
iLloa
111113A 11111-_-5

IPZ
011112

11111L2=

11111-22°-

111P- 11111

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF 5TANDARDS-1%3=A

DOCUMENT RESUME

ED 060 920 52 LI 003 611

AUTHOR Smith, Stephen F.; Harrelson, William
TITLE TMS: A Terminal Monitor System for Information

Processing. Final Report.
INSTITUTION California Univ., Berkeley. Inst. of Library

Research.
SPONS AGENCY Office of Education (DHEW), Washington, D.C. Pureau

of Research.
BUREAU MO PR-7-1085
PUB DATE Sep 71
GRANT 0EG-1-7-071085-4286
NOTE 131p.;(0 References)

EDRS PRICE MF-10.65 HC-$6.58
DESCRIPTORS *Automation; Computer Programs; Data Bases;

Electronic Data Processing; *Information Processing;
*Information Retrieval; *Library Education; *Lit'rary
Science; Manuals; On Line Systems; ResearCh

IDENTIFIERS *University of California Berkeley

ABSTRACT
The results of the second 18 months (December 15,

1968 June 30, 1970) of effort toward developing an Information
Processing Laboratory for research and education in library science
is reported in six volumes. This volume contains two parts. Part I
includes: a user's guide - a guide to writing programs to TMS
(Terminal Moniter System) for information processing. Part II is a
system programmer's guide to the internal structure of TMS itself.
The information presented in Part II iS of critical importance to
anyone interested in expanding or modifying the existing capabilities
of TMS. (Other volumes of this report are available as LT 003607
through 003610). (Author/NH)

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

1HIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON On ORGANIZATION ORIG-
INATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU
CATION POSITION OR POLICY

FINAL REPORT
Project No. 7-1085

Grant No. 0EG-1-7-071085-4286

2,-'1I1M5: A TERMINAL MONITOR SYSTE /
FOR INFORMATION PROCESSING1)

7

By

tephen F. Smith
William Harrelson

Institute of Library Research
UniversIty of Califerrrka
Berkeley, 0

'September 1971

0

The research reported herein was performed pursuant to a grant
with the Office of Education, U.S. Department of Health, Education,
and Welfare. Contractors undertaking such projects under Govern-
ment sponsorship are encouraged to express freely their professional
judgment in the conduct of the project. Points of view or opinions
stated do not, therefore, necessarily represent official Office
of Education position or policy.

U.S. DEPARTMENT OF
[IA _HEALTH, EDUCATION, AND WELFARE

Office of Educat1on0Pde:Lk)
Bureau of Research

5°19
()

TABLE OF CONTENTS

PART I: A GUIDE TO WRITING PROGRAMS FOR TMS

EWe
1. INTRODUCTION 3

1.1 Criteria Used in Design 3

1.2 Basic Structure of the System... 5

1.3 Services Provided 6

2. SYSTEM CONVENTIONS 9

2.1 Use of Save Areas and Initia7 Base Registers 9
2.2 Use of FB and CR 9
2.3 Obtaining and Releasing Main Storage 10
2.4 Opening and Closing Data Sets 11
2.5 Terminal I/0 12

2.5.1 WRITE Operations 12
2.5.2 READ Operations 13
2.5.3 Additional Features 13

2.6 Non-Terminal I/0 13
2.7 Scheduling and Event Synchronization 14

3. SPECIFICATIONS FOR CODING TMS MACROS 15

3.1 TMSCLOSE--Close a Data Set 15
3.2 TMSCSIO--Terminal Input/Output.. 15
3.3 TMSDLETE--Delete a Load Module 17
3.4 TNSESETL--End Sequential Retrieval

(QISAM Input.Only) 17
3.5 TMSFREEM--Release Main Storage 18
3.6 TMSGET--Obtain Next Logical Record (QISAM Input) 18
3.7 TMSGETM--Obtain Main Storage 19
3.8 TMSHDCPY--Frovide Hard Copy of CRT Output..... 20
3.9 TMSLOAD--Bring a Load Module into Main Storage 20
3.10 TMSLOG--Create an Entry in the System Log 21
3.11 TMSOPEN--Gsnerate Data Control Block and Open a

Data Set 22
3.12 TMSPRINT--Put a Line to Line Printer 28
3.13 TMSRETN--Return to Calling Program 28
3.14 TMSSAVE--Entry from Calling Program 28
3.15 TMSSETL--Set Lower Limit of Sequential Retrieval

(QISAM Input Only) 30
3 .16 TMSWAIT--Wait for an Event 31

4. THE TOP-LEVEL CONTROL LANGUAGE 33

4.1 Logging In 33
4.2 Specifying Programs 34
4.3 Logging Out 35

-

TABLE OF CONTENTS (Cont.)

Page
4.4 Error Exits from User Programs 35

4.5 Special Operations 36

APPENDICES

Page_
1. LIST OF PERMISSIBLE MACRO PARAMETERS 39

2. LIST OF SYSTEM MESSAGES 43

3. CARRIAGE CONTROL CHARACTERS (1403 Line Printer) 47

PART II: A PROGRAM LOGIC MANUAL FOR THE TERMINAL MONITOR SYSTEM

Page
1. DETAILED SYSTEM STRUCTURE 51

1.1 Communication Region 51
1.2 Function Block 52
1.3 Wait List and Walt List Extension 52
1,4 Teleprocessing Data Event Control Block 53

2. INTERNAL SYSTEM CONVENTIONS 55

2.1 SAVE Areas 55
2.2 CR and FB Pointers 55
2.3 Chain of Core Storage Blocks 56
2.4 Chain of Data Control Blocks 56
2,5 Types of I/0 and Data Sets Suppor ed 58
2.6 Queuing and Dequeuing 59

INTRODUCTION TO MODULE FUNCTIONS

3.1 System Initialization
12 Wait Handling and Dequeuing
3.3 Communications with Computer Operator
3.4 Communications with Terminal
3.5 Obtaining and Releasing Prime Storage
3.6 Locating, Opening, and Closing of Data Sets
3.7 Loading Requested Programs
3.8 Recovery from User Program Errors
3.9 Top Level Control 00000 OS.00.0. OOOOOOOOOOOOOOOOOO 660..**

61

61
61
62
62
62
63
63
64
64

4. DETAILED MODULE DESCRIPTIONS 67

4.1 TNEBEGIN Module 67

TABLE OF CONTENTS (Con .)

Pa
4.2 TMSBLOCK Module 7
4.3 TMSCLOSE Module 68
4.4 TMSCNSL Module 71
4.5 TMSCSIO Module 71
4.6 TMSGMFM Module 79
).L.7 TMSGTSLE Module 80
4.8 TMSHSKP Module 82
4.9 TMSOPEN Module 87
4.10 TMBPJOB Module 95
4.11 TMSPLOAD Module 98
4.12 TMSPURGE Module 99
4.13 TMSTREND Module 100
4.14 TMSWAIT Module 102

5. DETAILED MACRO DESCRIPTIONS 107

5.1 FORMFB Macro 107
5.2 TABLES Macro 108
5.3 TMSCLOSE Macro 108
5.4 TMSCSIO Macro . 110
5.5 TMSFEEEM Macro 111
5.6 TMSGETM Macro. 111
5.7 TMSLINK Macro 111
5.8 TMSOPEN Macro 112
5.9 TMSRETN Macro.. , 113
5.10 TMSSAVE Macro 114
5.11 TMSWAIT Macro 115

APPENDICES

Paze,
1. TMS MODULE NAMES AND ENTRY POINTS 119

2a. COMMUNICATION REGIONTR' = 121

2b FUNCTION BLOCK--TFB' 125

2c. TELEPROCESSING DATA EVENT CONTROL BLOCK (TDECB) . 131

3. LOAD MODULE ELEMENTS 137

4. STANDARD LIST OF I/0 MODULES 139

LIST OF FIGURES

Figure Title PEISe

1, Storage Block Chaining 57

2. Data Control Block Chaining 57

3. FR Queuing 6o

4. Structure of TMSGTSLE WORKAREA (1 per QISAM 83

5. Translate Tables 109

FOREWORD

This report contains the results of the second 18 months (December 15,
1968 - June 30, 1970) of effort toward developing an Information Pro-
cessing Laboratory for research and education in library science. The
work was supported by a grant (0EG-1-7-071085-4286) from the Bureau of
Research of the OfficeOf Education, U.S. Department of Health, Edu-
cation, and Welfare and_also-bythe_University of ,California. The
principal investigator was M.E. Maron, Professor of Librarianship.

This report is being issued as six separate volumes by the Institute
of Library Research, University of California, Berkeley. They are:

Maron, M.E. and Don Sherman, et al. An Information Processing
Laborato fer Education and Research in Library Science:_ _Phase 2.

ContentsIntroduction and Overview; Problems of Library
Science; Facility Development; Operational Experience.

Mignon Edmond and Irene L. Travis. LABSEARCH: 1LR Associative
Search System Te4mLinal Users' Manual.

Contents--Basic Operating Instructions; Commands; Scoring
Measures of Association; Subject Authority List.

Meredith, Joseph C. Reference Search System (REFSEARCH) Users' Manual.

ContentsRationale and Description; Definitions; Index and
Coding Key; Retrieval Procedures; Examples.

Silver, Steven S. and Joseph C. Meredith. DISCUS Interactive
System Users' Manual.

Contents--Basic On-Line Interchange; DISCUS Operations;
Programming in DISCUS; Concise DISCUS Specifications;
System Author Mode; Exercises.

Smith, Stephen F. and William Harrelson. TMS: A Terminal_ Monitor
S stem for Information Processin-

Contents--Part I: Users' Guide - A Guide to Writing Programs
for TMS

Part II: Internals Guide - A Program Logic Manual
for the Terminal Monitor System

Aiyer, Arjun K. The CIMARON S stem: Modular Pro rams for the
Organization and Search_of Large Files.

Contents--Data Base Selection; Entering Search Requests; Search
Results; Record Retrieval Controls; Data Rase Generation.

Because of the joint support provided by the File Organization Project
(0EG-1-7-071083-5068) for the development of DISCUS and of TMS, the volumes
concerned with these programs are included as part of the final report for
both projects. Also, the CIMARON System, whose development was supported by
the File Organization Project, has been incorporated into the Laboratory
operation and therefore, in order to provide a balanced view of the total
facility obtained, that volume is included as part of this Laboratory project
report. (See Shoffner, R.M., et al., The Organization and Search of
Bibliographic Records in On-Line Computer Systems: Project Summary.)

ACUTOWIZDOMENTS

Many people - faculty, Institute staff, and students of
the School of Librarianship - helped to create the existing
Terminal Monitor System. Especially notable among the pro-
grammers who developed and tested several utility modules are
Chakravarthi Ravi, Arjun Aiyer, and Rodney Randall. These
people and others also were instrumental in pinpointing and
correcting design weaknesses. Ralph Shaffner, Allan Humphrey,
and Don Sherman were key figures in prescribing additional
facilities necessary far the system's smooth operation.

Principal acknowledgements are due to both the School of
Librarianship of the University of California and the Office
of Education of the Department of Health, Education, and
Welfare, for making this work possible.

In addition, we wish to thank and to commend the work of
the Institute personnel who prepared these pages for publication=
Ellen Drapkin, Carole Fender, Bettye Geer, Linda Herold,
Jan Kumataka, and Rhozalyn Perkins.

-vi--

PREFACE

The cathode ray tube terminals of the Infolmation Processing
Laboratory are linked to a remote IBM 360 computer. This computer
is run under the IBM Operating System, which allows several different
users to share simultaneously the resources of the machine. This
sharing is accomplished by establishing independent "partitions"
of main memory and allocating one partition to each active program.
The Operating System maintains control over and provides services
to the individual computer programs residing in the various par-
titions. This is on a one-to-one basis; i.e., the Operating System
allows but one program to be active in a given partition at any
given time.

Since this 360 is not dedicated to serving the Information
Processing Laboratory, it is necessary that the entire network of
remote terminals appear to the Operating System to be a single
program residing in one partition. However, each remote terminal
must be able to call forth and use individual programs independently
of the simultaneous activity on other terminals. Thus, to serve
the needs of the Information Processing Laboratory, there must be
a means of running several independent programs simultaneously
within a single partition that is under thz-, control of the Opera-
ting System.

To meet this need, the Institute of Library Research has
developed the Terminal Monitor System (TMS). This is a system
program which provides the software interface between the Operating
System and applications programs running on individual terminals.
It provides terminal programs with access to the services offered
by the Operating System, and it also serves to represent the en-
tire network as a single program to the Operating System.

This two-part volume of the final report on the Information
Processing Laboratory project describes the Terminal Monitor
System. Part I, an application programmer's guide to TMS,
tells how to use TMS facilities to write on-line application
programs that are to be run on the Laboratory network. Part II
is a system programmer's guide to the internal structure of
TMS itself. The information presented in Part II is of critical
importance to anyone interested in expanding or modifying the
existing capabilities of TMS.

PART I

A GUIDE TO WRITING PROGRAMS
FOR TMS

1. INTRODUCTION

This manual is intended for use by programmers writing appli-
cation programs to be run under the Terminal Monitor System (TMS).
As such, it gives a brief overview of system design and details the
programming conventions to be employed when using this system, as
well as the specifications for employing the system macro in-
structions. It also describes an elementary top-level terminal
control language that allows the user at a terminal to identify
himself (i.e., "log in") to the system, specify the problem pro-
gram that he wishes to work with, and recover from program errors.
A much greater level of detail regarding system design, the actual
expansion of system macro instructions, and details on the system
processing modules is contained in a companion publication, the
TMS Internals Guide.

This manual assumes on the part of the problem programmer a
moderate level of proficiency in writing Assembler Language pro-
grams to operate under 05/360. This should include basic Assem-
bler Language programming and the use of the Supervisor Services
and Data Management Services macro instructions. Specifically,
this manual assumes a working knowledge of the contents of the
following publications:

a. System 360 Principles of Operation, Form A22-6821

b. 09/360 Concepts and Facilities, Form 028-6535

c. 0S/360 Assembler Language, Form C28-6514

d. 0 /360 Assembler F Programmers Guide, Form C26-3756

e. 09/360 Job Control Language, Form C28-6539

f. 09/360 Supervisor and Data Management Services,
'Form C28-6646

g. 09/360 Supervisor and Data Management Macro Instruc-
tions, Form C28-6647

1.1 Criteria Used in Design

Several basic criteria have governed the de gn of TMS. Pri-
mary among these has been the need to fit the system into rather
a small amount of main storage (compared to systems with similar
capabilities). Of nearly equal importance has been the need to
maintain complete compatibility with the IBM Operating System
(09/360) with minimal (hopefully none) alterations to OS code. The
system has to be able to service the several users on the individual
terminals in a quasi-simultaneous manner and give these users the
options of running different application programs or sharing the
same application program with little or no consideration as to
what the other users of the system may be doing at that particular

time. As a corollary, the system has to remain as immune as pos-
sible to crashes by individual application programs and maintain
service to the remaining terminals while attempting to recover
from any problems encountered. Due to the past history of MR
equipment acquisitions and possible changes in the future, the
system must be able to deal with different types of terminals inclu-
ding a mixture of keyboard and cathode-ray tube (CRT) terminals.
Insofar as is possible, the potential effects on the application
programmer of having to deal with different types of terminals
should be minimized. Finally, an elementary form of top-level con-
trol language was found necessary to perform such housekeeping func-
tions as the identification of authorized users and the loading of
programs at their request.

The above criteria, in addition to consideration of the avail-
able manpower and resources, resulted in the following primarY de-
sign decisions. First, the amount of monitor code in main storage
at execution time had to be minimized; thus all setup and shutdown
functions had to be separated out from this code and assembled as
separate load modules to be in main storage only during setup and
shutdown processes. The need for OS compatibility and maximum
reliability required a system that would stand between the user
and 05/360 and edit all requests by application programs to reduce
or eliminate the possibility of system crashes in trying to serve
these requests. It was decided that as much as possible of the bur-
den of checking a user's service request for validity would be placed
on the assembly phase of application program development by building
extensive checking facilities into the various TMS macros and thus
eliminating the need for execution time checking in many cases.
Finally, space and manpower requirements dictated that while the
system exhibit certain features commonly found only in so-called
time-sharing systems or in OS/MVT the system itself would not be
designed in this manner; thus, the system design achieves a level
of complexity somewhere between the dedicated application telepro-
cessing system and the full time-sharing system.

These primary design decisions led in a fairly natural manner
to certain secondary design decisions. Since on a small computer
or in a small multi-programming partition the greatest problem
likely to occur is running out of space, first priority had to be
given to detecting the impending occurrences of this problem and
avoiding them. Since the most uncontrollable situation with respect
to core allocation generally arises with the execution of an OS OPE1T
macro instruction certain steps had to be taken to minimize the
possible adverse effect of using this macro. One of the most impor-
tant was in pre-loading all of the necessary access method subroutines
into the TMS partition prior to starting execution of TMS. To mini-
mize the amount of core used up in this manner it was decided to
use only the basic access methods and to restrict availability to
a-subset of basic access methods services which would adequately
serve the various application programmers. With the loading of
access method subroutines under control, and the possibility of

automatic buffer allocation greatly reduced by limiting ourselves
to basic access methods, most of the remaining core allocation
problems became easily predictable and could be handled by doing
conditional GETMAIN's. Further, to minimize the amount of code
necessary to set up an OPEN macro instruction, the data sets were
limited to direct access data sets already allocated and cataloged
in the system catalog. Thus data set availability could be readily
checked and most data set parameters would be obtained from the
various data set control blocks (DSCB's).

To allow TMS to deal with many different types of terminals
in a relatively uniform manner with minimal investments in special
programming the Basic Teleprocessing Access Method (BTAM) was se-
lected as the interface between TNE and the various terminals.

It was realized that most TMS functions would keep control of
the computer or at least keep control of the TMS partition for the
whole time that they were executing; thus most TME modules needed
only to be serially reuseable. For those situations where conflict
would exist between two or more user programb attempting to use
the same serially reuseable resource a simple queuing scheme employ-
ing a single chain of 'ME "Function Blocks" was devised. See
page 8 for a discussion of Function Blocks [FB's].)

1.2 Basic Structure of the System

To the application programmer, the Terminal Monitor System (TMS)
is 1) a collection of tables or blocks linked to each other and con-
taining all information about the system; and 2) a set of processing
routines which operate on these tables and programmer-supplied pa-
rameters to perform the necessary system services. Another part
of the system is a top-level supervisor, the phantom job, which
handles certain basic console operations. The application program-
mer's only interface with the phantom job is the fact that the phan-
tom job calls the application program as a subroutine of itself.

There is a monitor routine for each of the major functions
performed by TMS, plus some routines not directly accessed by the
application program. Interface between the program and the monitor
is accomplished by the use of special TMS macro instructions.

The basic block upon which the rest of TNE depends is the
Communication Region (CR). To the application programmer, the
prime use of this block is as a vector of entry point addresses
to the monitor routines. There is only one CR for the entire system.

The basic block for each terminal is the Function Block (FB).
This block contains such things as: an auxiliary save area for the
application program associated with the termlnal; the user identi-
fication code for the user logged in at that terminal; the appli-
cation program name; the terminal number; several bytes of flags
denoting terminal type and terminal and program status; pointers

to other control blocks in TMS; terminal I/O information and work
areas; and pointers to chains of the main storage blocks and OS
Data Control Blocks associated with that particular terminal.

For each terminal attached to the computer there exists a
buffer for terminal input/output. For terminals that share the
same communications link, these buffers are chained together and
shared between those terminals. Thus it is not safe to assume that
a particular I/0 buffer address will always be associated with the
application program during the period that it is in operation.

1.3 Services Provided

The Terminal Monitor System provides several services to facil-
itate the writing of application programs that will operate in a
multi-programmed environment interacting with their users via re-
mote terminals connected to the computer by communications lines
and employing, if necessary, direct access data sets. These ser-
vices generally take the form of one or more TNE macro instructions,
which set up parameters and then transfer control to a suitable
portion of the TMS monitor. The necessary tables to control the
system and each application program running under it are also pro-
vided. Finally TMS provides an elementary top-level terminal con-
trol language to enable the housekeeping functions of user "log in"
and specified application program loading to be performed.

There are several operations that each application program
must perform in interfacing with the TMS such as Obtaining new save
areas, linking save areas, establishing base registers, and main-
taining, if desired, pointers to various system tables. The macros
provided for this purpose are TMSSAVE and TNERETN.

Central to the operation of a multi-programming system is the
ability for an individual application program to indicate that it
no longer requires control of the computer until some asynchronous
operation is completed, such as input/output. In TNE this function
as well as the function of synchronizing program operation with
these asynchronous operations is performed by the TMEWAIT macro
instruction.

In a dynamic multi-programmed environment such as TMS, care-
ful management of the main storage of the computer is necessary.
In order to free system resources as soon as possible after it is
determined that the application program no longer needs them (espec-
ially in the case where the user has lost control of his application
program) it is also necessary to keep careful record of what areas
of main storage are allocated to which application program. Both
of these functions are enbodied in the TMSGETM and TNEFREEM macro
instructions which are used for Obtaining and releasing main storage,
respectively.

The Terminal Monitor System provides access to bodies of ex-
ternal data by any of the three basic access methods for data pro-
vided under OS; Sequential, Direct, and Indexed. In addition,
certain functions of the Queued Indexed Sequential Access Method
are simulated by TMS via the IMBSETL, TMSGET, and TMSESETL macro
instructions.

It is desirable both to simplify the manner of obtaining
access to data sets and to avoid the kind of errors that may re-
sult in the entire monitor run being abnormally terminated. In
addition, the tables associated with data sets are often one of
thesleading obstacles to writing re-entrant programs The TMSOPEN
macro instruction combines the function of both the OS DCB and
OPEN macro instructions. This macro instruction actually gener-
ates a DCB in specially obtained main storage and returns the
address of the opened DCE to the user program. The corresponding
macro TMSCLOSE is responsible for closing the data sets and freeing
those areas of core obtained for the DOB and associated buffers.

2. SYSTEM CONVENTIONS

2.1 Use of Save Areas and Initial Base Registers

In the use of save areas and initial base registers the Term-
inal Monitor System conforns almost exactly to the standards of
05/360. Upon entry to the application program a save area, which
is to become the top of a save area chain, is pointed to by reg-
ister 13 (RS). Subsequent save areas must be linked to this save
area using OS conventions and register 13 must point to a valid
save area at all times. The only variance from standard OS prac-
tice is that the first word of each save area contains the address
of the associated FE. As each save area is obtained, its first
word must therefore receive the contents of the first word of
the preceding save area. Code for maintaining this convention
and the linkage between save areas is generated as part of the
expansions of the TMSSAVE and TMSRETN macro instructions. These
macro instructions also contain provisions for either providing
an in-line save area, obtaining additional core storage for a save
area, or suppressing the generation of any save area at all.

As in all OS programs, register 15 (RC) contains the entry
point address when control is passed to the user program. The
TMSSAVE macro instruction generates code to move this address into
a permanent base register of the user's choosing. The default
base register is register 12 (RE).

When it is necessary to make maximum usage of every register
available, the application programmer may wish to use register 13
as a pointer to a general work area, of which the first 72 bytes
are reserved for the save urea. In this case he may specify
SA=REMOTE and employ the SAINCR operand to specify the number of
additional bytes he wishes Obtained. If this increment plus the
72-byte save area is greater than 4095 bytes, a level 4 warning
message will be issued, but the necessary code will be generated.
In this case, it is the application programmer's responsibility
to provide additional base registers as needed.

2.2 Use of FB and CR

Upon entry to an application program from the top level mon-
itor, a pointer to the program's Function Block (FB) is provided
in register 11 (R9) and a pointer to the general Communication
Region (CR) is provided in register 10 (R8). Certain TNS macro
instructions generate code to alter byte settings in the FB; the
FE may also be used to locate the CR if a pointer to the CR is not
being maintained by the user program. The CR is principally used
by application programs as a vector of addresses of monitor rou-
tines.

-9 -

15

With respect to the FE, the application programmer has the
option of stating whether the program will or will not maintain
register 11 as the FE pointer. The application programmer may
encode RFENONE in the TMSSAVE macro instruction to indicate
that register 11 is not guaranteed to contain a pointer to the
FB at all times. If this is not coded, register 11 must point to
the YE whenever any code generated by a TMS macro instruction is
being executed. With respect to the CR pointer, the application
programmer may specify any register (including register 10) to
be the CR pointer by using the RCR operand of the TMSSAVE macro
instruction. If this operand is omitted, it is assumed that no
CR pointer will be maintained by the program. If the application
programmer does specify a register as a CR pointer, he must in-
sure that it contains the proper address whenever code generated
by a TMS macro instruction is executed.

A set of standard register equates and symbolic definitions
for the FE and CR are maintained on ILR.MACLIE. These may be
obtained by the COPY BEGS, COPY FE, and COPY CR statements, respec-
tively. The register equate, FE, and CR definitions must be pro-
vided for every program that employs any TMS macro instruction.

2.3 Obtaining and R leasing Main Storage

In order to prevent system crashes due to running out of
main storage and to properly clean up after an application pro-
gram failure, TMS must maintain control over all main storage
allocations within its partition. The macro instructions used to
dbtain and release main storage are nlmost identical to the R-type
GETMAIN and FREEMAIN macro instructions in OS.

To obtain core storage, the TMSGETM macro instruction is used.
Its only parameter is either a symbolic expression representing
the nuMber of bytes to be obtained or the designator, in parentheses,
of a register which contains the count of bytes desired. The sym-
bolic expression form of operand may be used only to request 4095
bytes or less. Upon return from TMS, register 1 (RP1) points to
the address of the storage obtained.

The macro instruction used to release main storage, TMSFREEM,
differs from FREEMAIN, its OS counterpart, in that it requii,s
only one operand; the address of the area of main storage to be
released. This parameter is supplied as either the symbolic address
of a full word of storage containing the address of the area to
be released, or the designator, in parentheses, of a register con-
taining the address of the area to be released. The length of
the area to be released is obtained by TMS from a link element
that it maintains. This approach results in the restriction that
any area of main storage obtained by TMSGETM macro instruction
must be released by a corresponding TMSFREEM macro instruction;
i.e., no area of main storage obtained as a single unit may be
released in segments.

-10-

16

2.4 Opening and Closing Data Sets

The operations of defining, opening, and closing data sets
in TMS are considerably different than the corresponding opera-
tions in OS. TMS takes advantage of the fact that all data sets
are already defined and allocated on direct access storage de-
vices with complete information in their data set control blocks
(DSCB's). Thus TM'S has no need for an analogue for the OS DCB
macro instruction. Instead the few parameters needed to complete
the definition of a data set are supplied as additional operands
in the TMSOPEN macro instruction.

For direct access (DSORG=DA) data sets the following options
are supported: READ, WRITE, CHECK, searching by block identifi-
cation, and searching by key. For indexed sequential data sets
(DSORCeIS) the following options are supported: READ, WRITE,
UPDATE, and CHECK. The GET, SETL, and ESETL macros are simulated
by corresponding TMS macro instructions. TNE does not presently
support general access methods for update so there exist no ana-
logues for PUT or PUTX. For partitioned data sets (DSORG=P0) the
following options are supported: READ and WRITE (NOTE and POINT
are implied). For sequential data sets (DSORG=PS) the following
options are supported: READ, WRITE, CNTRL, and POINT.

A data set in TMS is both defined and opened by use of the
TMSOPEN macro instruction. Several of the operands of this macro
instruction have the same purpose and meaning as their counter-
parts in the OS DCB macro instruction. These include DSORG, MACRF,
EODAD, OPTCD, SYNAD, EOEA, PCIA, SIOA, CENDA, and XENDA. Of the
foregoing only the DSORG and MACRE operands are required. Since
TMS speaks strictly in terns of data sets, the operand DSNAME is
used in TMSOPEN instead of the operand DDNAME that is used in the
OS DCB macro instruction. This operand, which is required, spec-
ifies the major portion of the data set name. Its parameter con-
sists of from 1 to 8 EBCDIC characters with no embedded blanks
or periods. In searching for the data set this name will be
appended to the qualifier ILR., and may be further qualified by
user or terminal-dependent information. This additional qualifi-
cation is controlled by the QUALIFY keyword operand; some form of
additional qualification must be supplied for any output data set.
Specifying QUALIFY=BYNAME causes a period followed by the user's
identification code to be appended to the data set name. This
should be used for data sets which munt be keyed through an in-
dividual user (such as DISCUS restart files). By specifying
QUALIFY=BYFBNO the problem programmer causes the characters ".EB"
to be appended to the data set name followed by the two digit
terminal number (which is unique for every terminal in the system).
This form of qualification is most useful for data sets which are
not to be associated with a particular user but which must be
guaranteed to be unique within the system at any given moment
(such as off-line print files).

In addition to obtaining storage for, and creating, the user's
DCB, the system will proceed to obtain storage for 1 buffer and
insert the proper pointers into the DCBBUFCB address pointer.
DCBBUFCB will point to a standard OS 8-byte buffer control block
followed immediately by one buffer of the proper length as indi-
cated in the BLKSIZE information stored in the DSCB. The acquis-
ition of this buffer by TNE may be suppressed by encoding the
operand BUFFERS=NO, in which case the program will be responsible
for supplying its own buffer area.

Certain information usually supplied as OPEN macro instruction
parameters in OS is supplied in TMS by use of the FOR keyword
operand. This operand indicates for what type of processing the
data set is being opened. The permdssable forms of this parameter
(not all of which apply to every data set organization) are INPUT,
TROUT, OUTIN, OUTPUT, and UPDAT. Each of these parameters has the
same result as specifying the corresponding parameter in an OS OPEN
macro instruction.

