
ED 060 626

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 009 632

Bork, Alfred M.
Science Teaching and Computer Languages.
California Univ., Irvine. Physics Computer
Development Project.
National Science Foundation, Washington, D.C.
17 Aug 71
31p.

MF-$0.65 HC-$3.29
*Computer Assisted Instruction; Computer Graphics;
Computer Programs; Display Systems; Program
Descriptions; Programed Instruction; Programing;
*Programing Languages; Programing Problems; *Science
Instruction
FORTRAN

Computer languages are analyzed and compared from the
standpoint of the science teacher using computers in the classroom.
Computers have three basic uses in teaching, to compute, to instruct,
and to motivate; effective computer languages should be responsive to
these three modes. Widely-used languages, including FORTRAN, ALGOL,
PL/1, and APL, are compared. The decline of FORTRAN as the most
widely used language is predicted. Various conversational forms of
languages are compared, and criteria are set forward for terminal
languages. These criteria include ease in learning, editing
facilities, attitudes toward subroutines, dialog writing, string
manipulating facilities, array and matrix capability and others.
(RB)

a
co

Science Teacing and Computer Languaycs

Alfred M. Bork
Physics Computer Development Project
University of California
Irvine, California 92664

August 17, 1971

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

Recently computers have been used increasingly for teaching in science

and in other areas. The teacher should be concerned about which

compute::s and which languages he should use within his course for

the greatest ease. Traditionally the decisions about computers

available on campus have been made by other computer users, partic-

ularly researchers, and by computer theoreticians. But as computers

become more and more widely used in the classroom, teachers should

rightfully play some role in selecting of computers.

It is commonplace to say that computers come with different language

facilities and computational oower. Computational power is easier

to measure, so it often is a major determinant in computer selection.

But the user is more affected by to:tal system performance, a combina-

tion of computer hardware and programming support, or software.

My purpose is to consider computer languages, and the implementations

of these languages, from the standpoint of the science teacher using

computers within the class. First, I will comment briefly about the

types of usage. Then I will comment on the pros and cons of currently

available computer languages for the purposes of science classes, first

in computational

mode.

A personal element

gr ges, as the cho

all teaching. How

advantages and dis

while perhaps desi

All the computatio

are likely to be a

are available on a

available as the c

is oriented toward

The reader should

computer languages

should do no compu

use the languages

for particular app

for many problems

Thus, although I

of choice for most

should be used wi

only languages ava

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

asingly for teaching in scien,:e

be concerned about which

use within his course for

ecisions about computers

ther computer users, partic-

oreticians. But as computers

classroom, teachers should

of computers.

come with different language

mputational power is easier

rminant in computer selection.

system performance, a combina-

ng support, or software.

uages, and the implementations

of the science teacher using

ill comment briefly about the

the pros and cons of currently

poses of science classes, first

2

in computational mode (both batch and interactive), then in dialog

mode.

A personal element is inherent in these comments on computer lan-

guages, as the .thoice is to some extent a matter of taste, as with

all teaching. However, certain languages do have some objective

advantages and disadvantages. I shall omit many languages which,

while perhaps desirable, are available only on a limited basis.

All the computational languages discussed are widely available and

are likely to be around in the next few years. However, not all

are available on all computers. No dialog software is as widely

available as the computational languages, so our discussiOn there

is oriented toward the types of languages available.

The reader should understand that I am expressing a view about which

computer languages might best be used. I do not suggest that one

should do no computer work within science teaching if he cannot

use the languages I favor. Even the least desirable languages

for particular applications are often quite powerful and useful;

for many oroblems it scarcely matters which language is used.

Thus, although I will argue against FORTRAN and BASIC as languages

of choice for most purposes in science teaching, I think they

should be used within classes if, as often happens, they are the

only languages available on a system.

motivation for Computers in the Classroom

At least three factors motivate the use of computers within science

classes. First, most successful science students will eventually

use computers in their research. The computer is a vastly important

research tool with great potentialities even outside science. But

the computer can harm science if used improperly. Just as we teach

students to use essential pieces of laboratory equipment, science

courses are increasingly concerned with the early introduction of

computers in a subject-matter context. The goal is to display to

students the .strengths and weaknesses of numerical and symbolic approaches,

setting aside the purely analytic approach now common in most under-

graduate courses. I call this factor the tool use of computers,

as a computer becomes one tool the student acquires in his mathematical

arsenal during his undergraduate and graduate preparation. John

Kemeny, President of Dartmouth, has recently argued that the computer

is so essential in everyone's education that colleges and universities

which do not provide adequate student computer facilities should not

be accredfted.

The second use of computers in science classes is instructional.

More and more the computer is found to be valuable in teaching science.

This use is not necessarily in contrast to the tool vse of computers,

but it can be in some circumstances. When the computer is used

as a computational device, we are close to the tool use, because

the student is using the computer as a computer. But in tutorial

use, the student need know little about the operational details

of the computer.

3 4

rn in the Classroom

motivate the use of computers within science

successful scienc studonts will eventually

research. The computer is a vastly important

t potentialities even outside science. But

science if used improperly. Just as we teach

ial pieces of laboratory equipment, science

ly concerned with the early introduction of

-matter context. The goal is to display to

and weaknesses of numerical and symbolic approaches,

y analytic approach now common in most under-

all this factor the tool use of computers,

one tool the student acquires in his mathematical

ergraduate and graduate preparation. John

artmouth, has recently argued that the computer

ryone's education that colleges and universities

dequate student computer facilities should not

uters in science classes is instructional.

uter is found to be valuable in teaching science.

arily in contrast to the tool use of computers,

circumstances. When the computer is used

rice, we are close to the tool use, because

'le computer as a computer. But in tutorial

know little =bout the operational details

3

A third role that computers play in classes is motivational. Com-

puters can stimulate student interest in the subject.

I assume science teachers are not primarily interested in preparing

students to become computer experts, so their use of the computer is

not motivated by such a desire.

Computational Batch Languages

When scientists consider preparing studnts tor later use of computex.,.

