
ED 060 629

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 009 635

Mosmann Charles; Bork, Alfred M.
Teaching Conversations with the XDS Sigma 7. System
Users Manual.
California Univ., Irvine. Physics Computer
Development Project.
National Science Foundation, Washington, D.C.
26 May 71
71p.

MF-$0.65 HC-$3.29
*Computer Assisted Instruction; Computer Programs;
*Manuals; Physics Instruction; *Programed
Instruction; *Programing; Programing Languages
Metasymbol; Sigma 7

This manual is intended as a reference handbook for
use in writing instructional dialogs on the Sigma-7 computer. The
concern is to give concise information which one would need to write
and debug dialogs on this system. Metasymbol, the macro-assembly
program for the Sigma-7, is described. Definitions of terminology,
legal forms descriptions of current commands, and examvles are given.
Basic, introductory information on getting dialogs into the computer,
assembling and debugging them, and in preparing them for student use,
makes up most of this manual. (RB)

pcdp

TEACHING CONVERSATIONS WITH Tfir'EDS SIGMA 7'

System' Users Manual ..

Charles Mosmann
Alfred Bork

Physics Computer Development Project
University. of California, IrVine
Irvine, California 92664

May 26, 1971

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

CONTENTS

INTRODUCTION

1. WRITING DIALOGS

Program F

Line Form

Character

Labels an

2. DESCRIPTION OF

Displayin

Accepting

Analyzing

Mamipula

Manipula

Manipulat"

Constant

Other C

3. GETTING IT ON

Using the

Using Edi

Using Me

Using Del

Beneratin

Sectionln

Overlayin

Student-U

a.

dp

-XDS SIGMA 7

dect

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

CONTENTS

INTRODUCTION

1. WRITING DIALOGS

Program Format

Line Format

Character String Constants

Labels and Location Symbols

2. DESCRIPTION OF COMMANDS

Displaying Information

Accepting Information

Analysing Input

Manipulating Strings

Manipulating Numbers

Manipulating Counters

Constant and Parameter Storage

Other Commands

3. GETTING IT MITRE MACHINE

Using the Terminal

Using Edit

Using Metasymbol

Using Delta

generating a Load Module

t. university of california. irvine. 92664

APPENDIX 1 7 Examples

APPENDIX 2 - References and Acknowledgements

APPENDIX 3 - A Final Wbrd to the Reader

INTRODUCTION .

This manual is

person writing

document, call

System Descrip

presents a bet

our concern is

person will ne

The first chap

tions of term&

commands curre

contains intro

getting dialog

preparing th

tutorial in in

more complete

The-system de

expands. If y

be sure to fil

up-to-date:on

nowledgements-

Reader

INTRODUCTION

This manual is intended to be used as a reference handbook by the

person writing instructional dialogs using the Sigma-7. Another

document, called "Teaching Conversations with the iDS Sigma-7:

System Description," presents an overview of the system as a whole and

presents a better introduction to the subject than this manual. Here

our concern is to make a concise presentation of the information a

person will need while learning to write and debug dialogs. ,

The first chapter contains the rules on legal forms and some defini-

tions of terminology. Chapter 2 contains descriptions of each of the

commands currently available, with examples of their use. Chapter 3

contains introductory material on the programs and ,routines used in

getting dialogs into the computer, assembling and debugging them, and

preparing them for student use. This information is introductory and

tutorial in intent and does not by any means replace the need for the

more complete descriptions in the appropriate XDS nanuals.

The system described here continues to change and grow as its use

expands. If you are a user of this system and not just an observer,

be sure to fill out the form on the last page so that you can be kept

up-tn-date on improvements as they occur.

CHAPTER 1

2

WRITING DIALOGS

.An instructional dialog using the commands defined here is actually

a program written for Metasymbol, the macro-assembly program for the

Sigma-7. The dialog must therefore adhere to Metasymbol conventions

for formats and the special use of symbols. In addition, some con-

ventiOns have been established within the dialog system itself.

These topics are the subject of this chapter.

1. 'Program Format

-The: first statement.of the program must be

SYSTEM DIALOG

The SYSTEM command (preceded by at least one space) directs the

assembler to select a file containing the commands that are to be valid

during this assembly; DIALOG is the name of the-file containing the

commands described here.

After the SYSTEM.statement but before'the first executable command,

the,program -must have one or the other of these.statements.:.

Either of these-commandiviiiii cause the system te.introdUCeisome

initialixing,pxo0edures4nto-ypuF,,program, which are to:he.execnted.'

before your first co

argument you supply,

quotes) to your progr

It is particularly va

for later reference;

records so that there

those of other instru

.The last statement of

END

\

This indicates to Met

process. The argumen

routine is to..be:used

forfan.ID if the rest

Other arguments _are

meat in the program,

that will be executed
. .

of-the introductory

only with caution. and

Additional informati

in.the sections on's

-to the author. of very

2. Line Format.

Each line may contain

ands defined here is actually

macro-assembly program for the

dhere to Metasymbol conventions

ls. In addition, some con-

the dialog system itself.

chapter.

t be

ast one space) directs the

the commands that are to be valid

ame of the .file containing the

2

the first executable command,

of these statements:

before yOur first commdnd. In addition, NAME assigns a name (the

argument you supply, of not more than four characters enclosed in

quotes) to your program. This simply individualizes the program.

It is particularly valuable when student responses are saved on disk

for later reference; the name of the program individualizes these

records so that there is no possibility of getting them confused with

those of other instructional programs.

The last statement of the program must be .

DIALOGUE

This indicates to Metasytbol that this is the last statement it is to

process. The argUment "DIALOGUE" indicates that a standard beginning

routine is to-be:used when the programi.s run. (It asks the student

.for:anTIO if-the restart facility is used somewhere in the program.)

Other arguments are possible: if the argument is the label of a state-

ment in the program, it is understood that this is the first statement

that will be executed when the program runs. This short-circuits all

of the introductory and initializing instructions and shouid be used

only with caution and a full understanding of the implicattons.

Additionallnformation.about program format will bd found in Chapter 3

in.,themectiOnaom4egmenting.and *overlaying; these will-be of interest
- . -

author otwery-large programs.

introdUce:some

am whit:ft -areto:be..exeouted one or more bisks:

3

*. .

LABEL, COMMAND ARGUMNT COMMENT

4

Because blanks are the delimiters of the fields, it is clear that

blanks are never allowed within the fields (except within character

strings, as described below). The label field may be omitted; if it

is present, it must begin in the first position on the line. If

that position is blank, it is assumed that there is no label and the

command field follows immediately. Labels are attached to statements

so that they can be referred to elsewhere in the program; label

formats are described below. The next fieldis the command; either

one of the commands listed here or one of those defined in the

Symbol/Metasymbol manual. The command field must be present; it is

the command which indicates what it is that you want the-computer to

do. The third field is the argument. The parameters necessary to

complete the meaning of the statement are entered here, usually

separated by commas--again, without blanks, since a blank indicates

the end of the field. The fourth field Is for comments and is

ignored by the assembly program. (If the command requires no argument,

then everything past the command field is ignored. The line (if it

is entered from a terminal) can be ended at any point by a carriage

return.

There is a single exception to all of this.. If the first.dharacter

on the line is an asterisk, *he entire line

arenonsidered wcommente.and nanioe'of value in.making your program

clearer to read.and.Understand.

There are thus no restr

in which column or posi

program easier to read

label in columns 1-0,

20-39, comments beginni

tab stops) make it easi

the program from a te

3. Character string co

A large part of any in

of characters which are

pare with student respo

quotes. They may conta

to the "no blank" rule.

a string, you must use

'YOU"RE RIG

4. Labels and Locatio

The programmer nay assi

variable storage locat

common way of attachin

label in ihe first fie

attadhed to parameter

COUNTER, STRING, D

using the label field.

COMMENT

fields, it is clear that

(except within character

field may be omitted; if it

osition on the line. If

at there is no label and the

ls are attached to statements

e in the program; label

4eld.is the command; either

f those defined in the

leld must be present; it is

at you want the.computer to

he parameters necessary to

e entered here, usually

s, since a blank indicates

is for comments and is

command requires no argument,

ignored. The line (if it

at any point by a carriage

4

If the first character

me is ignored. Such lines

value in making your.program

5

There are thus no restrictions about what information can appear

in which column or position on the line. Nevertheless, it makes a

program easier to read if some such conventions are adhered to; perhaps,

label in columns 1-8, command in columns 10-19, argument in columns

20-39, comments beginning in 40. Tab stops (see Chapter 3 for using

tab stops) make it easier to adhere to these conventions when entering

the program from a terminal.

3. Character string constants

A large part of any instructional dialog program is made up of strings

of characters which are to be typed for the student to read or com-

pare with student responses. Such strings must be enclosed in single

quotes. They may contain any characters; they are thus an exception

to the "no blank" rule. If you want to place a single quote inside such

a string, you must use two single quotes. A few examples nay help:

1#80+-&-I

'YOU"RE RIGHT!'

4. Labels and Location Symbols.

The programmer may assign names to instructions, constants, and

variable storage locations so that he can refer to them. The most

common way of attaching such symbols to locations is by the use of a

label in the first field of a. statement. Symbolic names must also te

attached to parameter storage. There are special commands (DEFINE,

COUNTER, STRING, DEFNUM, etc.) described below which do this without

using the label field. The label or location symbol may consist of

any combination of letters and digits except all digits. (The advanced

student should be cautioned against using any labels beginning with

character "4" since this is used internally in labels in the macro

definitions, and so might lead to conflicts.)

One location symbol used in the program may be of interest to the

user. The input buffer, containing the most recent message typd

by the student is called #IN and may be referred to by that name.

It is defined by the system and must not be defined by the user.

CIMPTER 2

DESCRIPTION OF COMMANDS

This chapter contains d

available. They are

the following page lis

In general, the descrip

NAME (SYNO

Description. o
;Men several
described.

Example

des

EXample

des

Examples.are given of e

forms, except where'the

If terms: used in the,de

them defined above in C

1. Displaying informa

Commands for:displaying

-WRITE: (PRINT.
OU'T
slap 6ua3mp
HUMPH

EMIR= (NRI

6

except all digits. (The advanced

ing any labels beginning with

ally in labels in the macro

icts.)

may be of interest to the

e most recent message typed

e referred to by that name.

ot be defined by the user.

LOeIML,IllrT,,r.N*

CHAPTER 2

DESCRIPTION OF COMMANDS

This chapter contains descriptions of all the commands currently

available. They are arranged by functions; however, the index on

the following page lists them in alphabetical order.

In genc-al, the descriptions will have the following format:

NAME (SYNONYM1, SYNONYM2...)

Description ct the logical function of the command.
When several alternative forms exist, each will be
described.

Example 1:

description of function of example 1

EXample 2:

description of function of example 2

Example's are given of each form Of a command, when there are multiple

.forms, except.where the meaning appears too obvious to warrant it.

If terms, used.in: the,description are unfamiliar to you, yoU may find

-them defined above-Am Chapter 1.

1. Displaying Information

Commands for displaying information to the student.

WRITE (PRINT, mRivsz., SHOW, TYPE)
OLIT

SKIP (SAUTEZ)
GRAPH
PLOT
NUNOUT,(NOUTNU)

NONWHITE (WHITNUM)

7

._-,,..1*MeNer...+1M1.1,....,[11KN.741:V.

0

2. Accepting lniormation

Commands for accepting information from the student.

INPUT (ACCEPT, ACCEPTEZ)
INBELL

3: Analyzing /nput

Commands for analyzing student input

IF (SI)
IFONLY
IFNOT
IFYES
IFNULL
IFBEFORE
IFAFTER unman
IFNEXTO (IFAFTERO)
IFTERMS
ALINRONG
NOTERMS
IFKE
IFPE
IFFILTH
TO (MER: ADTRE, 8, JUMP)

4. Manipulating 'Strings

Commands to manipulate strings

'NOBLANK
'Dmann: (REMOIZE)
DELETEALL
REPLACE (SUB, SUB:FOR)
SUBALL
ADDAST
MOVE (MOVEZ)
PTRMOVE
APPEND

t. Manipulating Mothers

-Commands *manipulatromitairs.

IFNOTNUM
AROUND
BETWEEN
RANDOM
RANDOMR

6. Manipulating Counter

Commands to manipulate c

BUMP (INCREASE
DECREASE (SUB1
RESET (ZERO)
CTARITH.
ADDCOUNT
CTWRITE
CTOUT
SWITCH

7. Constant and Parame

Directives for constant

'DEFINE =FINE
COUNTER (CO
SET
STRING
TEXT
DEFNUM-.

.*STORENUM
:DEFCOMP-
ISTORECOMP
DEFTABLE
STACK'

8. Other. Commands

Other commands and direc

, SYSTEM
NAME. '
START
END
STOP :.(NALT)
FINALE. AEP
ENTRY
SAVX, (=SP,
SAVSID-

8

student.

9

IFNOTNUM
AROUND
BETWEEN
RANDOM
RANDOMR

6. Manipulating Counters

Commands to manipulate counters.

ETRiNG
TEXT
DEFNOM =1'
.STOKENUM- '
DEFCOM#'
STORKCOMP'
DEFTABLE
.STACK

8. Other Commands

Other commands and directitres.