The problem programmer has some measure of control over the
processing of any errors that occur during the data set location
and opening process. The default option is to go to TMSPURGE to
terminate the entire program. By specifying the RETURN=YES operand,
the user programmer may receive control back from the system with
an appropriate completion code in register 15 (RC).

For all forms of data set organization, the EXCP access method
may be specified with or without appendages.

2.5 Terminal I/0

Communications between an application program and a remote
terminal are handled by the macro TMSCSIO. This macro supports
several different methods of specifying messages for output, the
basic read and write operations to the terminal, a set of device-
dependent operations (such as screen erase or typewriter carriage
return) and the choice of an immpdiate or deferred wait.

2.5.1 Write Operations

The message to be written is specified as the first positional
operand in one of three ways: 1) the message text itself may be
provided, enclosed in apostrophes; 2) a symbolic address of the
message may be provided; or 3) the designator (enclosed in paren-
theses) of a register which contains the address of a message may
be provided. The fact that this is a write operation is specified
by encoding WRITE as the first subparameter of the OP parameter.
The second and succeeding subparameters indicate additional device
dependent operations to be performed with the write. For cathode
ray tube (CRT) devices these include EBW for erase screen before
write, and/or NL for the new line before write. For mechanical
typewriter-type terminals RBW for carriage return before write

-12-I

and/or RAW for carriage return after write may be specified. De-
vice-dependent operations for both CRT's and typewriter-type term-
inals may be specified in the same write operation; the syE-tem will
determine which type of terminal is being serviced and ignore any
operation specified for the other type of terminal. This feature
may be used to obtain a measure of device independence in problem
programs.

Messages to be written may appear in one of two formats.
Format 1 consists of a half-word count of the number of characters
in text followed immediately by the text itself. Format 2 con-
sists of the text alone; a separate character count is provided
elsewhere. If the message is a Format 2 message, its length must
be provided in the LENGTH operand. The LENGTH parameter may be
either a symbolic expression whose value is the message length
(1,021 bytes or less) or a register designator (in parentheses)
of a register which contains the length count. Absence of any
LENGTH operand indicates a Format 1 message.

2.5.2 Read Operations

Read operations are specified by coding READ as the first
positional subparameter of the OP parameter. Upon conclusion of
the input-output operation, register 1 (RP1) points to the first
character of the text read. Register 0 (RPO) contains s count
of the number of characters of incoming teJa. Thi7 PouLit in-
cludes the end of transmission (EOT) character w1c appear_ as
the last non-blank character in the buffer,

2.5.3 Additional Features

The problem programmer may o-.-,.L-aap console I/0 with other
operations if he desires. Use of %he WAIT=DEFER operand allows
processing to continue simultaneously with console input-output.
A separate TMSWAIT macro instruction must be coded by tAe appli-
cation programmer to wait for the completion of console
Coding WAIT=IMMED causes a call to TMSWAIT to be generate6 imme-
diately following the call to the console I/0 routine: thas is
also the default option. If it is desired that return be made to
a point other than the instruction immediately following b.te
TMSCSIO macro instruction, the prOgramMer may provide a symbolic
address by using the RET keyword operand. Transfer is then made
to this address upon return from TMS.

2.6 Non-Terminal I/0

Input/output to user's data sets is accomr1-1-hed by using the
standard OS macro instructions with the restriira that only those
macro instructions and/or operands that are 1cc9d by the TNIS
system may be employed. (For a discussion c chh access methods
are supported, see "Opening and closing datP set" above.) The
only exceptions to this rule are the fo1lowi4g: (1) TMSWAIT must

be used in place of any WAIT or WAITR macro instruction; (2) if an
OS CHECK macro instruction is employed the macro instruction
TMEWAIT must immediately precede it, specifying the same DECB.

2.7 Scheduling ard Event Synchronization

The release of the partition so that other TMS users may use
the CPU and the synchronization of program processing with I/0
events is accomplished in a way completely analogous to that of
OS. In order that TMS may maintain complete control of the sit-
uation and make maximum utilization of the available resources,
a special system macro called TMSWAIT is employed. The ECB key-
word operand provides the symbolic address of the event control
block on which the application program is to wait. The default
specification is FBECB, which is used for waiting on terminal
I/0 operations. An optional keyword operand RET may be used to
provide the symbolic address of the next instruction to be
executed following return from the wait. Absence of this operand
indicates that the next instruction to be executed is that imme-
diately following the TMSWAIT macro instruction.

Certain forms of terminal I/0 require processing following
the completion of the wait for I/0 to complete. Thus, another
keyword operand, OP, is used to indicate what form of console I/0
we are waiting on. The permissible parameters for this operand
are READ, WRITE, CLEAR, and REWRITE. Depending upon TMS require-
ments, additional code may be generated following the branch to
the wait routine.

20

3. SPECIFICATIONS FOR CODING TMS MACROS

3.1 TMSCLOSE -- Close a Data Set

The TMSCLOSE macro instruction causes the specified data set
to be closed and the main storage for the DCB and buffers (if sup-
plied by TMSOPEN) to be released.

[symbol] TMSCLOSE DCB data control block register)
=

data control block address

Data control block register

is the symbolic or literal definition of a register which
contains the address of the data control block to be closed.
If (1) or (RP1) is designated, register 1 must contain the
DCB address prior to invoking the macro instruction.

Data control block address

is the symbolic address of a fullword which contains the
address of the data control block to be closed.

3.2 TMSCSIO -- Terminal Input/Output

TMSCSIO macro instruction causes an input or output operation
to be initiated at the terminal associated with the function block
pointed to by register 11 (RFB). Depending upon the parameters
of this macro instruction, a separate TMSWAIT macro instruction
may be necessary to test for completion of the operation.

[symbol] TMSCSIO
'age' 11
-message registe
message address

[,LENGTH=flength

[,WAIT= IMED

'READ
, OP = C WRITE

CLEAR
tREWRITE

[,option],...)
register --)

tlength expressiorlf]

]
-EFER

3

[,RET=return address]

3.4

-15-

21

Message

is the mesuage to be transmitted by a WRITE operation. The
LENGTH parameter must not be coded.

Message register

is the symbolic or literal definition of a register which
contains the address of a Format 1 or Format 2 message which
is to be transmitted by a WRITE operation. If (1) is desig-
nated, register I must contain the address of the message.
(See section 2.5 for description message formats.)

Message address

is the symbolic address of a Format I or Format 2 message
which is to be transmitted by a WRITE instruction.

OP = READ - read from the terminal
WRITE - write to the terminal
CLEAR - erase screen (CRT's only)
REWRITE - no meaning at present (for planning purposes only).

Option

is one of the following:

EBW - Erase the contents of the screen before writing (CRT'
RAW - Return the carriage after transmitting the message

(Typewriters).
RBW - Return the carriage before transmitting the message

(Typewriters).
NL - Start the message on a new line (CRT's).

Length register

is the symbolic or literal designation of a register which
contains the length of a Format 2 message. If (0) is desig-
nated, register 0 must contain the length of the message.

Length expression

is any expression suitable for use in an LA instruction which
represents the length of a Format 2 message.

WAIT=IMMED

causes generation of a call to the wait routine as part of
the macro expansion.

WAIT=DEFER

causes no generation of a call to the wait routine. A sepa-
rate TMSWAIT macro instruction is necessary.

-16-

22

Return address

is the syMbolic address to which control is to be returned
after execution of the macro instruction. If omitted, con-
trol passes to the next instruction in sequence.

3.3 TMSDLETE -- Delete a load module

The TMSDLE1E macro instruction causes the responsibility
count for the load module specified to be decreased by one, and
when the responsibility count reaches zero the core occupied by
the module is released and the request block dropped from the load
list. The modulo must have been loaded via the TMELOAD macro in-
struction.

The corresponding user load list is updated, and the area occu-
pied by the load list element for this module is freed.

If the request specifies a name that is not on the user load
list, the requesting program is purged.

The TMSDLETE macro instruction is coded as follows:

[symbol] TMSDLETE
IEFNAME = entry point name
EPLOC = address

where:

'entry point name'

is the legal entry point name as specified in the TMSLOAD
macro instruction.

'address'

is the symbolic address (or register containing this
address) of an entry point name.

3.4 TMSESETL End Sequential Retrieval (QISAM input only)

The TNSESETL macro instruction ends the sequential retrieval
of data from an indexed sequential data set, and causes the buffers
associated with the specified data control block to be released.
A TMSESETL macro instruction, or an end of data set indication must
separate TMSESETL macro instructions issued for the same data con-
trol block.

-17-

23

The TMSESETL macro instruction is wrItten as follows:

[symbol] TMSESETL deb address

deb address

is the address (or register specification containing this
address) of the data control block for the indexed sequential
data set being processed.

3.5 TMSFREEM -- Release Main Storage

The TMSFREEM macro instruction causes a block of main storage
Obtained by TMSGETM to be released.

[symbol] TMSFREEM A = (storage address register

Storage address register

is the symbolic or literal definition of a regiSter containing
the address of the block of main storage to be released.

3.6 TMSGET -- Obtain Next Logical Record (Q,ISAM input)

The TMSGET macro instruction causes the monitor system to re-
trieve the next record and to return the main storage address of
the record in register 1. Control is not returned to the problem
program until the operation is complete.

The TMSGET macro instruction is wri ten as follows:

[symbol] TMSGET
deb address

(address register)

deb address

is the address of the data control block for the data set
being retrieved.

(address register)

is the specification in parentheses of a register containing
the data control block address.

NOTE:

When control is returned to the proble program, register 0
should be tested for a completion code as follows:

If Reg 0 is: Reg 1 points to:

F'0' Logical Record

F'41 message: "Record with specified key does
not exist'

F'8' message: ' I/0 errors"

NOTE:

For QISAM under TMS, the TMSOFEN macro instruction must specify
BUFFhES=NO.

3.7 TMSGETM -- Obtain Main Storage

The TMSGETM macro instruction causes a variable-length block
of main storage to be allocated to this terminal. The address of
this block is returned in register 1. The programmer may specify
that control passes back to the calling program in the event of
error.

[symbol] TMSGETM
length value register

LV = 7 .length value expresslon
YES

RETURN=.

Length value register

is the symbolic or literal definition of a register which con-
tains the size in bytes of the desired block of main storage.

Length value expression

is an expression whose value represents the size in bytes of
the desired block of storage. When specified in this manner,
the size must not be greater than 4095 bytes..

RETURN = NO

indicates that control passes to the PURGE routine of the
monitor if insufficient main storage is available.

RETURN = YES

indicates that control returns to the calling program under
'all circumstances. The return code in register 15 is as follows:

Return Code Mean*ng

0 The main storage requested was allocated.

4 No main storage was allocated.

3.8 TMSHDCPY -- Provide Hard Copy of CRT Output

The TMSHDCPY macro instruction provides the facility to ob-
tain a permanent copy of console T/0 operations via the use of
the 1403 line printer.

The output to the printer recognizes all carriage control
characters inherent in the data and as many of the format charac-
ters as feasible.

The TMSHDCPY macro instruction is coded as follows:

[symbol]

[

HDTMSCPY MES = address, LENGTH =
(register
address

where:

MES - address

'address' is the symbolic specification of the address
(or register containing this address) of the start of
the text to be output. If this operand is omitted, the
text on the entire screen will be read and copied.

LENGTH = address

'address' is the symbolic or absolute specification of
the length of the text to be output. qaddress register)'
is the specification, in parentheses, of a register con-
taining this length. If MES is not coded, this operand
need not be.

The TMSHDCPY routines will return a return code in register 15
as follows:

0 - processing completed normally

08 - processing partially completed, not enough core

12 - no processing done, not enough core

3.9 TMSLOAD -- Bring a Load Module into Main Storage

The TMSLOAD macro instruction causes the monitor system to
bring the load module containing the specified entry point into
main storage if a usable copy is not available. The responsibility
count for the load module is increased by one. Control is not
passed to the load module; instead, the main storage address of
the designated entry point is returned in register O. The load
module remains in main storage until the responsibility count is
reduced to zero through the use of the TMSDLETE macro instruction.

The TMSLOAD macro instruction is written as follows:

[syMbol] TMSLOAD
EPNNME = symbol

{
EPLOC = address of name,3

1,PNAME

is the entry point name in the load module to be brought into
main storage.

EpLOC =

is the main storage address of the entry point name described
above. The name will be padded with blanks to eight-bytes
if necessary.

When control is returned from the TMSLOAD macro instruction,
register 15 contains a return code as follows:

0 - successful load

4 - not enough core to load program

8 - module missing from library

12 - module non-reentrant and already loaded

16 - I/0 error reading module directory

3.10 TMSLOG -- Create an Entry in the System Log

The TMSLOG macro instruction will create an entry in the system
log for the requesting program. It is expected that the program
will want to create information of its awn within this entry;
therefore, provision is made for up to 2024 bytes of user informa-
tion to be written.

-

Each entry into the log is prefaced by a 16 byte leader as
follows:

Bytes:

Field:

2 2 4

LEN FBNO. FBNAME FBPNAME

where:

LEN is the total length,of the entry including header

FBNO. is the number of the terminal which had control when
the request was issued

FBNAME is the name of the user logged in on that terminal

FBPNAME is the name of the program that was requested by the
terminal user (not necessarily the name of the pro-
gram issuing the macro)

Records are written RECFM=V and the BDW and RDW created by the system.

The TMSLOG macro instruction is coded as follows:

[symbol] TMSLOG
'message'
message address tRN = number

-where:

'message'

is a literal string of the actual entry to be created

message address

is the address (or the specification in parentheses of
a register containing the address) of the log entry to
be created.

number

is the absolute or symbolic designation of the length
(or the specification in parentheses of a register con-
taining this length) of the entry to be created. Do not
include length of leader. If this operand is omitted,
or set to zero, only the 16 byte leader is written.

Only the combinations listed above are valid for the TMSLOG macro
instruction.

Upon return, register 15 (RC) contains a returtv code as follows:

- normal completion.

08 - DCB has not been opened (report to TMS system con-
sultant).

12 - length supplied by processing program was invalid.

16 - not enough core was available for creation of the
entry.

3.11 TMSOPEN -- Generate Data Control Block and Open a Data Set

The TMSOPEN macro instruction causes the system to Obtain core
for and generate a data control block for the data set named. Un-
less suppressed, one buffer is also provided preceded by a standard
buffer control block pointed to be DCBBUFCB. The program may spec-
ify that it is to receive control with a completion code in regis-
ter 15 (RC) in the event of an error. Upon normal completion, the

newly-generated DCB is pointed to by register 1 (RF1). If
BUTTERS=YES was specified, register 0 (RPO) points to the buffer
provided.

[symbol] TMSOPEN DSNANE = data.set name,
organization code,

MACRE = (macro reference

LOPTCD = (option code)]

[,SYNAD '=- synchronous error

[,EODAD = end-of-data address]

INPUT

DSORG = data set

code [,...])

address]

[BUFI.ERS =tFS 1
OUTPUT

,FOR = INOUT
OUTIN
UPDAT

[,QUALIFY =1EYNANI]DYFBNO

NO

,RETURN =
YES
NO

Data set name

is a one- te eight- character name that will become part of
the data set name used to search the system catalog and disk
volume tables of contents for a corresponding pre-allocated
data set. The basic set name generated will be of the form:

ILR. nnnnnnnn

where nnnnnnnn represents the name supplied as this parameter.

Data set organization code

is a two-or-three-character code representing the organi-
zation of the data set. The permissable codes in TN5 are:

DA,DAU - Direct access

IS - Indexed sequential

PO,POU - Partitioned

PS,PSU - Sequential

Macro reference code

is one of the coMbinations below, depending on data set organ-
ization and access method:

BSAM

BISAM

[C]) w

(w [u] [c])

[U] [C],W [U] [C])

QISAM

i(GL[,S[k]]))

[]

Character Definition
CNTRL

POINT (implies NOTE)

READ

WRITE

Character Definition

CHECK (absence de-
notes WAIT)

Search to be made by
block identification

Search to be made
by key

READ'

WRITE

Character Definition

CHECK

READ (implies
FREEDBUF)

Records are to be
updated. If U is
coded with R, U must
be coded with W.

Character Definition

GL GET (Address of buffer
to be provided by the
control program

Search to be made
by record or
generic key

SETL

(NOTE: For QISAM, TMSOPEN must
specify BUFFERS = NO)

indicates optional character; select one from vertical_stack
within {); select one or none from vertical stack within 1:1.

-2)4-

30

BPAM Character Definition

1(4
(R,W) WRITE (implies NO1E)

READ (implies NOTE
and POINT)

Option code

specifies optional services to be pc,Lformed. These are a sub-
set of the services available under OS. The pernIssable
combinations in TMS are=

BDAM

[W] ER] [E][AR1

Character Definition

A Specifies that actual device
addresses are to be presented
("block address" operand) in
READ and WRITE macro instructions.

Requests an extended search (more
than one track) for block or
available space. Ignored if A
is also coded. Refer to IBM
manual "Supervisor and D.M. Macro
Inst." for the discussion of
the LIMCT operand for a descrip-
tion of extended search.

Specifies that when feedback is
requested in a READ or WRITE
macro instruction, the device
address returned is to be of the
form presented to the control
program. If F is omitted, feed-
back is in the form of the actual
device address of the block.

Specifies that relative block
addresses are to be presented
("block address" operand) in
READ and WRITE macro instructions.

Requests a validity check for
write operations. If the device
is a 2321 data cell, validity
checking is always performed,
whether requested or not.

[] indicates_optional character; sele-t one or more from vertical
stack within [].

If neither R nor A is coded, relative track addresses are assumed.

BPAM Character Definition

Requests a validity check for
write operations. If the de-
vice is a 2321 data cell, va-
lidity checking is always per-
formed, whether requested or
not.

BSAM Character Definition

Printer with Universal Char-
acter Set feature only -- un-
blocks data checks and allows
analysis by an appropriate

WC error analysis (SYNAD) routine.
If U is omitted, data cheeks
are blocked (not recognized
as errors).

Direct access device only
-- requests a validity check
for write operations. If the
device is a 2321 data cell,
validity checking is always
performed, whether requested
or not.

Synchronous error address

has the same function as in the OS DCB.

End-of-data address

has the sane function as in the OS DCB.

FOR = INPUT

indicates an input da a bet.

FOR = OUTPUT

indicates an output data set.

FOR = INOUT

indicates an input data/set initially and, without reopening,
an output data set.

FOR = OUTIN

indicates an output data set initially and, without reopening,
an input data set.

FOR = UPDAT

indicates a data set to be updated in place.

BUFI,ER = YES

indicates that TMS is to provide a single buffer of the nec-
essary length.

BUFFERS = NO

indicates that the application program will provide its awn
buffers.

QUALIFY = BYNAME

indicates that the final data set name generated will be:

ILR.nnnnnnnn.xxxx

where nnnnnnnn is the name specified by the DSNAME operand
and xxxx is the user identification code for the current
user of the program.

QUALIFY = BYFBNO

indicates that the final data set name generated will be:

ILB.nnnnnnnn.FBxx

where nnnnnnnn is the name specified by the DSNANE operand
and xx is the terminal number for the current user of the
program.

RETURN = YES

indicates that in cas-:, of an error during TMSOPEN processing,
control is to be returned to the calling program. The contents
of register 15 (RC) ilv:licAte results of the OPEN as follows:

Return code Maning

0 3uccessfu1ly located and opened.

4 Unable to locate the data set in the
system catalog or in the volume table
of contents of all DASD's on which
it resides.

8 Insufficient core remains to complete
open processing.

12 Disastrous error during open processing.

RETURN = NO

indicates that in case of an error, control is to be returned
to the monitor.

3.12 TMSPRINT -- Put a line to line printer

The TMSPRINT macro instruction causes a line to be printed on
the off-line printer. All output using this macro instruction is
clearly identified by a header preceding it.

[symbol] TM-SPRINT area address
(address register)

where:

area address

is the address of a 133 byte line to be printed, whose
first character is the ASA printer control character.
(see Appendix 3);

(address register)

is the specification of a register which contains the
address of the line to be printed.

3.13 TMSRETN -- Return to calling program

The TMSRETN macro instruction causes the restoring of the
registers which were saved by TMSSAVE when the program was entered.
Control is then returned to the calling program, (i.e., the moni-
tor). If TMSSAVE obtained main storage for a new save area, then
TMSRETN will release this storage.

[symbol] TMSRETN

3.14 TMSSAVE -- Entry from calling program

The TMSSAVE macro instruction causes the establishment of a
control section with the symbol in the name field being used as
the control section name. It generates code to save all regis-
ters in a standard save area, establish a new save area if de-
sired, and establish a base register. If a register is designa-
ted as a communication region pointer, code is generated to load
that register. If a remote new save area is called for, code is
generated to obtain core storage for that save area; otherwise,
the new save area is generated in-line.

-28-

34

[symbol] TMSSAVE [RBASE= base register]
[,RFR=NONE]
[,RCR=CR pointer register]
[,RWORK= work register]

= NONE

0E11(37
,SAINCR= length increment]

SyMbol

is the name of the control section and entry point of the user
program.

Base register

is the symbolic or literal designation of a register to be
used as the first base register. If omitted, register 12 (RB)
is assumed.

RFB = NONE

indicates that the program will not maintain register 11 (R9)
as the pointer to the associated FB.

CR Pointer register

is the symbolic or literal designation of a register that
will contain the address of the communication region when-
ever a TNS macro instruction is invoked. If omitted, no
such register is established and all TMS macro instructions
generate slightly slower code. Upon entry to the user pro-
gram, register 10 (R8) contains the communication region

Work register

is the symbolic or literal designation of a register that
will be used as a work register for establishing save area
linkage. If omitted, register 2 (RO) will be used.

SA=LOCAL

indicates that the new save area is to be generated in-line
in the expansion of TMSSAVE. This makes the user program
non-reentrant.

SA=NONE

indicates no save area provided. Programmer must provide his
own.

-29-

35

3.15 TMSSETL -- Set Lower Limit of Sequential Retrieval (QISAM
input only)

The TMSSETL macro instruction causes the monitor system to
start processing the input request at the specified record. Se-
quential retrieval of records using the TMSGET macro instruction
continues from that point until the end of the data set is encoun-
tered or a TMECLOSE or TMSESETL macro instruction is issued. A
TMSESETL macro instruction must be issued between TMSSETL in-
structions that specify the same data set.

The TMSSETL macro instruction can specify that retrieval is
to start at the beginning of the data set, at a specific record,
or at the first record of a specific class of records.

The TMSSETL macro instruction is written as follows:

[symbol] TMSSETL dcb address
(address registr , key address

KC, key address,
length

deb address

is the address of the data control block for the data set
being retrieved

(address register)

is the specification in parentheses of a register containing
the data control block address

specifies to start at the beginning of the data set

specifies starting at the record wlth the specified key

KC retrieve the first record of a specified key class

key address

is the symbolic name of a main storage location (or a regis-
ter containing this address) of the key of the record wished.
In the case of type KC, this is the address of the partial
key specifying the key class

length

is the length of the partial key given for the key class.
This may be an absolute decimal nuMber, or the specification
of a register containing the value right adjusted in binary.

-30 -.

36

3.16 TMSWAIT -- Wait for an event

The TMSWAIT macro instruction causes the user program to be
dismissed until completion of the event associated with the desig-
nated event control block. Only one event control can be waited
on at a time by any user program.

[sym bol] TMSWAIT
[ECB
[,OP
[,RET

=
=
=

event control block]
operation code]
return address]

Event control block

is the symbolic address of an event control block which con-
forms to all the rules of a standard OS event control block.
If omitted, FBECB (the terminal input/output event control
block) is assumed.

Operation code

is one of the following:

READ - Upon completion of the wait, the terminal text length
(including EOT character) is in register 0 (RPO) and
the text address is in register 1 (RP1).

WRITE - No effect.

CLWAR - No effect.

REWRITE - No effect.

Return address

is the symbolic address to which control is to be returned
after execution of the macro instruction. If omitted, con-
trol passes to the next instruction in sequence.

-31-

:37

4. THE TOP-T.FVEL CONTROL LANGUAGE

In order that TME may deal with a great many users and offer
each user the choice of which of many user programs he wishes to
operate under, a minimum form of executive program is necessary.
This program exercises complete control over the operation of the
system and interfaces with the termanal user via the top-level con-
trol language. Among the services provided by this top level
supervisor are: the identification of a terminal user via the
process of "logging in"; the acceptance of a user program name,
and the loading of the associated user program; the notification
of the user when certain errors have occurred; and the ability to
logically disconnect the individual terminal from the computer
when necessary.

4.1 Logging In

When TMS first begins operation the following message is
directed to each terminal:

TMS100I TMS IN OPERATION

followed immediately by the message:

TMS101A WAITING FOR LOGIN

This latter message indicates that the supervisor is waiting
for the user to identify himself at the terminal by typing in a
user identification code of up to four characters (this code will
have been assigned to each user by laboratory supervisory personnel
The proper response to any request for input from the top level
supervisor varies with the various types of terminals. For the
Sanders Associate CRT displays the following sequence must be
followed: push the CLEAR button followed by the FORMAT TYPE button
then type in the desired response (in this case the user login
code) and depress the SEND BLOCK button. There are several re-
sponses to an attempt to login. The message:

TME102I NOT ACCEPTED

indicates that the user identification code provided is not accepted
as valid. The message:

TMS103I NOT AOCEeTED, NAME ALREADY IN USE

indicates that while the user identification code supplied is valid,
a user at another terminal is already "logged in" under this code.
After either of the above two messages the message:

TMS101A WAITING FOR LOGIN

is reissued inviting another attempt to '-log in". If the user

-33-

38

identification code has been accepted as valid the message:

T4S102I NAME LOGGED IN

is returned where name is the user identification code as recog-
nized.

4.2 Specifying Programs

Immediately after the message accepting the login the message:

TME104A SPECIFY PROGRAM

will appear. This indicates that the user is to respond with the
name of the user program that he wishes to have loaded and assigned

to his terminal. The names and purposes of the individual user
programs are specified in a separate publication; each name will
be at least 1 but no more than 8 characters in length. There are
several messages that may indicate difficulty in loading the re-
quested program. The message:

TMS107I PROGRAM NOT FOUND

indicates that the name supplied is not the name of a program
currently in the TMS library. The message:

INS108I PROGRAM NON-REENTRANT AND ALREADY IN USE. WAIT OR TRY ANOTHER

has a more complex meaning. This message indicates that the pro-
gram does exist but that it may only be used by one terminal at
a time and is already being used at another terminal. The user
should wait until the other user has exited the program and repeat
his request for the program or he should request another program
that he can use in the interim. The final error message that may
appear is:

TMB109I NOT ENOUGH CORE TO LOAD PROGRAM

This indicates that insufficient main storage remains in the com
puter to load the executable code of the program requested. Each
of the above three messages is immediately followed by the mes-
sage:

TMS104A SPECIFY PROGRAM

which invites the user to try again. In the event that the pro-
gram is successfully loaded the next message will be generated
by the user program itself. To understand the purpose of such
messages users should consult the documentation of the individual
user programs. Depending upon the individual user program and
assuming that no errors have occurred in the operation of the user
program in the interim the user will specify in some manner that

he wishes to exit from that user program and return to the top
level supervisor. If this is done properly the message:

TME106I NORMAL EIT FROM USER PROGRAM

will appear followed by a report of the message:

TMS104A SPECIFY PROGRAM

this allows the user to specify a new program for execution or
to leave the system.

4.3 Logging Out

The processing of indicating to TMB the user has finished
at this particular time and wishes to leave the system is called
ilogging out". The user is able to log out at any time when the
last message appearing at the terminal is:

TMS104A SPECIFY PROGRAM

Instead of specifying a program the user responds with the word
LOGOUT. If this is correctly done the system will respond with
the message:

TMS105I NAME LOGGED OUT

followed by the message:

TMS101A WAITING FOR LOGIN

which indicates that a new user may now sit dawn at the telminal
and identify himself to the system.

4.4 Error Exits from User Programs

If TME detects some form of error in the user program that
threatens the integrity of the system it will force that user
program to cease execution and return control to the supervisor.
A series of messages will be returned to the terminal. The first
one or two messages will generally be preceded by a TMS message
identifier with a number in the range 150-199. These indicate
the particular form of error encountered and are summarized in
Appendix 2. These specific messages are then followed by the more
general message:

TMS110I ABNORMAL RETURN FROM USER PROGRAM VIA PURGE ROUTINE

Receipt of this message verifies that an error has occurred and
that the program has been terminated, all main storage obtained
by the program has been released, and all data sets opened by
the program have been closed. This message is followed by the

message:

TMS104A SPECIFY PROGRAM

which invites the user to restart the same program, start a new
program, or "log out" from the system.

4.5 Special Operations

Under certain circumqtances it becomes necessary to logically
disconnect an individual terminal from the computer. This is best
done only by persons with a thorough working knowledge of the sys-
tem since at the current time this disconnection is irreversible.
This operation may be performed only when the last message received
from TEO is:

TMS101A WAITING FOR LOGIN

instead of responding -with a user identification code the user
responds with the word DISCONNECT. The terminal ceases operation
at this point and no further message is received from the system.
A confirmation is typed out at the computer; if there is any
question about the success of the disconnect procedure the com-
puter center operator may be contacted and requested to examine
his console printout. When all terminals have been DISCONNECTed,
the Terminal Monitor System will cancel itself.

