ED 060 626
AUTHOR
TITLE
INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME
EM 009 632

Bork, Alfred M.

Science Teaching and Computer Languages.
California Univ., Irvine. Physics Computer
Development Project.

National Science Foundation, Washington, D.C.
17 Aug 71

31p.

MF-$0.65 HC-$3.29
*Computer Assisted Instruction; Computer Graphics;

Computer Programs; Display Systems; Program
Descriptions; Programed Instruction; Programing;
*Programing Languages; Programing Problems; *Science
Instruction

FORTRAN

Computer languages are analyzed and compared from the

standpoint of the science teacher using computers in the classroom.
Computers have three basic uses in teaching, to compute, to instruct,
and to motivate; effective computer languages should be responsive to
these three modes. Widely—used languages, including FORTRAN, ALGOL,
PL/1, and APL, are compared. The decline of FORTRAN as the most
widely used language is predicted. Various conversational forms of
languages are compared, and criteria are set forward for terminal
languages. These criteria include ease in learning, editing
facilities, attitudes toward subroutines, dialog writing, string
manipulating facilities, array and matrix capability and others.

{RB)

Q

Aruitoxt provided by Eic:

ERIC

ED 06062¢

o
o0

O~

3
-3

U.S. DEPARTMENT OF HEALTH,
) . EDUCATION
£cicnce Teaching and Computer Languagcs OFHCEOFnggﬂﬁégf
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-

Rifred M. Bork IONS STATED DO NOT N
Physics Computer Development Project REPRESENT OFFICIAL OFH%CEESEAEFS’CI
University of California CATION POSITION OR POLICY:

Irvine, California 92664

August 17, 1971

Recently computers have been used increasingly for teaching in science
and in other areas. The teacher should be concerned about which
computess and which languages he should use within his course for

the greatest ease. Traditionally the decisions about computers
available on campus have been made by other computer users, partic-
ularly researchers, and by computer theoreticians. But as computers
become more and more widely used in the classroom, teachers should

rightfully play some role in selecting of computers.

It is commonplace to say that computers come with different language

facilities and computationali power. Computational power is easierx

to measure, so it often is a major determinant in computer selection.
But the user is more affected by total system performance, a combinra-
tion of computer hardware and programming support, or softwarg.

¥y purpose is to consider computer languages, and the implementations
of these languages, from the standpoint of the science teacher using

computers within the class. First, I will comment briefly about the

tvpes of usage. Then I will comment on the pros and cons of currently

available computer languages for the purposes of science classes, first

in computational m

mode .

A personal element
gr-jes, as the cho
all teaching. How
advantages and dis
while perhaps desi
All the computatio
are likely to be a
are available on a
available as the ¢

is oriented toward

The reader should
computer languages
should do no compu
use the languages
for particular app
for many problems
Thus, although I w
of choice for most
should be used wi

only languages ava

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

asingly for teaching in science
be concerned about which

use within his course for
ecisions about computers
ther computer users, partic-
oreticians. But as computers
classroom, teachers should

of computers.

come with different language
mputational power is easier
rminant in computer selection.
system performance, a combina-
ng support, or software.
uages, and the implementations
of the science teacher using
ill comment briefly about the
the pros and cons of currently

rposes of science classes, first

ERIC

Aruitoxt provided by Eic:

in computational mode {both batch and interactive), then in dialog

mode.

A personal element is inherent in these comments on computer lan-
guages, as the rhoice is to some extent a matter of taste, as with
all teaching. However, certain languages do have some objective
advantages and disadvantages. I shall omit many languages which,
while perhaps desirable, are available only on a limited basis.
All the computational languages discussed are widely available and
are likely to be around in the next few years. However, not all
are available on all computers. No dialog software is as widely
available as the computational languages, so our discussion there

is oriented toward the types of languages available.

The reader should understand that I am expressing a view about which
computer languages might best be used. I do not suggest that one
should do no computer work within science teaching if he cannot

use the languages I favor. Even the least desirable languages

for particular applications are often quite powerful and useful;

for many oroblems it scarcely matters which language is used.

Thus, although I will argue against FORTRAN and BASIC as languages
of choice for most purposes in science teaching, I think they

should be used within classes if, as often happens, they are the

only languages availabie cn a system.

Motivation for Comnuters in the Classroom

At least three factors motivate the use of computers within science
classes. First, most successful science sntudents will eventually

use computers in their research. The computer is a vastly important
research tool with great potentialities even outside science. But

the computer can harm science if used improperly. Just as we teach
students to use essential pieces of laboratory equipment, science
courses are increasingly concerned with the early introduction of
computers in a subject—-matter context. The goal is to display to
students the .strengths and weaknesses of numerical and sympolic approaches,
setting aside the purely analytic approach now common in most under-
graduate courses. I call this factor the tool use of computers,

as a computer becomes one tool the student acguires in his mathematical
arsenali during his undergraduate and graduate preparation. John
Kemeny, President of Dartmouth, has recently argued that the computer
is so essential in everyone's education that colleges and universities
which do not provide adeguate student computer facilities should not

be accredited,

The second use of computers in science classes is instructional.

More and more the computer is found to be valuable in teaching science.
This use is not necessarily in contrast to the tool vse of computers,
but it can be in some circumstances. When the computer is used

as a computational device, we are close to the tool use, because

the student is using the computer as a computer. But in tutorial

use, the student need know little about the operational details

of the conmputer.

= ;l 3

Aruitoxt provided by Eic:

Mg rs in the Classroom

T motivate the use of computcers within science
successful science students will eventually
research. The computer is a vastly important
Pat potentialities even outside science. But
science if used improperly. Just as we teach
lal pieces of laboratory eguipment, science

ly concerned with the early introduction of

-matter context. The goal is to display to

¥y analytic approach now common in most under-

all this factor the tool use of computers,

fergraduate and graduate preparation. John
Partmouth, has recently argued that the computer
ryone's education that colleges and universities

bdeguate student computer facilities should not

buters in science classes is instructional.

puter is found to be valuable in teaching science.
sarily in contrast to the tool use of computers,
circumstances. When the computer is used

rice, we are close to the tool use, because

frthe computer as a computer. But in tutorial

know little about the operational details

Aruitoxt provided by Eic:

ERIC3

and weaknesses of numerical and symbolic approaches,

one tool the student acquires in his mathematical

A third role that computers play in classes is motivational. Com-

puters can stimulate student interest in the subject.