(the tool aspect) they tend to gravitate toward FORTRAN. FORTRAN is

by far the most commonly used language for scientific calculation.

Practically all computers come with FORTRAN compilers, so it is more

nearly an universal language than any other language available,

(although FORTRAN does often vary significantly from machine to machine).

Nevertheless, I believe that teaching FORTRAN, given 'other choices,

is probably a mistake, even from the tool aspect.

In this sftuation one would have to be a sooth-sayer to predict the

history of computer languages in the next few years. No area of con-

temporary endeavor is more dynamic and changing than that of com-

puters, with continual growth in new machines and new languages.

Even for the scientist interested in computers solely as a calculational

tool the environment is changing. In this changing environment I can-

not envision FORTRAN as a long-term future language for scientific com-

putation. It seems reasonable to predict a slow and steady decline

in the Importance of FORTRAN relative to other languages used for

similar purposes.

FORTRAN was the first widely used formula-oriented language and had

enormous success. It did more to ease the task of scientific

co=putation than any single development in the computer field. Many

scientists think of it as the only practical language. Nevertheless,

FORTRAN is about 1.5 years old, and showing signs of age. It has gone

through a series

with the origina

features were re

for which it was

is an old and cr

to take full adv

puter, much less

What are the res

controls, which

the IF and compu

and less powerfu

such as ALGOL an

FORTRAN are infl

the beginning FO

the experienced

the large number

format-free to

large collection

thus only indivi

Much scientific

and some newer

of handling the

The ability to

not built into

computers in er

udents tor later use of computers,

ate toward FORTRAN. FORTRAN is

ge for scientific calculation.

FORTRAN compilers, so it is more

y other language available,

gnificantly from macline to machine).

g FORTRAN, given 'other choices,

tool aspect.

e a sooth-sayer to predi.:t the

next few years. No area of con-

nd changing than that of com-

machines and new languages.

computers solely as a calculational

n this changing environment I can-

future language for scientific com-

edict a slow and steady decline

to other languages used for

rmula-oriented language and had

ase the task of scientific

ent in the computer field. Many

practical language. Nevertheless,

showing signs of age. It has gone

through a series of elaborations, some not necessarily consistent

with the original formulation of the language. Some of the original

features were related to the structure of the IBM 704, the machine

for which it was initially implemented. Thus, in many ways, FORTRAN

is an old and creaky language. Further, it does not allow the user

to take full advantage of all the facilities of a contemporary com-

puter, much less the computer to be available in a few years.

What are the restrictions and limitations of FORTRAN? The branching

controls, which allow the programmer to set up programming loops,

the IF and computed GO TO statements in FORTRAN, are cruder in form

and less powerful than those which exist in more recent languages

such as ALGOL and PL/1. The standard input/output facilities in

FORTRAN are inflexible; writing FORMAT statements is a chore for

the beginning FORTRAN programmer, and sometimes even a bother to

the experienced programmers. Evidence to support this is found in

the large number of FORTRAN installations that have implemented

format-free forms of input and output. Furthermore, FORTRAN consIdered

large collections of numbers, arrays and matrices only as an afterthought;

thus only individual numbers in arrays can be directly referenced.

Much scientific computation is oriented toward collections of numbers

and some newer languages have more elaborate and far-reaching ways

of handling them, as we will note.

The ability to control what happens during error conditions was

not built into FORTRAN; the interrupt system, used in most modern

computers in error control, did not exist in the early days of FORTRAN,

6

so FORTRAN does not allow the user to decide in his proqram how natural

to handle error conditions which generate interrupts. FORTItAN is Both allo

weak in string manipulating facilities, because its original design

contemplated only numerical calculations. Further, these! fac:ilities P1./1 has

tend to be machine-deEendent. While symbol manipulation represents processin

only a small fraction of scientific computation, the use of on-line but often

symbol manipulation is likely to increase; students should at least pared to

become aware of the possibilities. While symbol manipulation can computa,i

be done with such FORTRAN based languages as FORMAC, nevertheless

it is not an entirely natural operation in FORTRAN. ALGOL is

A new ALG

The fact that FORTRAN is now the most common language might be ccmpilers

viewed as a sufficient reason for teaching it in science courses. I still not

have tried to argue that it will not continue to be as widely used see promi

as it is today; when many present students are using computers this situ

in later research they will be using other languages. In general,

the argument for teaching whatever exists today seems weak. If this PL/1 at

han Leen done in the late 1950'u, for example, utudenta would have levels.

learned computing techniques and languages which would not have and wide

been useful in their later professional career; they would have Although

stayed with desk calculators, or they would have worked in machine is not an

languages. The teacher must make reasonable projections about FORTRAN f

the state of the world when his stUdents will be out of school, on the IS

speed to

The main current rivals to FORTRAN for scientific calculations are be easier

ALGOL and PL/1. Both languages are more rational than FORTRAN, pri- facilitie

marily because of later design; they could profit from experience with situation

FORTRAN. Thus, in both cases the branching statements are more and matri

7

de in his proqram how

interrupts. FnuTuAu is

ause its original dosign

Further, these facilities

1 manipulation represents

ation, the use of on-line

students should at least

ymbol manipulation can

as FORMAC, nevertheless

FORTRAN.

on language might be

it in science courses. I

nue to be as widely used

are using computers

languages. In general,

today seems weak. If this

/1c, students would have

which would not have

reer; they would have

d have worked in machine

le projections about

ill be out of school.

entific calculations are

ational than FORTRAN, pri-

profit from experience with

statements are more

Ff

natural and richer, and programs can assume a natural structure.

Both allow a more rational structure of a program into blocks.

PL/1 has the additional advantage of powerful array and string

processing facilities, not necessary in all scientific computation

but often useful. Both PL/1 and ALGOL have limited availability com-

pared to FORTRAN and are therefore in restricted use in scientific

computations. However, the situation may soon be different.

ALGOL is not a new development; the initial work was in 1958 and 1960.

A new AL(7,0L, from 1968, is now becoming available. Although ALGOL

compilers exist on many computers, including IBM machines; it is

still nct a popular language in the United States, and one cannot

see promise of its increase, although the new versions may change

this situation.

