
ED 060 620

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY
PUB DATE
NOTE
JOURNAL CIT

EDRS PRICE
DESCRIPTORS

DOCUMENT RESUME

EM 009 626

Bork, Alfred M.
Introduction to Computer Programming Languages.
California Univ., Irvine. Physics Computer
Development Project.
National Science Foundation, Washington, D-C.
Dec 71
5p.
JCST; P 12-16 December 1971

MF-$0.65 HC-$3.29
Computer Assisted Instruction; Computer Science
Education; *Guides; *Programing; *Programing
Languages

ABSTRACT
A brief introduction to computer programing explains

the basic grammar of ccmputer language as well as fundamental
computer techniques. What constitutes a computer program is made
clear, then three simple kinds of statements basic to the
computational computer are defined: assignment statements,
input-output statements, and branching statements. A short
description of several available computer languages is given along
with an explanation of how the newcomer would make use of basic
computer software. Finally, five different versions of a simple
program (for solving the harmonic oscillator numerically) are given
with comparison. (RB)

74.-E

erP\

'14r- C-1"?Fig

By Affred M. Bork

e-"ri". "79' F749
- A

ErtrIgf7t Or>re!9,1

616 ti LiS kC..".4
cp-S.e

ott, Tritl
taicta-t,.4

2 .2) szyj

r,9 he digital computer is a powerful, calculating. and
L logical device. In order to take advantage of its capa-

bilities. the user must know how to instruct the computer
in a language that it understands. Different computers
have difierent languages available to them, and even for
the same computer, the language situation is likely to
change.

A Program Before reviewing the -types of state-
ments used in computer programming, it might be useful
to consider the overall question of what constitutes a
computer program, Lee the instruction given to a com-
puter. The computer program can be viewed as some-
thing like a paragraph. composed of a number of -sen-
tences.- These individual sentences are executed in the
order in which they appear in the paragraish, unless -a
-branching- sentence explicitly changes this order and
directs the machine to go to another sentence. In some
languages every sentence is numbered. and these numbers
determine the order of execution except for .branching
statements.

Usually the computer offers some easy way of changing
individual sentences, so that the program can be modified
and corrected for future use. It is very important to keep
in mind the sequential nature of the calculationthe fact
that the sentences are cxecuted in order. For examnle, if
a new value of some variable is calculated in one sentence,
that value will be used ir: later sentences which refer to
the same variable.

The flow of a computer program can be studied by
means of a chart or diagram, sometimes called a flowchart,
and books cn computer languages will show many flow-
charts. Although there are some conventions for flow-
charts, the beginner does not really need to worry about
them. It does sometimes help to think about a program
in a chart form, however, because it gives an overall
-picture- of what is happening in an easy-to-comprehend,
graphic form.

All computer languages intended peirnarily for calcu-
lation purposes have similar features and structures. Pre-
paring a beginning program in any of these languages
(e.g., the type of program that might be needed in
physics'; is a similar process. Simple calculational corn-

N,S3 purer programming involves a limited number of activi-

cl- ties. or kinds of statements. directing the computer to do

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
/ONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

what the programmer wants it to do. For convenience,
we can distinguish three of theseassignment, input-
output, and branching. This does not, by any means,
exhaust everything that a computer can do, but it is
enough to get started.

Assignment Statements First, since the computer
is a calcuiational tool, it is not surprising that some
statements in the computer language are designed to tell
the computer just what calculations the programmer
wants it to perform. A standard shorthand language de-
scribing calculations algebraically already exists. A modi-
fication of this language, in one form or another, is used
in most contemporary computer languages. The basis for
describing a calculation in algebraic terms is a formula.
such as

F==MA
which says that to determine the number F. one mast
multiply the numbers M and A together. Similarly.

X = A sin (wt)
specifies a more elaborate procedure for finding X from A,
w. and t.

A formula with only a single unknown on the left
hand side, and a group of items describing how to calcu-
late that unknown on the right hand side, is characteristic
of a typical computer assignment statement. Here are
several examples. with indications of the language.

2 0 V=VO+A*T (BASIC)
P=-----N*R*T/V (FORTRAN or PL/l)

171 A4B*(C±D) (APL)

An assignment statement is somewhat different from a
formula, and some languages (e.g.. APL) replace the equal
sign with some other sign. suCh as a left-pointing arrow.
A formula does not. by itself, indicate that a calculation
must be carried out but ,merely states the relation among
the variables. Furthermore. a formula can have many
variables on both sides of the equation. However, the
formulas which lead to assignment statements in a corn-
puter language are all ones with a single variable on the
left: they specify a collection oi* arithmetic operations as
indicated on the right to be carried out and assign that

Dr. Bork is professor of physics and of information and computer science of The University of California, Irvine.

i2 JCST

value to whatever variable is indicated on the left. Most
languages allow free use of spaces in order to make for-
mulas more readable.