I assume science teachers are not primarily interested in preparing
students to become computer experts, so their use of the computer is

not motivated by such a desire.

Q

ERIC

Aruitoxt provided by Eic:

Computational Batch Languages

vhen scientists consider preparing studcnts tor later use of computer.,
{the tool aspect) they tend to gravitatec toward FORTRAN. FORTRAN is

by far the most commonly used language for scientific calculation.
Practically all computers come with FORTRAN compilers, so it is more
nearly an universal language than any other language available,

{although FORTRAN does often vary significantly from machine to machine).
Nevertheless, I believe that teaching FORTRAN, given vther choices,

is probably a mistake, even from the tool aspect.

In this s tuation one would have to be a sooth-sayer to predict the
history of computer languagdges in the next few vears. No area of con-
temporary endeavor is more dynamic and changing than that of com-

puters, with continual growth in new machines and new languages.

Even for the scientist interested in computers solely as a calculational
tool the environment is changing. 1In this changing environment I can-
not envision FORTRAN as a long-term future language for scientific com-
putation. It seems reasonable to predict a slow and steady decline

in the impcrtance of FORTRAN relative to other languages used for

similar purposes.

FORTRAN was the first widely used formula-oriented language and had
enormous success. It did more to ease the task of scientific
computation than any single development in the computer field. Many
scientists think of it as the only practical language. Nevertheless,

FORTRAN is about 15 years old, and showing signs of age. It has gone

through a series
with the origina
features were re
for which it was
is an old and crd
to take full adv

puter, much less

What are the res
controls, which
the IF and c0mpu'f
and less powerfu
such as ALGOL an
FORTRAN are infl
the beginning FO
the experienced
+he large number
format-free fo
large collectiornfy
thus only indivi
Much scientific
and some newer

of handling therfil

The ability to
not built into

computers in erzf

through a series of elaborations, scme not necessarily consistent

with the original formulation of the language. Some of the original

:§”d°“t5 for later use of computers, features were related to the structure of the IBM 704, the machine
tote toward FORTRAN. FORTRAN is for which it was initially implemented. Thus, in many ways, FORTRAN
jge for scientific calculation. is an old and creaky language. Further, it does not allow the user
FORTRAN compilers, so it is more to take full advantage of all the facilities of a contemporary com-
y other language available, puter, much less the computer to be available in a few years. .
gnificantly from macaine to machine).
[fc FORTRAN, given other choices, What are the restrictions and limitations of FORTRAN? The branching
tool aspect. controls, which allow the programmer to set up programming loops,
the IF and computed GO TO statements in FORTRAN, are cruder in form

be a sooth-sayer to predi:t the and less powerful than those which exist in more recent languages

B -
) next few years. No area of con such as ALGOL and PL/l. The standard input/output facilities in
pnd changing than that of com- FORTRAN are inflexible; writing PORMAT statements is a chore for
machines and new languages. the beginning FORTRAN programmer, and sometimes even a bother to

the experienced programmers. Evidence to support this is found in

: computers solely as a calculational the large number of FORTRAN installations that have implemented

n this changing environment I can- format-£ree forms of input and output. Furthermore, FORTRAN cons.dered
future language for scientific com~ large collections of numbers, arrays and matrices only as an afterthought;
edict a slow and steady decline thas only individual numbers in arrays can be directly referenced.

e to other languages used for Much scientific computation is oriented toward collections of numbers

and some newer languages have more elaborate and far-reaching ways

of handling them, as we will note.

ormula-oriented language and had

ase the task of scientific The ability to control what happens during error conditions was

ent in the computer field. Many not built into FORTRAN; the interrupt system, used in most modern
practical language. Nevertheless, computers in error control, did not exist in the early days of FORTRAN,

showing signs of age. It has gorne

ERIC - 6

A ruText provided by Eric
.

Yol FORT#AN does not allow the user to decide in his program how

to handle error conditions which gencrate intcorrupts. FORTRAN is
weak in string manipulating facilities, because its original design
contemplated only numerical calculations. Further, these facilities
tend to be machine-derendent. While symbol manipulation represents
only a small fraction of scientific computation, the use of on-line
symbol manipulation is likely to increase; students should at least
become aware of the possibilities. While symbol manipulation can

be done with such FORTRAN based languages as FORMAC, nevertheless

it is not an entirely natural operation in FOKTRAN.

The fact that FORTRAN is now the most common language might be
viewed as a sufficient reason for teaching i% in science courses. I
have tried to argue that it will not continue to be as widely used
as it is today: when many present students are using computers

in later research they will be using other languages. In general,
the argument for teaching whatever exists today seems weak. If this
has been done in the late 1950°'s, for cxample, students would have
learned computing techniques and languages which would not have
been useful in their later professional career; they would have
stayed with desk calculators, or they would have worked in machine
languages. The teacher must make reasonable projections about

the state of the world when his students will be out of school.

The main current rivals to FORTRAN for scientific calculations are

ALGOL and PL/1. Both languages are more rational than FORTRAN, pri-

PL/1 has
processin

but often

ALGOL is
A new ALG
ccapilers
still not
see promi

this situ

PL/1 at
lovels.
and wide
Although

is not an

on the IB
speed to
be easier

facilitie

marily because of later design; they could profit from experience with situation

FORTRAN. Thus, in both cases the branching statements are more and matri

ERIC 7

Aruitoxt provided by Eic:

de in his proqgram how
Cinterrupts. FORTRAN 18
ause its original design
Further, these facilities
b1l manipulation represents
ation, the use of on-line
students should at least
ymbol maripulation can

as FORMAC, nevertheless

FORTRAN.

ion language might be

it in science courses. I
nue to be as widely used
are using computers
ianguages. In general,
today seems weak. If this
_ ple, student:s would have
which would not have
reer; they wouid have

81d have worked in machine
ble projections about

ill be out of school.

ientific calculations are

rational than FORTRAN, pri-

g statements are more

ERIC

Aruitoxt provided by Eic:

profit from experience with

natural and richer, and programs can assume a natural structure.

