i
4

e

;;:"f{‘ty“{;}w:yit?;..:-\-I_fyy;:—_.-_-;.,:j-._,5:;._ e

=
"
2
e
B
L e
&
T
%
:
.\,“
P

,

ED 060 629

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS
IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 009 635

Mosmann, Charles; Bork, Alfred M.

Teaching Conversations with the XDS Sigma 7.
Users Manual.

California Univ., Irvine. Physics Computer
Development Project.

National Science Foundation, Washington, D.C.
26 Mav 71

71p.

System

MF-$0.65 HC-$3.29
*Computer Assisted Instruction; Computer Programs;

*Manuals; Physics Instruction; *Programed
Instruction; *Programing; Programing Languages
Metasymbol; Sigma 7

This manual is intended as a reference handbook for

use in writing instructional dialogs on the Sigma-7 computer. The
concern 1s to give concise information which one would need to write
and debug dialcgs on this system. Metasymbol, the macro-assembly
program for the Sigma-7, is described. Definitions of terminology,
legal forms descriptions of current commands, and examples are given.

Basic,

introductory information on getting dialogs into the computer,

assembling and debugging them, and in preparing them for student use,

makes ur most of this manual.

(RB)

T s v

Cd U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE

OFFICE OF EDUCATION : . CONTENTS
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
: : INATING IT. POINTS OF VIEW OR OPIN-
. : IONS STATED DO NOT NECESSARILY INTRODUCTION
: REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY. : 1. WRITING DIALOGS

o Faiige

ED 060629 -

Character
TEACHING CONVERSATIONS ‘WITH THE XDS SIGMA 7 o , ' _ h Labels an

-

2. DESCRIPTION OF
System Users Manual -) - ’ : Displayin

Accepting

- Analyzing

Charles Mosmahn R _ SR v ' - . Manipulati
Alfred. Bork T . .

‘Physics COmputer Development Project' o o - : o o
Un.{versxty of California, Irvine _ _ . Manipulat
"Irvine, Califoma 92664 . N : o

‘May 26, 1971

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

'XDS SIGMA 7
r

ject

t, university of glifomia. lmne92664 o

CONTENTS

INTRODUCTION
1. WRITING DIALOGS
V Program Format_
Line Format
Character String COxistants
- Labels and Location Symbols
2. DESCRIPTION OF COMMANDS
Dz.splaying Infomation
Accepting Infomat:.on
Analyzing Input
. Manipulating Strings
ua.nipulating Numbers
- . 'Manipulating cQunters :
éohstant": and Parameter Storage

Other COmands

3. GBT'I'ING T ONTHEHACHINE

» Using the 'rerminal
| : Us:.ng Bdit
--Using Hetasymbol
:Us:.ng Delta ' ; .
:'.: _ ‘Generating a I.oad Module '

s ':Sectioning a ongram

i
H
e
g
I
:
&
&
¥
v
H

RN 30 e TN A TR R R o o b A LY AL

AP AR ENT

VP SN s ot

APPENDix 1 - Examples

APPENDIX 2 - References and Acknowledgements --oe= v

APPENDIX 3 - A Pinal Word to the Reader

. . P.fepa'fiii:g' them

INTRODUCTION .

This manual is
person writing
document, call
System Desctié
 presents a bet
_our concern is

person will ne

The first chap
tions of tefmi
°*commands curre
contains intro
géﬁtihg éialog

tutorial in in

mote‘cqnpiete
Tﬁe-systém des

bé sure to fil
ﬁp—tb-détéfon

et s e ———— o nie —m s e

nowledgements -

Reader

.

INTRODUCTION

This manual is intended to be used as a reference handbook by the
person writing instructional dialogs using the Sigma-7. Another °
document, called "Teaching COnversations.with the XDS Sigma-~7:

Systen Descriétion,' gfesents an overview of the system as a whole and
presents a better introdiction to the subject than this manual. Here
our - concern is to make a concise presentation of the information a

person will need while learning to write and debug dialogs.

The first chapter contains the rules on legal forms and some defini-

tions of tefminology. Chapter 2 contains descriptions of each of the

‘commands currently available, with examples of their use. Chapter 3

contqihs-ihtrodﬁétqry material.onvthe*programe and xoutines used in

getting dialoge into the computer, assembling and debugging them, and
preparing them for student use. This informetion'ig introductory and
tutorial in intentbahd does not by any means replace the need for the

more complete descriptions in the appiopriatelxns manuals.

The systen described here continues - to change and grow as its use
expands. If you are a nser of this system and not just an observer,

 be su:e to £ill out the form on the 1ast page so that you can be kept
;up—to-date on inprovenents as they occur. ' ‘

" CHAPTER 1
WRITING DIALOGS

i -An instructional dielog ueing the commands defined here is actually
; a program written for Metasymbol, the macro-assembly nrogrem for the
i Sigma-7. The dialog must therefore adhere to Metasymbol conventions
; for formats and the speczal use of symbols.' In additzon. some con-
; ventions have- been established with;n the dialog system itself.
f These ‘topics are the subject of this chapter. ' .
i 1. Program Format
The first statement of the program must be
SYSTEM DIALOG
% fhe SYSTEM command (preceded ny'nt least one space) directs the :
; assembler to select a file containing the commands that are to be valid
during this asseﬁbly. DIALOG is the name of the file. containing the
g ' comnands aescribed here. S
: .
% atter the SISTEH statement bnt before the first execntable conmand,
% _the progtam-mnst have one or tha other of these statenents._.
g ﬂnaﬁB,F< arg o R :e?'tiif tj' o PSS
g ,:séagr;, } S : .
%

Either of these ccnmands uill canse the systen to inttoduce some . |

T
¥
3
4
&
£
h
&
£
5
-
1.
i
H
13
L

4 oL

H : 3

r N ’ “

v P N

4 O o
: . B _
3 R Sloor e

. = T E

- those of other instru

. process. The argumen

ment in the program,
that will be executed

'oniy with caution and

1n1tializinq ptocedu:es 1nto your ptogran, uhieh axe to be executedf L

before your first co
argument you supply,
guotes) to your progr
It is particularly va
for later reference;

records so that there

_The last statement of

zoutine is to-be used
for an. ID 1f the rest

Other arguments.are

of the introductory

SN ST
e ey A T

ands defined here is actually
macroeassembly ﬁrogram for the
dhere to Hetasymbol ccnventions
.ls. In addition, scme con-
the dialog system 1tse1£
chapter

ast one space) directs the
ame of the file containing ‘the

the_first'executable'command'
of these statements: .=

the system to introduce some :
:gram, vhich ara to be exacuted

the commands that are to be valid.

before your first command. In addition, NAME assigns a name (the
argument you supply, ofvnot more than four characters enclosed in
quotes)'to your program; This simply individualizes_the program.
It is particularly valuable uhen student responses are saved on disk

~ for later reference; the name of the program individualizes these

records so that there is no possibility of getting them confused with

: thoee of other instructional programs.

The last statememt of the program must be

END DIALOGUE
. \ N -
This indicates to uetasymbol that this is the last statement it is to
process. The argument 'DIALOGUE' inu;cates that a standard beginning

routine is to-be ‘used when the program 1s run. (It asks the student

"_for an ID if the restart faczlity is used somewhere in the program.)

Other argnments are possible;_if the argument is the label of a state-

~ ment in thefprogram} it is understood that this is the £irst statement
that will he"erecuted Whem the program runs. This short-circuits-all
" of the introductory and initializing instructions and shouid be used

omly'nith_camtrcn and a full mnderstanding of the implications,

d.Additional intormation abont program format uill be found in Chapter 3
_'in the sections on segmenting and overlaying. these uill be of interest
'.1to the anthor of very large programa.-td

;fﬁ#@#Q#ﬁﬁﬂjﬁ&“cemtaimifcur'gzg;gg. §Qparated hf one cr{mprefblaars:. -

g, P T R T) e g g = T

LABEL COMMAND ARGUMU:NT COMMENT

Because blanks are the delimiters of the fields, it is clear that
blanks are oever allowed within the fields (except within character
strings,‘as described below). The iabel field may be omitted; if it
is present, it must begin in the first position on the line. 1If
that position is blank, it is assumed that there is no label and the
command field follows immediately. Labels are attached to. statements
so that they can be referred to elsewhere in the program; label
formats are.described below. The next field is the command; cither
one of the commands listed here or one of those defined in the
Symbol/Metasyﬁbol manual. The command field must be present; it is
the command which indicateg what it is that you want the.computer to

do. The third field is the argument. The parameters necessary to

"complete the meaning of the statement are entered here, usually

separated by commas--again, without blanks, since a blank indicates
the end of the field. The fourth field is for comments and is

ignored by the assembly program. (If the command requires no .argument,

.then everything past the command field is ignored The line (if it

is entered from a terminal) can be ended at any point by a carriage

return.

There is a single exception to a11 o£ this. . If the first character

on the line is an asterisk, the entire line is ignored.' Such lines

are considered 'comments' and can ‘be’ of value in. making your program N

,clearer to read -and. understand . _‘<;,~.“;_;f.iﬂ.f o ~ie g

' variable storage locat

' 'cotmm. s'mmc.
.uaing .he_label field.

There are thus no restr
in which column or posi
program easier to read
label in coiumns 1-8, c
20-39, comments beginni
tab stops) make it easi

the program from-a term

3. Character string co

A large part of any ins
of characters which are
pare with student respo
quotes. They may conta
to the "no blank" rule.

a string, you must use

'#8()+-5='

'*YOU''RE RIG

4. Labels and Locatio

The programmer may assi

attached to parameter

T T

COMMENT

fp fields, it is clear that
as (except within character
field may be omitted; if it
position on the line. If
at there is no label and the
ls are attached to statements
e in the program; label
.ield'is the command; either
of those defined in the -
ield must be present; it is
at you want the.computer to
he parameters necessary to
e entered here, usually.
s, since a blank indicates
is for comments and is
e command requires no argument,
s ignored. The line (if it

! at any point by a carriage

1

his. If the firstrcharacter
ine is 1gnored. Such‘lines
value zn making your program

e e 8 e 81

- There are thus no restrictions about what information can appear

in which column or position on the line. Nevertheless, it makes a
program easier to read if some such conventions are adhered to; perhaps,

label in columns 1-8, command in columns 10-19, argument in columns

- 20-39, comments beginning in 40. Tab stops (see Chapter 3 for using

tab stops) make it easier to adhere to these conventions when entering

the program from a terminal.

3. Character string constants

A large part of any instrnctional dialog program is made up of strings
of characters which are to be typed for the student to read or com-
pare with student responses. Sucﬁ strings must.he‘enclosed in single
quotes. They may contain any characters; they are thus an exception

to the .no blank" rule. If you want to place a single quote_inszde such

a string, you must use two single quotes. A few examples may help:

1$8() +-&="

*YOU'*RE RIGHT1'

4. Labels and Location Symbols

The programmer may assxgn names to 1nstruct1ons, constants, and

variable storage locations so- that he can refer to them. The. most

: common way of attachzng such symbols to locatzons xs by the use of a f.
.label in the first field of a statement. Symbolxc names must also be
:jiattaehed to parameter storage. There are spec1a1 commands (DEFINE, |
'COUNIBR, STRING; DEFNUH, etc) desc:ibed helow Uhlch do thls Hithout :

using the label field. 'rhe label or 1ocation symbol may consist of

8

1, 300

AR R e i

3k

3

2402
AT

oA R

-
ol
B

e
4

e RN 3 T VAR Aty A G YYee s

[N e,

(=)

any combination of letters and digits except all digits. (The advanced
student should be cautioned against using any labels beginning with
character "#" since this is used internally in labels in the macro

definitions, and so might lead to conflicts.)

One lbcation symbol used in the program may be of interest to the
user. The input buffer, containing the most recenﬁ message typed
by the student is called ggg and may be referred to by that name.
It is defined by the system and must not be defined by the user.

them defined above in C

1. Displaying Informa
;Camqa@ds-fbt'diﬁpléxiﬁé

CHAPTER 2

DESCRIPTION OF COMMANDS

This chapter contains d
available. They are

the foilowing page lis'

Examples are given of e
fo:ﬁé, except where'fhe

If termsjﬁsed in the .de

st st My T T 3T

6 7
.. : CHAPTER 2 '
except all digits. {The advanced
. DESCRIPTION OF COHMANDS
ing any labels beginning with
ally in labels in the macro '
jcts.) This chapter contains descriptions of all the commands currently
' available. They are arranged by functions; however, the index on
' : s ing ; ists der.
may be of interest to the the fellow:.ng page .lz.sts them in alphabetical order v
e most recent message typed : ‘
. ~ ipti i ing £ ma H
e referred to by that o In genc~al, thevdescnpt:.ons will have the fellow ‘g ormat
ot be defined by the user. : o : v
NAME (SYNONYM1, SYNONYM2...)
Description c¢£ the logical function of the command. o
When several alternative forms exist, each will be
described.] g
. Example 1l: .f.'.
descr:.ption of function of example 1 o
- Example 2: !
descr:.pt:.on of function of example 2 -
Example’s are 'given of each form of a command, when there are nmltiple
_foms, except where the meam.ng appears too obvious to warrant it.
' If terms used in. the description are nnfam.har to you, you nay find _
'the.m defined above in Chapter 1. o ‘
‘ 1. Displaying Informat:.on
CGmands for d:.splaying xnfomation to the student. :
. WRITE. (pnnu', 'ECRIVEZ, saow, TYPE) ‘
OUT:” v v
', SKIP - (SAUTEZ)
j

R RN N CUER

R Pl

.
1

T S SR

N

C“’?-Fit?x'ﬁé’\'.'z-;m;vg:-_“.f.‘f‘y T T RO R

5. M pulating Numbers -

2. Accepting Informa tlén'

Commands for accépting information from the student.

INPUT (ACCEPT, ACCEPTEZ)
INBELL

.3.' Analyzing Input ‘

Commands for analyzing student input

_IF (SI)

IFONLY

IFNOT

IFYES

IFNULL -

‘IFBEFORE :
IFAFTER (IFNEXT)
IFNEXTO (IFAFTERO)
_IFTERMS

ALLWRONG

NOTERMS

IFKE

. IFPE

IFFILTH '
TO (ommz, AUTRE, . B, JUHP)

4. Manigulat;ng Stz'ings

Ccmnnds to mam.pulate strings

‘NOBLANK .
- 'DELETE ' (REMOVE)
. DELETEALL
* REPLACE (sua, ‘SUB:FOR)"
" ADDAST o
MOVE (MOVEZ)
- "PTRMOVE -
- APPEND

COmands to manipulate mmbets

‘Manipulating Counter

IFNOTNUM
AROUND
BETWEEN
RANDOM
RANDOMR

Commands to manipulate c

Constant and Paramet

BUMP (INCREASE
DECREASE (SUB1
RESET (ZERO)
.CTARITH -
ADDCOUNT

. Directives for constant

8. ' Other Commands

Other 'coma.nds and direc

TSy

PRy ORIy Y

. - IFNOTNUM
student. : . S . v_AROUND-
: BETWEEN
: RANDOM
RANDOMR

6. Manipulating Counters

Commands to xhanipulate. counters.