PL/1 at the moment exists primarily on IBM computers, at a number of

lovelo. Other manufacturors havo P1.11 compilers in devolopmont,

and wide interest is being shown in PL/1 by the computer industry.

Although PL/1 has often been vigorously attacked, and certainly

is not an "idea" language, it has considerable advantages over

FORTRAN for many scientific computations. Current PL/1 implementations

on the IBM 360 system are about equivalent in compiling and running

speed to FORTRAN on the same machine. Debugging with PL/1 should

be easier than with FORTRAN because of such built-in debugging

facilities as the ON conditions, allowing the user to control error

situations. The ability to handle collections of numbers, arrays

and matrices, has already been mentioned. Furthermore, being a

9

recent language, PL/1 allows the user the full facilities of the Some 1

computer in ways that are difficult with FORTRAN. Thus, a job APL--ar

ca- be divided into a number of sub-jobs, to be executed independently,

perhaps even simultaneously, and storage of variables can be controlled of thes

by the programmer during the course of running the program. The sharing

PL/1 user also has more control over how his numbers are handled extent

internally, sometimes useful in particularly sensitive calculations.

With this information it seems reasonable to assume that during

the next few years PL/1 will be increasingly used for scientific

computation,.and the use of FORTRAN will probably decrease. Perhaps

a new challenger to PL/1 will appear, such as ALGOL58 or APL, but

at present it stands to succeed through lack of competition. Undoubtedly

FORTRAN will continue in wide use for many years, because of the

large current investment in it for scientific programs. Nevertheless,

I believe its importance will be steadily decreasing.

Students should encounter the computer in their courses through

languages'that fully use modern computer facilities, so they avoid

becoming tied down with older technologies. So what one might con-

clude abput languages in two years may be quite different than

those here. Nevertheless, I think that of the most widely available

batch languages, PL/1 is the most sensible to teach students today.

Again I stress that this is the ideal situation; if one has only

FORTRAN available, teaching it holds great advantages over teaching

nothing at all.

1 1.0

user the full facilities of the

with FORTRAN. Thus, job

ab-jobs, to be executed independently,

storage of variables can be controlled

se of running the program. The

ver how his numbers are handled

articularly sensitive calculations.

asonable to assume that during

increasingly used for scientific

N will probably decrease. Perhaps

ear, such as ALGOL58 or APL, but

through lack of competition. Undoubtedly

for many years, because of the

r scientific programs. Nevertheless,

steadily decreasing.

puter in their courses through

omputer facilities, so they avoid

hnologies. So what one might con-

s may be quite different than

that of the most widely available

t sensible to teach students today.

ideal situation; if one has only

olds great advantages over teaching

Some languages developed for conversational systemsBASIC, JOSS, and

APL--are available.as batch languages on several computers, a trend

which will probably continue. I shall discuss the applicability

of these languages to student situations in the next section on time-

sharing; remarks about the languages there will apply to a large

extent to their use as batch languages.

1.1

Conversational Computational Lan9uages originate

other nem

Computers can be used with students in sysLems where each student CAL (XDS 9

works at his owm input/output device. many observers feel that machines),

most computer work will eventually be done in conversational time- parts and

shared systems of this type, where the student can "converse" with next lang

the computer. of subrout

does BASIC

Almost all computational languages for batch use are-available in the exist

conversational form. In addition some languages have been designed pri- soon as ex

marily for terminals. Furthermore, because conversational languages in de-bugc

are less standardized, many dialects of a language are often in

use. So the relative effectiveness of a terminal language in a class- BASIC was

room may be implementation dependent. General El

It is simi

Five languages are widely available for terminal use. First, FORTRAN, the major

already discussed-as a batch language, is available from a number of that they

time-sharing services, and on many time-sharing comput.trs. The implement

most widely used time-sharing service, General Electric, has had was initi-

a variety of FORTRAN available for a long time, with many non-standard unsophist

features (a source of possible difficulty in moving programs to it has b

other systems); recently the language has become more standardized. Implement

FORTRAN is also available in the IBM 360 RAX amd CALL/360 systems. compilers

FORTRAN is now a "standardized" language (to be distinguished from be discus

"defined" languages) and most recent terminal Implementations reflect 7 BASIC.

this standardization. The FORTRAN IV available for the XDS 940 ing facil'

from Tymshare, the Comshare XTRAN, and the Sigma 7 Extended FORTRAN implement

in UTS appear to be particularly useful implementations. JOSS BASIC has

11

11

an uages

ents in sy:iLems where each student

device. Many observers feel that

ally be done in conversational time-

'here the student can "converse" with

ages for batch use are*available in

ion some languages have been designed pri-

more, because conversational languages

alects of a language are often in

ianess of a terminal language in a class-

endent.

lable for terminal use. First, FORTRAN,

anguage, is available from a number of

many time-sharing computers. The

service, General Electric, has had

for a long time, with many non-standard

difficulty in moving programs to

anguage has become more standardized.

IBM 360 RAX amd CALL/360 systems.

" language (to be distinguished from

recent terminal Implementations reflect

RAN IV available for the XDS 940

XTRAN, and the Sigma 7 Extended FORTRAN

rly useful implementations. JOSS

12

originated at the Rand Corporation, and has been implemented (with

other names) in many time-sharing systems. Some JOSS variants are

CAL (XDS 940), PIL (360/50,67), 17IS (360/50) , TELCOMP (various PDP

machines), AID (PDP-10), etc. A JOSS program can identify individual

parts and a-efer to these parts, facilities missing in BASIC, the

next language discussed. Thus it leads more naturally to construction

of subroutines (sub-programs) necessary for a complex problem than

does BASIC. Most implementations of JOSS have also insisted on

the existence of the immediate commands, single lines executed as

soon as extended, often extremely useful in initial learning and

in de-bugging, as will be indicated.

BASIC was first developed at Dartmouth College, and was taken by

General Electric as the basis for its nationwide time-sharing effort.