Both allow a more rational structure of a program into blocks.

PL/1 has the additional advantage of powerful array and string
processing facilities, not necessary in all scientific computation
but often useful. Both PL/1 and ALGOL have limited availability com-
pared to FORTRAN.and are therefore in restricted use in scientific

computations. However, the situation may soon be different.

ALGOL is not a new development; the initial work was in 1958 end 1960.
A new ALGOL, from 1968, is now becoming available. Although ALGOL
compilers exist on many computers, including IBM machines, it is

still nct a popular language in the United States, and one cannot

see promise of its increase, although the new versions may change

this situation. .

PL/1 at the moment exists primarily on IBM computers, at a number of
lovels. Other manufacturéts have PL/1 compilersa in developmont,

and wide interest is being shown in PL/1 by the computer industry.
Although PL/1 has often been vigorously attacked, and certainly

is not an "idea" language, it has considerable advantages over

FORTRAN for many scientific computations. Current PL/1 implementations
on the IBM 360 system are about equivalent in compiling and running
speed to FORTRAN on the same machine. Debugging with PL/1 should

be easier than with FORTRAN because of such built-in debugging
facilities as the ON conditions, allowing the user to control error

situations. The ability io handle collections of numbers, arrays

and matrices, has already been mentioned. Furthermore, being a

recent language, PL/1l allows the uscr the full facilities of the Some la
computer in ways that are difficult with FORTRAN. Thus, o job APL--ar
ca~ be divided into a number of sub-jobs, to be executed independently, which w
perhaps even simultaneously, and storage of variables cuan be controlled of thes
by the programmer during the course of running the program. The sharing
PL/1 user alsc has more control over how his numbers are handled extent

internally, sometimes useful in particularly sensitive calculations.

With this information it seems reasonable to assume that during

the next few vears PL/1 will be increasingly used for scientific
computation,. and the use of FORTRAN will probably decrease. Perhaps

a new challenger to PL/1 will appear, such as ALGOL58 or aPL, but

at present it stands to succeed through lack of competition. Undoubtedly
FORTRAN will continue in wide use for many years, because of the

large current investment in it for scientific programs. Nevertheless,

I believe its importance will be steadily decreasing.

Students should encounter the computer in their courses through
languages that fully use modern computer facilities, so they avoid
becoming tied down with older technologies. So what one might con-
clude about languages irn two years may be gquite different than

those here. Nevertheless, I think that of the most widely available
batch languages, PL/1 is the most sensible to teach students today.
Again I stress that this is the ideal situation; if one has only
FORTRAN available, teaching it holds great advantages over teaching

nothing at all.

O

ERIC | 9

Aruitoxt provided by Eic:

uscr the full facilities of the

:‘ 11t with FORTRAN. Thus, 4 job

ré ub-jobs, to be executed indopendently,
g'storage of variables cun be controiled
Fse of ruaning the program. The

pover how his numbers are handled

articularly sensitive calculations.

asonable to assume that during
lincreasingly used for scientific
AN will probably decrease. Perhaps

bear, such as ALGOLS8 or APL, but

for many years, because of the
pr scientific programs. Nevertheless,

A steadily decreasing.

puter in their courses through
"omputer facilities, so they avoid
fchnologies. So what one might con-
Brs may be quite different than

that of the most widely available
t sensible to teach students today.
§ideal situation; if one has only

lo1as great advantages over teachning

Aruitoxt provided by Eic:

through lack of competition. Undoubtedly

10

Some languages developed for conversational systems--BASIC, JOSS, and
APL--are available.as batch languages on several computers, a trend
which will probably continue. 1 shall discuss the applicability

of these languages to student situations in the next section on time-
sharing; remarks about the languages there will apply to a large

extent to their use as batch languages.

b
-

Q

ERIC

Aruitoxt provided by Eic:

1L

Conversational Computational Languages

Computers can be used with students in systems where each student
works at his own input/output device. Many observers feel that

most computer work will eventually be done in conversational time-
shared systems of this type, where the student can "converse" with

the computer.

Almost all computational languages for batch use are- available in
conversational form. In addition some languages have been designed pri-
marily for terminals. Furthermore, because conversational languages

are less standardized, many dialects of a language are often in

use. So the relative effectiveness of a terminal language in a class-

room may be implementation dependent.

Five languages are widely available for terminal use. First, FORTRAN,
already discussed-as a batch language, is available £from a number of
time~-sharing services, and on many time-sharing comput:rs. The

most widely used time-sharing service, General Electric, has had

a variety of FORTRaN available for a long time, with many non-standard
features {a source of possible difficulty in moving programs to
other systems); recently the language has become more standardized.
FORTRAN is also available in the IBM 360 RAX amd CALL/360 systems.
FORTRAN is now a "standardized" language {(to be.distinguished from
"defined" languages) and most recent terminal implementations reflect
this standardization. The FORTRAN IV available for the XDS 940

from Tynshare, the Comshare XTRAN, and the Sigma 7 Extended FORTRAN

in UTS appear to be particularly useful implementaticns. JOSS

11

originate"
other name
CAL (XDs 9:
machines) .|
parts and §
next langu
of subrout§
does BASICH
the exist
soon as ex

in de-bugg

BASIC was
General E1j
It is simi}
the major
that they
implement
was initi:i
unsophisti
it has bes
implementzi
compilers M
be discus

7 BASIC.

BASIC has

11

ients in systems where each student
device. Many observers feel that
:ally be done in conversational time-

@-here the student can "converse" with

nages for batch use are-available in

@ ion some languages have been designed pri-
more, because conversational languages
talects of a language are often in

¥/oness of a terminal language in a class-

b endent.