SYSTEM
NAME:
:START:

(EALT),....
.H.FINA.LE .7(EPIPPGUE, EPEGOG) 7.4

:SAVE:

poRTRAzi

kF,

k-
ZL

Ex. 2 OUT MES 8

MES8 STRING 'IS THE SQUAREROOT OF'

Causes "is the squareroot of" to be typed.

Ex.3 OUT MES8,T3

Causes a branch to T3 after the string at MES 8 is
printed.

Remember to supply connecting spaces on either the
WRITE or the following OUT.

SKIP (SAUTEZ) . Generates one or more blank lines at
IHZ.terminal. The argument indicates the number of
lines. If no argument is given, one line is slcipped..

Ex. I SKIP 5

Causes five bladk lines to appear.

Ex. 2 SKIP

Causes one blank line.

GRAPH. . Displays data in the. form of a point graph.
It requires three arguments; the location of the
horizontal displacements (X); the location of the
vertical displacements (Y); the number of points
to be plotted or the location of that number. All
numbers will be scaled. Storage 'of the values.is
'the user's responsibility; STACIC may be useful in
this program. If the values are generated in a
FORTRAN subroutine (say as an array) , space must
be reserved in the dialog program.

Ex. 1 GRAPH X,Y,20

Graph 20 points; taking the coordinates from X and
Y.

GRAPH TA1,TA2,CHER

12

PLOT.
argum
the v
numb
All
repre
each
graph
unifo
displ

Ex. 1 PLOT

Wi 1 1

NUMOU
prin
numb
as th

Ex. 1 NUMO

Will
curre

NUMWR
print
and w
in

Ex. 1

Graphs the number of points specified in CNTR,
.taking the coordinates from TAl.and TA2.

. .

At the beginning of a graph ill header giving-the
maximum and minimum values of the two arrays. The
user can control,scaling on 'a -series of graphs, by
placing suitable values himself- in the -two arrays.

Star
in TI

OUT
table
fille
name
numbe
(opti
the -1
the s
prin
prin
tabl
or v

ROOT OF'

oot of" to be typed.

after the string at MES 8 is

nnecting spaces on either the
g OUT.

ates one or more blank lines at
gument indicates the number of
t is given, one line is skipped..

es to appear.

in the.form of a point graph.
uments; the location of the
nts (X); the location of the

(Y); the number of points
location of that-number. All
d. -Storage'of the values is
ity; STACK may be useful in
values are generated in a
ay as an array), space must
alog program.

ng the coordinates from X and

points specified in CNTR,
s from TA1 and TA2.

graph is a header giving the
alues of the two arrays. The
ing on a series of graphs by
es himself in the two arrays.

12

PLOT. Generates a point,plot as specified in the
arguments. The first argument is the location of
the values to be plotted; the second argument is the
number of values.or the location of thatnumber.
All of the values will be scaled and each valne will
represent the amount of horizontal displacement for
each Point.. The difference between a plot and a
graph is that the plot increments the vertical component
uniformly. A header on a plot gives maximum.and minimum
displacement.

Ex. I PLOT EX,20

Will generate a plot of 20 values stored at EX.

NUMOUT (OUTNUM). Converts to character type, and
prints, floating point _numbers. It prints one
number (specified in the argument) on the same line
as the last written record (i.e., no carriage return).

Ex. 1 NUMOUT DISTANCE

Will print the number stored in DISTANCE, on the
current line.

NUMWRITE (WUETENUM). Converts to character'type and
prints floating point numbers. It starts a new, line
and will print from one to four numbers, as specified
in the argument(s).

Ex. 1 *NUMWRITE TIME,ENERGY,MASS

Starts a new line and prints the three numbers stored
in TIME, ENERGY, and MASS.

OUTABLE. Prints the contents of a table. (The
table could have been defined using DEFTABLE and
filled using STACK.) The first argument is the
name of the table; the second argument is the
number, bf values lto.be'printed (or ALL); the third
(optional) argument specifies how many numbers to
the line (<5);.the default is one to a line. If
the secondargument is ALL, as many values will be
printed as-have been stored. If less than all are
printed, they -are the ones at the beginning of the
table. 'The second and third arguments may be numbers
or variable names.

:ougr.AEsxx

1::

.Prints all of the entries in the table TA.

Et .-14$0E U El of (f 0O o:1 0 P ri
) 44.1..-4.0 CO rf
00 o) w o p4 (1)z Ago0 a

H X 4., of A El tr) .-I H Et 0 9-1

E 4o

Es

HZ

R44813

fe
e-f

g
El

N
tal4
El
D0

. .
X

vs
sill
44

0
.0
43

0
43
c
el
$4
N

a

g

fif
p4

El
M0

vs
$4
4l
144

0
0
tO
oi
ari
X
ft,

fal

4;:b.g,iiiffl:4`edSaliaPt:6404iiiIiig(*?,giaa41tiaateAliattligiid,tg
,,,,,

14

ies in TA.

ies in !:.A, K to a lire.

2. Acceptin9 Tnformation

INPUT (ACCEPT, ACCEPTEZ). Causes a carriage return,
two line feeds, and a question mark to be executed at
the student terminal. The computer then waits for the
student to enter material. The student indicates that
his message is complete by executing a carriage return.
The maximum amount of material he can enter is set at
380 characters but this can easily be extended. The
line feed key allows multiple lines.

Ex. 1 INPUT

The author can assume, following execution of this
command, that student input, up to the carriage return,
is in the computer and available for inspection.

Normally, INPUT will be followed by a series of IF-type
statements. Such a sequence may be concluded by an
OTHER; showing where to go if none of the tests is
satisfied.

Ex. 2 INPUT 'NOECHO'

If INPUT is followed by the argument 'NOECHO', the
student's message will not be printed at the terminal.

INBELL. Sounds.a bell, indicating that input is expected
riai-Ehe student without a carriage return or line feed.
Then it waits for the student to enter material. A
carriage return by the student is taken to mean the end
of his message. A maximum of 380 characters is accepted.
No argurtent is required.

-Itx. 1. IKBELL

Ex. 2 INBELL 'NOECHO'

If the command has the argument 'NOECHO' the student
material .will not be printed at the terminal.

1r

- 16

3. Analyzing Input

IF (ZI). Thin command has several forms. The basic one
calls for two arguments: the first may be a character
string or the label of a character string; the second
must be the label of another command. If-the character
string appears anywhere in the student input, the next Ex. 1 IFNOT
command is taken from the location indicated by the
second argument. OtherWise, the next command in sequence A branch t
is taken. An alternative form allows the first argument not write
to be a series of character strings or adresses of
character strings (separated by commas and enclosed in Ex. 1 IFNOT
parentheses). If any one of them appears in the input
string, the branch will take place. Another form has a This stat
third argument, a number: it is the character position
in the input at which the search is to begin.

IFNOT. Thi
IFNOT bran
match betw
The form of
not possib

Ex. 1, IF 'VELOCITY',T34
IFYES. Ch
iiia-granch

If the eight character string VELOCITY appears anywhere Ex. 1 IFYES
in.the current student input, the next command executed
will be the one at T34. Otherwise, the next command in
sequence is taken. IFNULL. c

BBairact
Ex. 2 IF ('COW','HORSE',/PIG'),T34 It branche

this is th
If any of the three strings COW, HORSE, or PIG appear the studen
in the Jr:Put, the branch will take place.

Ex. 3 IF 'COW',T34,7

The branch will take place in this case only if the
character string 'COW' appears in the input at or after
the seventh character.the student typed. (THis faallEy
is not likely to be needed in most dialoges.)

'A typing error in the student's response, or a misspel-
ling, may foil the intention of the 'IF' search. The
teacher will often find,it advisable to test a part or
parts of the desired answer, rather than the whole.

IFONLY. There must be two arguments: the first a
character string or the label of a character string, the
second a location symbol. If the literal string is
identical with the entire input string, the next command
is taken from the location indicated by the second argu-
ment. Otherwise, the next command is taken-in sequence.

Ex. 1 IFONLY 'VELOCITY',P4

If the student typed only the eight characters VELOCITY
and a carriage return, the branch to 134 takes place.
If he typed more or less than that,"it does not.

EX. 1 IFNULL

This examp
type anyth

IFBEFORE.
symbols in
ful match
by an IF.
a label re
of another
the string
word match

EX. 1 IF

El IFB

This segue
appears an
tests to s
before the

forms. The basic one
t may be a character
string; the second
d. If the character
ent input, the next
indicated by the

ext command in sequence
ows the first argument
$ or adresses of
mmas and enclosed in
appears in.the input

Another form has a
e character position

s to begin..

CITY appears anywhere
next command executed

the next command in

ORSE, or PIG appear
place.

case only if the
the input at or after
typed. (TEIS-lianTy
dialoges.)

sponse, or a misspel-
e 'IF' search.- The
le to test a part or
than:the whole.

ts: the first a
character string, the

literal string is
ing, the next command

ed by the second argu-
is taken in sequence.

16

',nem

IFNOT. This command is similar in form to IF. However,
IFNOT branches on the opposite condition, i.e., if a
match between the argument and the input is not found.
The form of IF which allows a set of first arguments is
not possible with IFNOT.

Ex. 1 IFNOT 'VELOCITY',T34

A branch to T34 will take place only if the student did
not write "VELOCITY" as part of his statement.

Ex. 1 IFNOi ('COW','HORSE'),T34

This statement is illegal and not allowed.

IFYES. Checks for several forms of affirmative reply
rriTTranches if one is found.

Ex. 1 IFYES Q3

IFNULL. Checks for the condition that the student typed
BB-EEiracteri at all, other1 than the carriage return.
It branches to the location specified in the argument if
this is the case: The program author can thus check for
the student who is not trying.

Ex. 1 IFNULL TRY

This example will branch to TRY if the student did not
type anything.

IFBEFORE. Takes into account the relative position of
symbols in the response. It refers to the last success-
ful match in an IF statement, so it must be branched to
by an IF. It.has two arguments, a character string (or
a label referring to a character string) and the label
of another command. It specifies that the match between
the string and the input must be found before the last
word matched.

t Charicter0ELOCITY
to'T34,takes place..

t, it does:not...

'ENERGY',E1

El IFBEFORE.'POTENTIAL',E2

This*sequence tests first to see if the word ENERGY
appears anywhere in the string and, if it does, then
tests.to see if the word POTENTIAL appears in the string
before the word "ENERGY."

rN

1FNEXT (MATTER). Takes into account the relative
position rif symbols in the response. It refers to the
last successful match in an IF statement, so must be
branched to by an IF. It has three arguments: a char-
acter string (or the label of a character string) and
two labels of locations in the program. It checks to
see if the string appears in the input.anywhere after
the last match. If so, it branches to the location
specified in the second argument and stores all of the
characters between the last IF match and the IFNEXT
match in the location specified in the third argument.

Ex. 1 IF "VELOCITY',V1
000
V1 IFNEXT qt/SEC',V2,VEL

This sequence will go to V2 if the string "M/SEC"
appears after ."VELOCITY" in the input. It will also
store anything.appaaring between "VELOCITY" and "1M/SEC"
in VEL,.which must be'defined. So "THE VELOCITY IS
FOUR M/SEC" as a response will store "IS FOUR" in VEL.

After an unsuccessful IFNEXT, any number of IFNEXT's
(or IFBEFORE's) can be used sequentially, provided no
successful search is made:

Ex. 2 IF 'VELOCITY',V1

V1 IFNEXT 'M/SEC',V2, VEL
TIFNEXT 'F/SEC',V2, VEL

IFNEXTO (IFAFTERO). Is similar to IFNEXT. However,
the character string must exactly match the remaining
input string. There is no third argument, as no inter-
.vening characters may appear.

Ex. 1 IF

H6 IFNEXTO 'MlitA1;137

This sequence will transfer to H7 if "M*A" is the entire
and only string appearing after "Flo% Thus, "F=M*A**2"
would not make a successful match.

IFEE. Recognizes various forms of kinetic energy and
SiiEches if one is found.

Ex. 1 /FICE T73

Branches to T73 if the input contains a correct formula
for the non-relativistic kinetic energy.

IFPE. Rccog
branches if

Ex. 1 IFPE P77

Branches to
for potentia

IFFILTR Ch
language.

Ex. 1 IFFILTH

Branches to
contains any

IFTERMS. An
NOTERMS are
terms in our
are massing,

Ex. 1 IFTERMS

Could be use

If successfu
not, to the

The argument
for each te
student can
the author's

All the patt
so there wil
in the expre
the search i
string, or
where. The
each argumen

The order in
not matter.
the input an
command does
everything
paren is co

kes into account the relative
n the response. It refers to the
in an IF statement, so must be
It has three arguments: a char-

abel of a character string) and
s in the program. It checks to
ars in the input anywhere after
o, it branches to the location
nd argument and stores all of the
e last IF match and the IFNEXT
specified in the third argument.

,V2,VEL

to v2 if the string 94/SEC"
TY" in the input. It will also
ing between "VELOCITY" and "M/SEC"
defined. So "THE VELOCITY IS

onse will store "IS FOUR" in VEL.

IFNEXT, any number of IFNEXT's
used sequentially, provided no

made:

,V2, VEL
VEL

Is similar to IFNEXT. However,
must exactly match the remaining
is no third argument, as no inter-
appear.

H7

ansfer to H7 if "M*A" is the entire
ing after "F=". Thus, "F=M*A**2"

essful matcn.

ious forms of kinetic energy and
und.

e input contains a correct formula
tic kinetic energy.

19

Iii

..e*trre,,

IFPE. Recognizes various forms of potential energy and
' branches if one is found.

