL is put into register 1, and the WAITR
ECBLIST macro is issued to relinguish control of the computer if no
operation has been completed.

Either immediately or when one wait condition is satisfied,
control falls through the code labeled ENDWAIT. This begins to
search the wait list for the first completed event control block. The
first operation is to reset the end-of-wait-list indicator. The
console ECB address is then loaded into a register, and the setting
of the completion bit is tested. If this bit is on, a branch is taken
to location CONSOLE. The code at this area both loads the address of
the system save area (entry point TMSSYSSB in the TMSBEGIN module)
into register 13 (RS) and takes a standard entry into the TMSCNSL
module via the entry point of the same name.

If the console ECB is not yet complete, the queuing ECB is
tested. If the completion bit is set in this ECB, a branch is taken
to location FBQPROC. The code at this point employs repeated calls
to subroutine DEQUEUES both to find the first FB on the FBQ chain
waiting for newly-freed resource and to remove that FB from the Q
chain. This is done as follows: the resource freed for use is
identified by a bit in location CRECB. When this bit is found set,
three masks are set up for the use of the dequeuing subroutine.

104

21035

b e s T SRt

e

They are QFLAGCR for testing location CRQFLAGS, QFLAGFB for testing
location FBQFLAGS, and UFLAGDEC. for testing location DECUFLAGS.
The subroutine DEQUEUES is linked to, using RRET as an internal
return register. Upon return from this subroutine, register RFB
is tested for non-zero. A non-zero return indicates a successful
dequeuing and a branch is taken to the appropriate routine. A
zero indicates that no FB was found to be queued on the free
resource. In this case the corresponding flag is turned off in
CRECB, and a branch is taken to the next test. Two tests of the
FB queue chalin are now ilmplemented. The first is for a line now
free for a write operation. If the FB requiring this resource is
found, a branch is taken to the entry point TMSWRDEQ in the
TMSCSIO module to initiate writing on the line. The other test
that 1s now made is for a line that is free for a read operation.
If an FB queued on this resource is found, a branch is taken to
the TMSRDRST entry point of the TMSCSIO module to initiate a poll
restart. In the event that any of the preceding tests do not
succeed, there is an error condition, and the first byte of
location CRECB is cleared to all zeros. A branch then is taken
back to location WAIT to continue processing the wait list.

After the special processing of the first two ECB addresses,
the remainder of the wait list 1s searched for the first ECB with
these completion bit sets by means of a simple loop. The comple-
tion bit is set on for at least one ECB, since failure for this
being done would indicate a gross error on the part of the operat-
ing system. Therefore, whenever further wait list processing is
to be done, and if it is not certalin that there are any further
ECBs with completion bit set, return should be made to location
WAIT for a further reissuing of the WAIT macro to 0/S. When the
first completed ECB is found, 1t is necessary to determine whether
this ECB represents a physical communication line or a logical
terminal. This 1s done by checking the first byte of the corres-
ponding fullword in the wait list extension for a bit pattern
consisting of all one bits. If this pattern is found, the ECB
in question represents a communication line, and entry is made to
the TMSTREND entry module via the entry point of the same name to
process the end-of-transmission condition. If this special bit
pattern is not found, a branch is taken to code at location DEQUEUE,
which loads the address of the corresponding FB into RFB from the
walt list extension. If necessary, all ECB addresses in the walt
list and thelr corresponding FB addresses in the wait list exten-
sion are moved up to fill the space vacated by removel of the ECB
and FB addresses from the wait list. Following this, register
RLAST is decremented by L4 to reflect the shortening of the wait
list. Finally, the contents of all registers are reloaded from the
proper FBSAVE, and the return to the application program is taken
through register 14 (RR).

The entry poirt TMSDWAIT is used for entry into the wait
routine from other elements of the monitor system. Its principal

102,

—10k~

purpose is to avoid the saving of registers in FBSAVE, since
entry is not from an epplication program. After setting up a
base register pointing to the beginning of the TMSWAIT module

in establishing permanent addressability, the code for this entry
point loads register RLAST from location CRWLLAST and branches
directly to the code at location WAIT. Upon entry to the wait
module via this entry point, register 10 always will point to

the CR.

103"

~105=-

B O SV PN PSP PURPRE R PSS R P SESNC NS SH R

5. DETAILED MACRO DESCRIPTIONS
5.1 FORMFB Macro

The FORMFB macro employs three global variables. The arith=
metic variables, &FBNO and &TERMNO, are used to maintain a running
count of the number of FB's and terminals that have already been
defined by previous invocations of FORMFB. Proper usage of these
two variables depends upon an uninitialized arithmetic global
variable having value O when first used. The global character
variable &PREVFB is used to contain the name of the last function
block generated by the most recent previous invocation of FORMFB.
A test is made to see if this name is null, the initial wvalue of a
glcbal character variable. If it is, it is set to the character
"0", so that when it is employed in an A-type address constant,
the proper result will be obtained.

The first operations in the macro-expansion are to identify
the type of terminal being employed and to set certain parameters

"to be used in the remainder of the expansion. The types currently

recognized are: 1) M35D: a model 35 teletypewriter attached via

a direct link; 2) 27LOB: an IBM 2740 basic terminal; and 3) ST20W:
a Sanders 720 CRT terminal with horizontal screen and the special
extra-width option. The local variables that are dependent upon
the terminal type are: &DECTTYP, a local arithmetic variable used
in setting byte type flags; &DECCPNL, a local arithmetic variable
representing the number of characters per second of carriage travel
during carriage return; &DECMAXL,, a local arithmetic variable repres=—
enting the maximum number of lines per page for page-oriented de-
vicesy; &DECCPLN, a local arithmetic variable representing the
maximum number of characters per line for the device: and &LISTTYP,
a local character variable representing the form of polling list,
to be expanded later in the macro.

A standard Data Event Control Block (DECB) is generated by a
list-type READ macro instruction, and a TMS-dependent portion
is generated by a series of DC instructions. The Data Control Block
(DCB) is generated by using the standard 0/S DCB macro instruction;
the BTAM ine Error Control Block (LERB) is generated by using the
standard 0/S BRAM LERB macro instruction; the terminal polling
list is generated by using the standard 0/S BTAM DFTRMLST macro
instruction; and the list of polling/addressing characters is supplied
by the LIST keyword operand. Following these tables, the buffers for
this Jire sre generated. One buffer is generated for every FB.
The hufli:rs are linked together, and a pointer to the head of the
link is placed in DCBBUFCB. The length of the buffers is determined
by the BUFLGTH keyword operand, whose default value is 256. Exit
from the FORMFB macro is made with the global variables properly
modified for use in a future invocation of FORMFB.

104

-107=-

5.2 TABLES Macro

The TABLES macro instruction is a Sanders—-supplied macro which
causes generation of an EBDCIC to ASCII-8 translate table and/or
the generation of an ASCII-8 to EBCDIC translate table. These tables
are used for translating messages sent to and received from Sanders
displays.