It is similar to JOSS in many ways. General Electric quickly became

the major force in this market, and many later competitors felt

that they had to offer similar service. Hence, BASIC is a widely

implemented language, available on most time-sharing systems. BASIC

was initially a very simple language designed for ease of use with

unsophisticated beginning students. Gradually, as with most languages,

it has been extended; tliese additions have differed widely from

implementation to implementation. Most BASIC implementations use

compilers and do not have immediate commands available, a fact to

be discussed later; exceptions are Tymshare SUPERBASIC, and SIGMA

7 BASIC. Many of the more advanced forms of BASIC have string manipulat-

ing facilities, but they differ considerably in detail; SUPERBASIC

implements PL/1 string manipulation functions, while General Electric

BASIC has very different facilities. BASIC usually allows subroutines

only in in-line coding; and it has instructions for accessing such

coding from elsewhere in the program. most BASIC facilities have

simple but powerful matrix operations. Some BASIC implementations

restrict variable names, but most users do not find this to be a

problem.

As previously indicated, PL/1 was developed as a batch language by

IBM. Several conversational versions are available. One rather

full implementation (from Allen-Babcock) uses the name RUSH and,

from IBM, a similar version is called CPS (Convers4tional Programming

System). A more restricted subset, but one where simple programs

run faster, is available under Cal1/360.

The final terminal language described here, APL, is an outgrowth of

a book by K. E. Iverson, A Programming Language. It was initially

an experimental system at the IBM Watson Research Center. Recently

it has become widely available both for commerical use and for those

who have 360's. Implementations are under development for many

other systems, including XDS Sigma 7, Burroughs 5700, CDC 6600, and

CDC 7600. APL has a large collection of symbolic functions. As

compared with the other languages mentioned here, APL has extremely

powerful built-in array and matrix manipulating facilities. Although

the beginner can use a subset which resembles the other languages,

APL has many operators for handling collections of numbers; thus it

performs not only the standard matrix and vector operations, but

it also has powerful generalizations of these. Thus the matrix

"product" can involve a wide variety of pairs of binary operators.

APL functions most efficiently when calculations are arranged to

13 14

tructions for acr:essing such

most BASIC facilities have

Some BASIC implementations

do not find this to be a

oped as a batch language by

-e available. One rather

) uses the name RUSH and,

S (Conversational Programming

one where simple programs

re, APL, is an outgrowth of

anguage. It was initially

Research Center. Recently

commerical use and for those

er development for many

roughs 5700, CDC 6600, and

symbolic functions. As

ed here, APL has extremely

lating facilities. Although

les the other languages,

ctions of numbers; thus it

vector operations, but

ese. Thus the matrix

irs of binary operators.

ations are arranged to

use these operators. It has both direct execution, and a function

mode. These functions constitute a versatile subroutining.facility.

The user does not have the full control of storage the P1.11 user

has, but he has some control over which variables are known to which

pieces of the program, more than is available in other languages.

The string processing facilities are relatively elaborate, and

the language has a well worked-out philosophy of work spaces for

system library and long-term student storage.

1S

Terminal Language Criteria

what are the criteria that might help the teacher choose among

the different calculational terminal language possibilities? Reason-

able standards for such evaluation can be formulated, and we can

consider the languages mentioned here with regard to these standards.

The results are a function of both the language and the implementation.

/ shall refer to the languages as supplied with the machine or as

generally available. Some deficiencies can be overcome by skillful

programs, but most users will have to work chiefly with what is

provided.

First, the language should be easily learned by the beginner. This

is not simply a function of the language, but has to do in detail

with how the language is taught. Those who learned computer lan-

guages by the older grammatical techniques are amazed to find how

quickly students can learn today. A time-sharing environment, where

the beginner can play in a structured way with the language at the

terminals; provides a particularly rapid way for developing pro-

gramming skill. Although some difference's are discernible in ease

of initial learning of the various languages here, as I will note,

these differences are probably small. I would contend that within

the environment of the science class most students can learn enough

about any of the terminal languages discussed here to work elementary

oroblems in about t'ree hours at the terminals. It should be emphasized

that the beginner need not, and in most cases should not, learn

all features of a language before starting to use it.

Nov

rat.

sta

whi

men

the

th

FOR

var

not

FOR

of

to

unl

pro

Exp

nov

th

eve.,

typ

a x

for

be

pla

for

rule

1 s

teacher choose among

guage possibilities? Reason-

formulated, and we can

th regard to these standards.

anguage and the implementation.

d with the machine or as

can be overcome by skillful

k chiefly with what is

rned by the beginner. This

, but has to do in detail

who learned computer lan-

'es are amazed to find how

e-sharing environment, where

y with the langui..ge at the

way for developing pro-

es are discernible in ease

ages here, as I will note,

would contend that within

t students can learn enough

ussed here to work elementary

inals. It should be emphasized

cases should not, learn

ng to use it.

16

Nevertheless, some advantages are inherent in learning one system

rather than another. A language which has direct or iMmediate

statements can be learned faster from the terminal than a language

which runs only a complete pro9ram. In this mode individual state-

ments, not full programs, can be executed immediately as soon as

they are typed in; so the student can readily learn the effect of

the statement. All forms of JOSS, SUPERBASIC, SIGMA 7 BASIC, some

FORTRANS, and APL have such capabilities. On the other hand most

varieties of BASIC, many FORTRAN and most varieties of PL/1, do

not have immediate commands, and so are somewhat harder to learn.

FORTRAN also presents some additional problems for beginners because

of its "unnatural" statements. Here I am referring particularly

to the IF statement, which in its elementary form is not intelligible

unless explained, and to FORMAT statements; most of the other languages

provide simple methods of input and output.

Experience shows that APL presents two slight difficulties for the

novice. First, it has a different precedence rule for operators

than students are (perhaps) accustomed to from ordinary algebra:

every operator operates on everything to its right; so "2-3-4",

typed in, leads to the response "30. Similarly,axb+cmeans

a x (b + c) in APL. This deviation from usual precedence, valuable

for the advanced user, because of the many operations in APL, can

be controlled by parentheses, and the beginner should be urged to

place many parentheses in his expressions. (This is good advice

for all programming languages, preferable to teaching precedence

rules.)