-36-
. :41

A
p
p
e
n
d
i
x

1
:

L
i
s
t

o
f

P
e
/
m
i
s
s
i
b
l
e

M
a
c
r
o

P
a
r
a
m
e
t
e
r
s

M
A
C
R
O

I
N
S
T
R
U
C
T
I
O
N

O
P
E
R
A
N
D
S

W
R
I
T
T
E
N

A
S

S
Y
M

D
E
C

D
I
G

R
E
G
I
S
T
E
R

R
X

T
Y
P
E

A
-
T
Y
P
E

A
D
C
O
D

T
Y
P
E

(
2
-

1
2

1
0

T
M
S
C
L
O
S
E

D
C
B

=

x
X

T
M
S
C
S
I
O

m
e
s
s
a
g
e

a
n
y

m
e
s
s
a
g
e

w
i
t
h
i
n

a
p
o
s
t
r
o
p
h
e
s

O
P

=

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

L
E
N
G
T
H

=

1

1

X
X

X

i i
W
A
I
T

=

1 1

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

1

R
E
T

=

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

T
M
S
D
L
E
T
E

E
P
N
A
N
E

=

i

E
P
L
O
C

=

X
X

T
M
S
E
S
E
T
L

d
c
b

a
d
d
r
e
s
s

X

T
M
S
F
R
E
E
M

A

=

X
X

M
A
C
R
O

I
N
S
T
R
U
C
T
I
O
N

,

W
R
I
T
T
E
N

A
S

O
P
E
R
A
N
D
S

S
Y
M

G
I
S
T
E
R

R
X

T
Y
P
E

A
-
T
Y
P
E

A
D
C
O
N

T
Y
P
E

D
E
C

D
I
G

(
2
-

2
)

1
)

1

I
c
i
)

T
M
S
G
E
T

d
e
b

a
d
d
r
e
s
s

X
X

L

T
M
S
G
E
T
M

L
V

=

X

1 I

X
1
,

X
X

,

R
E
T
U
R
N

=

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

T
M
S
H
D
C
'
Y

,

M
E
S

=

,,

X
X

,

X

L
E
N
G
T
H

=

X
X

X
X

X

T
M
S
L
O
A
D

E
P
N
A
M
E

=

1

E
P
L
O
C

=

X
X

X

T
M
S
L
O
G

m
e
s
s
a
g
e

a
n
y

m
e
s
s
a
g
e

w
i
t
h
i
n

a
p
o
s
t
r
o
p
h
e
s

m
e
s
s
a
g
e

a
d
d
r
e
s
s

X
X

X
1 1

L
E
N

=

X
I

X
I

X

1

X

T
M
S
O
P
E
N

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

T
M
S
P
R
I
N
T

l
i
n
e

a
d
d
r
e
s
s

1

X

X
1

X

M
A
C
R
O

I
N
S
T
R
U
C
T
I
O
N

W
R
I
T
T
E
N

A
S

O
P
E
R
A
N
D
S

S
Y
M

R
E
G
I
S
T
E
R

R
X

I

T
Y
P
E

1

A
-
T
Y
P
E

A
D
C
O
N

T
Y
P
E

D
E
C

D
I
G

2
-

1
2
)

,
,
,
, w

1 11

T
M
S
R
E
T
N

w
r
i
t
t
e
n

a
s

s
h
o
w
n

1
T
M
S
S
A
V
E

R
B
A
S
E

=

X

R
C
R

=

X
X

R
W
O
R
K

=

X
X

S
A

=

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

R
F
B

=

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r
i
p
t
i
o
n

S
A
I
N
C
R

=

T
M
S
S
E
T
L

d
c
t

a
d
d
r
e
s
s

t
y
p
e

r
e
f
e
r

t
o

m
a
c
r
o

d
e
s
c
r

p
t
i
o
n

k
e
y

a
d
d
r
e
s
s

X
I

x
X

k
e
y

l
e
n
g
t
h

X
X

X

T
M
S
W
A
I
T

E
C
B

=

X

O
P

=

r
e
f
e
r

t
o

m
a
c
r
o
-
i
n
s
t
r
u
c
t
i
o
n

B
E
T

=

X
I

ATPENDIX 2

List of System Messages

TMS 150 I - PROGRAM ENDED WITH STORAGE OR DATA SET STILL ATTACHED

System action: Close

Programmer response:

all DCB's left and free all storage.

Make sure that an exit from the program
is not forced which leaves DCB's open or
storage still attached.

TMS 151 I - INSUFFICIENT MAIN STORAGE LEFT TO SATISFY TMSGETM REQUEST

System action: User

Programmer_response:

purged.

Wait until storage is freed by another
program and try again, or reduce the amount
of storage requested.

TMS 152 I - TMSFREEM REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS

System action: User purged.

Programmer response:

TMS 153 I - ATTEMPT

The system has

Make sure the program has not incorrectly
modified its storage pointers. If this
happens consistently, the program is prob-
ably at fault; if erratically, report to
system consultant.

TO OPEN AN UNAVAILABLE/UNCATALOGUED DATA SET

detected that the data set name specified in a
TMSOPEN request is not catalogued or, if catalogued, is unavailable
to the user because:

1. The

2. The

3. The

data

data

data

set is qualified;

set cannot be shared; or

et does not exist

4. An I/0 error was

System action: User

Programmer Response:

discovered reading the catalogue or DSCB

purged.

In case (1), catalogue the data set; in
case (2) or (3), create or change the
attributes of the data set. In case (4),
report to the system consultant.

TMS 154 I - INSUFFICIENT MAIN STORAGE LEFT TO COMPLFTE OPEN OF A DATA SET

System action.: User purged

Programmer responsa: Wait -until nain storage is freed by another
program and try again.

TNS 155 I - DISASTROUS ERROR IN TMS OPEN

The system has detected an unrecoverable error in the TMSOPEN
processing.

System action: User purged.

Pr2grammer response: Nhke sure that the parameters supplied
in the TMSOPEN macro instruction are
consistent with the attributes of the
data set.

TMS 156 I - TMSCLOSE REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS

The system has detected that the address supplied in a TMSCLOSE
request is not the address of a DCB which was obtained via a TMSOPEN
macro instruction.

System action: User purged.

Programmer response) Make sure the program has not incorrectly
modified the register or area containing
the address of the data control block.

TMS 157 I - END OF DATA DETECTED WITH NO EODAD SPECIFIED

An end of data condition has been detected with no end of data
address specified in the data control block.

Systemaption: User purged.

Programmerresponse: Modify the TMSOPEN request to include the
EODAD parameter.

TNS 158 I - SYNCHRONOUS ERROR DETECTED WITH NO SYNAD SPECIFIED

A synchronous error condition has been detected with no SYNAD
exit specified in the data control block.

System action.: User 1,Arged.

Programmer response: Modify the TMSOPEN request to include
the SYNAD parameter.

INS 159 I - INSUFFICIENT CORE LEkT FOR DEBUGGING

The user specified that he wanted to use the debugging facility,
but not enough core was available for this-facility to be used.

System action: User purged.

Programmer response: Wait until main storage is freed by another
user and try again.

-44-
.

47

TMS 160 I 7 ERROR DETECTED IN TM'S. USER PURGED WITH SNAP

The system has detected a program error within itself.

Sffstem action: User is purged with a snap dump.

Programmer none

TMS 161 I - ERROR DETECTED IN TMS. USER PURGED, SNAP UNSUCCESSFUL

The system has detected a program error in itself.

System_action: User purged, snap dump was unsuccessful.

Pro rammer res onse:

TM'S 162 I - ERROR DETECTED IN PROGRAM, USER PURGED

The system has detected a program error in the user program,
but a debugging request was not specified.

System action: User purged.

Programmer response: modify program if error is known, or
request debugging facility and try again.

TMS 200 I - ERROR OCCURRED AT RELATIVE LOCATION XXXXXXXX

This message occurs in conjunction with one of the above as
information for the programmer only in deciding where in the pro-
gram the error occurred.

-145-

48

APPENDIX 3

Carriage Control Characters

(1403 line printer)

b - Single space before printing

No space b fore printing

0 - Double space before printing

- - Triple space before printing

1 - Eject to line 6 before printing

2 - Skip to next 1/2 page (line #9 or #36)

3 Skip to next 1/3 page (line #8, #26, or #44)

4 - Skip to next 1/4 page (line #7, #21, #35, or #49)

6 - Skip to line 66 before concave paper fold

7 - Skip to line 66 before convex paper fold

8 - Skip to line 1

9 - Skip to line 61

All other characters are interpreted as blank.

49 -47--

PART II

A PROGRAM LOGIC MANUAL FOR THE
TERMINAL MONITOR SYSTEM

1. DETAILED SYSTEM STRUCTURE

The structure of TMS closely parallels the structure of 05/360
and other complex operating systems implemented on 360-type machines.
The system consists of a set of tables and a set of processing_modules
(or sub-programs). There are several types of tables, each con-
taining information on the current state of the system itself, the
application programs running under it, and the computer's resources.
All tables can be located from other tables by a system of pointers.
The processing modules have two principal tasks: to maintain and
update the tables; and to request the IBM Operating System to per-
form certain tasks; (i.e., transmit a message to a particular ter-
minal).

The remainder of Section 1 will discuss the tables peculiar
to TMS and the interrelationships of these tables. Subsequent
sections will introduce the processing modules and deal with their
operation in detail.

1.1 Communication Region

The Communication Region (abbreviated CR) is, in essence, the
key table of the system. As its name implies, it facilitates system
communication by combining in one place pointers to virtually every
other table and processing module in the system. The CR is im-
portant when a processing module must re-establish pointers to
all systems tables, such as in processing I/0 interrupts. The
Communication Region may be located in one of two ways when no
pointers exist: via the entry point TMSCRADR in the module
TMSBEGIN; or by first locating a function block via word 0 of any
save area and then using the back pointer to the CR found in the FB.

The CR contains several entry point addresses, primarily to
those processing modules which may be accessed directly by appli-
cation programs by use of TMS macros. These are TMSWAIT, TMSCSIO,
TMSPURGE, TMSPLOAD, TMSGMFM, TMSSNAP, TMSOPEN, and TMSCLOSE.
Several CR entries are used in wait list processing. These
are a pointer to the wait list itself, a pointer to the current
last entry, and a halfword containing a count of bytes in the
basic wait list. A dummy Event Control Block is kept in the CR
to indicate that a shared resource for which some processing
module is waiting has been freed. The head of the chain of func-
tion blocks queued for a shared resource and the pointer to the
chain of all function blocks are both maintained in the CR.
Pointers to the Data Control Blocks (DCB's) for the TMS Library,
Snap, and Log Data Sets are kept in the CR. Finally, several
bytes of flags and a Program Interruption Element (PIE) save
area are maintained in the CR.

-51-

51

1.2 Function Block

The Function Block (FB) is the major system table associated
with a particular terminal device. Another approach is to consider
each FB to be associated with a particular invocation of an applica-
tion program (either separate, or sharing the program with other
FB's). In this context, the top-level supervisor program may be
considered to be a sort of super-program, and any application program
a sub-program of it. The FB maintains most of the information
unique to a particular terminal device and the program that is
controlling it currently. In addition, it maintains direct pointers
to those tables used most often in communication between the appli-
cation program and TMS, OS/360, and the communication hardware.

A major part of the FB is a 16-word save area used to save
the contents of all general registers when the FE does not have
control of the CPU (i.e., is in TMS WAIT status). Individual
byte fields are reserved for general FE flags, last-entry informa-
tion, and FB queue flags. Pointers are maintained to the CR, the
next FE on the chain of all FB's, the next FB on the chain of FB's
for the same communication line, the next FB on the chain of queued
FB's, the start of the application program's storage block chain,
the start of the application program's Data Control Block Chain,
the Data Event Control Block for the associated communications
line, and the attached communication buffer.

Many communications-related items are kept in the FB. These
include an Event Control Block for terminal I/O, the terminal list
offset used to locate the entry for the associated hardware ter-
minal, a copy of the polling/addressing characters for a multi-
drop terminal, the BTAM relative line number, the terminal number
in EBCDIC, the current operation code for a terminal read/write
operation, and various line length and position counts. Finally,
the 4-character user name and the name of the current application
program are kept in the FB for accounting and control purposes.

1.3 Wait List and Wait List Extension

The wait list forms the hub of TMS operation and is the reason
that TMS is able to multiprogram in a single partition. The main
portion of the wait list is exactly what the name implies: a
standard OS/360 multiple-event wait list. The wait list extension
is the same length as, and immediately follows, the last position
of the wait list itself. Each word of the wait list extension is
associated with the corresponding word in the wait list and can be
located by adding the wait list offset from the CR to the address
of the wait list entry. The wait list and wait list extension both
consist of a static (or fixed-length) component followed by
a dynamic (or variable-length) component.

Three distinct sections which must be recognized by the TMSWAIT
routine actually comprise the wait list. The first section con-
sists of points to specialized TMS Event Control Blocks. First

-52-

52

comes an Event Control Block pointer for input from the operator's
console, followed by a pointer to the queuing Event Control Block
located in the CR. The corresponding entries in the wait list
extension are not used. The second section consists of a pointer
to each communication line Event Control Block. To indicate that
these are line Event Control Blocks, the first byte of the cor-
responding word in the wait list extension is set to hexadecimal

'FF'. These first two sections comprise the fixed-length com-
ponent of the wait list. The third section consists of a pointer
to an Event Control Block for each FB which is currently in wait

status. This section varies in length as FB's are added to or
dropped from the list, so it is being reordered constantly. The cor-
responding entries in the wait list extension point to the associated FB.

1.4 Teleprocessing Data Event Control Block

The Teleprocessing Data Event Control Block (TDECB) is the
major system table associated with a particular communication

channel. As such, it can be shared by more than one communication

terminal, and thus may be pointed to, and shared by, several FB's.

The TDECB is the principal table used by OS/360 BTAM (Basic Tele-
processing Access Method) to control all data communications ac-

tivities. The first word of each TDECB, sometimes called the
line BCB, is pointed to by the wait list. This is how TMS knows
when a communication operation has completed.

The first 40 bytes of the TDECB are a standard IBM 06/360

BTAM DECB. The contents and uses of the fields therein are docu-
mented in the IBM publications regarding BTAM, so they will not

be described here. The remainder of the TDECB consists of fields
specific to TMS. There are several pointers: one to the head of
the chain of FB's associated with this TDECB; three to the various
code translation tables for the particular class of communication
devices served; and one to the terminal_list, which is a list of
entries giving the polling characters and control flags for the
several terminal devices associated with this TDECB. Several bytes
and halfwords are used for both bit flags and counts that describe
the type of communication devices being serviced; some of the
devices' hardware parameters such as character capacity; and the
current state of the communication channel and the terminals attached
to it. Finally, a save area for some fields is provided for use
when read polling must be interrupted for a write operation
and then must be resumed.

- 5 3-

53

2. INTERNAL SYSTEM CONVENTIONS

This section describes the various conventions that all TMS
modules and all application programs must follow if TMS is to
function properly. Each subsection describes a convention or
several related conventions regarding a particular TMS function.

2.1 Save Areas

To the application programmer, the rules for using save areas
are the same as for 08/360, except that the contents of the first
word of the existing save area must be copied into the first word
of a newly-obtained save area. This insures that Register 13
will alWays point to a word containing the ad0"ess of the rele-
vant FB.

To avoid confusion, each FB must have a separate chain of
save areas associated with it. The first save area on this chain
is obtained and formattea by the "phantom job" when it is entered.
Since the phantom joh is entered once for each FB and is completely
re-entrant, the independence of the various save area chains is
assured.

Most TMS functions involve receiving a request from an appli-
cation program, editing and checking the request for validity,
and then requesting 08/360 to perform certain tasks in order to
satisfy the original request. This approach requires the use of
two save areas: one to save application program registers upon
entry to TMS, and one to save TMS registers upon entry to 06/360.
One of these save areas is provided by the ,save area chain asso-
ciated with the FE (i.e., the save area pointed to by register 13);
the other save area is the first 16 words of the FE itself. In
practice, a TMS processing module that is entered by an application
program first saves registers in the usual manner while it locates
the FB. It then moves the saved information into the FE save
area and stores the contents of Register 13 at the end. The save
area pointed to by register 13 is then free for use by 08/360.

2.2 CR and FE Pointers'

As the two crucial blocks involved in every TMS activity, the
CR and FE must be reachable in many ways. The CR and FB may be
located under any of the following Conditions:

a. The TMS execution-time monitor TMSEXEC is first entered
f7rom 05/360. The address of the CR has been placed in register
1 (parameter register) by the TMS startup routine TMSHSKP.

b. A TMS processing module is called from an application pro-
gram. Register 13 points to a save area, the first word of which
contains the FE address. The FB contains a pointer to the CR.

-55-

54

c. A module in TMSEXEC must operate upon all FE's. The CR
address is obtained from the entry point TMCRADR in TMSBEGIN, The
chain of all FB's is found from CRFBCHN, and each FE is operated
upon in turn.

d. The communications transmission end routine TMSTREND is
entered from TMSWAIT and must locate the FE corresponding to the
terminal just contacted. The address of the TDECB block is known
upon entry to TMSTREND. This block has a pointer to the chain of
all FE's associated with that particular line. Each FE in this
chain is checked until the one matching the last active entry in
the BTAM terminal list is found.

e. The Event Control Block (ECB) that an application program
has been waiting on is posted complete, and TMSWAIT must return
control of the machine to that program. When TMSWAIT locates the
address of the proper ECB in the wait list, the corresponding
word in the wait list extension points to the associated FE.

f. A shared resource for which one or more kE's are waiting
has just become free, and the next FE to use it must be found.
The CR address is known, and the CR points to a chain of queued
FB's. The dequeuing routine travels down this chain of FE's
until it locates the first FE whose queue flags indicate a need
for the resource in question.

2.3 Chain of Core Storage Blocks

In order for TMS to "clean up" after an application program
has gotten into trouble, it must be able to free all main storage
obtained by that particular invocation of the application program.
This process requires that the size and location of every block of
main storage for a particular FB be known to the system. This
is accomplished by a system of chaining together all blocks of
storage.

All storage that is requested directly by an application
program is dbtained through TMS. The system adds 8 bytes to the
request as received from the application program and passes it
on to 05/360. When the request is satisfied, TMS uses the first
8 bytes of the strYage block as a special chaining prefix as
indicated in Fig. When an application program requests the
freeing of main storage, TMS checks the chain to verify that the
storage is actually associated with the program.,

2.4 Chain of Data Control Blocks

For a particular invocation of an application program that
gets into trouble, TMS must have a method for closing all Data
Control Blocks (DCB's) for the same reasons that require the ability
to free all main storage blocks. The solution of this problem is
quite similar to that employed for the main storage problem.

-56-

55

54

58

FE

FBDCBCHN

FIG. 1
STORAGE BLOCK CHAINING

i

Block
Address
Received
from OS

0

Address of Count of bytes
next blockjincl. Prefix

4

ock

Application
Program

Address
Given to

FIG. 2
DATA CONTROL BLOCK CHAINING

Start of
Actual DCB
Entries (not
necessarily DCB
Address

04
Off-r ddress of
set next block

Every DCB for a data set that is opened by an application pro-
gram is constructed by TMS in main storage freShly obtained for
that purpose. Prior to the first byte of usable DCB information,
TMS inserts a 4-byte prefix pointing to the next DCB for that FB
and providing an offset to generate the true DCB address. The
actual arrangement is shown in Figure B. The offset is a value
which is subtracted from the address of the first byte following
the 4-byte prefix to give the actual DCB address for use by
05/360. The length of the DCB is implied by bits within the DCB
which describe the type of data set that it represents.

2.5 Types of I/0 and Data Sets Supported

The Terminal Monitor System supports a subset of all of the
I/0 options and data set type supported by 09/360. This subset was
chosen to give the broadest possible range of data set handling
capabilities consistent with the basic objectives of TMS. For
example, features unique to certain peripheral devices such as
card readers, printers, and magnetic tapes were omitted since TMS
is designed to deal with only direct storage device and communication
terminals. The requirement that TMS retain all control over WAIT
scheduling, as well as the stringent limitations on overall systems
size dictate that TMS limit itself to only the basic (as opposed to
the queued) access method. In general, these restrictions are en-
forced by code in the TMSOPEN macro which refuses to recognize any
options not allowed by TMS.

Although it is not stated in any documentation available to
the casual user, TMS does support the EXCP access method with or
without appendixes. This access method, thus, is available for
use by highly skilled personnel in implementing specialized or
unique functions under TMS. The basic sequential access method
(BSAM) is available along with CONTROL and NOTE/POINT features.
The CONTROL feature is intended only for use in file positioning,
and not for sueh specialized functions as line skipping on a
Printer or stacker selection in a card reader or card punch. The
options permitted under BSAM include the control of data checks
for a printer with a universal character set feature and the WRITE
validity check. The basic direct access method (BDAM) is supported
for searching by block ID and searching by key. The CHECK specifica-
tion is also permitted. Optional services supported under BDAM
include extended search, write validity check, feedback control,
and the use of actual device addresses or relative block addresses
in place of the standard TTR addressing scheme. The basic index
sequential access method (BISAM) is supported only for reading
and updating; the use of CHECK is also supported. No BISAM options
are supported under TMS. Finally, the basic partitioned access
method (BPAM) is supported for basic reads and write. The only
BPAM option supported is a write validity check.

As the preceding indicates TMS supports the four basic
types of data set organization: sequential, partitioned, index
sequential, and direct. The sequential partition and direct
data sets may be either movable or unmovable. The types of I/0

processing support include INPUT, OUTPUT, INOUT, OUTIN, and UPDAT.
These parameters have the same meaning as in the OS OPEN macro
instruction.

2.6 Queuing and Dequeuing

The terminal monitor system contains some resources which are
shared by the application programs, but which may not be used by
two or more programs simultaneously. The official IBM terminology
for such a resource is "serially feusable." Rather than use the
relatively complex ENQUE/DEQUE facility of OS/360, TMS incorporates
its own fairly simple queuing and dequeuing facility. Enqueuing is
primarily a function of the processing module which represents or
controls the serially reusable resource in question. Dequeuing
is primarily the responsibility of the TMSWAIT processing module.
Two words in the CR and one word in each FB are used for queuing
control. The various processing modules use the CR dummy ECB
to indicate when a shared resource which is being waited for has
become free. The particular shared resource, which is now free,
is indicated by setting a bit, in addition to the completion bit.
The CRQUEUE pointer points to the chains of queued FB's. The
first byte of this word, also known as the CR queue flag area,
has a bit set on for every shared resource that is currently
befng waited for. In this respect, it is the logical OR of all
thc analogous fields in all FB's. The FB queue pointer is used
to point to the next FB on the queue. The first byte of this
word, also known as the FB queue flag, will have only one bit set
on (in addition to the end-of-queue bit, if necessary) which will
indicate the particular resource for which the FB is waiting.
These relationships are illustrated in Fig. 3.

Placing an FB on the queue involves appending the FB to the
end of the queue chain, setting the proper bit in the FB queue flag
area, and ORing this FB queue flag area with the CR queue flag
area. When the processing module which is releasing a Shared
resource wishes to detect whether another FB requires this resource,
it merely checks the CR queue flag area. The assignment of a new
FB to the shared resource is accomplished by searching down the
chain of queued FB's until the first queued FB with the proper
bit set on is located. This FB is then removed from the chain,
but the bit representing the shared resource is not reset in the
CR queue flag area. Since more than one FB may have been waiting
for the resource, this bit is reset only when a search of the chain
has failed to turn up any FB with the corresponding bit sets.

759-
58

FIG. 3
FB QUEUING

CR

Queued.
for

System log

80 (5

-6o-
59

Last on
hain)

3. INTRODUCTION TO MODULE FUNCTIONS

System Initialization

System initialization consists of-setting up all the special-
ized TMS system tables, opening certain system data sets, and
loading several programs', principally IBM access method modules
into upper core. With initialization completed, control is
passed to the processing routines in the execution time load module.
Three processing modules are involved in system initialization.
Two of these, TMSHSKP and TMSBLOCK, comprise the system initiali-
zation load module. The third module, TMSBEGIN, is a small pro-
cessing module in the execution time load module, and it provides
the main entry point to the execution time load module. TMSHSKP
contains a great bulk of the code for system initialization. It
performs all initialization operations except those that require
information available only within the execution time load module,
such as the entry point addresses of the various execution time
processing routines. TMSBLOCK is the basic skeleton for most of the
TMS tables. It is a separate processing module, so that any
changes in the configurations of communication devjces serviced
by TMS may be accomplished merely by reassembling TMSBLOCK. Among
the tables for which skeletons are provided in TMSBLOCK are FB's,
TDECB's, DCB's for all communication lines and system data sets,
all communication buffers, all terminal lists, and all transla-
tion tables. TMSBLOCK has three entry points: the entry point
TMSBLOCK, which points to the first word of the skeleton; the
entry point TMSBLGTH, which is a word containing the length of
the skeleton in bytes; and the entry point TMSLSTFB, which points
to the start of the last FB skeleton asseMbled which will be the
head of the FB chain.

ahe TMSBEGIN module performs the last few steps associated
with system initialization and then turns control over to the
TMSWAIT module to begin executing each FB in turn. It too has
three entry points: TMSBEGIN, vhtch is the entry point to the
final initialization code and by extension to the entire time load
module; TMSCRADR, which is single word containing a pointer to
the CR for use by any other execution time processing module that
needs it; and TMSSYSV, which is a standard 18 word save area used
to saVe the register contents upon entry to the execution time load
module.

3.2 Wait Handling and Dequeuing

All wait list handling and scheduling of the next FE to gain
control of the CPU is handled by the processing module, TMSWAIT.
It is intended to be the only module that ever relinquished its
control of the CPU to a lower priority partition. Since the TMS
dequeuing method employs a pseudo-ECB, TMSWAIT is responsible
also for locating the next FB that requires the shared resource
and for passing control to the relevant processing module. TMSWAIT
has two entry points: the entry point TMSWAIT, which is used for

entry from application programs; and the entry point TMSDWAIT,
which is used for a direct entry to the wait module from other pro-
cessing modules. The two separate entry points are necessary be-
cause direct entry into the wait module does not involve saving
register in an FB.

3.3 Communications with Computer Operator

The TMSCNSL is responsible for the receipt and execution of all
commands from the central computer operator and the. reissuing of
the WTOR to reset TMS for the receipt of the next command. Any
other processing module may transmit a message to the computer
operator, as long as it does not wait for a response. The TMSCNSL
routine has two entry points: TMSCNSL, which is entered from
TMSWAIT when the console ECB indicates that a message has teen
received from the central computer operator; and TMSREADY, which
is entered from TMSBEGIN to complete system initialization by
issuing the fir,'t WTOR of the ams run.

3.4 Communications with Terminals

All transmission of messages to and from remote terminals is
handled by two processing routines. The first, TMSCISO, is used
for the initiation of all terminal input/output operations. The
second, TMSTREND, is entered from TMSWAIT when OS/360 indicates in
one of the line ECB's that some terminal I/0 operation has been
completed. This routine performs all operations associated with
the completion of terminal I/O. IMSCISO performs such operations
as determining whether or not the communication line is currently
free, queuing the operation if it is not; selecting the buffer;
performing code translation for outgoing messages; setting up the
TDECB for the transmission; and invoking OS/360 BTAM to initiate
the actual I/0 operation. It has four entry points: TMSCISO,
which is entered from an application program or another processing
module to initiate reading or writing; TMSWRDEQ, which is entered
from TMSWAIT to initiate writing by an FB just removed from the
FB queue, where it had been placed until the line became available
for a write operation; TMSRDRST, which is entered from TMSWAIT to
restart a read polling operation on a multi-terminal line inter-
rupted for a write traw.=mission to one of the terminals; and
TMSCSIOR, which attOMpts recovery from certain types of transmission
errors.

The TMSTREND routine performs such operations as checking for
transmission errors, performing code translation on incoming mes-
sages, and determining which terminal originated an incoming
message so that it may post the I/0 operation complete in the ECB
for the proper FB. It has one entry point, TMSTREND.

3.5 Obtaining and Releasing Prime Storage

All obtaining and releasing of prime storage for application
programs is handled by the TMSGMFM processing routine. This rou-

tine maintains the system convention regarding the chain of core
storage blocks for each FB and performs validity checking against
this chain. It also preserves the integrity of TMS by converting
an application program's unconditional request for primary storage
to a conditional request for primary st:)rage on behalf of the moni-
tor system. Thus, it retains control of the situation if the re-
quest for storage cannot be honored by OS/360. This routine has
a single entry point, TMSGMSM; the type of operation desired is

determined by its parameters.

3.6 Locating, Opening, and Closing of Data Sets

There are two classes of data sets in TMS: system data sets
and application program data sets. System data sets include the
TMS library, snap and log data sets, and all communication lines.
By their very nature, their requirements are known in advance, and
they are opened by the TMSHSKP routine. The remainder of the data
sets are opened and closed in response to requests from application
programs. Since the opening and closing of data sets offer many
opportunities for system crashes, all of this activity is performed
for application programs by two processing routines: TMSOPEN and
TMSCLOSE.

TMSOPEN performs such functions as checking that a data set
of the proper name exists and that all volumes containing it are
available to the system; checking that all volumes listed s
containing the data set have a proper entry for that data set; ob-
taining primary storage for and constructing a DCB for that data
set; maintaining the system convention of a chain of DCB's for the
application program's FB; forming a JFCB for the data set (since
the TMS deck does not include a DD card for every data set); ob-
taining primary storage for a buffer if necessary; and issuing the
OS/360 OPEN macro for the data set and verifying the successful
completion of the open process. This routine has one ent,-7 point,
TMSOPEN.