Name Operation

TABLES EBCASC=namel [,ASCEBC=name?2]
ASCEBC=name? [,EBCASC=namel]

name 1
Is any symbol valid in the Assembler Language. It will be
generated as the name of 256-byte EBCDIC to ASCII-8 translate table.

name 2

Is any symbol valid in the Assembler Language. It will be
generated as the name of the 256-byte ASCII-8 to EBCDIC translate
table.

The macro instruction first checks to see if both parameters
are omitted. If they are, the resulting mnote is 'TABLES NOT
GENERATED, PARAMETERS MISSING'. If one or both parameters are
present, the macro checks for the absence of the EBCASC parameter.
If the EBCASC parameter is sabsent, the mnote 'EBCDIC TO ASCII-8
TRANSLATE TABLE NOT GENERATED' is printed. Otherwise, the EBCDIC
to ASCIT-8 translate table is generated. The macro then checks
for the g@bsence of the ASCEBC parameter. If this parameter is
absent, the mnote 'ASCII-8 TO EBCDIC TRANSLATE TABLE NOT GENERATED'
is printed. Otherwise, the ASCIT-8 to ABCDIC translate table is
generated.

The translate teblies which are generated are as follows in
Fig. 5

5.3 TMSCLOSE Macro

The TMSCLOSE macro first checks for the existence of its
single parameter. It then tests for both a leading left and trail-
ing right parenthesis. If it finds these, a register designator
is assumed. If this register designator is some standard represen-—
tation of register 1, the macro proceeds directly to the generation
of the linkage code at sequence symbol ".LINK", since the register
specified is the register in which the parameters are to be passed.
If a register other than register 1 is specified, the macro
generates an LR instruction to bring the contents of that register
into register 1. If the operand is not a register specification
it is assumed to be the symbolic address of a fullword in storage
containing the DCB address. An L instruction is generated to bring
this .address into register 1. Finally, the TMSLINK macro is used

1057

-108-

DC
DC
DC
DC
DC
DC
DC
DC
DC
bC
DC
DC
DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
nC
"DC

FIG. 5
TRANSTATE TABLES

* EBCDIC TO ASCII-8 TRANSLATE TABLE

0123456 T7T89ABCDETF
X '00010203040000000800000000000000 !
X'001112000000000018190000001D0000!
X '00000000000000000000000000000000 !
X '00000000000000000000000000000000
X '4LO00000000000000000009 4ESCLELBOR!
X'4600000000000000000041 44 LALYSROD!
X '4DLFO0000000000000001CLCL51IBSESF!
X *430000000000000000005A0CAOLTSDY 2!
X '00000000000000000000000000000000
X '00000000000000000000000000000000 "
X '00000000000000000000000000000000!
X'E1E2E3ELESEAETESEQEAERBBBCBDBERF
X 'O0A1APA3ALASA6ATABA9000000000000!
X 'O0AAABACADAEAFBOR1IB2000000000000!
X '0000B3BLB5B6BTBSROBAOOOOCO0GOGOO !
X'50515253545556575859000000000000'"

*¥ ASCIT-8 TO EBCDIZ TRANSLATLE TABLE
0123456 T7T89ABCDETF

X '000102030400000008LA00LFTBSFO000!
X'0011120000000000181900606A1D0O0O00!
X '00000000000000000000000000000000!
X '00000000000000000000000000000000 "
X'UOSATFTCSIAC50TDUDSDSCLF6B6OLBSL!
X'FOF1F2F3FLFSFEFTF8F9 TASELCTSOEST !
X '00000000000000000000000000000000!
X '00000000000000000000000000000000!
X '00000000000000000000000000000000!
X*00000000000000000000000000000000 !
X'7CC1C2C3CLC5CH6CTC8COD1D2D3DUDSD6 !
X 'D7D8D9E2E3ELESE6ETESEQBBBCBDBERF !
X '0000000000000C000000002D000000000"!
X '0000000000000000000000Q000000000!
X 'O0BOB1B2B3BL4B5B6BTB8BIBAOCOOO000
X'00000000000000000000000000000000 !

LR
~109-

HEUUQE PO OIA FWNNHO

HEHOQWPOWOIAAN FWNNDHFO

to generate the code that finds the entry point into the monitor
for the close routine. The final instruction generated is =a
BATLR RR, RC.

5.4 TMSCSIO Macro

The TMSCSTIO macro employs the global binary variable &TMSRFB
to find whether or not the problem programmer is maintaining the
FB pointer in register 11 (R9).

The principal work within this macro is the analyzing of
the keyword paremeter OP and the generation of the bit settings
in the options byte. After initialization, the presence or sbsence
of the LENGTH operand is determined, and the corresponding bit is
set in the local arithmetic variable &OPCODE. The first OP sub-
parameter then is tested for one of the four allowsble operations
(READ, WRITE, CLEAR, or REWRITE), and the corresponding bit is
set in &0PCODE. After this, a loop is entered to scan the
remaining siub-parameters. As each one is recognized, a correspond-
ing bit is set in &0PCODE, and special flag bits are set to prevent
the acceptance of a duplicate parameter. When all sub-parameters
have been exhausted, the code generation portion of the macro is
entered at sequence symbol '".GENER".

If the principal operation is a WRITE, the positional operand
representing the message is analyzed. If this operand consists
of a string of characters delimited by apostrophes, the entire
string is assembled in-line as the message text, preceded by a
halfword message character cocunt., A BAL instruction is generated
both to skip over the message and to put its address into register
(RP1). TIf the message parameter is determined to be a register
designator, an LR instruction is generated to move the address
into register 1. If the operand is a symbolic address, an LA
instruction is generated to load the message address into register
1. An improper or omitted message specification for a WRITE
operation causes a zero length messsge to be supplied along with
two level A error statements. The code is then generated to
locate the FB (if necessary), to clear the first byte of FBECB to
binary zeros, and to move a one-byte opcode into FBRWOP. TFor a
CLEAR operation, register 0 (RPO) is cleared to zero. For any
other operation, the LENGTH parameter, if present, is tested to
see whether it is a register specification or a symbolic address,
and either an LR or LA instruction is generated to load the length
into register 0 (RPO).

The TMSLINK macro is invoked to generate the code that finds
the entry point in the monitor of the console input /output routine
following this. If the user has specified both WAIT=DEFER and a
parameter for the keyword operand RET, code is generated both to
load the return address into register 14 (RR) and to branch to the
monitor via register 15 (RC). TFor all other cases a standard BALR

107
“I10-

instruction is generated. Finally, if WAIT=DEFER is not specified,
the macro TMSWAIT is invoked with the proper OP and RET parameters.

5.5 TMSFREEM Macro

The TMSFREEM macro tests to see that its parameter both exists
and is a register designator. If both of these tests are passed,
the code is generated to clear register O (RPO) and to load register
1 (RP1) from the register specified. The TMSLINK macro is then
invoked to generate code that finds the entry point of the GETMAIN/
FREEMAIN routine, and the usual BALR instruction is generated to
branch to it.