17

The second problem fur beginnen; in APL concerns Lilt: branchiny

statements, which are very powerful, but do nut have the simple

mnemonic form that JOSS and BASIC branching facilities have; a few

minutes more are needed to teach elementary branching in APL functions.

The right-pointing arrow is the basis of branching, but the place to

branch to is computed. However, because of the array handling facili-

ties, fewer branching statements are needed.

But these difficulties, both with FORTRAN and APL, are relatively

minor. After using many languages with students, I believe that

the few conveniences for the beginning learner in one or thc other

are relatively minor considerations in choosing a language. The

differences in initial learning are often overexaggerated in the

literature from the vendor; any languages can be quickly learned if

one tackles a reasonable beginning subset. The way the language

is introduced to the students is a greater factor; the traditional

lecture approach,-based on discussing the grammar of the language,

is slower than learning directly at the terminal.

Editing facilities can ease the student's approach to a terminal.

Many students do not type well, and a .nvenient editing system

can circumvent great frustration over typing errors. Further,

programs of any complexity seldom run when first written, so they

must be de-bugged and corrected.

Terminal languages and systems vary enormously, from implementation

to implementation, in editing facilities. At least three aspects

of editing are important. Almost all terminal languages allow

editing

nw lin

a line.

differe

are sim

althoug

for the

letters

line is

However,

after ji

system.

stored

previou_

have

on all

editor 2

some t

can qui

of rety

systema

is baseu

of space

placing

by the s

venient

such a 5

17

in APL cuncerns Lite branching

rful, but do nut have the simple

IC branching facilities have; a few

-n elementary branching in APL functions.

basis of branching, but the place to

, because of the array handling facili-

ts are needed.

ith FORTRAN and APL, are relatively

lges with students, I believe that

eginning learner in one or the other

tions in choosing a language. The

are often overexaggerated in the

y languages can be quickly learned if

ning subset. The way the language

is a greater factor; the traditional

cussing the grammar of the language,

ly at the terminal.

e student's approach to a terminal.

and a convenient editing system

on over typing errors. Further,

dom run when first written, so they

d.

vary enormously, from implementation

facilities. At least three aspects

ost all terminal languages allow

18

editing at the line level, replacing a line in a program with a

new line, adding a line at any place in the program, and deleting

a line. Although facilities for line editing are different for

different systems, they are roughly similar. Furthe!r, facilities

are similar for ccrrecting errors on the line currently being typed,

although these may not be present, and they can differ in convenience

for the beginning user. These allow the cancelling of individual

letters, or retyping of the line, if errors are noted before the

line is completed.

However, not all languages allow editing within a particular line

after it has been entered, particularly for lines already in the

system. Powerful editors allow flexible modification of programs

stored in the computer. The use-of an editing system to change

previously entered material is a personal matter, but the two systems

I have found most convenient are the XDS 940 editing system, available

on all languages in the 940, and the APL editing system. The 940

editor is based upon using many of the control characters. It takes

some time to learn what the control characters do, but then one

can quickly and easily make changes within lines, with a minimum

of retyping. A full 940 editing language is often useful for

systematically changing many statements. The APL editing system

is based on putting slashes, for deletion, or a number, the number

of spaces to be inserted, under the line to be edited, and then

placing these inserted characters within a newly typed line supplied

by the system. Spaces are provided, and the typing element is con-

veniently placed. A small change within a complex line is easy with

such a system. But APL provides no fast way of making systematic

18

I 9

changes in many statements. Another useful editing system is the should allo

Dartmouth r:ditinq nynte!m, anrl tho 'on SIT:MA 7 BTM-UTS EDIT him make b

also powerful and effective.

An issue re

The user should be warhed that many implementalions of th langudyus language he

mentioned here have no within-line editing. Particularly for programs computer fi

where individual lines become very complex this lack can be a severe by newer an

handicap. Some other systems have powerful but very difficult editing reaches mor

systems, almost impossible for use by anyone other than a dedicated languages a

professional. Only personal experience can indicate which editing quickly he

system is most desirable for student use, but the question is important. new languag

The prospective purchaser or lessee should "experiment" in some detail from this s

with the machines he is considering so that he can form his cwn of good stu

judgment with regard to editors, had psychol

ful languag

The science student is a beginner at the terminal for only a brief it may be a

period. He may then face a long career, both in school and out, of develops wi

increasingly active computer use. The opposite side to the question ability."

of how quickly one learns a language is the question of whether the a "pacifier'

lansuage affords an opportunity for student growth, in telms of his multilangua

knowledge of and use of computers. Most languages are simple to get from becomi

ntartod in hut aftnr (inn han Inarnnd thn olnmnntary matnrial, littln

else may be available. Some of the Implementations of BASIC and Terminal l

JOSS, although not all, are like this. On the other hand some languages usage, perh

have a rich superstructure, not necessary for the beginning user, student's c

but available as he develops and can write more and more sophisticated is using fr.

programs. Both PL/I and APL exemplify this richness, and FORTRAN is clear th

can a.so be extended beyond the elementary level. I believe language FORTRAN and

PJ 20

ther useful editing system is the should allow for, and even encourage, student growth, letting

XDS STCMA 7 TITM-UTS EDIT

any implementationn cif Lht lanuuayes

ne editing. Particularly for programs

y complex this lack can be a severe

ve powerful but very difficult editing

by anyone other than a dedicated

erience can indicate which

dent use, but the question

see should "experiment" in

editing

is important.

some detail

ing so that he can form his own

r at the terminal for only a brief

career, both in school and out, of

The opposite side to the question

uage is the question of whether the

for student growth, in terms of his

Most languages are simple to get

rne,d fhn olnmt-ntnry mntorial, littlo

the implementations of BASIC and

this. On the other hand some languages

necessary for the beginning user,

can write more and more sophisticated

mplify this richz.ess, and FORTRAN

elementary level. I believe language

him make better and bettcsr use of the computcr facility.