i lable for terminal use. First, FORTRAN,
 ‘anguage, is available from a number of
| nany time-sharing computers. The
service, General Electric, has had

for a long time, with many non-standard
difficulty in moving programs to
anguage has become more standardized.
e IBM 360 RAX amd CALL/360 systems.
i* language (to be distinguished from
| recent terminal implemantations reflect
JRTRAN IV available for the XDS 940
BXTRAN, and the Sigma 7 Extended FORTRAN

rly useful implementations. Joss

“ERIC

Aruitoxt provided by Eic:

12

originated at the Rand Corperation, and has been implemented (with
other names) in many time-sharing systems. Some JOSS variants are
CAL (XDS 940), PIL (360/50,67), 1I°IS (360/50), TELCOMP (various PDP
machines), AID (PDP-10), etc. A JOSS program can identify individual
parts and refer to these parts, facilities missing in BASIC, the

next language discussed. Thus it leads more naturally to construction
of subroutines (sub-programs) necessary for a complex problem thén
does BASIC. Most implementations of JOSS have also insisted on

the existence of the immediate commands, single lines executed as

soon as extended, often extremely useful in initial learning and

in de-bugging, as will be indicated.

BASIC was first developed at Dartmouth College, and was taken by
General Electric as the basis for its nationwide time-sharing effort.
It is similar to JOSS in many ways. General Electric gquickly became
the major force in this market, and many later competitors felt

that they had to offer similar service. Hence, BASIC is a widely
implemented language: available on most time-sharing systems. BASIC
was initially a very simple language designed for ease of use with
unsophisticated beginning students. Gradually, as with most languages,
it has been extended; these additions have differed widely from
implementation to implementation. Most BASIC implementations use
compilers and do not have immediate commands available, a fact to

be discussed later; exceptions are Tymshare SUPERBASIC, and SIGMA

7 BASIC. Many of the more advanced forms of BASIC have string manipulat-
ing facilities, but they differ considerably in detail; SUPERBASIC
implements PL/1 string manipulation functions, while General Electric

BASIC has very different facilities. BASIC usually allows subroutines

only in in-line coding; and it has instructions for acressing such
coding from elsewhere in the program. Most BASIC facilities have
simple but powerful matrix operations. Some BASIC implementations
restrict variable names, but most users do not find this to be a

problem.

As previously indicated, PL/1 was developed as a batch language by
IBM. Several conversational versions are available. One rather

£ull implementation (from Allen-Babcock) uses the name RUSH and,

from IBM, a similar version is called CPS (Conversational Programming
System). A more restricted subset, but one where simple programs

run faster, is available under Call/360.

The £final terminal language described here, APL, is an outgrowth of

a book by K. E. Iverson, A Programming Language. It was initially

an experimental system at the IBM Watson Research Center. Recently
it has become widely available both for commerical use and for those
who have 360's. Implementations are under development for many
i other systems, including XDS Sigma 7, Burroughs 5700, CDC 6600, and
f, CDC 7600. APL has a large collection of symbolic functiqns. As
compared with the other languages mentioned here, APL has extremely
powerful built-in array and matrix manipulating facilities. Although
the beginner can use a subset which resembles the other languages,
APL has many operators for handling collections of numbers; thus it
performs not only the standard matrix and vector opérations, but
it also has powerful generalizations of these. Thus the matrix
"product” can involve a wide variety of pairs of binary operators.

APL functions most efficiently when calculations are arranged to

ERIC 13

Aruitoxt provided by Eic:

tructions for acnessing such
Most BASIC facilities have

Some BASIC implementations

do not find this to be a

Rloped as a batch language by
ke available. One rather

&) uses the name RUSE and,

fPS (Conversational Programming

one where simple programs

re, APL, is an outgrowth of
anguage. It was initially
Research Center. Recently
commerical use and for those
er development for many
roughs 5700, CDC 6600, and

‘ symbolic functions. As

ed here, APL has extremely
lating facilities. Although
les the other languages,
ctions of numbers; thus it
vector opérations, but

ese. Thus the matrix

pirs of binary operators.

ations are arranged to

Aruitoxt provided by Eric

14

use these operators. It has both direct execution, and a function
mode.

These functions constitute a versatile subroutining facility.
The user does not have the full control of storage the PL/1 user
has, but he has some control over which variables are known to which

pieces of the program, more than is available in other languages.

The string processing facilities are relatively elaborate, and

the language has a well worked-out philosophy of work spaces for

system library and long-term student storage.

i4

TG

Q

ERIC

Aruitoxt provided by Eic:

15

Terminal Language Criteria

What are the criteria that might help the teacher choose among

the different calculational terminal languagc possibilities? keason-
able standards for such evaluation can be formulated, and we can
consider the languages mentioned herc with regard to these standards.
The results are a function of both the language and‘the implementation.
I shall refer to the languages as supplied with the machine or as
generally available. Some deficiencies can be overcome by skillful

programs, but most users will have to work chiefly with what is

provided.

First, the language should be easily learned by the beginner. This

is not simply a function of the language, but has to do in detail
with how the language is taught. Those who learned computer lan-
guages by the older grammatical techniques are amazed to find how
guickly students can learn today. A time-sharing environment, where
the beginner can play in a structured way with the language at the
terminals, provides a particularly rapid way for developing pro-
gramming skill. Although some differences are discernible in ease

of initial learning of the various languages here, as I will note,
these differences are probably small. I would contend that within
the environment of the science class most students can learn enough
about any of the terminal languages discussed here to wofk elementary
problems in about t-ree hours at the terminals. It should be emphasized
that the beginner need not, and in most cases should not, learn

all features of a language before starting to use it.

15

15

teacher choose among

B guage possibilities? keason-
- formulated, and we can

”}th regard to these standards.
B :nguage and the implementation.
j.ed with the machine or as

can be overcome by skillful

;}rk chiefly with what is

. rned by the beginner. This

. but has to do in detail
who learned computer lan-

res are amazed to find how
fhe-sharing environment, where
hy with the languwge at the
way for developing pro-

es are discernible in ease
ages here, as I will note,
would contend that within

5t students can learn enough
ussed here to wofk elementary
Binals. It should be emphasized
¥ cases should not, learn

ng to use it.