5.6 TMSGETM Macro

The TMSGETM macro first werifies the presence of its single
parameter and then determines whether it is a register designator
or a symbolig expression. A suitable LR or LA instruction is
generated as needed. The macrc TMSLINK is then invoked to generate
code that finds the entry point in the monitor of the GETMAIN/
FREEMAIN routine, and the usual BALR instruction is generated to
branch to it. -

5.7 TMSLINK Macro

The TMSLINK macro employs the global binary variable &TMSRFB
to determine if the user program is maintaining the FB pointer
in register 11 (R9). It also employs the global character variable
&TMSRCR to indicate which register (if any) is being mainteined
by the user program as a pointer to the CR.

The only parameter for TMSLINK is a name which corresponds
to one of the names defined in the Communication Region DSECT.
If the global character variable &TMSRCR indicates that a pointer
to the CR is being maintained, code is generated merely to load
the required entry point address into register 15 (RC) from the
CR. The macro is then exited. If the CR pointer is not being
maintained, the global binary variable &TMSRFB is tested to see
if the FB pointer is being maintained in register 1l. If it is,
code is generated both to obtain the CR pointer from the FB and
to place it in register 15 (RC), assuming that a COPY FB state-
ment has been encountered earlier in the assembly. Code is then
generated to establish addressability to the CR via a USING
statement, to load register 15 (RC) with the entry point address,
and then to cancel the effect of the USING statement with a DROP
statement.

In the event that neither the FB pointer nor the CR pointer
is being maintained by the user program, code is generated to load
the address of the FB into register 15 (RC) from the first wcrd
of the area pointed to by register 13 (RS). Addressability to the

108

v N

-111-~

FB is then established followed by code to load the CR address
into register 15, followed again by code to load the entry point
address into register 15. Thus, regardless of which registers
are being maintained by the user program, code is generated to
insure that the requisite entry point address is left in register
15 by the time this macro exits.

5.8 TMSOPEN Macro

The TMSOPEN macro begins extensive checking of its operands
first by checking that the DSNAME operand exists and is less than
or equal to eight characters in length. It then sets various flags
based upon the RETURN, QUALIFY, and BUFFERS operands. At the
same time a special output flag is set to indicate to the remainder
of the macro whether WRITE operations will be acceptable for this
data set. The FGR operand is then analyzed and four single-bit
flags are set in patterns corresponding to their use in the standard
0/S OPEN macro. The options recognized are INPUT, OUTPUT, UPDAT,
INOUT, and OUTIN.

The DSORG operand is then tested in a manner similar to its
analysis in expanding the 0/S DCB macro instruction. It must
both exist and be two or three characters in length. The first
two characters are isoclated and tested to see if they are either
one of the four allowable TMS combinations or one of four further
combinations, one of several single bit flags is set. These
single bit flags will be used later to assemble the halfword
PDSORG field in the expanded parameter list produced by the macro.

As with DSORG, the MACRF operand has a set of permissable
values which itself is a sub-set of values permissable in the 0/S
DCB macro instruction. The analysis of this operand also is based
upon the methodology used in the DCB macro. Since the MACRF
operand may have several sub-parameters, an outer analysis loop
is set up to analyze each sub-parameter at a time. The first
character of each sub-parameter is isolated within this loopj; this
initial letter may have one of six values, only five of which are
valid in TMS. If the initial letter is an E for EXCP, 20 bit
flags are immediately set to a predetermined combination, and the
MACRF operand analysis is finished. If the initial letter is P
for PUT, the locp is exited without setting any flags for this
particular sub-operand. If the initial character is R for READ
or W for WRITE, the analysis continues by setting up an inner
loop to analyze these remaining characters in the sub-operand
considered to be qualifiers of the initial character. Each
qualifier is isolated in turn and analyzed to see if it is one
of the wvalid letters. If it is a valid letter, the settings of
relevant DSORG flags are checked to see if the combination of the
qualifier and the data set organization represents a valid
specification. If it is valid, the proper bit flags are set, and
the inner loop is repeated until all qualifiers have been exhausted.
At this time the outer loop is repeated if any sub-operands remain.

109~ -

-ile-

If analysis has been completed on all MACRF sub-operands, a
particular bit pattern has been established in 20 bit flags.

The third operand with a direct analog in the 0/S DCB
macro is the OPTCD operand. As before, the analysis of this
operand is a sub-set of the analysis used in the DCB macro. ZEach
character of the operand is analyzed to see if it is one of
several acceptable letters. If an acceptable letter if found, the
bit flags set for DSORG are checked to see that the combination
of the letter and the data set organization is a valid specifica-
tion. For each valid combination, one of eight bit flags is set.

The code generation portion for the macro begins, if
necessary, with a BAL instruction branching around the in-line
parameter list and loading the address of the parameter list into
register 1 (RP1). The nine DSORG bit flags, followed by three
binary zeros, followed by the four open option flags are assembled
into a halfword binary bit pattern, and the corresponding DC
instruction is generated. Following this, another halfword binary
bit pattern, consisting of the first 16 MACRF flags, is assembled,
and a second DC is generated. The eight OPTCD binary bit flags next
are assembled into a single byte DC. The DC for an A-type address
constant of length three containing the address specified as the
SYNAD operand follows. At this point in the generation, if EXCP
processing with appendages has been specified, the six DC instruc-
tions for character constants, each of length two, are assembled
to represent the various appendage specifications. Following either
of these appendage parameters, or the EODAD address if the appendage
specifications are not present, comes the DC for a binary halfword
count of the number of characters in the DSNAME operand. This is
followed by the DC for a varisble length field containing the
EBDCIC character representation of the DSNAME operand. At this
point in the generation, a direct branch is taken to the linkage
generation portion of the macro, which is sequence symbol ".LINK".

Immediately following the above code comes the analysis of
the second operand of the MF operand when it is specified for an
execute form macro instruction. Verified as present, this second
sub-operand is tested to see whether it is a register designator
or a symbolic address. For a register designator, the proper IR
instruction is generated to bring the parameter list address into
register 1 (RP1); for a symbolic address an LA instruction is
generated for the same purpose. The final portion of the genera-
tion is the linkage to the monitor system OPEN routine. The
macro TMSLINK is invoked to generate the code that will place the
entry point of the TMSOPEN routine in register 15 (RC). The final
instruction generated for standard or execute form macro expansions
is the usual BALR instruction.

5.9 TMSRETN Macro
The TMSRETN macro employs a global character variable &TMSRMSA

jiiﬁl“

4

-113-

to determine whether the save area produced by the corresponding
TMSSAVE macro was local, remote, or not supplied at all.

If the global variable indicates that the save area obtained
was a remote save area, code is generated to place the current
save address into register 1 (RP1l), obtain the address of the
previous save area from the second fullword of the current save
area, put it in register 13 (RS), and invoke the TMSFREEM macro
to free the core obtained for the remote save area. Control then
passes to the common coding at the sequence symbol "'.RESTORE".

If it is determined that the save area involved is a local save
area, the only unique code generated is that to obtain the address
of the previous save area. If no save area at all 1s generated,
control immediately passes to the common coding. The common
coding generates code to zero the downward save area pointer in
the third fullword of the previous save area, restore registers

14 (RR) through 12 (RB) from the previous save area, and return
to the calling program via register 14 (RR).