An issue related to growth is whether a student can emerge from a

language he has already learned. Given the dynamic natule of the

computer field, most languages will eventually die and be replaced

by newer and more effective languages. Furthermore, as the student

reaches more difficult problems he may want to use specialized

languages adapted toward these problems. Hence, the question of how

quickly he can make the transition from his first language to a

new language is important. Existing languages are difficult to judge

from this standpoint, but I have had several examples recently

of good students, brought up on BASIC in his school, who have

had psychological problems in switching from BASIC to a more power-

ful language. This experience may represent a chance occurrence,.or

it may be a phenomenon observeble for all languages. As experience

develops with languages, we should keep close contact with "change-

ability." A person can become accustomed to a language so that it is

a "pacifier" to the user, a retreat in moments of crisis. Perhaps a

multilanguage approach right from the beginning will prevent students

from becoming too tied down to one language.

Terminal language usage will often be partially replaced by batch

usage, perhaps through remote job entry systems, later in the

student's career. So we should ask whether a language the student

is using from the terminal will lead to successful batch usage. It

is clear that the languages which exist in both forms, primarily

FORTRAN and PL/1, have transitional capabilities. However, most of

20

21

the other languages hEre are not batch languages, except for small as a series

machines, and so would demand a change in framework in flow.nq ft-um a big proble

terminal to batch. This factor, however, may become lesr important blem, comput

as research users shift to more terminal use, and as termina)s student towa

are increasingly used for batch entry. is desirable.

routines are

The student user also finds it very useful to have effective disk in current

storage of his programs between sessions. (Paper tape or magnetic structure o

cassette can also be used for off-line storage.) The facilities not usually

for disk storage depend on the hardware and implementation rather system libra

than on the language; costs for disk storage vary widely. The system or us

availability of convenient and easy to use system library facilities are usually

also is important for class use, because the student can be relieved its functior

of the burdens of writing minor associated programs, or can be sup- useful libra

plied some programs by the instructor. Library programs aad usability of APL also

differ widely from system to system. Protection features, which

allow the instructor to control who has access to the files are Programs of

also useful. A valuable feature is the automatic save in some Important p

systems; if you lose connection with the computer, possibly because anyone) is

of terminal or line failure, whatever you currently had available ming errors.

will be available the next time you contact the computer. -So an because it

entire session of work will not be wiped out by an accidental mishap. code, the ed

This facility exists in the RUSH Implementation of PL/1 and in The system f

APL; it is a valuable user oriented facility which should be present errors.

in all time-sharing systems.

As already suggested, I believe that the language's attitude toward

subroutines is important. The ability to conceptualize a large problem

21

When a progr

during the c

What are th

2i

h languages, except for small

c in framework in miwinq frc/m

ver, may become less important

inal use, and as terminals

useful to have effective disk

ions. (Paper tape or magnetic

ne storage.) The facilities

are and implementation rather

storage vary widly. The

to use system library facilities

ause the student can be relieved

ciated programs, or can be sup-

. Library programs and usability

Protection features, which

has access to the files are

the automatic save in some

h the computer, possibly because

er you currently had available

contact the computer. So an

wiped out by an accidental mishap.

plementation of PL/1 and in

facility which should be present

the language's attitude toward

ity to conceptualize a large problem

as a series of solvable subproblems, making little problems out of

a big problem, is often a critical stage in the solution of any pro-

blem, computer or otherwise. A language which naturally pushes a

student toward this point of view, in an early stary! of his education,

is desirable. BASIC is perhaps the weakest in this regard, as sub-

routines are possible only by in-line coding in most forms of BASIC

in current use; this seems pedagogically unsatisfactory. The part-

structure of JOSS is a type of subroutining facility, but it does

not usually allow a convenient use of named subroutines stored in

system libraries. For FORTRAN and PL/1, the ability to use subprograms,

system or user-supplied, may be system dependent, but the facilities

are usually present. APL has a general subroutining facility in

its function approach, and the standard IBM system comes with a

useful library of functions; the work spaces and system facilities

of APL also allow an easy user-oriented access of this library.

Progrars of any complexity almost never work when first entered. An

important part of using the computer for the science student (or for

anyone) is the process of debugging, finding and correcting program-

ming errors. The terminal system is particularly useful in debugging

because it allows Immediate correcting and rerunning. In correcting

code, the editing system, already mentioned, is of great importance.

The system facilities can ease the task of finding and correcting

errors.

When a program malfunctions, the first concern may be what has happened

during the calculation. What statement is currently being executed?

What are the current values of the variables? Particularly if no

22

13

printout at all han occurred, the unor ofton findn it unofnl

determine the values of certain variables. Lanquages that provide.

immediate commands, commands executed right away, aro comn.iii..ni

here. As soon as the program stops, the iitudent can determine the

values of critical variables. As previously mentioned, JOSS and

APL, and some implementations of other languages, have direct or

immediate commands. Languages which can only run whole programs

do not offer a facility for determining the values of variables

on the spur of the moment, an annoyance when things are not going well.

Several other system facilities are also useful in debugging. One

such facility is the trace, the ability to require that each time

a statement is executed,.the value assigned is to be printed, and

the ability to see which statements are executed in what order.

While all of the languages discussed allow tracing through the insertion

of temporary statements in the program, which can be removed after

the program is running, only APL has a built-in tracing mechanism,

allowing the user to specify which lines he wants traced. A similar

facility is a stop or breakpoint facility, allowing the user to re-

quest that th, computer pause after certain points. Again APL is the

. only language discussed here that usually has such a facility, although

it may be available in some implementations of other languages.

23

The power o

considered,

is often p

tion of col

of the oper

languages h

forms of BA

matrix hand

kind. APL

for collect

any other 1

and serious

of its deve

23

:er often firld it ti::efni to

ables. Languages that providr.

a right away, aro convenient

the ntudent can deteTmine the

eviously mentioned, JOSS and

ler languages, have direct or

can only run whole programs

ing the values of variables

nce when things are not going well.

also useful in debugging. One

ity to require that each time

ssigned is to be printed, and

are executed in what order.

allow tracing through the insertion

am, which can be removed after

a built-in tracing mechanism,

Ines he wants traced. A similar

ility, allowing the user to re-

certain points. Again APL is the

ually has such a facility, although

tations of other languages.

