
DOCUMENT RESUME

ED 059 877 SE 012 735

TITI4E Tentative Outlines of a Mathemat cs Curr culum for
Grades 7, 8, and 9. SMSG Working Paper.

INSTITUM-)M Stanford Univ., calif. School Mathematics Study
Group.

PUB DATE Jul 66
NOTE 504c.

EDRS PRICE MF-$0.65 HC-$19.74
DESCRIPTORS Algebra; *Conference Reports; *Curriculum; Curriculum

Development; GeoMetry; Mathematical Applications;
Mathematical Models; *Secondary School Mathematics;
*Textbook Preparation

IDENTIFIERS *School Mathematics Study Group

ABSTRACT
This document is the report of a curriculum writing

session. Using the recommendations and suggestions of the planning
conference (SE 012 733), the writers produced detailed outlines for
the grade seven through nine curriculum- The purpose and rationale of
each unit are stated, and the separate sections outlined. Sample
exercises are included for most units. The aims of making mathematics
more relevant to real world problems, and of avoiding excessive
abstraction and rigor, are continually stressed. Also included are
three general reports on geometry, real analysis, and mathematical
models; several position papers on specific topics; and a comparison
of the new syllabus with the ',first roundfl curriculum. (MM)



SCHOOL MATHEMATICS

STUDY GROUP

TENTATIVE OUTLINES

OF A

MATHEMATICS CURRICULUM

FOR

GRADES 7, 8, AND 9

SMSG Working Paper

J V, 1966

LI R. DEPARTMENT OE HEALTH
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS SEEN REPRO
DOCED EXACTLY AS RECEIVED FROM
THE PERSON CR ORGANIZATION CMG
INATINO IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF MU
CATION POSITION OR POLICY



Preface .

CONTENTS

List of Participants

Report of the Geometry -ee: The Philosophy of the
Geometry Program 1

Report of the Real Analysis Committee: The Outlining
Principles of the Real Analysis Group 4

Report of the Modeling Committee 12

Contents of Grade 7 31

Outlines of Grade 7 Chapters 41

Contents of Grade 8 176

Outlines of Grade 8 Cha t rs i84

Content of Grade 9 320

Outlines of Grade 9 Chapters 324

Summary outline, Grades 7-9 381

Comparison of new sequence with the original SMSG sequence
for Grades 7-9 386

On "Applications" by Clyde Corcoran 389

Some Comments on the Role of Flow Charting in Junior High
School Mathematics by Sidney Sharron . . 392

Probability and Statistics for Grades 7-9 by Richard Dean
and Martha Zelinka . . 417

Vectors on a Line by Hassler Whitney . . 424

Outline - Vectors by H. S. Moredock and W. H. Sandman .

Restricting and Freeing the Intuition by Henry O. Pollak 468

On the Introduction of Mathematical Concepts by Hassler
Whitney 470

The Role of Logic in Elementary Mathematics by Hassler
Whitney 479

The Use and Importance of Definition in Mathematics by
Henry O. Pollak . . 485

Uninvited Comments on the Definition of Function by Gail S.
Young 487

On the Setting and Function of Sets and Functions by
Leonard Gillman 490

on "on the Setting and Function of Sets and Functions" by
Gail S. Young 494



FREFACE

During a four-week session which started June 27, 1966, a

tem of mathematicians and mathematics teachers formulated pre-

liminarv recommendations for the curricular experimentation which

SMSG plans to carry on during the next few years. A list of 'the

participants in this session follows.

The recommendations take the form of detailed outlines of

most chapters of a mathematics program for grades seven through

nine. These will provide a framework for the experimental writing

to be carried out during the coming academic year.

At the opening plenary session the participants reviewed the

recommendations of the New Orleans Conference and agreed to outline

a curriculum for grades seven through nine which would be in gen-

eral agreement with the New OrleanF recommendations. Three sub-

committees were formed. The first was asked to consider further

the role of mathematical models in this new curriculum. This

committee submitted its report at the end of the first week, and

the members of the committee were co-opted into the other two

committees or undertook speciP1 assignments.

The second subcommittee was asked to consider the topics

in geometry that should be incorporated in the curriculum for

grades seven through nine, keeping in mind that for those students

taking more than three years of secondary school mathematics the

tenth grade course would probably include at least a semester of

formal synthetic geometry. The third sub:tommittee was asked to

consider the topics in arithmetic and algebra to be included in

the seven through nine curriculum.

The latter two subcommittees met to ether from time to time to

discuss the meshing together of the geom tric and the algebraic

sequences.

Occasional plenary sessions were held so that the entire

group could discuss the materials which had been produced. At a

final plenary session the general reports of the geometry and of

the arithmetic-algebra subcommittees were received, and plans for

the next steps in the over-all project were discussed.
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thi: toeurne1t by a topical outline for Grade 7, This in turn 1,

followed by detailed outlines of most chapters for Grade 7.

Grades '6 and 9 are treated similiarly.

The next. section of the report is desuied to facilitate

comparions between t'he present SMSG program and the proposed

new one. A summary outline of the new program for Grades 7 through

9 is f llowed by a list of chapter headings from the pre eh

SMSG books for these three grades. In this latter the iocation,.of

the corresponding material in the new sequence is indicated.

The report concludes with a number of papers of a general

nature which were prepared during the session. Included also is

outline of a unit on vectors which had been prepared in the

summer of 1965 at the request of the SMSG Panel on Science for

cons iderat ion i the new curriculum.
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REPORT OF THE GEOMETRY COMMITTEE

The Philosophy of the Geometry Frog=

is Geometry to be Con ived?

Most of our knowledge (certainly our scientific knowledge) refers to

or is set in the framework of physical space. When a child begins to crawl,

he discovers geometric pioperties of space by pressing against walls, by

patiently putting things in cupboards and just as patiently taking them

out, by finding paths which take him back to where he started. This knowl-

edge,gained concretely and intuitively over the years, is in a conventional

treatment carefully formulated and structured in a tenth grade geometry

course.

We propose to approach geometry as a subject which is suggested by

and modeled on our experience with physical space. Its basic concepts--

for example, points, lines, segments, etc.--are suggested by objects of

experience; its results car be intelpreted in physical space and confirmed

to a high degree of approximation. Treated in this way, geometry can be-

come an important branch of knowledge, not just a mental exercise.

The important relation between physical space and the geometric

theory we idealize or abstract from it appears twice: First in forming

the concepts, since points, planes, spheres, etc., as conceived mathe-

matically do not seem to exist in the physical world. Second, in apply-

ing geometry, for we must interpret physically or form a physical model

of the concept. A point in a surveying problem may be interpreted as the

overlap of two crosshairs in a telescope or in a dynamical problem as the

sun or the earth.

Remark: The bearings of geometry on physical reality are important

and exciting; they should be treated with judgment as opportunities

arise. But they should not dominate. We are presenting a course in

geomet-- not a course in its application to reality.

How is Geometry to be Treated?

We assume two boundary conditions: (1) The student has studied the

SMSG texts for grades four, five, and six (or the equivalent) and so
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comes te us zith a nodtriviai geometric exper' , he is to be pee-

pard for a deductive treatment of geometry as part of tenth grade ealar2,72:,

The SMSG tey,ts for grdd.-7, four, five,and six contain a rich body of

geometrical material, including nohmetrical geometry, prop2rties of geo-

CL figures measurement (length, area, volume), anu congruenc, Since

we are not sure how much of this material the student is immediately able

to apply, we naturally begin by employing the spiral method; We review)

refine, and amplify the material already studied, Thus Chapter 1, "The

Structure o_ Space - Nonmetrical Properties," enri_ehes and expands the

qualitative geometric knowledge gained in grades four, five, and six and

introduces new ideas such as convexity and orientation. This approach

is continued for congruence in Chapter 4 and for measure in Chapter 5.

Throughout the development we have the problem of presenting the su

ject in a. concrete, intuitive, descriptive way without reducing it to a

collection of more or less isolated facts. We try to take care of this

hy a second application of the spiral method: We focus on a new concept

concentrating on its essential features, later returning to treat its

more complex aspects and its relation to other concepts. The concept of

parallelism, for example, first introduced in Grade 7, Chapter 1, appears

again in Grade 7, Chapter 11, "Parallelism," and Grade 8, Chapter 11,

Parallels and Perpendiculars." The concept of measure which is used

throughout the coarse is specifically studied in four chapters that are

distributed through grades seven, eight, and nine. As the preceding

en ences suggest, we have chosen a daminant geometrical concept or re-

lation as the unifying feature of each individual chapter, within which

the pertinent properties are developed for all the appropriate geometri-

cal figures to which the concept or relation is applicable.

One of the problems in teaching geometry at this level involves the

quality of student understanding. Since much of the material is descrip-

tive and concretely presented, the child may merely be developing the

ability to repeat descriptions and recognize figures- We want him to

comprehend properties of figures, to perceive interrelations between

parts, to recognize familiar notions (e.g., congruent triangles) in a

complex and unfamiliar situation. To this end we try to develop and re-

fine his intuitive grasp of geometrical properties. (Consider bow much

-2-



more a topologist "sees" in a simple closed curve chalked on 2n inner tube

than the proverbial Ran in the street. Or suppose a child has an intuition

that a eil-cle is round. Does he realize that is has a different roundness

from a kidney bean that it is a convex curve., or that its interior

is a convex set?) One procedure we use for coping with this problem is

to take a familiar figure, say, a cube, and ask the student to find in it

several illustrations of an idea, for example, line perpendicular to plane,

parallel lines, parallel planes, line parallel to plane, skew lines, a

common perpendicular to two skew lines. This practice tends simultaneously

to sharpen perception of figures and comprehension of concepts.

The treatment indicated should foster a good understanding of the

concrete basis and the intuitive significance of geometric ideas. In ad-

dition, we propose to sharpen and enrich understanding of the deductive

process. For this purpose we introduce many amples of deductive reason-

ing. These range from a. one- or two-step informal proof which is not

written down the problem asks for a conclusion that requires application

of one or two familiar principles in a diagram) to a deductive chain of

several propositions which follow from a given set of geometric proper-

ties. A chapter on deductive reasoning is included to initiate a dis-

cussion of deductive reasoning in mathematics by using examples and

illustrations from algebra and geometry.

A student who has had a course of this type should be well prepared

to make the adjustment to the more formal deductive treatment of geometry

in grade ten. He should have assimilated a large body of geometric knowl-

edge which rests on a concrete and intuitive basis and is partially struc-

tured by deductive proof. The problem of organizing this knowledge logic-

ally should not seem unnatural or remote to him. He certainly will not

have the familiar double difficulty of trying to learn what the subject

matter is about while he attempts to understand the deductive method. Is

it too optimistic to hope that our program will permit an appreciable

saving of time in grade ten while fostering increased understanding?



REFOFT OF T1 '071
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The Outlining Principles of the Real Analysis Group

A group of people assigned the task of developing an outline for the

mathematics to be presented in the seventh, eighth, and ninth grades is

faced with a most formidable rroblem if there are not some broad general

guidelines adopted from the Inry beginning. The subgroup responsible for

the sequencing of the mathematical concepts related to real analysis, a-

opposed to geometry, met together frequently during the early days of the

outlining session, and I believe the following gene al restrictions

served as guidelines to our discussions:

(a) The background which we would assume for all students would be

that found in the present SMSG texts for the fourth, fifth, and sixth

grades.

(b) The mathematics to be introduced in the seventh, eighth, and

ninth grades should be of value to all students as necessary for any

intelligent, responsible future citizen, regardless of occupation. As

a consequence of this decision reflecting a recommendation of the New

Orleans planning session, we consciously replaced some special topics

(modular arithmetic, finite fields) by those we felt were more appro-

priate, for example, the elements of probability and statistics.

(c) The work of other groups who have given considerable thought

the mathematics suitable for these grade levels should not be ignored.

It did not seem reasonable for us to retrace the deliberations of the

Cambridge Conferenee, the New Orleans planning group, etc. but to

respond responsibly to their recommendations.

(d) Some of the criticism of the excessive foimalism in the first

round SMEG material is justified. We should keep in mind the critics'

view that physical situations were not used to provide heuristic motiva-

tion for the mathematical development nor was the mathematics developed

used to analyze physical problems. However, the latter complaint has

been met in part by special projects of SMSG which may e used by the

writing group.



-) There must be c_mtinuity from chapter to chapter both in writing

in concept, and in depth of sophistication. These attributes in any text-

book writ4ng are so important that this may dictate placement and treatment

of many topics.

When we turned to the consideration o2 the specific sequencing of

topics for the thr(.2 grades under consideration, we felt that:

(a) The concept of function should be introduced early in the seventh

grade and used where appropriate but without excessive fanfare. The idea

was to make the concept of function a familiar part of the student' back-

ground. Moreover, in illu-trating the applications of mathematics to

physical situations, it was hoped that examples coul_ be found to show

that the analysis of a graph often permits predictions which are not ap-

parent from isolated information.

(b) Geometry and analysis must be interwoven throughout the course,

each supplementing and leading the other. Graphical illustrations with

ordinate systems lend clarification to many mathematical topics. (Again,

in retrospect we know that there is a great deal of work remaining for the

writers before this desirable integration can be realized.)

(c) The "structure" of the rational number field and the real number

field should remain a unifying thread throughout the introduction of suc-

cessive topics concerning rational and real numbers without excessive

fosmalism. Some acquaintance with formal proof is desirable. Topics i -

troduced should lead somewhere. Concerning any area, we hope that the

student will eventually be able to say, "Aha, now I understand this!"

(d) In adopting a spiraling of material throughout these three grades,

care must be taken to see that subject matter is used, at least in prdb-

ilems and hopefully n subsequent subject matter, before being studied again.

(e) Logic should be fused into the course material so that the pre-

cision of reasoning required in mathematics would gradually become acces-

sible to all students. We felt that it was unnecessary to provide a

separate chapter on truth tables, excessive formalism, or the idolatry of

symbolism. (See Whitney's chapte "On the Role of Logic in Elementary

Mathematics.")

(f) Both notation wid terminology introduced in these grades should

be compatible with present-day usage in mathematical texts at higher



levels. Here we felt perfectly at ease in accepting the recommendation

of the New Orleans planning group that the "open" of sentences could be

abandoned.

An initial outline of topics for real analysis, fulfilling the cri-

teria described above, resulted in the following sequence which was agreed

upon before more individual attention was given to the separate chapters.

We have separated the material into various gra es as we thought

appropriate.

Grade : Real Analysis Group

Graphing, Functions

We chose to begin the year by using the plotting of points in a

coordinate system as a means of reviewing and extending the students'

knowledge of the integers both positive and negative) acquired in the

sixth grade. This also provided a natural way to introduce the concept

of a function.

B. Solutions of Simple Mathematical Sentences

The purpose of this chapter was to begin an informal discussion of

"solutions" of mathematical sentences. This provided us with an opportu-

nity to review the arithmetic operations of the positive rationals. If

the rationals are to be delineated as a deductive algebraic system, then

this seemed to be an appropriate place for the students to be presented

with these facts. On the other hand, if we choose to extend the opera-

tions to the negative rationals, then we could not see where the negative

rationals would be used for several chapters. Consequently, two versions

for the introduction of the rationals have been suggested to the writing

group. One version restricts its attention at this time to the positive

rationals and in Chapter E motivates the extension of operations to nega-

tive nationals graphically. The other version introduces the rational

field here, and Chapter E is modified accordingly.

C. Ratio, Percent, Decimals

Frankly, we succumbed to the pressures of tradition which require

that these topics be included in any curriculum. We viewed this chapter

as a possible means of increasing the student's arithmetic skills with

nonnegative rationals.

-6 -
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D. Combinatorics and Probability

Here we felt that the recommendations of the New Orleans planning

group required the introduction of this material, and we again had an

opportunity to reinforce a student skills with positive rationais and

the notion of function. We felt that the olvISO Probability Group could

provide suitable material for this chapter. We preferred to reinforce

computation skills as the student studies new topics rather than through

routine drill material.

E. 2,ata: The Negative Rationals and Extending Arithmetic aara

to the Hational Field

We have remarked under B that the content of this chapter depends

upon the approach taken there. However, at this point at the very latest,

we felt that the explicit axioms for the rational number field should be

displayed and discussed. This discussion should emphasize the fact that

we have a deductive basis for the proofs in algebra.

ions

F. Solutions of §ystems of Mathematical Sentences

We wished to reinforce the student's skills in graphing linear func-

tions, as well as present problems requiring computation with the negative

rationals. This should include the graphing of inequalities.

Square Roots, Nonrepeating Decimals, Eeal Number STstem

We felt that the student should be introduced to the need of 'lumbers

beyond the rational field. Moreover, square roots were needed for the

discussion of distance in the chapter to follow. We wanted the student

to know that the real number system satisfied all the properties of the

rational field as well as an additional axiom of completeness. We do not

recommend a fo-s-mal extension of the rationals to the realsand informality

should suffice.

H. Distance, Pythagorean Theorem, Circles

We are again using the material presented in the previous chapter,

that is, graphing, the real numbers, etc. We thought that the analytic

treatment of circles could provide the foi'mat for interesting mathematical

sentences involving inequalities, for example, the set of all points out-

side a circle, etc.



Gracic d Real Analysis qreup

KLE2nential Punction, Logarithms ientific INotation

We attempted to arrange material so that each year began wLth a t

which would involve the student in overt activities as they explored the

subject matter. The construction of the logarithms table (as in the

bridge Report) add the knowledge of a slide rule was chosen because we

felt other fields would need this information about this tlme. Moreover,

xponential functions seemed to occur in many diverse fields and should

be understood. This subject matter permitted a review of exponents and

factoring begun in the fifth grade. (In the final outline this material

appears in the ninth grade.)

B. Measurement

The purpose of this chapter was to implement the concepts on measure-

ment introduced in the seventh grade and to provide practice 1_ logs, etc.,

of the preceding chapter. It was recommended that a statistical point of

view of relative error, deviation, normal distribution of measurements be

included so that we could connect these concepts with the probability in-

troduced in the seventh grade. (In the present sequence this chapter is

now in the ninth grade outline.)

C. Problem Analysis (Strategies)

It was felt that an early chapter should be devoted to developing

the students awareness of a variety of strategies for problem analysis

Since problem solving is a major activity in mathematics, whether in al-

gebra, geometry, or applied mathematics, some early and continuous recog-

nition must be given to the specific skills necessary to complete ...6his

activity successfully.

D. Number Theory

This chapter was designed to review and extend the "Factoring and

Primes" concepts developed in grades four through six and to establish

the unique factorization theorem for integers. The theorem was needea

for the following chapter on the real numbers. We also wanted to u.e

the chapter to develop some beginning concepts of logic in simple situa-

tions ("if-then," converse, negation).



E. The Reel NuMbers Revisited- Radicals

We felt that sometime in the ei hth grade the studen s should again

face the axiomatic nature of the real numbers and review the structure.

moreover, theorems as direct consequences of these axioms could be pre-

sented. The solution of classical problems duplicating the cube, eL,c.)

could lead to this reconsideration; radicals c,-)uld be discussed in detail

with the corresponding review of exponents and absolute value.

F. Solutions of Equivalent Mathematical Sentences

This chapter was delayed to this point in order that operations

yielding nonequivalent sentences were available. We wanted to formalize

the process of obtaining equivalent problems bringing logic, the struc-

ture of the real number system, and properties of order into play. We

wished to be able to write precisely about systems of equations and

inequalities in the next chapter.

G. Systems of Equations and Inequalities, Linear Programing

We thought this subject matter would lend itself naturally to review-

ing many topics as well as introduce the student to interesting applica-

tions in modeling.

The eighth grade continuation of probability and statistics could

be inserted after B, or other places might be desirable.

Grade 9: al Analysis Group

We felt thnt the students' preparation was now adequate for the pres-

entation of substantial mathematical ideas. Hence, our outline became

brief, and the arrangement was tentative with considerable freedom left

to the writers.

A. Quadratic Polynomials (as Functions)

This chapter could serve as ail ideal place to study the translation

of axes and relate these translations to the previous introduction of

vectors as displacements. Likewise, the zeros of quadratic functions

could lead to a treatment of factoring as needed. (In the final version

this chapter appears in grade eight.)

-9-
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B. Systems of Mathematical ,entenc:- Involving Quadratic as well as

Linear Functions

Here the possibility of review of factorin- radic.J.ls solving quad-

ic equations is pre

C. Locus Problems

(Conic sections first pund)

Vectors

E. Trigonometric Functions

F. Inferential Statistics

G. Complex Numbers

The integration of the seventh and eighth grade geometry and real

analysis changed the order of some of the materials, particularly in the

eighth grade. Specifically, we dropped exponents and logarithms while

substituting quadratic functions of grade nine to appear later in the year.

The measure theory was combined with the geometric subject matter and

moved to grade nine. These decisions may need review.

