ED 060 620

AUTHOR
TITLE
INSTITUTICON

SPONS AGENCY
PUB DATE
NOTE

JOURNAL CIT

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME
EM 009 626

Bork, Alfred M.

Introduction to Computer Programming Languages.
California Univ., Irvine. Physics Computer
Development Project.

National Science Foundation, Washington, D.C.
Dec 71

5p.
JCST; P 12-16 December 1971

MF-3%$0.65 HC-$3.29
Computer Assisted Instruction; Computer Science

Education; #*Gulides; *Programing; *Programing
Languages

A brief introduction to computer programing explains

the basic grammar of ccmputer language as well as fundamental
computer techniques. What constitutes a computer program is made
clear, then three simple kinds of statements basic to the
computational computer are defined: assignment statements,
input-output statements, and branching statements. A short
description of several available computer languages is given along
with an explanation of how the newcomer would make use of basic
computer software. Finally, five different versions of a simple
program (for solving the harmonic oscillator numerically) are given

with comparison.

(RB)

U.S. DEPARTMENT OF HEALTH.

ED 060620

N(ella ezzé

lew
—Q
@)

o] - 15 jod E 3 53 . EDUCATION & WELFARE

1 T B t’@éfﬂ S AP R R 4 Ba?f;;_ s é;% A m;é,‘fa-‘ L) Tﬁﬂﬂ '\%éﬁa‘g OFFICE OF EDUCATION
LR R0y e Roch ek Y S i pe~ z HZER R e s e THIS DOCUMENT HAS BEEN REPRO-
] = - DUCED EXACTLY AS RECEIVED FROM
ﬁ;;kf_‘f. . e g‘ - o THE PERSON OR ORGANIZATION ORIG-
Fad 0 R, (RTRIES AT TN @IS T 43T, AT e TN AT R o ﬁ@g INATING IT. POINTS OF VIEW OR OPIN-
wi S G ik Wi reialtiviaakds iy BRSNS ERN @ué’?&ﬁ:ﬁj IONS STATED DO NOT NECESSARILY
o o e 3t REPRESENT OFFICIAL OFFICE OF EDU-

By Alfred M. Bork

5 he digital computer is a powerful, calcuiating. and

N ioglc.d device. In order rec take advantage of its capa-
bilities, the user must know hew to instruct the computer

in a Ianguage that it understznds. Different computers
have different languages avaiiable 1o them, and even for
the same computer, the language situation is likely to
change.

A Program Before reviewing the types of state-
ments used in computer proora“nvmpg. it might be useiul
to consicer the overzli guestion of what constitutes a
coimputer program, ti.e.. the instruction giver O a com-
purer. The computer program can be viewed as some-
tinng like a oa;agraph composed of a number of “‘sen-
tences.” These individual sentences are executed in the
order in which they appear in the paragraph, uniess ‘a
“brzrching’ sentence explicitly changes this order and
directs the machine to go to another sentence. In some
languages every sentence is numbered. and these numbers
determine the order of execution except for branching
statements.

Usualiy the computer offers some easy way of changing
individuzl sentences, so that tne program can pe modified
and corrected for future use. Ir is very important to keep
in mind the sequential nature of the calculation—the fact
that the sentences are ¢xccuted in order. For exampie, if
a new value of some variable is calculated in one senrence,
that vaine will be used in later s2ntences which refer to
the 52'115 variable.

Lhe fow of 2 computer program can be studied by
means of za chart or diagram, scmetimes called a flowchart,
and beeks o computer l2nguages will show many ﬁow—
charts. Alttough there are somc conventions for flow-
harts, the beginner does not reaily need to worry about
hem. It does sometimes hcip to think about a program
in z chart form, howcver. because it gives an cverall
“picture’’ of what is happenmg In an easy-o-comprehend,
graphic form.

All computer languages intended primarily for calcu-
purposes have similar features and structures. Pre-
in any of these languages

et

.l""‘J

ation
paring a beginning program
'eg the type of program that might be needed 1n
phvsicst s 2 similar process. Simple calculational com-
puter programming invoives a limited number of activi-
ties. ot kinds of statements. directing the computer tc do

CATION POS!ITION OR POLICY.

what the programmer wants it to do. For convenience,
we can distinguish three of these—assignment, Ianput-
ouiput, and branching. This does not, by any means,
exhaust everything that a computer can do, but it is
enough to get started.