Ex. 1 IFPE P77

Branches to P77 if the input contains a correct formula
for potential energy.

IFFILTH. Checks the input string for objectionable
language.

Ex. 1 IFFILTH NONO

Branches to the statement labelled NONO if the input
contains any of several common swear words.

IFTERMS. And the associated commands ALLWRONG and
NOTERMS are useful in determining whether all the
terms in our expression are present, or one or more
are missing, or have an incorrect sign.

Ex. 1 IFTERMS
'-B*X'),; ('COSTH','COS(TH)1),LABEL

Could be used to check for the expression

ax2 - bx + cos(TH)

If successful, the program would branch to LABEL, if
not, to the next sequential instruction.

The argument field of the IFTERMS command includes,
for each term expected, all the ways in which the
student can write that term correctly (to the best of
the author's ability to anticipate this1)

All the patterns for one term are grouped in one argument,
so there will be as many arguments as there are terms
in the expression, plus a final label to branch to if
the search is successful. Each pattern is either a
string, or the name of a string that is defined else-
where. The object of the game is to match one string in
each argument-to a term in the input, with no leftovers.

The order in which the student enters the terms does
not matter. Leading plus signs can be omitted, both in
the imput and in'the IFTERMS command. At present this
.command does nothing with parenthesized quantities:
everything between a left paren and its matching right
paren is considered part of the current term.

ALLWRoNG. After an unsuccessful IFTERMS, allows the
instructor to branch to the sequence appropriate to
the mistake or misunderstanding. It must follow
directly on the IFTERMS statement.

EX. 1 ALLWRONG (TERMS,GG)

Tests to see if all the terms expected are missing;
if so, it branches to GG. .

Ex. 2 ALLWRONG (SIGNS,SS)

Tests to see if all the terms are there, but all with
the wrong sign, in which case it branches to SS.

EX. 3 ALLWRONG (TERMS,G1),(SIGNS,S2)

Transfers to G1 if all the expected.terms are missing,
but goes to S2 if they are all right except for the
sign on each.

NOTERMS. Allows the programmer to test on each or any
6Y-IrciTterms separately after an unsuccessful IFTERMS.
It also sorts out null strings and syntax errors, if
requested, and checks for the case where we find all
the expected terms plus extra term(s). NOTERMS must
directly follow either IFTERMS:or ALLWRONG.

EX. 1 NOTERMS (MISSING,13,G1),(2,G2,S2)),(NULL,NN),
(TOOMANY,TTO), (SYNTAX,ISYN)

Will branch to NN if input is just a carriage return,
to ISYN if there is a syntax error, to TTO if the
expected terms are there, but there are extra ones in
the input. If none of these is true, it will look first
to see if the term corresponding to argument 3 is missing,
and it will branch to G1 if so. If term 3 was matched,
it will look next to see if the second term is missing;
if it is matched but with incorrect sign, it will transfer
to S2; if no correct match for it was found at all, it
goes to G2. If none of these conditions is true the next
command after NOTERMS is executed.

The options can be given in any order, identified by the
key words as'shown in the examples- Any option(s) may
be omitted.

MISSING is followed bY=

1) the ordinal nuMberin the IFTERm command,- of the
term being considered;,

2) "the label to transfer to if the term has act been
nmtaled;

3) (if present),""the label to.branch to if,tt-is
matched, but with incorrect sign.

20

20

ssful IFTERMS, allows the
sequence appropriate to

ding. It must follow
tement.

expected are missing;

are there, but all with
e it branches to SS.

IGNS,S2)

expected terns are missing,
all right except for the

ammer to test on each or any
ter an unsuccessful IFTERMS.
ngs and syntax errors, if
e case where we find all

ra term(s). NOTERMS must
RMS or ALLWRI:ING.

),(2,G2,S2)),(NULL,NN),
(SYNTAX,ISYN)

is just a carriage return,
ax error, to TTO if the
but there are extra ones in
se is true, it will look first
onding to argument 3 is missing,
f so. If term 3 was matched,
f the second term is missing;
incorrect sign, it will transfer
for it was found at all, it

ese conditions is true the next
ecuted.

any order, identified by the
examples. Any option(s) may

the IFTERM command, of the
;

to if the term has not been

el to branch to if. it is .

rrect sign.

The programmer experienced in the use of assembly
language can do his own checking after an unsuccessful
IFTERM, using the stored information.

R2 contains the # of terms expected in the IFTERM;
R2 contains an error code:

1 if input is null string;
2 if syntax error;
4 if all terms were matched, but there are

excess terms in the input;
5 if one or more terms were not matched by

input terms.

If R2=5, two words store bit information:

#GFLAG contains a 0 bit for each term matched, a 1 bit
for each term not matched, in the order given in the
IFTERMS command. The remaining word bits are 0.

#SFLAG contains, in the same order, a 1 bit for each
term which would have a match but for the sign, 0 for
each other term.

TO (=HER, AUTRE, B, JUMP). The simplest form of this
command has a single argument, a statement label, and
causes an unconditional branch to that statement. If
a second argument is present, it indicates the condition
under which such a branch is to take placc. This argu-
ment is complex and is enclosed in parentheses: it has
either two or three Farameters: the name of a counter,
a relationship (optional): and a number. The relation-
ship may be GE-(greater than cr equal to), GT (greater
than), NE (not equal to), LT (less than), LB (less than
or equal to)-, EQ (equal to); if none is stated, (E is,
assumed. The branch takes place only if the counter
correctly satisfies the specified relationship.

Ex. 1 TO 05

The next statement to be executed is the one at Q5.

Ex.,2 TO Q7,-ZCA,LT,5)

Means, branch to 07 if the counter CA is less than 5;
otherwise take the next statement in sequence.

22

21

4. Manipulating Strings

NOBLANK. Takes the blanks out of a string, which may
be silecified in the argument. If no argument is present,
the input buffer (4IN) is assumed. Its normal use is
after INPUT, when a match requires no blanks; it is
particularly valuable in processing formulae or equations,
where blanks can appear in random places.

EX. 1. NOBLANK

Takes the blanks out of the input buffer. Thus, if the
student had typed "HORSE MAN SHIP", after this command,
the input buffer would contain "HORSEMANSHIP".

Ex. 2 NOBLANK LAST

Will take the blanks out of the string stored at location
LAST.

DELETE (REMOVE). Removes part of the input string. It
has one argument, a literal string or the label Of a
literal string, which is to be removed. The argument
may be multiple, a series of literals enclosed'in
parentheses. In this case the first occurence of.each
string will be removed from the input. The first
occurrence of that string is removed from the input.

Ex. I DELETE

Removes the first asterisk from the input. If the input
does not contain an asterisk, the string is unaltered.

Ex. 2 DELETE

Remove the first *, the first , and the first C.

DELETEALL. Removes part of an input string. It has
one argument, a literal string or the label of a literal
string, indicating the characters'that are to be removed.
The argument may be a series of literals enclosed in
perentheses; all occurrences of each string will be

0, removed from the input.

..7

string.

-

Ex. 1 DELETEALL

Removes all commas from the input string. If these are
no commas, the input is unaltered.

ft III

Ex. 2 DELETEALL (110,1E',*I1,10',1U1)

Removes the vowels a, e, i, o, and u from the input

5.

REPLACE
of a sp
Two lit
occurre

Ex. I REPLACE

Replace
time it

SUBALL.
in the
are req
string

EX. 1 SUBALL

Replace
there i

ADDAST.
them in
between
order),
followi
exponen
argumen

Ex. 1 ADDAST

Convert
A*

this co
A+

MOVE ei
ocatio

from wh
number
omitted
moved.
he is m
the str
If he s
he will

For the
languag
availab
machine

Ex. 1 MOVE

Moves

out of a string, which may
nt. If no argument is present,
assumed. Its normal use is
equires no blanks; it is

rocessing formulae or equations,
random places.

e input buffer. Thus, if the
SHIP", after this command,

tain "HORSEMANSHIP".

f the string stored at location

part of the input string. It
1 string or the label of a
oo be removed. The argument
of literals enclosed in
the first occurence of each

m the input. The first
is removed from the input.

from the input. If the input
sk, the string is unaltered.

rst), and the first (.

f an input string. It has
ring or the label of a literal
acters-that are to be,removed.

es of literals enclosed in
es of each string will be

e input string. If these are
ltered:

, o, and u from the input

REPLACE (SUB, SUB:FOR). Replaces the first occurrence
of a specified string in the input with a second string.
Two literal strings are required as arguments: the first
occurrence of the first string is replaced by the second.

Ex. I REPLACE 'TWO','2'

Replaces the character string "TWO with "2" the first
time it appears in the input.

SUBALL. Replaces each occurrence of a specified string
in the input with a second string. Two literal strings
are required as arguments: each occurrence of the first
string in the Input is replaced by the second.

EX: 1 SUBALL l**11,1+1

Replaces each double asterisk with the up-arrow. If
there is no **, the string is unaltered.

ADDAST. Takes formula input by students and transforms
them into a BASIC-like form. It inserts asterisks
between letters, or between numbers and letters (in either
order), and between a number or letter and the parantheses
following or preceding it. It replaces the FORTRAN
exponentiation "**" with "+". It removes blanks. No
argument is required.

Ex. 1 ADDAST

Converts an input formula. If the student had typed,
A**2 + 2AB + B**2

this command would convert it to
A+2+2*A*B+B+2

MOVE (MOVEZ). Moves all or part of a string from one
location to another. The arguments specify the strings
from which and to which the move is to take place; the
number of characters to be moved (if this parameter is
omitted, it is assumed that all of the string will be
moved. The user must take care that the location to which
he is moving the string is defined large enough to contain
the string moved, else he may overwrite other material.
If be specifies-more characters than the string contains,
he will .move garbage along with the string he wants.

For the more advanced programmer who uses some assembly
language in, his programs, special forms of MOVE are
available in which some parameters can be stored in
machine registers. See examples below.

MOVE A,,BEx.: 1

23

Moves the entire string at .1% to B. A i.s unchanged.

Ex. 2 MOVE A,B,40

Mbves the first 40 characters at A to B. If A does
not contain 40 characters, garbage will be moved with
it.

Ex. 3 MOVE SAY,WHEN,*1

Moves the initial N characters of the string SAY, where
N is the number in register 1, to string storage in WHEN.

Ex. 4 MOVE (HOW,3),MUCH,*2

Moves K characters of string HOW, starting with character
number 3, to MUCH, where K is the number in register 2.

Ex. 5 MOVE (HOW,*3),MUCH,*2

Moves K characters of string HOW, starting Oith character
number .7, to strint, location MUCH. X is the value in
register 2 and .7 is the value in register 3.

PTRMOVE. Was designed for moving strings whose location
is stored in a known address. The instruction is of
the form:

PTRMOVE *A,*B

where the address of the string to be moved is stored in
A, and the address of the new location is stored in B.

Variations of this are the use of indexings:

PTRMOVE (*A,1),*B

moves the string whose address is in the nth word of A,
where n is the value stored in register 1. This operation
may be applied to the 2nd argument also.

In certain cases the asterisk may be left off either or
both arguments.

PTRMOVE A4(*13,1)

In this case it is assumed that A. is the name of the
string to be moved. Ey leaving off both asterisks, the
operation becomes the same as MOVE.

241

APPEND.
modifyin
string r
string t
to be mo%
paramete
append m
has room

Ex. I APPEND

Adds str
count of

haracters at A to B. If A does
cters, garbage will be moved with

characters
egister 1,

H, 2

of the string SAY, where
to string storage in WHEN.

f string HOW,
here IC is the

CH,*2

starting with character
number in register 2.

f string HOW, Starting With character
location MUCH. IC is the value in
the value in register 3.

ed for moving strings whose location
address. The instruction is of

the string to be moved is stored in
of the new location is stored in B.

are the use of indexings:

,1),*B.

ose address is in the nth word of A,
e stored in register 1. This operation
e 2nd argument also .

e asterisk may be left off either or

(*B,1)
-

assumed that A is the name of the
By leaving off both asterisks, the

e Same as MOVE.

2-1

APPEND. Concatenates one string on to the end of another,
modifying the character count appropriately. Tfie second
string remains unchanged. The arguments specify the
string to which and the string from which characters are
to be moved. Note that this is the opposite order of the
parameters in MOVE. The user should be careful not to
append more characters than.the defined string location
has room for.

Ex. 1 APPEND A,B

Adds string B to the end of string A and modifies the
count of string A to reflect A's new length.

4,C

5. Manipulating uumbe:/n.

NUMBER. Examineea character string* to see If it
.constitutes a recognizable nuthber and, if:so, converts
to floatingpoint form and stores the mumber. The first
argument is the location in which the.number is to.be
stored; the second argument is the locatiOn.to go to
if the string.is not a recognizablenuMber; the third
argument, if present,.is the location of the string. If.'

there is no third argument, the inputbuffer #IN is
assumed.

EX. 1 NUMBER TIME,NOGOOD .

Examines the Input buffer an&either storeethe converted
number in TIME or branches_to.NOGOOD.

EX. 2 NUMBER TIME,NOGOOD,NSTRING:,,,

Does the same for a string in NSTRING.

A "recognizable number' in this and other commands testing
foi numbers is defined as being of the following form:

1.41xxid1xlE0lx[x]]

where the brackets indicate optional characters and there
can be 'any number of digits X in. the part of the number
preceding the exponent.