BUMP (INCREASE, ADDl, AUGMENT)
DECREASE (SUB1)
RESET. (ZERO) -
“CTARITH - -
ADDCOUNT
 CTWRITE
- CTOUT
'SWITCH

7. Constant ana Peraméter Storage

. Duectives for constant ‘and parameter stozage. o

DEFINE - (DEPINEZ)
'COUNTER - (coupm, C) ‘ . S
DEENUM .
" -STORENUM -
DEFCOMP"
STORECOMP
' DEFTABLE
‘STACK . -

8. .Other Commands

: Other comands and directives.)
'"4'SYSTEH
START ST

i f',-s'rop (mm)
FINALE (zpn.ocus, xrn.oc)

12

Ex. 2 our MESS

i MESS STRING ‘IS THE SQUAREROOT OF' ;
Causes "is the sguarerxoot of” to be typed.

Ex.3 - OUT MES8,T3

Causes a branch to T3 after the string at MES 8 is 4
Printed. ‘ ' ‘ Ex. 1

Remember to supply connecting spaces on either the
WRITE or the following OUT.

SKIP (SAUTEZ). Generates one or more blank lines at:
the terminal. The argument indicates the number of i
lines. If no argument is given, one line is skipped..
CEx. 1 SKIP 5 L o I : CEx. 1
~ Causes five blank lines to appear..
Ex. 2 SKIP "

Ceuses‘one'blank line.

GRAPH. - Displays data in the. form of a po;nt graph.

2

x. It re: Trequires three arguments; the location of the

EN horizontal displacements (X); the location of ‘the - i
% . vertical displacements (Y);.the number of points Ex. 1
3 to be:plotted or the location of that ‘number. ' All '

;- -numbers will be ‘scaled. Storage of- ‘the’ values is

=3 © ‘the user’s: respon51b111ty, STACK may be useful in

. this program. If the values are generated in a

g . FORTRAN subroutine (say as-an array),‘space must

gﬁ be reserved in the dialog program.» o ‘ ,

= : S
% Ex. 1 cma : .! 20 : L _
%% .'Graph 20 poxnts, taking the coordinates from X and

GRAPH R TAl TA2,CNTR

~'L'Graphs the number ‘of po;nts specified in CNTR,;‘~‘
';_»taking the coordinates from TAL. and maz.ffga,

t;,At the beginning'of a graph is a header giving the che D IR
' ‘maximum ‘and minimum values.of “the.two arrays. The - ‘- . = (Exo 1
':user ‘can-control scaling on’'a-series of: graphs by .- ;. o '
placzng suitable values himself in the two arrays. g

IS

173

e diet

TSR ZID I
¥

e i e T

12

ROOT OF*

oot of" to be typed.

after the string at MES 8 is

nnecting spaces on either the
g OUT.

ates one or more blank lines at
gument indicates the number of
t is given, one 1line is skipped..

es to appear.

in the.form of a. po;nt graph.
uments; the location of the
nts (X); the location of the
(¥) : the number of points
locatzon of that number. All
d. -Storage of the values is
'lxty, STACK may be useful in
values are generated in a

ay as an array), space must
alog program. : :

ing the coordinates from X and

R

points specified in CNTR, .
S from mAI .and. 2&2 o

graph 13 a header giving the S
alues of the two arrays. - The__{_%
ing on a -series of graphs by . = -
es himself in the two arraya.‘n-

PLOT. Gencerates a point piot as specified in the
argumcnts. The first argument is the location of

the values to be plotted; the sccond argument is the
number of values or the location of that number..

All of the values will be scaled and each value will
represent the amount of horizontal displacement for

each po;nt. The difference between a plot and a-

graph is that the plot increments the vertical component
uniformly. A header on a plot gives maximum and minimum

. dxsplacement.

PLOT = EX,20

Will generate a plot of 20 values stored at EX.

NUMOUT (OUTNUM). Converts to character type, and

prints, floating po;nt.numbers. It prints one .

~number (specified in the argument) on the same line

as: the last wr;tten record (1.e., no carr;age return).

‘ NUMOUT DISTANCE

W111 prxnt the number stored in DISTANCE, on the
current 11ne.

'NUMWRiTE (WRITENUM) . . Converts to character’type,and'

prints floating point numbers. It starts a new line
and will print from.one to four numbers, as specxfzed

' 1n the argument(s).
.*NUMWRITE -f TIME ENERGY,MASS :

Starts a new 11ne and prxnts the three numbers stored

~in TIME, ENERGY, and MASS.

-

OUTABLE., Prxnts the contents of . a table. (The

" - table could have been defined using DEFTABLE and..
-filled using. STACK.) ' The fxrst argument is the
. 'name of . the table; the second argument is the .
- number. . of‘values to:be printed (or ALL); ‘the thzrd .
"(optzonal) argument specxfxes how many numbers to’
the 1line (<5); .the default is one to'a line. If -
- the: second ‘argument ‘is ALL, as many. values w111 be
- 3pr1nted as:have . been. stored., If less than -all are -
: j-prxnted, they ‘are ‘the. ones at the: begznnxng .of the" .
. ‘table.l: ‘The ~second: and " third arguments may be numbers o
'g(or varxable names.:.;'.. :

"v;prznts all of the entries 1n ‘the table rA.,

SR

2. Accepting T

Ex. 2 OUTABLE TA,N
Prints the fi_rst' N entries in TA.
Ex. 3 ‘OUTABLE TA,50, K

Prints the first 50 entries in Ta, K to a line.

Y A ST PN AR T L N e

AN e TR

g

Ex. 1 = INB)

Ex. 2~ INBE

e e TR TR T T R TR R T R R P SR AT I Y AT IR

ERIC

e -

L e A v e

e e AT R
o e e AR WO I AT ————

14

2, Accepting Infarmation

INPUT (ACCEPT, ACCEPTEZ). Causes a carriage return,

ies in TA. ’ two line feeds, and a question mark to be executed at

: . _ . the student terminal. The computer then waits for the
student to enter material. The student indicates that
his message is complete by executing a carriage return.
The maximum amount of material he can enter is set at
380 characters but this can easily be extended. The
line feed key allows multiple lines.

ies in TA, K to a lire.

BEx. 1 INPUT
The author can assume, following execution of this

command, that student input, up to the carriage return,
is in the computer and available for inspection.

Normally, INPUT will be followed by a series of IF-type
f . ' statements. Such a sequence may be concluded by an
: " -OTHER, showing where to go if none of the tests is
satlsfxed : _

Ex. 20 - INPUT _ 'NOECHO’ o - .

If INPUT is followed by the argument 'NOECHO', the
student‘s-message will not be printed at the terminal.

L : . - S : IVBELL Sounds a bell, 1nd1cat1ng that 1nput is expected
: ' B . from the student without a carriage return or line feed.
* . Then it waits for the student to enter material. A
;carrzage return by the student is taken to mean the end
of his message.- A maximum of 380 characters is accepted

Na argument is. requ;red

‘Ex. 1 mazm.
Ex. 2 INBELL - ~ "NOECHO'

" If the cammand has the argument 'NOECHO' the student
mater1a1 ‘will not be printed at the terminal.

3
53

Do
P
£
4
N
[
b
&,
%
&
3
ks
2
v,
=
n
1

P s R A baa SR LT LU T LR 10 P T AL gl

RPN
D '4&‘5(’1"\',3—'iﬂrmwmum»~m-..‘.< —

- sequence is taken.;

IF (51). This command has scveral forms. The basic one
calls for two arguments: the first may be a character
string or the label of a character string; the second
must be the label of another command. 'If the character
string appears anywhere in the student input, the next
command is taken from the location indicated by the
second argument. Otherwise, the next command in sequence
is taken. An alternative form allows the first argument
to be a series of character strings or adresses of
character strings (separated by commas and enclosed in
parentheses). If any one of them appears in the input
string, the branch will take. place. Another form has a
third argument, a number: it is the character position
in the 1nput at which the search is to begin.

IF '"VELOCITY',T34.

If the elght character string VELOCITY'appears'anywhere
in. the current student input, the next command executed
will be the one at T34. Otherwise, the next command in

I? S cow' "HORSE', 'pxc), T34

if any of the three strzngs COW, HORSE, or PIG appear
in the input, the branch will take place.

IF *COW',T34,7

The branch will take place in this case only if the
character string 'COW' appears in the input at or after
the seventh character the student typed. (This faciIity
is not llkely to be needed in most dxaloges)

‘A typing error 1n,the student S response, or a misspel-
ling, may foil the intention of the 'IF' search. The
teacher will often-find it advisable to test a part or

: parts of the des;red answer,-rather than the whole.

There must be two arguments. the f1rst a

'character string or the"label of -a. character string, the
-second’.a. locatlan symbol. - ‘If the literal string:is

identical-with the entire ‘input- string, ‘the. next’ command

. ~is taken’ from ‘the “location ‘indicated by the second argu-
‘.ment.: Otherw1se. the next-command 1s taken in sequence.'

3. Analyzing Input
Ex. 1.
Ex. 2
Ex. '3
IFOVLY
Ex. 1 "5IFONLY=”

“}flf the student typed only the eight cbaracters VELOCITY -
. and a carriage return, the branch to T34 ‘takes place. °
-If‘he typed more ot”less than that,_it does not.p e

- symbols in

. the string

not possib
IFNOT

A branch t
not write

IFBEFORE.

ful match
by an IF.
a label re
of another

word match

PR Sl es in

forms. The basic one
t may be a character
string; the second

d. If the character
ent input, the next
indicated by the

ext command in sequence
ows the first argument
s or adresses of

mmas and enclosed in
appears in the input

. Another form has a
e character position
s to begin. .

CITY appears anywhere
next command executed
» the next command in

ORSE, or PIG appear
Place.

case only if the

the input at or after
typed. (Thls'fhciIity
dJ.a.loges) .

sponse, or a misspel-
e °'IF' search. The
le to test a part or
r than:the whole.

ts: the flrst a
character strlng, the
literal -string is

ing, . the next command

ed by the second argu- .
18 taken 1n sequence._

t cbaracters VELOCITY
to ‘T34 takes’ place.
t, 1t does not.')

IFNOT. This command is similar in form to IF. However,
IFNOT branches on the opposite condition, i.e., if a
match between the argument and the input is not found.
The form of IF which allows a set of first arguments is
not possible with IFNOT. . »

IFNOT 'VELOCITY',T34.

A branch to T34 will take place only if the student did
not write "VELOCITY"” as part of his statement.

IFNOT . ("COW',’HORSE') ,T34
This statement7is illegal and not allowed.

IFYES. Checks for several forms of affxrmat;ve reply
and branches if one is found.

1FYEs’ @3

IFNULL. Checks for the condltlon that the student typed
no characters at all, otherthan the carriage return.

It branches to.the location specified in the argument if
this is the case. The program author can thus check for-
the ‘student’ who 13 not trying. . : o :

Irnunn,' A;TR!

' This example will branch to TRY if the student did not .
.;type anythlng. ‘ ,

IFBEFORE. - Takes into account the relatlve position of

- symbols in the response. It refers ‘to the last .success-

ful match in-.an IF statement, so it must be branched to
by an IF. It has’ two arguments, a character string (or
a label referring to'a character string) and.the label
.of another command. It specifies that the ‘match between

-“the -string- and the input must be found be‘ore the last

word matched

1‘-19;‘,“ ‘ENERGY',EI »
Bl IPBEFORE 'POTENTIAL',EZ

w ;: This: sequence tests fxxst to see if the word ENERGY
- - appears anywhere -in the string and, if it does, then
7 tests.to see if.

‘the word POTENTIAL appears in the strzng

'U hefore the word ENERG! A

BRI N P e o t] R

e

843 8 SR T St e Y e
e R N /OIS

SN

N

O s L

;

_ Ex. 1

w1 IFNEXT

S T Eanl ot

T N N el

IFNEXT (IFAKTER) . Takes into account the relative
position »f symbols in the response. It refers to the
last successful match in an IF statement, so must be
branchs:d to by an IF. It has three arguments: ‘a char-
acter string (or the label of a character string) and
' two labe:ls of locations in the program. It checks to
see if the string appears in the input.anywhere after
the last match. If so, it branches to the location
specified in the second argument and stores all of the
characters between the last IF match and the IFNEXT
match in the location specified in the third argument.

IF 'VELOCITY',VI,

"M/sac',vz,VEL

This sequence will go to V2 if the string "M/SEC"

- appears after "VELOCITY" in the input. It will also
store anything’ appearing between "VELOCITY" and "M/SEC" .

in VEL, ‘which must be defined. So "THE VELOCITY IS
FOUR M/SEC" as a response will store "IS FOUR" in VEL.

After an unsuccessful IFNEXT, any number of IFNEXT'S
{or IFBEFORE's) can be used sequentially, provided no
successful search is made.

IF '-mocrr!',u
V1 IFNEXT = 'M/SEC',V2, VEL
IFNEXT . 'F/SEC',V2, VEL

IFNEXTO (IFAPTERO). ‘Is similar to IFNEXT. However,
the character string must exactly match. the remaining
1nput string. There is no third argument, as no inter-
.vening- characters may appear.

IF _') IP_.:I ’HS .

H6 IPNEXTO "M*A' ,H7

This sequence will. transfer to H7 if 'M*A' is the entire

and only string appearing after "F=". - Thus, "F=M*aA*%2"
would not make a successful match. T

IFKE. Recognlzes varzous forms ‘of - kznetic energy and

- br ches if one: is found
IFRE . . 1'__73

‘_Branches to T73 if the input contalns a correct.formula
- for the non-relat;vistic kinet;c energy. L .

1y

‘Could be use

tThe erder in

IFPE. Recog
branches if

IFPE P77

Branches to
for potentia

IFFILTE Ch
language.

IFFILTH

Branches to
contains any

IFTERMS. An
NOTERMS are

terms in our
are missing,

IFTERM3

If successfu
not, to the

The argument
for each te
student can
the author's

All the patt
so there wil
in the expre
the search i
string, or
where. - The
each -argumen

not matter .

e ——— 3 PP TN R T

ly

kes into account thc¢ relative
n the response. It refers to the
in an IF statement, so must be

It has three argumcnts: a char-
abel of a character string) and
s in the program. It checks to
ﬂFars in the input anywhere after
jo, it branches to the location
nd argument and stores all of the
e last IF match and the IFNEXT

specified in the third argument.