The computer treats the variables as storage slots in
its memory. Corresponding to each .variable in a par-
ticular program, an appropriate storage location exists. in
the computer memory. The memory can be thought of
as a collection of maif boxes. with the labels that identify
some of the mail boxes being the same labels which iden-
tify the variables of tbe problem. Thus, in the relation

7.42 F = M*A (Joss)

in a computer program. the computer is being told to find
the numbers currently stored in the two locations desig-
nated m and A. to multiply these, and to store the results
in the location called F. \Vhatever number was previously
stored in the location F will be changed in this operation:
but the numbers stored in locations m and A will not be.
(The process of how the computer associates variables
with locations in memory is a bit more complicated than
indicated here, but this description illustrates what is
happening.)

The variable on the left can also occur on the rignt.
Thus the statement in an APL program

COUNTECOUNT + 1

increases the value of the count by one.
The assignment statement, with slight variants in dif-

ferent languages, is one of three building blocks in com-
puter programs. Most computer languages allow the
standard arithmetic operations of addition. subtraction.
multiplication, division, and exponentiation. Most use
an asterisk for multiplication, although APL uses the
usual multiplication sign. All computer languages in
common use requ:re an explicit multiplication sign; it
cannot be omitted as in algebra. Thus:

A<--B (C+D) (APL)

would be an erroneous statement. because the multiplica-
tion sign following the B has been omitted.

Computational computer languages have a symbol for
exponentiation, that is, raising a number to a power. In
FORTRAN and PL,i1 the symbol for -to the power- is a
pair of asterisks in a row: in BASIC it is an up arrow; in
APL it is a single asterisk. Some languages, particularly
API_ contain other arithinetic operations in addition to
these basic ones.

Pazentheses can be used freely in assignment statements.
In fact, this is highly desirable, becauee the language
might not make the same assumption that the programmer
does about the order for carrying out the various arith-
metic operations. When in doubt, use parentheses.

The names that can be used for a variable also differ.
Except for BASIC, computer languages usually allow, as
already suggested. multiple letter or letter plus number
names for variables. In FORTRAN. PL/1, and API., the
name TIME could identify a single variable. Given this

DECEMBER 1971 13

free choice of variable name, it is easy to see why explicit
multiplication is required. Many forms of BASIC restrict
variables to single letters, or single letters followed by
numbers. The variables, then, can have convenient names
which remind the programmer of the intended meaning
or use.

All the computational processes in a program can be
described by series of assignment statements. These
statements are executed one by one, in sequence. A com-
puter program is executed in the order of the statements
that are given to the computer: although, as we will later
see, exceptions to this do exist. As each statement is
executed. it uses the values currently stored in the memory
slots. Thus, if a PL/1 program contains these two
statements,

DISTACC*TIME*TIME
Q=TIME*DIST/ (DIST** 3. 7)

one following the other, the value of DIST calculated in
the first statement will be used in the second statement.
The same value of TIME will be used in both cakulations.
A corollary is that a variable must be defined, or calcu-
lated, in a program before it is used in another calculation.
If it is used without previous definition, the results may
be unpredictable. Some languages will alert the program-
mer when this is happening, but not all have this capa-
bility.

input-Output Statements The second type of fun-
damental statement in a computer program is the input/
output statement, used when it becomes necessary to enter
information into-the computer while the program is run-
ning or when it is necessary to run the program with
different values. The programmer will almost certainly
want to know the results of the calculations which the
computer has been performing. The assignment state-
ments only store the results of the calculation internally:
they do not give access to those results. The programmer
must tell the computer explici:ly when he wants -input
and output. All computer languages have either simple
input statements that allow the programmer to enter
values and store them in some of the memory slots
preliminary to doing a calculation. or they have statements
which allow the programmer to read out the values con-
tained in some of these slots in a form convenient for
understanding what is happening.

Details differ_ Consult the sample programs. The
input statements often have words like INPUT, ACCEPT.
or READ to identify them, while output statements have
Words like WTE (FORTRAN) , PRINT (BASIC) , TYPE
(JOSS) , or PUT (PL/1) . APL has a somewhat different
procedurevariables listed by themselves will automatic-
ally be printed out. Also, the format in which the output
is presented, the number of significant figures, the number
of numbers on a line, and the spacing between _numbers
may or may not.be under control in the calculation in the
language that you use. Sometimes the mess- details may
have to be mastered in order to learn how to get the kind
of format desired_ This is a common source of annoyance

to beginners with some languages (particularly FOR-
TRAN) but these difficulties are only minor in most cases.
It is not essential to learn everything about a language at
first try: enough information to get started in working
the problems is an adequate beginning.