SCAN. .Separates a string into three parts: that part
containing a number, the part before it, and the part
after. Either four or five arguments are required: the
location at which to store the number; the locatimn for
the characters before the number; the location for the
characters after the mmmber; an error location if no
number is found; the string location (if omitted, input
buffer assumed). All strings must be defined by the
user. If there is no number, a branch to the error
location occurs and zero counts are stored in the three
specified' string-locations. All blanks are removed from
the string scanned, whether or not the operation is

.

Ex. I SCAN NUMST,STBEF,STAFTARR

-

26

Scans the input buffer for i string of characters
representing a_nnedb4er. That string is stored in NUNST:
the characters which preceded-it in STBEF; the characters
which followed it in STAFT. If no number ie found,
NUMST,STBEF,STAFT are given zero cxnmmti and a branch to

SCANC.
conver
in com

Ex. 1 SCAN#

Stores
string
conver

IFNUME
to Tee
is the
exclus
is the
input

Ex. 1 IFNUME

Branch
number

IFNOT
the in
a numb
to whi
number
of the
assum

Ex. 1 IFNOTN

Branch
a riumb

AROUN
There
the d
brand.

ARO

IF,S -

-.axe

Ex. 2 ,AROUN

string to see if it
er and, if so, converts

res the number. The first
i..111 the number is to be
the location to go to
able number; the third
cation of the string. If

e input buffer #IN is

either stores the converted
NOGOOD.

NSTRING.

26

$ and other commands testing.:.-,
g of the following form:

tional characters and there
im the part of the number

three parts: that part
before it, and the part
guments are required: the
number; the location for

er; the location for. the
n error location if no
cation (if omitted, input
must be defined by the
a branch to 'the error
s are stored in the three
11 blanks are removed from
not the operation is

Ex. 1

SCAN*. Performs all the functions of SCAN but also
converts the number into floating point form for use
in computation;

SCAN# NUMST,STEEF,STAFT,ERR

Stores the.string preceding the number in STSEF, the
string following the number in STAFT and.the number,
converted to floating point form, in NUMST.

IFNUMEX. Tests the input string (or any other string)
to -iie-if it is a number (only). The first argument
is the location to which to branch if the string is
exclusively a rlmber; the second argument (if present)
is the location of the.string to be tested. If absent,

.input buffer i4;assumed.

Ex. 1 IFNUMEX :.NEXT

Branches to:NEXT if the input buffer contains only a
nuMber.

IFNOTNUM. Is the reverse form of IFNUMEX. It tests
the input string (or any other string) to see if it is
a number (only). The first argument is the location
to which to branch if the string is not exclusively a
number; the second argument (if present) is the location
of the string to be tested. If absent, input buffer is
assumed.

Ex. 1. IFNOTNUM NEXT

Brandhes to NEXT if the input buffer is not exclusively.:
a nuMber.

AROUND. Tests the range of a floating point number.
There are four arguments; the-number, the central value,
the,deviation from this value allowed, and the successful
branch point.

N,S,E,GOTO

IF S-E<N<S+E, the program will branch to-GOTO; if not,
the neRt-instruction in sequence will be taken. S and E
are the locations of floating point numbers.

tring of characters
tring, is Stored in NUMST;
it in STBEF; the characters
f no number is found,
ro counts and a branch to

, , -
AROUND .5' 0 .02' ,BRANCE

_

. .

17:...48<ic.c.t2,.4t branches iO BRANOB,'else:takesthe.next
"-laisiruaron::.'",FS" here indidates.a floating-I-paint...number.

27

28

BETWEEN. Tests the size of a number. There are four
arguments: the number to be tested, the lower bound,
the upper bound, and a branch location. The bounds BUMP
can be either locations where the bounds' are stored or a cou
actual floating point numbers. of th

enclo
Ex. 1 BETwEEN N,BOTTOm,TOP,GOTO is 25

Man' ulatin

If the number at N is between the values of BOTTOM and
TOP, inclusive, it branches to GOTO; if not, the next
instruction in sequence is taken.

Ex. 2 BETWEEN N,FS'12.5',FS'12.8',T749

Ex.. 1 BUMP

Ex. 2 BUMP

DEC
If the number at N is between 12.5 and 12.8, it branches count
to T749. Note the format of floating point constants; count
see the Metasymbol manual for further details. separ

RANDOM. Generates and stores random numbers. The first
argument is the location at which it is to be stored.
The second and third arguments (optional) indicate the
range. If they are omitted, ths number will be between
0 and 1. A sequence of random i.ambers generated by a
series of calls is unique: no other runs of the program
will generate the same sequence.

Ex. 1 RANDOM 'X,A,B

Generates a random number between A and B and stores it
in X. .

Ex. 2 RANDOM

Generates a random number between 0 and 1 and stores it
in Y.

Ex. 3 RANDOM

Generates a random number between 0 and 50 and stores it
in A. ("FSe indicates a floating point number.)

RANDOKR. Is like RANDOM, except that the sequence of
numbers generated is-repeatable:. that is, every run of
the program will generate the same sequence of pseldo -
random numbers.

Ex. 1 DEC

EX. 2 DECRE

The m

RESET
The
the s
If th
the v

EX. 1 RESET

Gives

Ex. 2 RESET

Gives

ADDCO
resul
of th
secon
separ

Ex. 1 ADDCO

Adds

EX. 2 ADDC

Add

a number. There are tour
tested, the lower bound,

ch location. The bounds
re the bounds are stored or
s.

n the values of BOTTOM and
to GOTO; if not, the next

taken.

2.8',T749

en 12.5 and 12.8, it branches
f floating point constants;
or further details.

es random numbers. The first
which it is to be storecl.
nts (optional) indicate the
, the number will be between
dom numbers generated by a
no other runs of the program

ence.

etween A and B and stores it

etween 0 and 1 and stores it

tween 0 and 50 and stores it
oating point number.)

cept that the sequence of
le: that is, every run of

e same sequence of pseudo-

.romoleaRnINTemn

6. Manipulating Counters

BUMP (INCREASE, AUGMENT, ADD1). Increases the value of
a counter (or counters) by 1. The argument is the name
of the counter (or counters, separated by commas and
enclosed in parehtheses). The maximum value of a counter
is 255.

Ex. 1 BUMP Cl

Ex. 2 2'.UMP (C2,C23,A)

DECREASE (SUM.). Is used to decrease the value of
counters by 1. The argument specifies the name of the
counter to be bumped, or the counters, if more than one,
separated by commas and enclosed in parentheses.

Ex. 1 DECREASE Cl

Ex. 2 DECREASE (C2,C23,A)

The minimum value for a counter is 0.

RESET (ZERO). Stores a new value in specified counters.
The first argument is the name of the counter or counters;
the second is the value to which the counter is to be set.
If the second argument is missing, zero is assumed to be
the value.

Ex. 1 RESET

Gives

Ex. 2 RESET

(AB,C2,Q17)

the three counters the value of zero.

Q17,4

Gives the counter, 017 the value 4.

ADDCOUNT. .Sums two or more counters and stores the
result in one of them. The first argument is the name
of the counter in which the sum is to be stored. The
second argument is the additional counter (or counters,
separated by commas and enclosed in parentheses).

Ex. 1 ADDCOUNT

29

Adds counter A to S and stores the sum in S.

Ex. 2 ADDCOUNT S,(A,B,R)

Adds counters S, A, B, and R and stores the sum in S.

4:-

CTAR1TH. Lnables the use to add, subtract, multiply or
aiVra-icounters. The operation is specified in the
second argument field. The fourth argument is the branch
point in case of error; all counters remain in original
form. Error conditions are

overflow -- value > 255
underflow -- value < 0
division by 0

Ex. 1 CTARITH A,ADD,B,C
ADD A TO B LEAVE IN A

Ex. 2 CTARITH A,SUB,B,C
SUB B FROM A LEAVE /N A

Ex. 3 CTARITH A,MULT,B,C
MULT A BY B LEAVE IN A

Ex. 4 CTARITH A,DIV,B,C
DIV A BY B, TRUNCATE AND LEAVE IN A

CTWRITE. Outputs a CR/F and then the value of any
counter in decimal form.

Ex. 1 CTWRITE T2

If T2 has the value 5, this generates a carriage return
and line feed, then the number 5.

F

CTOUT. Output just the counter value (no CFLF).

Ex. 1 CTOUT A

If the counter A is 2, this prints 2 on the current line.

SWITCH. Is a command for testing the value of a counter
iNaEFanchimg to one of several locations, depending on
its value. The first argument is the name of a counter.
The second argument is a set of statement labels
(separated by commas and enclosed in parentheses) to
which to branch on sequential values of the cbunter,
starting with zero. If the value 0f-the counter is
greater than the number of branch points supplied, the
SWITCH is ignored and the next command is executed.

30

For
effi
fun

Ex. 1 SWI

Bran
and
A is

to add, subtract, multiply or
ation is specified in the
e fourth argument is the branch
1 counters remain in original

VE.rN A

EAVE IN A

VE /N A

UNCATE AND LEAVE'IN A

d then the value of any

s generates a carriage return
er 5.

unter value (no CFLF).

s prints 2 on the current line.

testing the qalue of a counter
veral locations, depending OA
ent is the name of a counter.

et of statement labels
nclosed.in parentheses) to
al values of the.counter,

e value of the counter is
branch points supplied, the

next command is executed.

30

771:

For specifying a number of branches, SWITCH is more
efficient in execution than a series of TO's although
functionally equivalent.

Ex. I SWITCH A,(AO,A1,A2,A3,A4)

Branches to AO if A is zero, Al if A is 1, A2 if A is 2,
and so on, but goes to the next command in sequence if
A is 5 or larger.

31

7. Constant and Parameter Storage

DEFINE (DEFINEZ). Reserves space for the storage of
strings of Characters, including the character count,
and defines the label which will be used to refer to
it. The first argument is the label, the second is the
number of characters. If the second is omitted, 16
characters are assumed. The user can use the same
space for different things in different parts of his
program. It is his responsibility to be sure a string
area is large enough to contain the string moved into
it or appended to'it. :There is no limit to the length
of a string or string area'but if the string is to be
used as a message it shouldbe limited to what can be
printed.on one line (70 characters).

Ex. 1 DEFINE STR1

Reserves storage for 16 characters, to be referred to
as "STR1".

Counter
names)
One con
the lab
first
T32, th
name rad
the use
suggest

SET. A
TYE ass
each th
It can
for ins
It can
to labe
are red

Ex. 1 ABC
Ex. 2 DEFINE STR2,70 Al

A2
Reserves storage for 70 characters, to be referred to
as "STR2". In thes

(which
and A2

COUNTER (COMPTEUR, C). Defines a label as referring to defined
a counter and reserves space for that counter. The redefin
first argument is the label or a sot of labels for
several counters, separated by commas and enclosed in
parentheses. The second argument is the initial value TEXTI.
the counter(s) is to have. If the second argument is which w
not present, the counter(s) will have an initial value contain
of zero. Currently, 32 counters are allowed in the contain
program; the maximum value for a counter is 255. Any
'number of COUNTER statements nay appear in a program Ex. 1 Az
(up to 32), but no counter should appear in more than
one COUNTER statement as this is a multiple definition Stores
of a label. as AZ.

vEMOCI
Ex. 1 COUNTER AQS

Strings
Establishes a counter to be called AO, with an initial system
value of zero. softwar

the
EX. 2 COUNTER 14,5 begin

WOrd .
change
to work
=mamma

. M
system

with an initial value.of:.:S.

Ex.

-Establishes counters C, D E, and P. each with initial
value of 7.

rves space for the storage of
including the character count,
hich will be used to refer to
is the label, the second is the
f the second is omitted, 16
The user can use the same

ngs in different parts of his
ponsibility to be sure a string
contain the string moved into

There is no limit to the length
ea but if the string is to be

ould be limited to what can be
characters).

characters, to be referred to

dharacters, to be referred to

Defines a label as referring to
space for that counter. The
bel or a set of labels for

ated by commas and enclosed in
d argument is the initial value
ve. If the second argument is
r(s) will have an initial value
counters are allowed in the
lue for a counter is 255. Any

ements may appear in a program
ter should appear in more than

as this is a multiple definition

to be called AQS, with an initial

B. with an initial value of 5.

7

, D, E, and F, each with initial

33

Counters can have any name lwithin iho limits on label
names) as long as it is not used for any other purpose.
One convenient procedure is to use a name related to
the label of the WRITE statement where the counter is
first used; thus, if the WRITE statement is labelled
T32, the counter might be labelled T32C. Or,- the counter
name might indicate the function of the counter. But
the user does not have to follow any such naming
suggestions.

SET. A metasymbol command enables the user to define
TWE assembly time), a label or labels by assigsling to
each the attributes of the list in the argument field.
It can be used to suoply synonyms for counter names,
for instance (this may be useful for mnemonic purposes.)
It can also be used to give specific arithmetic values
to labels. Labels have the valuez assigned unt:Y they
are redefined by another SET statement.

Ex. I ABC
Al
A2

SET DEF
SET 23
SET Al2,2+3

In these statements, ABC is given as a synonym for DEF
(,,Thich must be defined elsewhere; Al is the number 23
and A2 is defined in terms of Al. Labels originally
defined by an EQU or by a COUNTER, statement may not be
redefined with a SET.

-

TEXT#. Defines a character string, specifying the name
which will be usea to refer to it. The label field
contains the name of the string; the argument field
contains a literal string.