,V2,VEL

p to V2 if the string "M/SEC"

TY"” in the input. It will also
ing between "VELOCITY" and "M/SEC"
e defined. So “THE VELOCITY IS
bonse will store "IS FOUR" in VEL.

IFNEXT, any number of IFNEXT's
used sequentially, provided no
made:

V2, VEL
V2, VEL

Is similar to IFNEXT. However,
must exactly match the remaining
is no third argument, as no inter-
appear. :

H7
ansfer to H7 if "M*A" is the entire

aring after "F="., - Thus, "F=MtAr*2"
essful match. @ o

ious forms of kxnetic energy and

e input contaxns a correct formula
stic kinetic energy. :

IFPE. Recognlzes various forms of potential cnergy and
branches if one is Zound.

IFPE P77
Branches to P77 if the input contains a correct formula

for potential energy.

IFFILTH. Checks the input string for objectionable

g language.

IFFILTH = NONO

Branches to the statement labelled NONO if the input
contains any of several common swear words.

IFTERMS. And the associated commands ALLWRONG and
NOTERMS are useful in determining whether all the
terms in our expression are present, or one or more
are mxssxng, or have an incorrect sxgn.‘

IFTERMS ('AX®R*2" [PARX4$2", TARXRR2?, 'ZXfZ') ('-BX",
'-B*X'),: ('cosrn','cos(wa)) ,LABEL

' Could be used to check-for the expression

ax2 - bx + cos (TH)

If successful, the program would branch to LABEL, 1£
not, to the next sequent1a1 instruction.

The argument fleld of the. IFTERMS command includes,
for each term expected, all the wiays in which the -

. student can write that term correctly (to the best of
-the author s ablllty to antlczpate thist)

All. the patterns for one term are grouped in. one argument,
- so there will be as many arguments as there are terms

in the express:on, plus a final label to branch. to if

. the search is .successful. Each pattern is either a
.String, or the name of a string that is defined else-
-where. - The object of the game is to match one string in

each argument to a: term 1n the 1nput, with no leftovers.

The order in wh;ch the student enters the terms does

" .- not matter. Leading plus signs can be omitted, both in
. the input and in: the IFTERMS command. At present .this.
' . command . does . nothing with parenthesized quantities:
- everything between a left paren and its matchlng rxght
'“paren is- considered part of the current term.

BT A $9 Fa e e e e e

o
e
=
€
el
¥,
B
&

ALLWRONG. After an unsuccessful IFTERMS, allows the
instructor to branch™ to the sequence appropriate to
the mistake or misunderstanding. It must follow
directly on the IFTERMS statement.

Ex. 1 ALLWRONG (TERMS,GG)

Tests to see if all the terms expected are m;sszng,
if so, it branches to GG. :

FOTS ARSI 1w

o l,!
R
.
N

ALLWRONG {(SIGNS,SS)

Tests to see if all the‘terms are there, but all with
the wrong sign, in which case it branches to SS.

A

Ex. 3 - ALLWRONG (TERMS,G1) , (SIGNS,S2)

Ve

SEGR A N S e e

x

Transfers to Gl if all the expected terms are missing,
but goes to S2 if they are all rlght except for the
szgn on each.

NOTERMS. Allows the programmer to test on each or any
of the terms separately after an unsuccessful -IFTERMS.
It also sorts out null strings and syntax errors, if
requested, and checks for the case where we find all
- the expected terms plus extra term(s). NOTERMS must
" : directly follow either IFTERMS ‘or ALLWRONG.

TR

A
£

Ex. 1 NOTERMS (MISSING (3,G1),(2, GZ ,S2)) , (NULL,NN) ,
' ’ (TOOMANY »TTO) , (SYNTAX, ISYN)

W111 branch to NN if ‘input is Just a carrzage return,

to ISYN if there is a syntax error, to TTO if the

expected terms are.there, but there are extra ones in

the input. If none of these is true, it will look first
to see if the term corresponding to argument 3 is missing,
~and it will branch to Gl if so. 'If term 3 was matched,

it will look next to see if the second term is missing;

if it is matched but with incorrect sign, it will transfer Ex. 1

to S2; if no correct match for it was found at all, it
‘goes to G2. If none of these conditions is- true the next
'.command after NOTERMS 1s executed v

The optzons can be gzven in any order, identxfxed by the
key words as shown in the ‘examples. Any option(s) may
L,be om;tted.~ s . v : I

-MISSING 1s followed by'

4_11):‘-the ordxnal number in the IETBRH command, of the
. - term being . .considered;,

- 2) . ‘the; 1abe1 to ttansfer to 1£ the tezm has not been
© - 3) (if present)1’the label to branch to if it is

o '}matched, but with incorzect sign. Lo

AR URTEATCIIRE TR R ’rﬂ!"i"-?m’!wmf’ﬁ*?m‘s :;‘Sf',ﬂ“;‘xf‘}‘ ":::;*'

sequence appropriate to
It must follow

expected are missing;

are there, but all with
e it branches to SS.

IGNS,S2)

expected terms are missing,
all right except for the

ammer to test on each or any
ter an unsuccessful IFTERMS.
ings and syntax errors, if

e case where we find all
ra term(s). NOTERMS must
RMS or ALLWRONG.

), (2,62,82)) , (NULL,NN) ,
(SYNTAX, ISYN)

is just a carriage return,

ax error, to TTO if the

but there are extra ones in

se is true, it will look first
onding to argument 3 is missing,
f so. If term 3 was matched,

f the second term is missing;

incorrect sign, it will transfer
for it was found at all, it

ese conditions is true the next

ecuted.

any order, identified by the
examples. Any option{(s) may

the IFTERM compand,rof the

’to»if the term has not been

ERIC

Aruitoxt provided by Eic:

20

o ag A T e T TR T
a

e e e o 15 2 Y ST TIGTI LT

21

The programmer cxperienced in the use of assembly
language can do his own checking after an unsuccessful
IFTERM, using the stored information.

Rl contains the # of terms expected in the IFTERM;
R2 contains an error code:

1 if input is null string;

2 if syntax error;

4 if all terms were matched, but there are
excess terms in the input:;

5 if one or more terms were not matched by

input terms.
If R2=5, two words store bit information:

#GFLAG contains a 0 bit for each term matched, a 1 bit

-for each term not matched, in the order given in the

IFTEPMS command. The remaining word bits are 0.

#SFLAG contains, in the same order, a 1 bit for each
term which would have a match but for the sign, 0 for
each other term.

TO (OTHER, AUTRE, B, JUMP). The simplest form of this
command has a single argument, a statement label, and
causes an unconditional branch to that statement. If

a second argument is present, it indicates the condition
under. which such a branch is to take placc. This argu-
ment is complex and is enclosed in parentheses: it has
either two or three jarameters: the name of a counter,
a relationship (opticnal}:. and a number. The relation-
ship may be GE- (greater than or equal to), GT (greater
than), NE (not equal to), LT (less than), LE (less than
or equal to), EQ (equal to); if none is stated, GE is
assumed. The branch takes place only if the counter
correctly satisfies the specified relationship.

TO Q5
The next statement to be executed is the one at Q5.
0 Q7,{CA,LT,S)

Means, branch ﬁo Q7 if the counter CA is less than 5;
otherwise take the nex: statement in sequence.

: 4. Manipulating Strings

: . NOBLANK. Takes the blanks out of a string, which may

2 be specified in the argument. If no argument is present,
. the input buffer (#IN) is assumed. Its normal use is
after INPUT, when a match requires no blanks: it is
particularly valuable in processing formulae Or equations,
where blanks can appear in random places.

Ex. 1

5 Ex. 1 NOBLANK
Takes the blanks out of the inpﬁt buffer. Thus., if the
student had typed "HORSE MAN SHIP", after this Command,
the input buffer would contain "HORSEMANSHIP".

Ex. 2 NOBLANK LAST

¢ Will take the blanks out of the string stored at location
LAST.

e

DELETE (REMOVE). Removes part of the input string. It
has one argument, a literal string or the label of a
literal string, which is to be removed. The argument

z may be multiple, a series of literals enclosed in.

i parentheses. In this case the first occurence of . each
i string will be removed from the input. The first

i . occurrence of that string is removed from the input.

Ex. 1 DELETE tas

Removes the first asterisk from the input. If the input
does not contain an asterisk, the string is unaltered.

Ex. 2 DELETE (***,)',* (")

‘Remove the first *, the first), and the first (.

DELETEALL. Removes part of an input string. It has

one argument, a literal string or the label of 2 literal
string, indicating the characters that are to be removed.
The argument may be a series.of literals enclosed in
parentheses; all occurrences of each strlng will be
removed from the lnput.

v
&
=5
A
X
P4y
Rod
=
v
g
iy
X"
bl

.

S ATNRTIY
.

'DELETEALL oL v,v

Y
3
L[]
-

' Removes all commas from the input strlng. If these are
no commas, the input is unaltered. - -

RO

A TASEE
’

Ex. 2 Dzmmm. '(-A"" v 'I"' o' 'u')

PRI

LRI T e SR
A A By S ey AT ST

Removes the vowels a, e, 1, o, and u from the 1nput . o Ex '1
string. o , . .] L - : f ‘

ERIC

Aruitoxt provided by Eic:

..\ "
e SR TR TR

0
e

out of a string, which may

ont. If no argument is present,
assumed. Its normal use is
equires no blanks; it is
rocessing formulae or equations,
random places.

e input buffer. Thus, if the
SEIP", after this command,
tain "HORSEMANSHIP".

£ the string stored at location

part of the input string. It
1 string or the label of a

o be removed. The argument
of literals enclosed in

the first occurence of each
m the input. The first

is removed from the inp 1nput.

from the input. If the ihput
sk, the string is unaltered.

rst), and the first (.

£ an ‘input string. It has
ring or the label of a literal
acters’ that are to be removed.
ies of literals enclosed in

es of "each string will be

e input string. If these are
ltered. ‘ .

".o'.l'u')

i, o, and u from the'input

23

REPLACE . {SUB, SUB:FOR). Replaces the first occurrence

. of a specified string in the input with a second string.

Two literal strings are requzred as arguments: the first
occurrence of the first str1ng is replaced by the second.

REPLACE "TWO','2"

Replaces the character string "TWO' with "2" the first
time it appears in the input.

SUBALL. Replaces each occurrence of a specified string

in the input with a second string. Two literal strings

are required as arguments: cach occurrence of the first
string in the input is replaced by the second.

" SUBALL TARY g

Replaces each double asterisk with tne up-arrow. If
there is no **, the string is unaltered.

ADDAST. Takes formula input by students and transforms
them into a BASIC-like form. It inserts asterisks
between :letters, or between numbers and letters (in either
order), and between a number or letter and the parentheses
following or preceding it. It replaces the FORTRAN
exponentzatzon "%%*" with "4+". It removes blanks. No
argument is required.

- ADDAST

Converts an input formula. If the student had typed,
A*%*2 4+ 2AB. + B**2 - S
this command would convert it to
A+2+2*A*B+B¢2

Movz'(udv22). Moves all or part of a string from one

. Tocation to another. The arguments specify the strings
" from which and to which the move is to take: place; the

number of characters to be moved (if this parameter is

.omitted, it is assumed that all of the ‘string Will be.

moved. . The user must take care that the locatlon to which
he is: movzng the. string is. defzned large enough ' to contain

. the string moved else ‘he may overwrite other material.

If he speczf;es more characters than the’ strzng contazns,
he w111 move garbage along Wlth the strlng he wants.

Tror the more advanced programmer who uses. some assembly

language in his programs, special forms of MOVE are

" available in which some parameters can be stored in
»machine reglsters. See examples belcw. .

vz -

Hovestheentirestring at A to B. A is 'u:_xch‘anged. E

3 24

¥ Ex. 2 MOVE A.B,40

" . APPEND.

& ‘Moves the first 40 characters at A to B. If A does mod@fyln
B not contain 40 characters, garbage will be moved with Str}ng r
% it. string t
. to be mov
g Ex. 3 MOVE SAY ,WHEN,*1 paramete
S) .o append m
. Moves the initial N characters of the string SAY, where A has room
& N is the number in register 1, to string storage in WHEN.

s : . v Ex. 1 APPEND

¥ Ex. 4 MOVE (HOW, 3) ,MUCH,*2 , ' o .
g count of

Moves K characters of string‘HOW,_starting with character
‘number 3, to MUCH, where K is the number in register 2.

Ex. 5 MOVE (HOW,*3) ,MUCH,*2
Moves ‘K characters of string aow,'startlng'ﬁlth character

number J, to strin, location MUCH. K is the value in
reglster 2 and J is the value in reg;ster 3.

PN VIS AR AT T MY

§ PTRMOVE. wes'designed for moving strings whose location
% is stored in a known address. The instruction is of
& the form~ .
¢ PTRMOVE ~ *A,*B
v ‘where the address of the string to be moved is stored in
z A, and the-address of the new location is stored in B.
i Variations of thzs are the use of 1ndex1ngs~r
b
B PTRMOVE .. (*A 1) ,*B
H moves the strlng whose address is in the nth word of A, -
f where n is the value stored in register 1. This operat;on

may be applied to the 2nd argument also.

In certalﬁ cases the asterisk may be left off either or
'both arguments. o . ;

» PTRMOVE A.(*B 1) '
.In thls case it is’ assumed that ‘A.is the name of the

string to be moved. By. leavang off . both asterisks, ‘the
operation becomes the same as HDVE., -

UL Ay wpy e
%‘-('\" e 3;5"-‘??""?"???3”,’&’\‘7"5‘5 IR oy va g s

o 11 .

i

g

:

=

TC

= |m-‘ Provided

S e

haraéters at A to B. If A does
hcters, garbage will be moved with

i characters of the string SAY, where
register 1, to string storage in WHEN.

H,*2

bf string HOW, starting with character
here K is the number in register 2.

CH,*2
bf string HOW, starting with character

location MUCH. K is the value in
the value in register 3. :

ed for moving‘strings whose location
address. The instruction is of
»*B

the string to be moved is stored in
of the new location is stored in. B.

are the use of 1ndex1ngs.

A ’1) *B

ose address is in the nth word of A,
e stored in register 1. This operation
e 2nd argument also. . :

e asterisk may be left off either or

By leaving off both aster;sks, the
e same as MOVE.

Aruitoxt provided by Eic:

t9
i

APPEND. Corncatenates one string on to the end of another,
modifying the character count appropriately. The second
string remains unchanged. The arguments specify the
string to which and the string frem which characters are
tO be moved. Note that this is the opposite order of the
parameters in MOVE. The user should be careful not to
append more characters than the defined strzng location
has room for.