5.10 TMSSAVE Macro

The TMSSAVE macro sets the global binary variasble &TMSRFB
to indicate to future macro instructions whether or not the problem
programmer will maintain register 11 (R9) as a pointer to the FB.
It sets the global character variable &TMSRMSA to show whether
the save area obtained is a local save area, a remote save area,
or non-existant. It sets the global character variable &TMSRCR to
indicate which register, if any, the problem programmer guarantees
to point to the CR. All three of these global variables play an
important part in the expansion of most of the remaining macro
instructions in the program.

The first operation performed by the expansion of TMSSAVE is
a test on the parameter of the SAINCR keyword operand to see if
it exceeds 4023 bytes. The purpose of this test is to issue a
warning message if the increment plus the T2 byte save area exceeds
4095 bytes, thus indicating a possible requirement for ar additional
base register or registers. Following this test, code is generated
to define the CSECT, to save the registers in the save area point-
ed to by register 13 {RS) by means of a STM instruction., to
establish the permanent base register by means of an IR iastruction,
and to issue the USING instruction for the main base register. If
RFB=NONE is not coded, the global binary variable &TMSRFB iz set
to indicate that the FB pointer will be maintained. The USING
instruction for the FB pointer then is generated. If a register
has been specified to act as the CR pointer, the specification is
stored in the global character variable &IMSRCR and, if necegsary,
an LR instruction to load the CR pointer register from register 10
(R8) is issued. A USING instruction for the CR pointer follows
the LR instruction.

The remainder of the macro obtains & save area if one is

B ha le X

required. The global character varisble &TMSRMSA is set to the
letter "N" as a default, and if SA=NOWE has been coded, the macro
is exited at this point. If SA=REMOTE, the default option, has
been coded, &TMSRMSA is set to the letter "R", and one of two
sequences of code is generated. If the sum of 72 and the value
specified for SAINCR is less than or equal to 4095, the TMSGETM
macro instruction is invoked with LV specified as a symbolic
expression. However, when the amount of conre to be obtained is
greater than 4095 bytes, a halfword constant is generated in-
line along with code to branch around this constant, load it into
register 0 (RPO), and invoke the macro instruction TMSGETM LV=
(RPO). Regardless of which form of code has “een generated to
obtain the remote save area, code is now generated both to clear
the first 72 bytes of the save area and to load the pointer to
the new save area into the register specified by the keyword
operand RWORK. The macro then branches to the sequence symbol
".CHAINSA". If SA=LOCAL has been specified, &TMSRMSA is set to
the letter "L" and an 18-fullword save area is generated in~line
with code both to branch around it and put its address into the
register specified in the keyword operand RWORK. For both local
and remote save areas, code is then generated to move the FB
pointer from the first word of the o0ld save area to the first
word of the new save area and to link the two save areas in
standard 0/S fashion, using the register specified by the keyword
operand RWORK as a work register.

5.11 TMSWAIT Macro

The TMSWATT macro uses the global binary wvariable &TMSRFB ta
determine whether or not the problem programmer is maintaining
register 11 (R9) as a pointer to the FB.

The macro first tests for the special case where ECB=FBECB
has been coded and the FB pointer is not being maintained by the
problem programmer. If both these conditions exist, code is
generated to obtain the FB pointer from the first word of the
current save area and establish addressability to the FB by means
of a USING instruction. An LA instruction to load register 1
(RP1) with the ECB address is then generated, followed by a DROP
instruction to terminate FB addressability. If this special case
does not exist, the only instruction generated is the LA instruc-
tion to load register 1 with the ECB address.

The TMSLINK macro is invoked to generate the necessary code
to locate the WAIT routine entry point in the monitor. If a
return address has been supplied by use of the RET keyword operand,
and OP=READ has not been coded, an LA instruction is generated to
load register 14 (RR) with the return address, followed by a BR
instruction to branch to the WAIT routine's entry point. In all
other cases, *he usual BALR instruction is generated. If OP=READ
has not been coded, the macro is exited at this point. If it has,
an SR instruction is generated to clear register 1. If the problem
programmer is maintaining the FB pointer, code is generated both

to calculate the start of text and length of text in the buffer and
to leave these in the proper registers. This code consists of an
IC instruction to place the text offset from FBBUFOFF into register
1; an L instruction followed by an N instruction to obtain the
buffer address from FBBUFPTR and leave it in register 0; an AR
inst: ction to add the buffer address in register O to the offset
in register 1, leaving the resulting pointer to the start of text
in register 1; and an LH instruction to put the length of text from
FBLMINTH into register O. If the problem programmer is not main-
taining the FB pointer in register 11, the same code is generated
first, preceded by both an L instruction and a USING instruction

t0 obtain the FB address and to establish addressability, and then
followed by a DROP instruction to end addressability.

1%_'3"

-11

APPENDICES

114

-117-

MODULE

TMSHSKP
TMSBLOCK

TMSPJOB
TMSPLOAD
TMSBEGIN

TMSCNSL

TMSCSIO

TMSWAIT

TMSTREND

TMSGMFM
TMSOPEN
TMECLOSE

TMSPURGE
TMSGTSLE
TMSDEBUG

115

-119-

APPENDIX 1: TMS MODULE NAMES AND ENTRY POINTS

ENTRY POINTS

TMSHSKP

TMSBLOCK
TMSBLGTH
TMSLSTFB

TMSPJOB

TMSPLOAD
TMSBEGIN
TM3CRADR
TMSSYSSV

TMSCNSL
TMSREADY

TMSCSIO

TMSWRDEQ
TMSRDRST
TMSCSIOR

TMSWATIT
TMSDWAIT
TMSQWAIT

TMSTREND
TMSCHEND

TMSGMFM
TMSOPEN

TMSCLOSE
TMSPCLOS

TMSPURGE
TMSGTSLE
TMSDEBUG

P R R S L i e

APPENDIX 2A: COMMUNICATION REGION-_'CR'