Ex. I. AZ TEXT# 'VELOCITY'

Stores the characters "VELOCITY" at a location identified
as AZ. Thus a statement WRITE AZ will produce the word
VELOCITY at the student terminal.

Strings are stored internally in the conversational
system in a fashion different than in supplied Sigma-7
software. 'The full:first word of this string contains
the number of charaCters in ihe string; the characters
begin with:the first (left-most) byte of the second

commandenters strings in this fashiOn. This.
Change Was madelbecause in some inatances it is advieable
to work with-strings of'more than 256 characters, the
maximum whictvcan be stored with the TEXTC command in
MetasyMbol. Ail of the procedures and subroutines in the:
system assume:string storage as just outlined..

34

33

34

f

r

.- STRING. Is similar to TEXT#, but it has a branch around
the text-string itself. So STRING can be "executed"(it

I does nothing), while TEXT* cannot. The beginner who is
uncertain of this distinction should use STRING. A
string which needs to written out many times should be
stored this way.

rs.

Ex. 1 GREET STRING 'GOOD DAY!'

Stores the string 'GOOD DAY!' under the name GREET.

DEFNUM. Reserves storage space for individual floating
point numbers and assigns labels to the storage. The
argument is the label or labels (enclosed in parentheses,
separated by commas).

Ex. 1 DEFNUM WEIGHT

Reserves a single storage space for a variable WEIGHT.

Ex. 2 DEiNUM (X,Y,Z)

w Reserves storage for three variables.

Used with one argument, this directive only reserves
storage and does'not establish any initial value.
Assigning values is the user's responsibility.

An optional second argument can be used to store an
initial value for each label defined in the first
argument. The second argument is one number, or one
symbol only.

Tr Ex. 3 DEFNUM (X,Y,5), FS'3.5'
44,

r.
ft Min define locations X, Y and 5 and place a floating
k short 3.5 in each of them.

f
Ex. 4 DEFNUM X, R

t Will define location E., and store in it the floating

P point number wbich is now In location R.
0'

34

#, but it has a branch around
STRING can be "executed"(it

cannot. The beginner who is
on should use STRING. A
n out many times should be

AY!'

under the name GREET.

ace for indivldual floating
abels to the storage. The

ls (enclosed in parentheses,

ace for a variable WEIGHT.

ariables.

s directive only reserves
ish any initial value.
's responsibility.

can be used to store an
1 defined in the first

t is one number, or one

d.11 and place a floating

store in it the floating
location R.

Ex. 3.

STORENUM. STORENUM has two argrments. The first is a
175Ear3E previously defined by DEFNUM, and the second
is a floating short number which is then assigned the
first argument.

STORENUM A,FS'1'

Places a floating short one in A which is previously
defined.

36

DEFCOMP. DEFCOMP works in the same manner as DEFNUM
except that for each label it reserves a double word.
It also may assign a value at time of definition. This
is done with a complex second argument which contains
two floating short numbers. The reserved number may
then be handled with doubleword commands.

Ex. 1 DEFCOMP A,(FS'1',FS'2')

Will reserve two words addressed by A with a floating
short 1 in the first and a floating short 2 in the
second.

STORECOMP. STORECOMP will store two floating short
numbers in a previously defined complex number.

Ex. 1 STORECOMP AAFS'1',FS'29)

Would store a floating short 1 and 2 in the dodbleword
defined as A-

DEFTABLE. Reserves storage space for tables or linear
arrays of floating point numbers. The first argument
is the label to be assigned, ihe second is the number
of words in the table.

Ex. 1 DEFTABLE TIMETAB,100

Reserves 100 words for a table which will be referred
to as TIMETAB. Numbers can be stored easily in tables
like this using the command STACK.

STACK. Stores numbers.into a table or linear array
(iZICh must have been defined using the DEFTABLE
directive). The first parameter is the location of the
number; the second is the name of the table; the third,
if given, is the branch point tor overflow. (If no
third argument is given, table overflow is marked by a
warning printout: "Table overflow, value not stored,"
and the next-sequential instruction is executed. This
is.not generally advised. STACK is useful in simulations FINALE (E
for storing student measurements. ast inst

When the
Ex. 1 STACK TIME,T1METAB type a c

saved on
This will store the current value of the number TIME , Use of th
into the next available space in the table 11METAB; to do thi
if there are 100.words'reserved for TIMETAB, and 16 have
already been filled, TM:6mill be stored in the 17th.

8. Other Commands

SYSTEM DI
DIALoG co
during th
in the pr

NAME
START

Either
command a

START. I

execution

NAME 'AJ
uses the
name the
will be s
this case
stores th
the name
restarts,

END. Thi
statement
of END D
different

STOP (HAL
tion in
the stude
and contr
erases fr
student's
in the pr
several

manner as DEFNUM
es a double word.
f definition. This
nt which contains
rved number may
nds.

A with a floating
short 2 in the

floating short
lex number.

in the doubleword

tables or linear
he first argument
ond is the number

will be referred
d easily in tables

or linear array
the DEFTABLE'
the location of the
e table; the third,.
erflow. (If no
low is marked by a
value not stored,*
is executed. This
useful in simulations

the nunber TIME

T1METAB, anal6 have
ored in the 17th.-

36

8. Other Commands

SYSTEM
DIALOG
during
in the

NAME
START

DIALOG. -Directs the assembler to select the file
containing the commands that are to be valid
this assembly. This:must be the first statement
program.

Y:ither NAME or START must follow the SYSTEM
command at the beginning of the program.

DIALOG

START. Initializes the flow of instructions when
execution begins.

NAME 'AJAX'. Does the work of START, but in addition
uses the (4 or less) characters in the argument to
name the response file on which the students' responses
-will be saved if any of the SAVE commands are used. In
this case the file name would be 'RESAJAK". It also
stores these characters as part of the students' /D on
the name file, which keeps records of starts (and
restarts, if ENTRY is used).

END. This indicates to Metasymbol that it is the last
statement to be processed. See Sec. 1-2 for discussion
of END DIALOGUE and END without an argument, or with a
different argument.

STOP (HALT). Indicates that this is the last instruc-
tion in the program which will be executed: i.e., when
the student uses the sequence, he is done at this point,
and control is returned to the executive. It also
erases from the name file the record containing this
student's ID. It is not necessarily the last statement
in the program. Nor need it be unique: there may be
several.emitsjrom the program.

FINALE (EPILOGUE, EPILOG). Indicates that this is the
last instruction ia the program, which will'be executed.
Whenithe student reaches this point, he is asked to
type a conment,abciut,the sequence. This comment is
Saved on disk. Control is then returned to the executive.
Use of.this instruction is, optional; some authors prefer
to do this themselves, or not do it at all.

37

:"4

ENTRY. Is the command which permits restart. It does
not need to be used. If it is used, the student who
does not finish a conversation in one sitting can restart
at some place other than the beginning. The command
ENTRY should be used at all locations at which the
teacher wishes to allow a ieztart. Normally, it should
be just before a WRITE command, so that the student will
not be restarted at an input. Restart occurs at the
last executed ENTRY.

If no ENTRY is used in the program, the student begins
directly with the user program. If one or more ENTRY
commands are used, he is first asked to type an ID;
this identification is used for restarting. Further,
if the program uses any ENTRY commands, the student is
reminded of his ID after he types STOP at any input.

In a program using restart, if the student uses a
previous identification, he is asked whether he has used
the dialogue before. If so, he is restarted at the last
entry point executed when he first ran the program.

SAVE (KEEP, INFO). Causes information to bestored.on a
disk file (while the program is runnin4) for later study.
It has two forms: to save student responses and to save
counters. The form to save responses has one argnment,
a character string which will serve as the name of the
record as it is stored on disk. When SAVE is encountered
in running the program, the =intents of the input buffer,
the date, the time,_and the name are saved. The name
should be no longer than 40 characters. One possibility
is to use the label of the preceding WRITE statement!,
The SAVE command for preserving the'values of the counters
has three arguments: the first must he COUNTERS; the
second is_ the name of the counters (separated by commas
and enclosed by parentheses) or ALL; the third is a .

character string -to,serve as a name. If the third
argument in omitted, the name "COuNTERS" will be used.

Ex. 1 SAVE

Saves the input buffer, time, date, and the name
"RESPONSE 1" on disk."

Ex. 2 SAVE COUNTERSALL,"REPLERt

Saves all of the defined counters under the name
"REIMER". ,

'RESPONSE 1°

Ia

ts restart. It does
ed, the student who
one sitting can restart
ning. The command
ons at which the

Normally, it should
o that the student will
start occurs at the

, the student begins
If one or more ENTRY
ked to type an ID;
estarting. Further,
ands, the student is
STOP at any input.

e student uses a
ked whether he has used
s restarted at the last
t ran the program.

ation to be stored on a
unning) for later study.
t responses and to save
nses has one argument,
e as the name of the

When SAVE is encountered
nts of the input buffer,
are saved. The name
cters. One possibility
ing WRITE statement.

the values of the counters
ust be COUNTERS; the
s (separated by commas

; the third is a
e. If the third

UNTERS" will be used.

te, and the name

s under the name

IR

Ex. 3 SAVE COUNTERS,(C1,C2,C3),'K'

Saves the three listed counters under the name

Ex. 4 SAVE COUNTERS,K2

Ex. 1.

tIRM.

Saves only the counter R2 and assigns the record the
name "COUNTERS".

SAVEID. Is identical in function to SAVE except that
the student ID is presewed as part of the disk record.

FORTRAN. Allows the user to introduce FORTRAN subroutines
into his dialogue. Any number of FORTRAN subroutines can
be called any number of times within a dialogue program
subject only to the limitations of space. All FORTRAN
facilities In XDS FORTRAN IV are available to the user.
The subroutine itself must be compiled using the XDS
FORTRAN IV compiler (not IV-H) and is loaded along with
the rest of the progiiii:

The argument Of the command is the name of the FORTRAN
subroutine together with (in parentheses) the arguments
for the subroutine.

FORTRAN POLLY,(X,Y,Z)

The default assumption is that the subroutine arguments
are real variables; the user can specify if he wants
the variables to be integers, complex numbers, etc.,
according to the following table:

1 Integer
2 TReal.
4 Real double precision
8 Complex

10 Double complex
20 Logical
3F Any argument type

Ex. 2 FORTRAN NA2INVA(I,1),(J,1),(Z,8))

Calls a subroutine in which I and J are integers and Z
is complex.

EERE (MARK). Simply identifies a location in the
program.

39

F-4

c;

K.

LOAD (TRANSFER). Brings into core the program segment
whose binary name (in single quotes) is the first
argument. If the second argument is present, a branch
is made to that label. Please read Section 3.7 on
OVERLAYING for a more complete discussion.

Ex. I LOAD 'CONIBO',CS

Ex.

Brings into core the binary file named CONIBO, and
branches to CS.

TRANSFER 'BR3'.

Brings into core the'binary file whose name is 2R3.
Presumably the programmer will later tralvnrer to the
instructions in BR3 by a TO command or its equivalent.

AUDIO. Works like a WRITE command, except ihat the
message is delivered in an audible fashion using the
RAAD audio response device,. (William M. Brobeck and
Associates), rather than through the teletype.

Ex. 1 AUDIO VOICEI

VOICEI is the.location in which information is stored
identifying the audio record.

TALK. To indicate the audio record, five pieces of
IETOrmation must be_given, for the RAAD device. These
are given in order, as a set of hexadecimal digits by
the following command.

VO/CEI TALK x'(digits)'

'Thus TALK supplies the information about the location
of the audio recora. /t must be labeled and referenced
by the audio command that actually produces the talking.
VOICEI is a label, starting in column 1.

ANSWER. 'Works like INPUT, except that it checks the
stiiieEt input foi.REPEAT, repeats the last audio
message, and continues from there. Noxmally, it should
be used only after AUDIO.

GOOD.', GOOD w11.3:randolly choose one of tenntaterdents
equivalent. to.!Correct"..,-It-Stay be nied without any
argument.. .

40

core the program segment
quotes) is the first
ment is present, a branch
e read Section 3.7 on
discussion.

r-.

le named CONIBO, and

le whose name is BR3.
later transfer to the

ommand or its equivalent.

and, except that the
dible fashion using the
illiam M. Brobeck and

ugh the teletype.

ch information is stored

record, five pieces of
r the RAAD device. These
of hexadecimal digits by

ation about the location
be labeled and referenced
ally produces the talking.
column 1.

cept that it checks the
ats the last audio
ere. Normally, it should

se one of ten statements
y be used without any

In which case the next instruction will be executed
after the GOOD response is printed.

It may also be called with an argument which is the
address of a location.

Ex. 2 GOOD . OUT,

In this case, after printing the message the program
will branch to OUT.

AGAIN. Will randomly choose one of 10 statements
equivalent to 'try again'. It is used with or without
an argument, as'in the command GOOD.

GREETING. Displays a greeting to the student appropriate
to the time of day:

Good Morning.

Good Afternoon; or

Good Evening

41

4..

CHAPTER 3

GETTING IT ON THE MACHINE

If the reader has had no previous experience using the BTM

timesharing system, he will need some assistance in learning how

to load, debug, and run his program. Probably the most effective

method is to ask an experienced Sigma 7 user to spend a little

time with you until you know the ropes; after that, you can refer

to the XDS manuals for additional inf.r.Irmation. However, it may

be helpful to have some material in tuis convenient location. We

have by no means attempted to explain the full power of the systems

described; only enough information is provided to get the beginner.

going.