APPEND A,B

Adds ‘string B to the end of strlng A and modifies the

- count of string A to reflect A's new length.

-

o0

26

. -

AR
&
o
j4 N
W
pa

5. Manipulating Humber:

: : NUMBER. Examines a character string to see if it

g, .constitutes a recognizable number and, if so, converts

&, to floating point form and stores the number. The first
k. argument is the location in which the number is to be |
stored; the second argument is the location to go to

if the string is not a recogn;zable number; the third
argument, if present, is the location of the str;ng. .IE
there is no third argument, the input buffer iIN 1s
assumed,

Ex. 1 . NUMBER - TIME,NOGOOD

Examines the input buffer and e;ther stores -the converted
number in TIME or’ branches to. NOGOOD. :

Ex. 2 NUMBER ~ TIME, NOGOOD NSTRING
v Does the same for a string in NSTRING. f '

A recognrzable number' in- thls ‘and other commands test;ng
for numbers is defined as be;ng of the follow;ng form.

[+1xx{.]xx[r-:[+]x[x]]

where the brackets indicate optional characters and there :
can be any number of d;g;ts X in the part of the number
precedlng the exponent.: ' LT o _

SCAN Separates a: strlng 1nto three parts- that part
Containing a. number, the part before it, and the part
_after. . Either four or five arguments are required: -- the
‘" location at which to store the number; ‘the .location for .
the charactcrs before the number: the location: for ‘the
. ‘characters after the number; an error location. if no’
~number is found; the strlng location (if: omztted,‘lnput
‘buffer assumed). -All’ strings must. be.defined by the . -
" user., If there is no number, a branch to: the ‘error O
ﬁlocatron occurs and’ zero counts. are stored -in-the ‘three
~specified string locatlons. "All.blanks are removed from,
.. the string scanned,- whether -or: not the operation is '
‘successful. .'ﬂ»g_r,u . . S .

-Scans the 1nput‘buffer for a:strxng of characters o
_representing ‘a ‘number.. = That: strrng is stored in NUMST;
the characters which' preceded it:in 'STBEF; " the characters ,
which' followed it in STAFT. -If no-number is found, S e ARG
NUMST , STBEF, SIAPT are given zero counts and a. branch to o S ;oﬂg?? L
"ERR occurs.~H; S , L o ST

. e

&
5.
P
Eo
&
¥
ae
<

B
&
Z

¥
£
Z{f
2

¥

2

5

i

"

b

3

5

v

3

3
v

AN

[i dn 20 b

AT A e e e e o o

string to see if it

er and, if 'so, converts
res the number. The first
ich the number is to be
the location to go to
able number; the third
cation of the string. If
e input buffer #IN is

either stores .the converted
NOGOOD. :

NSTRING.

s and other commands testlng._
g of the following form:

tional characters and there
in the part of the number

three parts: that part
before it, and the part
guments are required: -the
number; the location for .
er; the location for; the .

n error location if no
cation (if omitted, input
must. be defined by the

a branch: to ‘the error A
s are stored in the three
11 blanks are removed from
not the operation is. ‘

tr1 g of characters o

; is stored in- NUMST :
" STBEF;. the - characters
£ np ‘number ‘is found,» :
YO counts and a branch to

26

- AROUND

SCAN#. - Performs all the functions of SCAN but also -
converts the number into floating 901nt form for use
in computation.

SCAN$ NUMST,STBEF,STAFT,ERR

Stores the. string preceding the number in STBEF, the
string following the number in STAFT ané. the number,
converted to floating point form, in NUMST.

to see 1f it is a number (only). The first argument
is the location to which to branch if the string is
exclusively a rmber; the second argument (if present)
is the location of the. string to be tested. If absent,

- input buffer is assumed -

. IFNUMEX = NEXT

Branches ‘to NEXT if the input buffer contains only a
number . :

'_mo'mun. Is the reverse form of IFNUMEX. It tests
. the input string (or any other strlng) to .see if it is

‘a number {only). The first argument is the location
‘to which to branch if-the string is not excluslvely a
number; the second argument (if present) is the ‘location
of the string to be tested. If absent, input buffer is
assumed. R) -) _ L :

mo'muu NEXT

’ Branches to NEXT if the input buffer is not exclusively

a number.

_'AROUND. Tests the range of a floatlnb poznt number. .
.There are: four. arguments; ‘the ‘number, the’ central value,
©'the_deviation from this valuc allowed, and the successful

'“fubranch pornt.. S v R

-"AROUND T us,scoro _ _
"f*Ir s-s<u<s+E, the program w111 branch to GOTO, if not,

*- the: next 1nstructxon ‘in-sequence. will be taken. S and E
‘.-are the 1ocat10ns of floatlng 901nt nnmbers. :=“-. . -

,rs o s',rs'o oz!;amcu e

.48<K< 52, 1t hranches to BRANCH, else takes the next

' ,$1nstructhn.' 'FS' here 1ndlcates a floatzng poznt nnmber;

P

[Eor b M

27

BETWEEN. ‘Tests the size of a number. There are four 6.
arguments: the number to be tested, the lower bound, '

the upper bound, and a branch location. The bounds

can be either locations where the bounds are stored or

actual floating point numbers.

Ex. 1 BETWEEN N, BOTTOM,TOP ,GOTO
i If the number at N is between the values of BOTTOM and Ex.
: TOP, inclusive, it branches to GOTO; if not, the next ‘ ,
{ instruction in sequence is taken. : : EX.
Ex. 2 BETWEEN N,FS’'12.5",FS'12.8',T749

If the number at N is between 12.5 and 12.8, it branches
to T749. 'Note the format of floating point constants;’
see the Metasymbol manual for further deta;ls.

RANDOM. Generates and stores random numbers. . The first
argument is the location at which it is to be stored. Ex.
The second and third arguments (optional) indicate the '

range. If they are omitted, the number will be between

0 and 1. A sequence of random i.ambers generated by a

series of calls is unique: no other runs of the program

will generate the same sequence.

R A T T R L Tt LR O T FUO IR,

'RANDOM " X,A,B -

i

& Generates a random numher between A and B and stores it
Z in X.
i Ex. 2 RANDOM Y '
% R L ‘ , . :
£ Generates a random number between 0 and 1 and stores it -
£ in Y. _ : - ; Ex.
: Ex. 3 RANDOM A,FS'O‘,FS'SO 0 ‘ |
% ’ .,Generates a random number between o and 50 and stores 1t
Y -in A. ('Fs’ 1nd1cates a float;ng po;nt number)

RANDOMR s like moou, except that the sequence of.

" numbers. generated ‘is repeatable: . -that is, every run of

. the program will’ generate the same sequence of psezdo- o '

’njrandom numbers. ;;e-. . Sl v . v , - Bx. -

¢

5 ""‘?mf ks

a number. There are four

tested, the lower bound,

ch location. The bounds

re the bounds are stored or
S.

(o]

.

n the values of BOTTOM and
to GOTO; if not, the next
taken.

2.8',T749

en 12.5 and 12.8, it branches
£ floating point constants;
or further details.

es random numbers. The first
which it is to be stored.
nts (optional) indicate the

, the number will be between
dom numbers generated by a

no other runs of the program
ence.

tween A and B and stores it
tween 0 and 1 end stores it

tween 0 and 50 and stores it.
oating point number)

cept-that the-sequencefof C
le: that is, every run of
the same sequence of pseudo- .

6. Manipulating Counters
BUMP (INCREASE, AUGMENT, ADDl). Increases the value of
a counter (or counters) by 1. The argument is the name
of the counter (or counters, separated by commas and
enclosed in pareritheses). The maximum value of a counter
is 255.

Ex. BUMP cl

Ex. zUMP (C2,c23,A)

- DECREASE

DECREASE (SuBl). Is used to decrease the value of
counters by 1. The argument specifies the name of the

" counter to be bumped, or the counters, if more than one,

separated by commas and enclosed in parentheses.
DECREASE c1

(C2,c23,R)

The minimum'velue for a counter is 0.

RESET (ZERO).. Stores a new value in specified counters.

The first argument is the name of the counter or counters;
the second is the value to which the counter is to be set.

" If the second argument is missing, zero is assumed to be

the value.:*
RESET (aB,C2,Q17)
Gives'the three counters the value of Zzero.

RESET 017.,4

vGives7the counter,Ql7‘the;velue 4.

- ADDCOUNT. .Sums two or more counters and stores the

result in one of them. The first argument is the name
of the .counter in which the sum is to be stored. The

- second argument is the additional -counter (or counters,
.separated by commas and enclosed 1n perentheses).z

tADDCOUNT .;t s.A- _
';Adds counter A to -x and stores the sum in S.
' 'Anocoum o s, (A B.m . . ;
-ji,adds counters S. A. B. and R and stores the sum in S.

- e A

29

30

CTARLTH. Enables the user Lo add, sublract, multiply or
divide counters. The operation is specified in the
second argument field. The fourth argument is the branch
point in case of error; all counters remain in orxgznal
form. Error conditions are

overflow -- value > 255
N underflow —-- value < 0
division by 0 :

CEx. 1 CTARITH - A,ADD,B,C
. ADD A TO B LEAVE IN A

Ex. 2 CTARITH A,SUB,B,C
: SUB B FROM A LEAVE IN A’

Ex. 3 CTARITH A,MULT,B,C
MULT A BY B LEAVE IN &

Ex. 4 - CTARITH A,DIV,B,C
: DIV A BY B, TRUNCAEE AND LEAVE IN A

2
¥
by

{‘;:.
o
l‘J._.

ey

CTWRITE. Outputs a CRLF and then the value of any
counter in declmal form.

Ex. 1. CTWRITE T2

If T2 has the value S5, this generates a. carriage return
and line feed. then the number S.

CTOUT. oOutput just the counter value (no CFLF).
Ex. 1 cToUT A "

R N U VR ST (ST RGN

if the counter A is 2, this prints 2 onfthe current line.

SWITCH. 1Ig a command for testing the value of a counter
;and branching to-one of several ‘locations, depending on
its value.. The first. argument is the name of ‘a counter..
The second argument ‘is a set of" statement labels =
(separated by .commas and-enclosed. in- parentheses) to’
which to. branch on. sequent;al values. of the: counter,
startzng with zero..'If the value of the counter is -
greater than the’ number of" branch points: supplied, the
'SWITCB is 1gnored and tne next command is executed

30

- Lo add, sublract, multiply or
ation is specified in the

e fourth argument is the branch
1 counters remain in original

ERUNCATE AND LEAVE IN A

hind then the value of any

llis generates a carriage return
ber 5.

Ebunter value (no CFLF).

is prints 2 on the current line.

testing the value of a counter -
pveral locations, depending on
ment is the name of a counter.
et of statement labelsv.ﬂ
enclosed. in parentheses) ‘to

tial values -of the. counter,

e value of the counter:is: :
branch points ‘supplied, the
next command is executed

For specifying a number of branches, SWITCH is more
efficient in execution than a series of TO's although
functionally equivalent.

SWITCH A, (AO,A1,A2,A3,A4)

Branches to A0 if A is zero, Al if A is 1, A2 if A is 2,
and so on, but goes to the next command in sequence if
A is 5 or larger. -

oy T L T

31

e e i e Ss s e e

7. Constant and Parameter otorago'

DEFINE (DEFINKEZ). Reserves space for the storage of
strings of characters, including the character count,
and defines the label which will be used to refer to
it. The first argument is the label, the second is the
number of characters. If the second is omitted, 16
characters are assumed. The user can use the same
space for different things in different parts of his
program. It is his responsibility to be sure a string
area is .large enough to contain the string moved into
i it or appended to it. -There is no limit to the length
5 of a string or strlng area but if the string is to be
used as a message it should be limited to what can be
pPrinted on one line (70 characters).

Ex. 1 DEFINE STR1

i . Reserves storage for 16 characters, to be referred to
i : as "STR1". : Ex. 1

Ex. 2 DEFINE srnz 70

: Reserves storage for 70 . characters. to be - referred to
as "STR2".)

i . COUNTER (COMPTEUR, C). Defines . a label as referring to
‘ a counter and reserves space for that counter. The.
first argument is the label .or a sct of labels for
several counters, scparatcd by commas' and enclosed in
.parentheses. . The second argument is the initial value
the counter(s) is to have. If the second a.gument is
not present, the counter(s) will have an initial value
of zero. Currently, 32 counters are allowed in'the .
progran; the maximum value for .a counter is 255. Any : :
‘number of COUNTER statements may appear in a.program Ex. 1
(up to 32), but no counter should appear in more than.
one COUNTER. statement as. thrs 1s a mnltxple definxtxon
of a label., ’ : ,

Ex. 1 COUNTER ,,";Abs, - o _
'Establishes a counter to be’ called AQB, with en in1t1a1

o value of zero. *p.n

ML e e e e

Ex. 2f-;-fCOUNTER ,S sl _]
:gEstablishes a- counter. B, with an in1t1a1 valne of S.

R A i Lo T R T

E*. 3 COUM:BR (C'DDEDP) '7 _] R R
}fzstablxshes counters c, n. n, and r, each wlth initial
v"value of 7.1, PR

BN LA

) [iaady ks

BB 00, £ KL T U

e e e g T LT UL

brves sSpace for the storage of
including the character count,
thich will be used to refer to

§ is the label, the second is the
®1f the second is omitted, 16

8 The user can use the same

ngs in different parts of his
Eponsibility to be sure a string
b contain the string moved into
There is no limit to the length
eca but if the string is to be
ould be limited to what can be
characters).

characters, to be referred to

characters, to be referred to

Defines a label as referring to
space for that counter. The
bel or a set of labels for
rated by commas and enc}osed in
d argument is the initial value
ave. If the second argument is
er(s) will have an initial value
counters are allowed in the
alue for a counter is 255. Any
ements may appear in a program
nter should appear in more than
as this is a multiple definition

Ito be called AQS, with an initial

B, with an initial value of 5.
,
¥, D, E, and F, each with initial

ERIC

5o o

Counters can have any name fwithin the limits on label
names) as long as it is nor used for any other purpose.
Onc convenient procedure is to use a name related to

the label of the WRITE statement where the counter is
first used: thus, if the WRITE statement is labelled

T32, the counter might be labelled T32C. Or, the counter
name might indicate the function of the counter. But

the user does not have to follow any such naming
suggestions.

SET. A me:tasymbol command enables the user to define
{at assembly time), a label or labels by assigring to
each the attributes of the list in the arqument field.
It can be used to supply synonyms for counter names,
for instance (this may be useful for mnemonic purposes.}
It can also be used to give specific arithmetic values
to labels. ZLabels have the values assigned unt:} they
are redefined by another SET statement.