The TMSCLOSE routine performs such functions as: checking
request validity; issuing the OS/360 CLOSE macro; freeing any
buffer space obtained by TMSOPEN; and removing the DCB from the DCB
chain and releasing the primary storage that had been obtained for
it. It has two entry points: TMSCLOSE, which is entered from an
application program; and TMSPCLOS, which is entered from the
TMSPURGE routine to close data set with a slightly different parameter
structure and no validity checking.

3.7 Loading Requested Programs

Since the loading of user requested programs can result in sys-
tem aborts if (1) the program requested is not present or (2) insuf-
ficient primary storage remains to accommodate the program within
the TMS partition, the processing routine TMSPLOAD is used. TMSPLOAD
performs the following functions: executing an OS/360 BLDL macro
to insure that the desired load module exists and to obtain its length

-63--

in bytes; searching the FB chain for an already loaded copy of the
same program which is re-entrant (thus insuring that additional
primary storage will not be required); testing to insure that there
will be sufficient primary storage for both the program to be loaded
(if necessary) and the load routine; and invoking the 05/360
LOAD macro instruction to complete the loading process. This
routine has one entry point, TMSPLOAD.

3.8 Recovery from User Program Errors

When a running application program has caused an error con-
dition which is detected by one of the TMS processing modules, and
the application programmer himself does not provide for recovery
froM this error situation, TMS must terminate the application pro-
gram so that all system resources used by:that application program
again are made available for the remainder of the system. It is
also highly desirable that the terminal user be notified in a
uniform manner of the various types of errors. All these func-
tions are performed by the TMSPURGE processing routine. This rou-
tine specifically performs the following functions: the closing
and fraying of all attached DCB's; the releasing of all primary
storage obtained by the application programs; the locating of the
topmost save area on the save area chain; the issuing of a suitable
error message selected from a table of error messages by a parameter
to the purge routine; and the returning to the phantom job module
(TMBPJOB) to indicate an abnormal exit from the application
program. It has a single entry point, TMSPURGE.

3.9 Top Level Control

In a system where there is a choice of many different applica-
tion programs, there must be a top level control program which
handles the initial dialog between the terminal user and the
system. Such a program invokes the various programs in response
to the user's request and handles the transitions between not
only application prograns but also successive users at the same
terminal. To maintain simplicity and flexibility, this particular
program is not considered a processing module like the remainder of
TMS, but rather is treated as just another application program.
The only difference between this and other application prograns
is that it has been loaded as part of the sYstem initialization
process, and all the FB save areas have been preset to return to
the entry point of this program as if it has just called TMSWAIT
to wait on an event which is now complete. One of the names thEt
has been coined for this pseudo application program is "phantom job,"
and from this the program module takes its name, TMSPJOB. Some
of the functions performed by TMSPJOB are: issuing the initial
sign-on message to each terminal when TMS begins operation; re-
questing, receiving, and verifying the user's identification code
as part of the job in process; requesting and receiving the name
of the applidation program that the user desires to employ;
calling TMSPLOAD to bring the program into primary storage;
initializing the 1-3 for use of the TMSDEBUG routine if the user so
desires; passing control to the requested application program and

63

eventually receiving control back from the program by either a nor-
mal or an abnormal return; logically disconnecting the terminal
from the system at the user's request; and accepting the user's
log-out when he is finished and conditioning the system to accept
the log-in of a new user from the same terminal. This routine has
one entry point, TMSPJOB.

-65-

64

4, DETAILED MODULP DESCRIPTIONS

4.1 TMSBEGIN Module

The TMSBEGIN module has three entry points. The main entry
point is TMSBEG1N, which is used to initiate TMS execution time
processing and which becomes the main entry point of the load
module TMSEXEC. The entry point TMSCRADE obtains the communication
region address if it cannot be located by any other method. The
entry point TMSSYSSV is used to gain access t,,2 the TMS system save
area if other modules need to reach it.

This module customarily receives control by being transferred
to and from TMSHSKP by means of an XCTL macro instruction. As is
customary, it does a standard OS SAVE macro instruction and
links the main TMS system save area to the save area pointed to by
the system. TMSEXEC has provided the pointer to the communication
region (CR) in register 1 (RP1). This address is now moved to
register 10 (RCR) and installed in the area pointed to by TMSCRADR.

A vector of entry point addresses to the various TMS processing
modules is maintained at location ADDRVEC. This consists of a
series of V-type address constants in the same order as defined in
the CR dummy section (DSECT). The length of this address vector
is found as the value of AVLENGTH. This address vector is moved
to the first part of the communication region by means of a single
MVC instruction.

Since certain serially reusable system resources may be re-
quested by more than one applications program at the same time, a
queuing methodology is supported. The key to signaling when a
resource has been freed is the queuing event control block. The
address of this event control block is placed in the second position
of the wait list at this time. This procedure is explained in
detail in the description of the TMSWAIT module.

The only function left in the monitor initialization process
is the issuing of a ready message to the console typewriter by
means of a WTOR macro instruction, so that the operator may exercise
control over the system from his console typewriter. Since this
process is one that is repeated every time the operator employs
the console typewriter, a branch is taken to the special entry point
TMSREADY in the TMSCNSL module.

4.2 TMSBLOCK Module

The purpose of the TMSBLOCK module is to assemble itself into
the terminal block skeletons and associated pointers for use by the
TMSHSKP module. This module has three entry points: the entry
point TMSBLOCK represents the beginning of the combined terminal
block skeletons; the entry point TMSLSTFB provides the address of

65

the last FB generated in the TMSBLOCK module; and the global char-
acter variable &PREVFB is used to obtain the name of the last FB
generated by the FORMFB macro.

The principal portion of terminal block skeleton generation is
performed by repeated calls of the FORMFB macro. Details on this
macro's parameters and the code that it generates may be obtained
from the section entitled "Use of the FORMFB Macro." All invocations
of FORMFB should be placed between the headings "START OF MACRO
CALLS TO DEFINE TMS BLOCKS" and "END OF MACRO CALLS TO DEFINE TMS
BLOCKS" wdth no other intervening macro instructions, machine
operations, or assembler pseudo-instructions which alter the loca-
tion counter placed within this area. Following the area in which
TMS blocks are defined come the various translation tables which
are needed to convert code from the internal EBCDIC to the various
transmission codes employed by the different communications de-
vices. Each table is 256 bytes long and is labeled with the
characters IECT followed by the four oharacters used in the INTRAN,
OUTTRAN, or INTRLC keyword operands of the relevant FORMFB macro
instruction.

4.3 TMSCLOSE Module

TMSCLOSE is a service module of the Terminal Monitol System
designed to close down user files. It begins with a standard store
multiple of the user's registers into the save area he has provided.
The function block of the user is located, and the register is
copied, from his save area into location FBSAVE in the FB. The
address of the data control block (DCB) is copied from register 1
into register RDCB; register RDCB is then used to provide addressability
for the dsect IHADCB. The chain of DCB's is then checked to make
sure that this DCB address is on that chain. Location FBDCBCHN
in the FB is checked for zeroes. If it is all zeroes, then the
chain is empty, and a branch is taken to location DISASTER. The
chain, if not empty, indicates the presence of DCB's. In this
ease, the address of the DCB chain is loaded into register RPREV
at location TESTDCB1, register RWORK is cleared, and the control
word for the next DCB is loaded into register RWORK2 from the
location currently pointed to by register RPREV. Register RWORK2
now points to the control word in front of the next chained DCB.
(See description of TMSOPEN for construction of DCB.) The nega-
tive offset at this address is loaded into register RWORK1 and
used to compute the true address of the start of the DCB. This
address is then compared to the address given on entry to the pro-
gram. If equal, this is the DCB the user wished to close, and con-
trol is passed to location TESTDCB2. Otherwise, register RPREV is
loaded from the address to which it currently points. This step
will give the address of the next DCB. This address is checked for
zeroes. Zeroes here indicate that there are no more DCB's chained
to this FB. If this is the case (an incorrect DCB address passed
to TMSCLOSE), a branch is talc_gn to location DISASTER. Otherwise,

66

since the address of ;the next chained DCB is in register RPREV, a
branch is taken back to location TESTDCB1 to test the next DCB.
At location TESTDCB2 the location DCBMACRF in the DCB is tested for
indications of a QISAM DCB. If this was a QISAM DCB, the module
TMSGTSLE must be deleted. If this was not, a branch is taken to
location CLOSE.

At location CLOSE an 0/S CLOSE macro instruction is issued,
specifying the location of the DCB. The next task after closing
the file is to free the core obtained for this DCB. To do this,
location DCBBUFCB is tested for the presence of a hexadecimal 01.
If it is present, it implies the existence of a buffer pool con-
nected to this DCB which also must be freed along with the core of
the DCB itself. If it is not present, a branch is taken to location
FREEDCB. Assuming there is a buffer pool connected to this DCB,
the pointer to this buffer pool is picked up from location DCBBUFCB
and placed in register RPTR. The number of buffers in the buffer
pool is picked up from four bytes off the address currently in
register RPTR and placed into register RCTR. The number of buffers
(now in register RCTR) is multiplied by the buffer size which is
found at six bytes off the address currently in register RPTR.
The alignment of the buffers is tested by testing location DCBBFALN
for the presence of a hexadecimal 01, which indicates fullword
instead of doubleword alignment. If location DCBBFALN does not
contain a hexadecimal 01, there is doubleword alignment, and a
branch is taken to location BUFFER1. If buffer alignment is on
a fullword,. register RCTR is incremented by 4, and control then
falls throUgh to location BUFFER1. At location BUFFER1 the length
of the buffer pool currently in register RCTR is incremented by 8

to account for the buffer control block. This length is placed
into register RPO, and the address of the buffer control block
currently in register RPTR is placed into register 1RP1, and an 0/S
FREEMAIN macro instruction is issued to free the core for the buffer
pool. Control then falls through to location FREEDCB.

Once the core for the buffer control block and the buffer pool
have been released, the task is to free the core for the data con-
trol blocks themselves. Since the length of a data control block is
dependent upon the access method, location DCBMACRF must be tested
to find the access method used. At location FREEDCB in the program,
location DCBMACRF in the user's DCB is tested for the presence of
a bit indicating the EXCP access method (DCBBITE). If this bit is
'not present, a branch is taken to location FREEDCB1. Assuming this
access method is EXCP, register WORK1 is loaded with a value of 56.
(This is 52 bytes for the EXCP DCB plus four bytes for the chain
word.) Location DCBMACRF is then tested for the presence of a bit
indicating that appendages were needed for this access method. If
this bit is not present, a branch is taken to location FREEDCB5. If
it is present, register WORK1 is incremented by 20 bytes, and a
branch is taken to location FREEDCB5.

At location FREEDCB1, location DCBDSORG is tested for the
presence of a bit indicating an index sequential data set
(DCBBITIS). If this bit is not present, a branch is taken to
FREEDCB2. Assuming the bit is present, register RWORK1 is loaded
with a value of 244 for the 236 bytes of the ISAM DCB, plus four
bytes for tl-e chainword, plus four bytes used by TMSGTSLE. A
branch is then taken to location FREEDCB5.

At location FREEDCB2 location DCBDSORG is tested for the pre-
sence of a bit indicating the direct access method (DCBBITDA).
If this bit is not present, a branch is taken to location FREEDCB3.
Otherwise, register RWORK1 is loaded with a value of 92 for the 88
bytes for the direct access data control block plus 4 bytes for the
chainword. A branch is then taken to location FREEDCB5.

At location F1EEDCB3 location DCBDSORG is masked for the pre-
sence of a bit indicating the physical sequential access method
(DCBBITPS). If this bit is not present, location DCBDSORG does
not contain a valid bit representation of the access method. A
branch is then taken to location DISASTER. If this is a physical
sequential data set, register RWORK1 is loaded with a value of 92
for the 88 bytes for the data control block plus the 4 bytes for
the chainword. At location FREEDCB5 the DCB Chain is updated by
moving 3 bytes from the area pointed to by register RBLOCK (which
contains the address of the data control block immediately following
the one just closed) and moved to the address contained in register
RPREV. This action completes the chaining of the previous data
control block to the succeeding data control block. Register RPO
is loaded from register RWORK1 which containe' of the
data control block area to be freed. Regi loaded from
register RBLOCK which contains the addres Ae to be
freed. Then an 0/S FREEMAIN macro instruci- ., 1, issued.

Control then falls through to location RETURN where a standard
load multiple of the user's registers from location FBSAVE occurs,
and a branch register return through register RR. At location
DISASTER, register RP1 is loaded with a value of 28 to indicate
entry from TMSCLOSE, and register RD is loaded with a V-type
address constant of the entry point of TMSPURGE. A BR instruction
is issued specifying register RC.

Location TMSPCLOS is an alternate entry point to TMSCLOSE. This
is an entry from TMSPURGE. On entry, register RP1 points to the
chain element word rather than to the DCB. At location TMSPCLOS,
the registers are stored into location FBSAVE. Register 15 is
used for temporary addressability of location TMSPCLOS which enables
an address constant specifying the entry point TMSCLOSE to be
loaded into register RP. This provides permanent addressability
for the program. Register RWORK1 is then cleared. The negative
offset from the chainword is then inserted into register RWORK1.
From this the address of the DCB may be found easily, and control
is passed to location TESTDCB2.

4.4 TMSCNSL Module

The TMSCNSL module has two entry points. The principal entry
point, TMSCNSL, is entered from the TMSWAIT module when the console
DCB indicates that a message has been received from the computer
operator. The message test which has been enclosed between apostrophes
in the operator's response via the REPLY command is found in the
internal buffer named RPLAREA. To test for the content of the message,
a simple series of CLC instructions is used to compare the contents
of the reply buffer to see if it matches a particular key word.
If the first word of the response does not match any of the valid
command words, control falls through to the routine labeled WHAT,
which issues the message

TMS101I COMMAND NOT RECOGNIZED. IGNORED.

and then falls through to that portion of code headed by the label
TMSREADY.

If the response from the operator matches the key word "DUMP,"
a user ABEND with a code of 300 is executed in order to obtain a
core dump and terminate operation of the monitor.

The remainder of the module consists of code to condition the
monitor system for the next response from the computer operator.
This code is headed by the label TMSREADY, which is also the secondary
entry point to this module. The code zeroes out the first byte of
the console DCB area RPLECB and sets the response buffer RPLAREA to
all blanks. The WTOR macro instruction is then invoked to write the
message

TMS100I READY

on the console typewriter and direct OS to place the operator's
response into the buffer labeled RPLAREA. The final operation
is to place the address of RPLECB into the first position of the wait
list. This is done every time, even though it is necessary that
this be done only on the first call of TMSREADY from TMSBEGIN in
order to complete the system initialization.' The only exit from
this module is direct branch to the direct wait entry point TMSDWAIT
in the TMSWAIT module.

4.5 TMSCSIO Module

The TMSCSIO module has four entry points: TMSCSIO, TMSWRDEQ,
TMSRDRST, TMSCSIOR. The main entry point to the routine is TMSCSIO.
The entry point begins with a standard store multiple into the user's
save area, locating the function block, moving the stored registers
to location FBSAVE, and establishing addressability to the program.
At this entry point also the flags are set to indicate a normal
exit. Addressability to the communication region is provided by

G 9

loading register RCR from location FBCR. Loading register RDECB
from location FBDECB in the function block provides addressability
to the data event control block. Loading register RL:n3 from location
DECDCBAD in the data event control block provides addressability
to the data control block. The function block entry flag is then
set to indicate entry into TMSCSIO. After the entry, the next task
is to find whether a buffer is attached to this function block by
Checking location FBBUFPTR for the presence of zeroes. If there
is no buffer attached to this function block, a branch is taken to
location IOENTRY4. If there is, register RBUF is loaded with the
address in location FBBUFPTR. Location FEBUFPTR is then cleared
to zero, and the buffer is indicated to be the last by setting a
flag (BUFFLAST). Register RPTR is loaded with the address in
register RBUF offset +4 to point to the buffer itself rather than to
the buffer control block. The length of the last message sent or
received is loaded into register RPTR, and this length plus 4
(if it's a shared line) is used to clear this buffer to blanks. The
clearing operation takes place in the loop at locations IOENTRY1
through IOENTRY3. At location IOENTRY4 the task is to test whether
the request is a read or write operation. This is done by testing
location FBRWOP for the presence of a flag indicating the write
operation (FBRWRITE). If this flag is present, a branch is taken
to location WRITE. If it is not, the read operation is resumed
and a branch is taken to location READ.

At location WRITE the return address from the write queuing
subroutine is set into register RR, and location DECUFLGS is
tested for a bit indicating that writing is in progress (DECUFWIP).
If writing is in progress, a branch is taken to location WRQUEUE to
place this function block on the writing queue. If writing is not
in progress, location DECUFLGS is tested for the presence of a bit
indicating read polling in progress (DECUFRIP). If read polling
is nr4 progress, a branch is taken to location WRITE8. If
po: ing in progress, it must be stopped for the other terminals
on tilu line so that this message may be sent. Register RR is
loaded with the audress WRITEO to indicate a different return from
the write queuing subroutine, and a branch is taken to the write
queuing subroutine at location WRQUEUE.

At location WRQUEUE the queuing flags in the communication re
gions at location CRULGS are tested to see if the queue is empty
(CRQEND). If it is not empty, a branch is taken to location QUEUEl.
If it is empty, the address of the current function black is stored
at location CRQUEUE. Location CRQFLAGS is set with a bit indicating
that there is a function block queued for the write operation, and
a branch is taken to location QUEUE4. If the queue was not empty at
location QUEDE1, location CRQELAGS is set with a bit indicating a
function blo= queued for write (CRQWRITE), and the address of :he
first queued 'anction block iz loaded from location CRQUEUE ini

)

register RWOE L. At location QUEUE2 a loop is executed to fina the
end of the que. When the and of the queue is found, a branch

is taken to location QUEUE3. At location QUEUE3 the end-of-queue
flag for the function block already queued is turned off. The queuing
flags of the former FB are merged with the Eiddress of the new last
entry and stored in the pointer. The flags indicating end-of-queue
and a function block queued for write (FBUND and FBQWRITE, respec-
tively) are moved into location FBQFLAGS. The waiting-to-write
count at location DECWWCNT is incremented by one, the waiting-to-
write bit (DECUFWTW) is set on in location DECUFLGS, and a branch
is taken to the return address that was previously loaded in register
RR. If writing was already in progress, this location is TMSDWAIT.
If read polling was in progress, this location is WRITEO.

At location WRITEO, the polling reset flag (DECUFPRS) is turned
on in location DECUFLGS. The address of the data event control
block is loaded into parameter register 1, and a RESETPL macro
instruction is issued to stop polling on the line. When control
is returned from this macro, register RC is tested for a return
code of 0 to indicate a successful polling halt. If the polling
halt was not successful, a branch is taken to location ABEND.
Otherwise, a brarch is taken to location TMSDWAIT. If read pollinE
was not in progress at the entry to this routine, a branch is taken
to location WRITE8 where the terminal list entry for this console
is loaded by obtaining the address of the terminal list from locat71-,,t
DECTLIST, placing this address into register RWORK1, and adding tha
terminal list offset for this function block from location FBTLOFF
to the address in register RWORK1. The address in register RWORK1 _is
now the address of the terminal list entry for this console. Using
this address, the skip bit for this entry is turned off, and location
FBRWOP is tested to See if the length for the message is already
in register RPO. If it is, a branch is taken to location WRITE21.
If it is not in register 0, it is obtained from the start of the
text and put into register RLNTH, and a branch is taken to the
common coding at location WRITE22. At location WRITE21, register
RPTR is loaded with the message address from parameter register 1,
and rei.ister RLNTH is loaded with the length from parameter register

At location WRITE22 the process is to locate an output buffer-
To do this, register RCTR is cleared to O. The address of the buf'T=T
control block is put into register RBUF from location DCBBUFCB,
and at location WRITE1 a loop is executed to chain through the buffa-
chain to find a buffer that is free. If no buffer is free, a bran±:
is taken to location ABEND with a value of 41 at location CRABCODE_
If a buffer is available, control falls through to location WRITE2
where flags are set in the buffer control block for that buffer ta
reserve the buffer. These flags indicate (1) buffer in use and
(2) bufftr waiting for output (EUFFINUS and BUFFWRTG, respectively-)..
Register IIBUF is shifted by four bytes to point to the start of

itself rather than to. the control block. Location DEC--
o see whether the terminal is a typewriter or not. If
typewriter, a branch i taken to loation WRITE3. If f.t.

location FBRWOP is tested to see if carriage retlx_r
as specified (FBRWCEBW'. If not, a branch is taken 1r,_

the buf.-/'
is testLd
it is net
is a type
before te

location WRITE3. If it was specified, the length of the last mes-
sage is loaded into register RWORK2, register RWORK1 is cleared, and
a halfword of zeroes is stored into location FBLMLNTH, which is the
last line length. The value currently in register RWORK2 is divided
by 10 to find the inches of carriage travel. The prefix length is
added to the value in register RWORK2 to find the total prefix length.
Register RW0RK1 is loaded with a buffer address from register RBUF.
The length value in register RWORK2 is temporarily decremented by 1,
and this value is used to move a carriage return prefix into the
buffer by an execute instruction specifying a move instruction at
location MOVECR. The value in register RWORK2 is reincremented by
1 and this value added to the cumulative length in register RCTR.
The text of the message is to be moved into the buffer at location
WRITE3 by first testing register RLNTH for the presence of a zero
length. If the length of the text is zero, a branch is taken to
location WRITE4. Register RLNTH is then tested for a maximum
length value. If it is over this maximum length, a branch is
taken to location PURGE1. The address of the buffer is then loaded
into register RWORK1, and the length of the existing text from
register RCTR is added to it. Also, the length value in register
RLNTH of the existing message is added to the cumulative length
counter register RCTR. The length of the outoging message is
stored into location FBLMLNTH.

".t location WRITE30 the length value in register RLNTH is
used in a move loop to move the total message into the output buffer.
When the message has been moved, control falls through to location
WRITE4 where, if the terminal is a typewriter and a carriage return
after text was specified, the same code that was issued for car-
riage return before text is executed. If the terminal is not a
typewriter, or carriage return after text was not specified, a
branch is taken to location WRITE5 where the type of terminal is
tested again to see if the terminal is a display. If it is not,
a branch is taken to location WRITE5A. If it is a terminal, the
buffer address in register RBUF is loaded into register RWORK1
and the length of the existing text in register RCTR is added to
it. This address is one beyond the end of the message, and if the
terminal is a display, an end of text character is placed at that
position, and the message length bumped by 1. At location
WRITE5A, the cumulative length in regis-i;er RCTR is put into register
RLNTH, and the final buffer address is put into location RPTR. The
translation table address is loaded into register RWORK1, and at
location WRITE6 and WRITE7 a translate loop is executed to trans-
late the outgoing message. The write-in-progress flag is then
trirned on at location DECUFLGS (DECUFWIP). The buffer length from
rgister RLNTH is stored in the data event control block at loca-
=_on DECLNGTH. The address of the buffer is stored into location
ElL,REA. The polling address from location DECTLIST is loaded
int register RWORK1, and the offset for this function block from
loc.457ion FBTLOFF is added to it. This address, pointing to the
tar=_Inal list entry for this function block, is stored at location
UEEL-ATRY. The relative line nunber for this terminal is moved

from location FBRLN to location DECRLN, and if the terminal is
a display, a branch is taken to location WRITE9. Otherwise,
the type of operation in the data event control block is set to
indicate a write initial with reset (DECWTIR) for a typewriter,
and then the CRT display code is skipped by branching to location
WRITE11.

At location WRITE9 the operation type at location FBRWOP is
tested to see if pre-erase was specified. If it was, a branch
is taken to location WRITE10. Otherwise, the type of operation
at location DECTYPE+1 is set to indicate a write initial with
reset (DECWTIR), and a branch is taken to location WRITE11. If
pre-erase was specified at location WRITE10, the operation type
at location DECTYPE+1 is set to indicate a write erase with reset
(DECWTSR), and control falls through to location WRITE11. At
location WRITEll the data event control block is cleared to zero,
and the write to the terminals is issued by issuing an 0/S WRITE
macro instruction. After control is returned from this macro
instruction, register RC is tested for a return code of 0 to
indicate a successful start of write. If it was not, a branch
is taken to location ABEND with a value of 42 at location CRABCODE.
If the start of write was successful, a branch is taken to the
exit routine at location RETURN.

If the indicated operation at location IOENTRY4 was a read
operation, a branch is taken to location READ. At location READ
register RWORK1 is loaded with the address of the terminal list
obtained from location DECTLIST in the data event control block.
To this value is added the terminal offset found at location
FBTLOFF. The skip bit at the resultant location is turned off,
the type field of the data event control block (DEUTTYPE) is
tested for the presence of a bit indicating several terminals on
the line, and a branch is taken to location READO. If there are several
terminals on this llne, the active polling count at location
DECAPCNT is incremented by 1.

The- data event control block flags at location DEBUFLGS are
tested for bits indicating either a read in progress or polling
interrupt (DECUFRIP and DECUFPIN, respectively). If pol-r-ing is
or 7was in progress, a branch is taken to location RETURN to return
to the caller, as nothing more needs to be done- If pc2ling was
not in progress, it must be initiated, ema contrn2 fella through
to location READO to locate an input buffer- Th.e addreem of the
buffer control block is obtalned from the :5ata cl_almol_hlock, and
the first buffer is tested for the presence of a flag_imdicating
buffer in use (BUFFINUS). If the buffer fs not in uae, a branch
is takell to location 19EAD2. If it is in use, a loop ± executed to
chain down through the buffers to find a frae one. If one can not
ba found, a branch is taken to location AlEEND wiTh a value of 43
at location CRABCODE for the abnormal end code in the communication
region.

70-

At location READ2 the flags on the newly-located buffer are
set to indicate buffer in use and buffer waiting for input
(BUFFINUS and BUFFWTIN, respectively.) Register RBUF is
incremented by 4 to point to the start of the buffer. Next, the
data event control block flags are tested for the presence of a
bit indicating write in progress (DECUFWIP). If it is in progress,
a branch is taken to location READ4 to put the read parameters
into a save area. If it is not in progress, the operation code
of a write initial (DECRTI) is moved into the type field of the
event control block to set the operation code for this operation.
At location READ21 the length field is set into the data event
control block from location DCBBUFL. The buffer address now in
register RBUF is stored into location DECAREA. The terminal list
address is moved from location DECTLIST to location DECENTRY. The
relative line number for this terminal is also moved from the
function block at location FBRLN to the data event control block
at location DECRLN. The data event control block flags are set
to indicate read in progress. The data event control block is
cleared, and an 0/S READ macro instruction is issued. After the
macro instruction is issued, polling is in progress, and a branch
is taken to location RETURN.

If, at location READ2, the line is found not to be free, a
branch is taken to location READ4 to save the current parameter
set -Por a later restart of the read operation. At location
READ4 location DECRSAVE+10 is tested for the presence of flags
indicating that a restart parameter set already exists. If it
does, there is a fatal error, and a branch is taken to location
ABEND with a value of 45 at location CRABCODE. Otherwise, the
first byte of the operation code, a hexadecimal zero, is moved
to location DECRSAVE in the restart parameter save area. The
second byte of the operation code, a read initial (DEORTT) is
moved to location DECRSAVE+1. Likewise, the -buffor lengial from
T)CBEUFL, the buffer address in register RBUF, the terminal polling
list address from location DECTLIST+1, and the relative line
number from location FBRLN are moved into respectively higher
locations in the parameter save area. =The data event control flags
are set to indicate polling interrupteE (DECUFPIN) and a branch
taken to location RETURN to exit to the. caller.

At location RETURN the program'flags are tested for a bit
Ladicating a direct entry to the wait routine is to be taken.
Id" it is there, a branch is taken, to lucation TMSDWAIT for a
smet-ial exit. Otherwise, the function 'block entry flags are
aleared, the user's registers from_location FBSAVE are restored,
and a branch taken hack to the userroutine. At location TMSDWAIT
the register RC is loaded with a V=type address constant specifying
the location TMSDWA19?, and a branchis taken using register RC.

Location PURGE1 loads parametir register 1 with a value of
56 and branches to location PURGE. Location PURGE loads register

-76-
74

RC with a V-type address constant for TMSPURGE and branches to that
location. Location ABEND issues an 0/S ABEND macro instructY.on
specifying a user completion code of 777 with a dump to be taken.

Location TMSWRDEQ is another entry point to the TMSCSIO
routine entered from the TMSWAIT routine when the TMSWAIT routine
finds that more than one terminal has issued a write request at
the same time. The entry is directly from the routine TMSWAIT
and serves a function of dequeuing the already enqueued write
operation for the second terminal. This entry point provides
temporary addressability by using the address in register RC.
It also provides permanent addressability by loading the base
register, Register RB, with the value of an address constant
specifying the location TMSCSIO. The program flags are reset
for a normal exit; addressability to the data event control
block, the data control block, and pointers to the message address
and the message length are loaded. The waiting-to-write count
is decremented by 1, and if it is not 0, a branch is taken to
location WRITE to issue the write for this terminal. If the
waiting to write count (DECWWCNT) was zero, the data event control
block flags are reset to indicate no more functions waiting to
write, and a branch is then taken to location WRITE.