In what follows, it is assumed that the program is to be typed at

a terminal and stored on disk; will be modified and corrected,

assembled, tested, and finally made available for student use.

Before you begin, you will need a legal account number; check with

your computer center on this. You will need to know the account

containing the dialogue system and libraries as well. (At Irvine,

it is 39999.)

1. Using the terminal

To sign on, you must press the *Break key. The system will

announce itself and ask you to Identify yourself with name and

account number. Once this is accomplished, the system will type

an exclamation point, which means that it is waiting for you to

42

erience using the BTM

assistance in learning how

Probably the most

7 user to spend a

s; after that, you

effective

little

can refer

ormation. However, it may

is convenient location. We

the full power of the systems

provided to get the beginner

e program is to be typed at

I be modified and corrected,

vailable for student use.

al account number; check with

11 need to know the account

raries as well. (At Irvine,

" key. The system will

fy yourself with name and

lished, the system will type

t it is waiting for you to

42

tell it what you would like it to do next. Here are some of the

functions of the monitor which you.will want to be able to use.

In these examples, messages output by the monitor are underlined.

Note especially that, in calling for any of these functions, the

user types only the first two characters; BTM finishes the word.

ILOGIN: (this asks the user to type his name and account
number. When you have done this, press carriage return.
If you are acceptable to the system, it will type an
exclamation point and wait for your command.)

ITABS (type the numbers of the character positions
where you would like to have tab stops, separated by
commas. Carriage return when you are through.)

IEDIT (calls for the text editing program which you
wiliuse to input your program. More below on this.)

IBYE (indicates that you are finished and wish to sign
off7)

There are some special typing conventions which the user should

be aware cl:

Return to executive: when the user is in some system or
subsystem, he may wish to return control to the executive.
He does this by pressing the "escape" key twice -- perhaps
sevral times.

Backspace: "escape" and "rubout", will cause an effective
backspace in the information being stored in the machine.
It may not cause an optical backspace in the material you
see on the terminal, however.

Erase: "escape" wx" causes the entire present line to be
aeigEed from the machine. Again, it will not necessarily
be removed from the terminal.

Retype: "escape" and "R" cause the completa statement to
be retyped. If there have been backspaces and erasures,'
it is scmetimes nice to be able to see exactly what you
have clone. Thestachine waits for further input.

43

%.,-

Tab: "escape" and "I" cause spaces up to the next tab
stop. Tabs must have been set previously at the
executive level.

Check status: "escape" and "Q" cause the system to
type "II". This is useful (after a long pause, for
example) for checking whether the system is still alive.

2. Using EDIT

The EDIT system allows the user to create, modify, and list disk-

resident files. This is one way to enter programs (Caxds are

also a possibility.) Once the user is satisfied that his program

is complete, he can then assign it as an input file for Metasymbol.

EDIT announces itself with an asterisk and waits for the user to

specify one of its commands. All of them will not be discussed

here; the BTM Users Manual gives a user-oriented description of

each. You should be able to get a good start with the pieces

described here.

Ur,

*BUILD fid (i.e., EDIT types the asterisk, you type
TBUILD" and then some file identification of your
bhoice, then carriage return.) When this command is
accepted, a new file is created on disk with the name
you have specified. EDIT then types aline number
(1.000) and waitrs for you to fill the line. A carriage
return, as usual, terminates the line and another line
number is typed. If you return the carriage without
typing any characters, it is, assumed that you are done
with BUILD and want to call another EDIT function -- it
types another asterisk. Because of the oddities of the
BTM system, it is wise to terminateBUILD iM this way
before you get too far in your typing so as to establish

-:.-your file on disk, and then'add to it using the IN

Retutns COntrol to the'...executive -- which types an
.--elecleimatiOn point tO l*t:yOu kno4 it isthere.' H

a

ause spaces up to the next tab
en set previously at the

and "0" cause the system to
ul (after a long pause, for
ther the system is still alive.

create, modify, and list disk-

o enter programs. (Cards are

is satisfied that his program

t as an input file for Metasymbol.

risk and waits for the user to

of them will not be discussed

user-oriented description of

a good start with the pieces

types the asterisk, you type
ile identification of your
eturn.) When this command is
created on disk with the name

IT then types a line number
ou to fill the line. A carriage
nates the line and another line
u return the carriage without
it is assumed that you are done
call another EDIT function -- it

Because of the oddities of the
to terminate BUILD in this way
in your typing so as to establish
then add to it using the IN

o the executive -- which types an
t you know it is there.

*DELETE fid This allows you to remove the file from
aisk. It effectively destroys the file and all
references to it.

*EDIT fid This allows you to edit a text stored on
aisk. All this command does is indicate that you
wish to edit a particular file, which you identify
by name. Following it, you must specify what you
want to do. Only a few of the possibilities will be
described here; IN, DE, TY, SE.

*DE n-m Deletes records n through m. Do not confuseft with DELETE which removes the entire file.

*TY n-m Types records n through .m. If m is omitted,
only n will be typed. If you wish to type to the end
of the file and do not know the number of the last
record, simply use a very large number for m.

*SE n;/strl/S/str2/;TY SE is a powerful command with
iany variations. This one is particularly useful: In
line n, substitute str2 for strl (first occurance only)
and type the new line. Follow the indicated punctuation
carefully.

3. Using Metasymbol

Metasymbol prograns must be assembled as a batch job -- in BTM

they canncst be assembled on-line with direct feedback on the .

terminal. The control information and the instructions for the

assembly, however,.can be submitted from a terminal as well as

from cards. In either case, the file with the course material

will be input to the assembly program.

The following suggested possibilities for assembly assumes BTM

version EDO; later versions may have different characteristics.

Let us assume that the conversational file stored on disk is

called COURSE and that we intend to give the binary output of

46

4 5

the assembler the name COURSEBO. The following 'ards' will

perform the assembly (first character in column 1):

!JOB (accounting informationinquire

locally for details)

!LIMIT (TIME,S)

!ASSIGN M:SI,(FILE,COURSE)

!ASSIGN M:BOAFILE,COURSEBO)

1METASYM LS,SI,B0,AC(B9999)

The JOB card contains accounting information; details may vary

from installation to installation; someone fimiliar with your

computer set7up will be able to help you here. The second card

sets a limit on the amount of time to be used in this particular

job. Setting a five minute limit simply protects you from the

chance of some error which would cause your job to run on

endlessly 7- and your account to be billed accordingly. The ASSIGN

cards specify files related to your program. The system input

(:SI) is to be an existing disk file (FILE) called COURSE. The

binary output of the assembly (BO) is to be a file called COURSER°.

(The .re other functions which the ASSIGN directive will perform;

details will be found in the BPM and BTM manuals.) Pay particular

attention to the punctuation of these statements; they have been

the despair of more than one amateur typist.

The final card of this set indicates that the system program you

will be using is M.tasymbol oammaym). The information in the

47

BO. The following 'cards' will

haracter in column 1):

(accounting information--inquire

locally for details)

(TIME,5)

M:SI,(FILE,COURSE)

M:BOAFILE,COURSEBO)

LS,SI,B0,AC(89999)

ing information; details may vary

tion; someone faMiliar with your

to help you here. The second card

time to be used in this particular

imit simply protects you from the

uld cause your job to run on

to be billed accordingly. The ASSIGN

o your program. The system input

k file on= called COURSE. The

(BO) is to be a file called COURSEBO.

ich the ASSIGN directive will perform;

RPM and BTM manuals.) Pay particular

of these statements; they have been

amateur typist.

dicates that the system program you

(Mumnsm). The information in the

47

I.

argument field is to specify what precisely you wish the assembly

program to do. Three of these arguments are required in our

situation:

SI specifies source input

BO specifies binary output

AC specifies that the dialogue procedures are to be
found in a file in account 39999. (At installations
other than Irvine, this number may be different.)

Other arguments are optional:

LS requests a listing of the source prograd

LO requests a listing of the output -- assembly
language and machine language code generated.

CN requests a concordance. The METASYM card must in
this case be followed by one or more concordance cards
(see Metasymbol Manual). The last card must contain
(columns 1-4) .END.

SD specifies symbolic debugging facilities: special
dictionaries are prepared and saved so that the DELTA
debugging program can be used. (Cannot be used in the
"final" version.)

To enter the batch processing system from the terminal, type BP

at the executive level (i.e., after a 1 prompt character). Y is

the correct response to "INSERT JOB?"; no carriage return is needed.

Then the above four lines can be typed. A blank line terminates

input and the user can reply 'N' to the "EDIT?" question. A

terminal message indiccAes that the job has been inserted. From

the standpoint of the computer, this job is just the same as if it

had come in from cards. You can pick up the (line printer) output

from the computer center; if you are in a hurry, you can use FERRET

to send a message to the operator, -to inquire whether the job has

been run and whether there were errors.

48

An alternative procedure is to place these caine "job" statements

at the beginning of the "COURSE" file, or whatever file is the

source file. before SYSTEM DIALOG; in this case the "M:SI"

statement must be omitted. Then at the executive level (terminal

prompts with '1') type

:ASSIGN M:SI,(FILE,COURSE)

The underlined characters are supplied by the computer. Enter

BPM as just described to assemble your program, replying N to

EDIT?. Another possibility, useful for long jobs, is to place

the job 'cards' in a separate file, with the'M:SI statement left

in, and assign the job-zard file as the source input file.

A successful assembly is necessary. METASYMBOL error messages

identify sources of trouble, and the dialogue system also contains

messages to assist the author. Xou should not be discouraged by

the several assemblies needed for correcting errors. The row of

asterisks at the lefthand margin on the printout indicates an

error. Mostly errors are obvious on looking at them but occa-

sionally the advice of an experienced programmer may be necessary.

Very few programs of any complexity are initially without error,

so a number of error runs are expected.

A common mistake is the use of a label more than once within the

program. The assembler complains of a doubly defined symbol when

you refer to such a label. You should give a new name to one of

the offending statements and check the occurrences to see which

label is needed when. A concordance, obtained during assembly, is

useful because it shows where the offending label has been used.

49

lace these same "job" statements

" file, or whatever file is the

G; in this case the "M:SI"

at the executive level (terminal

RSE)

upplied by the computer. Enter

le your program, replying N to

eful for long jobs, is to place

ile, with the'M:SI statement left

the source input file.

ary. METASYMBOL error messages

d the dialogue system also contains

You should not be discouraged by

or correcting errors. The row of

n on the printout indicates an

us on looking at them but occa-

ienced programmer may be necessary.

xity are initially without error,

cted.

a label more than once within the

ns of a doubly defined symbol when

should give a new name to one of

eck the occurrences to see which

dance, obtained during assembly, is

e offending label has been used.

A

The 'find and type' command (FT) of EDIT is also very useful in

tracking down labelling problems. Other common errors are the

placing of a space after a comma, the omission of a quote, and

the confusion of the letter 0 with zero.

A code is assigned to your program indicating the "severity" of

the errors.

The binary file prepared by the assembler can be loaded using the

LOAD subsystem at the terminal, and specifying the binary file

(COURSEBO in the example above) as an "element file". The option

U(B9999), where B9999 is the account with the dialogue library, is

required. If on-line debugging using DELTA is desired by an

experienced programmer option "D" is also needed. File assign-

ments are made in the program, so only a carriage return is needed

after "F:". Reply "7(Carriage return)" after XEQ, and execution

will begin. (If you use DELTA, ;G starts the program.)

4. Using Delta

Undoubtedly you will want to try the program, looking for bugs,

after it has been successfully assembled. Keep the flowchart and

the program listing available during this testing, making a point

of checking at least the main branches. Testing of this kind will

not discover all the bugs: only student usage will dr., that!

Delta is the nime for a subsystem of BTM which can be a great help

in testing your program, and is also the same for related facilities

in the RUN and LOAD subsystems. It allows you to operate small

30

SO

parts of the program, stopping to see what is in the counters and

other storage locations. As with the other systems described here,

Delta has more capabilities than we list. The:facilities described

here are enough to get a beginner started using the DELTA facilities

in LOAD. Read the Delta chapter in the BTM manual to find other

things which will be useful.

Let us assume that our program has been successfully assembled and

is now on disk in binary form under the name COURSEBO. We have the

program listing, the flowchart, and some notes on how we want to

proceed with the testing. After signing on, we specify that we want

to load a program. The dialogue with the machine will proceed as

follows. (Underscoring indicates typing by the system.).

!LOAD

ELEMENT FILES: COURSEBO
OPTIONS: D,U(B9999) (for delta)
F: . (type carriage return only;

no additional files are
required)

SEV.LEV. = 0

.** NO UNDEFINED INTERNALS **

At this point a bell rings; Delta is ready for instructions. The

primary facility available is the use of breakpoints. A breakpoint

is a location in your program at which you wish the computer to

stop, tell you where it is at and allow you to ask some questions.

You will want to set breakpoints along all of the possible paths of

the program segment you are interested in checking. Here are the

commands to Delta controlling breakpoints:

e;B (set the next available breakpoint at location e)

e,n;B (set the nth breakpoint at e)

51

You might

We assume

recognize y

to revise y

Then you wo

Having set

the program

causes it t

causes it t

normally un

will be

1

It is now

locations

as expected

0

t is in the counters and

er Systems described here,

The facilities described

using the DELTA facilities

TM manual to find other

uccessfully assembled and

ame COURSEBO. We have the

notes on how we want to

on, we specify that we want

machine will proceed as

by the system.).

or delta)
ype carriage return only;
additional files are
uired)

y for instructions. The

breakpoints. A breakpoint

u wish the computer to

on to ask some questions.