Ass;gnmc.nl' Statementis First. since the computer
is a calc ulatlonal tool, it is not surprising that scme
statements in the computer language are designed to teli
the computer just what calculations the programmer
wants it to perform. A standard shorthand ianguage de-
scribing calc 1lations algebraically already exisis. A modi-
fication of this language, in one form or another, is used
in most contemporary computer languages. The basis for

describing a cakulauon in algebraic terms is a formuia.
such as
F = MA
which says trat to determine the number F, one mast
multiply the numbers M and A together. Similarly
X = & sin (wt)
specifies a more elaborate precedure for finding X from A,

w, and .

A formula with only a smgle unknown cn the left
bard side, and a group of items describing bow te calcu-
late that unknown on the right hand side, is characteristic
of a typical computer assignment statement. Fere are
several examples. with indications of the language.

20 V=VO4A*T (BASIC)
P=N*R*T/V (FORTRAN or PL/1)
[71] AeR*(Cc+D) (APL)

-~

An assignment statement is somewhat different from 2
formula. and some languages (e.g.. n”L) replace the eguai
sign with some other sign. such as a ! loft- -pointing arrow

A formula does not. bv itself, mcucatc that 2 calc ‘“xattor
must be carried out but amerely states the relation among
the varizbles. Turthermore, a formuia can have mam‘
varizbles cn both sides of the equation. However, the
formulas which lead to assigninent statements in a ccm
puter zanguage are ail ones vuth a single variable on the
left: they specify a collection of arithmetic opzrations as
indicated on the right to be carried out 2nd assign that

L 3 3 . . . L . ' ers . . .
Dr. Bork is professar of physics end of informection cnd compuler science af The University of Colifornis,

Irvire.

<
Q
L}

value to whatever variable is indicated on the ieft. Most
languages aliow free use of spaces in order to make for-
maulas more readable. : _

The computer treats the variables as storage slots in
its memory. Corresponding tc each variable in a par-
ticular program, an appropriate storage location exists. in
the computer m~mory. The memory can be thought of
2s a collection of mail boxes., with the labeis that identify
some of the mail boxes being the same labels which iden-
tify the variables of the problem. Thus, in the relation

7.42 F

= M*A (50sS)

in 2 computer program, the computer is being told to find

the numbers currently stored in the two locations desig-
rated M and A, to multiply these, and to store the results
in the location called F. Whatever number was previously
stored in the location F will be changed in this operation:
but the numbers stored in Iocations M and A will not be.
(The process of how the computer associates variables
with locations in memory is 2 bit more complicated than
indicated here, but this description iliustrates what is
happening.) '

The variable on the left can also occur on the rignt.
Thus the statement in an APL program

COUNT«COUNT -+ 1

increases the value of the count by one.

The assignment statement, with slight variants in dif-
ferent languages. is one of three building blocks in com-
puter programs. Most computer languages allow the
standard arithmetic operations of addition. subtraction.
muitiplication, division, and cxponentiation. Most use
an asterisk for multiplicaticn, although APL uses the
usual multiplication sign. All computer languages in
common use require an expitcit multiplication sign; it
cannot be omitted as in algebra. Thus:

A<B(C--D) (APL)
would be an erroneous statement. because the multipiica-
tion sign foilowing the B has been omitted. :

Ccmputational ccmputer languages have a symbol for
expounentiation, that is, raising a number to a power. In
FORTRAN and PL/! the symbol for “‘to the power” is a
pair of asterisks in a row: in BASIC it is an up arrow; in
APL it is a single asterisk. Some languages, particularly
APL, contain other arithmetic operations.in additicn to
these basic ones. = .

Pazentineses can be used freely in assignment staternents.
In fact, this is highiy desirable, becavie the language
might not make the same assumption that the programmer
does about the order for carrying our the various arith-
metic operations. When in doubt. use parentheses.