TMSRDRST is another entry point directly from the routine
TMSWAIT. It is similar in function to the entry point TMSWRDEQ
because it is used when the routine TMSWAIT finds that when one
function block had issued the read operation, the write was
already in progress, and the parameters must 1.1=3-e been saved.
When the write operation has fin-l_shed, the rcuI,ine TMT,IAIT useL
this entry point to start; up the read that was queued at a previous
time. It provides temporary program addressability by using the
address in register RC, loads the base =egister RB with an address
constant specifying the address TMSCSIO, loads the pointer to both
the data event control block and the data control block into
registers RDECB and RDCB, respectively, and branches to location
READO to set up a new read.

Location TMSCSIOR is another entry point used by TMSWAIT
when the end-of-transmission routines indicate an I/0 error by
setting a flag in the function block (FBXMTERR). This routine
also establishes temporary and permanent addressability and
loads the pointers to both the data event control block and the
d2ta control block into registers RDECB and RDCB, respectively.
It then clears the function block event control block to prevent
dispatch the next time TMSWAIT is entered, and then tests to find
which operation resulted in a permanent I/0 error. If it was a
write operation, a branch is taken directly to location WRITEll
to reissue the write. At this point the data event control block
still contains the information it had when the write was issued.
If the operation was a read rather than a write, the sense byte
at location DECSENSO is tested for indications that the error was

timeout, lost data, or intervention required. If it was any of
these, special processing is needed., so a branch is taken to
location CSIOERR1. If it was not one of these, a read retry
operation code is moved into location DECTYPE+1. A buffer address
is loaded into register RBUF from location DECAREA, and a branch
is taken to location READ21 to reinitialize the read operation
for a read retry.

At location CSIOERR1 the type field of the data event control
block is tested for a bit indicating multiple terminals on this
line. If there are not multiple terminals, a branch is taken
to location CSIOERR2 to skip the following code. If there are
multiple terminals, the active polling count is loaded into
register RWORK1, decremented by 1, and restored. The address
in pointer is updated to correspond to the terminal list entry
that was last being polled, and a write positive acknowledge
operation is issued to the terminal. The write positive acknowl-
edge is tested for successful completion, and if it was not
successful, the operation is retried 10 times. If it was
successful, a branch is taken to location CSIOER12.

At location CSIOER12 an 0/S WAIT macro instruction is issued
to wait for the completion of this write positive acknowledge.
Rather than exitirg to the routine TMSWAIT, a wait is issued here

?.ause the monit,_ system r-ast remain in control at this time.
,-)atrol then fall ough to 1o2ation CSIOERR2 where the read-in-

-ess and write-in-progress are turned off. A cumulative
length counter is cleared and the buffer address obtained from
location DECAREA. The buffer is released, and message pointers
are set up in register RLNTH and RPTR. The read and write operation
flags at location FBRWOP are set to indicate a write operation
with pre-erase, carriage return before write, and carriage return
after write (FBRWRITE, FBRWPE, .noiRWCRBW, and FBRWCRAW). A branch
is then taken to location WRIP72.7to issue a system message to the
screen in question, indicating -m.elrmanent uncorrectable I/0 error
and requesting the reissuance af t'me last message.

4.6 TMSGMFM Module

The function of INSGMFM is to obtain or free irain storage
upon request of a user program. The routine will eit-fter obtain
a block of storage and append it to the storage chain in the
Function Block (FBBLKCHN), or it will free a specified block
of storage previously obtained by a TMSGETM and update the
storage chain appropriately.

Upon entry, TMSGMFM saves the calling program's registers
in a temporary save area. Then immediately upon location of
the Function Block, the registers are moved to the FBSAVE area.
Next, the GMFM entry flag is set in the FB, and register 1
(RPl) is tested for a zero condition. If register 1 contains
zero, the intended operation is a GETMAIN, and the requested
size is in register 0. If register 1 is non-zero, the intended
operation is a FREEMAIN, and register 1 contains the address
of the area to be freed.

The TMSGETM routine first checks to see if return with a
condition code is requested. If yes, a special return flag is
set on. The routine then bumps the requested GETMAIN size by 8
bytes to cover the storage chain and issues a standard condition-
al GETMAIN. If the GETMAIN was successful, the size of the
block is stored in the second word of the area, and the previous
last entry on the storage chain (FBBLKCHN) is stored in the
first word of the area. The address of the newly obtained
storage block is then loaded into FBBLKCHN. The address of the
first byte available to the user (i.e., the first byte following
the 8 byte storage chain) is loaded into register 1, and control
is returned to the user.

In returning to the user who obtained the requested storage,
the GMFM entry flag is set off, the registers are restored from
the FBSAVE area, and control is returned. If core was not
available, however, two options are possible. If return is
requested, register 15 is loaded with the return code of 4, and
control is returned as normal. If eturn is not requested,
control is passed to TMSPURGE with a return code of 8, which
will purge the user and indicate insufficient main storage left
to satisfy a TMSGETM request.

_

Upon entry, TMSFREEM decrements the address supplied by the
user by 8 bytes. The storage chain is then searched for the
resulting address. When the block is found, it is freed, and
the storage chain is compressed, deleting the freed block. If
the address is not found in the storage chain, control is passed
to TMEPURGE with a return code of 12, which will purge the
user and indicate that the TMSFREEM request does not specify a
legitimate address. Otherwise, return is returned as in TMSGETM.

-79-

77

4.7 TMSGTSLE Module

TMSGTSLE is a service module of TMS designed to simulate 0/S
QISAM while saving approximately 7K bytes of storage. Like
other 0/S access method modules, it is loaded by the OPEN routines
(in this case, the TMSOPEN routine) and, therefore, is passed
dynamically in and out of storage depending on usage by a user
program. Like other 0/S access method modules, it is coded in a
re-enterable fashion. The program is invoked by the use of
TMSGET, TMSSETL, or TMSESETL macro instruction.

At entry to the program, register 1 will contain the DCB
address and a flag in the top byte to indicate GET, SETL, or
ESETL. Register 0 will contain data which vary depending on the
option selected.

The TMSGTSLE module has one entry point named TMSGTSLE. The
module begins with a store mi.11tiple of register 14 through 12 in
the user's save area, and then tests register 1 for a minus value
indicating SETL function. If register 1 is minus, a branch is
taken to location SETLROUT.

At SETLROUT the key address and key length specified for the
TMSSETL macro are transferred to register 2, and the DCB address
is transferred to register 3. A TM3GETM macro instruction is
then issued to obtain an area of core equal in size to the block-
size of the file plus four hundred. These four hundred bytes
will contain a save area and work space for other routines. When
the save area is created, it is linked via standard linkages to
the user's save area, the address placed into register 13, the
FB address placed into the first word of the save area, and
register 0 and 1 restored from 2 and 3, respectively. The
registers 0 and 1 are then stored at location REGO and REG1 in the
work area, the READ macro instructions parameters moved to the
work area, and a flag set to indicate no reads as yet. A condition
code of hexadecimal 80 is stored at location ABSRDIND to be used
later in an execute of a branch on condition instruction. This
is equivalent to a condition of equal. Location REGO + 1 is then
tested for zero. A zero here indicates that option B of TMSSETL
was requested, and location ABSRDIND is changed to indicate
unconditional branch (hex 'F0'). Next, the logical record length
and blocksize are loaded into registers 2 and 5, respectively, and
the blocking factor is computed by a divide. The result is stored
at location BLKFACT. Then the key length, blocksize, and buffer
address are loaded into registers 5, 3, and 6, respectively. If
option B was indicated, the key area is zeroed, the address is
loaded into register 9, and a branch is taken to location 21. If
option B is not selected, the address of the key (stored at REGO)
is loaded into register 11 and the key length (decremented by 1)
is used to move the key to the key area at location KEYBUMP.
Control then falls through to location Ll.

-8o-

Pts

At location Ll, the DCB address is located from REG1, and
the address of the Work area (called LOCAL) is stored in a TMS-
supplied fullword at location. 240 of the beginning of the DCB.
At location RETURN, theparameter registers are stored in the work
area save area, register 13 is restored, and control then falls
through location OUT to a TMSBETUBN macro instruction.

If, at entry to TMSGETSLE, register 1 is not minus, the
address of the work area is obtained by loading register 10 from
the address contained in register 1 plus 240. Local addressability
of the work area (LOCAL) is established by using this address. The
top byte of register 1 is then tested for the presence of a
hexadecimal 40. If it is not present, a branch is taken to the
ESETL routine at location ESETLROU. If present, GET is indicated
and a branch is taken to location READOUT.

At location ESETLROU, the save area chain is changed to
indicate the last save area, the work area is freed by issuing
a TMSFRERM macro instruction, and a branch is taken to location
OUT for a return to the user.

At location READOUT the parameter registers are loaded from
the work area save area where they were stored at the end of the
SETL routine. The read indicator at location RDIND is tested for
a hex '01' to indicate if a read has been issued or if one needs
to be. If location RDIND equals hex '01', a branch is taken to
the routine to locate the next record at location RECFND. If
not, a READ macro instruction is issued and tested for completion
with a WAIT macro instruction. A normal completion is tested by
masking appropriate bits in the DECM. If completion is normal,
control is passed to RECFND. If not, control passes to IDERRORS
which loads a completion sode, and the address of a message and
returns to the user.

At location RECFND the key length, or partial key length, is
dbtained from the work area and used to compare the key to the
first key in the block read-in. The code at location ABSRDIND
is then used as a branch code. If the B option is specified in
the TMSSETL macro, ABSRDIND always indicates a branch to location
MATCH. If option K or KC is selected, ABSRDIND indicates branch
only on equal condition. If the key is not the same, register 4,
containing the number of records per block, is decremonted by one
and tested for zero. A zero here indicates record not found and
an error condition code and message are returned to the user. If
register 4 is not zero, the record length is added to the current
record pointer to point to the next record, and a branch is taken
to location EXE to re-enter the loop to locate the proper record.

If control is passed to location MATCH, then the proper record
has been found. Thus, the key no longer matters and so is set to
hexadecimal F's. Likewise, ABSRDIND is set to 'FO' to indicate
unconditional branch. Control will now pass directly to MATCH upon

entry if GET is specified. The record being pointed to is tTlen
tested for MATCH against a. key of hex FLs to see if this is the
end-of-file. If it is, the address of thE users EODAD routine
is loaded and a retUrn made to that point. If it does not indicate
end-of-file, register 4 i tested to see if it is the last record
in the buffer. If not, register 1 is loaded from register 6 to
give the record address to the user, register.6 incremented to
point to the next record for the next issuance of the TMEGET macro
instruction, and the count of records remaining in register 4
decremented by one. At CLOUT register 1 is spaced by 16 to
account for the block header, registers 0 and 1 stored at the
appropriate place in the save area, and control passed to RETURN
to return to the user.

If the count of remaining records indicates the next reccrd
in the buffer is the last, control is passed to location LASTREC.
Here, location RDIND is set to zeros to indicate that a read will
be needed next time, and the key is obtained for the READ by
picking up the last key in the present block and adding one to it.
The number of records remaining is reset to the blocking factor,
the pointer to the current record loaded, and the address in
register 6 set to the beginning of the buffer. A branch is then
taken to location CLOUT to store the registers and return to the
user.

4.8 TMSHSKP Module

The TMSHSKP module begins with a standard 0/S regipter save
sequence. A save area within the housekeep routine is linked to
the save area provided by the 0/S monitor. The routine then issues
the message:
TMSOOOI ILR TERMINAL MONITOR SYSIEM INITIALIZING
to the computer operator.

The next major operation is the loading of a predetermined
subset of access method modules into main storage where they will
reside for the duration of TMS operation. The list of modules to
be loaded is given as a BLDL list labeled LOADMODS. The first
half of the list is a binary count of the nuMber of entries in
the list. This count must be altered if the number of entries in
the list is changed. The standard list of I/0 modules is given as
Appendix 4. The load process is initiated by issuing a BLDL
specifying the load list as parameter. A completion code of 4 from
the BLDL macro indicates that one or more modules are missing. The
routine beginning at label MISSING loop, the BLDL list,
testing for a zero record field. which . a mlssing module.
For each missing module encountered, the xns e:
TMSOOII TME INITIALIZING ERROR. UNABLE TO 1.CATE MODULE xxxxxxxx
is issued to the computer operator (xxxxxxxx represents the name of
the missing module). When this loop is complete, the program is ab-
normally terminated with a user code of 001. A return code of 8 from

-82-

80

68

72

100

356

360

364

368

372

376

380

FIG. b

STRUCTURE OF TMSGTSLE WORKAREA (1 PER QISAM DCB)

SAVEAREA

READLI

ICEYBUMP
'-

WORK

REGO

REG1

KEYLENG

BLKFACT

ABSRDIND 378
(unused)

BUFFER

NAME BYTES USE

SAVEAREA 72 SAVEAREA FOR TMSGTSLE
READL1 28 AREA FOR LIST FROM PARAMETERS FOR READ
KEYBUMP 256 AREA FOR KEY
WORK 4 WORK AREA FOR MASKING REGISTER CONTENTS
REGO 4 ADDRESS OF KEY + LENGTH FOR TYPES K, KC, SETL
REG1 4 ADDRESS OF DCB FOR THIS WORKAREA
KEYLENG 4 707 USED AT PRESENT
BLKFACT .:,CKING FACTOR FOR THIS FILE
ABSRDIND INDICATOR FOR BRANCH INSTRUCTIONS (SEE

DOCUMENTATION)
BUFFER (VARIABLE, EQUALS INPUT AREA FOR ONE BLOCK FROM FILE

BLOCKSIZE)

the BLDL macro indicates an I/0 error occurred wliile attempting
to read the module directory. Control is passed to the code
=labeled IOERROR which_writes the message:
=!-W002I TMS INITIALIZING ERROR. I/0 ERROR WHILE READING MODULE

"T7TORY
: he computer. operator. The program is then abnormally terminated
I:IL a user code of 002. A completion code of 0 from -the BLDL macrc
ticates the successful location of all routines. Com±rol passes
the code at label LOAD which first loops through the a7.1)L list
then issues a LOAD DE call for every entry in the list:.

The next major operation is to establish the canmon:.!ation
--cd.on (CR). For the purposes of this code, the len.ztt cf he

mmnication region to be Obtained is represented by -:. value
CRLENGTH, defined in the CR dsect. An R-type GEMMEL, Ilfscro is
zed to obtain the core. The core is cleared with a sit_ XC
_ruction (which implies a CR length of 256 bytes o- The
-ess of this newly Obtained area is placed in RCR, 24na _:a,-ressa-
_ity is established using the CR dsect. Finally, the emai-af-
xe flag is turned on in CRQFLAGS.

In addition to data sets for each communication lime ?NS also
responsible for providing three other data sets: the --stem
prary, the snap, and the system log data sets. The hr-busekeep
utine contains the skeleton DCB's for these aata sets whlch are
ieled LIBDCB, SNPDCB, and LOGDCB, respectively. The combined
-ngth of the three DCB skeletons is represented by the value of
,_-LGTHS, which is used to provide the length specification for
--R-type GETMAIN macro instruction. If the core is obtained, a
,op is employed to move the skeletons into upper core a. double-

-word at a time. Space is provided at label OPENLIST for pointers
r the three DCB's mentioned above plus up to 100 pointers to line
2 .3's. The pointers to the library, snap, and log DC3's are
,V dated within this open list and also placed in their proper
pcsitions in the CR. Register RPTR is initialized to patnt to the
-_rrent last entry of the open list and will be updatet as line DCB
_ddresses are added to it.

The most important operation of the housekeep mori---le is to
set up termLnal control blocks and buffers in main stamage for
use by the TIM execution-time routines. Both the skeletons for
these terminal control blocks and certain parameters are supplied
by the TNSBLOCK module. The combined length of all te-r-Trnal control
block skeletons is Obtained via the entry point TMSBLGTC. As
before, this length is used in an R-type GETMAIN macro instructimm.
Once the core is Obtained, the start of the combined terminal
block skeletons is located via entry point TNSBLOCK, and-the
'^rminal block skeletons are moved into upper main stoW-4,- a

'Ibleword at a time- The rest of the proc.essing r:onsistE'l of
roceeding through the various chains de ned ir ccntrol

t§

block skeletons and updating all addresses to point to the new

copy of terminal control block skeletons in upper main storage.
This means that to every address must be added an increment
representing the difference between the copy of the skeletons
in upper core and the original location of the skeletons.. his

increment is computed and placed in the register RIRt:E. The

incrementing process begins by finding the original address of
the last FB in the Chain via the entry point TMSLSTFB in module

TMSBLOCK. TLis address Is incremented and stored in the CRFBCHN
word in the ,2ommunication region. Since this now gives the
Jaddress of a ne,v.F.6, -te various pr77-1ters within the EB are
ricremented. AE each new FB is encountered, a halfword in the
CR, CRWLX is L:zre:mented to accumulate a count of the number of
Ye's in the s23:E. This will be used later in setting up the
wait list. Tt-a-_- mrocessimg of all Fe's is assured by following
the chain of -7Sa down to its cc.acluslon. Whenever we process the
first FB for. :articular commur-icatfon line, control is passed to
the code, sta-__ag- at label TBLOCK5 which processes the newly
located DECB. fLis cociP also _increments register ELGE by four to
increment the count of communication lines in the ayatem. From
here control 7I)tIsses to code for processing the newly located DCB
and anpending -the DCB address to the vector of DCB addresses in

OPENLIST. EF-t1 address is inserted by turning off the end-of-list
bit in the preceding fUllword, inserting the address in the
current fullwm-d, and turning on the end-of-list bit in the same
fullword. The tther major operation is to move the DCBBUFCB
pointer contents into the associated communicating line DECB and

reset DCBBUFCB to x'000001'. This is done to prevent the BTAM
dynamic buffering module IGG019MS, which is never needed, from
being loaded by the OPEN routine. Following DCB processing, control
falls through to process those buffers associated with the DCB by

updating the buffer chaining addresses. Control is then returned
to the middle of 'FB processing at location TBLOCK2. Processing
of FB's continues as described above until the list FB is processed.

Control is then passed to location WLIST.

The next major job to be done is to prepare the initial
configuration of the wait list and to load the "phantom job".
Because they are highly interdependent, these tasks are performed
together. First, the length of the list must be determined. The
accumulated count of FB's is dbtained from CRWLX. This count is
incremented by 2: one for the console wait list entry and one for

the queuing/wait list entry. The resulting count is multiplied by
four to give a result in bytes, which is then incremented by the
contents of register RLCT, representing the nuAber of bytes needed
for pointFrns to the communication line event control blocks. The
final total is stored in CRWLX to serve as the wait list offset.
This total is then multiplied by two to obtain the overell length
of the wa_ list and used in an R-type GETMAIN macro instruction.

rformed to zero out the core so dbtained a doubleworC
BLDL macro instru.ction Ls issued to locate the

-85-

directory entry of the- "phantom job" module TNBPJOB. In case of
error -luring the BLDL, branches are taken back to the code that
loaded -the I/0 access nethod modules in order to report the error
to the operator prid. ebonormally terminate the trogram. If the BLDL
is suzcessful, LO.ND-DE macro instruction is issued to bring the
"phannam job" into care. A loop is then performed to move the line
event control tacCk aadresses into their section of the wait list
and to se-t a fLeg in the corresponding wait list extension locations
in ordey o show than, they represent line event control blocks,
not terminal ezemt c=trol blocks. This flag pattern consists of
all one tits in the firs-, byle and all zero bits in the remaining
three bytes of the f1114-7rd_

last C7 erati= is to proceed through the entire chain of
functiL._, blocks various locations in the FBSAVE area and
-ruteriing a pointer tm ea= FBECB in the wait list with the
corresponding FB adE=ss in the wait list extension. The completion
bit is set an in_ the FBECB to ready the DB for dispatching when
execu=dom of tb egins. At the end of this loop, CRWLLAST

nointing to thellast entry in the wait list, and the end-
of-list oft will aLs- bre set on for the last entry in the wait list.
The effect of all_ 7,-.74; is to prepare all function blocks to begin
execttion with regis-:-.-ers 12 (RB), 14 (RR), and 15 (RC) pointing
to t'27-, start of the '-_cha,ztom job", register 10 (RCR) pointing to
the =mmunication reg.ionaad register 11 (RFB) pointing to the
fun-f on block. Ihi-s is-the initial execution state for every
terzdLt.al in the s;---ste-Da.

Ihe next operation to be performed is the OPENing of all DCB's
curntly defined in the system, coupled.with a certain amount
ofst-OPEN processing.. The open parameter list labeled OPENLIST
has teen completely -71-T.pared by previous code. All that is
nene--.-,sary to open_ DIGBus in parallel is to issue the OPEN macro
inst=ation, with this Ifst as the parameter. Post-OPEN processing
conszsts of a loop to make one more pass through the chain of
ail IBIs. For every ± that is the first on the chain on its
comm7rnication line, code is entered to both move the buffer
pointer from the ITP,GB -to the DCBBUFCB pointer and clear the DECB for
use-by the system. Tlais reverses the earlier action which prevented
the 3TAM dynamic buff=ring module from being loaded inadvertently
at OBJEN time. The remainder of the process is executed only if
the .E6 represents a terminal on a multi-drop line. In this case
the BTAM ameration "Send ack" is initiated to send an EOT. character
dawn the 1-7-7,= to Initialize the remote devices (in the present
case, the Senders: displays). If for any reason the attempt to
issue the BTAM write operation is not successfUl, the program
abnormally terminates with the user code of 003, which indicates
further difficulty i the line. The program waits for a positive
respon7e from this oT.eration before proceeding on to the next FB.

The final operations axe to inform the operator that the

-86-

terminal monitor Eysti=.771 is beginnin- its normal r7eration and to
transfer control to the executor pckr-,i_on clf the system. Tha
message:
TMS003I TERMENAL MONITOR BYSTIE'r S7ARTED
is written on the console typewrir. The commani= - reimn
address is placed in regiater 1 (7E1). The pointer , the TMS
library DuE is placed in the XCT: parameter list, ea_ the ITL
macro instruction is invoked. Th exit from TMSP74-717- causes the
TMSEXEC load_ module to overlay aL-ectly the housekep routine and
begin exenution.

4.9 TMSOFITN Module

TME2-7EN is a module of TMS deslg-nd to conatrnr-7- ana open a
user data nontrol block with only a knowledge of the data set
name. Therefore, TMSOPEN differE from 0/S standards 7which recuire
a DD name, the access method, and MACHF paramete= of ths DCB.

The rIndule begins with a standard store multipLe in-mo the
user's supply SAVE area. The address of the user's function block
is obtai-nd from the first word of his save area, whinh provides
addressability to his FB. The store registers are then rapied
from his save area into location FBSAVE, and the user's save
area is thereby freed for use as the save area of the TMBOPEN
routine. The entry point to the module is obtained from: register
RC, loaded into register RB, end used to provide address:ability
for the nrogrammer. The address of the commmnication region is
loaded into register RCR from location TRUE and used to provide
addressability for the communication. Register RP1 is loaded into
register ft-21JARM and used to provide addressahillty for the remote
parameterlist. At this point, the task is to search for a
catalog entry for the data set names specified.by the user. The
location DSNAME is cleared to blanks, ahd the aadress of the data
set name is obtained from the parameter area. Idkewise, the
length of the data set name is obtained from the parameter area.
These two values are loaded into registers RPTR and regfster RCTR,
respeotively. If the specified access method ta EXCP with appendages
required, a special branch is taken to location CSEARCE. At this
point, the data set name and the data set length addreaaes axe
loaded from special addresses Imi the parameter area into the proper
registers.

Control then falls through t--7D location CSEARCias, where the
length of the data set name is testea for validfty. If the length
is zero or negative, a branch is taken to location _DISASTER- Other-
wise, the length is used in an exemmte instruction to mirwe the
data set name to the parameter area for the catalog searob. The
parameters specified by the use= are tested to see if tre data
set is qualified by a user name. If not, a branch is taken to
location CSEAPCH1. If it is to qualified, a period is moved
into the first -stion after the data set name, and the aame
currentl7 in the user's function block is appended to the data
set name. Control then passes to location CEEARCH2. At 1..ocation

-87-
85

7._ARCHl ie par-=t= flags are te ",-ed to s -se if the user wantst L qualif: the L name by V.- "block number. If
contr-al to locatic, :SEARCH2. If it is to be

alialified, the :mar-ac-ters' .FB' ar-- ac:Ared to the first positions
af-t er the -Leta set name. Then, 7 terminal number from location

-ERMUO tc the first pcs-....:_tion following the characters
Cc-trol then falls throuZ, tc location CFRAL9.CH.2.

At lo-oatio-_, a catalog search is dame by issuing an
3/2_ LOCATE -tilcr--D specYing a parameter list called
B YTT:AME. l'nf= re,-u1,..= -of this macro irnstr:Lction are tested upon
return by -a -brp-r.rn t.z.z_le. If the re-_t-A.mn code is zero, then a
cat:slog entrv hpaLs -bee--za found so a anch is taken tr.) location
CS:LARCH3. Ea-an- an-e -taken to 1ions DISASTER or MUSSING
if the correct -was not found., -the entry was 7__Dt found, the
fic:al entry was net the data set na.Vt,_-_ or various o-Mer error
cc_iitions eid.s. r"..tt- location OSEWCTE3, a search LE made to see
tb_.4-=----6 all volumes. fr.= -this data set mounted. .-.Tne location
1..L___LeTR is tested to see if a point=, -to the tee_ :ID table
already ex-sts. If mot, this addr...s ds found 1 2: the use of an

E=ACT macr-o Con=t1 then fal__E through to
location CEEARCEEL whe the volume c_---mt is loaded. from the catalog
entry at location WOESC.AITEA. A pointes-r- is loaded to toint to the
first volume entry, smother poinmer is set to point to the
first DD entry. Th-_.2.e. pointers are -=R and RTIOI , respectively.
Since, =der the Te2=1:inal Monitor Sy=.-..em, DD names names to
correspond_ t-o the volMine they specify, DD name ILE0-= win. specify
a volume =04. A mnL-tch merely has to be done betv---t. the volninf=
name specified in catalog and the. DD name current.ly pointed
to by register FITIOT.. Once the vol.:me serial number mat ches the
DD name, controal is -r-sse d. to loc...zon CSEARCHT. :If the volume
serial number does not match the M n=e, th..? regi-ter TRTIOT is
bumped to poi= to tbe next DD entrr. A fullword of tt±Lnary zeros
at the address cuirm-rtly -Pointed -to -by regis-ter .:=dicates
that an e.:_rt-di does not exist. there is iz D card
given for the volume requested.. ..1';'-tranch is then to
location 'ilkESSIENG todicate that this volume is g. If a DD
entry ex4,-qts , on .-L-7mOl is paa& te 'location CZBEARCHE-to try
again to mait.ch tEse "Fcc--nnie se-r--.1-number to the DD nazne.

At locaticm CSELECTIT, .after a ,..check to see that; the volume
is mourr-,-ed prop7, a ttz..L is made through the use of an 0/S
OBT.11-N macro for the ,stence of a di:it:a set control
block with the e.cLfied by tt user. A branch is taken using
the return coafue, index to a h-z-ench table, to either location
CSEATCH if the data s-t control blattl is foumd, or --TPriously, to
locations DIS=ER ar CMISSING, depending upon the v. coriditin.
At location OSEARCH the pointer to the volime entr-, in the catalog
en:7.17 8 bmed bo point -to the next volume -=try. gister ROTH,.
cstataining the =ober- of volume entries , is decreme.:.:,..ed by one,
and a branch Is tak-= to location CSEARCH5 to estal Lsh that this

-88-

volume is mountef. Once the volume ccorrit im register RCTR becomes
zero, control passes through to a section of code which will com-
pute the requared lengths cf the data control bloCk based upon
the access method. :reqi-sted. The first test is to see if the access
methoh requested wns =P. -Ibis is done by testing location
PHA.= in the parameter area supplied-by the user for the pre-
sence of a he:::ader-'7777-,- 80 (PBITE). If this: bit is not present, a
brnnch is taken to location FORMDCEI to test for the next access
method. If it is I.:resent, register RWORK1 is loaded with a value of
56 fo= the 52 bytee f7a. the EXCP aczess method data control block
plus 4 bytes for Liz:a data control block chainword required by the
Terminal Monitor System. Register RWORK2 is cleared to zero, and
location PMACRF iE tested to see if appendeEes have been reouested
for this access methorI. If not, a branCh Ls tplien to location
FORMDCB5 to ottai71 th.2 core for the DC3- If appendages have been
requested, a 1,717h cf_ 20 is added to the value in register RW0RK1,
and a branch is taLem to location FORMECB5.

At location 7.77N1,771, location PDSORG is the remote parameter
area is tested for 77ne presence of a hexadecimal 80 (PBITIS) to
indicate the request for the index sequential access method. If
this bit is not pres:ent, a branch is teiliTen to location TOEMDCB2
to test for the nerzt access Tnethod. I-1' the. Lndex sequential
access method h,s -teen requested, register RWORK1 is loaded with
a value of 24J4- for tale 236 bytes rebufred for the index sequential
access method, plus 4 14tes for the chainword, plus 4 bytes used
by the Terminal Monitor System modUle 1714SOTSL-P7. Register RWORK2
is loaded witar a value of 16 for the negative offset of the DCB.
A branch is them taken to location JT0RMD5 to obtain the core
for this ICB.