Branching Statements The third kind of statement
in a computer program, in any language. gives real power
to computer programming and sometimes allows the de-
scription of a very long calculation by a short program.
This is. the branching statement. We have said that the
statements in a program are usually executed one after
the other, in the order-that they are typed or -entered on
punched cards, or, as in BASIC, JOSS, and APL, in the order
of the statement numbers. But the prograMmer can
change this order by means of a branching statement:

A branching statement is an order to the computer to
go to, and execute, some different statement in a program,
not the next statement, and to continue executing from
this point. There are two basic types of branching state-
ments, unconditional and conditional. The unconditional
branch always takes place; whenever the computer gets
to that point in the program. it always hops to some
other place and starts executing statements in order from
that point.

->4 (APLgo to statement labeled 4)
÷ COMPUTE (APLgo to statement labeled

COMPUTE)
GO TO 44 (FORTRAN-tgo to statement

labeled 44)
GO TO NEXT (PL/I go to statement labeled

47 GO TO 22

TO 4.3

NEXT)
(BASICgo to statement labeled

22)
(JOSSgo to statement labelee

4.3)

The second branching statement is a conditional
branching statement. Whether the programmer goes to
anotleer place or not depends on the results of the calcu-
lations that have occurred so far. Thus. using conditional
branching. the calculation can be controlled: sending the
computer back to do things over again under some cir-
cumstances. but not under others.

44 IF T< 10 THEN 150 (BASICgo to 150 if
T< 1 0: otherwise. execute
the next statement)

IF (DELTA .LE.6.3)
GO TO 66 (FORTRANgo to 66 if

DELTA <6.3; otherwise
continue)

3xI (TIME<5) (APL---to 3 if TIME< 5 :
otherwise continue)

The branching statement, whether conditional or un-
conditional, has to indicate where to go within the pro-.
gram. This means that there must be some way of iden-

tifying the line to which the computer goes, i.e.; a
label for that line. Languages differ as to the kinds of
things that are acceptable as a label: some languages allow
only numbers while others allow the programmer to
choose convenient names. In some languages (e.g., BASIC.
JOSS) every line must have a label. but in other languages
.only the lines that are going to be jumped to. need to have
such a label (e.g.. FORTRAN. PL/1) . Other details about
the branching statements. particularly the conditional
branching statements. also differ widely from language to
language. But most of them have the same general outline
of allowing the programmer to test values in the calcula-
tion at that point, and make- a decision to jump or not
to jump based on that test.

For the Beginner We would not want to claim
(because it is not true!) that these three types of state-
ments are all that occur in programming languages. A
rich language may have other types too, and this classifi-
cation may not even be appropriate. But these basic ideas
are enough to get started and are all that the novice need
be concerned with initially.

As we have said. it is not necessary to learn all about a
language at first. Rather. it makes sense tO learn only
what you need nOw, assuming that as your needs expand.
you will be able to learn more about the language. Fo:
some languages -it would be an almost Herculean task to
learn everything, but it is a simple task of only a few
hours to learn a useable sulaset of any common language
for a physical science cotuse.

Some general advice about learning a programming
language may be useful. Details differ, depending on what
type of system is being used. First. the user should maxi-
mize the benefits of working in a terminal environment,
if this is the case. This means that he should go .relatively
quickly to the computer terminal and start running small
examples of programs. One learns much more quickly
by practice than by reading. and terminal facilities are
ideal for quick practice. A computer-knowledgeable friend
would be a definite advantage in initial sessions at the
terminal.

A number of standard books are available for each
language, but the user should distinguish between books
designed as basic instruction in the language, such as
primers, and manuals which describe all the facilities of
the language. The latter, .usually available from the com-
puter. manufactfirer, are useful in active programming;
however, as they attempt to bc encyclopedic, writing of
the language in a logical, rather than a pedagogical fash-
ion, they are not the best aid for the beginner_

Available Languages ollowing is a brief descrip-
tion of common computer languages for numerical com-
putations. FORTRAN .is presently. by.far, the most com-
mon calculation language, and most scientific computation
is done using FORTRAN. Designed in 1957 by IBM for
the 704, it is available on almost every computer. Like
the other languages discussed here. it is an algebraic Ian-

14 JCST

guage describing calculations using formula-like expres-
sions. FORTRAN has many different -dialects,- the most
widely-used being FORTRAN IV. which usually includes
logical -IF- statements and complex variables. As it was
one of the first such languages. it is in some ways cruder
than newer. languages. FORTRAN is used in both time-
sharing and batch.