PAFulToxt Provided by ERIC

16
Nevertheless, some advantages are inherent in learning one system
rather than another. A language which has direct or immediate
statements can be iearned faster from the terminal than a language
which runs only a complete proaram. In this mode individual state-
ments, not full programs, can be executed immediately as soon as
they are typed in; so the student can readily learn the effect of
the statement. 2ll forms of JOSS, SUPERBASIC, SIGMA 7 BASIC, some
FORTRANS, and APL have such capabilities. On the other hand most
varieties of BASIC, many FORTRAN and most varieties of PL/1, do

not have immediate commands, and so are somewhat harder to learn.

FORTRAN also presents some additional problems for beginners because
of its "unnatural" statements. Here I am referring particularly

to the IF statement, which in its elementary form is not intelligible
unless explained, and to FORMAT statements; most of the other languages

provide simple methods of input and output.

Experience shows that APL presents two slight difficulties for the
novice. First, it has a different precedence rule for operators
than students are (perhaps) accustomed to from ordinary algebra:
every operator operates on everything to its right; so "2-3-4",
typed in, leads to the response "3". Similarly, a x b + ¢ means
ax (b + ¢c) in APL. This deviation from usual precedence, valuable
for the advanced user, because of the many operations in APL, can
be controlled by parentheses, and the beginner should be urged to
place many parentheses in his expressions. (This is good advice
for all programming languages, preferable to teaching precedence

rules.)

Q

ERIC

Aruitoxt provided by Eic:

17

The second problem for begyinners in APL concerns Lthe branching
statements, which are very powerful, but do not have the simple

mnemonic form that JOSS and BASIC branching facilities have; a few

minutes more are needed to teach elementary brenching in APL functions.

The right-pointing arrow is the basis of branching, but the place to

branch to is computed. However, because of the array handling facili-

ties, fewer branching statements are needed.

But these difficulties, both with FORTRAN and APL, are relatively
minor. After using many languages with students, I believe that
the few conveniences for the beginning learner in one or the other
are relatively minor considerations in choosing a language. The
differences in initial learning are often overexaggerated in the
literature from the vendor; any languages can be gquickly learned if
one tackles a reasonable beginning subset. The way the language

is introduced to the students is a greater factor; the traditional
lecture approach, -based on discussing the grammar of the language,

is slower than learning directly at the terminal.

Editing facilities can ease the student's approach to a terminal.
Many students do not type well, and a <2nvenient editing system
can circumvent great frustration over typing errors. Further,

programs of any complexity selcom run when first written, so they

must be de~bugged and corrected.
Terminal languages and systems vary enormously, from implementation

to implementation, in editing facilities. At least three aspects

of editing are important. Almost all terminal languages allow

17

cditing

new lin

line is

However,
after id
system.
stored i
previous
I have
on all

ig

editor

placing

by the s

17

M::; in APL concerns Lhe branching

crful, but do not have tho simple

31C branching facilities have; a few

b-h elementary branching in APL functions.
basis of branching, but the place to

B, because of the array handling facili-

ts are needed.

ith FOKRTRAN and APL, are relatively
.ages with students, I believe that
.cginning learner in one or thc other
tions in choosing a language. The

are often overexaggerated in the

[13)

v languages can be gquickly learned if
®ning subset. The way the language
Nis a greater factor; the traditional
cussing the grammar of the language,

ly at the terminal.

e student's approach to a terminal.
, and a convenient editing system
Ron over typing errors. Further,

dom run when first written, so they

bd .

; vary enormously, from implementation
| facilities. AL least three aspects

Bost all terminal languages allow

LRIC

18

editing at the line level, replacing a line in a program with a

new line, adding a line at any place in the program, and deleting

a line. Although facilities for line editing are different for
different systems, they are roughly similar. Further, facilities

are similar for ccrrecting errors on the line currently being typed,
although these may not be present, and they can differ in convenience
for the beginning user. These allow the cancelling of individuai
letters, or retyping of the line, if errors are noted before the

line is completed.

However, not all languages allow editing within a particular 1line
after it has been entered, partic‘ularly for lines already in the
system. Powerful editors allow flexible modification of programs
stored in the computer. The use .0f an editing system to change
previously entered material is a personal matter, but the two systems
I have found most convenient are the XDS 940 editing system, available
on all languages in the 940, and the APL editing system. The 940
editor is based upon using many of the ~ontrol characters. It takes
some time to learn what the control characters do, but then one

can guickly and easily make changes within lines, with a minimum

of retyping. A full 940 editing language is cften useful for
systematically changing many statements. The APL editing system

is based on putting slashes, for deletion, or a number, the number

of spaces to be inserted, under the line to be edited, and then
placing these inserted characters within a newly typed line supplied
by the system. Spaces are provided, and the typing element is con-
veniently placed. A small change within a complex line is easy with

such a system. But APL provides no fast way of making systematic

18

changes in many statements. Another useful editing system is the should allo
Dartmouth editinqg nystem, and the XDS STGMA 7 RTM-UTS EDTT i him make bedy

also powerful and effective.

An issue relf
The uscr should be warned that many implementations of the languages language he
mentioned here have no within-line editing. Particularly for programs computer fi
where individual lines become very complex this lack can be a severe by newer an
harndican. Some other systems have powerful but very difficult editing reaches mord
systems, almost impossible for use by anyone other than a dedicated languages adg
professional. O©Only personal experience can indicate which editing guickly he
system is mcst desirable for student use, but the guestion is important. new languagqg
The prospective purchaser or lessee should "experiment" in some detail from this s
with the machines he is considering so that he can form his cwn of good stud

judgment with regard to editors. had psychol;

The science student is a beginner at the terminal for only a brief it may be a|

period. He may then face a long career, both in school and out, of develops wit
increasingly active computer use. The opposite side to the question ability."

of how guickly one learns a language is the question of whether the a "pacifier:
lancuage affords an opportunity for student growth, in teims of his multilanguad
knowledge of and use of computers. Most languages are simple to get from becomi

nmtarted in hut after one han learned tho olementary material, littloe
else may be available. Some of the implementations of BASIC and Terminal larfe
JOss, although not all, are like this. On the other hand some languages usage, perhd
have a rich superstructure, not necessary for the beginning user, student's cd

but available as he develops and can write more and more sophisticated is using frd

programs. Both PL/1 and APL exemplify this richness, and FORTRAN is clear th3}

can a.so be extended beyond the 2lementary level. I believe language FORTRAN and g