OFFSET
*
* The general communication region is located in the
* resident monitor code. A pointer to it is located
*® in each function block as 'FBCR'.
* Aligned on Fullword Boundary
*
000000 CR Dsect
*
000000 CRWAIT DS A Address cof EP 'TMSWAIT!
00000k CRCSIO DS A Address of EP 'TMSCSIO!
000008 CRPURGE DS A Address of EP 'TMSPURGE'
00000cC CRLOAD DS A Address of EP 'TMSPLOAD'
000010 CRGMFM DS A Address of EP 'TMSGMFM!'
00001L CRSNAP DS A Address of EP 'TMSSNAP'
000018 CROPEN DS A Address of EP 'TMSOPEN'
00001C CRCLOSE DS A Address of EP 'TMSCLOSE!
000020 CRWL Ds A Pointer to WAIT List
000024 CRWLLAST Ds A Pointer to Current Last Entry
000028 CRECB DS A CR Dummy ECB
*
CRWRITE EQU X'20' Line Newly Available for WRITE
CRERPOLL EQU X110! Line Available for Poll RESTART
*
00002C CRIND DS XL1 CR Indicators
*
CRCEERR EQU X'80! Error in Channel End Routine
*
00002D CRARBRCODE DS XLl Abnormal End Code
00002E CRWLX DS H Offset to WAIT List Extension
000030 CRLIBDCE DS A Address of Program Library DCB
00003L CRSNPDCB DS A Address of Snap DCB
000038 CRLOGDCE DS A Address of System Log DCB
00003C CRFBCHN DS A Start of FB Chain
000040 CRQFLAGS DS OXL1 Current Needs of Queued FB's
*
CRQEND EQU X'80! No FB's Queued at This Time
CRQWRITE EQU Xrho! 1 or More Queued for WRITE
CRQRPOLL EQU X'20" 1 or More Queued for Poll RESTART
CRQSNAP EQU X'10' 1 or More Queued for SNAPSHOT
CRQPLOAD EQU X'08 1 or More Queued for Program LOAD
*
000040 CRQUEUE DS A PTR to Queue of FB's
0000LL CRPICA DS F Save Area for PICA
0000L8 CRGISLE DS A Address of EP 'IMSGTSLE'
G00050 CREND DS oD End of Communication Region
CRLENGTH FQU CREND-CR Length of Communication Region
COPY FB

116

~121-

Ct' B TDECB

GENERAL COMMUNICATION REGION--'CR'

0 (o) CRWAIT
. Address of EP 'TMSWAIT'
oL CRCSIO
. Address of EP 'TMSCSIO!
8 (8) CRPURGE
Address of EP 'TMSPURGE!
12(C) CRPLOAD
Address of EP "TMSPLOAD'
i6(10) CRGMFM
Address of EP 'TMSGMFM'!
20(1k) CRSNAP
Address of EP 'TMSSNAP'
2L (18) CROPEN
Address of EP "TMSOPEN'
28(1C) CRCLOSE
Address of FP 'TMSCLOSE'
32(20) : CRWL
Address of WAIT List
36(2L) CRWLLAST
Address of Last Entry
L4o(28) CRECB

Communication Region Event Control Block

44 (2C) CRIND

45 - CRABCODE L6(2E) CRWLX
CR Indicators| Abnormal End Code] Offset to WAIT List Extension

48(30) : CRLIBDCB

~2ddress of Program Library DCB
52(3L) CRSNPDCB

Address of Snap DCB
56(38) CRLOGDCB

Address of System Log DCB
60(3C) CRFBCEN

Start of FB Chain

Address of EfF 'TMSGTSLE'

64(L0O) CRQFLAGS 65(L1) CRQUEUE
Queued FB Needs PTR to Queue of FB's
68(LL) CRPIE
Save Area for PIE
T72(L8) CRGTSLE

147

~122-

GENERAIL COMMUNICATIONS REGION--'CR'

BYTES & FIELD HEX. .
QFFSET ALTGNMENT NAME DIG. FIELD DESCRTPTTION, CONTENTS, MREANTNG
0 (0) I CRWAIT Address of Entry Point for TMSWAIT Module
Lo(L) b CRCSIO Address of Entry Point for TMSCSIO Module
(8) L CRPURGE Address of Entry Point for TMSPURGE Module
12 (C) L CRPLOAD Address of Entry Point for TMSPLOAD Module
16 (10) L CRGMFM Address of Entry Point for TMSGMFM Module
20 (1lL4) L 'CRSNAP Address of Entry Point for TMSSNAP Module
(not used at this time)
24 (18) b CROPEN Address of Entry Point for TMSOPEN Module
28 (1c¢) I CRCLOSE Address of Entry Point for TMSCLOSE Module
32 (20) L CRWL Address of the WAIT List
36 (2L4) I CRWLLAST Address of the Last Current Entry on WAIT List
Lo (28) b CRECB Communication Region Dummy Event Control Block
XX. . XXXX (Reserved Bits)
eele el Line Newly Available for WRITE
ceadl ol Line Available for Polling RESTART
kL (2c) 1 CRIND CR Indicators
XXX XXXX (Reserved Bits)
... ... Error in Channel End Routine
45 (2D) .1 CRABCODE Abnormal End Code
28 Unsuccessful Polling Halt
29 Buffer Unavailable for WRITE Initialization

2A . Start of WRITE Unsuccessful (CSIO)
2B Buffer Unavailable for Input

2C Error in Channel was not Timeout, Lost Data,
or Data Check

2D RESTART Parameter Set Already Exists (CSIO)

32 Invalid Terminal List Offset

33 Both READ and WRITE Operations Specified
3L Neither READ or WRITE Operations Specified

35 Invalid Buffer Flags at READ Completion
37 Active Polling Count Invalid at READ
Completion

ils

-123~

GENERAL COMMUNICATIONS REGION —- 'CR'

BYTES & FIELD HEX.
OFFSET ALIGNMENT NAME DIG. FIELD DESCRIPTION, CONTENTS, MEANING
38 Improper Flags in DECUFLGS Field of TDECB
39 Improper Buffer Flags at End of WRITE
3A Channel Error Processing for CE, DE, UC
Redundant
3B Error is not Channel End, Device End, Unit
Check
3C RESTART Parameter Set Already Exists (TREND)
3D Start of WRITE Unsuccessful (TREND)
3E Start of READ Unsuccessful (TREND)
FF I/0 Error Recovery Failure
L6 (2E) 2 CRWLX Offset to WAIT List Extension
48 (30) Y CRLIBDCB Address of Program Library DCB
52 (34) L CRSNPDCB Address of Snap DCB
56 (38) I CRLOGDCB Address of System Log DCB
60 (3C) L CRFBCHN Start of FB Chain
6L (Lo) 1 CRQFLAGS Current
ceee JXXX (Reserved Bits) '
l1... ... No. FB's Queued at This Time
dee e 1 or More Queued for WRITE
eede sae 1 or More Queued for Polling RESTART
ceddl .. 1 or More Queued for Snapshot
B 1 or More Queued for Program Load
65 (L1) . CRQUEUE Address of Queue of FB's
68 (khb) L CRPIE Save Area for PIE
T2 (L8) L CRGTSLE Address of Entry Point for TMSGTSLE Module

1439

-12h-

APPENDIX 2B: FUNCTION BLOCK--'FB'