ABC SET DEF
al SET 23
A2 SET Al%*2+3

" In these statements, ABC is given as a synonym for DEF

{vhich must be defined elsewhere: Al is the nunber 23

" and A2 is defized in terms of Al. Labels originally

defined by an EQU or by a COUNTER statement may not be
redefined with a SET. v

-

TEXT#. Defines a character string, specifying the name
which will be used to refer to it. The label field
contains the name of the string; the argument field
contains a literal string.

AZ TEXT# 'VELOCITY'

Stores the characters "VELOCITY" at a location identified

as AZ. Thus a statement WRITE AZ will produce the word
VELOCITY at the student terminal. '

Strings are stored internally in the conversational
system in a fashion different than in supplied Sigma-7
software. 'The full first word of this string contains
the number of characters in the string; the characters
begin with the first (left-most) byte of the second

‘word. ' The command enters strings in this fashion. This.

change was made because in some instances it is advicsable
to work with strings of more than 256 characters, the -

~maximum which' can be stored with the TEXTC command in

Metasymbol. All of the procedures and subroutines in fhe;
system assume sgtring storage as just outlined.- ' :

33

Mt s < o A I ot S 4 7T P SOTTS T

34

" STRING. Is similar to TEXT#, but it has a branch around
the text-string itself. So STRING can be "executed" (it
does nothing), while TEXT# cannot. The beginner who is
uncertain of this distinction should use STRING. A -
string which needs to written out many times should be
stored this way.

R b S SN TR § o R A i <)

GREET STRING 'GOOD DAY!'®

Stores the string °'GOOD DAY!’ under the name GREET.

’

FRCRTAGTIMIS YT YT O e n By
. ?
L]

DEFNUM. Reserves storage space for individual floating
point numbers and assigns labels to the storage. The
argument is the label or labels ({enclosed in parentheses,
separated by commas). .

Ex. 1 DEPNUM WEIGHT

Reserves a sxngle storage space for a variable WEIGHT
Ex. 2 DEFNUM. (X, ¥ Z)

Reserves storage for three variables.

. Used with one argument, this.direotive only reserves
storage and does 'not establish any initial value.
Assxgnxng values 1s the nser s responszbzlity.

An opt;onal second argument can be used to store an

initial value for each label defined in the first
argument. The second argument is one number, or one

symbol only. -
Ex. 3 DEFNUM (x,y 5), FS'3. 5*

'W111 define locations X, ¥ and 8 and place a floating
‘'short 3.5 in each’ of then.

Ex. 4 DEPNUM ~ K, R

Will define 1ocat1on K, and store in it the floating
point number which 1: now in location R.

e e R U T T T R A A R R Y T S O W AT MR TV PR TSR W IO AIN Y | SRR vy ey

N R W s R sam st e e o oo

35

s AT ENERAT,

34

¥, but it has a branch around
STRING can be "executed" (it
cannot. The beginner who is
on should use STRING. ‘A

n out many times should be

AYL'
!’ under the name GREET.

abels to the storage. The
1s (enclosed in parentheses,

ace for a variable WEIGHT.

ariables.

directive only reserves
ish any initial value.
's responsibility.

can be uéed to store an

1 defined in the first
t is one number, or one

d 8 and place a floating -

store in it the float1ng
location R.

Ex.

STORENUM. STORENUM has two argvments. The first is a
Jocation previously defined by DEFNUM, and the second
is a floating short number which is then assxgned the
first argument. .

STORENUM -A,FS'1!

Places a float;ng short one in A which is prev1ously
defi ﬂd.

a
B
- ',.
]
B
k]
B
5

L uaall

- S A AR A G Ol b o,

w3

PURINPUE

SRRV TR N ARE L Teluint B 205 it A

36

DEFCOMP. DEFCOMP works in the same manner as DEFNUM
except that for cach label it reserves a double word.
It also may assign a value at time of definition. This
‘is done with a complex second argument which contains
two floating short numbers. The reserved number may
then be handled with doubleword commands.

DEFCOMP- A, (FS'1’,FS‘'2°)
Will reserve two words addressed by A with a floating

short 1 in the fxrst and a floating short 2 in the
second]

STORECOMP. STORECOMP will store two floating short
numbers in a previously defined complex number.

STORECOMP A.(FS'l'pFS'Z)

‘Would store a floatzng short 1 and 2 in the doubleword
defined as A.

DEFTABLE.' Reserves storage space for tables or linear
arrays of floating point numbers. The first argument
is the label to be assigned, the second is the number.

of Words 1n the table. o

DEFTABLE - TIMETAB 100

Reserves 100 words for a table whzch will be referred
to as TIMETAB. Numbers can be stored easxly in tables

“like’ thzs using the command STACK.

STACK. Stores - numbers into a table or linear array.

{which must have been defined us1ng ‘the DEFTABLE

directive). The first ‘parameter is-the location of the
number; the second is the name of the table; the third,
if given, is the branch point for overflow.. (If. no
th;rd argument . is ‘'given, table overflow is marked by a

' warning printout: *"Table overflow, value not stored,
-and the ‘next ‘sequential instruction is executed. - This

is not generally advised. STACK: is: useful 1n simulatxons

. for storlng student measurements.j
" STACK. . TIME,TIMETAB)

.:‘Thzs w111 store the current value of the number IIME

into the next' available space. in the ‘tahle ‘TIMETAB; i. .en.

_if there are 100.words' reserved for TIMETAB, and-16 have
;already been filled, TIHE~wilI be stored in the 17th.

et

Other Commands

student's
" in the prg
several e

o .-.\-4—-—-— Lo
e ALY TN AT PTG

36

manner as DEFNUM
es a double word.
f definition. This
nt which contains
ferved number may

A with a floating
Mshort 2 in the

floating short
lex number.

in the doubleword

b will be referred
d easily in tables

or linear array
the DEFTABLE ~
§ the location of the

value not stored,
is executed. This
useful in simulations

the number TIME v
p table TIMETAB; i.e..,
TIMETAB, and: 16 have

ored in the,17th.

8.

Other Commands

SYSTEM DIALOG. Directs the assembler to select the file
DIALOG containing the commands that are to be valid
during this assembly. This must be the first statement

- in the program.

NAME
START

Zither NAME or START must follow the SYSTEM DIALOG
command at the beginning of the program.

START. Inxtlallzes the flow of 1nstruct10ns when

: executlon beglns.‘,

NAME. *AJAK'. ' Does the’ work of START, but in add;txon
uses the (4 or less) characters in the ardqument to
name the response file on which the students® responses
will be saved. if any of the SAVE commands are used. In

. this case ‘the file name would. be ‘RESAJAK’. It also

stores these characters as part of the students' ID on
the name file, which keeps records of starts (and '

v restarts, if ENTR! is used).

ENb. Thxs indlcates to Hetasymbol that 1t is the last
Statement to be processed. See Sec. 1-2 for discussion
of END DIALOGUE and END thhout an argument, ‘or wzth a’

_dxfferent argument.

'STOP (HAtTf.; Indicates that this is the last. instruc-

tion in the _program. which will be executed- ‘i.e., when

the" student uses” the ‘sequence, he is done at this point,

and control is returned to the executive. ‘It also
erases’ from the name-file the record. .containing this-
student's: ID. - It is not necessarxly the last statement
in the program. .Nor need ‘it be unique: 'there may be

‘several ex1ts from the program.“‘

FiNABE (EPILOGUE; EPILOG). Indlcates that thls is- the
. -Yast instruction in the program.which will be executed.
- When the' stident reaches-this point, he. is asked to -
o type. a comment .about" the sequence._ ‘This comment is. -
"saved -on’disk. ' ‘Control is then returned to the execut;ve."
' Use of:this. instruction is ‘optional; some authors prefer

to do thzs themselves, or: not do it at a11. s .

“
‘

37

.. alé}':"«),’ii}.‘{?.;(g“ ?"".‘?Tl*";f?g’?.’i"é‘i"')'k”f?’ﬂfifi’h‘?’r FLABANES

ST

;'17
x-
£
e
B
d
5
o
o
"
23
=
=
.Eé'.},
%f{ -
2,
ot
-
&

RPOTIRETCTATR P TRA R RT

rrrey

",“-;’S*}jv)_'x,-_-w,v.‘\mwwmqu..m e

38

ENTRY. 1Is the command which permits restart. It does Ex.

not need to be used. If it is used, the student who

does not finish a conversation in one sitting can restart
at some place other than the beginning. The command
ENTRY should be used at all locations at which the
teacher wishes to allow a rastart. Normally, it should
be just before -a WRITE command, so that the student will
not be restarted at an input. Restart occurs at the

last executed ENTRY.

If no ENTRY is used 1n the program, the student begins
directly with the user program. If one or more ENTRY
commands are used, he is first asked to type an ID;
this identification is used for restarting. Further,
if the program uses any ENTRY commands, the student is
reminded of his ID after he typestSTOP at any input.. -

In a program using restart,_lf the student uses a
previous identification, he is asked whether he has used

‘the dialogue before. If so, he is restarted at the last

entry point executed when he'firstaran the program.

' SAVE ' (KEEP, INFO). Causes information to be stored-on a

disk file (whlI‘*the program is running) for later study.

It has- two forms: - to save student responses and-to save

counters. - . The form to.save _responses has one arg-iment, -) _
a character: strxng which.will serve as the name of the Ex.
record as: it is stored on. dzsk.j ‘When SAVE is- encountered

in running the program, the contents of the’ 1nput buffer,

the date, the time, and the name ‘are saved. The hame

 should be no longer than 40 characters. -One possibility

is to use the label’ of the’ preced;ng'WRITE statement. -
The SAVE command for preserving the values. of the counters
has three argumentS' the first must be COUNTERS; ‘the

" second is. the name. of the counters (separated by commas

and enclosed by parentheses) or ALL; the third is a
character strlng ‘to'serve as'a name. - If the third -

‘argument 13 omitted the name 'COUNTERS' will be used.
save m-:szonsz 1' o LT
' Saves the input buffer, tzme, date, and the namﬂ R ' . Ex.

'RESPONSE 1" on dxsk. R

2 71_SAVE“ comms m,'mm'

;HSaves all of the defined counters umder the name.
B 'mm" : R

38

its restart. It does
Bed, the student who

one sitting can restart
hning. The command
MSons at which the

. Normally, it should
o that the student will

Estart occurs at the

hm, the student begins
} 1f one or more ENTRY

ands, the student is
STOP at any input.

e student uses a

tked whether he has used
s restarted at the last
st ran the program.

ation to be stored on a
jcunning) for later study.
ht responses and to save
bnses.-has one argument,
ve as the name of the
When SAVE is encountered
ents of the input buffer,
Bl are saved. The name
acters. One possibility
ding WRITE statement.
the values of the counters
must- be COUNTERS; the
rs (separated by commas
ALL; the third is a :
-ue. -If the third
OUNTERS®™ will be used.

b

.for the subroutzne.

SAVE COUNTERS, (C1,C2,C3),'K"

Saves the three listed counters under the name "K".
SAVE COUNTERS,K2
Saves only the counter K2 and assigns the record the

name "COUNTERS".

SAVEID. Is identical in function to SAVE except that

"the student ID is presevved as part of the disk record.

FORTRAN. Allows the user to introduce FORTRAN subroutines
into his dialogue. Any number of FORTRAN subroutines can
be called any number of times within a dialogue program
subject only to the limitations of space. All FORTRAN
facilities in XDS FORTRAN IV are available to the user.
The subroutine itself must be compiled using the XDS
FORTRAN IV compiler (not IV-H) and is loaded along with
-the rest of the program.'

The argument of the command is the name of the ‘FORTRAN
subroutine together with (in parentheses) the arguments

PORIRAN K POLLY:(X.Y Z)

-The default assumptxon is that the subrout;ne arguments

are real variables; the user can gpecify if he wants

.the variables to be integers, complex numbers, etc.,

according to the following table:

.1 Integer

-2, " Real .. - :
4 . Real double precision
8 . Complex -
- 100 = Double complex '
3P _ Any argument type
‘ ronrnAN : NATINV , ((Z,2),(3,1) . (2, 8))

o Calls a subrout;ne in which I and J are integers and Z
- is’ complex.~ o

EERE (MARK). Simpiy i&ehtifies?a'lqcation in the

- ProgEam.

39

L G S ST

Eoase
e

SN

REIT IR WA A\ TV TN, SKareet v v ez gy e,

R e R RN & 7 SRt it o iAo

VTSP SRR SRS AT Y A AT KR OO NI AL

TR AT e

Ex. 1

o a:gument._.

LOAD (TRANSFER). Brings into core the program segment
whose binary name (in single quotes) is the first
argument. If the second argument is present, a branch
is made to that label. Please read Section 3.7 on
.OVERLAYING for a more complete dlscussion.

LOAD 'CONIBO®,CS

Brings into core the: b;nazy file named CONIBO, and
"brenches to CS.

* "TRANSFER = 'BR3'.

,Briﬁgs into core the binary file whose name is BR3.
Presumably the programmer will later trar-ier to the
instructions in BR3 by a TO command or its equivalent.

AUDIO. Works like a WRITE command, except that the
message is delivered in an audibie fashion using the

- RAAD audio response device,. (William M. Brobeck and

Associates), rather than through the teletype.
AUDIO VOICEI

VOICEI is the location in which 1n£ormatlon is stored
ident1£y1n9 the audio record.

. TALK. To indicate. the -audio record, five pieces of
‘Information must be_given, for the RAAD device. These
‘are given -in order, as a set of hexadeczmal digits by
: the follow:.ng ‘command. .

‘vozczx | mz.x , x’(digits)’

‘Thus tALK supplxes the znformatlen about the location

- of ‘the audio record. It must be labeled and referenced:
. by the audio command that actually. produces the. talk;ng.
_VOICEI is a label, starting in column 1. -

ANSWER Works like. INPUT, except that it ‘checks the’

", student input for REPEAT, repeats .the last audio
message, and continues from. there. Normally,‘xt should
_be used only after ADDIO."-j S

';GOOD " Goop uill randomly choose one of ten statements.

equivalent to. 'correct' It -may be used thhout any

core the program segment
quotes) is the first
ment is present, a branch
e read Section 3.7 on
discussion.

ile named CONIBO, and

ile whose name is BR3.
1 later transfer to the
ommand or its equivalent.

mmand , except that the
dible fashion using the
illiam M. Brobeck and
ugh the teletype.

ch information is stored

record, five pieces of

r the RAAD device. These-
of hexadecimal digits by
)l

ation about the location
be labeled and referenced

may be used without any

e e e e e S AR TP M T TN

se one -of ten statements .

4y

In which case the next instruction will be executed
after the GOOD response is printed.

It may also be called with an argument which is the
address of a location.

GOOD . ouT
In this case, after printing the message the prdgram
will branch to OUT. ' :

AGAIN. Will randomly choose one of 10 statements
equivalent to 'try again'. It is used with or without
an argument, as in the command GOOD.:

GREETING. Displays a greeting to the student appropriate
to the time of day:

Good Morning, -

Good Afternoon; or

Good-Eveﬁing"

41

=
&
"
[
iz
fou:

N

I SR S

£y
7

= ATICT TS ORI

CHAPTER 3 _
GETTING IT ON THE MACHINE

If the reader has had no previous experience using the BTM

timesharing system, he will need some assistance in learning how

to load, debug, and run his program. Probably the most effective.

method is to ask an experienced Sigma 7 user to spend a little
time with you untilbxou know_tne ropes; after that, you can refer
to the XDS manuals for additional information. However, it may

be helpfullto_have-sonevmateriai in tnis'convenient location. We

have_by no means attempted to explain the full.power of the systems

described; only enough information is provided to get the beginner

going.

/.

In what follows, 1t 13 assumed that the . program is to be typed at
a term;nal and stored on disk; it will be modifzed and corrected,

assembled, tested, and fznally'mnde avazlable for student use.

Before - you begin, you will need a legal account number check with

'iyour computer center on. . this. You will need to know the account

contaxning the dzalogue system and librarxes as weil. (At Irvzne,

bzt 13 39999)

B Using the terminal

To sxgn on, you must press the "Break' key. 'the sYStem Hill
announce 1tself and ask you to identify yourself wzth name and

.T>~'account number._ Once this is accomplished, the system will type

(an exclamation po;nt, which ueans that 1t‘is vaiting for you to

42

e e, VI ST AT LI L
- e e et .

42

tell it what you would like it to do next. Here are some of the
functions of the monitor which you will want to be able to use;

In these examples, messages output by the monitor are underlined;

Note especially that, in calling for any of these functions, the

perience vsing the BTM - user types only the first two characters; BTM finishes the word.
b assistance in learning how

Probably the most effective ILOGIN: (this asks the user to type his name and account
number. When you have done this, press carriage return.
If you are acceptable to the system, it will type an
exclamatzon point and wait for your command)

7 user to spend a little

:?s; after that, you can refer

{TABS (tvoe the numbers of the charac*er posxt;ons
where you would like to have tab stops, separated by
commas. Carriage return when you are through)

'ormation. However, it may

is ‘convenient location. We

1EDIT (calls for the ‘text editing program which you
h the full power of the systems will use to input your program. More below on this.)
s provided to get the beginner IBYE (indicates that you are finished and wish to sign

e program is to be typed at There are some special typing conventions which the‘user should

awar £2
1 be modified and corrected, be e o

Lvailable for student use.

L . S o Return to executive: when the user is in some system or
gal account number; check with . - subsystem, he may wish to return control to the executive.
‘He does this by pressing the escape key thce - perhaps
._-several txmes. _

Bill need to know the account

ibraries as well. (At Irvine, . S - H’Backsgace., escape and rubout', w111 cause an effective

ackspace in the information being stored in the machine.
'It may not -cause an optical. backspace.ln ‘the mater1a1 you
. .see on the termlnal, however.‘ o o _

lErase- , escape'i“x' causes the entxre presentnlxne to be

k" key. The system will ‘be renooed from the term;nal. _ 7

‘ ' S . T jh‘Re ’::"escape “and ‘"R" cause the complet‘ statement to

ify yourself vith name ‘and. , o retyped. 1f there have been backspaces and erasures,
o S -~ it is eometimes nice to be able to see exactly what you -

lished, the system will type . T ‘have done. The machine waits for further 1nput '

at it is waiting . for you to - R T - o . A o

deleted from the machine. - Again, 1t w111 not necessarxly_'

43

A

=

N

&
B
i
P
=
3
B
¥

i

3RS

e B L F L v e LA A

Rt i Ly 2 T

dn
da

Tab: - "escape™ and "I" cause spaces up to the next tab
stop. Tabs must have been set previously at the
executive level.

~ Check status£ "escape"” and ‘Q" cause the system to
type "11". This is useful (after a long pause, for
-example) for checking whether the system is still alive.

2. Using EDIT

The EDIT system allows the user to create, modify, and list disk-
resident files. This is one way to enter programs. (Cards are
also a possibility.) Once the user is satisfied that his program

is complete, he can then asgign it as an input‘file for Metasymbol.

EDIT announces itself with an asterisk and waits for the user to

specify one of its commands. All of them will not be discussed

here; the BTM Users yanuel giver a user-oriented description of
each; You should be able to get a good start_with‘the pieces
described here. -

. *BUILD fid (i. e., EDIT types the asterzsk, you type
FBUILD" and then some file identification of your
choice, then carriage return.) -When this command is
»accepted, a new file is created on disk with -the name

" you have specxfled. "EDIT then types a ‘line number .
.(1.000) and waits for you to £fill the line. 'A carriage

. return, -as. usual, terminates. the line and another' line
‘number. is- typed. ‘If you return the carriage without

 typing any’ characters, it is assumed. that you aze done -

_-with BUILD and ' want to eall another EDIT function —- it
' types another asterisk. 'Because of ‘the oddities of the

" BTM:system, it is wise to ‘terminate BUILD in this way"

© ../ before you. 'get too far in: your.. typlng 80 as'-to establish

“«-'your file on- dlsk and then add it using ‘the. IN .

i"command..“~~

e ch*END Returns control to the executive - uhieh types an
'eu;exclamation.point to let yon know it is there. B _

ause spaces up to the next tab
en set previously at the

and "Q" cause the system to
ul (after a long pause, for
ther the system is still alive.

create, modify, and 1list disk-

o enter programs. (Cards are

r is satisfied that his program

t as an inpuf file for Metasymbol.

risk and waits for the user to
of them will not be discussed
user-oriented description of

a good start with the pieces

types the asterisk, you type
ile identification of your
eturn.). When this command is
created on disk with the name
IT then types a line number
ou to fill the line. A carriage
nates the line and another line
u return the carriage without
it is assumed that you are done
call another EDIT function -- it
Because of the oddities of the
to terminate BUILD in this way
in your typing so as to establish
then add to it using the IN

o the executive -- which types an
t you know it is there.

QL]E[<Ik:

Aruitoxt provided by Eic:

*DELETE fid This allows you to remove the file from
disk. It effectively destroys the file and all
references to it. = B

*EDIT fid This allows you to edit a text stored on
disk. All this command does is indicate that you
wish to edit a particular file, which you identify
by name. Following it, you must specify what you
want to do. Only a few of the possibilities will be
described here: 1IN, DE, TY, SE.

*DE n-m Deletes records n through m. Do not confuse
DE with DELETE which removes the entire file.

*IY n-m Types records n through m. If m is omitted,
only n will be typed. If you wish to type to the end
cf the file and do not know the number of the last
record, simply use a very large number for m.

*SE n;/stxl/S/str2/;TY SE is a powerful command with
many variations. This one is particularly useful: 1In
line n, substitute str2 for strl (first eccurance only)
and type the neéw line. Follow the indicated punctuation
carefully. . ’

3. Using Metasymbol

Metasymbol programs must be assembled as a batch job -- in BTM
they cannot be assembled on-line with direct feedback on the
terminal. The control information and the instructions for the
assembly, however,.can be submitted from a terminal as well as
from cards. 'In either case, the file with the course material

will be input to the assembly program.

The following suggested possibilities for assembly assumes BTM
version E00; later versions may have different characteristics.
Let us assume that the conversational file stored on disk is

called COURSE and that we intend to give the binary output of

46

45 .

an
& i

the assembler the name COURSEBC. The following ‘cards' will
perform the assembly (first character in column 1)-:
'1JOB " (accounting information--inquire

locally for details)

= ILIMIT (TIME,S)

1ASSIGN M:SI, (FILE,COURSE)

_, IASSIGN M:BO, (FILE,COURSEBO)
: IMETASYM LS,SI,BO,AC(B9999)

o The JOB card contains accounting information; details may vary

from installation to installation; someone familiar with your
computer set~up will be able to help you here. The second card
sets a limit on the amount of time to be used in this particular
job. Settiné a five minute limit simply protects you from the

- chance of some error which would cause your job to xun on

; endlessly —- and your account to be billed accordingly. The ASSIGN
caxds specify files related to your prograﬁ. The system input

(:SI) is to be an existing disk file (FILE) called COURSE. The

binary output of the assembly (BO) is to be a file called COURSEBO.

K
-
>
%,
R4

(The: . .re cther functions which the ASSIGN directive will perform:

o

details will be found in the BPM and BTM manuals.) Pay particular
attention to the punctuation of these statements; they have been

the despair of more than one amateur typist.

The final card of this set indicates that the system program you

Ll Tt T iy S T ".,;-‘,;‘:,?\)_?-({ g

iMeg il

will be using is Mutasymbol (METASYM). The information in the

e

B

L)

A

a7
e A

BO. The following ‘cards' will

haracter in column 1}:

(accounting information--inquire

locally for details)

(TIME,S)

M:SI, (FILE,COURSE)

M:BO, (FILE,COURSEBO)

1s,SI,BO,AC(B9999)

Fing information; details may vary

htion; someone familiar with your

to help you here. The second card

" time to be used in this particular

Pimit simply protects you from the

buld cause your job to run on

to be billed accordingly. The ASSIGN

Jf-C Your program. The system input

fisk file (FILE) called COURSE. The
(BO) is to be a file called COURSEBO.

ich the ASSIGN directive will perform;

BPM and BTM manuals.) Pay particular

of these statements; they have been

amateur typist.

ndicates that the system program you
(METASYM). The information in the

argument field is to specify what precisely you wish the assembly
program to do. Three of these arquments are required in our
situation:
SI specifies source input
BO specifies binary output
AC specifies that the dialogue procedures are to be
found in a file in account B9999. (At installations
other than Irvine, this number may be different.)
Other arguments are optional:

LS requests a listing of the source program

LO requests a listing of the output -- assembly
language and machine language code generated.

CN reqguests a concordance. The METASYM card must in
this case be followed by one or more concordance cards
(see Metasymbol Manual). The last card must contain
(columns 1-4) _END.

SD specifies s&mbolic debugging facilities: special

dictionaries are prepared and saved so that the DELTA

gepugging program can be used. (Cannot be used in the
final"” vgrsion.)

To enter the batch processing system from the terminal, type BP

at the executive level (i.e., after a ! prompt character). Y is
the correct résponse to "INSERT JOB?"; no carriage return is needed.
Then the above four lines can be typed. A blank line terminates
input and the ugser can reply 'N* to the "EDIT?" question. A
terminal message indicutes that the job has been inserted. From
the standpoint of the computer, this job is just the same as if jt
had come in from cards. You can pick up the (line printer) output
from the computer center; if you are in & hurry, you can use FERRET
to send a message to the operator, %o inquize whether the job has

been run and whether there were errors.

SR VY ey

v

AT A e

An alternative procedure is to place these <ame "job" statements
at the beginning of the "COURSE" file, or whatever file is the
source file, before SYSTEM DIALOG; in this case the "M:SI"
statement must be omitted. Then at the executive levg;v(terminal
prompts with *{') type

‘ 1ASSIGN M:SI, (FILE,COURSE)
The underlined characters are supplied by the computer. Enter
BPM as just described to assemble your program, replying N to
EDIT?. Another possibility, useful for long jobs, is to place
the job 'cards' in a separate file, with the-M:SI statement left

in, and assign the job-:ard file as the source input file.

A successful assembly is necessary. METASYMBOL error messages
identify sources of trouble, and the dialogque system also contains
messages toO assist éhe author. You should not be discouraged by
the'several assemblies needed for correcting errors. The row of
asterisks at the lefthand margin on the printout indicates an
error. Mostly errors are obvious on looking at them but occa-
sionally the advice of ;n experienced programmer may be necessary.
Very few programs of any complexity are initially without error,

so a number of error runs are expected.

A common mistake is the use of a label more than once within the
proéram. The assembler complains of a doubly defined symbol when
you refer to such a label. You should give’a new name to one of
the offending-statements and check the occurrences to see which
label is needed when. ‘A concordance, obtained durlngAassembly, is
useful because it shows where the offending label has been used.

49

Jdn
(3]

lace these same “job" statements

" file, or whatever file is the
G; in this case the "M:SI1I"

at the executive level. (terminal

RSE)

upplied by the computer. Enter
le your program, replying N to
ful for long jobs, is to place
ile, with the M:SI statement left

as the source input file.

ary. METASYMBOL error messages

d the dialogue system also contains
You should not be discouraged by
or correcting errors. The row of

n on the printout indicates an

xity are initially without error,

cted.

a label more than once within the
ns of a doubly defined symbol when
should giée a new ﬂame to one of
eck the occurrences to see which
dance, cbtained during assembly, is
e offending label has been used.

The 'find and type' command (FT) of EDIT is also very useful in
tracking down labelling problems; Other common errors are the
placing of a space after a comma, the omission of a quote, and

the confusion of the letter O with zero.

A code is assigned to your program indicating the ”seﬁérity" of

the errors.

The binary file prepared by the assembler can be loaded using ﬁhe
LOAD subsystem at the terminal, and specifying the binary file
(COURSEBO in the example above) as an "element file". The option
U(B9999), where B9999 is the account with the dialogue library, is
required. If on—iine débugging using DELTA is desired by an

experienced programmer option "D" is also needed. File assign-

‘ments are made in the program, so only a carriage return is needed

after "F:". Reply "Y(Carriage return)" after XEQ, and execution

will begin. (If you use DELTA, ;G starts the progran.)

4. Using Delta

Undoubtedly you will want tovtry the program, looking for bugs,

after it has been successfully assembled. Keep the flowchart and
the program listihg available during this testing, making a point
of checking at least the @ain branches. Testing of this kind will

not discover all the bugs: only student usage will du that!

Delta is the name for a subsystem of BTM which can be a great help

in testing your program, and is also the same for related facilities

in the RUN and LOAD subsystems. It allows you to operate small

o0

49

parts of the program, stopping to see what is in the counters and

‘other storage locations. As_with the other systems described here,

SRR

"Delta has more capabilities than‘we list. The facilities described You might
" here are enough to get a beginner started using the DELTA facilities
in LOAD. Read the Delta chapter in the BTM manual to find other

things which will be useful.