At 1oct::17: FOREDE32, PDSORG is tes-ted for the presence of a
hexadecimal an (PlITDA); indicating the dirent accss method. If
.t.Tis bit is nct mimesent, a brans!4'n LE takz_L to location F0RMDCB3.
If the direct u..-2,mess Trre-thod has been remmested, register WORK1
L5 1n1ed witt a, aLi of 92, regist-T. 3W-ORK2 is loaded with a
value of 16, =hd a lhramch is taken tm locstion FORMDCB5. At
1ocaJ.7on -TrTR1DCB3, EMSTaaG is tested fon the presence of a hexa-
decimal MILS) indhcating that thelohz3sical sequential access
method has been re-7est7ed. If this bdt is not present, a branch
is taken to location =BASTER, since ail azcess methods have now
been'bested. If this hit is present, register RWORK1 is loaded
with a value of 92, and register RWOBE2 is. cleared to zero. Con-
trol then falls through to location FORMDCB5.

location MR14=5 kITC iz 1op-9eL from register
EWOEK1, amd then an 0/S mac= instruction Is issued
sbeaifying that t31.- length of core tb 'be obtained fs now in regis-
ter O. The address of the core obtained is to be n1aced intc loca-
tion 2=ADDR. Upon the return from this macrb itstruction, the

-89-

return code in register RC is tested for a successful completion,
and if register RC is not zero, a branch is taken to location
NOCORE4 o indicate core not available. Control passing to the
next instruction implies successful completion, and register RDCB
is loaded with the address at location COREADDR. Register RWORK1
is stored at location DCBELM= is case the legth of this data
control block could be used in an emergency flush. Register
RWORK1 is incremented by 1 and used in an execute instruction to
clear the obtained core to zero. From location FBDCBCHN the
pointer to the next data control block is moved into the chain
element word pointed to by register RDCB. The negative offset in
register HWOEK2 is placed at the top byte of the word pointed to
by register RDCB. Register RDCB is then placed at location
1,BDCBCHN, and the chaining of this DCB with the other DCBs connect-
ed to this function block is complete. Once the data control
block offset has been subtracted from it, register RDCB is used
to provide addressability to the data control block through an 0/S
DCBD macro Lnstruction.

At this point it is necessary to Obtain the Job. File Control
Block (JFCB) for the volume or volumes upon which the data set
resides,and 0/S GETMAIN macro instruction is issued specifying a
length value of 464. This is to test whether enough core remains
for the RDJFTB. Upon return from the GETMAIN, register RC is
tested for zero, which indicates normal completion of the GETMAIN
macro instruction. If register RC is not zero, the GETMAIN is
not successful, and a brannh is taken to location W0C0RE3. If the
C2TMAIN is successfUL, & FREEMAIN macro.instruction is issued to
free the core obtained -LT the GETMAIN. The Data Set Control
Block for the: first NutIume of the data set then is reobtained using
an 0/S OBTAIN macro imutruction. If this macro instruction is
mot successfUl, a bralich is taken to location DISASTER. If it is
sunnessill, a dummy MD mlimie is constimeted at location DSVOLS first
hu- clearing this locaticJi to blanks and then by moving in the
first vdaume nuMber from location VOLUME. Location WORKAREA is
tested to see if there is more than one volume. If there is only
one volume, a branch is taken to location FNDJFCB1 to find the job
file control block. If there is more than one volume, location
DSVOLS plus 4 is shifted over one byte so that the volume nuMber
of the ne,m, volume upon which this data set resides may be
apperlied to this, volume numiber (i.e., if the data set is resident
on the volumes ILRO3 andlILR05, the DD name constructed would be
ILR35). This is accomplished by obtaining the number of volumes
and looping through to :append the next volume number until the
count of volumes in register RC is diminished to zero. Control
then falls through to 'Location FNDJFCR1.

At location FNDJFCB1 the DD name at location DSVOLS is moved
to location DCBDDNAM in the data control block. The address of
the emit list and the omen flags are placed into the DCB, and the

-90-

DCB address is placed into location OPENPARM. The top byte of
location OPENPARM is set to a hexadecimal 80, indicating the end
of the open list. An RDJFCB macro instruction has been issued to
bring the Job File Control Block for this specified DD name into
core a. an addressable location. Addressability to the Data Set
Control Block (DSCB) and the Job File Control Block (JFCB) is then
provided through the use of USING assembler instructions. Next,
the data set name is moved into the JFCB, and if the data set is
qualified, a branch is taken into location SETJFCB1. If it is
not qualified, location JFCBIND2 is set to indicate a shared data
set (JFCBISHR), and a branch is taken to location SETJFCB2. At
location SETJFCB1, JFCBIND2 is set to indicate an old data set
(JFCBIOLD); control then falls through to location SETJFCB2.

At location SETJFCB2, the data set organization indicator
is moved from location PDSORG in the user's supply parameter
area to location JFCBSORG in the Job File Control Block. The
volume count of this data set is loaded into register RCTR from
location WORKAREA in the DSCB for this data set. This number is
stored both in location JFCBNVOL, which holds the number of volume
serial nuMbers, and in location JFCBVLCT. Using the count in
register RCTR, the volume serial numbers are then moved from
location WORKAREA + 2 in the data set control block work area to
location JFCBVOLS by looping through decrementing register RCTR
until register RCTR is zero. The key length for the data set is
then moved from location DS1KEYL in the DSCB to location DCBKEYLE
in the data control block. The data set organization is likewise
moved into the data control block at location DCBDSORG, and the end
of the data address is moved from the parameter area from location
PEODAD to the data control block at location DCBEODAD. The record
format for this data set is moved from location DS1RECFM in the
Data Set Control Block to location DCBRECFM in the data control
block. The data set organization specified in the user's parameter
area at location PDSORG is tested for an index sequential data set
(PBITIS). If this is not an index sequential data set, a branch is
taken to location SETDCBO: If it is, location PMACRF + 1
in the user's supply parameter area is tested to see if the TMSGTSLE
flag is set (a hexadecimal 80). If it is not set, a branch is taken
to location SETDCBO. The setting of this flag means that the user
is going to employ the queued index sequential access method, which
requires the loading of the service module TMSGTSLE. If the flag
is set, location PMACRF (the user's macro instruction references)
is moved to location DCBMACR in a data control block. Location
DCBMACR + 1 is ANDED with a hexadecimal value of 7F to turn off the
TMSGTSLE flag in the data control block. This flag is used only by
the TMSOPEN routine. A standard linkage is then set up to the routine
TMSPLOAD with register 1 pointing to a location containing the name
TMSGTSLE. Before a linkage to this routine is established, the
registers saved by TMSOPEN at location FBSAVE are temporarily stored
in location TEMPSAVE. Then a standard BALR instruction is issued.
Upon return from the TMSPLOAD routine, the registers at location

,484
-91-

TEMPSAVE are restored to location FBSAVE, and the success or failure
of the loading of the routine TMSGTSLE is determined by testing
register RC for the presence of a zero. If register RC is not
zero, the program was not loaded successfUlly, and a branch is
taken to location NOCORE3. If it is successfully loaded, the entry
point of the routine currently in register RPO is stored at
location CRGTSLE in the communication region. A branch is taken
to location SETDCBO + 6 to avoid repeating the macro reference
field's move to the data control block.

At location SETDCBO the macro instruction reference parameter,
which the user supplied at location PMACRF in the parameter area,
is moved to location DCBMACR in the data control block. Location
PMACRF is tested for the presence of a bit indicating EXCP access
method (PBITE). If it is present, a branch is taken to location
SETDCB2. Otherwise, the option codes at location POPTCD are moved
to location DCBOPTCD from the user's parameter area to the data
control block. Likewise, the synad routine address supplied by
the user at location PSYNAD is moved to location DCBSYNAD. If this
is not an index sequential data set, a branch is taken to location
SETDCB1. If i, is an index sequential data set, the numeric
portion of location PARMFLGS is moved to location DCBMAC for the
index sequential macro instruction reference extension. Then, the
relative key position is moved from location DS1RELKP in the Data
Set Control Block to location DCBRKPN in the Data Control Block.
At location SETDCB1 the blocksize is moved from location DS1BLKL
to location DCBBLKSI (all locations starting with the prefix DS1
indicate that this location is in the Data Set Control Block;
likewise, locations starting with the prefix DCB indicate that this
location is in the Data Control Block). The data set organization
at location PDSORG is tested for a bit indicating a direct access
data set (PBITDA). If this is a direct access data set, a branch
is taken to location SETDCB3. If not, the logical record length is
moved from location DS1LBECL to location DCBLRECL, and then a
branch is taken to location SETDCB. At location SETDCB2, location
PMACRF is tested for a bit indicating that appendages are required
with the EXCP access method (PBITAPP). If appendages are not
required, and this bit is not present, a branch is taken to
location SETDCB3. Otherwise, location POPTCD specifying the option
code is moved to location DCBOPTCD; likewise, the appendage
identification codes are moved from location PAPPIDS to location
DCBEOEA. Control then falls through to location SETDCB3.

Here location PMACRF is tested again to see if the EXCP access
method is specified and, if so, a branch is taken to location
OPEN. Otherwise, location PARME'LGS is tested to see if the user
wants to prevent buffer generation (PNOBUFFS). If the user does
want buffer generation prevented, a branch is taken to location
BUFFER4. Otherwise, the blocksize for this data set is loaded into
register RWORK1 from location DCBBLKSI. The quantity now in

,90
-92-

register RWORK1 is made into an integral nTimber of doublewords
by appropriate right and left shifts. Location PDSORG is tested
for a bit indicating an index sequential data set. If this is

not an index sequential data set, a branch is taken to location

BUFFER1. If it is an index sequential data set, the key length of

the record is dbtained. Ten bytes for the length field and
15 bytes for the padding are added to the key length and then
rounded down to a multiple of 8. This quantity is added to
the basic buffer length in register RWORK1, and control falls

through to location BUFFER1. At location BUFFER1, the buffer
length currently in register RWORK1 is stored at location DCBBUFL.

The quantity in registe:" RWORK1 is incremented by 8 bytes for the
buffer control block, P-Id buffer alignment is tested by examining
location DCBBFLAN to see if the user has specified fullword,

rather than doubleword alignment. If' the user has not specified
fullword alignment, a branch is taken to location BUFFER2. If

he did specify fullword alignment, register RWORK1 is again

incremented by 8. Control then falls through to location BUF_HER2
where the buffer size is transferred to register RPO, and a
GETMAIN macro instruction is issued secifying that this length be

dbtained. The success of this GETMAI-N is measured by testing reg-
ister RC for a return code of zero. If this register does not
contain zero, a branch is taken to lncation NOCORE3. If the
GETMAIN was successful, the address nf the core dbtained is stored
at location DCBBUFCB, and both the bmffer control block and the
pointer field of the first buffer are cleared to zeros. A buffer
count of 1 is placed in both the buffer control block and in the

data bontrol block at location DCBBUFNO. The buffer length is
moved from location DCBBUFL to the buffer control block. The
address of the first available byte past the buffer control block
is obtained and put into register RWORK1. Once again, buffer
alignment is tested, and if fullword alignment is not requested,
a branch is taken to location BUFFER3. If it is requested, the
address of the first available byte is incremented by four to point
to the first fullword past the buffer control block that is not
also doubleword alignment. Control then falls through to location
BUFFER3 where the address of the first available byte is stored,
not only in the first fullword of the buffer control block, but
also at location FBSAVE plus 8 corresponding to register RPO. A
branch is then taken to location OPEN. If, at location BUFFER)+,
the user specifies prevention of the buffer generation, a
hexadecimal 01 is moved, to location DCBBUFCB + 3 to indicate no
buffers. Control then falls through to location OPEN where a
GETMAIN is issued to see if enough remains for the resident OPENJ
processing routines. The normal completion of these GETMAINs
is determined by testing for the presence of a 0 return code in
register RC. If the return code is not 0, a branch is taken to
location NOCORE3. If it was successful, a FREEMAIN macro instruc-
tion is issued to release the tore obtained by the GETMAIN, and
then an OPEN macro instruction type J is issued. On return from

-93-

this macro instruction, DCBOFLGS is tested for a hexadecimal 10,
which indicates that the OPEN was unsuccessful. If there is no
hexadecimal 10, a branch is taken to location DISASTER to indicate
the failure of the OPEN. However, if it was successful, register
RDCB containing the address of the data control block is stored
at location FBSAVE + 12 corresponding to register RP1. Location
PMACRF + 1 is tested for a hexadecimal 80, which indicates that
this data control block is for the queued index sequential access
method. If this bit is not present, a branch is taken to location
RETURN. If it is present, the top bit of location DCBMACRF + 1
is turned on to tell the CLOSE routines that the module TMSGTSLE
is resident and must be deleted. Control then falls through to
location RETURN, where a return code of 0 is loaded into register
RC. Control then falls through to location RETURN1, where
register RC is stored in location FBSAVE + 4, which corresponds
to register RC. A standard return of LM and BR instructions are
used.

At location CMISSING corresponding to location VM1SSING,
register RP1 is loaded with a value of 16, register RC is loaded
with a return code of 4, and a branch is taken to location PURGE.
At location NOCORE1, the core for the buffer pool must be freed.
The necessary freeing of the core for the buffer pool is done at
location NOCORE1 by obtaining the pointer to the buffer pool from
location DCBBUFCB; finding from this location the number of buffers;
multiplying this number of buffers by the buffer size; testing
for fullword alignment and, if fullword alignment was specified,
adding 8 bytes; adding 8 bytes for the buffer control block; and
freeing the core of this size with the use of a FREEMAIN macro
instruction. Control then falls through to location NOCORE3,
where the DCB length is loaded from location DCBELMLN. The address
of the data control block from location FBDCBCHN, the data control
block chain, is updated by moving the current entry in the nnain
to location FBDCBCHN. A FREEMAIN macro instruction is then issued
for the core held by the data control block. At location NOCORE4,
register RP1 is loaded with a value of 20, register RC is loaded
with a return code of 8, and a branch is taken to location PURGE.
At location DISASTER, register RP1 is loaded with a value of 24,
register RC is loaded with a return code of 12, and a branch is
taken to location PURGE.

At location PURGE, location PARMFLGS is tested for a value of
hexadecimal 80, indicating that the user wants control to return
to himself with the relevant condition code should anything fail
in the TMSOPEN routine. If this bit is present, a branch is taken
to location RETURN1. Otherwise, register RC is loaded with the
entry point of the routine TMSPURGE, and a branch register instruc-
tion if taken on register RC.

4.10 TMSPJOB Module

The TMSPJOB module has only one entry point, and its charac-
teristics are somewhat different from those of other entry points.
The primary distinction is that permanent addressability- is set
up in register 12 (RB) prior to entry into this routine. This is
done because initial entry into this routine is not made by a
specific branch from another routine. Instead, this routine is
dispatched for this particular FB as if some third routine has
caused the posting of a wait, simulated to have occurred just
before the beginning of the phantom job code.

Since the base register, the FB pointer, and the CR pointer
are all assumed to have their proper contents when entering TMSPJOB,
addressability is established immediately by means of the necessary
USING instructions. R-type GETMAIN then is issued for a 72-byte
area which will become the topmost save area for the FB pointed
to be RFB. This entire new save area is cleared, and the FB
pointer then is stored in the first word so that it may be propa-
gated to succeeding save areas by code generated by the TMSSAVE
macro instruction. The TMSCSIO macro instruction is then invoked
to write the message:
TMS100I - TMS IN OPERATION
to the terminal associated with the current FB. Control then
passes to the next block of code.

The next major section of code headed by the label LOGIN asks
for, receives, and then processes the user's identification code.
A call is first made to the console I/0 routine to issue the
message:
TMS101A - WAITING FOR LOGIN
to the terminal involved. This issuance is followed immediately
by a request to read a response from the terminal. A check is
first made to see if the response is the word DISCONNECT, which
indicates that the user wishes the terminal logically disconnected
from the system. If this match is true, a branch is made to the
code at label DISCONCT which issues a WTO to write on the console
typewriter the message:
TERMINAL nn DISCONNECTED BY USER
where nn is the terminal nunber in ECBDIC which has been generated
by the TMSHSKP routine and placed in the function block at FBTERMNO.
The terminal disconnected flag FBDSCNCT is set on in FBFLAGS. Then
the FBECB first byte is set to all zeros, and the macro TMEWAIT
is invoked. Since there is no outstanding operation to post the
FRECB complete, this effectively puts the terminal in a permanent
wait condition. If the response from the user terminal is not the
word DISCONNECT it is assumed to be a user identification code.
The last non-blank character in the reply is found. Since this
is assumed to be the EOT character, it is set to blank in order not
to interfere with comparisons of responses which have three charac-
ters or less with the table of authorized user identification codes.
The valid user identification codes are found in the list labeled
USERLIST. The nurriber of entries in this list is placed RCTC, and

93

the address of the first entry in the list is placed RPTR. Prior
to a check of the user list, however, a pass is made down the FB
chain to see whether the user ID that has been sent back is
identical to the contents of FBNAME in any- FB. If an identical
match is found, the message:
TMI03I- NOT ACCEPTED, NAME ALREADY IN USE
is sent to the user terminal, indicating that acceptance of the
user ID as supplied would result in duplicate concurrent user ID
names. A branch is then taken back to LOGIN to reissue the
invitation to log-in and read a new response from the terminal.
If the user identification code does not duplicate the code found
in any other FB, a loop is executed to compare the user ID code
against a list of valid user ID codes. If this loop is exited with-
out a match, the message:
TMS102I- NOT ACCEPTED
is sent to the user terminal, and a branch is taken to LOGIN to
invite another attempt to log-in. If there is a match, the branch
is taken to ULCHECK2 where the user name is moved to FBNAME, and the
message:
TMS102I- nnnn LOGGED IN
is sent to the user terminal with the user name in place of nnnn.
Control then falls through to the next block of coding.

The next section of coding beginning with_ the label SPECIFY
determines which program the user wishes to execute under TMS and
brings it into main storage if there is enough space. This routine
first issues the message:
TES104A- SPECIFY PROGRAM
to the user terminal and then reads the response. When a response
is received, a check is made first to see whether the initial 6
characters of the response equal the word LOGOUT. If so, a branch
is taken to location LOGOUT, where the message:
TMS105I- nnnn LOGGED OUT
is sent to the user terminal with the user name replacing nnnn.
The area FBNAME is then restored to blanks, and a branch is made to
LOGIN to invite log-in by the next user. If the response is not the
word LOGOUT, the first eight characters of the response are assumed
to reprebent the name of a program in the TMS library. As in the
log-in routine, the last character of the response message is changed
from EOT to blank in order not to interfere with comparisons. The
pointer to the program name in register 1 (RP1) is also copied into
register 0 (RPO) to save it. The address of the TMSPLOAD module is
then found from the communication region, and a subroutine call is
made to this routine. Upon return from this routine, the completion
code may have one of four values. A completion code of zero indicates
a successful load of the program. Brandhes are made to the code
labeled ENTER. ENTER moves the program name in the reply buffer to
the double word FBPNAME to be used later in deleting the program, and
then it enters the program as a normal subroutine call. A return
code of four from the program load routine means there is not enough
main storage to complete the load; in this case a branch is taken to

-96-

NOCORE where the message:
TMS109I- NOT ENOUGH CORE TO LOAD PROGRAM
is sent to the user terminal, and a branch is taken to SPECIFY to
invite the user either to respond with the name of another program
or to log-out. A completion code of eight upon return from the
program load routine indicates that a specified load module could

not be found in the lfbrary. A branch is taken to the code labeled
NOMODULF: where the message:
TMS107I- PROGRAM NOT FOUND
is sent to the user terminal, and a branch is made either to
SPECIFY to invite another try to spell the program name properly
or to load another program. A completion code of twelve upcm
return from the program load routine means that a program with the
specified name was already found in main storage but was found not
to be a re-enterable module. In this case-a branch is taken to
the code labeled NONRENT, where the message:
TMS108I- PROGRAM NOT RE-ENTERABLE AND ALREADY IN USE. WAIT OR TRY
ANOTHER
is sent to the user terminal, and a branch is made to SPECIFY
to allow the user to try another program or log-out. If there is
a completion code of 16 from the program load routine, there is a
severe input/output error in attempting to load the program. A
branch is taken to the code labeled IOERROR, which consists of a
halfword of binary zeros. This will force an immediate program
check and abnormal termination with a dump.

As mentioned previously, in the normal sequence of events the
program is located successfully and loaded into storage, and a
subroutine call is made to the program from the TMSPJOB module.
Normal termination of the user program consists of a standard
subroutine return via a register 14 (RR). A normal return via the
TMSPURGE module is a return to a point 4 bytes past the point
indicated by the contents of register 14. In TMSPJOB, the two
full words immediately following the BALR used to enter the
applications program consist of a branch instruction to the code
labeled NORMAL followed by a branch instruction to the code labeled
PURGED. The code labeled NORMAL checks the pointers FBBLKCHN
and FBDCBCHN to see that all storage Obtained by the application
program has been released and all DCBs opened by the application
program have been closed. If either or both of these criteria are
not met, a branch is made to the code at PURGE which executes a
subroutine call to TMSPURGE with a value of 4 in the error index
parameter supplied in register 1. Control then drops through to
the code with the label PURGED. If the above criteria have been
met, control passes on to code which writes the message:
TMS106I- NORMAL EXIT FROM USER PROGRAM
on the user terminal. Control continues on to code labeled DELETE,
which issues a DELETE EPLOC macro instruction with the contents of
FBPNAME as parameter, thus deleting the application program and
and removing it from main storage if necessary. This delete

95

operation is followed by both the clearing of FBPNAME to blanks
and a branch to SPECIFY to ask the user to either specify a new
program or log-out.

There are two ways the TMSPJOB detects that some form of
error has occurred during operation of the application program.
The first is the return to TMSPJOB from TMSPURGE by an offset of

bytes from the normal return point. The other is a ncrmal
subroutine return fran the TMSPURGE routine that was directly
invoked by TMSPJOB at location PURGE. In either case control
errentually passes to the code labeled PURGED, which issues the
message:
TMS110I- ABNORMAL RhTURN FROM USER PROGRAM VIA PURGE ROUTINE
and takes a direct branch to th .=. code labeled DELETE to delete
the program that had been loaded.

4.11 TMSPLOAD Module

The function of the TMSPLOAD module is to load a user program
at the request of another TMS module. TMSPLOAD begins by storing
the calling module's registers in the FBSAVE area and setting
the TMSPOLOAD entry flag on. The name of the program to be loaded,
which is pointed to by register 1 (RP1), is then stored into the
BLDL list. TMSPLOAD then checks to see if sufficient core is
available for the BLDL routine (4o6 bytes). If core is not avail-
able, control is returned to the calling routine with a completion
code of 4 in register le (RC). Otherwise, the BLDL (5VC8) is
issued, and the load list is built. If the BLDL returns with a
completion code of 8, control is returned to the calling module with
a completion code of 16 in register 15. This indicates that a
permanent I/0 error was detected during the directory search.
If the BLDL returns with a completion code of 4, control is
returned to the calling module with a completion code of 8 in
register 15. This indicates that the requested module could not
be found. If the BLDL returns with a completion code of 0,
TMSPLOAD searches the FBCHAIN for an already-loaded copy of the
program. If it finds a copy loaded, and the program is flagged
not re-enterable, control is returned to the calling module
with a completion code of 12. This indicates that the load request
was for a not re-enterable module that was already loaded. If
TMSPLOAD finds a copy of the program loaded, and the program is
flagged re-enterable, the program is loaded via the load SVC (SVC8),
which merely bumps the use count by one. The entry point of the
loaded module is then stored in the FBSAVE area for the terminal
requesting the load, and control is returned to the calling module
with a completion code of zero.

If no copy of the requested program is found in the FBCHAIN,
TMSPLOAD checks to see if sufficient core is available to load
a copy of the requested program plus the forty (40) bytes required

96

for the associated_ request block.- If core is not available, control._
is returned to the calli-ng module with a completion code or 4.

Otherwise, the program Is loaded via the load ET: Caw 8% the entry.-
point is atored in the FBSAVE area, And control Ls returned to the
calling module with a return 'coda of zero.

4.12 TMSPURGE Module

The function of TMSPURGE is to delete a user pragra= currently
running on one of the terminals, free all storage gi_ken by the

user program and close all files opened by it. Since control will
not be returned to the user after TMSPURGE, the user's registers

are not saved. Upon entry, the TMSPURGE entry flag is set on.
Next the pointer to the message indicating the reason for entering

PURGE is set up using the offset received in register 1. The save

area chain is then traced to the highest save area, and the registers
are restored to their condition prior to entering the program being
purged.

PURGE then begins closing all attached DCB's by following the
DCB chain (FBDCBCHN) located in the FB and entering TMSPCLOS with
all of the DCB addresses on the chain. The end of the DCB chain
is indicated when FBDCBCHN equals zero. When all DCB's are closed,
PURGE begins freeing all attached storage areas obtained by
TMSGETM by following the storage chain (FBBLKCHN) located in the
FB.

When all attached DCB's are closed and all attached storage is
freed, the error message indicating the reason for entry to PURGE
is displayed. This is followed both by computing the relative
address of the error detected and by displaying the error location
message. Finally, control is given to TMSPJOB with an offset of
four from the normal return point to PJOB. This results in
deleting the user program and displaying the abnormal return from
user program via PURGE routine message, followed by the request to
specify program.

The messages issued by TMSPURGE are as follows:

TMS150I - PROGRAM ENDED WITH STORAGE OR DATA SET STILL ATTACHED.

TMS151I - INSUFFICIENT MAIN STORAGE LEFT TO SATISFY TMSGETM REQUEST

TMS152I - TMSFREEM REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS

TM5153I - ATTEMPT TO OPEN AN UNAVAILABLE/UNCATALOGED DATA SET

.TMS154I - INSUFFICIENT MAIN STORAGE LEFT TO COMPLETE OPEN OF A DATA SET

TM5155I - DISASTROUS ERROR IN TMSOPEN

TMS156I TMSCLOSE REQUEST DOES NOT SPECIFY LEGITIMATE ADDRESS

TMS157I - END O DATA DETECTED WITH NO EODAD SPECIFIED

97-
-99-

TMS15SI - b,LILCIE=US ;_-hROE Dhiff"IED WITH NO SYNAD SPECI=ED

731591 - IESILef_CI-R11 CORE LEF1- OR DEBUGGING

rirf160I - E.HROR DE-IT-TED IN TNS- qb.E1Li 1JURGED W1TR SNAP

- ERROR D1-21-TEL IN TMS_ US= PURG-0), SNAP UNSUCCESSFUL

: 17162I - ERROR DET=TEE IN PROGRi-q. USER PURGED.

TM=DOI - ERROR OCCURRED .AT RELATIVE LOCATION =wax
TMSTREND Modulf,

The TMSTRE= module has two entry points. The main entry
point -is TMSTREND, which is used for entry into the program from
TMSWAII when an inpun-output operation for the communication line
is com721ete. The second_ entry point, TMSCHEND, is a simple BR
return through registarl5 (RR), and is nct called by any other
TME module.

Since control is passed only to and from other TMS modules,
t rae user's registers are not saved on entry. TMSTREND assumes
that on entry register 1 (RP1) points to the DECB for the communi-
cation line, and after establishing permanent addressability,
establishes addressability for the DECB and corresponding DCB for
the line, the and the C.

After initialization of the appropriate base registers, the
DECB is checked to see which operation was in progress so that
either the address of the polling characters may be found for a
read, or the addressing characters may be found for a write. In
either case, unless there is only cne terminal, a skip bit is
set in the current polling entry -nose address is found at
location DECPOLPT or DECADRPT in Ale DECB.

The next section of code, starting at location CEENTRY2
after the skip bit has been set, locates the FB for which the
operation is complete. This is done first by loading register
RWORK2 with the address of the terminal list from location DECT-
LIST in the DECB, and then subtracting it from register RWORK1,
which was previously loaded from either DECPOLPT or DECADRPT. The
result in RWORK1 is the offset to the terminal list entry, which
is compared to the offset specified at location FBTLOFF in the
current FB being processed. If equal, the proper FB has been found,
and a branch is taken to CEENTR4. If it is not the proper FB, a loop
is executed to follow the chain of FB's to the end, checking each
one. If no proper terminal offset is located, an ABEND is executed
with a user completion code of 777, and a code of 50 is placed
at location CRABCODE in the CR.

Once the FB has been located, the buffer address is loaded
into register RBUF from DECAREA and documented by four to point

to the buffer control word. Looaticn DEC-UFLAGS. is then tested to
find which operation was in progress, and a branch is taken to
either CEREAD or CEWITE for corresponding read or write operations.
If DECUFLAGS indicates either both or neither operation in progress,
a 51 or 52, respectfvely, is placed in CRABCODE, and ABEND is
issued.

The code at location CEREAD begins by checking that the flags
in the buffer control word indicate buffer-in.-use (BUFFINUS) and
buffer-waiting-for-input (EUFFVTIN) before proceeding. If these
flags are not set, a 53 is placea in CRABCODE, and an ABEND is
issued. Then location DECFLAGS is tested for negative response
(DECFNEGR) which indicates that channel end is due to polling
reset. If this flag is an, a branch is taken to CEREAD5; if this
flag is off, there is an incoming message. Register RBUF is then
incremented by four to point past the buffer control word to the
start of the message. The maximum length of the message is loaded
into RCM from DECLNGTH, and the residual count at DECCOUNT is
subtracted from it to find the actual length stored at FBLMLNTH
in the FB. This length then is used also to translate the incoming
message. If there are multiple terminals, the pointer to the mess-
age iS spaced over the header and the length adjusted by four.