The names that can be used for a variable also differ.
Except for BASIC, computer languages usually allow, as
alreadv suggested. inultiple letter or letter plus number
names for variables. In FORTRAN. PL/1, and APL, the
name TIME could identify a single variable. Given this

DECEMBER 1971

slots.

rd

free choice of variable name, it is easy to see why explicit
multiplication is required. Many forms of BASIC restrict -
variables to single letters, or singie letters foliowed by
numbers. The variables. then, can have convenient names
which remind che programmer of the intended mcaning
or use. :

All the computational processes in a program can be
desczibed by a series of assignment statements. T hese
statements are executed one by one. in scquence. A coem-
puter program is executed in the order of the statements
that are given to the computer: although. as we will later
se2, exceptions to this dc-exist. As each statement is
executed, it uses the values currently stored in the memory
Thus, 1f a PL/1 program contains these two
staterments, _
’ DIST==ACC*TIME*TIME

Q=TIME*DIST/ (DIST**3.7).

onie following the other, the value of DIST calculated in
the first statement will be used in the second statement.
The same value of TIME will be used ir both calculations.
A corollary is that a variable must be defined. or calcn-
lated. in a program berore it is used in another calculation.
If it is used without previous definition, the results may
be unpredictable. Some languages will alert the prograin-
mer when this is happening, but not all have this capa-
bility.

input-Output Statements The second type of fun-
damental statement in a computer program is the input/
output statement, rsed when 1t becomes necessary to enter
information into-the computer while the program i1s run-
ning or when it is necessary to run the program with
different values. The programmer will almost certainiy
want to know the resnlts of the calculations which the
computer has been performing. The assignment state-
ments only store the results of the calculation internaliy:
they do not give access to those resuits. The programmer
must tell the computer explicitly when he wants ‘input
and output. All comiputer languages have either simple
input statements that allow the programmer to enter
values and store them in some of the memory slots
preliminary to doing a calculation. or they have statements
which allow the programmer to read out the values con-
tained in some of these slots in a form convenient for
understanding whar is happening. ' -

Details differ. Consult the sample programs. The
input statemexts often have words like INPUT, ACCEPT.
or READ to identify them. while output statements have
words iike WRITE (FORTRAN), PRINT (BASIC), TYPE
(JOSS), or PUT (PL/1). APL has a somewhat different
prccedure—rvariables listed by themselves will cutomatic-
ally be printed out. Also. the format in which the output
is presented. the number of significant figures, the number
of numbers on a line. and the spacing between numbers
mav or may not be under centrol in the caleulation in the
language that you use. Sor:etimes the mess™ details may
have to be mastered in order to learn how to get the kind
of format desired. This is a common source of annoyance

13 &

§to beginners with some languages (particularly FOR-
[TRAN) . but these difficulties are only minor in most cases.
B[t 15 not essential to learn cvcrythmg about a language at
M irst try: enough information to get started in working
M he problems is an adequate beginning. :

Branching Siotements The third kind of statement
B in 2 computer program. in any language. gives real power
§ 10 computer programming and sometimes ailows the de-
. °cription of a very long calculation by a short program.
g T his is the branching statement. We have said that the
statements in a program are usually executed one after
@F the other, in the order that they are typed or "entered on
@ punched cards, or, as in BASIC, JOSS. and APL, in the order
B of the statement numbers. But the programmer can
§ change this order by means of a branching statement.

A brapcmng statement is an order to the computer to
2o to, and execute, scme different statement in a program,

BB this point. There are two basic types of branching state-
B ments, unconditional znd conditionai. The unconditional
branch always takes place; whenever the computer gets
to that point in the program. it always hops to some
other place and starts executing statements in order from
that point.

-4 (APL—go to statement labeled 4)
->COMPUTE (APL—go to statement labe‘cd
COMPUTE)
GO TO 44 (FORTRAN-=—gO tO statement
labeled 44)
GO TO NEXT (PL/1—¢go to statement labeled
NEXT)
47 GO TO 22 (BASIC——-go to statement labele
22)
TO 4.3 (JOSS—go to statement labeled
4.3)

The second branching statement is a conditional
branc ring statement. Whether the programmer goes to
anorher rlace or not depends on the results of the calcu-
lations that have occurred so far. Thus. using conditional
branching. the calculation can be controlled. sending the
computer back to do things over again under some cir-
cumstances. but nct under others.