ALGOL is a second generation algebraic language. after
FORTRAN, and has a more logical structure. It Is more
widely used in Europe.than in the United States: how-
ever, many American machines have ALGOL compilers.
A new version of ALGOL, ALGOL 68. is coming into use.
Most ALGOLs are available only in batch.

JOSS is an algebraic language developed by the Rand
Corporation particularly for timesharing. It can be used
either for programs or as an electronic deSk calculator. Be-
cause it 's intended for terminals, it provides rapid feed-
back for grammatical errors. Variations of JOSS exist
under many names.

BASIC originated at Dartmouth College and is a widely
available algebraic terminal language similar to JOSS.
Various forms of BASIC differ in the way they handle
alphanumeric strings. BAsic has a convenient set of
matrix operations.

PL,'1, planned by IBM and users for System 360, com-
bines algebraic. business, and list-processing facilities. and
allows complex programs which use both- linguistic and
computational modes. It is a "third generation- algebraic
language. following FORTRAN and ALGOL. Like FOR-
TRAN, it is available in both batch and terminal modes.
Although it is used primarily on IBM machines. it is also
available from several other manufacturers.

APL (A Programmed Language) is a highly interac-
tive, recently-developed, time-shared language. In addi-
tion to arithmetical operations. it has many powerful
numerical and string operators. While beginners can write
APL programs which look much like BASIC or PL/1, the
strength of the language comes from its ability to con-
veniently manipulate arrays and matrices. It has gained
rapidly in popularity.

Operating Systems Using computers has another
aspect besides the languages in which we construct the
programs. Some mechanism for getting the information
both program and datein and out of this system
InPst exist, and this will involve both .the mechanics of
how this is done (the typewriter-like terminals, keypunch
machines. paper tape punches, or other siinilar devices)
and the instructions to the computer to tell it just what
you want it to .do. A modern computer can handle a
greatvaricty of languages and has considerable morn for
choice as to how the information is to be put out and
where. All this information is conveyer] to the computer
by the user, although a -defa ult- may exist if nothing
is said.

Most computers run under the control of an operating
.systern, which serves as an overall supervisor to manage
the fnnctioning of the compute-1-* to make it as efficient as
possible: -Operating systems.differ widelY. Most -batch"

DECEMBER 1971

systems will require a series of job -cards- (which may
not actually be punched cards) preceding the program.
as well as directions for telling it what to do. Operating
systems usually have commands in addition to the lan-
guage commands which specify the details of the task "at
hand. The specification could be simple or complex. de-
pending on the degree of choice offered to the user in a
particular system. Just as with the language, there is no
need to worry about learning all the details at once. You
can start with some standard ways of preparing operating
systems instructions, probably available at your computer
installation.

interpretation In Table I we present five different
versions of a simple program for solving the harmonic
Oscillator numerically. In the present section we will
analyze several of th;ese programs in a line by line fash-
ion. explaining what is happening. and developing, in
addition, some of thea features of the languages.

JOSS Note that each statement has a number. and that
the numbers are all decimal numbers. The statements arc
executed in numerical order, except when branching state-
ments appear. The integer part of all the numbers is one.
so the statements together constitute. from the JOSS view-
pomt. part one: To execute these statements in JOSS. one
would type, DO PART ONE. (With mcst of our lan-
guages, the implemeneations differ, and JOSS is no ex-
cevtlon.) Statements 1.1 and 1.2 and 1.3 set the initial
conditions. and 1.4 determines the time step. These
statements "initiate"' the variables. Line 5 is the calcu-
lation of the new position and 1.6, the calculation of the
new velocity. In each of these equations the same variable
appears on both right and left hand sides of the calcula-
tion. On the left we use the old value, but we change the
value in each case when we execute the statement. Line
1.7 computes the new time by adding the time step to it.
Then we type out the results. and, in step 1.9, we go
back to the step labeled 1.5 if T is less than 3. This last
step sets up a loop, thc principle calculation loop of the
program.

BASIC In BASIC the line numbers are all integers, and
the statements are carried out in the order of the numbers.
Some forms, but not all, require the use of LET before
assignment statements_ Again, the first three lines set the
initial conditions for time, position. and velocit)n and the
fourth line sets the time step. The next two lines are
calculations of position and velocity, and the .new time
is Calculated in line 170. Line 180 prints out the values
just calculated. and 190 returns to statement 150 if T
currently is less than 3. Some BASICS would not require
an END statement.