OFFSET *
* The function control block exists for each operating
* terminal and contains control information, work areas,
* etc.
* Aligned on Fullword Boundary
%*
000000 FB DSECT
*
000000 FBSAVE DS 16F Special Function Save Area
000040 FBECB DS F Event Control Block
00004k FBFDLAGS DS OXL1 FB Flags
*
FBXMIERR EQU X'80" Transmission Error
FBDSCNCT EGU X'Lo! Disconnect
FBDEBUG EQU X'20' Debugging on Terminal
*
00004k FRCB DS A Address of Communications Region
0000LB FBEFLAG DS OXL1
*
FBEPJOB EQU X'ol! Last Entry Thru PJOB
FBEPJOBP EQU X'o2! Last Entry Thru Purged in PJOB
FBEPLOAD EQU X'03" Last Entry Thru PLOAD
FBECNSL EQU X'obt Last Entry Thru CNSL
FBEREADY EQU X'05! Last Entry Thru READY
FBECSIO EQU X'06!" Last Entry Thru CSIO
FBEWRDEQ EQU X'oT! Last Entry Thru WRDEQ
FBERDRST EQU X'08! Last Entry Thru RDRST
FBI"SIOR EQU X'09! Last Entry Thru CSIOR
FBEWAIT EQIT X'10! Last Entry Thru WAIT
FBEDWATT EQU X'13! Last Entry Thru DWAIT
FBEQWAIT EQU X'12! Last Entry Thru QWAIT
FBETREND EQU X'13! Last Entry Thru TREND
FBEGMFM EQU X'1hLt Last Entry Thru GMFM
FBEOPEN EQU X'15! Last Entry Thru OPEN
FBECLOSE EQU X'16"' Last Entry Thru CLOSE
FBEPCLOS EQU X7 Last Entry Thru PCLOS
FBEPURGE EQU X'18! Last Entry Thru PURGE
FBEDEBUG EQU X'19’ Last Entry Thru DEBUG
*
000048 FBCHAIN Ds A Pointer to Next FB
0000L4C FBRLN DS 0XL1 Relative Line No. for This Line
ooookc FBTCHAIN DS A Next TB Chained for This Line
000050 FBQFLAGS DS OXL1 Reason for Which B is Queued
*
FBQEND EQU X180 Last FB on Queue
FBQWRITE EQU X'L4o! B Queued for WRITE to Terminal
FBQRPOLL EQU X'20! FB Queued for READ Poll RESTART
FBQSNAP EQU X'1o0! FB Queued for SNAPSHOT Routine
FBQPLOAD EQU X108 FB Queued for New Program LOAD
¥* .
000050 FBQUEUE Ds A PTR to Next Queued FB
® 120

~125-

OFFSET
000054
000058
00005C
0O0005E
000060

000060
000064
000064
000068

000068
00006C
O0006E
000070
000072
0000T7L
000078
000080

FBBLKCHH
FBDCBCHN
FBTLOFF
FBPOLL
FBRWOP

*
FBRWRITE
FBRWPE
FBRWCRAW
FBRWEDIT
FBRWNLEW
FBRWLREG
FBRWRWRT
*

FBDECB
FBBUFOFF
FBBUFPTR
FBWFLAGS
*

FBWF
FBWRKPTR
FBLCOUNT
FBCLLGTH
FBLMLNTH
FBTERMNO
FBNAME
FBPNAME
FBEND
FBLENGTH

APPENDIX 2B {CONT.)
DS A
DS A
DS H
DS H
DS OXL1
EQU X'80"
EQU X'40!
EQU X'20"
EQU X:08!
EQU X1oh!
EQU X'02¢
EQU X'o1*
DS A
DS 0XL1
DS A
DS OXL1
EQU X'80!
DS A
DS H
DS H
DS H
DS 2
DS CL4
DS CL8
DS OF
DS 0XL (FBEND-FBSAVE)

1<4

~-126~

Start of User Storage Block Chain
Start of User DCB Chain

Terminal List Offset

Polling Characters for Console
READ/WRITE Opcode for Terminal

Bit
Bit
Bit
Bit
Bit
Bit
Bit

to
to
to
to
to
to
to

Indicate
Indicate
Indicate
Indicate
Indicate
Indicate
Indicate

WRITE

PRE~-ERASE

CR After WRITE
Edit Before WRITE
NL Before WRITE
Length in RPO
REWRITE

DECB for Line Associated With FB
Offset to Text in Buffer

PTR to Buffer Attached to FB
Working Flags

Working Pointer

Current Line Count

Length of Current Line
Length of Previous Message
Terminal Number in EBCDIC
Name of Current User

Name of Current User Program
End of Function Block

Length of Function Block

FUNCTION CONTROL BLOCK-~'FB'

0 (0) FBSAVE
Save Area for Users Register

60 (3C)
64 {Lo) FBECB

Event Control Block
68 (L44) FBFLAGS FBCR

FB Flags Address of CR

T2 (L8) FBCHAIN

Pointer to Next FB
76 (LC) FBRLN FBTCHAIN
Relative Line No. Next FB Chained for Their Line
80 (50) FBQFLAGS FBQUEUE
Reason FB is Queued Pointer to Naxt Queued FB
84 (5L4) FBBLK CHN

Start of User Storage Block Chain

88 (58) FBDCBCHN
Start of User DCB Chain
92 (5C) FBTLOFF 94 (5E) FB Poll
Terminal List Offget Polling Characters = |
96 (60) FBRWOP FBDECB
READ/WRITE Opcode DECB for Line Associated with This FB
100 (6L4) FBBUFOFF TBEUTPTR
Offset to Text Address of Buffer Attached to This FB
104 (68) FBWFLAGS FBWRUPTR
orking Plags i Working Pointer
108 (6C) FBBLCOUNT 110 (6E) FBCLLGTH
Currert ILine Count Len
112 (70) FBLMLNTH 114 (72) FBTERMNO
Length of Previous Messags Terminal Nunber —
116 (7h4) FBENAME
Name of Curyent User
120 (78) FBPNAME

Name of Current User Program

12<

-127-

Py orToN CONTROL BLOCK--'FB'

BYTES AND MRLP

OFFSET ALIGNMENT Mg~ FIELD DESCRIPTION, CONTENTS, MEANING
o (0) 6L dRp VR Save Area for TMS Functions

64 (Lo) N dyRoB BEvent Control Block

68 (LkL) 1 YA Function Block Flags:

v, ‘¥ X#xXx (Reserved Bits)
,'. ‘.. FBXMTERR ~ Transmission Error
v}*., ..., FPBDSCNCT -- Disconnect

.1, FBDEBUG - Debugging of Termipal
68 (L) L dCy Address of Communications Region
72 (L48) L byQyAIN Pointer to Next FB
76 (4C) 1 MRy Relative Line Number for This Line
76 (k) L PyTeAAIN Next FB Chained for This Line

8o (50) 1 PyR¥ 4GS Reason for Which FB is Queued:
e *xx (Reserved Bits)

l:': ‘.. FBQUEND - Last FB on Queue
‘1. ‘.+. FBQWRITE ~ FB Queued for WRITE to Terminal
VAL L FBQRPOLL - FB Queued for READ Polling Restart
+,*1 ... FBQRSNAP - FB Queued for Snapshot
*.*v ... TFBQPLOAD - FB Queued for Program Load

80 (50) Y RBQUﬁUE Pointer to Next Queued FB

8k (54) N PgPlFCHN Start of User Storage BlocK Chain

88 (58) L PyPOPCHN Start of User DCB Chain

92 (s5¢C) 2 LAY Offset in Terminal List to Entry for This FB

OFFSET

ok (5E)
96 (60)
96 (60)

100
100
10k
10k
108
110
112
11k
116

120

(64)
(6k)
(68)
(68)
(6C)
(6E)
(10)
(72)
(7¥)
(78)

FUNCTION CONTROL BLOCK--'FB'

BYTES & FIELD
ALIGNMENT NAME
2 FBPOLL
1 FBRWOP
Yy FBDECB
1 FBBUFOFF
Yy FBEUFPTR
1 FBWFLAGS
b TBWRKFTR
2 FBBLCOUNT
2 FBCLLGTH
2 FBLMLNTH
> 2 FBTERMNO
Yy FBNAME
8 FBPNAME

FIELD DESCRIPTION, CONTENTS, MEANING

Poliing Characters for This FB

READ/WRITE Opccde

DECB for the Line Associated With This FB
Offset to Beginning of Text in Input Buffer
Address of Buffer Attached to This FB
Working Flags

Working Pointer

Current Line Count

Length of Current Line

Length of Previous Message

Terminal Number in EBCDIC

Name of Current User

Name of Current User Program

124

-129-

APPENDIX 2C: TELEPROCESSING DATA EVENT CONTROL BLOCK (TDECB)

QFFSET
- *
* The data event control block for teleprocessing via
* BTAM consists of 40 bytes defined by IBM plus user-
* defined fields defined for the TMS system.
*
* Aligned on Fullword Boundary
*
000000 TDECB DSECT
*
000000 DECSDECB DS F Standard Event Control
000004 DECTYPE DS H Block Operation Type
*
* Standard BTAM Optype Codes (Seccnd Byte)
*
DECRTI EQU X'o1' READ Initial
DECWTI EQU X'02" WRITE Initial
DECWTIR EQU Xrgat WRITE Initial With Reset
DECRTT EQU X'o3 READ Continue
DECRTP EQU X'oT7. READ Repeat
DECWTA EQU X'08! WRITE POSITIVE ACKNOWLEDGE
DECWTSR EQU X' 8E!" WRITE Erase With EReset
*
000006 DECLNGTH DS H Area Length
000008 DECONLTT DS OCL1 Reserved For On-Line Terminal Test
0C0008 DECDCBAD DS A Address of DCB
00000C DECAREA DS A Address of Area
000010 DECSENSO DS C 1st Sense Byte
*
DECSCMRJ EQU X' 80! Command ReJect
-—~DECSINTV EQU X'ho Intervention Required
DECSBOCK EQU Xr20! Busout Parity Check
DECSEQCK EQU X'10!" Equipment Check
DECSDICK EQU X108 Data Check
DECSOVRN EQU Xrob! Overrun
DECSLOST EQU X102 Lost Data
DECSTOUT EQU X101! Timeout
*
000011 DECSENS1 DS C 2nd Sense Byte
000012 DECCOUNT Ds H Residual Count
000014 DECCMCOD DS OCLl Command Code
000014 DECENTRY DS A Address of Terminal List
000018 DECFLAGS DS C Status Flags
*
DECFNEGR EQU Xrobh! Negative Response to Polling
*
000019 DECRLN DS C Relative Line Nunber
00001A DECRESPN DS H Response Fields
00001C DECTPCOD DS H Teleprocessing Opcocde
00001D DECERRST DS C Error Status
O0001E DECCSWST DS C CSW Status
o ¥
125

~-131-

OFFSET

000020
000024

300028
00002C
00002E
000030

000030
000034

000034
000038
000038

00003C
0000LT
000048
ooQoL8

DECCSWCE
DECCSWDE
DECCSWUC
DECCSWUE
DECCSWIL
*

DECADRPT
DECPOLPT
*

*
*

DECFBCHN
DECAPCNT
DECWWCNT
DECTTYPE
*
DECCRT
DECTYPEW
DECMULTT
DECSEPLF
*

DECTTIN
DECUFLGS
*

DECUFRIP
DECUFWIP
DECUFPIN
DECUFWTW
DECUFPRS
DECUFACK
*

DECTTOUT
DECCPNUL
DECTTLIN

DECRSAVE
DECCPLIN
DECMAXNL
DECTLIST

APPFNDIX 2C:

EQU
EQU
EQU
EQU
EQU

DS
DS

TDECB

X'08
Xrol
X'02!
X'cle
Xr40?!

A
A

(CONT.)

Status Flag--Channel End
Status Flag-~Device End
Status Flag--Unit Check
Status Flag--Unit Exception
Status Flag--Incorrect Length

Address of Current Addressing Entry
Address of Current Polling Entry

Fields Specific to TMS

DS
DS
DS
DS

EQU
EQU
EQU
EQU

DS
DS

EQU
EQU
EQU
EQU
EQU
EQU

DS
DS

DS
DS
DS

A
H
H
OXL1

X'80¢"
X'Lo!
X'20"
X'10"

A
OXL1

Xl80l
X'kho
X'20"
Xllol
X'08
Xrobhr

A
OXL1
A

CL11
XL1
OXL1
A

PTR to Chain of FB's for Line
Active Polling Count
Weiting-to-Write Count
Terminal Type

Bit to Indicate CRT Display
Bit to Indicate Typewrite:

Bit to Indicate Shared Line
Separate Line Feed Reguired

Address of Inbound Translate Table
TMS Flags

READ Polling in Progress

Wriling in Progress

Polling Interrupted to Write
Another Terminal Waiting to Write
Polling RESET in Progress
POSITIVE ACKNOWLEDGMENT Needed

Address of Outbound Translate Table
Characters Per Null for CR

Address of Inbound L/U Translate
Table

Save Area for READ Parameters
Characters Positions Per Line
Maximum Number of Lines on Screen
Address of Terminal List

DATA EVENT CONTROL BLOCK FOR TELEPROCESSING—-'TDECB'

0 (o) DECSILECE
Event Control Block
QTS DECTYPE 6 (6) DECLNGTH
Operation Type Area Length
8 (8) DECONLTT ! DECDCBAD
{(Reserved) i Address of DCB
12 (C) DECAREA
Address of Area
16 {10) DECSENS¢ 17 (11) DECSENS1 [18 (12) DECCOUNT
_1st Sense Byvte 2nd Sense Byte Residual Count
20 (14) DECCMCOD DECENTRY
Ccmmand Code Adéress of Terminal List
24 (18) DECFLAGS |25 (19) DECRLN 26 (14) DECRESPN
Status Flags |Relative Line No. Addressing Response Field
28 (1c) DECTPCOD |29 (10) DECERRST [30 (1E) DECCSWST
Operation I/0 ERROR Status CSW Status
32 (20) - DECADRPT
Address of Current Addressing Entry
36 (24) DECPOLPT
Address of Current Polling Entry
Lo (28) DECFBCHN
Pointer to Chain of FB
Lk (2c) DECAPCNT 6 (2E) DECWWCNT
Active Polling Count Waiting to Write Count
48 (30) DECTTYPE, DECTTIN
Terminal Type, Address of Inbound Translate Table
52 (34) DECUFLGS, DECTTOUT
TMS Flags. Address of Qutbound Translate Tablie
56 (38) DECCPNUL, DECTTLIN
Characters /Null for CR, Address of Inbound L/U Translate Table
60 (3C) DECRSAVE
Save Area for READ Parameters
72 (47) DECCPLIN
Positions /Tine
72 (L48) DECMAXNL, DECTLIST