At CEREAD3 the buffer address is stored in FBBUFPTR, and the
text offset is computed by a simple subtract and stored in
FBBUFOFF. The buffer flags indicating waiting for input are turned
off (BUFFWTIN), and buffer attached to FB (BUFFATFB) are turned on.
The DECUFLGS are reset to turn off read in progress (DECUFRIP) and
polling reset (DRCUtoPRS). The active polling count is reduced by
one if there is more than one terminal, and a positive acknowledge
is written to the sending terminal. A return is made to entry
point TMSDWAIT in the TMSWAIT module. If there are not several
terminals on the line, at location CEREADY, the completion code is
moved to location FBECB. Location DECSDECB then is set to zero,
and a return made to entry point TMSDWAIT.

If channel end is due to polling reset, control passes to
location CEREAD5 where flags at DECUFLGS are tested for read-in-
progress, waiting-to-write and polling-reset (DECUFRIP, DECUFWTW,
and DECUFPRS). The negative response flag, skip bit, read-in-
progress flag, and polling-reset flag are turned off, and the poll-
ing interrupted (DECUPIN) flag is turned on. The line ECB is zeroed,
and the operation type, buffer length, buffer address, terminal
polling list address, and relative line number are stored at
location DRCRSAVE to be available for later polling restart. The
dummy ECB in the CR is then set to indicate operation complete and
line available for write, and a return to TMSDWAIT is made.

If the operation tested at CEENTRY4 is a write, control passes
on to location CEWRITE. The type of operation flag at location
DECTYPE+1 is tested to see if the operation is a write positive

99

acknowledge. If it is, control_ pJ,Ises to CEWRITE7, where the
write in progress and ac37lowledge fla,72s are turned off. The
coupletion code is moved to locai=m FBECB, the line ECB is
zeroed, and a branch is taken to 2ZWEITE3. If the operation is
not a write positive ackmowlen=e, completion code is moved
to the FB =13, and the line EtB (TECEDECB) is zeroed. The buffer
pointers are reset and the -ruffer is filed with blanks. The write
in progress faag is reset ELIE, if a transmission error is being
processed, cantrol is passed o ED-0TEL1(to process as a positive
ackmowIedge. Cmherwise, at CEWRITE3 there is a test to see if a
write is queued fOr the line by marking location DECUFLGS with
DECUTWTW. If a write is queued, a return is made to TMSDWAIT.
If a write is not waiting, DECUFIGS is marked to test for polling
interrupt. If palling was interrupted, control moves to CEWRITE5.
If not, the active polling coumt (DECAPCNT) is tested for zero.
If there are no other reads in progress, a return is made to
TMETWAIT; otherwise, a return is made to the read polling restart
routine (TMSRDRST).

At CEWRITE5 the polling interrupt flag is turned off, and the
operation code, buffer length, buffer address, terminal polling
list address, and relative line nunber are restored to the data
event control block. The read-in-progress flag is set, and a
READ macro instruction is issued for the line. Control then
returns to TMSDWAIT.

If, at CEENTRY4, a transmission error is detected, control
passes to location CEERROR. If the error already is being
processed, and it is the second time through, control passes to
an ABEND macro instruction with a 58 placed at location CRABCODE.
The data event control block Channel status word status is tested
for channel end, device end, and unit check flags, and if not
present, control is passed to ABEND with a 59 in CRABCODE. The
data event control block first sense byte (DECSENSO) is tested for
timeout, lost data, or data check and, if any are indicated, a branch
is taken to CEERROR2. If none are indicated, control passes to
ABEND. At CEERROR1, the transmission error flag at location FBFLAGS
(k_BXMTERR) is set, and the read or write in progress flag and the
skip bit are turned off. The FB ECB is then posted complete with
the error, the line ECB is zeroed, and a return is made to TMSDWAIT
via CERETURN.

The return and location CERETURN is a simple load of a V-type
address constant specifying the entry point TMSDWAIT into register
RR, followed by a simple branch register on register RR.

4.14 TMSWAIT Module

The TMSWAIT module has two principal entry points. The
first entry point, TMSWAIT, is usea for entry into the module from
application prograns. A subsidiary entry point, TMSDWAIT, is
used as a direct entry into the wait module, bypassing certain

register saving and restoring conventions used in calls frcm
application programs. Depending on the status of the wait list,
this module may exit to an epplication program - the TNECNSL
module to process a message from the computer,operator, the
TMSCSIO module to initiate console input-output for a newly-freed
line, or the TMSTREND module to perform end-of-transmission
processing for a communication line which has just finis-led its
I/0 task.

On entry through entry point TMSWAIT from an application
program the contents of registers 14 (RR) through 12 (RB) are
stored temporarily in the save areas pointed to by register 13
(RS). The address of the RB is obtained from word zero of this
save area. Once FB addressability is established, the contents
of the registers which were saved upon entry are moved to the
corresponding FBSAVE. At this time the contents of register 13
are also saved in FBSAVE. Permanent addressability to the wait
module is established, and the CR address is loaded into register
10 (RCR) from FBCR. The code beginning at location ENQUEUE places
the ECB address supplied in register 1 (RP1) onto the end of the
wait list. This is done by loading the address of the last wait
list entry from location CRWLLAST into register FLAST, increment-
ing by 4, and using the resulting address to store the new ECB
address into the wait list. The contents of CRWLX, the wait list
offset, are added to RLAST to find the correspoiding area in the
wait list extension. The FB address is stored in this area. The code
beginning at location WAIT sets the end-of-wait-list indicator into the
high order byte of the current last word of the wait list. The pointer
to the wait list in area CRWL is put into register 1, and the WAITE
ECBLIST macro is issued to relinquish control of the computer if no
operation has been completed.

Either immediately or when one wait condition is satisfied,
control falls through the code labeled ENDWAIT. This begins to
search the wait list for the first completed event control block. The
first operation is to reset the end-of-wait-list indicator. The
console ECB address is then loaded into a register, and the setting
of the completion bit is tested. If this bit is on, a branch is taken
to location CONSOLE. The code at this area both loads the address of
the system save area (entry point TMSSYSSB in the TMSBEGIN module)
into register 13 (RS) and takes a standard entry into the TMSCNSL
module via the entry point of the same name.

If the console ECB is not yet complete, the queuing ECB is
tested. If the completion bit is set in this ECB, a branch is taken
to location FBQPROC. The code at this point employs repeated calls
to subroutine DEQUEUES both to find the first FB on the FBQ chain
waiting for newly-freed resource and to remove that FB from the Q.
chain. This is done as follows: the resource freed for use is
identified by a bit in location CRECB. When this bit is found set,
three masks are set up for the use of the dequeuing subroutine.

They are QFLAGCR for testing location CRQFLAGS, QFLAGFB for testing
location FBQFLAGS, and UFLAGDEC for testing location DECUFLAGS.
The subroutine DEQUEUES is linked to, using BRET as an internal
return register. Upon return from this subroutine, register RFB
is tested for non-zero. A non-zero return indicates a successful
dequeuing and a branch is taken to the appropriate routine. A
zero indicates that no FB was found to be queuad on the free
resource. In this case the corresponding flag is turned off in
CRECB, and a branch is taken to the next test. Two tests of the
FB queue chain are now implemented. The first is for a line now
free for a write operation. If the FB requiring this resource is
found, a branch is taken to the entry point TMSWRDEQ in the
TMSCSIO module to initiate writing on the line. The other test
that is now made is for a line that is free for a read operation.
If an FB queued on this resource is found, a branch is taken to
the TMSRDRST entry point of the TMSCSIO module to initiate a poll
restart. In the event that any of the preceding tests do not
succeed, there is an error condition, and the first byte of
location CRECB is cleared to all zeros. A branch then is taken
back to location WAIT to continue processing the wait list.

After the special processing of the first two ECB addresses,
the remainder of the wait list is searched for the first ECB with
these completion bit sets by means of a simple loop. The comple-
tion bit is set on for at least one ECB, since failure for this
being done would indicate a gross error on the part of the operat-
ing system. Therefore, whenever further wait list processing is
to be done, and if it is not certain that there are any further
ECBs with completion bit set, return should be made to location
WAIT for a further reissuing of the WAIT macro to 0/S. When the
first completed ECB is found, it is necessary.to determine whether
this ECB represents a physical communication line or a logical
terminal. This is done by checking the first byte of the corres-
ponding fullword in the wait list extension for a bit pattern
consisting of all one bits. If this pattern is found, the ECB
in question represents a communication line, and entry is made to
the TMSTREND entry module via the entry point of the same name to
process the end-of-transmission condition. If this special bit
pattern is not found, a branch is taken to code at location DEQUEUE,
which loads the address of the corresponding FB into RFB from the
wait list extension. If necessary, all ECB addresses in the wait
list and their corresponding FB addresses in the wait list exten-
sion are moved up to fill the space vacated by removel of the ECB
and FB addresses from the wait list. Following this, register
RLAST is decremented by 4 to reflect the shortening of the wait
list. Finally, the contents of all registers are reloaded from the
proper FBSAVE, and the return to the application program is taken
through register 14 (RR).

The entry point TMSDWAIT is used for entry into the wait
routine from other elements of the monitor system. Its principal

104
-1014-

purpose is to avoid the saving of registers in FBSAVE, since
entry is not from an application program. After setting up a
base register pointing to the beginning of the TMSWAIT module
in establishing permanent addressability, the code for this entry
point loads register RLAST from location CRWLLAST and branches

directly to the code at location WAIT. Upon entry to the wait
module via this entry point, register 10 always will point to

the CR.

103

5. DETAILED MACRO DESCRIPTIONS

5.1 FORMFB Macro

The FORMFB macro employs three global variables. The arith-
metic variables, &FBNO and &TERMNO, are used to maintain a running
count of the number of FB's and terminals that have already been
defined by previous invocations of FORMFB. Proper usage of these
two variables depends upon an uninitialized arithmetic gldbal
variable having value 0 when first used. The global character
variable &PREVFB is used to contain the name of the last function
block generated by the most recent previous invocation of FORMFB.
A test is made to see if this name is null, the initial value of a
global character variable. If it is, it is set to the character
"0", so that when it is employed in an A-type address constant,
the proper result will be obtained.

The first operations in the macro-expansion are to identify
the type of terminal being employed and to set certain parameters
to be used in the remainder of the expansion. The types currently
recognized are: 1) M35D: a model 35 teletypewriter attached via
a direct link; 2) 2740B: an IBM 2740 basic terminal; and 3) S720W:
a Sanders 720 CRT terminal with horizontal screen and the special
extra-width option. The local variables that are dependent upon
the terminal type are: &DECTTYP, a local arithmetic variable used
in setting byte type flags; &DECCPNL, a local arithmetic variable
representing the number of -characters per second of carriage travel
during carriage return; &DECMAXL, a local arithmetic variable repres-
enting the maximum number of lines per page for page-oriented de-
vices; &DECCPLN, a local arithmetic variable representing the
maximum number of characters per line Por the device; and &LISTTYP,
a local character variable representing the form of polling list,
to be expanded later in the macro.

A standard Data Event Control Block (DECB) is generated by a
list-type READ macro instruction, and a TMS-dependent portion
is generated by a series of DC instructions. The Data Control Block
(DCB) is generated by using the standard 0/S DCB macro instruction;
the BTAM ine Error Control Block (LERB) is generated by using the
standard 0/S BRAM LERB macro instruction; the terminal polling
list is generated by using the standard 0/S BTAM DFTRMLST macro
instruction; and the list of polling/addressing characters is supplied
by the LIST keyword operand. Following these tables, the buffers for
this Ji0e are generated. One buffer is generated for every FB.
The buff.:Hrs are linked together, and a pointer to the head of the
link is placed in DCBBUFCB. The length of the buffers is determined
by the BUFLGTH keyword operand, whose default value is 256. Exit
from the FORMFB macro is made with the global variables properly
modified for use in a future invocation of FORMFB.

104

5.2 TABLES Macro

The TABLES macro instruction is a Sanders-supplied macro which
causes generation of an EBDCIC to ASCII-8 translate table and/or
the generation of an ASCII-8 to EBCDIC translate table. These tables
are used for translating messages sent to and received from Sanders
displays.

Name 1 Operation

TABLES EBCASC=namel [,ASCEBC=name21
ASCEBC=name2 [,E.BCASC=namell

name 1
Is any symbol valid in the Assembler Language. It will be

generated as the name of 256-byte EBCDIC to ASCII-8 translate table.

name 2
Is any symbol valid in the Assembler Language. It will be

generated as the name of the 256-byte ASCII-8 to EBCDIC translate
table.

The macro instruction first checks to see if both parameters
are omitted. If they are, the resulting mnote is 'TABLES NOT
GENERATED, PARAMETERS MISSING'. If one or both parameters are
present, the macro checks for the absence of the EBCASC parameter.
If the EBCASC parameter is absent, the mnote 'EBCDIC TO ASCII-8
TRANSLATE TABLE NOT GENERATED' is printed. Otherwise, the EBCDIC
to ASCII-8 translate table is generated. The macro then checks
for the absence of the ASCEBC parameter. If this parameter is
absent, the mnote 'ASCII-8 TO EBCDIC TRANSLATE TABLE NOT GENERATED'
is printed. Otherwise, the ASCII-8 to ABCDIC translate table is
generated.

The translate tables which are generated are as follows in
Fig. 5

5.3 TMSCLOSE Macro

The TMSCLOSE macro first checks for the existence of its
single parameter. It then tests for both a leading left and trail-
ing right parenthesis. If it finds these, a register designator
is assumed. If this register designator is some standard represen-
tation of register 1, the macro proceeds directly to the generation
of the linkage code at sequence symbol ".LINK", since the register
specified is the register in which the parameters are to be passed.
If a register other than register 1 is specified, the macro
generates an LR instruction to bring the contents of that register
into register 1. If the operand is not a register specification
it is assumed to be the symbolic address of a fullword in storage
containing the DCB address. An L instruction is generated to bring
this.address into register 1. Finally, the TMBLINK macro is used

j105
-108_

FIG. 5
TRANSLATE TABLES

* EBCDIC TO ASCII-8 TRANSLATE TABLE
0 1 2 3 4 5 6 7 8 9ABCDEF

DC X'00010203040000000800000000000000' 0
DC X'001112000000000018190000001D0000' 1
DC X'00000000000000000000000000000000' 2
DC X'00000000000000000000000000000000' 3
DC X'40000000000000000000094E5C484BOB' 4
DC X'460000000000000000004144L4A495BOD' 5
DC X'4D4F00000000000000001C4C451B5E5F' 6
DC V430000000000000000005A0cA0475D42' 7
DC X'00000000000000000000000000000000' 8
DC X'00000000000000000000000000000000' 9
DC V00000000000000000000000000000000 A
DC X'E1E2E3E4E5E6E7E8E9EAEBBBBCBDBEBF' B
DC X'00A1A2A3A4A5A6A7A8A9000000000000' C
DC X'00AAABACADAEAFBOB1B2000000000000' D
DC X'0000B3B4B5B6B7B8B9BA000000000000' E
DC X'50515253545556575859000000000000' F

* ASCII-8 TO EBCDIC TRANSLATE TABLE
0 1 '2 3 4 5 6 7 8 9ABCDEF

DC X'0001020304000000084A004F7B5F0000' 0
DC X'0011120000000000181900606A1D0000' 1
DC X'00000000000000000000000000000000' 2
DC X'00000000000000000000000000000000' 3
DC X'405A7F7e536C507D4D5D5C4F6B604B61' 4
DC X'FOF1F2F3F4F5F6F7F8F97A5E4C7$6E6F' 5
DC X'00000000000000000000000000000000' 6
DC X'00000000000000000000000000000000' 7
DC X'00000000000000000000000000000000' 8
DC V00000000000000000000000000000000' 9
DC X'7CC1C2C3C4C5C6C7C8C9D1D2D3D4D5D6' A
DC X'D7D8D9E2E3E4E5E6E7E8E9BBBCBDBEBF' B
DC X'00000000000000000000000000000000' C
DC X'00000000000000000000000000000000' D
T,C X'00B0B1B2B3B4B5B6B7B8B9BA00000000' E
'DC X'00000000000000000000000000000000' F

to generate the code that finds the entry point into the monitor
for the close routine. The final instruction generated is a
BALR RR, RC.

5.4 TMSCSIO Macro

The TMSCSIO macro employs the global binary variable &TMSRFB
to find whether or not the problem programmer is maintaining the
FB pointer in register 11 (R9).

The principal work within this macro is the analyzing of
the keyword parameter OP and the generation of the bit settings
in the options byte. After initialization, the presence or absence
of the LENGTH operand is determined, and the corresponding bit is
set in the local arithmetic variable &OPCODE. The first OP sub-
parameter then is tested for one of the four allowable operations
(READ, WRITE, CLEAR, or REWRITE), and the corresponding bit is
set in &OPCODE. After this, a loop is entered to scan the
remaining sub-parameters. As each one is recognized, a correspond-
ing bit is set in &OPCODE, and special flag bits are set to prevent
the acceptance of a duplicate parameter. When all sub-parameters
have been exhausted, the code generation portion of the macro is
entered at sequence symbol ".GENER".

If the principal operation is a WRITE, the positional operand
representing the message is analyzed. If this operand consists
of a string of characters delimited by apostrophes, the entire
string is assembled in-line as the message text, preceded by a
halfWord message character count. A BAL instruction is generated
both to skip over the message and to put its address into register
(RP1). If the message parameter is determined to be a register
designator, an LR instruction is generated to move the address
into register 1. If the operand is a symbolic address, an LA
instruction is generated to load the message address into register
1. An improper or omitted message specification for a WRITE
operation causes a zero length message to be supplied along with
two level A error statements. The code is then generated to
locate the FB (if necessary), to clear the first byte of FBECB to
binary zeros, and to move a one-byte opcode into FBRWOP. For a
CLEAR operation, register 0 (RPO) is cleared to zero. For any
other operation, the LENGTH parameter, if present, is tested to
see whether it is a register specification or a symbolic address,
and either an LR or LA instruction is generated to load the length
into register 0 (RP0).

The TMSLINK macro is invoked to generate the code that finds
the entry point in the monitor of the console input/output routine
following this. If the user has specified both WAIT=DEFER and a
parameter for the keyword operand RET, code is generated both to
load the return address into register 14 (RR) and to branch to the
monitor via register 15 (RC). For all other cases a standard BALR

107

instruction is generated. Finally, if WAIT=DEFER is not specified,
the macro TMSWAIT is invoked with the proper OP and RET parameters.

5.5 TMSFREEM Macro

The TMSFREEM macro tests to see that its parameter both exists
and is a register designator. If both of these tests are passed,
the code is generated to clear register 0 (RPO) and to load register
1 (RP1) from the register specified. The TMSLINK macro is then
invoked to generate code that finds the entry point of the GETMAIN/
PEEEMAIN routine, and the usual BALR instruction is generated to
branch to it.

5.6 TMSGETM Macro

The TMSGETM macro first verifies the presence of its single
parameter and then determines --hether it is a register designator
or a symbolic expression. A suitable LR or LA instruction is
generated as needed. The macro TMSLINK is then invoked to generate
code that finds the entry point in the monitor of the GETMAIN/
FREEMAIN routine, and the usual BALR instruction is generated to
branch to it.

5.7 TMSLINK Macro

The TMSLINK macro employs the global binary variable &TMSRFB
to determine if the user program is maintaining the FB pointer
in register 11 (R9). It also employs the global character variable
&TMSRCR to indicate which register (if any) is being maintained
by the user program as a pointer to the CR.

The only parameter for TMSLINK is a name which corresponds
to one of the names defined in the Communication Region DSECT.
If the global character variable &TMSRCR indicates that a pointer
to the CR is being maintained, code is generated merely to load
the required entry point address into register 15 (RC) from the
CR. The macro is then exited. If the CR pointer is not being
maintained, the gldbal binary variable &TMSRFB is tested to see
if the FB pointer is being maintained in register 11. If it is,
code is generated both to obtain the CR pointer from the FB and
to place it in register 15 (RC), assuming that a COPY FB state-
ment has been encountered earlier in the assembly. Code is then
generated to establish addressability to the CR via a USING
statement, to load register 15 (RC) with the entry point address,
and then to cancel the effect of the USING statement with a DROP
statement.

In the event that neither the FB pointer nor the CR pointer
is being maintained by the user program, code is generated to load
the address of the FB into register 15 (RC) from the first word
of the area pointed to by register 13 (RS). Addressability to the

108

FB is then established followed by code to load the CR address
into register 15, followed again by code to load the entry point
address into register 15. Thus, regardless of which registers
are being maintained by the user program, code is generated to
insure that the requisite entry point address is left in register
15 by the time this macro exits.

5.8 TYBOPEN Macro

The TMSOPEN macro begins extensive checking of its operands
first by checking that the DSNAME operand exists and is less than
or equal to eight characters in length. It then sets various flags
based upon the RETURN, QUALIFY, and BUFFERS operands. At the
same time a special output flag is set to indicate to the remainder
of the macro whether WRITE operations will be acceptable for this
data set. The FOR operand is then analyzed and four single-bit
flags are set in patterns corresponding to their use in the standard
0/S OPEN macro. The options recognized are INPUT, OUTPUT, UPDAT,
INOUT, and OUTIN.

The DSORG operand is then tested in a manner similar to its
analysis in expanding the 0/S DCB macro instruction. It must
both exist and be two or three characters in length. The first
two characters are isolated and tested to see if they are either
one of the four allowable TMS coMbinations or one of four further
combinations, one of several single bit flags is set. These
single bit flags will be used later to assemble the halfWord
PDSORG field in the expanded parameter list produced by the macro.

As with DSORG, the MACRF operand has a set of permissable
values which itself is a sub-set of values permissable in the 0/S
DCB macro instruction. The analysis of this operand also is based
upon the methodology used in the DCB macro. Since the MACRF
operand may have several sub-parameters, an outer analysis loop
is set up to analyze each sub-parameter at a time. The first
character of each sub-parameter is isolated within this loop; this
initial letter may have one of six values, only five of which are
valid in TMS. If the initial letter is an E for EXCP, 20 bit
flags are immediately set to a predetermined coMbination, and the
MACRF operand analysis is finished. If the initial letter is P
for PUT, the loop is exited without setting any flags for this
particular sub-operand. If the initial character is R for READ
or W for WRITE, the analysis continues by setting up an inner
loop to analyze these remaining characters in the sub-operand
considered to be qualifiers of the initial character. Each
qualifier is isolated in turn and analyzed to see if it is one
of the valid letters. If it is a valid letter, the settings of
relevant DSORG flags are checked to see if the conbination of the
qualifier and the data set organization represents a valid
specification. If it is valid, the proper bit flags are set, and
the inner loop is repeated until all qualifiers have been eXhausted.
At this time the outer loop is repeated if any sub-operands remain.

le9
-112-

If analysis has been completed on all NACRF sub-operands, a
particular bit pattern has been established in 20 bit flags.

The third operand with a direct analog in the 0/S DCB

macro is the OPTCD operand. As before, the analysis of this
operand is a sub-set of the analysis used in the DCB macro. Each
character of the operand is analyzed to see if it is one of

several acceptable letters. If an acceptable letter if found, the
bit flags set for DSORG are checked to see that the combination
of the letter and the data set organization is a valid specifica-

tion. For each valid combination, one of eight bit flags is set.

The code generation portion for the macro begins, if

necessary, with a BAL instruction branching around the in-line
parameter list and loading the address of the parameter list into

register 1 (RP1). The nine DSORG bit flags, followed by three
binary zeros, followed by the four open option flags are assembled

into a halfword binary bit pattern, and the corresponding DC

instruction is generated. Following this, another halfword binary
bit pattern, consisting of the first 16 MACRF flags, is assembled,

and a second DC is generated. The eight OPTCD binary bit flags next
are assembled into a single byte DC. The DC for an A-type address
constant of length three containing the address specified as the
SYNAD operand follows. At this point in the generation, if EXCP
processing with appendages has been specified, the six DC instruc-
tions for character constants, each of length two, are assetbled
to represent the various appendage specifications. Following either
of these appendage parameters, or the EODAD address if the appendage
specifications are not present, comes the DC for a binary halfword
count of the number of characters in the DSNAME operand. This is
followed by the DC for a variable length field containing the
EBDCIC character representation of the DSNAME operand. At this
point in the generation, a direct branch is taken to the linkage
generation portion of the macro, which is sequence symbol ".LINK".

Immediately following the above code comes the analysis of
the second operand of the MF operand when it is specified for an
execute form macro instruction. Verified as present, this second
sub-operand is tested to see whether it is a register designator
or a symbolic address. For a register designator, the proper LR
instruction is generated to bring the parameter list address into
register 1 (RP1); for a symbolic address an LA instruction is
generated for the same purpose. The final portion of the genera-
tion is the linkage to the monitor system OPEN routine. The
macro TMSLINK is invoked to generate the code that will place the
entry point of the TMSOPEN routine in register 15 (RC). The final
instruction generated for standard or execute form macro expansions
is the usual BALR instruction.

5.9 TMSRETN Macro

The TMSRETN macro employs a gldbal dharacter variable &TMSRMSA

to determine whether the save area produced by the corresponding
TMSSAVE macro was local, remote, or not supplied at all.

If the gldbal variable indicates that the save area dbtained
was a remote save area, code is generated to place the current
save address into register 1 (RP1), obtain the address of the
previous save area from the second fullword of the current save
area, put it in register 13 (RS), and invoke the TMSFREEM macro
to free the core dbtained for the remote save area. Control then
passes to the common coding at the sequence symbol ".RESTORE".
If it is determined that the save area involved is a local save
area, the only unique code generated is that to dbtain the address
of the previous save area. If no save area at all is generated,
control immediately passes to the common coding. The common
coding generates code to zero the downward save area pointer in
the third fulIword of the previous save area, restore registers
14 (RR) through 12 (RB) from the previous save area, and return
to the calling program via register 14 (RR).

5.10 TMSSAVE Macro

The TMSSAVE macro sets the gldbal binary variable &TMSRFB
to indicate to future macro instructions whether or not the problem
programmer will maintain register 11 (R9) as a pointer to the FB.
It sets the global character variable &TMSRMSA to show whether
the save area dbtained is a local save area, a remote save area,
or non-existant. It sets the gldbal character variable &TMSRCR to
indicate Which register, if any, the problem programmer guarantees
to point to the CR. All three of these gldbal variables play an
important part in the expansion of most of the remaining macro
instructions in the program.

The first operation performed by the expansion of TMSSAVE is
a test on the parameter of the SAINCR keyword operand to see if
it exceeds 4023 bytes. The purpose of this test is to issue a
warning message if the increment plus the 72 byte save area exceeds
4095 bytes, thus indicating a possible requirement for an additional
base register or registers. Following this test, code is generated
to define the CSECT, to save the registers in the save area point-
ed to by register 13 (RS) by means of a STM instruction., to
establish the permanent base register by means of an IP, :nstruction,
and to issue the USING instruction for the main base register. If
RFB=NONE is not coded, the global binary variable &TMSRFB is set
to indicate that the FB pointer will be maintained. The USING
instruction for the FB pointer then is generated. If a register
has been specified to act as the CR pointer, the specification is
stored in the gldbal character variable &TMSRCR and, if necessary,
an LR instruction to load the CR pointer register from register 10
(R8) is issued. A USING instruction for the CR pointer follows
the LR instruction.

The remainder of the macro dbtains a save area if one is

required. The gldbal dharacter variable &TMSRMSA is set to the
letter "N" as a default, and if SA:=NONE has been coded, the macro
is exited at this point. If SA=REMOTE, the default option, has
been coded, &TMSRMSA is set to the letter "R", and one of two
sequences of code is generated. If the sum of 72 and the value
specified for SAINCR is less than or equal to 4095, the TMSGETM
macro instruction is invoked with LV specified as a symbolic
expression. However, when the amount of core to be dbtained is
greater than 4095 bytes, a halfword constant -Is generated in-
line along with code to branch around this constant, load it into
register 0 (RPO), and invoke the macro instruction TMSGETM LV=
(RP0). Regardless of which form of code has been generated to
obtain the remote save area, code is now generated both to clear
the first 72 bytes of the save area and to load the pointer to
the new save area into the register specified by the keyword
operand RWORK. The macro then branches to the sequence sytbol
".CHAINSA". If SA=LOCAL has been specified, &TMSRMSA is set to
the letter "L" and an 18-fullword save area is generated in-line
with code both to branch around it and put its address into the
register specified in the keyword operand RWORK. For both local
and remote save areas, code is then generated to move the FB
pointer from the first word of the old save area to the first
word of the new save area and to link the two save areas in
standard 0/S fashion, using the register specified by the keyword
operand RWORK as a work register.

5.11 TMSWAIT Macro

The TMSWAIT macro uses the gldbal binary variable &TMSBFB to
determine whether or not the problem programmer is maintaining
register 11 (R9) as a pointer to the FB.

The macro first tests for the special case where ECB=FBECB
has been coded and the FB pointer is not being maintained by the
problem programmer. If both these conditions exist, code is
generated to obtain the FB pointer from the first word of the
uurrent save area and establish addressability to the FB by means
of a USING instruction. An LA instruction to load register 1
(RP1) with the ECB address is then generated, followed by a DROP
instruction to terminate FB addressability. If this special case
does not exist, the only instruction generated is the LA instruc-
tion to load register 1 with the ECB address.