ERIC 13

Aruitoxt provided by Eic:

ther useful editing system is the

n XDS STICGMA 7 BTM-UTS EDTT i

any implementation:s of the languages

ne editing. Particularly for programs
ry complex this lack can be a scvcre

ve powerful but very difficult editing
¢ by anyone other than a dedicated
erience can indicate which editing

dent use, but the guestion is important.
see should "experiment" in some detail

ing so that he can form his own

r at the terminal for only a brief
career, both in school and out, of

. The opposite side to the gquestion
uage is the guestion of whether the
for student growth, in terms of his
s. Most languages are simple to get
rned thoe eolementary material, littloe
the implementations of BASIC and

this. On the other hand some languages
necessary for the beginning user,

can wri;e more and more sophisticated
mplify this ricbrness, and FORTRAN

elementary level. I believe language

4 ERIC

Aruitoxt provided by Eic:

20

should allow for, and even encourage, student growth, letting

him make better and better usc of the computer facility.

An issue related to qrowth is whether a student can emerge from a
language he has alrecady lecarnced. Given the dynamic nature of the
computer field, most languages will eventually die and be replaced
by newer and more effective languages. Furthermore, as the student
reaches more difficult problems he may want to use specialized
languages adapted toward these problems. Hence, the question of how
quickly he can make the transition from his first language to a

new language is important. Existing languages are difficult to judge
from this standpoint, but I have had several examples recently

of good students, brought up od BASIC in hig . school, who have

had psychological problems in switching from BASIC to a more power-
ful language. This experience may represent a chance occurrence, .0or
it may be a phenomenon observeble for all languages. As experience
develops with languages, we should keep close contact with "change-
ability." A person can become accustomed to a language so that it is
a "pacifier"™ to the user, a retreat in moments of crisis. Perhaps a
multilanguage approach right from the beginning will prevent students

from becoming too tied down to one language.

Terminal language usage will oft=2n be partially replaced by batch
usage, perhaps through remote Jjob entry systems, later in the
student's career. So we should ask whether a language the student
is using from the terminal will lead to successful batch usage. It
is clear ;hat the languages which exist in both forms, primarily

FOPTRAN and PL/1, have transitional capabilities. However, most of

<0

Q

ERIC

Aruitoxt provided by Eic:

the other languages here are not batch languages, except for small

machines, and so would demand a change in framework in mov ng from

terminal to batch. This factor, however, may become less important
as research users shift to more terminal use, and as terminals

are increasingly used for batch entry.

The student user also finds it very useful to have effective disk
storage of his programs between sessions. (Paper tape or megnetic
cassette can also be‘used for off-line storage.) The facilities

for disk storage depend on the hardware and implementation rather
than on the language; costs for disk storage vary widely. The
availability of convenient and easy to use system library facilities
also is important for class use, because the student can be relieved
of the burdens of writing minor associated programs, or can be sup-
plied some programs by the instructor. Library programs and usability
differ widely from system to system. Protection features, which
allow the instructor to control who has access to the files are

also useful. A valuable feature is the automatic save in some
systems; if you lose connection with the computer, possibly because
of terminal or line failure, whatever you currently had available
will be available the next time you contact the computer. -So an
entire session of work will not be wiped out by an accidental mishap.
This facility exists in the RUSH implementation of PL/1 and in

APL; it is a valuable user oriented facility which should be present

in all time-sharing systemns.

As already suggested, I believe that the language's attitude toward

subroutines is important. The ability to conceptualize a large problem

<1

as a series
a big proble
blem, comput
student towa
is desirable.
routines are
in current u
structure of
not usually
system libra
system or us
are usually
its functior
useful libra

of APL also

Programs of
important pa
anyone) is
ming errors.

because it a

The system £

errors.

When a progr
during the c

What are the

MR ch languages, except for small
.gc in framework in moving from
ver, may become less important

inal use, and as terminals

.useful to have effective disk
-i-ions. (Paper tape or magnetic

P ne storage.) The facilities

lvare and implementation rather
storage vary widely. The

'to use system library facilities
fcause the student can be relieved
Pciated programs, or can be sup-
or. Library programs and usability
B. Protection features, which

has access to the files are

the automatic save in some

¥h the computer, possibly because
er you currently had available
contact the computer. SO an
#wiped out by an accidental mishap.
Bplementation of PL/1 and in

facility which should be present

Rt the language's attitude toward

ERIC

Aruitoxt provided by Eic:

;ity to conceptualize a large problem

2;2.

as a series of solvable subproblems, making little problems out of

a big problem, is often a critical stage in the solution of any pro-
blem, computer or otherwise. A language which naturally pushes a
student toward this point of view, in an carly staqge of his education,
is desirable. BASIC is perhaps the wcakest in this regard, as sub-
routines are possible only by in-line coding in most forms of BASIC
in current use; this seems pedagogically unsatisfactory. The part-
structure of JOSS is a type of subroutininglfacility, but it does

not usually allow a convenient use of named subroutines stored in
system libraries. For FORTRAN and PL/1l, the ability to use subprograms,
system or user-supplied, may be system dependent, but the facilities
re usually present. APL has a general subroutining facility in

its function approach, and the standard IBM system comes with a

useful library of functions: the work spaces and system facilities

of APL also allow an easy user-oriented access of this library.

Programs of any complexity almost never work when first entered. An
important part of using the computer fcr the science student (or for
anyone} is the process of debugging, finding and correcting program-
ming exrors. The terminal system is particularly useful in debugging
because it allows immediate correcting and rerunning. In correcting
code, the editing system, already mentioned, is of great importance.

The system facilities can ease the task of finding and correcting

errors.

When a program malfunctions, the first concern may be what has happened
during the calculation. What statement is currently being executed?