1 of the possible paths of

checking. Here are the

e breakpoint at location e)

t at e)

n;B (remove the nth breakpoint)

;B (type all of the breakpoints now in the program)

You might begin by typing a list like this:

ST1;B (the first breakpoint at label ST1)

M34+1;B (the next breakpoint one machine instruction

past M37)

We assume the SD Metasymbol option here; it allows DELTA to

recognize your labels. After xymning the program, you may wish

to revise your straitegy and remove or change these breakpoints.

Then you would use the other forms listed above.

Having set up the breakpoints, it is necessary to start to run

the program. The command

;G

causes it to start at its normal beginning. The command

ST1;G

causes it to start at label ST1. The program will proceed

normally until it reaches one of the breakpoints specified. This

will be announced with a line like this:

1;B ST1 (first breakpoint; at locations ST1)

It is now possible to examine the contents of various storage

locations and machine registers, to be sure that things are going

as expected.

e/ (display the contents of location e)

e(C/ (display e as a character string)

e(S/ (display e as a floating point number)

e(I/ (display e as an integer)

lane feed (display the word immediately following the

one just displayeZ)

51

After the content of a word has been displayed, that word is

considered to be "open." The user may type a new value for that

word, hit the carriage return, and the new value will replace the

one just displayed.

After the user is satisfied with the information he has received

about the present breakpoint and the modifications he may have

made, he may continue operating his program by typing

:P

or he may wish to begin again or start somewhere else using the

;G command, described above. When he is done working with his

program and wants to return to the executive, he can accomplish

this by two escapes.

S. Generating a load module

The version of the program to be used with students should be

generated as a load module. Assuming that the programmer has

successfully generated the binary file COURSEBO, without error

and withoirt the use of the SD option on the METASYM card, the

following job will create the load module PROG1:

IJOB (accounting information)

!LIMIT (rIME,15)

1LOAD (EF,(COURSEBO)),(LMN,PROG1),;

I(UNSATAB9999)),(BIAS,FA00),(ABS),(SL,9),;

l(PERM)

The JOB and =MIT cards are the same in function as in previous

examples. The optioms of the LOAD command require some definition.

53

ra.

, that word is

new value for that

ue will replace the

on he has received

ons he may have

typing

re else using the

working with his

he can accomplish

udents should be

e programmer has

, without error

ASYM card, the

MI:

1:

(SL,9),;

on as ir previous

ire some definition.

(Note that a semicolon is the run-on indicator.) Here are the

LOAD arguments which are required:

EF: the element files (in parentheses, separated by
commas) which are to be put together to make up the
load module. In our example, only one file. (Omitted
if a GO file is used - see BTM manual.) Names of
element files must have 8 or fewer characters.

LMN: the load module name, eight or fewer characters.

UNSAT: list of accounts (in parentheses, separated by
commas) from which unsatisfied references are to be
picked up. The library of each account is accessed.
The account with the dialogue macros (B9999 at Irvine)
must be included.

BIAS: the lower limit into which on-line user programs
can be loaded in this installation -- FA00 at Irvine;
elsewhere, check with computer center personnel.

ABS: specifies absolute load nodule.

PERM: specifies that the file is to be permanently
retained.

Here are some LOAD arguments which are optional:

MAP: produces a listing of the locations into which
the element files and external references are loaded.
Very useful in debugging the program.

SL: specifies the error severity level that will be
tolerated by the loader in forming a load module. The
value may range from 0 through F.

After the load module has been successfully generated, the

programmer will want to run it. The procedure is:

1RUN carriage return

LOAD MODULE FID: PROG1 carriage return

;G (and a bell, if terminal has one)

(Here again the machine printout is underlined.) The programmer

now has a choice: to begin the program execution he may hit the

53

carriage return. If (as is often the case) the program still has 6. Sectio

errors, he may choose instead to use the DELTA facilities (explained Large prog

in 3.4) to do some debugging or to set breakpoints for debugging long time

at various points during execution. When he is ready to begin not only

running the program, he types any long j

;G carriage return modify a p

assemble h

During the execution of the program, the user can always go into time as err

DELTA by pressing the escape key twice. When he is ready to the relatio

proceed with the program he types system. E

;P

to resume at the point he left (see 3.5 for variations). If he but only th

has set breakpoints the program will automatically stop at those should have

points, ready for DELTA commands. He can proceed with the running in the prog

of the program as above. a FINALE or

should end

To stop the program before it finishel, the user can type STOP

at any place where the program asks for an answer: or he can at The first s

any point-hit 2 escapes twice in succession. This returns him to

the ExecutSme.

Any label w

requires s

and SMIRCH,

referred to

IMUSt appe

or

54

e case) the program still has

the DELTA facilities (explained

set breakpoints for debugging

When he is ready to begin

, the user can always go into

ice. When he is ready to

3.5 for variations). If he

automatically stop at those

e can proceed with the running

es, the user can type STOP

for an answer, or he can at

cession. This returns him to

6. Sectioning a program

Large programs presel,%.

long time to assemble,

not only expensive, it

some special problems. They may take a very

or even refuse to assemble at all!! This is

may also be inconvenient: at some installations

any long job will held over and run at night. It is also easier to

modify a program in many pieces. Thus the programmer may want to

assemble his program in smaller pieces, reassembling them one at a

time as errors are found. Some care must be taken to be sure that

the relationship among the pieces or sections is made evident to the

system. Each section must begin with

SYSTEM DIALOG

but only the first section (where the student begins the dialog)

should have a NAME or START command. The last command to be executed

in the proaram as a whole (not in each section) should be followed by

a FINALE or STOP command. Each part other than the first section

should end with

END (no arguments)

The first section should end with

END DIALOGUE

Any label which is referred to in one section and defined in another

requires special treatment. If the two sections are called SOURCA

and SOURCE!, for instance,.and the label A33 is defined in SOURCA and

referred to in SOURCES, then the command

DEE A33

must appear in SOURCA; and the command

SREF A33

or REF A33

must appear in SOURCE. Any statement labels, or parameter names which

are defined in one section and referred to in another require DEF

statements (in the defining program) and SREF or REF statements (in

the referring program). These statements can occur anywhere in the

program sections, but it is good practice to put them at the beginn-

ing. All counters used must be defined in the first section, mentioned

in a DEF statement in that section and in REF statements in other

sections using the counter(s). Any SAVE COUNTER,ALL commands used

in that section must be preceded by the COUNTER statement(s). More

than one symbol can be included in each DEF Or SREF statement. For

example,

SREF A33,B1,B6,CC

takos care of the three labels A33,B1,B6, and the counter CC.

If ENTRY commands (for restart) are used in the second or other

parts, ENTRY must also appear in the first section of the program,

anywhere after the START or NAME command. In the other sections it

can be used anywhere after the label to which the branch is made On

entering that section. It is good practice to place it before a

WRITE statement.

When each partial program is debugged, a load module to be used by

students might be generated by this job:

IJOB (ACCOUNTING INFORMATION)

ILIKIT (TIME,10)

!LOAD (EF,(BINA),(BINB)),(LMN,IESSON1),(PERM),;

(BIAS,FA00) (ABS) (UNSAT (89999)) (SL,9), (MAP)

ment labels, or parameter names which

ferred to in another require DEF

) and SREF or REF statements (in

tements can occur anywhere in the

practice to put them at the beginn-

efined in the first section, mentioned

n and in REF statements in other

y SAVE ('CUNTER,ALL c--7=mmands used

by the COUNTER statement(s). More

n each DEF Or SREF statement. For

3,B1,B6, and the counter CC.

re used in the second or other

the first section of the program,

command. In the .)ther sections it

1 to which the branch is made on

practice to place it before a

gged, a load module to be used by

is job:

ORMATION)

)),(LMN,LESSON1),(RERM),;

T,(E9999)),(SL,9),(MAR)

Note that the binary file BINA and BINB must be assembled without

the SD METASYM option. If the total program size is large, 10LAY

may be used instead of 1LOAD, with the same arguments.

The following page shows an example of a pair of program sections

.with the control statements needed to get them assembled.

57

!ZOB PHYSICS,IRVINE,2

1LIMIT (TIME,10)

!ASSIGN M:B0,(FILE,BINA)

!METASYM LS,LO,SI,BO,AC(B9999)

SYSTEM DIALOG

NAME 'EXAM'

DEF CA,CM,AA,RDQ

SREF B1,XYZ,TAB1,TAB2

COUNTER (CA,CM,CTOT)

etc.Al

EPILOG

END DIALOGUE

13013 PHYSICS, IRVINE,2

1LIMIT (TIME,10)

!ASSIGN M:B0,(FILE,BINB)

IMETASYM LS,LO,SI,B0,AC(B9999)

.SYSTEM DIALOG

DEF B1,XYZ,TABLTAB2

SREF CA,CM,AA,RDQ

B1 etc.

END

59

7, Overlaying

The SIGMA 7 EITM

very well run int

of it essential!)

reorganize the p

core, and two or

take turns occup

'overlaying'.

related in time

The root shOuld

since no part of

core. All count

so the loader wl

access them by

The 'root' also

The command:

LOAD

will cause the s

into core, so th

be followed by,

to which the pro

LOAD

will cause BINA

tion (in BINA,

The root program

7. Overlaying

The SIGMA BTM user is allotted a limitel amount of core, so he may

very well run into the situation where he l'as writ..en more coding (all

of it essential!) than can be accomodated. it is often possible to

reorganize the program into a 'root' segment, which is always in

core, and two or nore other segments, (or groups of segments), which

take turns occt-.pying the remaining available space. This is called

'overlaying'. The way in which the root and other segments are

related in time and space is called the 'tree' structure.

The root should hold all information used by more than one segment,

since no part of a segment is available for use when it is not in

core. All counters should be defined in the root segment and DEFed

so the loader will make them available to the others, which will

access them by using an SREF statement.

The 'root' also contains the instructions for loading segments.

The command:

LOAD 'BINA'

will cause the segment whose binary file is named BINA to be brought

into core, so that the instructions in it can be executed. This must

be followed by, or combined with, a branch to the location in BINA

to which the programmer wants to transfer.

LOAD 'BINA',BBl

will cause BINA to be loaded into core, and will also set the instruc-

tion (in BINA, usually) with label BB1 as the next one to be executed.

The root program will have an

60

60

SREF BB1, When a segment is not

and segment BINA will have a be referenced only by f

DEF BB1. always in core, it is u

are not in core simulta

An alternate form of LOAD is TRANSFER.

The tree structure must be described in the 1TREE control command

immediately following 10LAY or !OVERLAY. The 'root' is the left-

most segment in the command; from the root extend two or more 'paths',

each consisting of those segments that may occupy core storage (along

with the root) at the same time. Suppose we have our program assembled

as 4 binary files, with BROOT the name of the root segment, Bl the

The root segment would

SYSTEM

NAME

SREF

DEF

COUNTER

WrITE

segment that is to be executed first, B2A and B2B two segments that WRITE

are to be loaded together into the same space Bl occupies, B1 another LOAD

segment that is to be loaded into that space. Then 1TREE command

would be: R2 WRITE

ITREE BROOT-(B1,B2A-B2B,B3) LOAD

DI

B1

R2

The '-' indicates that the two named binaries can be loaded next to
LOAD 1

each other; at the same time, incore. the ',' indicates that two
etc.

segments, (or groups of segments), are to overlay one another (that

is, begin at the same core storage location when loaded). The '0'
STOP

indicates a new level of overlay.
END DI

This tree statement says that at any given time we may have one of

three different 'packages' in core storage:
The source file for Bl

SYSTEM
1) BROOT and B1

SREF R2
2) BROOT,B2A and B2B

DEP B1
3) BROOT and B3

61

6 0

e 1TREE control command

The 'root' is the left-

t extend two or more 'paths',

occupy core storage (along

we have our program assembled

the root segment, 81 the

and 828 two segments that

paCe 81 occupies, 81 another

ace. Then 1TREE command

ries can be loaded next to

',' indicates that two

overlay one another (that

on when loaded). The '0'

en time we may have one of

When a segment is not in core it is on disk, and anything in it can

be referenced only by first loading it into core. Since BROW is

always in core, it is used for communication between sections which

are not in core simultaneously.

The root segment would include:

R2

SYSTEM

NAME

SREF

DEF

COUNTER

WrITE

WRITE

LOAD

WRITE

LoAD

LOAD

etc-

...

STOP

END

DIALOG

'RTEX'

B1ENT,B2ENT,83ENT

R2,CADD,CMULT,CEXP,R4,R5

(CADD,CMULT,CTOT,CEXP,CD)

'THIS IS AcREVIEW OF COMPLEX.NUMBERS.'

'LET"S TRY ADDITION FIRST.'

'81',81ENT

61

(load file 81 and
start with the command
labelled 81ENT)

'LET"S TRY MULTIPLICATION' (return from 81)

'82A'

'828,82ENT

DIALOGUE

The source file for 81 would include

SYSTEM

SREP

DEF

DIALOG

R2,CADD

81ENT

(load 82A but do not
branch)

(load 828 and branch)

BlENT ctc.