44 IF T<10 THEN 150 = {(BASIiC—go to 150 if
T<10: otherwise, execcute
the next statement)

IF (DELTA .LE.6.3)

GO TO 6% (FO’{TRA\I—OO to €6 if
DELTA<6.3; otherwise
continue)

3xI{TIMELH) (APL—1to 3 if TIMEL5:

otherwise continue)

The branching statement, whether conditional or un-

gram. {his means that there must be some way of iden-

not the next statement. and to continue exXecuting from

conditional. has to indicate where to go within Lhe pro-.

149

Al

tifying the line to which the computer goes, 1e.; a
label for that line. Languages differ as to the kinds of
things that are acceptable as a label: some languages allow
only numbers while others allow the programmer to
choose convenient names. In some languages (e.g., BASIC,
JOss) . every line must have a label, but in other languages

only the lines that are going to be jumped to. need to have

such a label (e.g.. FORTRAN. PL/1). OCther details about
the branching statements. particularly the conditional
branching statements. also differ w'dely frora-language to
language. But most of them have the same general outline
of allowing the programmer to test values i the calcula-
tion at that point, .and make a decision to jump or not
to jump based on that test.

For the Beginner We would not want to claim
(because it i1s not true!) that these three types of state-
ments are all that cccur in programming languages. A
rich language may bave other types too, and this classifi-
cation may not even be appropriate. But these basic ideas
are enough to get started and are all that the novice need
be concerned with mmally

As we have said. it is not necessary to learn all about a
language at first. Rather. it makes sense to learn oanly
what you need now, assuming that as your needs expand.
you will be able to learn more about the language. Fo:
some languages it would be an almost Herculean rask to
learn everything., but it is a simple task of only a few
hours to learn a useable svhset of any common language
for a physical science couse.

Some general advice about learning a programmmg
lanquage may be useful. Details differ. depending on what
type of system is being uwsed. First. the user should maxi-
mize the benefits of working in a terminal environment,
if this is the casz. This means that he should go .relatively
quickly to the computer terminal 2ad start running small
examples of programs. One learns much more quickly
by practice than by reading. and terminal facilities are
ideal for quick practice. A computer-knoswledgeable friend
would be a definite advantage in initial sessions at the
terminal.

A number of standard books are available for each
language. but the user should distinguish between books
ae51gned as basic Instruction in the language, such as
primers, and manuals which describe all the facilities of
the language. The latter, usually available from the com-
puter. manufacturer, are useful in active programmmg
however, as they attempt to be encyclopedic, writing of

"the language in a logical, rather than 4 pedagogical fash-

ion, they are not the best aid for the beginner.

Available Languages - Following is a brief descrip-
tion of common computer languages for numerical com-
putations. FORTRAN .is presently, by far, the most com-
mon calculation language. and most scientific computation
is dene using FORTRAN. Designed in 1957 by IBM for
the 704, it is available on almost every computer. Like
the othcr {anguages discussed here. it 1s an algebraic lan-

JCSsT

guage describing calcularions using formmula-like expres-
sions. FCRTRAN has many different “‘dialects,”” the mosi
wideiv-used being FORTRAN IV. which usually includes
fogical "'IF"" statements and complex variables. As it was
" one of the first such languages, it is in some ways cruder
than newer. languages. FORTRAN is used in both time-
sharing and batch.

ALGOL 15 a second generation algebraic language. after
FORTRAN, and has a more logical structure. It s more
widely used in Europe.than in the United States: how-
ever, many American machines have ALGOL compilers.
A new version of ALGOL, ALGOL 68. is ccming into use.
Most ALGOLs are available only in batch.

JOSS is an aigebraic language developed by the Rand
Corporation particularly for timesharing. It can be used
either for programs or as an electronic desk caiculator. Be-
cause it ‘s intended for terminals. it provides rapid feed-
back for grammatical errors. Variations of JOSS exist
under manv names.

BASIC originated at Dartmouth College and is 2 widely
available algebraic terminal language similar to JOSS.
Various forms of BASIC differ in the way they handle
alphanumeric strings. BASIC has a convenient set of
matrix operztions. '

PL,/1, planned by IBM and users for System 360, com-
bines algebraic, business, and list-processing facilities. and

HNows complex pregrams which use both linguistic and
computiationzl modes. [t is a “"third generation ™ algebraic
language. following FORTRAN and ALGOCL. Like FOK-
TRAN, it is available in both barch and terminal modes.
Although it is used primarily on IBM machines. it is also
availzble from several other manufzacturers.