We assume
Let us assume that our program has been successfully assembled and ‘ recognize
is now on disk in.binarx;form under the name COURSEBO. We have the to revise y
. program listing, the flowchart, and stg notés on how we want to Then you wo
- proceed with the testing. After signing on, we specify that we want
i tpmloa§>a program. The dialogue with the machine will proceed as Having set
; follows. (Underscoring indicates typing by the system.). _ the program
5 1LOAD
ELEMENT FILES: COURSEBO .
OPTIONS: D,U(B9999) (for delta) causes it t

] F:] {type carriage return only;
% - no additional files are .
required) : causes it t

SEV.LEV. = 0 ' : ‘ no 1ly un
-%* NO UNDEFINED INTERNALS ** Will be

At this point a bell rings; Delté is ready for instructions. The
primary facility availabie is the use of breakpoints. A breakpoint It isvncw
is a location in your program at which you wish the computer to locations
stop, tell you yhere it is at and allow you to ask some questions. as expected
. You will want tO set breakpoints along all of the possible paths of
the program segment you are interested in checking. Here are fhe |
commands to Delt? controlling breakpoigts:
e;B (set the next availsble‘breakpoint at location e)
e,n:B (set the nth breakpoint at e) . .

3

51

50

t is in the counters and
er systems described here,
The facilities described
using the DELTA facilities

TM manual to find other

ucéessfully assembled and
ame COURSEBO. We have the
notes on how we want to

on, we specify that we want
machine will proceed as

by the systém.)

or delta)

vype carriage return only;
additional files are
ired)

y for instructions. The

breakpoints. A breakpoint

u wish the computer to

ou to ask some questions.
1 of the possible paths of
checking. Here are £he

e'bféakpoint at location e)

t at e)

51

n;B (remove the nth breakpoint)

;B (type all of the breakpoints now in the program)
You might begin by typing a list like this:

ST1;B (the first breakpoint at label ST1)

M34+1;B (the next breakpoint one machine instruction

past M37)

We assume the SD Metasymbol option here; it allows DELTA to
recognize your labels. After running the program, you may wish
to revise your strategy and remove or change these breakpoints.

Then you would use the other forms listed above.

Having set up the breakpoints, it is necessary to start to run
the progtam. The command

;G
causes it to start at its normal beginning. The command

ST1:G
causes it to start at label ST1l. The program will proceed
normally until it reaches one of the breakpoints specified. This
will be announced with a line like this:

1;B ST1 (first breakpoint; at locations ST1)
It is now possible to examine the contents of various storage

locations and machine registers, to be sure that things are going

as expected.
e/ (display the contents of location e)
e(c/ (display e as a character string)
e(s/ | (display e as a floating point number)
e(1/ (dispiay e as an integer)

Line feed (display the word immediately following the

one just displayel)

57

ety

After the content of a word has been displayed, that word is
considered to be "open.” The user may type a new value for that
word, hit the carriage return, and the new value will replace the

one just displayed.

After the user is satisfied with the information he has received
about the present breakpoint and the modifications he may have
made, he may continue operating his program by typing

P
or he may wish to begin again or start somewhere.else using the
;G command, described above. When he is done working with his
program and wants to return to the executive; he can accomplish

this by two escapes.

S. Generéting a load module

The version of the program to be used with students should be
generated ac a load module. Assuming that the programmer has
successfully generated the binary file COURSEBO, without error
and without the use of the SD option on the METASYM card, the
following job will create the load module PROG1l:

130B (accounting information)

1LIMIT (TIME,15)

1LOAD (EF, (COURSEBO)) , (LMN,PROG1) ,

1 (UNsaT, (B9999)) , (BIAS,FA00), (aBS), (SL,9),:;

1 (PERM)
The JOB and LIMIT cards are the same in function as in previous
examples. The options of the LOAD comhand require some definition.

53

(Here again

now has a

, that word is
new value for that

ue will replace the

on he has received

re else using the
working with his

he can accomplish

udents should ke
e programmexr haq
. without error
'ASYM card, the
1z

on as ir pre#ious

ire some definition.

e e <45 et e+ e S : 53

{Note that a semicolon is the run-on indicator.) Here are the
LOAD arguments which are required:

EF: the element files (in parentheses, separated by

commas) which are to be put together to make up the

load module. In our example, only one file. (Omitted S
if a GO file is used -~ see BTM manual.) Names of

element files must have 8 or fewer characters.

LMN: the load module name, eight or fewer characters.

UNSAT: 1list of accounts (in parentheses, separated by
commas) from whickh unsatisfied references are to be
picked up. The library of each account is accessed.
The account with the dialogue macros (B9999 at Irvine)
must be included.

BIAS: the lower limit into which on-line user programs
can be loaded in this installation -- FAOO at Irvine;
elsewhere, check with computer center personnel.

ABS: specifies absolute load module.

PERM: specifiés that the file is to be permanently
retained.)

Here are some LOAD arguments which are optional:
MAP: produces a listing of the locations into which
the element files and external references are loaded.
Very useful in debugging the program.
SL: specifies the error severity level that will be

tolerated by the loader in forming a load module. The
value may range from 0 *hrough F.

After the load module has been successfully generated, the

programmer will want to run it. The zrocedure is:

1RUN carriage return
LOAD MODULE FID? PROG1 carriage return
G {and a bell, if terminal has one)

(Eere again the machine printout is underlined.) The programmer
now has a éhoice: to begin the program execution he may hit the

et s g s e e e e nee e A i e e

Ld .

»iage return. If (as is often the case) the program still has 6.
errors, he may choose instead to use the DELTA facilities (explained Large prog
in 3.4) to do some debugging or to set breakpoints for debugging long time
at varioué pbints during execution. When he is ready to begin not only e
ming the program, he types any long jo
;G carria.ge return modify a p
assemble hi
During the execution of the program, the user can always go into time as err
DELTA by pressing the escape key twice. When he is ready to the relatio
proceed with the program he types C system.
;P
to resume at the point he left (see 3.5 for variations). If he but only th
has set breakpoints the program will automatically stop at those should have
_ points, ready for D;LTA commands. He can proceed with the running in the prog
of the program as above. : a FINALE or
should end

To stop the program before it finishes, the user can type STOP
at any place where ﬁhe program asks for an answer: or he can at The first s
v any point:-hit 2 escapes twice in succession. This returans him to
the Executive.

%
(2]
]
(]
2]

ST SO S

or

20

he case) the program still has

e the DELTA facilities (explained

set breakpoints for debugging
When he is ready to begin

. the user can always go into

ice. When he is r»eady to

3.5 for variations). If he
automatically stop at those
e can proceed with the running

es, the user can type STOP
for an answer, or he can at

cession. This returns him to

w
(8]

6. Sectioning a program

Large programs prese)’. some special problems. They may take a very
long time t0 assemble, or evenr refuse to assemble at alll!! This is
not only expensive, it may also be inconvenient: at some installations
any long job will b~ held over and run at night. It is also easier to
modify a program in many pieces. Thus the programmer may want to
assemble his program in smaller pieces, reassembling them one at a
time as errors are found. Some care must be taken to be sure that
the relationship among the pieces or sections is made evident to the
system. Each section must begin with

SYSTEM DIALOG
but only the first section (where the student begins the dialog)
should have a NAME or START command. The last command to be executed
in the procram as a whole (not in each section) should be followed by
a FINALE or STOP command. Each part other than the first section
should end with

END (no arguments)
The f£irst section should end with

ERD DIALOGUE

Any label which is referred to in one section and defined in another
requires special treatment. If the two sections are called SOURCA

‘and SOURCB, for instance, and the label A33 is defined in SOURCA and

referred to in SOURCB, then the command
DEF A33 '

must appear in SOURCA; and the command
SREF A33

or REF A33

N
N

must appear in SOURCB. Any statement labels, or parameter names which
are defined in one section and referred to in another require DEF
statements (in the defining program) and SREF or REF statcements (in
the referring projram). These statements can occur anywhere in the
prpgram sections, but it is good practice to put them at the beginn-
ing. Aall counters used must be defined in the first section, mentioned
in a DEF statement in that section and in REF statements in other
sections using the counter(s). Any SAVE COUNTER,ALL commands used
in that section must be preceded by the COUNTER statement(s). More
than one symbol can be included in each DEF or SREF statement. For
example,

SREF A33,B1,B6,CC

takas care of the three labels A33,Bl,B6, and the counter CC.

If ENTRY commands (for restart) are used in the second or other
parts, ENTRY must also appear in the first section of the program,
anywhere after the START or NAME command. In the other sections it
can be used anywhere after the label to which the branch is made on
entering that section. It is good practice to place it before a
WRITE statement. |

When each partial program is debugged, a load module to be used by
students might be generated by this joﬁ:

1J0B (ACCOUNTING INFORMATION)

1LIMIT (TIME,10)

1LOAD - (EF, (BINA), (BINB)), (LMN,LESSON1), (PERM),;

1 (BIAS,FAQ0) , (ABS) , (UNSAT, (B9999)) , (SL,9) , (MAP)

R

Note tha
the SD

may be u

The foll
with the

_:—ment labels, or parameter names which
B:ferred to in another reguire DEF

B-am) and SREF or REF statements (in
tements can occur anywhere in the
:practice to put them at the beginn-
lefined in the first section, mentioned
Bbn and in REF statements in other

Any SAVE CCUNTER,ALL <~mmands used

.by the COUNTER statement(s). More

fn each DEF or SREF statement. For

£3,B1,B6, and the counter CC.

fre used in the second or other

the first section of the program,
command. In the other sections it
Rbel to which the branch is made on

practice to place it before a

 gged, a load module to be used by

)), (LMN,LESSON1)} , (PERM) ,;

AT, (B9999)) , (SL,9) , (MAP)

%l
N

57

Note that the binary file BINA and BINB must be assembled without
the Sb METASYM option. If the total program size is large, !0LAY

may be used instead of I1LOAD, with the same arguments.

The following page shows an example of a pair of program sections

with the controi statements needed to get them assembled.

OB PHYSICS,IRVINE,2

iLIMIT (TIME,10)

1ASSIGN M:BO, (FILE,BINA)

!METASYM LS,LO,SI,BO,AC(B9999)

SYSTEM
NAME
DEF
SREF
COUNTER

Al etc.

EPILOG

END

DIALOG
'EXAM'

CA,CM,AA,RDQ

Bl1,XYZ,TABl,TAB2

(ca,cM,CTOT)

DIALOGUE

IJOB PHYSICS, IRVINE,2

ILIMIT (TIME,10)-

!ASSIGN M:BO, (FILE,BINB)

IMETASYM LS,LO,SI,BO,AC(B9999)

*SYSTEM
DEF
SREF

Bl etc.

DIALQG
Bl,XYZ%,TABl,TAB2
CA,CM,AA,RDQ

393

58

7. Overlaying
The SiGMA 7 BTM u

very well run int}
of it esseng}al!)‘
reorganize the pr
core, and two or |
take turns oOcCcup
‘overlaying'. Th

related in time

The root should
since no part of
core. All counts
so the loader wi

access them by
The ‘root' also (

The command:
LOAD
will cause the s4
into core, so thg
be followed by,
to which the proq
LOAD
will cause BINA
tioﬁ (in BINA, u

The root programg

O

ERIC

Aruitoxt provided by Eic:

o8

7. Overlaying

The SIGMA ~ BTM user is allotted a limited amount of core, so he may
very well run into the situation where he }as writ.en more coding (all
of it essengiall) than can be accomodated. 1t is often possikle to
reorganize the program into @ 'root' segment, which is always in

core, and two or more other segments, (or groups of segments), which
take turns occrpying the remaining available space. This is called

‘overlaying'. The way in which the root and other segments are

related in time and space is called the 'tree' structure.

The root should hold all information used by more than one segment,
since no part of a segment is available for use when it is not in
core. All counters should be defined in thz root segment and DEFed
so the loader will make them available to the others, which will

access them by using an SREF statement.

The ‘root' also contains the instructions for loading segments.

The command:

LOAD 'BINA’
will cause the segment whose binary file is named BINA to be brought
into core, so that the instructions in it can be executed. This must
be followed by, or combined with, a branch to the location in BINA
to which the programmer wants to transfer.

LOAD 'BINA',BB1
will cause BINA to be loaded into core, and will also set the instruc-
tion (in BINA, usually) with label BBl as the next one to be executed.

The root program will have an

60

60

SREF BB1, When a segment is not il

and segment BINA will have a be referenced only by fi
DEF BEl. always in core, it is ud}

are not in core simultary

An alternate form cf LOAD is TRANSFER.

The root segment would

The tree structure must be described in the ITREE control command SYSTEM DI
immediately following !OLAY or !OVERLAY. The 'root' is the left- NAME

most segment in the command; from the root extend two or more 'paths', SREF B1x:d
each consisting of those segments that may océupy core stor#ée (along DEF R2
with the root) at the same time. Suppose we have our program assembled COUNTER

as 4 binary files, with BROOT the name of the root segment, Bl the WrITE 'y
segment that is to be executed first, B2A and B2B two segments that WRYITE ' LH
afe to be loaded together into the same space Bl occupies, Bl another LOAD 'Bl

segment that is to be loaded into that space. Then ITREE command

would be: . ' . R2 WRITE '
ITREE BROOT- (B1,B2A-B2B,B3) ZOAD Y

The '~' indicates that the tweo named binaries can be loaded next to
each other;, at the same time, incore. the *,’ indicates that two LOAD 'B
segments, {({or groups of segments), are to overlay one another (that ete.
is, begin at the same core storage location when loaded). The '{(}°* T
indicates a new level of overlay. STOP

END DI

This tree statement says that at any given time we may have one of

The source file for Bl
three different ‘packages' in core storage:
' SYSTEM D
1) BROOT and Bl

SREP R2
2) BROOT,B2A and B2B

DEF B1H
3) BROOT and B3

o . Qsjl
[ERJ!:«. _ : : X

Aruitoxt provided by Eic:

he ITREE control command

The 'root' is the left-

the root segment, Bl the

and B2B two segments that

ace. Then ITREE command

ries can be loaded next to
e ',' indicates that two
overlay one another (that

on when loaded). The *'()°'

en time we may have one of

e:

ERIC

Aruitoxt provided by Eic:

it extend two or more ‘paths’,
occupy core storage (along

we have our program assembled

pace Bl occupies, Bl another

61

When a segment is not in core it is on disk, and anything in it can
be referenced only by first loading it into core. Since BROCT 1is
always in core, it is used for communication between sections which

are not in core simultaneously.

The root segment would include:

SYSTEM DIALOG

NAME 'RTEX

SREF BlENT,B2ENT ,B3ENT

DEF R2,CADD, CMULT,CEXP,R4,RS

COUNTER (CADD, CMULT, CTOT,CEXP,CD)

WrITE 'TI?IS IS A REVIEwW OF COMPLEX.NUMBERS.'