What are the current values of the variables? Particularly if no

<2

printosut a2t all has occurred, the user often finds it uzeful o
determine the values of certain variables. Lanquaqges that provide
immediate commands, commands executed riqht away, are convenient
here. A&s scon as the program stops, the student can determine the
values of critical variables. As previously mentioned, JUSS and
APL, and some implementations of other languages, have direct or
immediate cormands. Languages which can only run whole programs
€o rnot offer a facility for determining the values of variables

on the spur of the moment, an annoyance when things are not going well.

Several other system facilities are also useful in debugging. One

such facility is the trace, the ability to require that each time

a statement is executed,. the value assigned is to be printed, and

the ability to see which statements are executed in what oxrder.

While all of the languages discussed allow tracing through the insertion
of temporary statements in the program, which can be removed after

the program is running, only APL has a built-in tracing mechanism,
allowing the user to specify which lines he wants traced. A similar
facility is a stop or breakpoint facility, allowing the user to re-
gquest that th~ computer pause after certain points. Again APL is the
only language discussed here that usually has such a facility, although

it may be available in some implementations of other langﬁages.

The power oS

considered, B
is often prif
tion of colp®
of the oper i
languages h '
forms of BA .
matrix hand/;
kind. APL
for collectjs
any other 18
and serious;(

of its devel

ERIC . <3

Aruitoxt provided by Eic:

23
B .r often finds it uneful to
B ablecs. Languaqes that provide
BYd riqght away, are convenicent
the student can doetermine the

eviously mentioned, JOSS and
;.cr languages, have direct or
can only run whole programs
11ing the values of variables

¥ nce when things are not going well.
.'also useful in debugging. One

B ity to require that each time
gssigned is to be printed, and

® are executed in what order.

allow tracing through the insertion
iam, which can be removed after
a built-in tracing mechanism,
Mlines he wants traced. A similar
ility, allowing the user to re-
d certain points. Again APL is the
;Fually has such a facility, although

fhcations of other langﬁages.

LERIC

Aruitoxt provided by Eic:

24

The power of the language in handling matrices and arrays should be
considered, particularly as the students become more advanced. It

is often profitable to think of an operation as involving the manipula-
tion of collections of numbers, rather than, as with FORTRAN, thinking
of the operation as manipulating individual numbers. Many scientific
languages have natural facilities for handling collections. Most
forms of BASIC have a simple but effective collection of special-
matrix handling operations. PL/1 also has some faciliities of this
kind. APL has an extremely powerful and versatile set of operations
for collections of numbers in many dimensions. It goes far beyond

any other languages here, because the developer looked carefully

and seriously at the question of matrices and arrays from the beginning

of its develocpment.

O

ERIC

Aruitoxt provided by Eic:

Conclusions—--Computational Languaces

Based on these criteria, I believe that APL and PL/1 are clearly
superior as computational terminal languages for usc with scicnce
students. JOSS is somewhat below these two, and BASIC and FORTRAN
I regard as the least desirable languages for student use. Again,
the reader should remember that some of these aspects depend on the

implementation of the language.

preparing}
in this m
so has on}
Relativel}
a sizable

material

preparati

never beell

more enerdl

teaching

I suggestf‘
at this tL
teacher
wise to ag
languages

limited ugl
developed]
original :

only on sgl

Dialog Languages

pces

that APL and PL/l are clearly A special problem arises with regard to computer languages for
1 languages for usc with science preparing material f{or student-computer interaction. The student
= - 20 1

these two, and BASIC and FORTRAN in this mode interacts with a program already in the computer, and
. nly indi = th iliti .

 anguages for student usc. Again, s0 has only indirect access to e facilities of the computer

L ome of these aspects depend on the Relatively little science material of this kind is available, but

a sizable effort is being expended on work in this area, and more

material is appearing.

Review articles list thirty or forty languages designed for dialog
preparatioh. Most of these are in extremely limited use; some have
never been used by anyone except their original developers! Few
dialog languages could claim to have national use; one exception.

- is the IBM Coursewriter, one of the first such languages. Little .
material is currently available in any of them; unfortunately,
more energy has gone into developing languages than developing viable

teaching segquences.

I suggest that the development of specialized languages for dialogs
at this time is probably a mistake, and I feel that the science
teacher emzloying computers in this computer-dialogue direction is
wise to avoid tying himself down too closely with any of the existing
languages. As indicated, most of these languages have extremely
limited use at present. Furthermore, such material that has been
developed is often presented in a form almost unuszble outside the
original énvironment. Thus the MIT relativity material is usable

only on systems which have ELIZA, and estimates for converting to

ERIC . | - 26

:
e

another system indicate that this would be a sizabie job. Further,
many of thezoe languadges and appreoosche:s are: bazied onoo jesr brculon
teaching strateqy, and, as the teacher may not care to follow this
approach, these impose a severe limitation; the teacher should

retain cortrol over the teaching process.

Although many specialized languages have been developed, it is possible
to write student-computer interactive programs in existing general
purpose languages. Languages already used include SUPERBASIC, APL,
PL/1, FORTRAN, and SNOBOL languages. Most of these languages are
flexible enough so that with only minor additions, usually in the
form of a few subroutines or functions written by the user, one

can handie much conventional dialog material. They do not prejudice
the form of this material, but allow the user to pick his own
teaching method. Furthermore, general purpose languages are much
more widely available than specialized languages, so material written
in them has a greater chance of being usable elsewhere. Instructors
have a greater chance of being already familiar with general purpose
languages. My own feeling is that the develiopment of computer-based
-instruction languages has been premature, and that at present it

is in most circumstances more reasonable to write such material in

the general purpose languages.