TO R2 (return to root)

END

Similarly, each of the segments would contain SREFs for each of the

labels and counters in the root to which it referred and DEFs for

each of its symbols to which the root aegment might refer. B2A and

B2B must also, of course, contain DEF and SREF statements to define

internal references between them.

The job cards for creating the load module COMP from these binary

files would be:

!JOB (ACCOUNTING INFORMATION)

!LIMIT (TIME,10)

IOVERLAY (EF,(BROOT),(B1),(B2A),(B2B),(B3)),;

l(MAP),(PERM),(SL,9),(LMN,COMP),;

I(SEG),(UNSAT,(B9999)),(ABS),(BIAS,FA00)

}TREE ROOT -(B1,B2A -B2B,B3)

Here B9999 is the account in which the system library is stored, and

FA00 is the lower limit of core storage for the program, which is a

system parameter, and may differ in other installatiors. The command

!OLAY could be used in place of IOVERLAY, with the same arguments.

63

8. Student Use

As indicated in 3.5,

program by means of th

!RUN

LOAD MODULE

The student must be to

the program and ;G.

When the student first

identification if the

is used for restarting

dialogue at a single s

When the student wants

usual procedure of pre

input, the word STOP.

allows restart, he is

nelzt time to tries.this

Because the use of the

non-programmers, at I

for calling dialogues.

types DI; then he types

No error messages or b

records of dialog usage

this may not be possibl

with considerable force

in sREFs for each of the

t referred and DEFs for

nt might refer. B2A and

REF statements to define

COMP from these binary

(B2B),(B3)) ,;

S,FA00)

em library is stored, and

the program, which is a

nstallations. The command

ith the same arguments.

6 2 6.s

8. Student Use

As indicated in 3.5, the students can use the conversational

program by means of the RUN facility:

1RUN

LOAD MODULE FID: PROG1

;G

The student must be told how to sign on, to type RU, the name of

the program and ;G.

When the student first enters the program, he is asked to type an

identification if the restart facility is used. This identification

is used for restarting purposes if the student doeS not complete the

dialogue at a single sitting.

When the student wants to leave the terminal, he can follow the

usual procedure of pressing Escape twice; or, he can type, at any

input, the word STOP. If he enters STOP and if the program

allows restart, he is reminded to use the same identification the

next tine to tries.this dialogue.

Because the use of the RUN facility appears somewhat awkward to

non-programmers, at Irvine we have installed a special subsystem

for calling dialogu. Atthe prompt character (1) the student

types DI; then he types the name of the dialogue he wishes to use.

No error messages or break messages are sent to the student, and

records of dialog usage are maintained. (At other installations,

this may not be possible; system modifications are often resisted

with considerable force.)

APPENDIX 1: EXAMPLES

1. Creating a binary file

!EOIT
*EDIT EXArlD
*TY 1-25

!308 PCDP^.56,ANNA,2
2.0:13 !LIMIT (TINE,5)

!ASSiGN m:so,(FILE,ExAxPect)
4.0n1 1METASYM SD,SIONLAC(89099)

7.;1:10

B.IV1
Al

12.=
13410
14.G03
15.050 A3
16.07.0 A6
17.=
18.0U A7

2V,.=
21X,3 AS
22.:103

244:1.0

25.%1
,Tro

A2
Af3

SYSTEM
EXAr:7PLE

NAnE
CCUNTER
WRITE
BUM
INPUT

_IF
IF
OTHER
TO
WRITE
TO
TO
WRITE

TO
WRITE
TO
WRITE
EPILOG
END

!ASSIGN M!SL(FILE,EXAMP)

18PM

INSERT 308? Y
YCUR mAXIMUM PRIORITY= 2
EDIT? ;
3C8 :7SE31EO. ID=q

.5*ATUS C::ECK? Y
/0=9
Ru%NING.
I0=9.

rulnINS.
10=9

DIALOG
OF A DIALOGUE PROGRAM
'EXAm'

COUNT
AT IS 4 X 5?'

COUNT

'20',A2
'9',A3
A7
A5,(cOUNT,3)
'YOU"RE ADDING.
Al
A5,(COUNT,GE,3)
'TRY AGAIN.'
Al

'4 X 5 = 2115°

A8
'GOOD.'

DIALOGUE

(type the symbolic file
previously entered)

(binary file to be called
EXAMPBO)

TRY AGAIN.'

(assign the symbolic file to
system input)
(call batspla system)
(user enters Y for yes)

(user enters N for no)

('aser erters Y for yes. Status
may be waiting, running, or
completed)

2. Loading and running

ILlAD
ELEMENT FILt3: SXAMPOO
OPTIC:!U: P,u(07,?;
F:

SLV.LEV. = 0
NO Ur:DEFINED INTERN4LS

:G

WHAT IS 4 X 5?
79

YOu'RE ADDING. TRy AGAIN.
WHAT IS 4 X 5?
?20

GOOD.
YOU HAVE COMPLETED THIS PROG
PLEASE TYPE ANY COMMENTS AND
?N0 COMMENT

THANK YOU
XIT AT 7RSU1+.90

pe the symbolic file
cviously entered)

nary file to be called
MPBO)

ssign the symbolic file to
ystem input)
all batpit system)
ser enters Y for yes)

ser enters N for no)

ser enters Y for yes. Status
ay be waiting, running, or
ompleted)

2. Loading and running a-binary file

ILIAD
ELEMENT FILL3: SXAMPOO
OPTIC !s: V,u(O=11s)
r;

SEV.LEU. =
NO u%DEF1NED INTERNALS *:

;G

WHAT IS 4 X 57
?9

YOU'RE ADDING. TRY AGAIN.
WHAT IS 4 X 57
721

GOOD.
YOU HAVE COMPLETED THIS PROGRAM.
PLEASE TYPE ANY COMMENTS AND SUGGESTIONS.
7NO COMMENT

THAW: YOU
XIT AT ASU1+.90

66

(Load EXAMPBO, created above)
(D for Delta; U(B9999) defines
appropriate library)

(entered by user to start pro-
gram operation)
(beginning of the conversational
dialogue)

3. Creating a Load Module

In this example, control information is typed directly and is not
part of the EXAMP symbolic file, as it was in 1. Note that the SD
opticn must not be used on the MZTASYM card in making the lo-td
moduie.

!EDIT
frnT- rn7:E2

1-4

.E" :31

Delete control coh.mands from
=AMP file. -

Cancel any previous assignments.

INSERT 302? Y
YOUR MAXINU1 PRIORITY= 2
1

:1308 PCDP=6,ANNA,2
2

:ILIMIT (TIME,5)
3
oAssmn m:SI,(F/LE,EXAMP)
4
:1ASSIGN M:80,(FILE,EXAMP80)
5
OMETASYM LS,S1,80,AC(99999)
6
:!LOAD (LMN,EXAMPOI),(PER1),(8IAS,FA00),(A85),(UNSAT,(89999)).;
7
0(EF,(EXAMP80))
8

EDIT? N
30O INSERTED. 10=35
STATUS CHECK? Y

1 AHEAD
C IZ: .3

ID=25
nu7:NIN1.

10=35.

MS,LETED.
ID=

!GET RUN

LOAD romax FID:EXAMPOI
;G

!'AT IS 4 X 5?

(EXAMPDI will be name of load
module)

Special command for Irvine system;
usually !RUN is the command used
to load EXAMPDI

(beginning of conversational
dialog)

67

4. Using a FORTRAN

1EDIT
4EDIT FORPLOT
*TY 1-1',!

1.OIO 1008 P.,YSICS,IRV
!LIMIT (TriF,5)

3411 !ASSIGN m:80,(FI
4.1 !FORTRAN SI,80,L

SUOROUTI:T
DIMENSION

7.300 DO 1 1=1,2
8.0!11 1

RETURN
11.05J END

1ASSICN M:SI,(FILE,FORPL

1pPM

INSERT 308? Y
YOURnAXImuM PRIORITY= 2
EDIT? N\
308 INSERTED. 1C1=45

STATUS CHECK? LI

!EDIT
*EDIT FORPLOTT
*5E1-15:AO/V20/:TY
--C2:N0 SUCH STRG

1.0f10 1308 PHYSICS,IR
2.Z5 !LIMIT (TI-E,11)
34:11 1ASSIGN/M:80,(FI
4.05i3 1METASYn 51,00,
5.0C1 SYsTEm
64:4 START
7.M1 REF,

8.51 AA ORITE
9.051 Ca FORTRAT

1:4= CC PLOT
11.:= STOP

X RES
134:11 END

--EOF HIT AFTER 13.

4. Using a FORTRAN Subroutine

directly and is not
1. Note that the SD !EDIT
making the load 4tDIT FORPLOT

*TY 1-1',!

1.Cr.1 1008 P.,YSICS,IRVINE,2
2.= !LIMIT (TIMF,S)
3.:11 !ASSIGN M:80,(FILE,VALUES)
4.110 !FORTRAN SI,80,LS,L0

e control commands from S.5'.11 SUSROUTME VALUES(X)
file.

64%,..1 DIMENSION X(100)
1 any previous assignments. 7.100 DO 1 1=1,21

8.fl! 1 x(I:-SIM(1/3.)
9.00 RETURN

-,N 11.010 END

\ *

!ASSIGN M:SI,(FILE,FORPLDT)

89999).;

DI wil/ be name of load
le)

al command for Irvine system;
ly !RUN is the command used
ad EXAMPDI

nniug of conversational
og)

Iqpn

INSET JOB? Y
YOUR P xinun PRIORITY 2

EDIT? N
308 INSERNO. 10=45
STATUS CHECK? N

File FORPLOT contains a FORTRAN
subroutine, VALUES (x)

Compiling the subroutine

!EDIT (FORPLOTT is a DIAIAN; progxwa
*EDIT FORPLOTT \ which calls VAIAIES.
*5E1-15;/60/t/20A.TY Modifying the program.
--C2:NO SUCH STRG

1.0(0 me PHYSICS,IRVINE,2
2.005 1LI1IT (TI-E,11)
3411 IASSIGN/1:00,(FILE,F0R30)
4.050 1METASr SI,00,LO,AC(B9099)
54010 / SYSTEM DIALOG
6.5Z START
7.1 REF VALUES
84151 AA 11RItE 'TEST OF PLOT'
9.050 CB FORTRAN VALUES,X Line 9 will call the FORTRAN
10.= CC PLOT X,20 PRCKNULM
11.4" STOP
12.F;-) X RES 100
13.001 ENO DIALOGUE

--EOF HIT AFTER 13.
*

Using FORTRAN Subroutines (Cont.)

!ASSIGN n:SI,(FILE,FDRPLOTT)

ISP:1

IVSERT 008? Y
YOUP fNIXI'INI PRIORITY= 2
EDIT? n
300 INSERTED. 10=47
STATUS CHECK? Y
10=47
uAITING: 8 AlEAD
curnuT ID: 39
10=47
UAITING: 8 AHEAD
CURRENT ID: 39
10=47
UAITINC: 8 AHEAD
CUrREUT ID: 39
/D=47
CC.7LETED.
/D=

!LOAD
ELMENT FILES: FQ18D,VALUES
OPTIONS: U(B9999)
F:

SEU.LEV. 4: 0
XEQ? Y

TEST Of PLOT
-1.9990 MIN HORIZONTAL

USER EXIT.

Assemble FORTRAN routine.
Two alt modes to return to
executive level.

Both binary outputs now
available.

Run program on line.
Name both binary files.
Look for unsatisfied library
references in account B9999.

Y says 'Proceed with execution'.

0.9954

_ 69

APPENDIX 2: REFERENCES

XDS SIGMA Symbol and Me

XDS Batch Timesharing M

XDS Batch Timesharing M

XDS Batch Processing Mo

ACKNOWLEDGEMENTS

The structure and devel

Estelle Warner, David R

programming contributio

Deering. The users who

software were Noah She

Ballard, and Charles

le FORTRAN routine.
lt modes to retur:i to
tive level.

inary outputs now
able.

rogram on line.
both binary files.
for unsatisfied library
erences in account B9999.

'Proceed with execution'.

APPENDIX 2: REFERENCES

XDS SIGMA Symbol and Metasymbol - 900952

XDS Batch Timesharing Monitor Reference Manual - 901577

XDS Batch Timesharing Monitor Users Guide 901679

XDS Batch Processing Monitor Reference Manual - 900954

ACKNOWLEDGEMENTS

The structure and development of the software was guided by

Estelle Warner, David Robson, and Alfred Bork. Substantial

programming contributions were made by John Collins and Harold

Deering. The users who heavily influenced the direction of system

software were Noah Sherman, Mark Monroe, Kenneth Ford, Richard

Ballard, and Charles Munch.

1

APPENDIX 3: A FINAL WORD (OR TWO) TO THE READER

Comments on this manual, noting errors, omissions, and
ambiguities will be appreciated.

Copies of the system tape are available to those with
SIGMA 7s who would like to try using it. Please enclose
blank tape with.your request.

Those who are actively engaged in writing dialogs are
asked to inform us of this fact so that we can keep them
up-to-date on changes to the system as they occur.
Such changes tend to be relatively minor and will be of
small interest to any expect those actually using the
system. Let us know the date o2 the latest modification
you have.

Dialogs which have been developed using this system are
also availablezto potential users. Information will be
sent on request.

Reports of system errors or failures should be reported
in detail, with copies of input and output, if possible.

All such comments, requests, reports, and notifications
should be addressed to:

Alfred M. Bork
Physics Computer Development Project

University of California, Irvine
Lrvine, California 92664

71