Maximum Number Lines/Screen, Address of Terminal List

-133-

127

DATA EVENT CONTROL BLOCK FOR TELEPROCESSING--~'TDECB'’

BYTES &
OFFSET ALIGNMENT

FIELD
NAME

(o)
L

oo o

16

17
18

20
21
24

(0)
(4)

(6)
(8)
(9)
(C)
(10)

(11)
(12)

(1)
(15)
(18)

(19)
(1a)
(1c)
(ID)

L
2

’B_I\

Y]

DECSDECE
DECTYPE

DECLNGTH
DECONLTT
DECDCBAD
DECAREA

DECSENS¢

Lese oans
O
S
O
N
B
sese sal.
ceee eaal

DECSENS1
DECCOUNT

DECCMCOD
DECENTRY
DECFLAGS

HUHX XXX
i
DECRLN

DECRESFN
DECTPCQOD
DECERRST
T

O

eele a
ee s X JXXX
* & & @ 1il-

HEX.
DIG.

01
02
82
03
o7
08
8E

FIELD DESC

Event Control Block

Operation Type

DECRT1 ~ READ Initial

DECWT1L ~ WRITE Initial

DECWT1R -~ WRITE Initial with Reset
DECRTT -~ READ Continue

DECRTP - READ Repeat

DECWTA - WRITE POSITIVE ACKNOWLEDGE
DECWTSR -~ WRITE Erase with Reset

ILength of Buffer or Message Area
Reserved for On-Line Terminal Test
Address of Associated ICB

Address of Buffer or Message Area
First Sense Byte

DECSCMRJ -~ Commend Reject

DECSINTV - Intervention Required
DECEBOK - Busout Parity Check
DECSEQCK -~ Equipment Check

DECSDTCK Datsa Check

DECSOVRN -~ Overrun

DECSLOST - Last Data

DECSTOUT -~ Timeoub

Second Sense Byte (Reserved)
Residual Count From C8W for Last CCW

1

Executed

Command for Which Error Occurred
Address of the Terminal List
Status Flags

(Reserved Bits)

DECFNEGR - Regative Regponse to Polling

Relaﬁifa Line Number
Addressing Response Field
Teleprocessing Operation Code
I/0 ERROR Status Flags

5I0 Resulted in a Condition Code of 3

Undefined Error Condition
I/0 ERROR in Error Running Routine
(Reserved Bits)

Disable Issued to a Switched-Connected Iine

-13h-

128

DATA EVENT CONTROL BLOCK FOR TELEPROCESSING--'TDECE®

BYTES &
OFFSET ALIGNMENT
30 (1E) . . 2

32 (20) L \
36 (2L4) 4

Lo (28) L

yy (2c) 2

W6 (28) . . 2

48 (307 1

49 (31) . 3

52 (34} 1

53 (35) . 3

56 (38) 1

57 (39) . 3

60 (3C) 11

71 (7Y .. .2
72 (L8) 1

73 (k9) . 3

\‘1

FIELD HEX.
NAME DIG.
DECCSWST
DECADRPT
DECPOLPT
DECFRCHN
DECAPCHT
DECWWCNT
DECTTYPE,
DECTTIN
DECTTIN
TECUFLGS,
DECTTOUT

e Lol
s
eers .. XX

DECTTOUT
DECCPNUL ,
DECTTLIN

DECRSAVE
DECCPLIN
DECMAXNL ,
DECTLIST
DECTLIST

129

=135~

FIELD DESCEIPTION, CONTENTS, MEANING

CsW Status

Address of Current Addressing Eniry
Address of Current Polling Entry
Pointer to Chain of FB's for Line
Active Polling Count

Waiting to Write Count

Terminal Type
Lddress of Inbound Translste Table

TMS Flags

DECUFRIP -~ READ Polling in Progress
DECUFWIP -~ Writing in Progress

DECUFPEN — Polling Interrupted to Write
DECUFWIW - fnother Terwminal Waiting

to Write

DECUFPRS- = Polldng RESET in Progress
DECUFACK ~ POSITIVE ACKFNOWLEDGE ¥=eded
(Reserved Bits)

Address of Outbound Transiste Table

Characters per Null for CR
Address of Inbound L/U Translate Table
Save Area for READ Parameters
Character Position per Line

. 3 \
Maximum Number of Lines per Screen

Address of Terminal List

LPPENDIX 3: LOAD MODULE ELEMENTS

TMS ig divided into two load modules, each of which is comprised of
multiple cbhject modules or control sections, The TM3 load modules
are made up as follows:

LOAD, MODULES INCLUDED OBJECT MODULES

TMSHSKP TMSHSKPR
TMSBLOCK

TMSEXEC TMSPJOB
TMSPLOAD
TMSBEGIN
TMSCNSL
TMSCSIO
TMEWAIT
TMETREND
TMSGMEM
TMEOPEN
TMSCLOSE
TMSPURGE
TMESLEEUG

Q- 130

-137-]

. APPENDIX L4; STANDARD LIST OF I/C MCDULES

ESAM MODULES:

TIGGO1984 - BSAM READ/WRITE MODULE(384 BYTES)

IGGO1988 BSAM CHECK MODULE (96 BYTES - MODIFIED)

BDAM MODULES:

IGGO19KA BDAM FOUNDATION MODULE (1L80 BYTES)

IGGO19KC BDAM RELATIVE TRACK CONVERSION MODULE (280 BYTES)

ICGO19KE BDAM RELATIVE BLOCK CONVERSION MODULE (30L BYTES)

TGGO19KI EDAM CHANNEL PGM FOE KEY SEARCH (152 BYTES)

IGGOL9KK BDAM CHANNEL PGM FOR ID SEARCH (176 BYTES)

TGGO19KM BDAM WRITE ADD FORMAT U OR V (584 BYTES)

TGGO19KO BDAM WRITE ADD FORMAT F (264 BYTES)

I1GGO19KS BDAM START I/O APPENDAGE (64 BYTES)

TGGO19KU BDAM CHANNEL ENDY APPENDAGE (132 BYTES)

IGGOL19KW BDAM KEY EXTENDED SEARCH (200 BYTES)

IGGO19KY BDAM SELF-FORMAT EXTENDED SEARCH (200 RYTES)

1GG019LA BDAM PRE-FORMAT EXTENDED SEARCH (200 BYTES)

IGGOLIILC BDAM END OF EXTENT APPENDAGE (168 RBYTES)

TGGOLOLT BDAM CHECK MODULE (240 BYTES)

BTAM MODULES:

IGGO19MA BTAM READ/WRITE MODULE (1568 BYTES)

IGGO19MB BTAM CE & AE APPENDAGES (2T7Lh BYTES)

IGGO19M3 BTAM SANDERS 720 DDM (312 BYTES - MODIFIED)
131

-139~

PR AT ST D T N A o . .

R e B o R, 5