24

The power of the language in handling matrices and arrays should bc

considered, particularly as the students become more advanced. It

is often profitable to think of an operation as involving the manipula-

tion of collections of numbers, rather than, as with FORTRAN, thinking

of the operation as manipulating individual numbers. Many scientific

languages have natural facilities for handling collections. Most

forms of BASIC have a simple but effective collection of special

matrix handling operations. PL/1 also has some facilities of this

kind. APL has an extremely powerful and versatile set of operations

for collections of numbers in many dimensions. It goes far beyond

any other languages here, because the developer looked carefully

and seriously at the question of matrices and arrays from the beginning

of its development.

24

2C

Conclusions--Comoutational Languages

Based on these criteria, I believe that API, and PL/1 are clearly

superior as computational terminal languages for use with science

students. JOSS is somewhat below these two, and BASIC and FORTRAN

I regard as the least desirable languages for student use. Again,

the reader should remember that some of these aspects depend on the

implementation of the language.

25

Dialo L

A special

preparing

in this m

so has on

Relativel

a sizable

material

Review ar

preparati

never bee

dialog la

is the IB

material

more ener

teaching

I suggest

at this t

teacher

wise to a

languages

limited

developed

original

only on s

.2C

es

that APL and PL/1 are clearly

1 languages for use with science

these two, and BASIC and FORTRAN

anguages for student use. Again,

ome of these aspects depend on the

26

Dialog Languages

A special problem arises with regard to computer languages for

preparing material for student-computer interaction. The student

in this mode interacts with a program already in the computer, and

so has only indirect access to the facilities of the computer.

Relatively little science material of this kind is available, but

a sizable effort is being expended on work in this area, and more

material is appearing.

Review articles list thirty or forty languages designed for dialog

preparation. Most of these are in extremely limited use; some have

never been used by anyone except their original developers! Few

-

dialog languages could claim to have national use; one exception

is the IBM Coursewriter, one of the first such languages. Little

material is currently available in any of them; unfortunately,

more energy has gone into developing languages than developing viable

teaching sequences.

I suggest that the development of specialized languages for dialogs

at this time is probably a mistake, and I feel that the science

teacher emi:loying computers in this computr-dialogue direction is

wise to avoid tying hinself down too closely with any of the existing

languages. As indicated, most of these languages have extremely

limited use at present. Furthermore, such material that has been

developed is often presented in a form almost unusable outside the

original environment. Thus the MIT relativity material is usable

only on systems which have ELIZA, and estimates for converting to

26

27

another system indicate that this would be a sizable job. Further,

m...iny of th(2::(lan,jua,p73 and uppr.,.41':ht-:: 1.4:1.tc111.,1

teaching strategy, and, as the teacher may not care to follow this

approach, these impose a severe limitation; the teacher should

retain control over the teaching process.

Although many specialized languages have been developed, it is possible

to write student-computer interactive programs in existing general

purpose languages. Languages already used include SUPERBASIC, APL,

PL/1, FORTRAN, and SNOBOL languages. Most of these languages are

flexible enough so that with only minor additions, usually in the

form of a few subroutines or functions written by the user, one

can handle much conventional dialog material. They do not prejudice

the form of this material, but allow the user to pick his own

teaching method. Furthermore, general purpose languages are much

more widely available than specialized languages, so material written

in them has a greater chance of being usable elsewhere. Instructors

have a greater Chance of being already familiar with general purpose

languages: My own feeling is that the development of computer-based

-instruction languages has been premature, and that at present it

is in most circumstances more reasonable to write such material in

the general purpose languages.

Assembly languages are restricted to particular machines, but they

also present interesting possibilities for dialog-type teaching

material, particularly if the macro facilities of the language are

fully exploited. A strong advantage is flexibility; it is easy to

add new macros and subroutines to the system, so the programs can

react to pea

all lilt!

subroutines

at Irvine,

this approac

Given the si

and the lirai

work in this

possible of

the general

should be ma

available fo

a piece of t

with quite d

with only ro

I believe it.

a particula

writing dial

details of

nature of th

program ma

27

ould be a sizable job. Further,

on .1 p.ss1.4cul.1,

er may not care to follow this

itation; the teacher should

cess.

have been developed, it is possible

ve programs in existing general

dy used include SUPERBASIC, APL,

Most of these languages are

inor additions, usually in the

ons written by the user, one

material. They do not prejudice

the user to pick his own

ral purpose languages are much

zed languages, so material written

g usable elsewhere. Instructors

ady familiar with general purpose

the development of computer-based

ture, and that at present it

able to write such material in

o particular machines, but they

ies for dialog-type teaching

facilities of the language are

ge is flexibility; it is easy to

e system, so the programs can

28

react to pedagogical needs. Further, the programmer can have access

Ly all the lacilities ul the computer. He can lor example imbed

subroutines in higher level languages where desirable. Our work

at Irvine, The Physics Computer Development Project, has followed

this approach.

Given the situation of many existing languages possible for dialogs,

and tre limited availability of most of them, it is reasonable that

work in this direction should strive for a form as independent as

possible of particular programming languages. A floucnart showing

the general structure of the program and the various possibilities

should be maintained in. all cases, and this information should be

available for users of other systems. Such documentation can make

a piece of teaching material usable in a variety of different places,

with quite different kinds of machines and languages available,

with only rortine additional work to adapt it to local conditions.

I believe it is a mistake to end CAI projects with the coding in

a particular language as the only product and I strongly urge anyone

writing dialogs to consider more communicable forms. The exact

details of the flowchart are not critical; they may depend on the

nature of the program; several types of flowcharts for the same

program may increase the usefulness of the program.