The TMSLINK macro is invoked to generate the necessary code
to locate the WAIT routine entry point in the monitor. If a
return address has been supplied by use of the RET keyword operand,
and OP=READ has not been coded, an LA instruction is generated to
load register 14 (RR) with the return address, followed by a BR
instruction to branch to the WATT routine's entry point. In all
other cases, the usual BALR instruction is generated. If OP=READ
has not been coded, the macro is exited at this point. If it has,
an SR instruction is generated to clear register 1. If the problem
programmer is maintaining the FB pointer, code is generated both

112
-115-

to calculate the start of text and length of text in the buffer and
to leave these in the proper registers. This code consists of an
IC instruction to place the text offset from FBBUFOFF into register
1; an L instruction followed by an N instruction to obtain the
buffer address from FBBUFPTR and leave it in register 0; an AR
instliction to add the buffer address in register 0 to the offset
in register 1, leaving the resulting pointer to the start of text
in register 1; and an LH instruction to put the length of text from
FBLMINTH into register O. If the problem programmer is not main-
taining the FB pointer in register 11, the same code is generated
first, preceded by both an L instruction and a USING instruction
to obtain the FB address and to establish addressability, and then
followed by a DROP instruction to end addressability.

APPENDICES

11,4
-117-

APPENDIX 1: TNE MODULE NAMES AND ENTRY POINTS

MODULE ENTRY POINTS

TMSHSKP TMSHSKP

TMSBLOCK TMSBLOCK
TMSBLGTH
TMSLSTFB

TMSPJOB TMSPJOB

TMSPLOAD TMSPLOAD

TMSBEGIN TMSBEGIN
TMSCRADR
TMSSYSSV

TMSCNSL TMSCNSL
TMSREADY

TMSCSIO TMSCSIO
TMSWRDEQ
TMSRDRST
TMSCSIOR

TMSWAIT TNSWAIT
TMSDWAIT
TMSQWAIT

TMSTREND TMSTREND
TMSCHEND

TMSGMFM TMSGMFM

TMSOPEN TMSOPEN

TMSCLOSE TMSCLOSE
TNSPCLOS

TMSPURGE TMSPURGE

TMSGTSLE TMSGTSLE

TMSDEBUG TMSDEBUG

OFFSET

APPENDIX 2A: COMMUNICATION REGION__'CR'

The general communication region is located in the
resident monitor code. A pointer to it is located
in each function block as 'FBCR'.

Aligned on Fullword Boundary

000000 CR Dsect

000000 CRWAIT DS
000004 CRCSIO DS
000008 CRPURGE DS
00000C CRLOAD DS
000010 CRGMFM DS
000014 CRSNAP DS
000018 CROPEN DS
00001C CRCLOSE DS
000020 CRWL DS
000024 CRWLLAST DS
000028 CRECB DS

*
CRWRITE EQU
CRERPOLL EQU
*

00002C CRIND DS
*

CRCEERR EQU
*

00002D CRABCODE DS
00002E CRWLX DS
000030 CRLIBDCE DS
000034 CRSNPDCB DS
000038 CRLOGDCB DS
00003C CRFBCHN DS
000040 CRQFLAGS DS

*

CRQEND EQU
CRQWRITE EQU
CRQRPOLL EQU
CRQSNAP EQU
CRQPLOAD EQU
*

000040 CRQUEUE DS
000044 CRPICA DS
000048 CRGISLE DS
000050 CREND DS

CRTFEGTH FQU
COPY

A Address of EP 'TMSWAIT'
A Address of EP 'TMSCSIO'
A Address of EP 'TMSPURGE°
A Address of EP 'TMSPLOAD'
A Address of EP 'TMSGMFM'
A Address of EP 'TMSSNAP'
A Address of EP 'TMSOPEN'
A Address of EP 'TMSCLOSE'
A Pointer to WAIT List
A Pointer to Current Last Entry
A CR Dummy ECB

X'20' Line Newly Available for WRI1h
X'10' Line Available for Poll RESTART

XL1 CR Indicators

X'80' Error in Channel End Routine

XL1 Abnormal End Code
H Offset to WAIT List Extension
A Address of Program Library DCB
A Address of Snap DCB
A Address of System Log DCB
A Start of FB Chain
OXL1 Current Needs of Queued FB's

X'80' No FB's Queued at This Time
X'40' 1 or More Queued for WRITE
X'20' 1 or More Queued for Poll RESTART
X'10' 1 or More Queued for SNAPSHOT
X'08' 1 or More Queued for Program LOAD

A PTR to Queue of FB's
F Save Area for PICA
A Address of EP 'TMSGTSLE'
OD End of Communication Region
CREND-CR Length of Communication Region
FB

116
-121-

cr FB TDECB

GENERAL COMMUNICATION REGION---'CR'

0 (0) CRWAIT
Address of EP 'TMSWAIT'

CRCSIO
Address of EP 'TMSCSIO'

14 ',4)

8 (8) CRPURGE
Address of EP 'TMSPURGE'

12(C) CRPLOAD
Address of EP 'TMSPLOAD'

16(10) CRGMFM
Address of EP 'TMSGMFM'

20(14) CRSNAP
Address of EY 'TMSSNAP'

24(18) CROPEN
Address of EP 'TMSOPEN'

28(1C) CRCLOSE
Address of EP 'TMSCLOSE'

32(20) CRWL
Address of WAIT List

36(24) CRWLLAS7
Address of Last Entry

40(28) CRECB
Communication Region Event Control Block

44(2C) CRIND
CR Indicators

45 CRABCODE
Abnormal End Code

46(2E) CRWLX
Offset to WAIT List Extension

48(30) CRLIBDCB
Address of Program Library DCB

52(34) CRSNPDCB
Address of Snap DCB

56(38) CRLOGDCB
Address of System Log DCB

60(30) CRFBCHN
Start of FB Chain

64(40) GRQFLAGS
Queued FB Needs

65(41) CRQUEUE
PTR to Queue of FB's

68(44) CRPIE
Save Area for PIE

72(48) CRGTSLE
Address of EP 'TMSGTSLE'

117
-122-

OFFSET
BYLES &
ALIGNMENT

GENERAL COMMUNICATIONS REGION--'CR'

FIELD HEX.
NAME DIG. FIELD DESCRIPTION, CONTENTS, MEANING

o (0) 4 CRWAIT Address of Entry Point for TMSWAIT Module

4 (4) 4 CRCSIO Address of Entry Point for TMSCSIO Module

8 (8) 4 CRPURGE Address of Entry Point for TMSPURGE Module

12 (C) 4 CRPLOAD Address of Entry Point for TMSPLOAD Module

16 (10) 4 CRGMFM Address of Entry Point for TMSGMFM Module

20 (14) 4 CRSNAP Address of Entry Point for TMSSNAP Module

(not used at this time)

24 (18) 4 CROPEN Address of Entry Point for TMSOPEN Module

28 (1C) 4 CRCLOSE Address of Entry Point for TMSCLOSE Module

32 (20) 4 CRWL Address of the WAIT List

36 (2)) 4 CRWLLAST Address of the Last Current Entry on WAIT List

4o (28) 4 CRECB

xx.. xxxx

Communication Region Dummy Event Control Block

(Reserved Bits)
Line Newly Available for WRITE
Line Available for Polling RESTART

44 (2c) 1 CRIND CR Indicators

.xxx xxxx (Reserved Bits)
1... Error in Channel End Routine

45 (2D) . 1 CRABCODE Abnormal End Code

28 Unsuccessful Polling Halt

29 Buffer Unavailable for WRITE Initialization

2A Start of WRITE Unsuccessful (CSIO)

2B Buffer Unavailable for Input

2C Error in Channel was not Timeout, Lost Data,

or Data Check

2D RESTART Parameter Set Already Exists (CSIO)

32 Invalid Terminal List Offset

33 Both READ and WRITE Operations Specified

34 Neither READ or WRITE Operations Specified

35 Invalid Buffer Flags at READ Completion

37 Active Polling Count Invalid at READ

Completion

118
-123-

OFFSET

46 (2E)

48 (30)

52 (34)

56 (38)

60 (3c)

64 (4o)

65

68

72

GENERAL COMMUNICATIONS REGION -- 'CR'

BYTES & FIELD
ALIGNMENT NANE

HEX.
DIG. FIELD DESCRIPTION, CONTENTS, MEANING

38

39

3A

Improper Flags in DECUFLGS Field of TDECB

Improper Buffer Flags at End of WRITE

Channel Error Processing for CE, DE, UC

Redundant

3B Error is not Channel End, Device End, Unit

Check

3C RESTART Parameter Set Already Exists (TREND)

3D Start of WRITE Unsuccessful (TREND)

3E Start of READ Unsuccessful (TREND)

FF I/0 Error Recovery Failure

2 CRWLX Offset to WAIT List Extension

4 CRLIBDO8 Address of Program Library DCB

4 CRSNPDCB Address of Snap DCB

4 CRLOGDCB Address of System Log DCB

4 CRFBCHN Start of FB Chain

1 CRQFLAGS Current

.xxx (Reserved Bits)

()-1)

(44)

(48)

.

4

4

1 CRQUEUE

CRPIE

CRGTSLE

No. FB's Queued at This Time
1 or More Queued for WRITE
1 or More Queued for Polling RESTART
1 or More Queued for Snapshot
1 or More Queued for Program Load

Address of Queue of FB's

Save Area for PIE

Address of Entry Point for TMSGTSLE Module

OFFSET

APPENDIX 2B: FUNCTION BLOCK--'FB'

The function control block exists for each operating
terminal and contains control information, work areas,
etc.
Aligned on Fullword Boundary

000000 kE DSECT

000000 kESAVE DS 16F Special Function Save Area
000040 FBECB DS F Event Control Block
000044 FBFDLAGS DS OXL1 FB Flags

*

_E.BXNIERR EQU X'80' Transmission Error
FBDSCNCT EQU xt4ot Disconnect
FBDEBUG EQU X'20' Debugging on Terminal
*

000044 FBCB DS A
00004B FBEFLAG DS OXL1

*

FBEPJOB EQU X'01' Last Entry Thru PJOB
FBEPJOBP EQU X'02' Last Entry Thru Purged in PJOB
FBEPLOAD EQU X'03' Last Entry Thru PLOAD
FBECNSL EQU vo4, Last Entry Thru CNSL
kBEREADY EQU X'05' Last Entry Thru READY
FBECSIO EQU x'o6, Last Entry Thru CSIO
FBEWRDEQ EQU X'07' Last Entry Thru WRDEQ
FBERDRST 2QU x'08, Last Entry Thru RDRST
FEL -SIOR EQU X'09' Last Entry Thru CSIOR
10BEWAIT F;QTT X'10' Last Entry Thru WAIT
FBEDWAIT EQU X'11' Last Entry Thru DWAIT
FBEQWAIT EQU X'12' Last Entry Thru QWAIT
EBETREND EQU X'13' Last Entry Thru TREND
FBEGMFM EQU X'14' Last Entry Thru GMFM
FBEOPEN EQU X'15' Last Entry Thru OPEN
FBECLOSE EQU X'16' Last Entry Thru CLOSE
FBEPCLOS EQU X'17' Last Entry Thru PCLOS
FBEPURGE EQU X'18' Last Entry Thru PURGE
FBEDEBUG EQU X'19' Last Entry Thru DEBUG
*

000048 FBCHAIN DS A Pognter to Next FB
cmoo4c FBRLN DS OXL1 Relative Line No. for This Line
amobx FBTCHAIN DS A Next FB Chained for This Line
000050 FBQFLAGS DS OXL1 Reason for Which F3 is Queued

*

FBQEND EQU X'80' Last FB on Queue
FBQWRITE EQU X'40 FE Queued for WRITE to Terminal
FBQRPOLL EQU X'20' FB Queued for READ Poll RESTART
FBQSNAP EQU X'1O' FB Queued for SNAPSHOT Routine
FBQPLOAD EQU vo80 FB Queued for New Program LOAD

Address of Communications Region

000050 FBQUEUE DS A

120
PTR to Next Queued FB

APPENDIX 2B (CONT.)

OFFSET
000054 FBBLKCHTT DS A Start of User Storage Block Chain
000058 FBDCBCHN DS A Start of User DCB Chain
00005C FBTLOFF DS H Terminal List Offset
00005E FBPOLL DS H Polling Characters for Console
000060 FBRWOP DS OXL1 READ/WRITE Opcode for Terminal

*

FBRWRIft EQU X'80' Bit to Indicate WRITE
FBRWPE EQU X'4O Bit to Indicate PRE-ERASE
FBRWCRAW EQU X'20' Bit to Indicate CR After WRITE
FBRWEDIT EQU X'08' Bit to Indicate Edit Before WRI1E
FBRWNLEW EQU X'04' Bit to Indicate NL Before WRITE
FBRWLREG EQU X'02' Bit to Indicate Length in RPO
FBRWRWRT EQU X'Ol' Bit to Indicate REWRITE
*

000060 FBDECB DS A DECB for Line Associated With FB
000064 FBBUFOFF DS OXL1 Offset to Text in Buffer
000064 FBBUFPTR DS A PTR to Buffer Attached to FB
000068 FBWFLAGS DS OXL1 Working Flags

*

FBWF EQU x,8o,
000068 FBWRKPTR DS A Working Pointer
00006c FBLCOUNT DS H Current Line Count
00006E FBCLLGTH DS H Length of Current Line
000070 FBLMLNTH DS F Length of Previous Message
000072 FBTERMNO DS -i.,2 Terminal Number in EBCDIC
000074 FBNAME DS CL4 Name of Current User
000078 FBPNAME DS CL8 Name of Current User Program
000080 FBEND DS OF End of Function Block

FBLENGTH DS OXL (FBEND-FBSAVE) Length of Function Block

FUNCTION CONTROL BLOCK- -'FB'

o (0) FBSAVE
Save Area for Users Register

60 (3C)
64 ;40) FBECB

EYant_Control Block
FBCR

Address of CR
68 (44) FBFLAGS

FB Flags
72 (48) FBCHAIN

Pointer to Next FB
FBTCHAIN

Next FB Chained for Their Line
76 (4C) FBRLN
Relative Line No.
80 (50) FBQFLAGS
Reason FB is Queued

FBQUEUE
Pointer to -1xt 2neued FB

84 (54) FBBLKCHN
Start of User Storage Block Chain

88 (58) FBDCBCHU
Start of User DCB Chain

92 (5C) FBTLOFF
Telzminal L±fsL

DECB for Line

Address of

94 (5E) FB Poll
Pollthig_MaanS.atarZ

96 (60) FBRWOP
READ/WEITE Opcode

FBDECB
Associated wil.h This WE
FLEUFPTR

B - , - Ill g

loo (64) FBBUFOFF
0 -.

104 (68) FBWFLAGS

-W-Q-rking--Fiags

Message

FBWRUPTR
Working Pointer
110 (6E) FBCLLGTH108 (6c) FBBLCOJNT

----Carrezt-Line--Cszallt---------langth-f---Cur-r-ent-law--
112 (70) FBLMLNTH

Length of Previous
114 (72) FBTERMNO

Terminal Number
116 (74) FBNANE

Nms of Current User
120 (78) FBPNAME

Name of Current User Program

122

711IPTON CONTROL BLOCK - -'FB'

OFFSET

0 (0)

BYTES AND
ALIGNMENT

T))0

64

64 (40) 4 VEcf3

68 (44) VD1,,AGS

2cItx

s...

68 (44) 4

72 (48) 4 14Cliftb1

76 (4c) 1

76 (4c) 4

80 (50) 1 g,64,PAGs
.xxx

.1

,..1

80 (50) 4

84 (54) 4)13PZifQHDI

88 (58) 4 /13PCOQHN

92 (5c) 2 DbZ,ODF

FIELD DESCRIPTION CONTENT

Save Area for TMS Functions

Event Control Block

kJ 4

Function Block Flags:
(Reserved Bits)
FBXMTERR - Transmission Error
VBDSCNCT - Disconnect
FBDEBUG - Debugging of TerTainal

Address of Communications Region

Pointer to Next FB

Relative Line NuMber for ThiS Line

Next FB Chained for This Line

Beason for Which FB is Queued:
(Reserved Bits)
FBQUEND - Last FB on Queue
FBQWRITF - FB Queued for WRITE to Terminal
FBQRPOLL - FB Queued for R%4.D Polling Restart
FBQSNAP - FB Queued for snapshot
1I:v.1,0AD - FB Queued for prograna Load

Pointer to Next Queued FB

Start of User Storage BlocK Chain

Start of User DCB Chain

Offset in Terminal List to Entry for This FB

123
-128-

FUNCTION CONTROL BLOCK--'FB'

OFFSET
BYTES & FIETT)

ALIGNMENT NAME FIELD DESCRIPTION, CONTENTS, MEANING

94 (5E) . . 2 FBPOLL Polling Characters for This FB

96 (60) 1 FBRWOP READ/WRITE Opcode

96 (60) 4 FBDECB DECB for the Line Associated With This EB

100 (64) 1 FBBUFOFF Offset to Beginning of Text in Input Buffer

100 (64) 4 FBBUFPTR Address of Buffer Attached to This FB

104 (68) 1 FBWFLAGS WorkinE Flags

104 (68))4 7BWRKPTR Working Pointer

108 (6C) 2 FBBLCOUNT Current Line Count

110 (6E) . . 2 FBCLLGTH Length of Current Line

112 (70) 2 FBLMINTH Length of Previous Message

114 (72) , . 2 FBTERMNO Terminal Number in EBCDIC

116 (74) 4 FBNAME Name of Current User

120 (78) 8 FBPNANE Name of Current User Program

124

APPENDIX 2C: TELEPROCESSING DATA EVENT CONTROL BLOCK (TDECB)

GPPSET

000000

000000
000004

000006
000008
000008
00000c
000010

000011
000012
000014
000014
000018

TDECB

DECSDECB
DECTYPE

DECRTI
DECWTI
DECWTIR
DECRT2
DECRTP
DECWTA
DECWTSR

DECLNGTH
DECONLTT
DECDCBAD
DECAREA
DECSENSO

DECSCMRJ
--DECSINTV
DECSBOCK
DECSEQCK
DECSDTCK
DECSOVRN
DECSLOST
DECSTOUT

DECSENS1
DECCOUNT
DECCMCOD
DECENTRY
DECFLAGS

DECFNEGD

000019 DECRLN
00001A DECRESPN
00001C DECTPCOD
00001D DECERRST
00001E DECCSWST

The data event control block for teleprocessing via
BTAM consists of 40 bytes defined by IBM plus user-
defined fields defined for the TMS system.

Aligned on Fullword Boundary

DSECT

DS
DS

Standard Event Control
Block Operation Type

Standard BTAM Optype Codes (Second Byte)

EQU X'01'
EQU X'02'
EQU X'82'
EQU X'03'
EQU X'07'
EQU vo8.
EQU X'8E'

DS
DS OCD1
DS A
DS A
DS

EQU X'80'
EQU X'40'
EQU X'20'
EQU X'10'
EQU vo8,
EQU voLo
EQU X'02'
EQU X'01'

DS
DS
DS OCL1
DS A
DS

READ Initial
WRITE Initial
WRITE Initial With Reset
READ Continue
READ Repeat
WRITE POSITIVE ACKNOWLEDGE
WRITE Erase With Reset

Area Length
Reserved For On-Line Terminal Test
Address of DCB
Address of Area
1st Sense Byte

Command Reject
Intervention Required
Busout Parity Check
Equipment Check
Data Check
Overrun
Lost Data
Timeout

2nd Sense Byte
Residual Count
Command Code
Address of Terminal List
Status Flags

EOU v04, Negative Response to Polling

DS
DS
DS
DS
DS

125
-131-

Relative Line Number
Response Flelfls
Teleprocessing Opcode
Error Status
CSW Status

OFFSET

APPENDIX 2C: TDECB (CONT.)

DECCSWCE EQU X'08' Status Flag--Channel End
DECCSWDE EQU roli, Status Flag--Device End
DECCSWUC EQU X'02' Status Flag--Unit Check
DECCSWDE EQU X'01' Status Flag--Unit Exception
DECCSWIL EQU X'-40' Status Flag--Incorrect Length
*

000020 DECADRPT DS A Address of Current Addressing Entry
000024 DECPOLPT DS A Address of Current Polling Entry

*

* Fields Specific to TMS
*

)00028 DECFBCHN DS A PTR to Chain of FB's for Line
00002C DECAPCNT DS H Active Polling Count
00002E DECWWCNT DS H Waiting-to-Write Count
000030 DECTTYPE DS OXL1 Terminal Type

*

DECCRT EQU X'80' Bit to Indicate CRT Display
DECTYPEW EQU vliol Bit to Indicate Typewrite
DECMULTI EQU X'20' Bit to Indicate Shared Line
DECSEPLF EQU X'1.0' Separate Line Feed Required
*

000030 DECTTIN DS A Address of Inbound Translate Table
000034 DECUFLGS DS OXL1 TMB Flags

*
DECUFRIP EQU X'80' READ Polling in Progress
DECUFWIP EQU vlio, Writ3ag in Progress
DECUFPIN EQU X'20' Polling Interrupted to Write
DECUFWTW EQU X'10' Another Terminal Waiting to Write
DECUFPRS EQU X'08' Polling RESET in Progress
DECUFACK EQU volt, POSITIVE ACKNOWLEDGMENT Needed
*

000034 DECTTOUT DS A Address of Outbound Translate Table
000038 DECCPNUL DS OXL1 Characters Per Null for CR
000038 DECTTLIN DS A Address of Inbound L/U Translate

Table
00003C DECRSAVE DS CL11 Save Area for READ Parameters
000047 DECCPLIN DS XL1 Characters Positions Per Line
000048 DECMAXNL DS 0XL1 Maximum Number of Lines on Screen
000048 DECTLIST DS A Address of Terminal List

DATA EVENT CONTROL BLOCK FOR TELhPROCESSING--'TDECB'

o (0) DECSD,T,OB

Event Control Block
4 (4) DECTYPE

Operation Type
6 (6) DECLNGTH

Area Length
8 (8) DECONLTT DECDCBAD

(Reserved) Address of DCB
12 (C) DECAREA

Address of Area
16 (10) DECSENSO

1st Sense Byte
17 (11) DECSENS1

2nd Sense Byte
18 (12) DECCOUNT

Residual Count
20 (14) DECCMCOD

Cammand Code
DECENTRY

24 (18) DECFLAGS
Status Flags

25 (19) DECRLN
Relative Line No.

26 (1A) DECRESPN
Addressing Response Field

30 (R) DECCSWST
CSW Status

28 (1C) DECTPCOD
Operation

29 (1D) DECERRST
I/0 ERROR Status

32 (20) - . DECADRPT
Address of Current Addressing Entry

Polling Entry

Chain of FB

36 (2)4) DECPOLPT
Address of Current

4o (28) DECFBCRU
Pointer to

44 (2C) DECAPCNT
Active Polling Count

46 (2E) DECWWCNT
Waiting to Write Count

48 (30) DECTTYPE, DECTTIN
Terminal T Address of Inbound Translate Table

52 (3)4)

TMS Flags
DECUFLGS, DECTTOUT

Address of Outbound Translate
DECCPNUL, DECTTLIN

for CR Address of Inbound L/U
DECRSAVE

Save Area for READ Parameters

Table

Translate Table
56 (38)

Characters Null
60 (3C)

1 (47) DECCPLIN
P-as-i-tinnai-Line--

List
72 (48) DECMAXNL, DECTLIST

Maximum Number Lines/Screen, Address of Terminal

DATA EVENT CONTROL BLOCK FOR TELEPROCESSING--!TDECB1

BYTES &
OFFSET ALIGNMENT NAME

0 (0) 4

4 (4) 2

FIELD HEX.
DIG. ET3..12,01,KG_

DECSDECB Event Control Block

DECTYPE Operation Pe

01 DECRT1 - READ Initial
02 DECWT1 - WRITE Initial
82 DECWT1R - WRITE Initial with Reset
03 DECRTT - READ Continue
07 DECRTP - READ Repeat
08 DECWTA - WRITE POSITIVE ACKNOWLEDGE
8E DECWTSR - WRITE Erase with Reset

6 (6) 2 DECLNGTH Length of Buffer or Message Area

8 (8) 1 DECONLTT Reserved for On-Line Terminal Test

9 (9) . 3 DECDCBAD Address of Associated DCB

12 (C) 4 DECAREA Address of Buffer or Messa e Area

16 (10) 1 DECSENSO First Sense Byte

DECSCMRJ - Commend Reject
DECSINTV - Intervention Required
DECSBOK - Busout Parity Check

.1..

DECSEQCK - Equipment Check
DECSDTCK - Data Check
DECSOVRN - Overrun
DECSLOST - Last Data
DECSTOUT Timeout

17 (11) . 1 DECSENSI Second Sense Byte (Reserved)

18 (12) . 2 DECCOUNT Residual Count From CSW for Last CCW

Executed

20 (14) 1 DECCMCOD Command for Which Error Occurred

21 (15) 3 DECENTRY Address of the Terminal List

24 (18) 1 DECFLAGS

xxxx x.xx

Status Flags

(Reserved Bits)
DECFNEGR Regative Response to Polling

25 (19) . 1 DECRLN Relative Line Number

26 (1A) . 2 DECRESPN Addressing Response Field

28 (1C) 1 DECTPCOD Teleprocessing Operation Code

29 (ID) . 1 DECERRST
ltii

I/0 ERROR Status Flags
SIC Resulted in a Condition Code of 3

01 44 4464 Undefined Error Condition
..1. I/0 ERROR in Error Running Routine
..x xxx (Reserved Bits)
4000 1040 Disable Issued to a Switched-Connected Line

-134-

128

DATA EVENT CONTROL BLOCK FOR TELEPROCESSING--'TDECEI

BYTES & FIELD
OFFSET ALIGNMENT NAME

30 (1E)

32 (20) 4

36 (24) 4

4o (28) 4

44 (2c) 2

46 (2E)

48 (30) 1

49 (31)

52 (3)4)

2 DECCSWST

DECADRPT

DECPOLPT

DECFBCHN

DECAPCNT

2 DECWWCNT

DECTTYPF,

DECTT1N

3 DECTTIN

tECUFLOS,

DECTTOUT

1...
.1..

53 (35) . 3

56 (38) 1

57 (39) . 3

60 (3c) 11

71 (47)

72 (48)

73 (49) . 3

DECTTOUT

DECCPNUL,

DECTTLIN

DECRSAVE

DECCPLIN

DECMAXNL,

DECTLIST

DECTLIST

HEX.
DIG. FIELD DESCEIPTEON, CONTENTS, MEAN NG

COW StatuE.

Addrss o_L L,urrent ALdressing Entry

AddreS-s of Current Polling Entry

Pointer to Chain of FB's

Active Polling Count

Waiting to Write Count

Terminal Type

kddress of Inbound T

TMS Flags

DECUFRIP
DECUPWIP
DECUFPTN -
DECUFWTW -
to Write
DECUFPRS -
DEaUFACK -
(Reserved

for Line

s late Table

- READ Polling in Progress
- Writing in Progress
Polling Interrupted to W ite
Another Terminal Waitlng

Polling RESET in Progress
POSITIVE ACKNOWLEDE -:krveded

Bits)

Address of Outbound Transl 'e Table

Characters per Null for CR

Address of Inbound L/U Translate Table

Save Area for READ Parameters

Character Position per Line

Maximum Number of Lines per Screen

Address of Terminal List

APPENDIX 3= LOAD MODULE ELEMENTS

TMS ig divided into two load modules, each of which is comprised of
multiple object modules or control sections. The TMS load modules
are made up as follows:

IQAD_WDULES INCLUDED OBJECT MODDLER

TMSHSEP

Tms.E)mc

130

TMSHSKP
TMSBLOCK

TMSPJOB
TMSPLOAD
TMSBEGIN
TMSCNSL
TMSCSIO
TMSWAIT
7MSTREND
TMSGMFM
TMSOPEN
TMSCLOSE
TMSPURUE
TMSDEEUG

APPENDIX 4; STANDARD LIST OF I/O MODULES

BSAM MODULES:

I GG0198A

IGG019 8B

BDAM MODULES:

BSAM READ/WRITE MODULE(384 BY2ES)

BSAM CHECK MODULE (96 BYTES - MODIFIED)

I00019KA BDAM FOUNDATION MODULE (1480 BYTES)

IGG019KC BDAM RELATIVE TRACK CONVERSION MODULE (280 BYTES)

IGG019KE BDAM RELATIVE BLOCK CONVERSION MODULE (304 BYTES)

IGG019KI BDAM CHANNEL PGM FOR KEY SEARCH (152 BYTES)

IGG019KK BDAM CHANNEL PGM FOR ID SEARCH (176 BYTES)

IGG019KM BDAM WRITE ADD FORMAT U OR V (584 BYTES)

IGG019K0 BDAM WRITE ADD FORMAT F (264 BYTES)

IGG019KS BDAM START I/0 APPENDAGE (64 BYTES)

IGG019KU BDAM CHANNEL END APPENDAGE (132 BYTES)

IGG019KW BDAM KEY EXTENDED SEARCH (200 BYTES)

IGG019KY BDAM SELF-FORMAT EXTENDED SEARCH (200 BYTES)

I00019LA EDAM PRE-FORMAT EXTENDED SEARCH (200 BYTES)

IGG019LC BDAM END OF EXTENT APPENDAGE (168 BYTES)

IGG019LI EDAM CHECK MODULE (240 BYTES)

BTAM ODULES:

IGG019MA BMAM READ/WRITE MODULE (1568 BYTES)

IGG019MB BTAM GB & AB APPENDAGES (2744 BYTES)

IGG019M3 BTAM SANDERS 720 DDM (312 BYTES - MODIFIED)

131