WRITE *LET''S TRY ADDITION FIRST.'

Loap . *Bl1l’',BlENT (load file Bl and
start with the command
labelled BlENT)

R2 WRITE 'LET''S TRY MULTIPLICATION' (return from Bl)

LOAD 'B2A’ (load B2A but do not
branch)

LOAD *B2B,B2ENT (load B2B and branch)

etc.

STOP

END DIALOGJUE

The source file for Bl would include

SYSTEM DIALOG
SREF R2,CADD
DEF B1ENT

BlENT ctc.

TO R2 {return to root)

END

Sihilarly, each of the segments would contain SREFs for each of the
labels and counters in the root éo which it referred and DEFs for

each of its symbols to which the root segment might refer. B2A and
B2B must also, of course, contain DEF and SREF statements to define

internal references between themn.

The job cardé for creating the load module COMP from these binary

files would be:

1JOB (ACCOUNTING INFORMATION)
{LIMIT (TIME,10)
IOVERLAY (EF, (BROOT), (B1),(B2a), (B2B), (B3)),;
! (MAP) . (PERM) , (SL,9) , (LMN,COMP) , ;
. 1 (SEG), (UNSAT, (B9999)), (ABS) , (BIAS,FA00)

1TREE ROOT- (B1,B2A-B2B,B3)

Bere B9999 is the account in which the system library is stored, and
FAOC is the lower limit of core storage for the program, which is a
system parameter, and may differ in other installatiors. The command

10LAY could be used in place of IOVERLAY, with the same arguments.

63

8. Student Use

As indicated in 3.5, t
program by means of th
iRUN

LOAD MODULE

:G
The student must be to

the program and :;G.

When the student first
identification if the
is used for restarting

dialogue at a single si

When the student wants
usual procedure of pre
input, the word sSTOP.
allows restart, he is

next time to tries-this

Because the use of the X
non-programmers, at Irv
for calling dialogues.
types DI; then he types
No error messages or brg
records of dialog usage
this may not be possiblg

with considerable force

<
"

8. Student Use
As indicated in 3.5, the students can use the conversational
program by means of the RUN facility:

1RUN

LOAD MODULE FID: PROG1

in SREFs for each of the R

t referred and DEFs for .
The student must be told how to sign on, to type RU, the name of

nt might refer. B2A and
the program and ;G.

REF statements to define

wWhen the student first enters the program, he is asked to type an

identification if the restart facility is used. This identification
CoMpr from these bina
Y is used for restarting purposes if the student does not complete the

dialogue at a single sitting.

When the student wants to leave the terminal, he can follow the

(B2B), (B3)).; . .
usual procedure of pressing Escape twice; or, he can type, at any

; input, the word sTOP. If he enters STOP and if the program
S,FAQ00
’) allows restart, Le is reminded to use the same identification the

next time to tries-this dialogue. . .

em libra is stored, and
Y ! Because the uvse of the RUN facility appears somewhat awkward to

the program, which ig a . . .
non-programmers, at Irvine we have installed a special subsystem

installations. The command .
nsta for calling dialogues. At. the prompt character (1) the student

ith the same arggments. types DI; then he types the name of “he dialogue he wishes to use.
No error messages or break messages are sent to the student, and
records of dialog usage are maintained. (At other installations,
this may not be possible; system modifications are often resisted

with considerable force.)

Q .

FRIC 64

s >

 §

O

ERIC

Aruitoxt provided by Eic:

APPENDIX 1: EXAMPLES

1. Creating a binary file

LH20) 04
*DIT EXAMP
*TY 1-25 N 4

1.275 1308 PCOPTCLG,ANNA,2

2.023 ILINIT (TIME,S)

3.000 !ASSIGN M:80, (FILE,EXRMPEQ)

(type tbe symbolic file
previously entered)

(binary file to be called

4,000 INETASYM $B,SI,80,AC(659999) EXAMPRO)
5.558 SYSTEM DIALOG '
.00 % EXAFPLE OF A DIALOGUE PROGRAR
Tz PIANE tEXAM®
B.701 COUNTER COUNT
9.£12 A1 WURITE "“HAT IS5 4 X 57'
18030 BUIP COUNT
11.879 - ItpUT
12,200 JIF '2p0,A2
13,409 - IF - 1gy a3
14,5750 OTHER A7
15.8750 a3 TO As, (counT,3)
16.070 A6 WRITE 'YOU' *RE ADBING. TRY AGAIN.'
17.027 T0 Al
18.00E A7 TO As, (COU%T,SE,3)
19,039 WRITE t*TRY AGAIN.'
20020 TO 3]
21.070 AS WRITE 4 X5 =20"
22,508 70 A8
23.72% A2 WRITE 'GO0D.’
24,279 18 EPILOG
25,5 END OIALOSUE
LD .)

1ASSIGN MeSI,(FILE,EXAMP)

18P
INSERT JOB? Y

YCUR MaXIMu™ PRIORITY= 2
EDIT? %

JGe I.SERTCO. 10=9

STATUS CHECK? Y

10=9
RUNNING,
10=2
RUTIRING.
10=9

(assign the symbolic file to
system input)

(call bateh system)

(user enters Y for yes)

{user enters N for no)

(user erters Y for yes. Status
may be waiting, running, or
completed)

2. Lloading and rurning

{L3AD

ELEMENT FILL3: TXAMPOEO
oPTIC!3: ©,u(B329%,

Fs2 ‘

SL\IOLEUQ = a
%'z NO UNDEFINED INTERNALS

sG

WHAT IS 4 X 5?
79

YOU'RE ADDING. TRY AGARIN.
WHAT IS & X 57
224

GOCD.
YOU HAVE COMPLETED THIS PROG

PLEASE TYPE aNY COMMENTS AND
7NO COMNENT = -

THANK YOU
XIT AT 7RSU1+.99

pe tkhe symboliec file
~.viously entered)

nary file to be called
MPBO)

InN.?t

ssign the symbolic file to

ser enters Y for yes)
ser enters N for no)

ser enters Y for yes. Status
ay be waiting, running, or
ompleted)

2. Loading and running a-binary file

1L.340

ELEMENT FILL3: TXAMPRO
oPTIC!S: O,u(B8309%)

Fs '

SEV.LEV. = 2
%'y MO UNDEFINED INTERNALS %8

3G .
WHAT IS 4 X 57
79

YOU'RE ADDING. TRY AGAIN.
WHAT IS 4 X S?
227

Good.

YOU HAVE CORPLETED THIS FROGRAM.
PLEASE TYPE ANY CPMHENTS‘ﬁND SUGGESTIONS.

NG COMSENT

THANI YOU
XIT AT FRSU1+.98

(Load EXAMPBO, created above)
(D tor Delta; U(B9993) defines
appropriate library)

(entered by user to start pro-
gram operation)
{beginning of the conversational

dialogue)

3. Creating a Load Module

In this example, control information is typed directly and is not
part of the EXAMP symbolic file, as it was in 1. Note that the SD
optica must not be used on the METASYM card in making the load

modue.

1EDIT
TERTT CMaue
iCT 1-4 Delete igntrol connands from
.. . ©. -
RN 23l Cancel any previous assignments.

oz
{HSERT 3027 Y

YOUR #AXINU PRIORITY= 2
:!JDB PCOPEI06,AMNA,2
flLIﬂIT (rinme,s)

ftnssxcn mzsI, (FILE,EXARP)
?!ASSIGH M:80, (FILE ,EXARPEO)
fxﬁsrnsvn LS,S1,80,AC(59999)

[Y .
: 1LOAD {(LMN,EXAMPOT), (PERM), (BIAS, FABR), (ABS), (UNSAT, (89999)], ;

7 .
+ 1(EF, (EXARPBO}) (E;Aiﬁg)l will be name of load
8 .

EDIT? s

J0p INSERTED. ID=3S
STATUS CHECK? Y

ID=3S

srev=reTe 1 SHERD

< oIl U3

SUTnING.

I10=35

2yTNING.

ID=35

CCi.PLETED.

ID= .

IGET RUN - Special command for Irvine system;

usually !RUN is the command used

LOAD MODULE FIDsEXAHPDI to load EXAMPDI
3G
’

tFAT IS &4 X 52 (beginning of conversational
? dialog)

67

4. Using a FORTRAN

IEDIT

sEDIT FONPLOT

*TY 1-12
1.3 1308 P..YSICS, IRV
2,003 ILIGIT (TISF,S)
3.2773 1ASSIGN 28O, (FI

4,953 IFORTRAM SI,80,L
S.07 SUBROUTIIE
6.000 DIMEMNSION

7.0 ° DO 1 I=1,2
8.007 1 X(1.=SI(1
9.ci0 RETUAN
12.8522 END

%
1IA5SICGN ST, (FILE, FORPL

tePn

INSERT J0B? Y

YOUR 1AXITWA PRIDRITY= 2
EDIT? 1™ .

Jos INSERTED., I10=4S
STATUS CHECK? N

IEDIT
*DIT FORPLOTT
*SE1-15;/63/5/28/; TY
—C2:N0 SUCH STRG
1.5060 1308 PHYSICS, IR
2,600 WINIT (TI7C,11)
<077 IASSIGN/nzeo, (FI
4.900 IMETASY™ SI,00,

\
\

S.001 SYSTERM
«L3 START
7.02% REF
B.207 AA vRITE
9.9%.72 3 FO27RA!
12.000 cC PLOT
11,9008 sSTOP
12.8%3 X RES
13.00 END

—EOF BIT AFTER 13.
2

ERIC

Aruitoxt provided by Eic:

4., VUsing a FORTRAN Subroutine

directly and is not
1. Note that the SD 1EDIT
making the load SEDIT FONPLOT
Y 1-12
1.0%5 1308 P..YSICS,IRVINE,2
* 2,602 ILIRIT (TIAE,S)

3,373 IASSIGN FizBC, (FILE,VALUES)

. 4,353 IFORTRAM SI,80,LS,LO
e control commands from S.617 SUSROUTI!'E VALUES(X)

ile. : 6,000 DIMENSION X(109)
1 any previous assignments. 7.%08 - 00 1 I=1,27

g.0n7 1 x(1;=SI:(1/3,)
9,540 RETURN
~_ 2.903 END

AN *
* IASSICN R:SI,(FILE,FORPLOT)

1epn
INSERT JOB? Y :
YOUR RAXINUA PRIDRITY= 2

EDIT? Nl ;
308 INSERTED, 10=45
STATUS cascxg\?

1EDIT \
i3 *EDIT FORPLOTT \
. *SE1-15;/63/5/2815TY
—-C2:M0 SUCH STRG
1.000 1308 PHYSICS, IRVINE, 2
2,008 WWIMIT (TI7°E,13)
3.23% IASSIGH/M:E0, (FILE, FORGO)
4,900 IMETASY: SI,BG,i0,AC(39999)

£

lial command for Irvine system;
11y !RUN is the command used
pad EXAMPDI

inning of conversational

. 68

1

5,001 / SYSTEM DIALOG
6,243 START

7.00% REF VALUES
8.203 AA vRITE 'TEST OF PLOT'
9.95% £3 FDATRAN VALUES,X
15.000 cc PLOT X, 21
11,004 STOP
12,8370 X RES 10d
13,52 END DIALOGLE

—EOF EIT AFTER 13. :

File FORPLOT contains a FORTRAN
subroutine, VALUES (x)

Compiling the subroutine

(FORPLOTT is a DIALOG prograa
which calls VALUES.
Modifying the program.

Line 9 will call the FORTRAN
PROGRAM

>

. Using FORTRAN Subroutines (Cont.)

1ASSTCH NeSI, (FILE, FORPLOTT)

15PN

INSERT J0B? Y

your rgxIsu PRIORITY= 2
EDIT? Il

Jog INSERTED. I10=47
STATUS CHECK? Y
10=47

YAITING: B AVEAD
CUNRENT I0: 39

10=47

vaITING: 8 AHEAD
CURPRENT ID2 33

10=47

URITIMNG: 8 AMEAD
CunRENT ID: 39

ID=47

CCiPLETED,

iD=

1LOAD
ELERENT FILES: FORBD,VALUES
gPTIONS: U(B9999)

Fe

SEV.LEV, = 8
XEQ? Y

TEST OF PLOT

-1.999% mIinN HORIZONTAL

[

StR EXIT.

-c ﬁ v v T L v v
[
*
*
»

Assemble FORTRAN routine.
Two a2lt modes to return to
executive level.

Both binary outputs now
available.

Run program on line.
Name both binary files.

look for unsatisfied library
references in account B9999.

Y says 'Proceed with execution’.

?8.9954

x*

63

APPENDIX 2: REFERENCES

XDS SIMA Symbol and Me
XDS Batch Timesharing M
XDS Batch Timesharing M
XDS Batch Processing Mo

ACKNOWLEDGEMENTS
The structure and devel
Estelle Warner, David R
programming contributio
Deering. The users whé
software were Noah She

Ballard, and Charles

% 1c FORTRAN routine.
1t modes to returu to
Rtive level.

brogram on line.

both binary files.

for unsatisfied library
Ferences in account B9999.

k's 'Proceed with execution’

APPENDIX 2: REFERENCES

XDS SIQIA Symbol and Metasymbol - 900952

XDS Batch Timesharing Monitor Reference Manual - 901577
XDS Batch Timesharing Monitor Users Guide - 901679

XDS Batch Processing Monitor Reference Haﬂ;al - 900954

ACKNOWLEDGEMENTS

The structure and development of the software was guided by
Estelle Warner, David Robson, and Alfred Bork. Substantial
programming contributions were made by John Collins and Harold
Deering. The users who heavily influenced the direction of gystem
software were Noah Sherman, Mark Monroe, Kenneth Ford, Richard

Ballard, and Charles Munch.

70

APPENDIX 3: A FINAL WORD (OR TWO) TO THE READER

* Comments on this manual, noting errors, omissions, and
ambiguities will be appreciated. .
* Copies of the system tape are available to those with

SIGMA 7s who would like to try using it. Please enclose
blank tape with.your request.

* Those who are actively engaged in writing dialogs are
asked to inform us of this fact so that we can keep thenm
up-to-date on changes to the system as they occur.

Such changes tend to be relatively minor and will be of
small interest to any expect those actually using the
system. Let us know the date of the latest modification

you have.

* Dialogs which have been developed using this system are
also availablecto potential users. Information will be
sent on request.

* Reports of system errors or failures should be reported
in detail, with copies of input and output, if possible.

* All such comments, requests, reports, and notifications.
should be addressed to:

Alfred M. Bork
Pbysics Computer Development Project
University of California, Irvine
Irvine, California 92664

gt