APL (A Programmed Language) is a highly interac-
tive, recently-developed. time-chared language. In addi-
tion to arithmetical operations, it has many powerful
numerical and string operators. While beginners can write
APL programs which look much like BASIC or PL/1, the
strength of the language comes from its ability to con-
veniently manipulate arravs and matrices. It has gained
rapidly in popularity.

Operating Sysiems Using computers has another
aspect besides the languages in which we construct the
_programs. Some mechanism for getting the information
—both prograrn and date—in and out of this system
must exist, and this will invoive both .the mechanics of
how this is dcne (the typewriter-like terminals, keypunch
machines. paper tape punches, or other similar devices)
and the instruciions to the computer to tell it just what
you want it to do. A modern computer can handle a
great varicty of languages and has considerable room for
chnice 2s to Eow the information is to be put out and
where. All this informarion is conveyed to the computer
by the user, although 2 “‘defsult”” may exist if nothing
is said. _

Most computers run under the control of an operating
system, which serves as an overall supervisor to manage
the functioning of the computér to make it as efficient as
possible: -Operating systems differ widely. Most “‘batch”

Q
FRICECEMBER 1971]

IToxt Provided by ERI

" currently is less than 3.

systems will require a series of job “cards’” (which mayv
not actually be punched cards) preceding the program.
as well as directions for telling it what to do. Operating

. systems usually have commands in zddituon to the lan-

guage commands which specify the details of the task at
hand. The specificatton could be simple or complex. de-
pending on the degree of cheice offered to the user in a
particular system. Just as with the language, there is no
need to worry about Learning all the details at once. You
can start with some standard ways of preparing operating
systems instructions, probably available at ycur computer
installation.

interpretation In Table ! we present five different
versions of a simple program for solving the harmonic
oscillator numerically. In the present section we will
analyze several of these programs in a line by line fash-
ion. explaining whar 1s happening. anc develeping, in
addition. some of tlxe features of the languages.

Joss Note thar each statement has a numbezr, and that
the numbers are al! decimal numbers. The staterients arc
executed in numerical ordet, except when branching state-
ments appear. | he integer part of all the numbers is one.
so the statements togecher constitute. from the JUSS view-
point. part one:. T o execute these statements in JOSS. onz
would type, DO PART ONE. (With mest of our lam-
guages. the implemeniations differ, and JOSS 1s no ex-
ception.) Statements 1.1 and 1.2 and 1.3 set the initial
conditions, and i.4 determines the time step. [hese
statements ‘‘initiate”’ the variables. Line > is the calcu-
laticn of the new position and 1.6, the calculation of the
new velocity. In ezch of these equations the same vanabie
appears on both right and left hand sides of the calcuia-
tion. On the left we use the cld value, but we change ihz
value in each case when we execute the statement. Line
1.7 computes the new time by adding the time step to it.
Then we type out the results. and. in siep 1.9, we gc

. back to the step labeled 1.5 if T is less than 3. This last

step sets up a loop, the principle calculation ioop of the
program.

BASIiC In BASIC the line numbers are all integers, and
thc statements are carrieé out in the order of the numbers.
Some forms, but not zll, require the use of LET before
assignment statements. Again. the first three lines set the
initial conditions for time, position, and velocity. and the
fourth line sets the time step. The next two lines are
calculations of position and velocity. and the new time
is calculated in line 170. Line 180 prints out the values
just calculated. and 190 returns to statement 150 if T
Some BASICS wouid not require
an END statement.)

. FCRTRAN In FORTRAN not cvery statement needs to
be numbered: only those statements referred to by others
need to have a statement number. The first chree state-
ments set the initial conditions, and the fourth one sets
the time step D. {I» FORTRAN one could use something
like DT, but D is used here to follow the examples in the

.more restrictive languages.) Statement !0 and .the next:

line are the calculations of the new position and velocity,

A

.....

and again the new time is computed. The WRITE state-
ment 10 -FORTRAN is a bit more compiicated than similar
statements 1n the other language. Six indicates she nnjt
on which one is to write. perhaps the line printer or the
user’s terminal. Seventy references the FORMAT statemeit,

TABLE 1.
The Harmonic Osallator
1)1 T=20
1.2 X=1
' 1.3 v=0
1.4 D=.1
JCSS. 1.5 X=X+ V*D
1.6 v=V — X*D
1.7 T=T+4D
1.8 TYPE T, X .
1.9 IFT<K3, TOSTEP 1.5
110 LET T=0
120 LET X=1
130 LET v=0
140 LET D=.1
BASIC 150 LET X=X--V¥*D
' 160 LET V=V—X*D
170 LET T=T-4D
180 PRINT T:X
190 1F T<3 THEN 150
200 END
T=0.
=1.
v=0.
D=.1
' 10 X=X+Vv*p
FORTRAN V=V —X*D .
T—T-}D .
WRITE (6, 70) T.X
IF (T—3.) 10. 10, 14
14 stop
70 FORMAT (Fi10.2, Fi2.4)
END
V HARMONIC
1] T<O.
[2] X&'l
i3] ve0
APL [4] D<0.1
i5] CALCULATE:X<«X-++VXD
[6] Veev—XXD
f7] Te<T4D
[8] T.X
[9] —>CALCULATEXT3V
OSCILLATOR: PROCEBURE OPTIONS (MAIN) ;
=0/ X=1; v=0;D=.1;
, CALCULATE: X = X -+ V*D; V=V — X*D;
PL/1 = T -+ D; PUT SKIP DATA (T.X):

IF T<3 THEN GO TO CALCULATE;
END OSCILLATOR;

the next to the last statemen in the program. It describes
how one wants the information to come cut. Thus, for
the time t. ten places are to be ailowed, with two piaces
to the left of the decimal point, while for x, tweive places
are allocated with four piaces to the left of the point.
It is a bother to write FORMAT statements in FORTRAN,
but it does give more flexibility. Many tynes of FOP TRAN
have simple input/output statements without format, but
they arc not used here because they are non-standard.
The branching statement is also a little more complicated
in FORTRAN than in other languages. It says if T - 3 is
negative, go to statement 10, and compute some more. -
If it is 0. go to statement 10 also. While if it is positive—
that is, T is greater than 3—then go to statement -14,
which stops the calculation.

APL In APL the program is a function, here called
HARMONIC. The symbel V is used to show the beginning
arid end of -the function. The lines zre numbered; this
numbering is provided by the APL systera. rather than by
the user. Note that in place of the equal signs in the
other programs, we have left-pointing arrows. The first
iines set initial valzes for T, X, and V, and for the time
step D. Lines 5 and 6 compute new positions of velocity.
Five has a label. CALCULATE. in front of it: the colon
indicates that it is a label. One could, in APL, have
referenced this statement by the line number, five, but
sometimes the label is more convenient. Note that the
multiplication sign is an actual multiplication sign. not
an asterisk. Line 7 computes the new time, and line & is
the output statement. Simply listing variables on a line
with nothing else indicates to APL that the current values
of the variables are to be displayed to the user. Nine is
the branching statement, teiiing the computer to go te
CALCULATE. the labeled statement (5). if T is less than 3,
but ctherwise to terminate the program. Branching state-
ments in APL are powerful. but the beginner shculd
probably use only a few routine ones, rather than try to
learn all the tricks of the trade.

PL/1 Examining the PL/! program. the second line
establishes the initial values of the variables used. The
calculations of position and velocity are in the third line.
These look very much like the corresponding 2lgebraic
relations with one exception. No primes are used. The
same variable x occurs on both sides ¢f the equation. In
algebrzic computer languages, such as PL/l, an equation
is a specification for a czlculation. It tells the computer to
take the variables on the right hand side from ccmputer
memory, perform the indicated computation. and put the
result back in the positicn in memory that holds the

variable X. Each variable is associated with a “‘slot”” 1n-

memory, so the net effect of this operation is to change

the value of X stored.
As already suggested. the differences among these vari-

ous pregrams are minor. For simple calculational pur-

16

poses, such as the sr.dy of the harmonic osciilator, the
differences of the common computational computer lan-
guages 2re smail. The major areas of difference are with
input/output and branching statements. Fowever. if one
goes beyond this beginning level, the languages tend to
diverge. : ' A

JCST