FORTRAN In FORTRAN not every statement needs to
be numbered: only those statements referred to by others
need to have a statement number. The first .three state-
ments set the initial conditions, and the fourth one sets
the time. step D. (In FORTRAN one could use something.
like DT, bnt D is used here .to follow the exainples in the
More .restrictive languages...) Statement 10 and .the next:
line are the cakulations of the new position and velocity,

and again the new time is computed. The WRITE state-
ment in FORTRAN is a bit more complicated than similar
statements in the other language. Six indicates ie ynir
on which one is to write, perhaps the line printer or the
user's terminal. Seventy references the FORMAT statement,

TABLE 1.
The Harmonic Os6alator

JOSS.

1:1 T =
1.2 X = 1
1.3 v 0
1.4 D = .1
1.5 x = x v*m
1.6 v = X*1.1
1.7 T = T D
1.8 TYPE T, X
1.9 IF T<3. TO 'TEP 1.5

BASIC

110
120
130
140
150
160
170
180
190
200

LET T=0
LET X= I
LET V=0
LET D=.
LET X=X+v-*D
LET V=VX13
LET T=T+13
PRINT T:X
IF T<3 THEN 150
END

FORTRAN

T=0.
X=1.
v=0.
D=.1

10 x---x±v*re
V=V_X*D

WRITE (6, 70) T, X
IF (T-3.) 10. 10, 14

14 STOP
70 FORMAT (FI0.2, F12.4)

END

APL

V HARMONIC
1 1 T<---0

[21 x<-1
[31 V<--0
[41 D<-0.1
15] CALCULATE:X<---X±VXD
161 v4--v---XXD
[7] T<---T+D
181 T, X
[9] --+CALCULATEXT<3V

PL/1

OSCILLATOR: PROCEDURE OPTIONS (MAIN) ;
T = 0; X = 1; =0; D -1;

CALCULATE: X = X ± V*D; V = V X*D;
T = T D; PUT SKIP DATA (T, X) ;
IF T<3 TRENT GO TO CALCULATE;

END OSCILLATOR;

the next to the last statemen). in the program. It describes
how onc wants thc information to come cut. Thus, for
the time t. ten places arc to be allowed, with two places
to the left of the decimal point, while for x, twelve places
are allocated with four piace.s to the left of the point.
It is a bother to write FORMAT statements in *FORTRAN,
but it does give more flexibility. Many types of FOETRAN
have simple input/output statements without format, but
they arc not used here because they are non-standard.
The branching statement is also a little more complicated
in FORTRAN than in other languages. It says if T - 3 is
negative, go to statement 10, and compute some more.
If it is 0. go to statement 10 also. While if it is positive
that is. T is greater than 3then go to statement 14,
which stops the calculation.

APL In APL the program is a function, here called
HARMONIC. The symbol V is used to show the beginning
arid end of the function:. The lines are numbered; this
numbering is provided by the APL system. rather than- by
the user. Note that in place of. the equal signs in the
other programs, we have left-pointing arrows. The first
lines set initial values for T, X, and V. and for the time
step D. Lines 5 and 6 compute new positions of velocity.
Five has a label. CALCULATE. in front of it: the colon
indicates that it is a label. One could,. in APL. have
referenced this statement by the line number, five, but
sometimes the label is more convenient. Note that the
multiplication sign is an actual multiplication sign. not
an asterisk. Line 7.computes the new time, and line 8 is
the output statement. Simply listing variables on a line
with nothing else indicates to APL that the current values
of the variables are to be displayed to the user. Nine is
the branching statement, telling the computer to go to
CALCULATE. the labeled statement (5) . if T is less than 3,
but otherwise to terminate the program. Branching state-
ments in APL are powerful, but the beginner should
probably use Only a few routine ones, rather than try to
learn all the tricks of the trade.

PLi'l Examining the PL./I program, the second line
establishes the initial values of the variables used. The
calculations of position and velocity are in the third line.
These look very much like the corresponding algebraic
relations with one exception. No primes are used. The
same variable x occurs on both sides of the equation. In
algebraic computer languages, such as PL/1, an equation
is a specification for a calculation. It tells the computer to
take the variables on the right hand side from computer
memory, perform the indicated computation. and put the
result back in the position in memory that holds the
-variable x. Each variable is associated with a "slot in
memory, so the net effect of this operation is to change
the value of x. stored.

As already suggested. the differences among these vari-
.ous programs are minor. For simple calculational pur-
poses. such as the sn.dy of the harmonic oscillator, the
differences of the common computational computer lan-
guages are small. The major areas of difference are with
input/output and branching statements. However, if one
goes beyond this beginning level, the languages tend to
diverge. A

5
. 16 JCS:

