
ED 060 627

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

EM 009 633

Bork, Alfred M.
Learning to Program for the Science Student.
California Univ., Irvine. Physics Computer
Development Project.
National Science Foundation, Washington, D.C.
12 Jun 71
11v.

MF-$0.65 HC-$3.29
Computer Assisted Instruction; Computer Programs;
*Computer Science Education; *Programing; Programing
Languages; Science Curriculum; *Science Instruction;
Teaching Methods; Technical Education

The science student has many avenues to learning how
to program, including learning directly within the science course, in
a special course on programing, or by self-study. Often a formal
programing course is neither necessary or advisable. In general a
pedagogical approach, aimed at bringing the student quickly to using
the language, is better than a stricter, more logical one. Thus
teaching program languages is similar to teaching foreign languages.
Either a time-sharing or a batch computer may be used. It is best to
make the student move quickly to program writing in a particular
subject area, so that he may become motivated by solving relevant
problems. (RB)

IJ
LEARNING TO PROGRAM FOR THE SCIENCE STUDENT

C)
C=1

11./
Alfred M. Bork
Physics Computer Development Project
Department of Physics
University of California, Irvine
Irvine, California 92664

June 12, 1971

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-

DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIG-

INATING IT. POINTS OF VIEW OR OPIN-

IONS STATED DO NOT NECESSARILY

REPRESENT OFFICIAL OFFICE OF EDU-

CATION POSITION OR POLICY

Abstract

The science student has many avenues to learning how to program;

often a formal programming course is not necessary or advisable.

1

As computers are being increasingly used in the teaching of science,

students (and instructors) are more and more faced with the question

of learning the programming languages necessary to use the computer.

At first glance this task may appear formidable, but rapid and effective

ways exist for learning how to use the standard programming languages.

Because of his background, the science student has some special ad-

vantages. My own experience is with physics, but I believe that the

situation is not too different for science students in other areas.

Separate Programming Courses

One can learn how to program in many ways. We can profitably dis-

tinguish batween courses particularly set up to teach programming,

the learning of programming directly within the science course, and

the learning through self study. The natural inclination of many

teachers is to assume that the student needs a course devoted exclusively

or primarily to programming, but this does not turn out to be the

case. Learning to program within a modern computer environment, either

in or out of a formal course, is a relatively simple task for the

science oriented student, and can be accomplished within the science

course or through self-study.

That is not to say that it is necessarily bad for the student to take a

separate programming course. A beginning programming course could,

and should, offer far more to a student than simply learning a language.

It should teach the student much about the nature of the algorithmic

approach to problem solving, useful far beyond the writing of computer

coding, it can give him insight into computer hardware, and it can also

provide him with useful numerical and symbolic techniques which he

2

can extend as his needs expand. However, if the course available to

the student does nothing but teach how to write programs, it is, I

argue, probably an inefficient use of the student's time, because

it spends far more time than is necessary to accomplish this task.

Such programming courses work under a number of handicaps. First,

they suffer from the fact that very little common background among

the students exists, so problem assignments which require students to

write other than trivial problems are almost impossible. The same

problems appear in book after book--such problems as the solutions

of quadratic equations. These tasks are often not the type of problem

that one should solve with a computer. Furthermore, the mathematical

talents and insights of the students are likely to cover a wide range

and this may imply an approach which is too simplistic for the science

student. Both of these points are made, in a different context, in a

Kingly Amis novel, I Want it Now:

"I was only nineteen, but I'd had so much sex
already then that I thought I knew all about
it. I thought I couldn't not know all about
it. What I didn't know was what it was for.

I was like someone who knows exactly how a
railway engine's put together, and who can
put his finger immediately on any part you
care to name with his eyes shut, but who
it's never occurred to that the point of
the bloody thing is that it pulls trains.
You do see what I mean, don't you?"

3

Batch vs. Timesharing

Although the student or teacher must usually accept whatever computer

facilities are available, in some situations a choice between batch

and timesharing may exist.

The terminal environment provides a very efficient way of learning a

language. The student can get large amounts of practice in a relatively

small time, if sufficient terminal time is available. Even more

important, he can obtain instant error messages, correcting almost

immediately the troubles which occur in his particular program. This

rapid feedback is a powerful teaching device. The programming lan-

guage itself, and the implementation existing on a particular machine,

takes over some of the role of teaching the material, providing the

language is well-implemented. (Later, I will point to a method of

learning a language which systemizes this approach.)

On the other hand, the batch computer with jobs originating on cards,

usually implies a slower, more laborious approach, particularly if a

long delay occurs between the time the student submits the program and

the time he retrieves his output. In the batch environment the student

can learn more quickly if he can get directly at the computer, perhaps

even putting in his own cards and pushing the buttons on the console.

7his is possible in small computer systems, and perhaps also in larger

systems having remote user-operated card readers. Many batch systems

offer priority to small student jobs, as compared to research jobs,

and this again improves learning efficiency. But some batch facilities

tend to discourage student learning programs, particularly if they

are not associated with particular courses.

4

Negative Advice

Whether one is considering a separate programming course, or the

learning of programming within a science course, or on ones own, a

number of general points can be made. We will start with some "what

not to do" comments.

A common, but ineffective, way of teaching programming languages in

classes and in books is what might be described as the "grammatical"

approach, the logical step by step exposition of the gramm.. of the

computing language. Thus many FORTRAN courses start by defining fixed

(integer) and floating (real) variables, assignment statements, etc..

This approach appears to teachers who are logically oriented; they

order the grammar in a logical fashion, and use this order as the basis

for the course. But a difference exists between a logical approach

to a subject area ard a pedagogical approach, a way of bringing students

quickly to using the language. In the logical approach the student

takes a long time to get to the point where he can write programs,

and he does not gain much feel for the nature of the programming art

because he spends so much of his time on the rules of grammar. This

stragegy at one time was widely used in the teaching of foreign languages,

but now, I believe correctly, has been discredited. However, many,

perhaps even most, approaches to teaching programming languages still

proceed this way.

Another fallacy in teaching beginning programming is the belief that

a student must learn all about the language facility available, must

learn the full language. It is sufficient for the beginning student

to absorb only a subset, which may be oriented toward his particular

5

needs and interests. With modern and complex languages, such as PL/1

or APL, the task of 13rning the whole language, and using all the

facilities wisely, may be formidable, and so frightening to the beginning

student; but he can learn a subset much quicker. Then as his needs

increase, he can learn more of the language.

A final suggestion on the negative slide has already been implied. It

is not reasonable to ignore the background and training of the student.

For the science student the most profitable approach in learning about

computers is through a particular subject matter area. Working within

physics, or some other scientific discipline, the student is presented

with rea: subject-motivated problems which demand the use of the com-

puter, and which therefore motivate the learning of programming lan-

guages and demonstrate the relevance of computing in the area involved.
*

The material is not motivated by the general idea that one "should')

learn to program, but by the needs of the physics being studied. So

the tool is not learned abstractly, but rather in the context of

subject-matter use. This not only provide2 a powerful motivation for

learning, but from earlier expesure gives the student some under-

standing as to where the computer can be effectively used.

Positive Advice

One important clue to the learning of programming languages, comes

from the experiences with the audiolingual method in teaching foreign

languages. This method starts the beginning student with some whole

dialogs, conversations which he memorizes the learns to pronounce

correctly, without worrying too much about grammatical details or the

meaning of individual words. Thus he focuses on the language from the

6

very beginning where it will actually be used, at the whole-sentence,

or collection of sentences, level.

The corresponding unit for most computer programming languages is the

single program; the "whole program" approach in learning a computer

language, introducing the student to the language through showing him

initially complete programs, is analogous to the audiolingual method

for a foreign language. Just as with French dialogs, one does not

start with lengthy programs, but with relatively short (but meaning-

ful) programs, perhaps related to the subject matter with which the

student is working.

If a student does find that he must work with a gramatically oriented

book, he should try to move a quickly as possible to the writing and

running of programs, getting away from pure reading as soon as

possible.

It is important even from the beginning that problems be realistic,

leading to programs one would actually run on a computer. If a task

would be much more quickly accomplished by small hand calculation the

student loses any sense of what is appropriate and important for computer

calculation. In physics, for example, simple numerical solutions of

differential equations, which can be done in very small programs, are

a useful way to begin. The harmonic oscillator problem has been shown

by many users to be an area of physics where one can successfully combine

a high level of physics with the learning of programming language.

Material exists here in a number of different languages.

7

7

While initial programs may be provided by the instructor, perhaps

in printed form, the student should move as rapidly as possible into

his own programs. One technique is that of assigning first tasks which

involve relatively small modifications of the iniialy supplied pro-

grams. Thus the student does not have to grapple with all the details

of a full and complex program, but can begin to learn by changing exist-

ing programs only slightly. These changes would depend on the subject.

To expand the suggestion of the harmonic oscillator above, the pro-

gram could be modified in various ways to treat the motion of other

one-dimensional systems. For example, it can be extended into a program

for the damped harmonic oscillators; only a few statements in the total

program must be changed, and the student can work with these rather

than be faced immediately with the task of writing a completely new

program, thus not encountering all the difficulties at once.

There is something to be said for the student initially learning not

one program language, but two (or more) contrasting programming lan-

guages. Programming languages have a problem common to all languages,

including natural: When a student is familiar with only one language

he does not understand that language as fully as he might, because

he has nothing to contrast it with. If a person knows a variety of

languages he can see what features are common and what features are

different. So by simultaneously studying two or more programming

languages a student can get a better felling for the programming situation.

If two languages are taught, it is wise to pick languages which have

substantial differences in outlook or structure. For example, one

could combine the teaching of an algebraic language, such as APL or

8

P11/1, with the teaching of a language oriented primarily toward string

manipulation, such as SNOBOL. This multilanguage approach offers

insight into programming not available if one stays with a single

language. Experience indicates that students do not find this a con-

fusing situation. They can distinguish which language they are using

and effectively learn to use both languages at the same time.

Ten Finger Exercise

One way of learning a programming language, while not applicable in

all situations, has proved to b2 particularly effective at the

University of California, Irvine. This method of teaching a language

presumes a terminal environment and a language with "immediate"

facilities, such that individual statements in the language can be

executed rather than whole programs. APL, JOSS, and some forms of

BASIC are so implemented.

We have called the approach the "Ten Finger Exercise" way of learn-

ing about a computer language. The student receives little or no

instruction in the language before he sits at the terminal for the

first time. Furthermore, he does not have any of the usual manuals

and texts, a,: least at first. What he has is a sheet which instructs

him as to what to type in, line by line; he is told to type in each

line, and then push a carriage return. He usually gets some reply

each time from the computer, and this information begins to show him

what the computer does. The sentences which he types are arranged in

an order to elucidate the facilities of the language being learned.

Occasionally, also on a printed page, he will be asked a question,

just to make sure that the student has picked up whatever point the

9

9

teacher is trying to make at that time. He quickly learns that he

can do additional experimentation of the same type he has been using

already in answering the questions.

Thus the student sees no didactic material, no grammatical information

about the language, hears no lectures, but he learns to use it simply

by interacting with the language compiler itself. This technique can

be compared to the biologist learning about a strange animal by giving

it a series of selective stimuli, and watching the behavior of the

animal in response to those stimuli. Its success depends on the teacher

formulating a reasonable progression to move a learner through the lan-

guage. One does not start with the difficult ideas, but rather with

the simple ones. Considerable experience is needed to guide the

stue-3nt through the likely difficulties.

The accompanying material shows some beginning material of this kind

both in APL and JOSS (for a variant of JOSS called PIL), the two lan-

guages used this way at Irvine. Thus, in the APL material when the

student types 2 + 2, and pushes a carriage return, the terminal

immediately types 4. He quickly gets the idea that the computer is

doing the arithmetic he asks it to, and picks up how to instruct the

computer to do such calculations. Even the error mesages in the

system are useful in this mode of teaching; material can be con-

sciously planned so that occasionally a student will get an error

message, so he will learn what he can do as well as what he cannot

do.

10

\

This Ten Finger Exercise approach has been used both with high school

and college students with success. For example, in a high school

group of mixed 9th to llth grade students, chosen because of their

interest in science, a group of students learned to program in a

useable subset of APL in only four hours of time, all spent using the

Ten Finger Exercise material at the terminal. In addition to teaching

the language rapidly, this stragety gives the student the idea that

he can, by experimentation at the terminal, continue to grow in his

knowledge of the language.

11