28

21

Future Language Development--Graphics

Certain current language developments, related to terminal facilities,

seem important enough from the standpoint of the science

to merit comment.

ti.aeher

The languages of most importance for future computational use in

science are those which offer limited conversational graphic

capabilities. I am not referring to a full-scale graphic system,

which often costs hundreds of thousands of dollars per terminal;

rather I am referring to a visual conversational system like the

Culler-Fried system at the University of California at Santa Barbara

and the University of California at Los Angeles, and the BRAIN system

at Harvard University. Both systems are based on tecminals in the

$10,000 range, and offer graphic capabilities for many areas of

teaching. Both systems are based on storage oscilloscopes. Several

sources offer similar terminals, and within the past year a dramatic

reduction in cost has occurred. Graphic facilities are still more

expensive than teletypes, but recently have become competitive with

the better typewriter-like terminals. Further developments may

allow these terminals to be less expensive; a number of interesting

new types of graphic terminals are currently available.

A graphic terminal without graphic language capabilities is of little

use. The systems mentioned above, Culler-Fried and Brain, are

only to a minor extent hardware developments. Their primary strength

is in software; they have implemented powerful conversational languages

with effective graphic capabilities within the language. Such

extensions

including t

The details

implemented

allow natur

that he is

PL/1 and AP

ient graphi

bilities.

available

I feel that

with graphi

that the d

teaching pr

21

lated to terminal facilities,

of the science u-acher

re computational use in

iversational graphic

11-scale graphic system,

f dollars per terminal;

ational system like the

California at Santa Barbara

ngeles, and the BRAIN system

based on terminals in the

ties for many areas of

age oscilloscopes. Several

in the past year a dramatic

facilities are still more

ave become competitive with

urther developments may

ve; a nuMber of interesting

ntly available.

age capabilities is of little

-Fried and Brain, are

ents. Their primary strength

werful conversational languages

in the language. Such

30

extensions could be made in some of the existing terminal languages,

including those mentioned in this paper.

The details would depend to some extent on the type of graphics to be

implemented. Generally the two existing graphic languages mentioned

allow natural handling of arrays so the student can often consider

that he is working with functions. Of the languages mentioned here

PL/1 and APL would probably lend themselves most readily to conven-

ient graphic extensions in this sense, because of their array capa-

bilities. It seems very likely that such facilities will soon be

available in APL.

I feel that the teaching rewards in a graphic environment, perhaps

with graphic input as well as graphic output, will be enormous, and

that the development of such facilities will noticeably effect the

teaching process in many areas.

D
i
r
e
c
t

C
o
m
m
a
n
d
s

S
u
b
r
o
u
t
i
n
e
s

-

U
s
e
r

S
u
p
p
l
i
e
d

E
x
t
e
n
s
i
v
e

S
y
s
t
e
m

S
u
b
r
o
u
t
i
n
e
s

A
r
r
a
y

&

M
a
t
r
i
x

C
a
p
a
b
i
l
i
t
y

E
d
i
t
i
n
e
;

F
a
c
i
l
i
t
i
e
s

S
t
r
i
n
g

M
a
n
i
p
u
l
a
t
i
n
g
l
:
n
i
t
i
a
l

F
a
c
i
l
i
t
f
.
e
s

L
e
a
r
n
i
n
g

S
i
m
p
l
.
,

F
s
r
a
n
c
;
1
:
.

P
L
/
1

-

R
U
S
H
,

C
P
S

N
o

G
o
o
d

Y
e
s

G
o
o
d

F
a
i
r

-
-
-
-
-
-
t

E
x
c
e
l
l
e
n
t

E
a
s
y

Y
e
:

P
L
/
1

-

C
A
L
L

3
6
0

N
o

F
a
i
r

F
a
i
r

E
a
s
y

Y
e
:

A
P
L

-

3
6
0

Y
e
s

G
o
o
d

Y
e
s

E
x
c
e
l
l
e
n
t

E
x
c
e
l
l
e
n
t

G
o
c
d

F
.
a
s
o
n
-

a
b
l
e

J
O
S
S

-

F
O
C
A
L

Y
e
s

F
a
i
r

N
o

P
o
o
r

N
o

e
r
y

H
a
s
y

Y
e

,

J
O
S
S
-

C
A
L

Y
e
s

F
a
i
r

P
o
o
r

N
o

7
:
?
r
y

H
a
s
y

J
O
S
S

-

P
I
L

Y
e
s

F
a
i
r

N
o

P
o
o
r

F
a
i
r

F
a
i
r

P
a
i
r

*
:
e
r
y

L
:
.
:
1
s
y

e
r
y

E
a
s
y

Y
e
:

Y
t
3

B
A
S
I
C

-

a
E

N
o

P
o
o
r

G
o
o
d

G
o
o
d

B
A
S
I
C

-

H
.
P
.

N
o

P
o
o
r

F
a
i
r

e
r
y

E
a
s
y

Y
t
E

B
A
S
I
C

-

C
A
L
L
/
3
6
0

N
o

P
o
o
r

F
a
i
r

V
e
r
y

E
a
s
y

Y
e
:

B
A
S
I
C

-

S
u
p
e
r
b
a
s
i
c

(
T
y
m
s
h
a
r
e

-

9
4
0
)

Y
e
s

P
o
o
r

G
o
o
d

E
x
c
e
l
l
e
n
t

E
x
c
e
l
l
e
n
t

e
r
y

E
a
s
y
_

B
A
S
I
C

-

9
4
0

N
o

P
o
o
r

G
o
o
d

E
x
c
e
l
l
e
n
t

V
e
r
y

E
a
s
y

W
'

Y
e
:
,

F
O
R
T
R
A
N

-

T
y
m
s
h
a
r
e

Y
e
s

P
o
o
r

.
E
x
c
e
l
l
e
n
t

.

R
e
a
s
o
n
-

a
b
l
e

M
c

F
O
R
T
R
A
N

-

G
E

N
o

Y
e
s

P
o
o
r

G
o
o
d

R
e
a
s
o
n
-

a
b
l
e

N
c

F
O
R
T
R
A
N

-

R
A
X

N
o

P
o
o
r

R
e
a
s
o
n
-

a
b
l
e

N
c