Assembly languages are restricted to particular machines, but they
also present interesting possibilities for dialog-type teéching

material, particularly if the macro facilities of the language are
fully exploited. A strong advantage is flexibility; it is easy to

adZ new macros and subroutines to the system, so the programs can

recact to pedl

to ull the LS
subroutines
at Irvine,

this approac

Given the si

possible of
the general
should be ma_f

available fo

I believe itll
a particulazﬁ
writing dialjs
details of |
nature of th

program may

Q

ERIC ? 2y

ould be a sizable job. Further,
B are Laned on g partaculag
% cr may not care to follow this
jitation; the teacher should

ocess.

have been developed, it is possible
fve programs in existing general
.;dy used include SUPERBASIC, APL,
f. Most of these languages are

3 inor additions, usually in thre
‘}ons written by the user, one
material. They do not prejudice
v the user to pick his own

ral purpose languages are much
';zed languages, so material written
i ng usable elsewhere. Instructors
'.ady familiar with general purpose
i the development of computer-based
ature, and that at present it

nable to write such material in

o particular machines, but they
Ries for dialog-type teéching

facilities of the language are
ge is flexibility; it is easy to

e sgystem, so the programs can

b ST

recact to pedagogical needs. Fﬁrther, the programmer can have access
to all the tucilities ol the computoer. He can Lor example imbed
subroutines in higher level languages where desirable. Our work

at Irvine, The Physics Computer Development Project, has followed

this approach.

Given the situation of many existing languages possible for dialogs,
and tre limited availability of most of them, it is reasonable that
work in this direction should strive for a form as independent as
possible of particular programming languages. A flowcnart showing
the general structure of the program and the various possibilities
should be maintained in all cases, and this information should be
available for users of other systems. Such documentation can make

a piece of teaching material usable in a variety of different places,
with quite different kxinds of machines and languages available,

with only rouvtine additional work to adapt it to local conditions.

I believe it is a mistake to end CAI projects with the coding in

a particular language as the only product and I strongly urge anyone
writing dialogs to consider more communicable forms. The exact
details of the flowchart are not critical; they may depend on the
nature of the program; several types of flowcharts for the same

program may increase the usefulness of the program.

TREL

<8

Q

ERIC

Aruitoxt provided by Eic:

27

Future Language Developmeht——craphics

Certain current language developments, related to terminal facilities,
seem important enough from the standpoint of the science teacher

to merit comment.

The languages of most importance for future computational use in
science are those which offer limited conversational graphic
capabilities. I am not referring to a full-scale graphic system,
which often costs hundreds of thousands of dollars per terminal:
rather I am referring to & visual conversational system like the
Culler-Fried system at the University of California at Santa Barbara
and the University of California at Los Angeles, and the BRAIN system
at Harvard University. Both systems are based on teiminals in the
$10,000 range, and offer graphic capabilities for many areas of
teaching. Both systems are based on storage oscilloscopes. Several
sources offer similar terminals, and within the past year a dramatic
reduction'in cost has occurred. Graphic facilities are still more
expensive than teletypes, but recently have become competitive with
the better typewriter-like terminals. Further developments may
alliow these terminals to be less expensive; a number of interesting

new types of graphic terminals are currently available.

A graphic terminal without graphic language capébilities is of little
use. The systems mentioned above, Culler-Fried and Brain, are

only to a minor extent hardware developments. Their primary strength
is in software; they have implemented powerful conversational languages

with effective graphié capabilities within the language. Such

<3

extensions

including tij

The details [}
implemented

allow natur;-
that he is
PL/1 and AP
ient graphi‘
bilities.

available i

I feel that
with graphid
that the de

teaching prqf

23

¥lated to terminal facilities,

of the science teacher

hire computational use in
K:versational graphic
ll-scale graphic system,
.of dollars per terminal;

' sational system like the
California at Santa Barbara
Fngeles, and the BRAIN system
based on terminals in the
ities for many areas of

age oscilloscopes. Several
Bhin the past year a dramatic
. facilities are still more
ave become competitive with
Murther developments may

vve; a number of interesting

fntly available.
age capébilities is of little
Br-Fried and Brain, are

lents. Their primary strength

in the language. Such

ERIC

Aruitoxt provided by Eic:

werful conversational languages

extensions could be made in some of the existing terminal languages,

including those mentioned in this paper.

The details would depend to some extent on the type of graphics to be
implemented. Generally the two existing graphic languages mentioned
allow natural handling of arrays so the student can often consider
that he is working with functions. Of the languages mentioned here
PL/1 and APL would probably lend themselves most readily to conven-
ient graphic extensions in this sense, because of their array capa-
bilities. It seems very likely that such facilities will soon be

available in APL.

I feel that the teaching rewards in a graphic environment, perhaps
with graphic input as well as graphic output, will be enormous, and
that the development of such facilities will noticeably effect the

teaching process in many areas.

3

2

3 Keaay

BYCE
_ ON -uosesy J400d ON XVH -~ NVYHIHOJI
EXCE
ol -uosesy poop 4004 83 ON 30 = NVH.ILHOJA
- 91q3
N -UOSREY JUaTT 90Xy 1004 8% aauvyswiy, - NVYLHOJ
- AsEs;
I.ww> o Laa;, juatraoxy pooo 1004 ON or6 - D1ISvd
Kees
€) Oh6 ~ oauysuk,
fae;, QuaTTaoxXy | quattaoxy pooy 1004 CED oﬂmmmawasm usonﬁw
- RSt -
_ HEYY Las;, d1ey Jd004 ON 09€/711V0 - DISVY
Rses A
N HEY IS EX ay8y J00d ON *d'H =~ 0Isvd
Iak >wa" a1e] poog poop d00d ON a0 - o18vd
Rev=T
v \a...—
. ra) . Mpa:“ dT1ed dT1ed J100d ON arey §3% TId =~ SS0¢p
SU
. R %.T.n... ON 1004 Jd1ed £8) Tv¥0 =-ssor
ABVET
. 24 faz, | ON 4004 ON Ja784d g9x V004 -~ ssOor
. 31q%
I -uostey pooy JUSTTOOXY | JUITTaNXY 8% poop €3} 09€ - 1dv
_ HES £sey a8y ated ON 09t T11V0 - T1/1d
=3X Asey uaTTe0xy d184 pooy 88 poop ON §40 ‘HSMY -~ T/d
TUouvdy |Juguages SO73TTToRY |S8TATTT08Y [A3F1TqRde) [sautynoaqng |pafrddng Jasp |spusumo
F1dwig | tey3Tus |3utqerndiusy SurlIp3g XTFa3ey waqshg |- saupgnoaqng uooaﬂm
Butasg aATsUaINY

O

31

Aruitoxt provided by Eic:

[E