Using geometry as a process of "modeling" the real world, we saw that

this could lead naturally to the need for coordinates as necessary to pro-

vide more "local" information in physical problems. Hence there appeared

to be sufficient reason to start the seventh grade with a chapter on

geometry and to follow this immediately with A of our outline for grade

seven. Therealter the blending of geometry and the real analysis suf-

fered from the demand that chapter outlines had to be produced simultane-

ously. Moreover, the real analysis group thought that it had to consider

in greater detail several questions which are not reflected in the out-

line. Some of these specific questions were:

1. Notation for FUnctions. We believe that the introduction to

functions should be quite informal with examples to illustrate that the

student has used the idea for quite some time. We finally agreed that

the notation

f : x 2x + 3



as opposed to ordered pairs was best for this grade level. It seemed to

us that even the generality

f: x--).f(x)

could be postponed by a judicious choice of functions.

2. Variables. We feel that this topic has been subject to so much

discussion during the past ten years that we need not add further confu-

sion. Ou- position is simply "Avoid the use of the term variable as a

mathematical entity at this grade level," It is hoped that the written

material will make clear the role of the variables used.

3. A Motivation of Negative Multiplication by Means of Vectors on

a Line. Professor H. Whitney presented an outline whereby the definition

of multiplication of negative numbers becomes a consequence of the study

of a one-dimensional vector space along the number line. However, it

was not clear to some of us how certain difficulties relating the "scalars"

to the "vectors" are to be avoided. Further investigation of this alo-

proach is certainly warranted, especially since displacements are to be

introduced in space in the eighth grade.

4. Po1ai.omia1s. The usual disc,,-ssion regarding forms, expressions,

or functions floul-ished again. We decided that we could restrict our

attention to quadratic functions and avoid for the time being the distinc-

tions which invariably arise. We did not believe that it was necessary

for everyone to know the theory of polynomial rings.

Finally, in detailing the outlines for the chapters we have described,

it appears that we have lost sight of some of the general criteria which

we set for ourselves. We urge the writers to return to this document when-

ever the details have obscured the attitude we sought to impart.

711-
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REPORT OF THE MODELING COMMITTEE

In this report we are attempting to show the plaee of modeJing in

mathematics instruction and how to implement it throughout the sequence

of grades seven, ,ight, and nine. (For some philosophical remarks on

modeling, see Appendix A.)

I A. "Nb,thmatical model" (noun) and "modeling" (verb ) should be

brought into the picture early in the seven-nine sequence and should be

a thread worked in throughout the sequence, since every application of

mathematics to the real world involves a model. Some models are by

now implicit Pst of the tme we are not aware of the model), while

others are explicit and need to be worked out in detail.

B. As part of ary first chapter in the seventh grade book, we

should begin to talR about mathematical modeling. (See Appendix Bl.)

C. At an apopriate place in each succeeding section of material

on geometry, probability, etc.), bring in "modeling" again along with

some examples for which the subject matter at hand provides mathemati-

cal models.

D. Later when more mathematical maturity has been gained by the

student, more emphasis in the form of a specific chapter may be given

to modeling.

11 A. For the teacher, provide clear expositions of what is meant

by mathematical models and modeling. Give the teacher a feeling for

the goal to be achieved by the persistent thread on modeling that runs

through the three-year sequence. (See Appendix B2.)

B. For students, provide a variety of examples (see III A3).

Some of these should carry through in a spiral fashion. (See some of

the examples in Appendix C.)

C. Lead the student to appreciate the hard work and ectreme care

which must go into mathematical models of great complexity, such as

those that permit man to place a capsule on the moon. He should then

be moved to exhibit the same care, hard work, and attention when using

thematics in solving a problem within his power.

-12-



D. Aim for frequent reinf 'cement and for a wide variety of experi-

ences that will eventually illustrate all the important features of

mathematical modeling.

E. In addition to the examples that come up as part of the text,

supply material of the following sort: (1) longer expository articles

or "feature" films in an "inspiration-guidance" mold on uses of mathe-

matics and mathematical models

that either provide do+a for a

sequence .

in various fields; short film clips

modeling sequence or illustrate such a

III A. Features of Good Modeling Examples

1. Real life situations must be real (that is not phony), inter-

esting, and must contain a question for which the answer is not obvious

or trivial. The solution in the mathematical model ought to be capable

of interpretation and testing in the real life situation.

2. The mathematical model needed to analyze the situation and

reformulate the question in mathematical terms should not be trivial or

implicit in the description of the situation.

3. For some examples the mathematical manipulations should be

within the capabilities rf the students at the time the example is in-

troduced. For others the model may call for new techniques, and the

model can serve as motivation for the introduction of new mathematics.

For still others (not too large a number), the skills needed could be

well beyond the capabilities of the student, but nevertheless, the

problem can serve as motivation for the continued study of mathematics.

4. Examples should be devised so that the models will have to be

construeted by omitting or ignoring many details in the real situation,

and this selectivity in devising the first model and successive models

should result in approximations, some of which are good for one purpose

and others better for slightly different purposes.

5. It should be emphasized that any model is only an attempt to

represent certain aspects of the situation which are Important for par-

ticular restricted purposes.

6. The purpose of constructing the mathematical model is to

clarify relationships so as to exhibit clearly the important features of

the situation and contribute to answering questions which could not be



answered easily without the model, i,e,, analysis with the ultimate ob-

jective of prediction.

B. Things to Watch in Introd ring Modeling

1, Avoid sloganeering.

0 Don't model the s-Indent to death - with sets).

Use a variety of nomenclature- since words have different con-

notations in the physical world.

Get some examples in which the situation or concepts are ab-

stract and the model is concrete; e.g., a model for the real numbers

is the number line which draw.

5- Achieve a proper balance in introducing models. Don't give

the impression that mathematics exists only because of its applications.

On the other hand, remember that only a small fraction of s-,,udents

using the texts are going to 1-'2 mathematicians.

6. Remember the need to revisit the real world frequently during

a course, not just at the beginning,

7. (7,?.t examples in which comiplete reliance on the physical model

or on intuition leads us astray, whereas the mathematical model may

lead to "truth" uncontaminated by the prejudice of physical experience

_or common sense.

8, Remember the need for a careful selection of workable examples;

others may better be left for general remarks about applications.
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APPENDIX A

Philosophical Remarks on Model-Making

by M. L. Juncosa

Pervading almost every element of the set of human intellectual

activities from the beginning has been a search for an "understanding of

phenomena." This holds for existential, physical, sociological, concep-

tual as well as concrete phenomena; it matters not which. This pursuit

of causation and knowledge of structure can be motivated by desire for

comfort, fear of the unknown, satisfaction of curiosity, etc. One finds

this in theories on the origins of rrimitive religions and magic.

For the scientist--and this includes mathematicians--a strong moti-

vation is the desire for predictability; that is, within certain bounds

the structute or model can be intelpreted as being "consistent." For

the inductive scientist, results of the theory, i.e., predictions, will

"agree" with experiments. For the mathematician, contradictory theorems

will not result.

To arrive at conclusions, a proce3s of what some people call model

building is engaged in. The primitive man invents concepts of super-

natural gods with anthropomorphic attributes, such as anger at broken

tabbos, and enormous powers, such as the power to cause awe-inspiring

meteorological phenomena.

The scientist observes physical, economic, sociological, biological,

or psychological phenomena; he invents an idealization of them according

to some laws which may exist from previously studied "similar" (maybe

even "isomorphic") situations or which he constructs ad hoc., containing

what is felt is the "essence" of the observations; then as what he calls

a logical consequence of these laws, he makes certain statements or pre-

dictions, asserting that he has now an explanation, a theory, or more

modestly, a model (not necessarily unique and which may or may not be

mathematical ) for the phenomenon.
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The mathematician constructs many conceptual models of other concepts

or theories that h is in the process of exploring. He frequently finds

that in the moael or image he may have greater insight or may be able to

use language which is not quite available for the original. This enables

an "end-run" in the proofs of goal theorems or suggests new goal theorems

and techniques for the original. It is not uncommon that he makes physical

models and pictures as models for his theory for greater elucidation and

inspiration.

It is essential to recognize the universality and variety in the

philosophy of modeling, regardless of what it is called. Not only does

everyone do modeling at some intellectual level, but frequei_ y transi-

tions from one world to another and back again are made. n:11. engineer may

make a mechanical model here called analog) of springs, weights, and

dash-pots for an electrical circuit of resistances, capacitances, and in-

ductances, or vice versa. And if he has a mathematical model as well, he

may not even make, i.e., physically construct, the mechanical or the

electrical analog but will rather solv the pertinent equations inter-

preting the results for either of the physical situations, talking in

the isomorphic language of the one most familiar to him, even though he

may be solving a problem concerning the other primarily because "it is

easier (for him ) to see it that way."

(We like to point out that usage of this ward "model" differs markedly.

We are using "model" as a copy, picture, image, representation, formula-

tion, etc., of the original, as in the usage where Klein and Foincare

models are examples of non-Euclidean geometries. This is in contra-

distinction to the use of the word in connection with an artist's or

photographer's subject where the original is the model. No strong pref-

erence* is expressed here, but we chose the usage in this work because of

the confirmed usage in many applied mathematical circles.

Returning to the variety of instances of the practices, we have

1. the process of going from the real world to the real world,

cited above (construction of analog computer, slide rules, etc.)

2. the process of going from the real to the conceptual, mathe-

matical, and then back to the real mathematical physics, mathematical

biology, mathematical economics, operations research, applied mathematics



_a gen al, the process being admirably described in Burrington's articie,1

"On the Natur,D of Applied Mathematics");

3. the process of going from the conceptual to the real and back

agq_in (construction of Venn diagrams and switching circuits for set theo-

retic and Boolean operations, construction of finite group multiplication

tables, construction of rings, trees, graphs, knots, cross caps, Klein

bottles for certain topological objects);

4. the process of going from a conceptual to another conceptual

without passing to the real and back again (identification between real

numbers and points on a line, language structures as trees or graphs);

5. and even proces.es of going from lower to higher conceptual

levels and back, as well as vice versa.

Some model-making goes from deterministic conceptions to probabilistic

ones and back, as exemplified by solving either the heat equation or the

potential equation by random walks, which is a speei' case of the so-

called Monte Carlo method. Polya's model of contagion is another example.

Since the criticisms of the previously constructed curriculum in-

cluded the insufficient liaison with the physical world, we take as pre-

cepts the goals of R. C. Buck's article,2 in particular goal No. 1, and

to a lesser extent goals Nos. 2, 3, and 6, as having relevance to the

question of modeling. And in particular, we further restrict attention

to the philosophy as applied to real world problems. While the term has

not appeared in many parts of mathematics in the past, the term "mathe-

matical models" is used very extensively in biology, economics) management

psychology, operations research, control applications, chemistry, statis-

tical mechanics, etc., where work has only recently been mathematized."

Thus we accept this usage, recognizing that modeling is a broader intel-

lectual concept and cautioning strongly against a monopoly on the use of

the term to avoid polarization of attitudes among people who should recog-

nize the universality of the process. Thus many words have been used and

1
R. S. Burrin on, "On the Nature of Applied Mathematics," American

Mathematical Monthly, April, 1949. See Appendix D3.

2
R. C. Buck, "Goals for Mathematics instruction " American Mathe-

matical Monthly, November, 1965. See Appendix D2.



rij,ffr717- t c7nnotations_ They should bE, kppt and used appropriately

wIth the purpose of the particular choice being held in mind. 8vnonyms

should always be pointed out with their slightly different shades of

connotation indicated.

Another observation an models is the strong essence of approximation

present, particularly in real world problems involving either continuous

variables or large numbers of variables (eg., gases, populations, traffic

in some problems We have simple examples of this in the representation

model of a. flat sheet of paper as a rectangle for most puiposes but as

rectangular parallelpiped (! ) when one is interested in estimating the

volume of a book; the habitable world in antiquity or much smaller locali-

ties today as a flat segment of a plane (ignoring the local mountains,

valleys, rivers) but the habitable world as a sphere today (or happily

for Eratosthenes seeking an eslimate of the size of the earth)- or the

earth as oblate spheroid for satellite work because of the precision re-

quired in orbit computation; the circulatory system as a pump; a rTs

(collection of molecules) as a fluid; etc. These approximations fre-

quently are made to enable the recognition of mass behavior or macro-

scopic behavior; at other times they are made to make a problem either

mathematically tractable or computationally feasible.

An essential factor in a good model in this class of situations is

that of stability; small deviations in the original should result in small

variations in the predicted result. In other words, the conceptual trans-

formation from the real world of observations through the model, through

the mathematical operations and back to the real world prediction is Cotk-

tinuous with respect to the appropriate norms. A poor model in these

situations is one with enoi-mous variations in the results for small devia-

tions in inputs. Parenthetically, we should observe that occasionally

it is because of the nature of some startling variation in the predic-

tions by inadequate models that original discoveries are made by entirely

new formulations.

In another class of models the essence of approximations does not

figure strongly or even at all- In these it is structure that is impor-

tant: Do the variables in the problem figure linearly or not? Can an
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algebraic group structure be assulf in -(;ne model for the phenomenon or

nut? is thP model for the wor]d Euclidean (parallel postulate, etc.) or

not? Problems for which tree-like or graph-like models are constructed

have this flavor. It is important to recognize that the notion of sta-

bility seems to be irrelevant here. The familiar problem of the three

houses desiring three utilities without overlapping connections from the

mains to the homes, modeled as an attempt to construct a certain (impos-

sible) graph of six vertices, is again structural. Stability and approxi-

mation considerations are irrelevant, there being no "neighboring" prob-

lem. (The "solution" is "possible" as soon as the number of homes is

reduced to two.) Perhaps it is worthwhile to discourse on these differences.
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APPENDIX B

1. Suggestions for initial introduction to modeling in the first chapter

of the seventh grade book

Start with examples of the uses of models (not necessarily mathe-

matical) of real world phenomena and objects. Some of these may be physi-

cal, for example clay models of animals, and others conceptual, such as

the plane or the sphere as models of the earth. Point ot.1 some of the

obvious features of such copies of real phenomena. Indicate the special

way in which we will use the word "model"; i.e. for us if the artist is

painting a portrait, it is the picture, not the lady, that is the model.

Following this, remark that mathematical models are characterized by the

use of ideas represented by mathematical symbols in constructing the

model, rather than paint, or strictly verbal description.

2. A sample of material on modeling which might be included in the

teacher's manual

The purpose of this topic is to develop the idea of modeling as a

means by which mathematics is related to problems which arise in the real

world. At times the process should be made explicit so that the student

can see the following: the real life situation translated into a mathe-

matical model, the mathematical manipulation within the mathematical

model, the obtaining of a result, its inteipretation back in the life

situation, and the testing of the validity of the result and therefore

of the adequacy of the model. This process should be empilasized at ap-

propriate points throughout the texts.

The word model is not strange to the students. Model cars, model

airplanes, and models of most 'objects are part of his environment. How-

ever, the philosophical connotations associated with mathematical model-

ing--that of providing an interaction between mathematics and reality--

is likely to be a new chanel of thought for a seventh grade student.

A general discussion with the class focused on the various reasons

for constructing models could direct the students' attention towards



such practical aspects as size, location, ease of handling, highlighting,

and opportunity for further study. IL is suggested that encouragement

be given to the student to think up synonyms for models, such as picture,

likeness, illustration, image, copy, representation, replica, reflection,

pattern, resemblance, and facsimile. In addition to enhancing the idea

of modeling, the synonyms give rise to a conjecture concerning the degree

of likeness one may expect or desire in a model. Of course at best a

model is somewhat less than the original. However, the validity of a

model is related to its usefulness or how well it does what it was in-

tended to do.

It is intended that this discussion will converge on models of real

world objects or situations that are formulated by mathematics. At this

point a problem within the frame of reference of a seventh grade student

should be offered to illustrate the facility that a mathematical model

offers in predicting a solution.



APPENDIX C

Examples of Modeling Suggested During our Discussions

1. Find the volume of the body of a man six feet tall. Suppose

the average thickness of his head is 7 inches, his arms 3 inches, his

truck 10 inches, his legs 4 inches.

Possible models suggested might be:

Model 1 Model 2 Model 3

Test the accuracy of the students' models by submerging them fn water

and calculating the change in height of the water.

2. Measuring the earth as in "How Far is it From Here to There?"

Mathematics Teacher Feb. 1965), 57:123-130, by I. Fisher,

3. Reflection example. Idea: begin at A, touch the wall, and

arrive at B in as short a time as possible.

wall
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Refraction example. Idea: n from A to line L at r ft/s 2.,

and walk from there to B at w ft sec. To what point on line L should I

head in order to reach 13 in the shortest

time possible?

A 0
becond time: Use the problem of apparent change of direction of a

stick imnesed in water, in some other medium.

5. Lemonade stand.

6. Simple linear programing problem, perhaps after systems of

linear equations.

7. An automo ive plant produces one kind of automobile and one kind

of truck. Each car uses 14 tons of steel, and each truck 3 tons. Each

car when sold brinn 3300 profit, and each truck S400. The total number

of vehicles that the plant can produce in a year is half a million. The

total amount of steel available to the plant is 975,000 tons. How many

cars and how many trucks should be scheduled for the year's production

to maximize the total profit?

Instructions to the teacher:

a. Draw graphs of tons of steel used in the production of n cars,

then n trucks. Note graphs are dots on line segments terminating when

n = 0 and n = 500,000 intersection of straight line segment and integers

b. Draw graph lattice of ordered number pairs of cars, trucks) of

permitted numbers of cars and trucks satisfying vehicle capacity restric-

tion (constraint).

c. Draw graph of number pairs of permitted production satisfying

steel capacity constraint.

d. Draw intersection of the two sets of above lattice points. This

set of points is a set satisfying both contraints (as well as non-

negativity of production).
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e. Note that this set is a convex set, an important notion for op-

timization problems.

f. Investigate various points on "boundary" of lattice region. Cal-

culate profits as one moves from A to B, A to C, B to D, C to D.

Note that profits [300 -x (no. of cars) 4. 400 x (no. of trucks)j increase

for all of these directions. Note also increase from E to F and E to

0, suggesting nonoptimal character of interior of region.

g. Conclude that optimal "mix" of production is represented by __-

ber pair associated wit71 D.

h. Alternatively, draw the lines 3000 400T = P for various values

of P. See what happens as P increases. For what value of P does one

of these lines touch ABDC at a simgle point? (Compare with the appendix

to Grade 8, Chapter 4, the isoperimetric problem.)

8. There are 5 pickup points--A, B, C, D, and E--for taking stu-

dents to school in a certain community which is considering the construc-

tion of a new school at one of four possible sites--a, b, and d. The

table of distances is given below.



1

to A B C D E

a

The numbers of students to be picked up at A, El, C, D, and E are

and , respectively. It is desired to choose the site--
which will result in the minimum total time of travel to and from school

by the town's student population. Which site is chosen?

Supply the data according to some real situation in a community.

Let the class propose similar problems: a new housing development

and bus service within a certain radius, a town library to be used by

townspeople and two high schools, etc.

Let the students collect the data. Can they discover the general

pattern common to these problems?

9. The Tunnel. See Studies in Mathematics Vol. XI, by George

Polya, Chapter I, p. 1-4.

This is a problem in applied geometry which could be well used to-

motivate the study of similar triangles or used after the topic has been

studied.

Look also at the remark regarding the generalization of a problem

page 39.

10. Give a student a ruler (preferably a metal tape measure). How

many objects are in his classsroom that he can measure? Write a list

with the names of the objects and,whenever possible, attach a number to

it which represents its measure. Are there any objects that are not

measurable? Is there any measure other than the tape which could be

used? Now go (or think of going) outdoors. What objects would you find?

Which can be measured with the same tape measure?



Profcssor Folya gave us some ideas on. deling in mathematics instruc-

tion, He spent a short period with us, and we also went to his lectures

on "Problem Solving

He reminded us that seventh graders are very young and that proble-s

introduced at that age must be appropriate for their level. I.T2hey won't

believe what they don't understand, and they should not believe what they

don't understand." He hoped that in good mathematics education this

skeptical attitude is encouraged.

In class a problem led to the solution of a system of three linear

equations. He tried to indicate by the use of pieces of cardboard the

relation of the planes associated with the equations; he turned to the

class, "If you don't know this, believe it!" But he add-d quickly,

"Please believe it half way!"

He suggested the use of graph paper in making models of solids. The

box (you don't have to use a word like parallelepiped, which is too hard

to spell and to pronounce) is the basic principle for drawing many ob-

jects around us. It should be used by teachers also so that their draw-

ings on the board would improve.

The following diagrams illustrate Professor Polya's ideas. We think

that problems of the following type could be devised:

1. Build a toy chest for a little brother .(or siste

2. Build a doghouse.

How much material is needed, etc,?

-26-
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APPENDIX D

Excerpts and Refersnces about Modeling

Passed on with the Compliments of the Modeling Committee

A. Excerpt from. the GCMC Report of CUPM on a Course in Applied Mathematics

On Applied Mathematics

At the heart of applied mathematics is the process of model building.

What you need to do is to take a situation in another field--it doesn't

matter whether this is engineering or physics or economics or biology or

what have you--which you would like to understand better and to invent a

mathematical model that will (hopefully) help you to understand that situa-

tion. You then proceed to analyze this mathematical model, including par-

ticular numerical examples if they are relevant, and finally see what you

have learned through the mathematical model abo7t the original "physical"

situation. Now a course in applied mathematics could be organized around

either the field of human endeavor to which mathematics is being applied

or around the mathematical discipline being used in analyzing the model.

("Theoretical mechanics" and "methods of mathematical physics" are exam-

ples of each of these possibilities.) Our purpose is to organize instead

around the process of model building itself. A sequence of situations

from various fields of applications could be chosen, for instance, to il-

lustrate each of the following aspects of model building.

1. A mathematical model of, say, a situation in physics must be

complicated enough so that it honestly represents the real world without

omitting any essential features of the physical situation and yet be

simple enough so that you have a fighting chance to do something with it

mathematically. Typically these two don't meet at first try, and it is

an exciting struggle to obtain a sufficiently simple mathematical model

without losing the essence of the problem.

2. When you have made a mathematical model, you have to consider

all Its consequences, those that you like because they agree with your

-8-
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physicl intuition about thc problem as well as those whose physical im-

plications come as a real shock. This freauently leads to a refinement

of the model as well as to eu problems that need to be foluulated and

analyzed.

J. The analysi of the first mathematical formulation of, say, an

engineering situation may reveal that the engineer doesn't really know

what it is he wants to understand, to build, or optimize. The mathemati-

cal model serves to focus on the question that actually should be asked:

What are we trying to optimize, for instance, or when does the engineer

wish to consider two mathematical solutions equivalent? The attempt to

build a satisfactory mathematical model forces the right question about

the original situation to come

4. A model is always an

to the surface.

approximation to reality and should there-

fore be stable with respect to perturbations in the less certain of its

mathematical assumptions. If such changes in the assumptions cause a

major upset of the mathematical conclusions, then the conclusions may be

physically suspect, for we often cannot be completely sure of the preci-

sion of our assumptions, Attempts to obtain stable rather than unstable

mathematical models are a very interesting aspect of model building.

B. The Goals from R. C. Buck's Article "Goals for Mathematics Instruction"_

Which are of Particular Importance in Modeling

Goal 1: To provide understanding of the interaction between mathematics

and reality.

Goal 2: To convey the fact that mathematics, like everything else, is

built upon intuitive understandings and agreed conventions and

that these eternally fixed.

Goal 3: To demonstrate that mathematics is a human activity and that

its history is marked by inventions discoveries, guesses both

good and bad, and that the frontier of its growth is covered

by inteiesting unanswered questions.

Goal 6: To show that complex things are sometimes simple and simple things

arc sometimes complex and that in mathematics, as well as in other

fields, it pays to subject a familiar thing to detailed study and

to study something which seems hopelessly intricate.



Digest of R. S. Burrington's article "On the ;Nature cf Applied Mathe-

matics, American Mathematical Monthly, April 1949) 56:221-

A General Summarization ef Modeling

When considering problems that are concerned with applying mathe-

matics to situation in the real world, one is often confronted with the

issues in a complex environment full of distraction. It remains to de-

velop a well-organized structure so that the essentials of the problem

can be viewed with less confusion. The delicacy of such a task lies in

thP following:

1. Removal from tne original setting of only the barest features

of the problem. This requires due examination of the original setting to

gain direction in determining that which is fundamental. The result of

such an effort is a simplified, idealized concrete or physical model of

the original problem.

2. This idealized model is to be made the subject of mathematical

investigation by direct translation to mathematical terms, i.e., an iso-

mo phism. Essentially this translation is a mathematical model of the

idealized model of the original problem.

3, Through manipulative computation a solution is obtained for the

mathematical model.

The solution is interpreted in terms of the idealized model.

5. Finally, the solution is interpreted in terms of the original

problem.

The validity of the results depends upon the extent to which the

models inclltde all of the known pertinent fac



CONTENTS OF GRADE 7

Chapter 1: The Structure of Space

Section 1; The Structuring of Space in Terms of Point, Line Plane

2: Incidence Properties

3: Separation Properties

4: Convexity

5: -rientation on a Line or on Parallel Lines

6; Orientation in a Plane

Chapter 2: Graphs and Functions, Variables

Section 1: Coordinates

1.1 Point Plotting

1.2 Translation, Reflection, and Symmetry

1.3 Add. of Pos. Eationals, Mult. by Pos. Integers

Section 2: Function

2.1 Illustrations

2.2 Observation of Function as Ordered Pairs

Section 3: Graphs of Functions

3.1 Review of Graphs of Section 1.3 as Graphs of Functions

3.2 Review of Graphs of Other Relations

3.3 Coin Tossing Experiment

Chapter 3;

"Positive Version" (Dean)

The Positive Rationale

Section 1: Sentences and Their
Solution Sets.

a
as solution for

bx = a
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Alternate Version (Corcoran)

The Set of Rationale

Section 1: The Opposite Function

1.1 Opp: x >

1.2 -(-x) = x



Scc-bion 2: Arithm7:tie Operations

from the Point of

View of Equations

Sec ion 3: Order for the Posi-

tive Rationale

Secten 2! Properties of Rhti- al

Numbers

2.1 Assume that Operations

of Addition and Multi-

plication Exist such

that Old Properties

(Closure, Commutati-

vity, etc.) Hold

2.2 Attention to Existence

of Additive Inverse

Section 3: Absolute Value Func-

tion

3.1 Definition

3.2 Distance from 0 on

the Number Line

Section 4: Decimals Section 4: Addition and Multi-

4.1 Expanded Notation, plication of

Positive Exponents Rationale

4.2 Extension to Nega- 4.1 Review Addition of

tive Exponents Integers

4.3 Scientific Notation 4.2 Extend to Addition of

4.4 Repeating Decimals Rationale

4.3 Multiplication of

Rationale

Section 5: Percent (as Function

5.1 % x
100

Section 5: Division of Rationals

5.1 Definition
a

5.2 Prove = 1
a

Section 6: Subtraction of

Rational&

6.1 Review Subtrac ion

of Integers



6,2 Practice Subtraction

_3 Subtraction as Distance

on the Number Line

Chapter olution of Mathematical

Sentences

Section 1. Decimal Names for Rationals

1.1 Expanded rotation Posi-

tive Exponents

1.2 Extension to Negative

Exponents

1.3 Scientific Notation

1.4 Repeating Decimals

Section 2: Ordering the Rationals

2.1 Basic Order Properties

2.2 Add. and Mult. Proper-

ties of Order

2.3 Order of Rationas on

the Number Line

2.4 Density of Rationals

Section 3: Introducing Percent

3.1 As a Function,

% X -4-
100

3.2 Practice Computations

Section 4: Solutions of Equations

end Inequalities

4.1 Restatement of Properties

of Equality and Order

4.2 Selutions of Equations

'and Inequalities of Forms:

x + a = b, ax = b,

ax + b = c. ax + bx =



Chaptey_ Congruence (Replication of Figures)

Section 1: Congruence of Segments; of Angles

2: Division of Segments and Angles into Two Congruent Parts

3: Addition Propert, r Segments

4: Subtraction Property for Segments

5: Addition and Subtraction Property for Angles

6: Vertical Angles

7: The Concept of Congruence

8: Congruence of a Figure with Itself

9: Congruence of Triangles

10: The SSS Congruence Property

11: The SAS Congruence Property

12: The ASA Congruence Property

13: Motions by Means of a Coordinate System

13.1 Sliding (Translation)

13.2 Turning (Rotation)

13.3 Flipping (Reflection)

Chap er 5: Measure

Section 1: Linear Units of Measurement

1.1 Linear Units of Measurement

1.2 Applications of Linear Units

1.3 Linear Measure and Circles

Section 2: Angular and Arc Measure

2.1 Angle Measure

2.2 Sum of Measures of Angles of a Triangle

2.3 Arc Measure and Central Angles

2.4 Triangle Inscribed in a Semi-Circle

2.5 Angles Inscribed in Circles

Section 3: The Pythagorean Property and Applications



Se- ion 4: Equivalence of Polygonal Regions

4.1 Equivalent Region Building

4.2 Decomposing Regular Polygons

4.3 Forming Rectangular Regions

Section 5: "Greater Than" (in a Geometric Sense ) for Segments, Angles,

Planar Regions, Spatial Regions

Chapter 6: Ratio and Similarity

Section 1: Magnification and Contraction

1.1 Informal Illustrations

1.2 Introduction on Coordinate System

Section 2: The Concept of Similarity

2.1 Begin to Refine Relationship of Previous Illustrations

2_2 Comparison to Congruence

Section 3: Ratio and Proportion

3.1 Meaning of Ratio; Symbols

3.2 Proportion as Equality of Ratios

Section 4: Defining Similarity

Section 5: Sufficiency Properties f r Triangles

5.1 Exploratory Work Leading to AA

5.2 Exploratory Work Leading to SSS

5.3 Exploratory Work Leading to SAS

5.4 Corresponding Lines (Altitudes, etc.) in Similar Triangles

Section 6: Similarity Mappings

6.1 Applications, from 1.1 and Others

6.2 Local Mhps

6.3 Scale Drawings and Blueprints

6.4 Tangent Ratio

Possible Addition:

Section 7: Percentage Problems Using Proportions



Chauter 7: Combinatories and Probability

(From SMSG Text on Probability for Junior High, Chapter 1-6)

Section 1: Fair and Unfair Games (Chapter 1)

Section 2: Finding Probabilities (Chapter 2)

Section 3: Counting Outcomes (Chapter 3)

3.1 Tree Diagrams

3.2 Pascal's Triangle (Without Binomial Theorem)

Section 4: Estimating Probabilities by Observation (Chapter )t)

4.1 Organization of Data

4.2 Notion of Average and Expectation

5: P(A u B) (Chapter 5)

6: P(A n B) (Chapter 6)

Section

Section

Chapter 8:

Dean Version

Section 1: Review of Negative

Rationals es a Set

of Numbers; "Oppo-

site" Function and

Its Graph

Section 2: Multiplication of a

Positive Rational by

a Negative Rational

Alternate Version (Corcoran)

Graphs of Linear Functions; Vai _ion

Section 1: Graphs of Functions

1.1 Review Coordinate System

and Association of Points

with Their Coordinates

1.2 Graphs of Functions with

Restricted Domains

Section 2: Slope and Intercepts

2.1 Review Graphs of Linear

Functions in First

Quadrant

2.2 Experimental Development

of Slope

2.3 Develop Notion of Slope

in Terms of Difference

of x and y Coordi,

nates, and Notion of

y-Intercept



Section Graphs of Multi-

plication by a

Positive Rational

Sec ion 4: Multiplication of a

Positive by a r7.ga-

tive, and the Distri',

butive Law

Section 5: Multiplication by a

Negative Rational

Section 6: Addition and Subtrac-

tion Revisited

Section 7: More on Opposite

Function

Section 8: Absolute Value Func-

tion; Graphs

Section 9: Applications

Section 10: Graphing x -,ax b;

Role of Parameters

and b

Also, Special Treatment

plication

2,4 Slopes of Special Lines

and Sets of Lines

S-ction 3: A Closer Look at Slope

3,1 Special Cases of

f : x -mx d- b

3.2 Increasing and Decreas-

ing Functions

3.3 f x -3mx in Terms of

m as a "Multiplier"

Section 4: Variation

4.1 Direct Variation

4.2 Inverse Variation

4.3 Other Kinds, Such as
2

X Kx

ectio Solution of Equations

Like: 3x 2 5x - 3

by graphing

f x -)3x ± 2

g : x -x - 3

Section 6: Scale Drawings as
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Chapter 9: Solutions of tems of ,s1lations and Ine ualities

Section 1: Solving Systems of Equations

1-1 Problem Leading to a System of Linear Equations

1.2 Writing Equations in "y-Form"

1.3 Graphic Solution

1.11 Algebraic Solution by "Comparison"

1.5 Practice on Solution Jf Systems

Section .: Systems Which Do Not Have Unique Solutions

2.1 Graph of System when Lines are Parallel

2.2 Algebraic Solution of Such a System

2.3 Graph when Lines are Coincident

2.4 Algebraic Solution of Such a System

Section 3: Graphs of Inequalities

3.1 Graph Which is a Half-Plane, as of x > z

3.2 Graph Which is Union of Half-Plane and Edge, as of x > 2

.3 Graphs Where Edge of Half-Plane is an Oblique Line through

the Origin, as of y > x.

3.4 Graphs of Inequalities Involving Absolute Value,

lxi > 3, Ix! < 3, etc.

Section 4: Systems of InequalitiLs

4.1 Graph which is Intersection of Half-Planes, as of System

x < 2

y > -2

4.2 Graphs of Other Systems, including:

y < x
)

x > -2
and

f x < 5
1-3 < Y < 5

Chapter 10: Decimals; Square Roots, Real Number Line

Section 1: Motivation

1.1 Recall of Familiar Sets of Numbers

1.2 Review of Pythagorean Theorem; Arithmetic Interpretation

Section 2: Numbers Which Are Not Rational



Section 3: Names of Rational Numbers
a

3.1 as a Repeating or Terminating Decimal

3.2 How Tell for Whether Its Repeating Decimal Will

Terminate?

3.3 Find a Name for a Repeating Decimal

Section 4: Irrational Numbers

4.1 Infinite Decimals which Do Not Repeat

4.2 Iteration Method for (Flow Chart?)

Section 5: Real Number Line

5.1 Location of Rational Points

5.2 Location of Irrational Points

5.3 Completeness of Real Number Line

Section 6: Properties of Real Number System Emphasis on Density

Chapter 11: Parallelism

Section 1: Parallel One-Dimensional Objec s

1.1 Definition of Parallel Lines

1.2 Skew Lines

1.3 Extension to Rays and Segments

1.4 Network ("Grid") of Equidistant Parallel Lines

Section 2: Parallel Two-Dimensional Objects

2.1 Plane Parallel to Plane

2.2 No "Skew" Planes

2.3 Line Parallel to Plane

2.4 Extension of Concept by Means of "Carrying" Lines and

Planes

2.5 Two Parallel Lines Determine a Plane

2.6 Equations of Lines Parallel to Axes; Inequalities for

Strips and 2 - Space Intervals.

Section 3: Transversals

3.1 Review Definitions

3.2 Define Transversal Lines

3.3 Define Transversal Planes



3.4 Define Dihedral Angles

3.5 Corresponding Angles, Alternate interior Angles, in

2- and 3- Space

3.6 Parallel Property

3.7 Properties of "Parallel Congruent Angles"

Construction of a Line Parallel to a Line through a

Fixed Point

3.9 Define Parallelogram, Rfiembus, Trapezoid

3.10 Proofs of Theorems about Quadrilaterals

3.11 Construction

3.12 Segment Parallel to Side of a Triangle; Ratios

Section 4: Transversals to Three or More Lines and Planes

4.1 Three or More Parallel Lines and Transversal Lines

4.2 Three Parallel Lines and Transversal Planes

4.3 Three Parallel Planes and Transversal Lines; Also

Transversal Planes

4.4 Intuitive Understanding of Segments Cut Off by and on

Transversals

4 Median of Trapezoid; Relation to Diagonals

4.6 Nets of Parallels and Coordinate Systems



Basic Theme:

GRADE 7 - CHAPTER 1

THE STRUCTURE OF SPACE - NONMETRICAL PROPERTIES

Most of our knowledge (certainly our scientific knowledge) refers

to or is set in the framework of physical space. When a child begins

to crawl he discovers geometrical properties of space by pressing

against walls by patiently putting things in cupboards and just as

patiently taking them out, by ,Anding paths which take him back to

where he started. This knowledge, gained concretely and intuitively

over the years, is formulated and structured traditionally in tenth

grade geometry.

In this chapter we are studying the most basic threads of this

knowledge which are involved in our conception of space. We do not

study space as a void, but as "filled" with figures -- some bounded,

me unbounded. The particular way in which we do this "filling" or

"structuring" or "modeling" determines the nature of our geometric

theory. We do it by conceiving (or imagining) the basic figures to be

linear: points, lines, planes. These seem the simplest and most

natural ones to choose -- they are suggested by familiar objects of ex-

perience, dots on paper, fence poles or stakes, taut cords, lines of

sight, etc., etc. These concepts certainly can be realized in the

physical world to a very high degree of approximation and form what is

possibly the most important and useful mathematical model the human

race has developed.

In later chapters, we study other, more subtle, aspects of how we

conceive (or model) space: congruence -- the idea that figures can be

copied freely anywhere in space; measure -- the application of real

numbeis to compare figures in space and specify their sizes; simi-

larity -- the idea that figures can be "blown up" (or shrunk) uniformiy

anywhere in space.



One very Important Outcome of our study is the idea of a coordinate

system -- the idea that points in space can be given "addresses", that

they can be labelled in a systematic way by specifying certain real num-

bers which tell us where the points are. This plays a double role:

(1) it enables us to study points (and figures also ) by means of their

addresses, the numbers that label and locate the points; (2) it enables

us to take numbers and plot them to find the corresponding points and so

to picture and study numbers and numerical relations by means of our

model of space.

Purpose:

To review the nonmettical ("qualitative") properties of space and

the assoclated "linear" figures (point, line, plane, segment, ...) and

to consolidate and extend this knowledge as a model of physical space.

BackdE21111d)

Nonmetrical geometry was begun in Grade 4, Part I, Chapter 5; the

ideas have been used in Grades 5 end 6 as needcd.

1, The structuring of space in terms of pint) line) plane.

(a) What physical objects suggest the ideas of point line,

plane?

How do we conceive points, line, planes How can one inter-

pret point, line, plane _ y in classroom)? Do our inter-

pretations correspond exactly to our concepts?

How are the idea of point line, plane interpreted by people

who are mathematics pra-tically? E.g., scientists, engi-

neers, surveyors, map makers, carpenters, people T-ho lay

foundations for buildings, bridge builders.

Some of the material WES, Vol. 1, Part 1, Chapter 40 pp. 105

112 can be used here, but it should be amplified and supple-

mented.

2. Incidence Properties: how points, lines, planes are related to

each other.



Chapter 4 of MJHS, Vol, 1, Part I, is a good first approximation.

Throughout the treatment reintroduce and reinforce the langua,,e

of incidence line contains point; plane contains point, line;

point is on line, etc.

Determination properties of poin s lines, planes, and

linearity (flatness) of planes.

Use counterexamples as well as examples in studying a pro-

perty, e.g., °or "two points determine a line" ask whether

two points determine a ray or a circle. Cylinders and cones

are good counter-examples for the linearity of a plane.

Intersection properties of lines, planes.

Introduction to non-intersection properties of lines, planes:

Parallelism of lines, of planes, of lines and planes; skew-

ness of lines.

Example: Find illustrations of parallel lines, parallel planes,

etc., in classroom.

Note: Dc sure to introduce the verb "intersect" as well as the

noun "intersection" as in the phrase -- "two figures inter-

sect"

Separation Properties

MjHS, Vol. 1, Part I, 4-6, 7, 8, 10 is a first approximation --

some tightening is indicated below.

(a) Betweenness of points; the definition of segment (WES, Vol.

I, Part I, 4-6).

Idea of ray, half-line.

Review concept of ray (Grade Li., Part I, Chapter 5) and nota-

tion.

Give exercises in recognizing rays and specifying them by

symbols.

Introduce idea of opposite rays.
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Define half-line as ray endnoint deleted. (Half-line

AB is AB with A deleted,) Observe (lightly) that a

half-line has an opposite half-line just as a ray has an

opposite ray.

A Problem of Ter inology: Ray and half-line are examples of

"semi-infinite intervals': the first closed, the second open.

The term "ray" has been pre-emptied in elementary mathematics for

the closed type. In many ways the open type is more useful .g.,

in separation) and more fundamental, particularly because it is

easier to adjoin an endpoint (apply set union) than to delete it.

But this very useful type of open semi-infinite interval is stuck

with the long name half-line. A simpler terminology might be ray

(or half-line) for the open type -nd closed ray (or closed half-

line) for the closed type,

(c) Separation of line by point into two haif-lines.

Property; Suppose points A, B, C are on line and B

is between A and C. Then B separates into half-

line BA and half-line BC.

Suggestions for class discussion and exercises

1. Does a point of a segment separate a segment into two figures? If

so, can you specify the figures?

2. The same for a ray.

3. The same for a circle; a plane; a sphere.

4. Do two points of a line separate it in some sense? Clarify.

5. The same for a segment.

6. The same for a circle; a plane; a sphere.

7. Into how many pieces is a line separated by I point, _ points

points 7 points, n points? What kind of pieces?

The same for a segment; a ray; a circle; a figure eight.



pose A and B are points of a line 2. Can you describe the

figures into which A and B separate 2 The same for a seg-

ment.

10. The same where three points A, B, C are given.

11. Make some separation problems of your own.

(d) The concept of half-plane.

We begin by trying to give some incl_cation of the nature of

a half-plane before studying the separation of a plane, just

as we had the idea of ray (or half-line) before we studied

the separation of a line.

Exploratory Discussion:

Given an endless, wiggley curve w in a plane have:

B C

a feeling that w has two sides. A and B appear to be on

opposite sides of w B and C on the same side. Can you

make this idea geometrically clear? How could you use geo-

metric ideas that we know to test that A mnd B are on

opposi e sides of L ; that B and C are on the same side

of L? Will your test work for D and E, A and F, G

and C?



(2) Given line 2 in plane F we feel it has two sides. A and

,
d C on oppo-

site side.

(3

A

Ti

C:

Can you now find a simple_ test that A and B are on the

same side of L and B and C on opposite sides? Choose

several additional poin s and apply your test.

Given line 2 and point A not on 2.

Find a point which is on the opposite side of i from A.

Can you find several? How many are there? The set composed

of all such points is called a half-plane; i is the edge

or boundary of the half-I:lane. Sometimes we say the half-

plane is "opposite" point A.



(e) Separation of plane by a line into two half-planes.

Property: Suppose line L is in plane P. Let A, B be

points of P such that AB intersects k. Then R sepa-

rates P into two half-planes.

Note: The two half-planes may be described as the half-planes

with edge L that are opposite A and B respectively.



Exerci es:

(1) Is a plane separated by a ray? A segment A point? A

horseshoe curve like this ; a

Into how many parts do two lines separate a plane? (

should we ask for Max and Min number of parts?

Into how many parts do th -ee lines separate a plane? (Ask

for Max, and Min,)

Same for 4, 5 6 lines.

See challenge problem at the end of section (g) below,

Does a half-plane contain a segment; a ray; a line?

Does a half-plane contain u half-plane? Mo e than one?

(f) Separation of space by plane into t o half-spaces.

Try to treat half-space like half-plane in (d), without

necessarily repeating the discussion on the wiggly curve.

Final definition: Given plane P and point A not in P.

The set of all points X not in P such that AX inter-

sects P is called a half-plane, Plane P I its boundary

or face.

Exercise.

(1) Is space separated by a half-plane? A line? A ray? A seg-

ment? A ,point? An open box (conceived as a surface 9

Into how many parts do two planes separate space? (Max,

Min?)

Similarly for

Exercises (2),

4, 5 planes. Compa,-e your results with

3), (4) of the last section.

(4) Does a half-space contain a segment, a ray, a,line, a tri-

angle, a half-plane, a plane?



Does a half-space contain a half-space? More than ne?

(g) Angles and triangles (MJHS, Vol 1, Part I, 4-8); bet -n-

ness of rays.

( ) Follow text treatment for angles interior, exterior

and separation. List bile separa ion theorem as a

Geometric Property.

Introduce betweenness of rays. Exploratory discussion
4

should motivate definition: is between CA and
-4
OC if O-) B intersects some segment that joins a point

A
of OA to a point of OC

Exercise I: Q

(1) Suppose OB is between (54 and 6C that (513 inter-
->

sects some segment PQ P on OA Q on OB (see figure
--

above). Can you find a segment that joins a point of OA

a point of OC which does not meet OB?

- -
Suppose OB is between OA and OC, and OX is between a

and O- B- . What betweenness relations for rays follow?

Given LABC draw several rays that are between BA and BC.

Draw several more. Can you imagine all such rays? What

figure do they seem to form (cover

(4) Given LABC in plane P. Draw several rays with endpoint
-4

A in plane P that are not between BA and BC. Exclude

B- A and BC. Draw several more. Can you imagine all of

them? What figure do they seem to form?

Exercises II:

(1) Given LABC. Can you find a p int in 4tE interior? A seg-

ment? A ray? A line?

(2) The same for the exterior of LABC.



3) Can you find a ray which separates the interior of LABC in-

to two parts? If so, describe the parts. Can you find an-

other? A third? -Ipare your answers with your classmates

answers.

(4) The same for a segment.

iii) Sharpen text treatment for triangles, inte ior, ex-

terior and separation.

Exercises:

(1) Given &ABC. Find a point in its interior, Can you find

another? Still another? Can you find a segment in the in-

terior of AUG? Another segment? A ray? A line?

(2) The same for the exterior of 6ABC.

(3) Can you find a figure that separates the interior of nil:IC

into two parts? Describe the figure and the parts. Can you

find another?

(4) Thu same for the exterior of AqBC.

(5) According to the rules of a game, you are safe only when

you're in the interior of a large triangle whose vertices X,

R and T are marked by poles with flags, which are joined

by ropes from which lanterns hang.

A fog comes up and the corner at T becomes invisible.

How can you make sure that you are safe?
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(b) The fog thickens and the corner at Y is blacked out.

What would you do then?

(c) What would you do if all three corners become invisible?

d, Suppose X is visible. What is the 1L_ast information

you must know in order to be safe?

(6) Given nABC draw a segment from A to a point of BC. Draw

several. Try to imagine all of them. What figure do they

form?

The same but using B and AC.

Compare (6) and (7 ) . What geometric fact (facts) is sug-

gested?

Given AABC. Extend its'&41de6to form lines AB,

Into how many regions do they separate the plane?

describe these regions.

BC, AC.

Try to

(10 ) Challenge Problem. Given n lines in a plane in general

positipn -- that is, each line Intersects every other line,

and no three of the lines meet in a point, Into how many

regions do the lines separate

Try n --- 1 2, 3, 4.

the

(h) Make a table of the function

the number of regions for n

Could you get R3 from R2;

plane? Suggestions:

n --> R

lines.

where R
n

is

R4 from R3?

Note: The corresponding problem in space is more

difficult and is the basis for Polya's film "Let Us

Teach Guessing"

(h) Curves; simple closed curves.

Give some interesting e

on a cylinder, the path

that travels constantly

planar ones.

xamples of non-planar curves (spirals

of a ship (or better, an airplane)

on a N.E. course, etc.)
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Separation of its plane by a planar simple cltoe curve.

Interior, exterior of such curve; planar rogion,

include in discussion a rica set of examples aad counter-

examples of separation of surface by a simple closed curve;

sphere; toru (surface of doughnut or inner tube); srveral

types of pasted strip: cylinder, Moeedus strip, and other

twisted trips; possnly surface of pretzel. Maybe surfaces

of solid models of letter= e,g,, A B, D, I, EtC,

It may be desirable to motivate separation of plane (which

may at first seem trivial to the kids) by starting with some

of the examples aLTe. Note that the plane separation pro-

perty is a characterisric property of planea which is not

shared by all surfaces.

Make point that human beings don't know innately that space

has these separation properties -- they are not trivial, they

had to Le learned. Consider tiny saucer-like bugs who live

huga. torus. They might not li long en,,,.t.6h to dis-

cover that their space was not separated by all simple closed

curves on it. (Note: The projective plane which is a very

respectable mathematical entity, and is closely related to

our safe Euclidean world, is neither "separable' nor

orientable".)

Exercises

Possible Challenge Problem. A child wandered off from his parents

in a park that was fenced, but had several gates. Guards at the

gates reported he had passed through their gates as follows:

Gate 1 -- 3 times

Gate 2 -- 7 times

Gate 3 -- 5 times

Gate 4 -- 7 times

Where would you look for the child?



(2)

Given a circle end its interior. Draw a simple path curve)

which joins two points of the circle and lies wholly in the

interior of the circle (except of course for the two points).

Does the path separate the interior? Test several paths.

Similarly for a ring bounded by two circles taking a path

that joins two boundary points of the ring.

(3) Generalize to a planar region bounded by several curves.

(4) Given a circular cake, what is the maximum portion of the

cake you can get by one continuous cut with a knife through

the cake? The minimum?

The same for a cake in the shape of a ring, like an angle

cake.

(6) Into how many parts is a sphere cut by a great circle?

(Explain the idea of great circle if necesFnry.)

(7) The same for 2, 3, 4 great circles.

(8) The same for 2 3, 4, 5 great circles in T1general posi-

tion", that is, no three circles intersect in one point.

(Compare similar problems for lines separating a plane in

Sections (o), (g).)

Separation of space by a (simple) closed surface (maybe just

take one or two examples, e.g., sphere, box, ellipsoid ) In-

terior, exterior of a closed surface; spatial regions. Maybe

make this an exploratory exercise.

4. Convexity.

Try the treatment in Geometry Part I, 3-3 selecting exercises

from Problem Set 3-3; look over Moise and Downs "Geometry" Problem

Set 3-4.

Sti
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(1) is a line a convex set? A ray? A half-line? A segm nt?

(3)

Similarly for a plane, a half-plane, an angle, an angle i

terior, a triangle interior, a triangle.

Similarly for space, a half-space.

(4) If you take a point away from a line will the resulting

figure be convex?

() The same for a plane, for space.

(6) The same for a ray, a half-line, a segment.

(7) Is the figure composed of a line and a point not n the line

convex? Briefly stated: If we add (or adjoin) a point to a

line is the resulting figure convex?

(8) The same for a plane, a ray, a segment, a half-line a half-

plane.

(9) How many different types of convex sets can you find on a

line?

(10) The same for a plane; for space.

(11) What can the intersection of two line be? Two se e-ts;

two rays?

(12) What can the intersection of two triangular regions (union

of triangle and its interior ) be? Will the intersection be

convex?

(13) Suppose set P. is given. When you take a certain point

away from A, the resulting set is convex. Can P. be con-

vex? Must A be convex?

Exercises II:

(1) Given two points P and Q.

(a) Can you find a convex set S that contains P and



(b

(

f

Can you find a "larger that is, one that contains

S) that contains P and

Can you ftnd a "smnller" one (that is one that is con-

tained in S ) that contains P and Q?

Can you find one that is neither "larger" nor Trsmaller "

than S?

Ts there a "largest" conve ' that contains P and

(that is, one that contains all the others)? Is

there a "least" convex -et that contains P and Q?

ls there a least convex set that containS three non-

collinear points P, Q, R?

(g ) The same for the union of AB and point C.

(h) The same for four coplanar points P, Q, R, S.

i) The same for four noncoplanar points PI Q R

j) The same for the union of AR and C; of Ai and C.

Note that (.i) is touchy since the answer depends on the

parallel postulate. The problem still seems valuable and

can be approached as a limiting form of

larger B.

for larger and

Exercise. Ts the union of two convex sets convex? Try simple

cases, e,g., triangular regions, segments, convex quadrilateral

regions.

Exer-ise. Can you find a figure whose union with a circular

region is convex? Can you find a convex one?

Exercise. Have teacher sign a waiver if this is used. Suppose

you're standing in a room and you can shoot anybody in the room

with your water pistol. Must the room have a convex shape?

Explain.
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Orientation.

) Orientation on a li e or ou parallel lines.

Given points
A

on line

we observe that the 'trip" from A to 3 and the "trip''

from C to E are rightward; the "trip" from C to D i.

leftward. We say the sense from A to B en 2 is the

same as the sense from C to E, but is different from or

opposite to the sense from C to D. Briefly, A-B and

C-E have the same sense and both have different sense from

C-D, (The notion of ordered pair of points (A,B) or

directed segment or arrow A are implicit)

This is probably best approached by discussing a trip, re-

ferring to highway markers US I North, US 1 Smith, etc.

Give student opportunity to conclude these are just 2

"senses" on the line, that is, we can find two pairs, say

A,B and C,D (see figure above ), such that every pair of

points of the line has the same sense as A-B or the same

sense as C-D. Note that A-B and B-A have opposite

senses. Maybe use notation A,B instead of A-B?

Extend idea to pairs of points on parallel lines.
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Exercises:

(1) Same finger exercises in r:.'-gnition of senses of pairs in a

diagram.

Suppose B is between A and C. What can you conclude

about the senses of A-B, B-C, A-C?

Given three points A, B, C on a line. Can you find a con-

dition involving sense of pairs of the points that guarantees

B is between A end C?

(4) Suppose A, B, C, D are collinear and B is between A a d

C; C is between B and D. What can you conclude about

senses of pairs of these points? See (2).

Given four points A, B, C, D on a line, What must you k ow

about senses of pairs of the points in order to conclude that

B is between A and C ana C is between B and D? See

(3).

Discuss rays on a line and bring out that they have a natural

orientation9 e.g. , AB is rightward, BC leftward, etc. Try

to get the kids to develop a criterion for two rays on a line
4 )

having the same sense: AB and CD have the same sense if

and only if AB contains CD or CD contains AB.

Discuss rays with oppo ite sense. Relate sense of rays

sense of point pairs. Briefly discuss sense of rays on

parallel lines.

Indicate that there is no natural way to define sense of

point pairs on two intersecting lines.
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We might he tempted to say A-B and C-D have same sense,

namely, rightward, but the dotted horizontal line suggest-

they have opposite sense, namely, A-B upward and C-1)

downward.

Orientation in a plane.

Try treatment along lines of Prenowi-z and Swain "Congruence

and Motion in Geometry", D. C. Heath, pp. 31-32, pp. 46-47.

Try to use some of the material in Problems 72--76, p. 48,

and the theorems, p. 49.

Notes Just as we referrea to sense of,point pairs, it may be
,

good to speak of sense of pairs of rays OA, OB (with

a common endpoint). And, of course, sense of "directed

segments" or "arrow corresponds to sense of "directed

angles-.

Try to give some exercises relating sense in the plane to

compass directions N, E, S, W. For example: If you face

north and make a quarter turn in which direction will you

face? If you face north and make a "three-quarter" turn and

are then facing east, what was the sense of the turn? If you

face north and make 13 successive quarter turns, a11 with

the same sense, how will yOu be facing? This can be modified

for a combination of quarter, half and three-quarter turns.

If you face'.2 north, closed your eyes, and turned and found

yourself facing west, what kind of turn could you have made?



If you face north in front of a mirror, how does your image

face? If you then m ke a quarter turn clockwise how do you

face? How doe:3 your image face? What kind of turn did your

image make?

Note that you can compare orien a ion for two parallel planes,

ast as for parallel lines.

Exploratory discussion Make many wire figures to indicate

right angles, put arrows on ends labeled 1 and 2. Put

them on a table and ask kids to try to get them to fit so

2

1

that the "1"-ends coincide by sliding and turning on the

table. When this is done, how many piles are there? There

should be, of course, just 2 -- this indicates that there

are just 2 senses in the plane. Observe that

0t,

and

2

cannot be gotten to fit in the way described.

Repeat the procedure using bent wires to represent two unt.qual

segments that meet to form a right angle -- make many such

figures which are all congruent. Do not label endpoints.
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Orientation in Space.

Try to u,e corkscrews and wood screws to get across idea of

right-handed screw -- try to get a left-handed wood screw and

drive it into a piece of wood.

Make comparisons of right and left hands, gloves and the

difference in orientation of an object and its image in a

mirror.

Make many wire models of three mutually perpendicular rays

with arrows on endpoints labeled 1, 20 3 and repeat experi-

ment of (b) for 2 rays.

Compare with figures formed by thumb, index finger and

middle finger of right hand and same for left hand.

Make several congruent wire models of 3 mutually segments

of different lengths and repeat experi ent.

Do same thing using paper clips bent as indicated:

A

AB i BCD, BCjCD.
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GRADE 7 - CHAPTER 2

GRAPHS FUNCTIONS, VARIABLES

(It is appropriate to note _hat a chapter witn this title would be

subject to considerable criticism. Hence, a less terrifying title

should be sought.)

Background Assumptions)

The student is familiar with the positive rationals together witl

addition subtraction, multiplication, and division of positive ra-

tionals. Negative whole numbers have been introduced, but not the nega-

tive rationals. Coordinate systems in the plane using all four quad-

rants are known, but with integer coordinates. In Chapter 1 the geo-

metrical concepts of points, lines, planes, etc. have been introduced

from the point of view of abstractions of physical situations; hence,

a "modeling".

io ale:

Physical situations are to lead to an introduction of a coordi-

nate system in the plane as a means of indicating that "local" prob-

lems often require more than the "global" geometric properties in their

solution. Physical situations will also lead to graphs, functions, and

graphs of functions. The situations chosen should reflect the basic

reason for obtaining functions and their graphs; to wit, that this ana-

lysis yields information of a global sort not apparent from local ob-

servations. Properties cif the function -- as an entity itself -- are

discernable and can be used in a predictive fashion. Try to point this

out over and over.

Purpose:

We propose that functions be introduced early and used where

appropriate without belaboring the concept as a saliat, such as hap-

pened with sets.
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E ng will Permit review of e multiplication of positive

ratic Ts. Moreover, the use of letters to represent the coordinate,
C ACa point mi_ght make the transition to statements X maim

b d bd.

meaningful.

ction 1. Coordinates:

1.1 A problem should introduce the student to the need for "local"

information, -beyond geometric concepts, for the analysis of a

problem.

Example: An east-west rood and a north-south road intersect in

front of school, The English teacher lives directly east of

school and the librarian lives directly north of school. If both

teachers leave home at eight o'clock in their cars and each

travels at a constant speed, will they crash at the schoolyard

corner-

(Note: Insufficient information to solve the problem has been

done on purpose, but this view should not be labored; merely

point out that sometimes this does happen. In the meantime we

know that, at least need a coordinate system.)

Now turn to graphing proper. In all four quadrants with integer

coordinates; with rational coordinates in the first quadrant,

Here the treatment in Introduction to Secondary School Mathe-

matics - Chapter 19, page 301ff should be noted; also Grade 6,

Chapter 5 (SMSG).

The emphasis is a pedagogical way to involve the student. Stu-

dents enjoy some of the "games" of Grade 6, such as, "what ordered

pairs give rise to points forming a letter A?" -- or a triangle

or a square.

Treat lightly the ono-to-one correspondence between points and

ordered pairs! Show that the coordinates for a point change as

the coordinate axes change -- both translationally and in scale.
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Use (a,b) or (c,d) or (x,y) to denote the coordinates of a

generic point. (This should be an unsophisticated introduction

of variable -- no definition thereof.)

A typical problem:

(1) Given the point whose coordinates are (c,d); plot

( d (cd -I- 2); 1, d) c,d 1); Id);

etc.

1.2 Translation, Reflection, and Symmetry.

See Grade 6, Part 1; Grade 9, Part II)

Grade reflection about vertical axis ( d ) (-c,d)

(This could be done from the point of view of "oppositing

on lines parallel to the number linel)

(b) Graph reflection about horizontal axis

("Oppositing againW

Example: Take a point (1,2) and reflect about all axes;

connect the points; what figure results?

Translations:

First, by adding 2 to each horizontal coordinate then, by

adding 1 to each vertical coordinate. Now, one might try

(c,d) to (c + 2, d 1) but this could be too difficult.

(d) Symmetry - Intuitive discussion of what this means.

) Invariance of area under translations and reflections.

For example, use this to "prove" that the area of a triangle
1

is bh as follows:
2



Warning This section must be tied together with the geometry

lone previously or late:7.

Graphs which lead to discovery of linear functions.

The section permits considerable practice in reviewing the addi-

tion and subtraction of positive rationals, multiplication of

positive rationals. Plotting will be largely in the first qua-

drant, but the student will be encouraged to "discover" what the

extension in the 2nd, 3rd, and 4th quadrants might be. This could

lead to the student wanting (?) to define 2(-x).

1 1 2Example 1: Plot the points: (1,1 + 2), , 2) + 2);

4

Observe linear nature - draw line.

Que tion: For what a is on this line? Do this granni-
7

cally also solve a + 2
3

Question. What are the conditions on

on the line?

Example. 2: Plot the p ints: (2 y2
fl 1 2 2 1 1-3) ,\

3 3 3 j *-)1, '16 31.

Observe linear nature - draw line.

such that is

Question: For what a is (a,5) on this line? Do graphically:

also a .3 = 5.

Write the condition of (c,d) such that c,d) is on the line.
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Example TIot the points; (1,1

Carry out same procedures as above.

Otner examples shall be ur,ed cc that the student has a feeling for

(x,mx + b) in the first quadrant for various ci and h. Expand

to include some negative b, and m .-- -1, although we cannot use

other negative m yet-,

etc,

It is imp rtant that the key graphs to be known "cold" are

and (- (or y = x and y = -x if this form is preferable).

Also the student should know the constant function b) and

the vertical lines (b,y).

At this point further talk about the "opposite function" is both

possible and desirable.
However, the writers may find the shift

from a linear to a planar presentation of the idea might be con-

fusing to the student. HANDLE WITH CARE!

The writers may wish to try at this time a definition of -b)

motivated by points on a graph.

GOOD LUCK!,

this point being on the
"natural" extension of a

line "implies"
a(-b) = -(ab



:ction 2, Fuaction:

Words oI Warning: It is essential that 'function b treated some-

what informnlly and the writers should have in mind the fact that the

concept of "function!' will contribute preciseness and brevity of lan-

guage throughout the texts,

Since this idea has not been attempted at this level before, many

versions will probably-be necessary. The followLg is one version:

2.1 Illustration

These illu trations (examples ) are to show that the students' pre-

vious experience has often been concerned with an association of
-

objects of one set to objects of another set. Indeed, this notion

is so pervasive a notion as to warrant its formulation for more

intensive study in itself. The associations will be represented

in many ways. We shall want to return as often as possible to our

"rationale".

(a) Sons Fathers - an easy, natural relationship

Father -*Son - an easy relationship, but ambiguous for large

familles

(b) Persons Weights - Here is an opportunity to point out that

the function as a whole gives information that piece-by-piece

data does not. Student might suggest; What is maximum

weight? What is avr:-.rage? What is range? How do weights

cluster around the average?

Person Height - Similar comments as in (b) above. How do

the two functions correlate?

(d) Plane figure -4Area

(i) Just the association - easy example without much struc-

ture.
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Restrict domain to regular polygons of side I. Use

cross-ruled paper to estimate area. Here one can

studv the properties of the graph, showing rate of

growth as the number of sides increases. Ts it

linear?

(iii) Restrict domain to squares of side a.

Back to (i) investigate measure properties2

WALJ B) < M(A) + M(B)

M(A1) B) = M(A) + M(B)

A < B M(A) < M(B)

(This, of course, must be done with a light intuitive

touch, but it emphasizes our rationale.)

Pulse Rate - See experiment in "Math. through Living Things".

While we cannot at this stage compute percents, we can take

"first differences" and so construct a new function

D(x) = P (x I) - P(x). Ask about symmetry of the pulse

function P.

(f) Stacking and Overlapping Bo _s Math. throui Science
/

Part 1)

Again take first differences: should get something like a

harmonic series.

(g) Translations and Reflections: Take the ones from Section 1.2.

Use pictures to illustrate.

(2,1)
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2.2 Mori, careful observatiol of function as order ' air,

In this discussion the main emphasis is still on Thssociatioia " no

key ingredient of function. However, it should be pointed out

that you really don't "know" a function until you know the ordered

pairs which constitute the association or function. Thus, we can

know the existence of a function (such as the daily noon tempera-

ture at the North Pole) without knowing the function. Whether or

not a function should be defined to be a set of ordered pairs is

still an open question. In any case, we should not make a fetish

out of this representation e nrdered pairs.

Give counterexamples to show that not every relation is a func-

tion: Gfadparent -) grandchild seems natural.

Give a set of ordered pairs and ask the class to guess the rule.

Point out that ordered pairs do not have to be ordered pairs of

numbers.

Notations: Show mappings for example on the son-father associa-

tion:

Joe's
father

John
Pete ' s

father John's
father

-68-

73



Show a'row from one line to a- ler-

_
1 2

4 a a+1

To r.GZer to a single function, use a 0 ngle letter:

F - for fatherhood:

g, h, A, S T, etc.

3a÷3

'Joe -)Mr. Jones

F : iBete -) Mr. Brown

LJohn -> Mr. Wilson

Joe 120

W - for weight: W : Pete 150

John 110

M

r -

for multiplication:

for reflection about vertical axes:

M c 3c (e

Generi lly,

or

(y is determined from x by a rule) and reinforce by examples

r b ,b)

: X

f

above.

Section Graphs of Functions

3.1 Review graphs of Section 1.3 - now recognize as functions. Use

graphs to solve equations and inequalities. Try 3x -I- 2 . x ± 5

by graphing f : x -)3x 4. 2 g x -0 x 5 and getting point of

intersection.

Check result.
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3.2 Review graphs

height and weight relations.

Is it a function? Average weights for some height to get a

function if necessary. Any conclusion?

(b ) Pulse e:

Area of square of side

3.3 Coin tossing:

Have each class member toss a coin 10 times and record

(number of heads, number of tails) = x. Now consider the

function whose value at x is the number of students whose

result is x.

(b) Same data, but consider the function whose value at x is

the number of students whose result is lesr than or equal to

x. How is this obtained from (a)?

Re-do ( ), normalizing so that value at x is the fraction

of the class whose result is x. Re-do (b) in like manner.

(The idea behind this problem is to give the students 9

"distribution" function which can lead to the chapter on

Probability.)



GRADE 7 - CHAPTER 3

(The "Positive Version")

THE POSITIVE RATIONAL'S

This version of Chapter 3 implements the view that there is a lot

to learn about positive rationals which has nothing or little to do

with their "opposite numbers" and indeed for several chapters (measure,

ratio, and similarity, probability) there is little or no need for

them, What is needed in these chapters is an early introduction of the

notion of a mathematical (open) sentence and a solution for the same.

In addition some review is needed of the algorithms for the addition

and multiplication and decimal notation for positive rationals. Other

new topics are order, ensity, inequalities in two dimansions, and

percent,

One other advantage is that this work with positive rationals as

well as the succeeding mathematics gives the student a great deal of

added mathematical maturity and readiness for the operations with

negative numbers.

Background.

From Chapter 2: Graphing and the whole set of rationals. From

Grade 6: Arithmetic operations on + and x. Also the concept of

rational numbers as quotients of integers (Grade 6, Part II, p. 369)

and a minimal introduction of solving a x n = b (see below).

Section 1. Sentences and their
_

lution sets.

A nice introductory treatment OCCUTS in ISSM, Vol. II, Part 2,

p. 279 which could be taken over if it is modified to work also with

3x = 12 as well as x + 3 - 12. Take care to keep all equations with

positive coefficients and positive solutions. Keep inequalities

positive.
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Recall from. Grade 6, Part i, p, 113 that they have seen "Find the
2

rationl number n which makes (the ) sentence x = 1 truer
,2 4 ,

they may not have seen, "Solve 3 X n = or x n = , although. .

they have divided rational numbers (Grade 6, Part TT, p, 307ff), Note,

ibid, pps 340-345 that in an "Exploration" section they consi0.2r
2

n X .7- = 4 and 1 pp. 349-353 they have had a brief treatment for
4

2 4
solving x n = In particular the notttion of juxtap ition for

.-

multiplication as in 3x = 12 will have to be introduced.

We should also consider the remarks of R.C. Buck about our use of

equations and inequalities as tools for inference. This will be new to

the student.

Show that 4x = 8 if and only if 2x = 4, or 4x = 8 if and only

if x = 2. Or, perhaps the chain of inference: 4x = 8 im, _ies that

4x - 4 = 8 - 4 = 4 which implies that 4(x - 1) = 4, which implies

that x - 1 = 1, which implies that x = and conversely. Various

routes to the conclusion x = 2 should be encouraged and suggest a

game for the students. How much logic should be included here is an

open question.

Now, from the Grade 6 background (see also ISSM, Vol. I, Part 2,

p. 195-196) the students are ready tu see that, for example:

4 .

ls the solution for = 4 means 4 ; 4 + = x means , 4
3

1 1
is the solution for 2x = 1 means 1 2 ; 1 = x means 2x = 1

T is the solution for 4x . means
4

4 4 . x means 4x

etc.

After some more examples try: If b

a .

is the solution for bx =a, meansa+b;a+ =x eans bx = a
b b

as a pattern.



Now make the philosophical point that the rational is the

{

defining
number whose key thnroperty is that it is e solution of

primary

3x = 4. Repeat with special examples until exhausted and then with

symbols and b. (We should also do inequalities here. but we had

better ',,ait until a later section when we have discussed the result

of multiplying (2)7. dividing an inequality by a positive numbe

Section 2. Ari hmetie operations from the point of view of equations.

Here is a somewhat fresh approach to addition and multiplication

of rational numbers utilizing their properties as solutions of equa-

tions. Since

4

and

is the solution of 3x 4

is the solution of 2y = I

4 1
should be the solution of some equation of the form laz

If 3x = 4 then 2 -3x =

if 2y - I then 3 -2y = 3 =1

or Ex 8

or Ey

By addition we conclude that 6x ± Ey .

--- 3,

or that 6(x y) 11

which is an equation of the desired form, i.e., the solution of
11 11 4 16z = 11 which is
b

should be x + y, or . Compare with

the conventional algorithm: 4 -2
3 + 3 ...2 6 +

A similar, but easier, trick provides the algorithm for multiplication:

From 3x = 4 and 2y -, 1 we get, by multiplication (3x)(2y) = 4 .1,
4 1 4or 6(xy) . 4, or

With these operations at our disposal proceed to solve some mathe-

matical sentences.



Section 3. Order -- See ISSM Vol. 1, Part 2, p. 276ff

This is a good place to insert some story problems to help

heighten the interest in mparing rational numbers. Here are

couple?

1. You are the manager of a baseball team. You need a new short-

stop. You can trade for Willie Much or Mdckey Little, both of

whom appear to be equally good glove mon. In previous play,

Willie Much has come to bat 227 times and has 53 hits. Mickey

Little has come to bat 183 times and has 43 hits. On the basis

of this information, which would you choose? (An analy-is of this

information, which would you choose? (An analysis of t:is problem

might well include whether

these players anyway.)

there is any significant difference in

2. You go to a picnic and are invited to join either of two tables,

At Table A there are now sitting 7 people with 5 quarts of

ice cream. At Table B there are sitting 10 people and 7

quarts of ice cream. At which table will your share of the ice

cream be the greater? (Be careful, if you compare 2 and 2-
you haven't counted yourself!) Introduce the notation a < b and

its equivalent b > a. (Point out that the "big side of the wedge

is near the bigger number".) Verify the transitive property:

5a < b and b < c implies a < c. Use this to compare g and

6 5 4 7
via

,
Compare fractions with equal de-

14 7 2

,

nominators and then with equal numerators. Derive the decision
C

method for < < bc) . Point out that from ad < bc we can

a 0

< a-infer

Discuss density: a < b implies

lem like:

Find three numbers between

a +
< b. Consider prob-

2

2
and

4

1 1 IDiscuss the function: x . Show that a < b implies .

a b

Show that the ray [1,c0] gets squeezed into (0,1].
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Prove: a < b if and only if a c < b c.

a < b implies ac < bc and if c > 0 then ac < bc.

Mathematical sentences which are inequalities.

Graphing inequalities in one and two dimensions.

Do ones of the form a < x < b and c <y <d,

and ((x,y) x y < 1 and x > 0 and y

and ((x,y) : y > x > 0) .

Section 4. Decimals -- Compare with Grade 6, Part 1, p. 59ff.

Motivate need for decimals by the desire to have an easy method

for comparing rationels. Return to problem of finding several numbers
2

between and 1
3 4

Exp nded notation, using positive exponents (1SSM, Vol I, Part 2,

309-314)

Extension to negative exponents (ISSM, Vol II, Part 2, 386-388)

Scientific Notation (ISSM, Vol II, Part 2, Chapter 21, 379-394)

Rationals as Repeating Decimals (ISSM, Vol I, Part 2, 325-334)

Section 5. Percent.

Practice computations of the form "Find

out that "of" means multiplication here.

of b". Point



GRADE 7 CHAPTER 3

(Alternate Version)

THE SET OF RATIONALS

Background Assumptions:

1. Students have the complete set of integers at their disposal and

have had extensive work with the non-negative rationals.

Operations introduced thus far are:

Addition, subtraction, multiplication, division for non-

negative rationals.

Addition and subtraction for negative integers.

Other ideas already introduced included:

Use of variables as names of numbers.

Informal solution of sentences (missing adden etc.

Ordering of integers and positive rationals.

Use of multiplication property of one for changing form of a

fraction.

Decimal estimates for numbers named by fractions.

Simplifying complex fractions.

Rationale:

1. The negative ratlonals will be introduced by the opposite function

in order to complete the set of rationals as soon as possible. The

negative rationals have been left "dangling" since the student was

introduced to the negative integers in Grades 5 and 6.

2. If the complete set of arithmetic operations (addition, subtrac-

tion, division, and multiplication) is introduced early for the

set of rationals, these skills can be used and reinforced through-

out the rest of Grades 7, 8, and 9.



The rational number system will be "endowed" (informally) with the

familiar properties that the student has been working with in the

set of positive rationals. Special note will be made of the fact

that every rational number has a unique additive inverse, and a

unique multiplicative inverse. It is recommended that uniqueness

not be proved here, only a statement that it can be proved, and

then plan to prove it in later grades when the discussion of

structure becomes more formal.

Parp ses:

1. To provide a meaningful review of operations with integers and

positive rationals, and extend the operations of x, , to
the negative rationals and to simple expressions containing vari-

ables.

To review, early in the 7th year, the basic properties of the inte-

gers and the positive rationals and extend, informally, these pro-

perties to the set of rationals.

Section 1. The Opposite Function.

1.1 Opp: x -x. Tie in with student's knowledge of the integers.

(Refer to Chapter 2, Graphing, Function, and Variables). There

should be little difficulty convincing the student of the exis-
2 2 / 2\tence of the opposite of -3- such that 7 x k- O. (Use re-

flections about the origin on the number line as in Grade 9, First

Course in Algebra, Part 1.)

Note that we should simply point out again that the "-" is now

being used to indicate a new unary operation. The connection

between "oppositIng" and subtracting should be made clear when

appropriate.

1.2 Establish ) = x. (See p. 109, FCA, Part 1)

This will be handy to have when we discuss subtraction.

Some appropriate exercises are in the above reference.



S-ction Properties of Rational Numbers.

.1 The following properties are familiar and have been stated for the

positive rationals, and the integers. We will assume that there

exists operations of addition and multiplication such that the old

operations defined previously for some of the rationals still hold

(closure, commutativity, associativity, multiplicative identity,

additive identity, additive inverse, multiplicative inverse, dis-

tributivity.) This section can provide a light review or arith-

metic operations with the positive rationals, combined with a

light reinforcement of the structure developed so far.

2.2 In this section some attention should be given specifically to the

fact that every rational number has an additive inverse. (See FCA,

Chapter 5)

Note: It is recommended that the raised dash, 3, not be intro-

duced. This is awkward notation with rational numbers in fraction

form, and the symbol is dropped soon after it is inLroduced. IL

is suggested that the language of the students be carefully de-

veloped so that he reads (-3) as the "negative of 3", "the

opposite of 3", or "the additive inverse of 3". The student

should be discouraged in the beginning from reading (-3) as

"minus 3" or "negative "Minus" tends to confuse the issue

with the operation of subtraction, while "negative" tends Lo

become confusing when variables are introduced.

Section 3. Absolute Value Function.

3.1 Definition and practice with definition. f : x

(See FCA, pp. 113-116)

if x > 0

if x < 0

3.2 Distance between a rational number and 0 on the number line is

the absolute value of that number. (See FCA, pp. 113-117)

This will be helpful in establishing the "sign" of the number

which is the result of an addition.
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Sect,on 4. Addition and Multiplication of Rational Numbers.

4.1 Review addition of Integers. (See FCA, Part 1, pp. 121-129. Also

Grade 6, Chapter 4, pp. 193-236, and Math. For JHS, Vol. 2, Part 1,

pp. 12-21)

4.2 Addition of Rational Numbers as a natural extension of the addi-

tion of integers as done on the number line in Grade 6.

Review addition of positive rationals, then do addition of all

rationals. Point out that with absolute value we can now dupli-

cate "algebraically" the "arrow" routine on the number line which

becomes tedious for rational number addition.

Discuss the additive inverse of a rational number, graph on the

number line, and informally convince the student of the existence

and uniqueness.

4 3 Multiplication of Rational Numbers

Develop first intuitively as in Math. For JHS, Vol. 2, Part 1,

pp. 34-38. Also consider using rate of temperature increase or

decrease, or increase and decrease of the area of a rectangle.

Also use graph y = -2x to motvate multiplication of negative

rationals. Use absolute valuc n tion. See FCA, Part 1, pp.

146-147)

Prove: -a = (-1)a (pp. 155-156, FCA, Part 1) for all rational

numbers a.

Discuss and graph on the number line the multiplicative inverse

of the rational numbers. (See pp. 162-164, FCA, Part 1) The

multiplicative inverses of -1, and 1 should have particular

attention.

Note: Throughout all of these discussions rational numbers in
-a

fraction form should be represented "-i" rather than
b

a
or . We can handle these situations later.
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Section 5. Division of Rational Numb I's

5.1 Definition of division. lla divided by b", means a times the

multiplicative inverse of b, b 0. (See RCA, Far- I., pp. 223-

227)

5
This definiti n should cause no trouble with L172 or since

15 -15

we will have established in the previous section that the multi-
1

plicative inverse of -15 is - .

a
5.2 Prc_ve: = 1 for all rational numbers a C. In particular we

a

need - 1 to simplify complex fractions. (See MTHS, Vol. 2,
-1

?art i, p. 45 for exercises, and RCA, Part 1, pp. 224-229, also

pp. 234-2)#1)

Properties of the fraction form of the rational number. (RCA,

Part 1, pp. 233-235)

Section 6. Subtraction of Rational Ambers..

6.1 Review subtraction of integers from Grade 6.

Definition: a - b means a + (-b). Be sure to make clear that

here we have a double use of the "-" sign. (See FCA, Fart 1,

p, 210)

Remind students of the statement

1.

Establish -(a + b) + (-b).

x developed in Section

Practice in subtraction as in FfA, Part 1, pp, 211-218.

6.3 Subtra tion in terms of distance on the nuMber line as in FCA,

Fart 1 pp. 219-222.



1
GRADE 7 - CHAPTER

(Alternate Version (continued))

THE SET OF RATIONALS: SOLUTION OF MATHEMATICAL SENTENCES

Background Assumptions:

1. Multiplication, addition, division, subtraction or rational

numbers.

2. Ordering of inte-ers and of positive rationals.

Rationale:

1. This chapter will allow the student to use his new]* acquired

skills in operating with the rationals while he learns a little

about the process of finding solution sets of mathematical sen-

tences.

2. Properties of order and equality will be discussed and reviewed.

Purposes:

1. To prepare for a formal approach to the solution of equations and

inequalities.

2. To review decimal notation for rational numbers and to discuss the

density of the rationals.

Section 1. Decimal names for Rational Numbers.

1.1 Expanded notation using positive exponents. (ISSM, Vol. 1, Part

2, pp. 309-314)

1.2 Extension to negative exponents. (ISSM, Vol. 2, Fart 2, pp. 386-

388)

1.3 Scientific Notation (ISSM, Vol. 2, Part 2, Ch. 21, pp. 379-394)



1.4 Rationals as repeating decimals. (ISSM, Vol. 1, Part 2, pp. 2-
-;;34)

Section 2. Ordering the ationals.

2.1 Basic properties of order. (9H, pp. 186-196)

From notation: a > b is the same as b < a.

"comparison" property (911, p. 191)

Transitive property (9H, p. 193)

2.2 Addition and Multiplication properties of Order.

See FCA, Part 1, pp. 187-190, and pp. 195-197.

Prove: if x 0, then x2 > 0.

2 Order of rationals.

Discuss order of rationals on the number line.

2.4 Density of rationals.

Section 3. Introducing percent.

3.1 "P as a function. Define %: x 100
Hence the symbol

1
will mean "multiply by or "multiply by .01".

100

3.2 Practice computation. "Find of b", etc.

Section 4. Solutions of Equations and Inequalities.

4.1 Restatement of properties of equality and order as in FCA, Part 1,

pp. 204-205.

4.2 Solutions of equations and inequalities of the form

x + a = b ax = b ax b and ax + bx c,

and inequalities of similar form.

Informal use of the properties of rational numbers, properties of

equality, and properties of order. The notion of equivalent sen-

tences should be started here, but not developed in full.



Graph, of solution sets should be done also.

Applications to verbal problems and simple translations required.

Ample practice with rationals in fractional and decimal form

should be provided.
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GRADE 7 - CHAPTER 4

CONGRUENCE (REPLICATION OF FIGURES)

Background:

Congruence of segments, F Les, triangles, copying, etc.: Grade 5,

Part I, Chapter 4. Measure of segments and angles: Grade 4, Part II,

Chapter 9; Grade 5, Part II Chapter 7.

Purpose:

1. Review above material.

2. Introduce SAS and ASA motivated by the corresponding copying prob-

lem (SSS to be reviewed).

3. Give practice in making elementary deductions based on the tri-

angle properties.

4. Begin to refihe the vague idea that "congruent figures can be

made to coincide" by introducing specific types of motions (slide,

turn, flip),

(a) physically,

(b) intuitively,

(c) in a grid or coordinate framework.

Rationale:

We continue the proce s of structuring or modeling space, begun

in Chapter 1. We conceive space not merely as structured in terms of

the points, lines and planes that fill up every part of it but as being

"homogeneous", as being everywhere the same. This vague language indi-

cates a key property of Euclidean geometry (and incidentally of the

classical non-Euclidean geometries): Figures can be copied freely in

space. The concept of replication is studied formally in this chapter

for triangles, but its wider application is indicated at least _I-

tively by exercises in which other types of figures appear.
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A related concept: Ruler and compass procedures enable us to

replicate the most fundamental figures, particularly triangles, but

they yield little for replication of figures in general. For this pur-

pose we need the thread of motions (or isometrics). A motion operates

on any figure to produce a congruent figure. We start to weave this

idea into our structure by introducing three typ s of isometry: trans-

lation, rotation, reflection (in a line?).

Outline

1. Congruence of segments, of angles.

Review and refine, emphasizing that two segments (or two angles)

are congruent if one is a copy of the other. Briefly review the

concrete process for copying segments and angles by ruler and

compass.

Connections Between Congruence and

Incidence Properties

Exercise 1; Given AB BC, can A, B, C be on a line? Must

A, B, C be on a line? Can A, E, C be in a

plane? Must they be in a plane? Why?

Exercise 2 Similarly for AB B C EC = CD.

Exercise Similarly for AB = BC, BC = CA.

Exercise 4: Similarly for AB .= B C T3 ; CD, CD =

Exercise 5: Similarly for AE = BC CD = DA

Exercise 6: Suppose AB = C D and A, E, C, D are on one line.

Must AC = BD? Can it? When?

Exercise 7: Suppose AB C D and AC ED. Can A, B, C, D be

on a line? Must they be?

Exercise 8: Suppose 0, A fixed and OA . OX. Where can X lie?
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Try similar problems for congruence of angles, e.g., involving

LAOB LBOC 7-1 ZCOA, etc,

Division of segments and angles into two congruent parts.

Define midpoint of a line segment and angle bisector.

Exercises: A set of finger exercises similar to those given

in Section 1.

A set of paper folding exercises along the lines

of the following:

Give triangles to be used as patterns (make

them rather large). They might be an acute scalene

triangle, an obtuse scalene triangle, a right scalene

triangle, an obtuse isosceles triangle, and an equi-

lateral triangle.

Note: They are not familiar with this terminology. Just give

them as a "random" set of triangles. Label each triangle by a

single capital letter in the interior of the triangle

(AIBIC,D,E).

Directions:

(1) Make two copies of each of thesc (by tracing, or by ruler

and protractor or by straight edge and compasses). Label

the interior of each copy by the letter corresponding to the

given figures and cut the triangles out.

(2) A median of a triangle is a line segments that joins a vertex
4

of a triangle to the midpoint of the opposite side. How many

medians does a triangle have? Take one of your triangles

that is labeled A and follow these steps:

) Fold to find the midpoint on one side. Do not fold the

whole paper. Just pinch the paper to indicate the mid-

point.

(b) Now fold the triangular region to show a median of the

triangle.
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Repeat (a) and ( for each of the other two sides of

the triangle.

Now follow these three steps for e ch of the triangles

labeled B, C, D, and E,

(3) An angle bisector of a triangle

(continue in manner of 2))

Note: Given the background of the students, it does not se

advisable to fold the altitudes and perpendicular bisectors

of the sides at this time.

3. Addition Property for Segments.

Suppose AB ; PQ, Bc QR, B is between A end CI and Q is

between P and R. Then AC PR. (Note: betweenness was intro-

duced in Chapter 1)

Motivated ( by using sticks; (h ) by applying compasses to test

AC PR in a drawing.

Exercise: Suppose Al3r PQ, BC QR. How are AC and PE

related?

(Accept answers using sticks pencils) drawings.)

Another version Suppose AB PQ, BC 74 QR. Must AC I PR?

Can AC be greater than PR? less then PR?

Query: Maybe last problem should be motivation for the topic.

Warning: Additivity is a simple property and intuitively very

familiar; it is merely one part of the geometrical postulate

"If equals are added to equala,the sums are equal:' Don't let its

essential simplicity get lost in the verbiage. Maybe refer to the

underlying idea as addition of sticks".
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Exercise 1: in figure, given AB 1 CD what can you conclude?

(b)

-*
A

*

A
I

Exercise 2: In figure, given AB = FG what can you conclude?

I -et *

A B C D E

(Note: make CD = DE and BC = EF in the diagram but do not

make this given information to see if the students are inferring

more than betweenness from the diagram.)

Exercise Similarly given AB = BC, BC = CD CD = DE.

A B C DE
Exercise 4: Similarly given

A

Exercise Similarly given QA . OAT AB = A'BT, BC =

10-1+F-10-ii-41-1-41-1-41H1-41H1+-.

B' A' OABC
4. Subtraction Property for Segments.

Suppose AC = PR, AB = PQ, B is between A and C, and Q

is between P and R. Then BC ; R. Treat lightly!

Exe-cise 1: In figure, given AC . BD what can you conClude?



Exercise 2: What can you conclude fro m (information indicated in

figure?

-0
A

Exercise What can you conclude:

A B C B E

Exercise What can you conclude?

A B C D E

Exercise 5 The same for

I *- --a
A B

Exercise The same for

B' A ' 0 A

(Note: This might suggest reflection of the line in point 0.

Will the students see it as the same exercise as Exercise 3?)

Addition and Subtraction Property for Angles.

Make this a parallel developMent to Sections 3 and 4; only do it

in one section.

Statement of Addition Property for Angles.

Suppose LABC = LPQR, LCBD = ZHU, BC is between UP and

BD, and QR is betw en a and Then LADD = LEIQS.

Treatment similar to Sections 3 and 4.

Note: Betweenness of rays is to be introduced in Chapter 1.
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6 Vertical Angles.

Try to use definition in terms of opposite ray. Also stress other

form (see MJHS, Vol. 1, p. 398).

uery Introduce opposite ray in Chapter 1 or here?

Geometric Property: Two vertical angl s are congruent.

Motivation: Construct a pair of vertical angles on cardboard, cut

out the angular regions and try to make them fit. Use scissors or

sticks to form dynamic models of vertical angles.

Give practice in picking out pairs of vertical angles.

Example: Find angle vertical to a giv- n one. How many

pairs of vertical angles are formed?

7. The Concept of Congruence.

Review the concept for figures in general. Find examples in

classroom; don't restrict to planar figures. Please make

examples of wire, cardboard, etc. Include some reference to

modeling: what is an exact copy; under mass production do we get

exact copies. Might refer to such things as printing presses,

boxes of screws, printed T.V. circuits automobiles, etc. See

also the chapter on Empirical Validity in Geometry in Basic Con-

cepts of Geometry by Prenowitz and Jordan (publisher, Blaisdell).

Exercise: Given a set of figures

717
) Find pairs which are congruent

(b) Discuss how to make them coincide by slide, turn, flip.

Include in this exercise examples that are not triangles some

wire models, some non-planar cardboard figures, etc.

Note: Possibly use color and keep examples simple.
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Congruence of a Figure with Itself.

Stress identity congruence as well as non-identity.

Work with isosceles triangles, equilateral triangles, rectangles,

circles, squares, hearts (cardioids to you!) scalene triangles,

regular polygons. Include some unbounded figures, friezes, etc.

wall paper patterns; tilings of a plane.

Refer to axes of symmetry; illustrate end discuss in class:

reflection symmetry, rotation symmetry, translation symmetry.

Exercises in finding axes of symmetry.

Exercise: Find the symmetries of each of the letters of the

alphabet. Perhaps standardize by using the capital

letters on a typewriter. Students could even'group

the letters according to their symmetries. See manu-

script "Mathematics of the Alphabet" submit ed by

Ranucci to SMEG Panel on Supplementary Publications.

Exercise: List the motions (symmetries) of a simple figure, e .
equilateral triangle, rectangle, square. What happens

if you combine two of these motions, that is follow

one by another?

9. Congruence of Triangles.

Review end refine definition; emphasize correspondence between

sets of vertices. Thus 6ABC 6PQR means AB, BC, AC,

LABC ; PQ, QR, PR, LPQR,

Practice in finding corresponding pa ts when certain ones are

given.
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10. The SSS Congruence Property of Triangles.

Use a written set of class exercises based on the contruction of

triangles given the three sides (See Grade 5, Chapter 4, pp. -19)4--

197). Have students compare results and see the congruence of the

triangles obtainecL

State and discuss the SSS congruence property.

Develop the construction for the bisector of an angle.

Exercise: What can be deduced fro

Exe e: Similarly these:

the given figure?

Exercise; Construct the three angle bisectors of several given

triangles.

11. The aAs Congruence Property of Triangles.

Use a written set of class exercises based on the construction of

triangles given two sides and the included angle. Have students

compare the results and see the congruence of the triangles

obtained.

tate and discu the SAS Congruence property,

Exercise: What can be deduced fro_ each of the following figures?

Include some where the order of SAS is not found:



Deduced Property: If two sides of a tri- gle are congruent then

the opposite angles are congruent.

12. The ASA Congruence Property of Triangl _

Use a written set of class exercises based on the construction of

triangles given two angles and the included side. Have students

compare their results and see the congruence of the triangles ob-

tained.

State and discuss the ASA Congruence Property.

Exercise: What can be deduced from the given figure?

Include some where the side is not included:

Deduced Property: If two angles of a triangle are congruent then

the opposite sides are congruent.

13. Motions by means of Co-ordinate system.

13.1 Sliding (translation)

Discuss sliding as a physical process. Slide a wire triangle on

a table top. Try giving different directions that still cause a

slide. Build up to the "neatness" of co-ordinatizing the situa-

tion.

Exercises: A series of problems with a given finite point set and

a mapping that determines a translation.

Example:

Map

A = (1,1 ) B 1,2 , C = (3 2)

A B

± 3 , Y)

(b) (x,y) y + 4)
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For each of these, plot A, B, C and Ar, BI, CT.

Draw nABC and 6ATB'C'. How are these triangles related?

Have the students orient one trian-Tle and see if the orientation

(see Chapter 1) has been changed.

1 .2 Turning (rotation)

Discuss turning as a physical process. Turn a wire trin/Igle on

a table top. Try giving different directions that still cause

a turn. Emphasize a fixed point for each turn.

Exencisea: A series of problems where the students are given two

finite point sets that are related by a rotation.

Have them plot the point sets and draw the figures.

Let them try to find how the second point set was

derived from the first.

Example:

A = (1,1), B = (1,2

C = (3,2)

= (-1,-1

C'

- (-1,-2)

-3,-2)

A' . (-1,1), BT -2,1)

C' = (-2,3)

= (1)-1), 9' ,-1),

Cr . (2,-

For each of these, plot A, B, C and A' Br, C'.

Draw AABC and WB'C'. How are these triangles related?

Have the students check to see if the sense of orientation has

changed. Have students locate fixed points of each turn.

13.3 Flipping (reflection).

Discuss flipping as a physical process. Flip a wire triangle on

a table top. Try choosing many different lines for the axis of
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the flips. Discuss the possibility of doing this by coordina lz-

ing the pishe in a "nea "manner (make the axis a coordinate

axis).

Ex rcises: Again use a series of problems where only the

vertices are actually transformed and then the

figures are drawn:

(a) (x,Y) (x/-Y);

(b) (x1Y) (-x/Y);

(c) (xpy) (ZY

(d) (xly) (-Y,- ).

Note the change in orientation under this transformation.

Perhaps give a brainhuster which involves a slide reflection.

Possibly include a problem where axis of reflection is x = 2

or y = -6.



GRADE 7 - CHAPTER 5

MEASURE

Purpose:

To introduce a metric for geoMetry. To review and extend the

concepts of linear measure and angular measure and extend to arc

measure. To work with the equivalence of polygonal regions N,Iithin

a plane on a non-numerical basis.

Rationale:

1. To begin further work with measure concepts early in the 7th grade.

2. To provide the tools to move from congruence to similarity.

3. To begin to develop the interrelations of measure and congruence

although this requires the real numbers for its full development.

4. To begin the Pythagorean Property for use in several other chapters

although it is hoped that this property will be re-investigated as

the students develop irrational numbers and the algebraic skills

for some alternate proofs of the property.

Background:

Extensive work with linear and angular measure is presently done

in Grades 4, 5 and 6. The terminology of nonmetric geometry. Con-

gruence of segments and polygonal regions. They have NOT had irrational

numbers of any form , 17, g, etc.)

Section 1. Linear Units of Measurement.

1.1 Linear Units of measurement
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A careful redevelopment of what is reant by linear units of mea-

surement. The last time this was done was in Grade 4, Chapter 9.

(It was reviewed briefly in Grade 5, Chapter 4, pp. 407-409.)

The concept needs to be redeveloped along the lines of MJHS Vol. 1,

pp. 249-251, 260-274 or ISSM Vol. 2, pp. 1-32. However, much less

detail and expansiveness should be necessary due to their back-

ground. Be sure to use the congruence concepts developed in

Chapter 4. Extend the concept of congruent segments to the idea

that congruent segments have equal measure. Discuss the idea

that every line segment has a measure. Tread (but lightly) on

the idea that this measure often is a number familiar to them

but that the measures of many line segments are numbers which

they have not studied yet. Until they meet these numbers, they

can only give such measures by approximation.

1.2 Applications of Linear Units.

Use of concept developed in 1.1. See the same reference for

many ideas. Add such things as the amount of wire needed to make

a 3--inch cube, etc. Might end with P "discovery" exercise for

the "perimeter" of a circle. Use some addiUvity of segments by

measure (see last chapter for adeJtivity using congruence). Per-

haps some WST exercises on the ArchimIdean Property (see bel w).

Consider the number line (with or without negative numbers):

0 1 2 3
172

Somewhere on this line appears a point with the coordinate 77 .

Even though we cannot place it on the number line as we have

started it above let us think about it on the line and answer

some questions:
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Continue marking off congruent unit segments from zero

and label the points they determine with the numbers

1, 2, 3, 4, 5, etc. What is the number on the point
172justbefore?Just after it? Which is closer?
39

(b) Start again with a segment of half the length of the

unit. Step it off on the number line and mark the

thus:successive steps

Segment

Unit Segment

1,

1
2

2, 3, etc.

1 2

1 0

[

1

11[

2

What is the label on the mark just before
172

? Just
39

after it? Which is closer?

Repeat the process of. (b) with a segment which is 0.1

the size of the unit. Again, with a segment 0.01 the

length; and then 0.001 the length.

1.3 Linear measure and circles.

A brief review of circles and segments associated with circles

(see Grade 4 Chapter 5 and Grade 6, Chapter 9). An initial

development of the circumference of a circle and the number

(see MJHS Vol. 1, pp. 491-500 and 1SSM Vol. 2, pp. 181-187).

Exercise: (Please get s me real facts!)

The park ranger stated that this stand of redwoods has an average

diameter of 4.2 feet when measured 6 feet from the ground.

The Colonel Molotov Tree has a diameter of 8.3 feet when measured

in the same way. Lots of "modeling" involved here. Might have them

find such things as: the average circumference of the trees; the

lengths of fences (to thwart souvenier hunters ) if the fences are

5 feet from the tree the lengths of semi-circular walks around

the trees, etc.
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Section 2. Angular and Arc Meas-re.

2.1 Angle measure.

This has been carefully developed in Grade Chapter 7 and re-

viewed slightly in Grade 6 Chapter 3. The development at this

time is essentially review but important. The vocabulary for

angles should be introduced (acute, right, obtuse). For refer-

ence, see WHS Vol. 1, pp. 287, 5 or ISSM Vol. 2 pp. 75-79,

90-c94.

Use some additivity of angles by measure.

2.2 The sum of the measures of the angles of a triangle.

This has been introduced as a property in Grade 6, Chapter 3.

It is needed for further work this year and should be restated

and its implications more carefully investigated.

Exercises:

An obtuse triangle is a triangle with one obtuse angle.

What can you say about the masures of the other angles?

(2) If the vertex angle of an isosceles triangle is 83°,

what is the measure of each of the other angles?

if One angle of an isosceles triangle is 70° what is

the measure of each of the other angles?

(4) If one angle of an isosceles triangle is 104° what is

the measure of each of the other angles?

An acute triangle is a triangle that contains three acute

angles. Could an acute triangle have two angles of 200

and 35-o ?

If one angle of an acute triangle is 15° what can you

say about the measure Of each of the other angles?



(7) A right triangle is a triangle that contains one right

angle. Could a right triangle contain two right angles?

Could a right triangle con'-in an obtuse angle? What can

you say about the other two angles of n right triangle?

(P) If one angle of a right triangle is 23, what is the

measure of each of the other angles?

(9) What is the measure of each of the angles of an isosceles

right triangle? An equilateral triangle?

(10) Find x: (Note: they do not have linear pairs yet)

(c)

2.3 Arc measure and central angles.

The terminology of arc and central angle has been started in Grade

6, Chapter 9, pp. 567-576 and is reviewed in ATHS Vol. 1, pp. 481-

486. The concept of an arc degree is new and might be developed

in ,he manner of WTHS Vol. 1, pp. 487-495. Be sure to introduce

semi-circles, quarter circles, etc.

105



Exercise:

500

Teacher suggestion for Sections 2.4 and 2.5:

Make a circle nailboard by placing nails around a circle every 10

or 15 degrees. Use rubber bands or string to help the students

see inscribed angles and the invariance of measure under certain

conditions.

2.4 A triangle inscribed in a semi-circle.

This section might be a set of exploratory exercises of this

nature:

Given: ABC inscribed in

circle 0 with 0

lying on AB, LB = 400

Problem: Find the measure of LC.

Solution:

x + x + 40 + 40 , 180

2x = 100

x = 50

LC = x 40 = 90

Repeat this basic problem for many different LB's. Try to get

to a student statement of the property: A trianle inscribed in

a semi-circle is a right triangle.

-101-

106



Ang icribec in -ircls.

Begin with a set of class exercises to "discove. the measure of

an inscribed angle fn terms of its intercepted arc.

Example Exercise:

(1) Draw a circle and with a protractor draw a central angle AOB
_o

such that AB

(2) Choose any point C on the circle and draw LACB. Measure

LACB with your protractor.

Choose any other point D on the circle and draw LADB.

Measure ZADB with your protractor.

(4) Repeat this procedure for at least four other points on the

circle.

Be certain to crystalize what is meant by "an inscribed angle."

Property; The measure of an inscribed angle is one-half the mea-

sure of its intercepted arc.

Discuss that this is not true if the vertex of the angle does not

lie on tAe circle.

Exercises:

(1) Find x:

45°

2 0

etc.
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Is LB ; LE)? Try to explain

or why not .

eTh
(3) LABC is an inscribed angle and ABC is a semi-circle.

What is the measure of LABC?

lY

(4) Draw a circle 0 and a diameter RS of this circle. If

A is any point on the circle, what is the measure of LRAS?

(5) Given: circle 0 with

diameter AB

= 1100

Find the measure of LAGO

and ZBOC and LACB.

(6) Draw a 2 inch line segment. Take a piece of cardboard with

a corner (right angle) and use it to draw as many right tri-

angles as you can with the 2 inch segment as the hypotenuse.

(Note: the hypotenuse of a right triangle is the side oppo-

site the right angle.

Example:

or or

What do you observe? (probable answer: it gets crowded)

(hopeful answer: the third vertex lies

on a circle )
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Suggestion:

The problem might profity be done in two stages:

(1) Draw the right trial. es. What do you observe?

gets crowded!)

(2) Repeat as in (1) but do not draw the right triangles.

Just mark the position of the third vertex. What do

you obscr e9 (The third vertex lies on a circle.)

The Pythagorean Property and Applications.

The background limitations here are formidable. However, this

topic has been developed in MJHS Vol. 2, pp. 192-205 or ISSM

Vol. 2, pp. 337-343.

In each of these refere ces the background limitations are

essentially the same as for this chapter so the developments

might well be comparable if these have been successful. Some

additional applications are listed below (the references contain

many good ones, too).

Exe cis :

Find x:

(b)

_104_
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(-) Find x:

(a)

9

Note: The problem 2B probably cannot be solved by the

students. Yet there is a unique solution. Might some

find this intere-ting?

A rectangle is a quadrilateral with four right angles. If

ABCD is a rectangle and AB = CD - 7 and AD = BC = 24,

find AC and BD.

(4) If ABCD is a rectangle and AC = 25 and BC = 15 find

the perimeter of ABCD.

Section 4. Equiv lence of Polygonal regions.

Some definition for equivalence must be given. Keep it very

simple. Possibly mention the relation to area measurement,but

stress the idea that one region could be used to exactly "cover"

the other.

4.1 Equivalent region building.

Intuitively develop feeling of a polygonal region in a plane,and

discuss what is meant by two polygonal regions being equivalent

but not necessarily congruent.



Develop -Ghe following problem carefully in the written text so that

the student learns the rules of this pazticulal set up.

Take four congruent equilateral triangular regions. Lay them on

your paper to form a polygonal region following these rules:

(1) No triangular regions overlap.

(2) Each triangular region has a common side with at least one

other triangular region.

When you get a polygonal region, draw its boundary on your paper.

Then, try to find another polygonal region formed by the same

rules that is not congruent to the first one. They should get:

These are the only three such non-congruent regions that meet the

requirements. stress that the regions are equivalent.

Exercises:

(1) Repeat the example problem using 5 such triangular regions.

(2) Repeat the example problem using 4 congruent square regions.

(3) Repeat the example problem using 5 congruent square regions.

Suggested extensions for those who find these intriguing:

( ) use 6, 7 8 -- triangular regions,

(b) use 6, 7, square regions,

use some number (3,4,5,) of regions which are con-

gruent regular pol:gons of mor sides.

Challenge Problem:

Use 6 congruent square regions to form equiralent polygonal

regions in the plane by following these rules:

(1) No square regions overlwor

1



Each square region has a common side -ith at least one other

square region-

No four square regions have a poin- in common.

(4) There are no more than four square regions "in a row."

This is the challenge: Find all such non-congruent, equivalent

polygonal regions (there are more than 20) and find a method

of convincing yourself that there are no more.

Tote:

Bonus:

There are 25 regions that fit the above rules (I think).

Exactly 12 of your above regions can be cut out and

folded along the common sides of thc- square regions to get a cube.

Find them.

4.2 Decomposing regular polygo--

Establish the intuitive feeling that every regular polygon has a

"center" and that by joining this center to each vertex, the regu-

lar polygon of n sides is decomposed into n congruent isosceles

triangles.

Exercises Give traceable patterns of regular polygons with the

centers and the line segments joining each vertex to

the center. Have students cut these out and arrange

them in a line. That is,

See if they recognize that the equivalent region so

formed is always either a parallelogram or a trape-

zoid. See if they can generalize to a regular poly-

gon of 71 or 72 sides.

4.3 Forming re- a-gular regions.

Discuss the "niceness" of measure as related to rectangular re-

gions (remind them of approach to finding area; i.e., covering

with square regions

_107_
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Exer Decomposing and doubling to get rectangles. Use

scissors encourage tracing regions think freely.

t--
EliV 0/1

I

I

Same ideas can be done with other familiar figures and with

some that are not common such as a cross.

Note: Two pos ible Challenge Sections.

(1) Decomposing regions with various goals; e.g., any triangle to

a parallelogram. Some of these could be extremely challenging

and certainly non-trivial.

_108-
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Develop some of these same equivalence ideas for spatial

regions.

Section 5. Greater than a geometric sense) for segments, angles,

planar regions, spatial regions.

Build situations where one set is a subset of another set of the

same type. Some exploratory development leading toward the prin-

ciple that the measure of a subset does not exceed the measure of

the super et.

Exercises'
_

(1) Segment AD is a subset of CD.

V

(2) The _Iterior of LFVG is a subset of the interior of LNIVN.

A
(3) Polygonal region ABCDEFGHA is a subset of curvilinear

region ABCFINA.

(4) If a sphere is inscribed in a cube, the spherical region is

a subset of the cubical region.
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GRADE 7 - CHAPTER 6

PATIO AND SIMILARITY

Purpose:

To infro-zce the idea of not-necessarily-equivalent-but-metrically-

related figures where one is a uniformly enlarged copy of the other--

similar figures, To exted the idea of ratio and proportion. To relate

the concept of geometrically similar figures to the more common usages

in which the similarity may not be exact. To generalize isometry trans-

formations to similarity transformations.

Rationale:

This chapter continues the process of structuring or modeling

physical sace begun in Chapter 1 (Nonmetrical Properties ) and con-

tinued in Chapter 4 (Congruence and Replication) and uses the metric

properties developed in Chapter 5 (Measure). Experience with physical

objects suggests a generalization of congruence in which one figure is

a magnified "copy" of another. This notion is idealized (modeled) in

the concept of similar figures -- a figure which is a "uniform" en-

lar,ement of another. The general definition (barely hi e n the

chapter) requires that the figures be related by a 1-1 _ mdence

which multiplies all distances by a fixed constant. Such correspon-

dences, called similarity mappings, form a generalization of the con-

cept of motion (or isometry).

Background ssurnptions l

The concept of congruence; congruence of angles; some sufficiency

theorems for congruence of triangles (SSS, SAS, ASA); the concept of

linear measure; planar co-ordinate systems.



tion 1. Magnification and Con raction:

Note: This section is to be exploratory -- the physical examples

and finger exercises are not to be developed or discussed at great

d, th. The geometric term "similarity' should not be used. The

student should be allowed and encouraged to range widely within

his experience for situations where some relatively pure magnifica-

tion or contraction has occurred. Rely strongly on the students'

intuitive belief that line segments will be transformed into line

segments.

1.1 A discussion of blowing balloons (with pictures on them), project-

ing a (on a surfe perpendicular to the projector), seeing

through a telescope, microscope, and binoculars, taking a picture

with a camera.

Exercises: A series of problems involving dilatation from a focal

point by drawing and using a numerical property (e.g.,

dIrections "go twice as far" or "go half as far".)

These should contain some pointwise dilatations for

straights (and curves?) and some closed polygons.

atudents may be working in two- or three-space

don't ask. A sample problem in detail occurs at the

(1)

end of this outline (Appendix A).

"half"



(b)

"half"

(4) Might include a problem using focal point but no numeri-

cal property to show change in shape. For example, show a

completed dilatation that was done incorrectly and have

students explain what was done wrong and what happened

differently as a result.

(5) Question for thought: do you see your pictures in these

exercises as being in two-space or three-space?

1.2 A continuation of the above ideas by introducing a co-ordinate

system to the plane and rsing the origin as the focal point. The

written discussion might develop this very car-2fully for one prob-

lem. Nice example of adopting a model for neatness and clarity.



Exercie- A series of problems involving dilatation by use of co-

ordinates and a numerical property (e.g directions

"double each co-ordinate" or "halve each co-ordinnte"

Be sure to use some ratios such as 1± for rational
3

number practice (but only on positive numbers at this

point). A sample problem occurs in detail at the end

of this outline (Appendix B).

"double"
(2, N = (2,(1) A (1,-1), B =

C - D = (4,2) R - (4,4), P - (8,)4)

Plot and draw ABCD

(2) A - (

Plot and draw MNOP

B - (-2,2) C = 0,-1

Plot and draw ABC

R P

"double" E 2,6),
F
G 0,-2)
Plot and draw EFG

Might include a problem where only one co-ordinate is doubled

to show change in shape. That is, double just the

ordinate and see the elongation.

(4) Might give two point sets where the points of one have been

reflected in the origin and doubled to get the other. Have

students graph each and see what happens. See if they can

discern the meiner in which the second point set was derived

from the first.

Check to see if the students recognize the focal points by

having them draw rays from the origin through +lie vertices

for a problem.
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Might have students draw some corresponding pairs of line

sernents in the similar figurt_ and _ry to compare their

relative pcwiti -s and sizes,

Section 2. The Concept of Similarity._

Note: This section Is still not definitive but is a mo/e refined

exploration..

2.1 Begin trying '0 refine the relationship 3f the figures worked with

in the first two sections. See if students can recognize similar

and non-similar figures and verbalize what they are looking for.

Give some emphasis to what is not sufficient for this relationship.

Exercises

(1) George's family moved into a new house and George told his

friends: "My new bedroom is similar to the old one except

that it is twice as big and has three windows instead of tWO".

Low is he using or misusing the geometric idea of similarity.

(2) Sarah said: "All people are similar: each has a head and two

arms and two Legs". How was she using the word "similar"?

3) Is what a person sees with corrective eyeglasses sitilar to

what he sees without his glasses?

(4) A science teacher tells his class that a certain apparatus

involving marbles and wires is similar to the solar system.

is it similar in the geometric sense of the word?

Give some sets of figures where the student is to try to

find similar figures and explain why he thinks they are

similar. Make some "--lose" enough to get arguments. (Build

the idea that we need something more than the eye or our

rulers )
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(6) Compare any two rectangles o they necessarily have this

similarity relationship we are looking for? (To build the

that angle congruence is not enough.)

(7) are not congruentCompare two equilateral quadrilaterals that

o they have this similarity relatilnship? (To build the

idea that "doubling" sides is not enough.)

Further refining of this similarity relationship through a compari-

son to congruence (developed in Chapter 4) and equivalence (de-

veloped in Chapter 7). Develop a need for properties of ratio and

proportion. Begin erfort to get a definitive statement of this

similarity relationship.

Exercises:

(1) Given a square

(2

Make a congruent figure and explain why you think it is

congruent.

(b ) Make an equivalent figure and explain why you think

is equivalent.

Make a similar figure and explain why you think it is

similar.

Repeat a, b c for a triangle and so e other shapes.

3 Given: two triangles ABC and RST

AB . 4 BC - 10, AC - 12, RS = 12.

) If these triangles are congruent, do you know the length

of ST? RT7



If these triangles ra similar, do you know the len

of ST? RT?

Given; two triangles ABC 2nd RST

AB = 4, BC = 10, .RS = 12

(a) if these triangles are congruent, do you know the length

of I7.? ST? RT?

If these triangles are similar, do you know the length

of AC? ST? AT?

Given; two triangles ABC and RST

AB = 3, BC = 4, ST =

If these triangles are congruent, do you _mow the length

of AC? ST? AT?

If these triangles are -imilar, do you know the length

of AC? St'? ET?

(6) Some explo atory _roblems relative to sufficiency situations;

e.g.,

(a) If three angles of one triangle are congruent to three

angles of another triangle, are the triangles similar?

Why or why not?

(b) If four.angles of one quadrilateral are congruent to

four angles of another quadrilateral, are the quadri-

laterals similar? Why or why not?

Section 3 Ratio and Proportion.

3.1 Develop the meaning of ratio and symbols for (rebuild from Grade 5

Chapter 9 but along the lines of MaIS Vol. 1, Chapter 9). Stress

different names for the same ratio (see same references). tise some

non-numerical ratios such as line segments.

Exercises: see references.



Dev-1 proportion as equ 1,ty of ratios.

2 P
Property. ad oc

Prop :ty: ad = be
a

b
if

Thciide a sequence equal ratios and the idea of a constant of

proportionalf=ty.

Example;
AB BC AC

Fc5
Ic

IT the measure of MN is 4, the measure of AB

(give a value for k in some problems but ac-, all).

Exercises:

Sec i

e Grade 5, Chapter 9

MJI-IS Vol. I, Chapter 9

Geometry, pp. 361-364

Definin, Smilarity0

4 I Formalize the definition of similarity for convex polygons

(corresponding angles congruent and corresponding sides propor-

tional),

Note: Do not stress the convex restriction. Broad definition

is mainly to allow similarity of squares. Discuss problem of

defining similarity for other figures (wiggly lines, simple

closed curves)0 Stress correspondence property.

Exercises:

1 Several problems where, given similar figures, the student

Qet-- up the correspondences.

(2) Some exploration of types of figures that are always similar:

pairs of isosceles right triangles, equilateral triangles,

30-60-90 triangles, squares, (regular tetrahedrons, cubes

Try to see why this is so and look for correspondences in more

than one way.



Discover the similarity of any two circles -- have students

try to explain why.

(4) Problems that require completing the proportions for similar

figures:

Section

AC ,13
If nABC LASTR then =

? ?

Sufficiency Properties for Triangles:

5 1 Exploratory work in class everybody draw a triangle (using

portrectors ) with certain given angles, and compare with neighbors.

Perhaps a written set of class exercises that wilJ lead to the idea

of AAA similarity.

Short w-itten discussion of sufficiency relate back to congruen

properties)

Statement of the AAA similarity property.

Exe i-es:

(1) Find similar triangles (a few short deductive sequences

and state the proportional sides e.g.:

(9) c) (d)

(2 ) Use the 1800 property for triangles to develop AA

similarity property.

(3) More finding similar triangles and stating prOportiOnal

sides:



(4) What is sufficient for two right triangles to be similar?

(7) What sufficient for two isosceles triangles to be similar.

6 Is there a congruence property like this simila ity proper

Why or why not?

(7) Brainbuste

Find similar triangles:

(b) Find x:

5.2 Exploratory exercises in class for SSS to be done "y construc-

tion or with sticks (e.g., take a triangle -- form a new triangle

by halving lengths). Again a set of written class problems might

be useful.

Short rehash on sufficiency (perhaps SSSS for quadrilaterals).

State SSS similarity property. Some more discussion on proper-

ties that contain three ratios rather than two.

Exercises:

(1) Are these triangles similar? If so, state the correspon-

dence of sides and angles.

(b)

24

4

7 AC BC AB(2) Given triangle ABC and triangle EST, F
RT RS

-State the similar triangles showing correspondence.

Given: AB - 5, AC = 3, CB ==, 7 and MN = 21, NO = 9,

MO . 15. Are there similar triangles? Show why or why not.
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Why are all equilateral triangles si J sr?

(5) Is the proportionality of two pairs of sides of isosceles

triangles suffic at f r similarity.

Is ther- a congruence property like this similarity p operty?

Discuss why or why not.

5,3 Exploratory Exercises in Class for SAS Similarity Proverty:

Statement of SAS property . r similarity. Bring hac'k propor-

tion property ad . be -4. if b 74 0 d / ()
b d

Exercis=

Are these ti lang similar? If so, __

involved.

(b)

the correspondences

20

12

(2) In triangles ABC and EST, A T and AC ,TS = AB .RT.

Are there similar triangles? If so, state the similarity.

If not, discuss what is lacki;7ig.

Does the line joining the midpoints of two sides of a tri-

angle form a new triangle that is similar to the original

triangle? Discuss why or why not.

(4) What 15 sufficient for two isosceles triangles to be simila ?

(5) is there a congruence property like this similarity property?

Discuss why or why not.

5.4 Add corresponding lines to two similar triangles such as medians,

altitudes, angle bisectors, midlines and consider how they are

related. Use this to review all three similarity properties and

to reinforce the concept of similarity as being ratio-preserving

_,Jr all corresponding linear parts.
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(This section might be too difficult, but it is worth a try after

they preceeding work.)

Exercises;

(1)

Given: LABC - IvllW, AX and MY are angle bisectors.

What can you deduce?

Given; LABC LMNO, DS and NT medians.

What can you deduce?

Might sneak in some questions relat:Ne to ratios of areas

for two similar figures (such as squares

Section 6. Si ile-ity Mappings.

6.1 Find the similar triangles implied in Section 1.1. Go back to

these and set up a mathematical model in which similar triangles

can be found. Also use some old chestnuts like the height of the

flagpole, the tennis serve, the river width, me and my shadow

versus the tree (these are_not "old" to them).

6.2 A thorough discussion of local maps as models for local geography

(not stereographic maps, etc). A careful consideration of the

limitations of the maps as models and what similarity (in the

pure geometric sense) can be assumed. Thought should be given to

hills and valleys, r-Iver paths, highway jogs, etc. and how these

cppear on the map. Teachers should be encouraged to brin: in some

local maps so the students can compare to an area they are "bicycle-

familiar" with.
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Working with scaJe dra.,ing and blue prints (see WTHS, Vol.

-189). Add some discussion of ratios of non-equlvalent

nt comparable units (e.g., 1 foct to 1 m_le is not 1:1 but

1:5280), Careful attention to how exact tle "similarities" of

blue prints and scale drawings are.

6.4 1;ntural place for some right angle trigonometry -- maybe just

the tangent.



GRADE 7 - CHAPTER 6

APPENDIX A

1.1 Sample Problem in Detail:

Note: This problem would probably appear in --he latter half of

the problem set. However, figures might generally be non over

lapping. A

Given:

( b

(d)

Reproduce the given figure on your paper (by tracing if

necedsary).

Draw OBI OD, and OC.

Measure GA with a ruler. Multiply the length by

and select a point R on such that OR = OA,

Measure OB with a ruler. Multiply the length by

and select a point S on OB such that OS = OB.

Measure OC with a ruler. Multiply the length by

and select a point T on OC such that OT 7 OC.

Measure OD with a ruler. Multiply the length by

and select a point U on OD such that OU OD.
2

g Draw the polygon RSTU.

(h) Give some explanation of how ABCD and RSTU are re-

lated. (Note: not to be included in all problems.
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GRADE 7 - CHAFTE

APPENDIX B

Sample Problem in Detail:

6

'Note; This would be a problem found in the latter half of the

problem set. The exact terminology and symbols are dependent on

preceeding development,

Given7 A co-ordinate system with the point set M A,B,C,D,E)

where A (1,2), 2,3) C D = (3,-2),

(i3O),

not to
related.

be

Draw OR, 6'11 and 0 is the
-->

Make a gr_ -h of M.

Draw the polygon ABODE.

Form a second point set N = EIS,. U where

1y) -) (4)(14y) and A R1 B D

E W0 (That isl the eo-ordinates of R,S)T,U,W are

respectively four times those of A,B4O,D,E)

Make a graph of N on the same co-ordinate system.

(Note: In earlier problems, N might be graphed in a

second co-ordinate system to avoid overlapping figures.

Draw the polygon RSTUW.

Give some explanation of how ABODE and RSTUW are

included

on all
gin.

problems ,-(h) What do you seem to observe about these rays?



GRADE 7 CHAPTER 6

APPENDIX C

NOTE ON PERCENTAGE

After the concepts of ratio and proportion are developed in the

early part of th_ chapter in connection with similarity, the following

treatment may be used to develop a comprehensive view of percentage,

Since 38% we may write a percent as a ratio, The
100

following prdblems will illustrate how we may now work with ratios as

percents.

Example 1: A movie theatre has 960 seats. If 15% of these seats

are in the reserved section, how many seats are in the reserved section?

seats

Let n represent the number of seats in the reserved section,

know that the ratio of reserved se_ to the total number
15

100

Also, the ratio of reserved seats to the total number of
fl

960

Since =
L
ioo

and
960

are different names for the same ratio, then

n

100 960

Example 2: The enrollment of a school is 950 students, Of these

228 are freshmen. What percent of the total school population is the

number of freshmen?

Let n represent the number of perent of freshmen.

We know that
10
.11 represents the ratio of the number of fres en
0

AD the total school population.



Also, the ratio of the number of freshmen to the total lool

228
population is

950

Since and
100 950

have

Example

are different names

n 228

100 950

same ratio we

man found tha he - ved 5768 one year. If this was

of his total income for the year, what was his total income?

fJet n represent the man's total income.

768
We know that represents the ratio of the savings to total

income0

Also,

8

100
represents the ratio of the s vings to total income,

768 8

100

The above three problem types include almost all significant

problem types that the student is likely to encounter in percentage.

The percentage concept and its applications should be applied

throughout

Some applications will occur in (7-VII 8-1 (8-TV )) (8-V1).



GRADE 7 - CHAPTER 8

Backgroun_

Fro_ Chapter 2: Opposite function. Opp: x -x

Chapter 3: Addition and Subtraction of any two rationals,

Percent

Chapter 6- Similar triangles

Objectives:

1. Multiplication of any two rationals.

2. The class of functions f X -4 mx for all rational

3. Absolute value function.

Rationale: WST; hopefully this will be evident from the ensuing

outline.

5.1 Review of negative rationals as

a set of numbers. Opposite func-

tion and its graph

Opp(x)

Opp: x -+-x

Observe that plotting a number of

points on this function, we seem to

obtain a straight line. Essay a

proof using similar triangles.

2 Multiplication of a positive rational by a negative rational.

(For a similar but alternate treatment see Appendix to Cha ter

3, Alternate version.)
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P. general ration le is exemplified by tie _ llowing:

Let us sorisicie r the followin- reasonable situation A man . who

lives on The west side of town starts walking eastward, along the

main street of the town, at the rate of 2 miles per hour, At

noon he reaches the very center of town. Natural questions are:

Wheye will he be at 1 PM, at. 2 PM, at 3 PM? Wherelsas he at 11 AM,

at ]=0 AM? ff he started at 930 AM,where did he live?

A natural model, the number line suggests itself:

930 1 11 Noon 1 pm 2 pm

WEST Center of
Town

-3 -24 -2 -1 0

A simple application of the law that says;

2

Distance traveled in miles in the time of T hours = Rate in

miles per hour X Time in hours traveled, or more briefly,

P = R In this case D = 2T tells us that at 1 PM he is

2 miles east of the center of the town, at 2 PM he is 4

miles, and at 3 PM he is 6 miles east of the center of town

Another model for way of representing our situation is to regard

distance traveled as a function,

D T -2T, which expresses the

as-ociation of time traveled,with

2T, the distance in miles traveled

in T hours at the rate of 2

miles per hour,

Let us make a graph of thls function,

The origin. corresponds to the man's

location at noon the center of town.

We shall plot several points. We
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note an important result: The points appear to lie on a straight

lineL If we draw in the straight line, we may use it to read off

other values. Suppose we wish to see how far our man has gone in,
1

ay, 10 minutes or hours. Our graph tell- us: miles. Of
3

1 1
course we can check this = 2 X 8 The graph not only gives us

a picture of how the distance traveled changes with time, but also

permits us to obtain more information without further calculation.

Now let us think about the question

"Where was our man at 11 AM?" Surely

he was west of the center of town,and

indeed since 11 AM is 1 hour before

noon, he was 2 miles west of the

center of town. On the model which

expresses our function D T

this suggests that the time 11 AM

should be represented by (-1)

(1 hour before noon) and the distance

from the center of town is 2 miles

west or -2. Thus we plot the point

(-1,-2) to represent the information

that 1 hour before noon he was 2

miles west of the center of town. In

the same way the point (-2,-4) de-

notes the fact that 2 hours before noon 10 AM is represented by

the negative number ) our man was 4 miles west of the center

of town (4 miles west is represented by the negative number -4)

In the same way (-3,-6) would denote the fact that at 9 AM he

was 6 miles west of the center of town. Of course, he began his

walk at (9:30 AM, so (-3,-6) does not represent an attained posi-

tion.



Now we observe that the points -4) and (-3 -6) lie on the

extension of the line we have drawn. (An argument via similar tri-

ancrles could be given here.) And so, by extending the line, we

could obtain further information without further calculation. Thus

5
we find that the point ( 7.-5) lies on this line. The point

- 2 -9) corresponds to the fact that or 2 1 hours before
2' 2

noon (9:30 AM),our man was 5 miles west of the center of town.
1

And, of course, we can check that, since in 2 7 hours he can

walk 2 x 2 = 5 miles; thus he must have started 5 miles west

of the center of town.

But now what of all this? By using negative numbers to represent

times before noon and Miles west of the center of town in our

distance function D : T -2T, we conclude that 2(-1) = -2 and

2 (-2) = -4 and 2(- ) = -5

Let us now consider some other examples of multiplication. Sup-
1

pose the man had been crawling at miles per hour. What then?
2

. We plot several points. Again we find that they lie on a

straight line.

"Carry On"



Extend to

53 Graphs of multiplication by a positive rational number.

1 7
From the D = RT example go to multiplication by 3, , 5, and

generalize to multiplication by m(m > 0). First do for mx for

positive x and then extend line into Third Quadrant. Plot lots

of points and obtain a little drill in the multiplication of

rationals. Denote numbers botn by fractions and by decimals.

Multiplication by m(m > 1)

by 1(m = 1) (the identity function

by m(m < 1)
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Ex-nnion 1n,, Third QuadrF-It

-b =

-

in rule: If a >0 and b >0 t_en

5.4 Multiplica ion of _ a positive by a negative and the distributive

law.

From the dist ibutive law: Since ab Ha(-b) = a(b (-b) )= a 0

= 0

Then a(-b)

Some space should be given here to the mathematinal philosophy of

what laws a system of numbers should obey and the fact that the

rules we have for multiplication are merely definitions, albeit

ones which were suggested in a natural way .

5.5 Multiplication by a negative rational.

Now 'hat we have multiplication of a po itive by a negative we

can consider the function f x -2)x when positdve .

Plot points of this form: (x -2x) when x is positive. This

leads to a line in the Fourth Quadrant. Many of the

previous sections can be repeated.

teps in the

Point out -Mat the opposite function is also multiplication by -1.

Extend line for x -2x into Fourth Quadrant.

Obtain Rule: If 0 and b > 0 then (-a)(
)

Use distributive law to show agreement of this result. Point out

that this derivation yields rule:

32-
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For =2.1 rationals, (-a)(-b) ab and (-a)b = ab). Check

all cases with the previously graphed functions. (A discu _ion

of how many cases will arise is an interesting combinatorial

problem.)

Establish commutativity of multiplication for the rationals.

5.6 Addition and subtraction revisited. Use -a =, (-1

Example:

-2 -3 = -2 A- (-3) = (-1)2 -1)3 = (-1)(2 ± 3) = (-1) 5

5.7 More on Opposite function

= -1) ( -2, -

Opp, (x 1); its gaph

5,8 Absolute value fun tion; their graphs.

X !Xi

x --) 12x1 = 1-2xl = 2

5,9 Applications.

x lx 11 x x1

x --x11 I

12 x -2

Any you can think of, but certainly percent deerease problems.

5.10 Graphing x ->ax b; the role of the parameters a and b.

Discuss the cases:

(1) a = 0 (3) a = 1, b < 0

(2) a = 1, b 0 (4) a > 0, b > 0



(7)

(6) a

b < 0

b > 0

Slope and intercept.

(7) a < 0,
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GRADE 7 CHAPTER 8

(Alternate Version)

(To ac ompany "Alternate Versions" of Chapters

GRAPHS OF LINEAR FUNCTIONS; VARIATION

Backgrrund:

1. Addition, subtraction, multiplication and division of rational of

rational nuMbers.

2. An introduction to "percent" function the opposite function the

absolute value function.

3. Coordinates, graphs of linear functions in the first quadrant.

4. Solutions of mathematical sentences.

7. Ratio and Sm1larity

RatlJnale:

This chapter will extend the concepts of functions and graphing

presented in Chapter 2. The operations with rational numbers will be

available from Chapter 3 along with beginning techniques for solution

of mathematical sentences. Ratio and Similarity also provide a realis-

tic background for the discussion of slope and concurrency.

Purpose:

1. To provide some understanding of and some skill in graphing func-

tions of the form f : x mx + b.

2. To provide a strong graphical background for the solutions of sys-

tems of sentences by Linear Combination.

To provide a background of Variation as a function, graphical re-

presentation and applications.

7135-
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Section Graphs of Functions

1,1 Review briefly the r ngular coordina-e system and association

of points with their coordinstes

1.2 Graphs of Functions with restricted domains.

Example 1: Graph the following four functions on the same c-ordi-

nate axes:

(I) S 2x, 0 < x < 2

(2) M : x 2 < x <
9 -

( 3) 0 X 2x - 8, 4 < x < 6

(4) G 2x - 14, 7 < x < 9

Example 2: Graph the following function:

T : s s
2

0 < s (tie in Area Function)

Example Graph the following function:

K

0 < x <

-2 < x < 0

4 < x < 6

Example 4: Graph the following function:

x, x > 0

< 0

Section 2. Slope and Intercep

2.1 Review graphing of linear functions in first quadrant.

2.2 Expe imentally develop concept of slope.

Example: Draw the graphs of the following functions on the same

coordinate axes.

S x x

L x 3x 1
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O x

3x - L.

x x + 5

Ask sudents to select two arbitrary points on each line (probably

a lattice points to start with) and t',en write the ratio of the

difference of the y coordinates to the difference of the x

coordinates for each pair of points. (Select additional points

and repeat process). Have students identify the coordinates of

the points wherc2 these lines cross the x and y-axes.

Example: Continue the same process with several sets of functions

f : x b where m and b assume many different rational

values.

2.3 From the students work in Section 2.2 abstract a simple notion of

slope in terms of the change in the y end x coordinates of

points on the graph of a linear function and the notion of the

y-intercept.

Discuss slopes of linear functions f y and lines parallel

to the vertical axis. (WST) Discuss slopes of parallel lines and

intersecting lines.

Prove: 3 points are collinear if t,he slopes of segments deter-

mined by them are the same.

Section A closer Look at Slope-.

3.1 Discuss the cases f : x -mix b

(1) m = 0

(2) m = 1 and m -1, b > 0

> 0 where b > 0

< 0 where b > 0

m = 1 end m = -1 where b < 0



(6) m > 0 where b < 0

7) rn<0 where b < 0

3.2 Discuss (4'1) the idea of increasing and decreasing linear

functions.

3.3 Discuss, in particular, f x in terms of m beina a

"multiplier as in the function for distance, rate and time

d t rt

How the graph of this function

changes when r is doubled,

halved increased by 2, etc.,

can be investigated.

Another example:

Consider the function A : w .ew

2

Section 4. Variation: (See MFJES Vol. 2, Part 2, pp. 392-411)

4 1 Di-ect variation d x kx with applJ1cations and graphs.

4.2 Inverse variation I x x

4.3 Other kinds of variation S ; x 0 0 0

Section 5 . Discuss solutions of eluation,

3x 2 - 5x - 3 by graphing

f x x A- 2

7x 3

Section 6. Scale drawings as a function with applications.

(See ref. above.

1
S x x etc.

(Tie in with Chapters on Measure, Rates and Similarity).
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GRADE 7 - CHAPTER

(Alternate version)

APPENDIX

Subtitle: A simple minded motivated approach to the multiplication of

negative numbers.

We wish to define multiplication for all rational numbers. When

this is done, and their basic properties investigated we shall have

developed a mathematical system which is sufficiently strong to solve

a wide variety of useful problems. In 'earlier sections we have seen

that we could add and subtract any two rational numbers to good ad-

vantage, although the rules for doing so were rather complicated. We

may expect that the rules for multiplication are also complicated, It

a pleasant relief to l'.3arn that they are not quite as bad as the

ones for addition. One might feel that if mathematicians were worth

their salt they would devise ways of doing these arithmetic operations

more easily, but it turns out that if we want to define addition and

multiplication so that the nice properties we found for the positive

numbers are satisfied there is really only one way to do this. This

important theorem we shall not prove here. Rather, we shall spend our

time trying to show the naturalness of our definitions. There is no

need for secrecy, as far as the definitions themselves go. We shall

define multiplication so that

(-a)b = -(ab) = a(-b ) and = ab.

Thus (-2)3 . -6 (-3)2 . -6 and (-2)(-3) = 6.

Fortunately these definitions can be interpreted physically; in-

deed the need for these mathematical manipulations arises in all sorts

of mathematical applications and we should want our definitions to re-

flect this. We shall consider an example albeit a somewhat artificial



one in an

definition-

empt to give a natural motivation for our mathematical

Example l The Weather Bureau reports that it is now 0 degrees

Fahrenheit (0°F) and that for several hours the temperature has been

steadily rising at the rate of 2 per hour. They forecast that this

rise w=,.11 continue throughout the day. Assuming this forecast to be

correct- a number of natural questions arise: What will the tempera-

ture be one hour from now, 2 hours from now, 3 hours from now? What

was the temperature one hour before now, 2 hours before now? If the

minimum temperature ece.fred hours before now, what was it?0

The answers to these questions are intuitively easy: One hour

from now the temperature will be 20 above zero, 2 hours from now

the temperature will_ be 4
o

above zero and 3 hours from now the

temperature will be 60 above zero. How about before now? Since the

temperature is rising, it must have been colder one hour ago. Indeed,

since the change in the temperature is a rise of 20 an hour, it must

be that one hour before now the temperature was 2 below zero, or

Similarly, two hours ago the temperature was -4
o

and 2 hours
2

ago it was -70 . Let us represent this data in a table:

Time Temperature in degrees

Now

1 hour from now 2

2 hours from now 4

3 hours from now 6

1 hour before now -2

2 hours before now -4

2 1 hrs before now
2 -5

It is clear that the top half of our table is constructed by multiplying

the number of hours from now by the rate ab which the temperature is

increasing. In symbols; Temp = 2 -Time, or in a more abbreviated form,

if we let F stand for the temperature in degrees Fahrenheit and T

for the time passed in hours we have a formula: F = 2T.
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The important observation to make in this: We can stil use this

rule for determining the bottom half of the table if we make two other

interpretations. To begin with, let us use a negative number to repre-

sent time before now. Thus we denote, one hour ago as -1, 2 hours

b fore now we denote as -2, and so on. Remember, the temperature is

rising at the rate of 2° per hour and we have interpreted this as a

positive 2. Thus if the rule F = 2T is to hold here it must be

that 2(-1) = That is we must define

2(-1) -2

and similarly that 2(-2) -4 and 2(-2 More generally we

will want to define

If b >0 then 2b).

Under this definition the fu mule F --,- 2T holds for all of the table.

The rule F 2T is an indication that once again, a function is

at work in the background. The function is the association of time,

T, with the temperature at time T.

T 2T

The association works as follows:

hours from now)
-3 -2

e ) T

(now)
-1 0

+(hours from now)
6

F -,-. 2T

-(below zero) + (above zero)

.-J-----E---' r ___ _1_ , _------La L i
_ -1 i 2 3 4

(Temp) F
Degrees Fahrenheit

Draw in some more arrows to show how the numbers are associated by the

funci-A en



If we plot the pairs (T,2T) the graph of

the function T looks like this. You

should plot some other points of the graph

of this function, especially choose rational

values for T between 0 and 4.

2T

1/2

3/4

2/3

5/4 5/2

This graph gives us in essence a

picture of multipli ation by 2.

It is important to note that in

the first quadrant the points lie

on a line.

Let us draw in the suggested

line. If we extend this line into

the third quadrant we find that the

points (-1,-2), (-2,-4) (-2

lie on this line. Thus, once more,

we agree that the line should picture

multiplication by 2, that is, the

points on the whole line should be

of the form (T,2T) and we are

forced to define

2(-1 etc.,

and in general

If b > 0 then 2(-b )

(-4,2 2-1-)
1,

In the rule 2 (-b) = 2b) what happens if we let b equal -1?

(-b) becomes (-(-1)) . 1. And so 2(-b) equals 2. Now what about

-(2b) if b equals -1? Is it true that 2 -[2(-1)]? Now



2( - = -2 what we have just learned, and so the question becomes,

does P -(-2)7 This answer is of course YES, Thus, by very similar

argument- for the general L_ se, 2(-b' 2b) for all b, positive

zero, or nega ive

Bot let us consider a second and colder example:

Example 2: The Weather Bureau reports that it is now 0° F and that

the temperature is steadily falling (decreasing) at the rate of 2° F

an hour.

Again we can ask the "natural" questions: What will the tempera-

ture be one hour from now, 2 hours from now, 3 hours from now; what
I

was it one hour before now, 2 hours before now, 2 hours before now?

Again the answers are easy to determine and we list, our results in

a table just as before.

Time Temp-rature in degrees

Now 0

1 hour from now -2 (2 degrees below zero

2 hours from now -4

3 hours from now -6

hour before now

2 hours before now
1

2 hrs before now_

2 (2 degrees above zero

4

5

Our arguments for these calculations are similar to the ones in

Example 1 except that in this problem it is getting colder, tempera-

ture decreases. Can we use the rule F 2T? NOL -- And we shouldn't

expect that rule to work since "+2" was used to represent an in-

crease in temperature. Therefore it is natural to use (-2) to de-

note a decreasing rate of changing temperature. Thus our rule should

now ecome

F = (-2 )T.

If this is our rule, then it tells us that one hour from now the

relation -2 = (-2 )1 should hold. The rule should give us for the



relation holding two hours from now that -4 . (-2 and 3 hours

from now that -6 . (-2)3. In general, a hours from now -(2a ) (-2)a

Thus we are led to the general rule for multiplication

If b >0 then (-2 )b = -(2b).

Now what about the rule F = (-2)T = -(2T) for the bottom half

of the table? One hour before now the temperature was 20 above zero

(+2). Again we must interpret time before now as a negative number; one

hour before now is represented by -1. And if cir rule F = (-2)T is

to hold for this case it must be that

2 = (-2)(-1

If we make this definition then the rule F = (-2 )T will hold. Si i-

Iarly, we define (-2)(-2) = 4 and (-2)

have

If b > 0 then = 2b.

. 5. In general we

With this definition the rule F = (-2)T holds for the entire table

given in Example 2.

Again this rule means that a function is at work. The filn_ i

associates T (-2)T and it can be displayed as follows:

now

-2 -1 0
_

2

-2

Draw in some more lines:

-1 0 1
1 T

4 5
(temp)



As before let us plot some

points corresponding to the

entries in the table. Again

they appear to lie on a

straight line in the next

figure The points corres-

ponding to entries from the

top half of the table appear

in the fourth quadrant; the

poir corresponding to

entries from the bottom half

of the table appear in the second

quadrant.

This graph gives us picture of

multiplying numbers by (-2).

Again we see that it is natural

to define (-2)(-1)

(-2)(-2) = 4 and so on.

In general:

If b > 0 then (-2

Our rules thus far are:

1. 2(-b)

2. (-2 )b = - (2b) if b >0

(-2 )(-b) 2b if b > 0.

-14
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e ruis an.: 2 ressmole eacn ot sr and speakng loos -y, they say

tna, we car. sade a minus sicr:- from one factor to another, of take

17- outt de the parenthes s

We :.en in fact show that 2 ana 3 hold for all b, positive or

negative -- or zero. For example, in 3 if we try using a negative

number for b, say b - (and thus -b v)

ahd thus by I we can conclude that 3

ge+. --)(3) = 2 -3)
But this is just

the result of 2 when b 3. Thus we can see that 3 holds for b = -3,

similarly we can see that 3 holds for all b, In just the same way

ws can show that 2 holds for all b.

Now it must be easy to see that in either of our examples if we

had chanced the rate of tempe -ise or fall the resulting rules

or multiplicati-on would nave been the same. That the actual value

had nothing to do -with the real part of our reasoning. However it

is still informative to sketch the development from the function and

graphing point of view1 and to see the effect of multiplication by

various numbers For example, let us replace -21- by

Let us consider the function x =)x

Plot some points in the first quadrant and then draw th2 line

extending It into the third quadrant. Now plot come points which

should fall into the third quadrant. Do they fall on the line? N 7-

read some point from the line. If your point is, ay, (c,d) is

1
d
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Compare the graphs of the functions x x ->x, and
tl

x )x. It may be helpful to plot all three graphs on the same

figure.

1Now consider the function x
/ \

Plot points and se

whether they seem to fall on a line. They shouid Carry out the

same investigations as with the previous example.

When you are done compare the graphs of the functions

x -4 -2x x -x and

A general query: If a > 1, where will the graph of x -4ax lie

in comparison with x o-x. What if 0 < a < 1?

If a < -1 compare the graphs of x -4 ax and x -÷-x.

If -1 < a < 0 compare the graphs of x -ax and x

From these examples and their obvious extensions to all rational

numbers we obtain the following rules as the basis of multiplication

on the set of all rational number.

1. -b) = -(ab)

2. (-a)b = -(ab)

(- (-b ) = ab



Another possible explanation of these rules lies in an application

of the distributive law. If the distributive law is to hold for our

numbers then we can argue as follows:

0 - 2 -0 - 2(1 + (-1)) = 2 1 + 2(-1) - 2 + 2(-1).

Since 0 . 2 + 2(-1) it is clear that we must have 2(-1) = -2.

Similarly, since 0 = 0 .1 = (2 + (-2)) . 1 = 2 1 (-2) -1= 2 + (-2) .1

it is clear that (-2 ) 1 . -2. Knowing these two results we have

0 = -2 0 )(1 (-1)) -2) 1 + ( -2) (-1) .

Now since (-2) -1 , -2 we have that 0 - -2 + (-2)(-1). Thus

(-2)(-1) = 2.

We can of course perform these arguments more generally by replac-

ing 2 by a and 1 by b to obtain derivations of the three rules

above from the distributive law applied to negative numbers.

Perhaps a more important observation for us is that similar calcu-

lations provide a proof of the distributive law for all rational num-

bers, if we have defined our multiplication already by the three rules

above.

Finally there is a nice interpretation of these laws in terms

of area. The area of rectangle

PUB is b(A + (-a)). On the

other hand it is

Area of PVTS - Area of QVTR

or

A - ba.

Hence b(A (-a)) = hA - ba.

But from distributivity again we

have

b (A 4- (-a)) bA b(-

Hence b(-a) = - (ba).
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GRADE 7 - CHAPTER 9

SOLUTIONS OF SYSTEMS OF EQUATIONS AND INEQUALITIES

Bakground Ass_ ptions:

1 Rational numbers with the four fundamental operations.

2. Graphing of linear functions.

3. Familiarity with terms half-line, half-plane, interse tion of

lines etc.

4 Solution of simple equations and simple verbal problems.

5 Set language, including "union" and "intersection".

Ra-tonale:

Introduce a problem for which it is convenient to use two vari-

ables and write two equations, as motivation for the solution of sys-

tems of equations. Graphic solution is developed, then a need is

created for an algebraic solution to deti. -1.th problems whose solu-

tions are not integral. For this purpo: the "comparison" method is

introduced.

Systems leading to parallel or to coincident lines will be con-

sidered. Graphs of simple inequalities will be discussed, as a back-

ground for later work in linear programming.

Purpose:

1. To extend the student knowledge of graphs to enable him to

solve certain types of problems.

2. To show how algebraic methods can sometimes be of help in

getting a more exact result than is possible through graphs.



To consider intuitively systems for which the solution set is

either 0 or an infinite set, thus leading to parallelism in

a later chapter.

To develop better understandlng of simple inequalities through

graphing their solution sets in the coordinate plane.

To r inforce concepts of union and intersection of sets.

Procedureg

Section l, Solvi g systems of equationsg

l.1 introduce a simple problem which is more easily solved by

writing two equations then by confining oneself to a single

equation,

13-blem; Mary bought 3 notebooks and 5 pencils and paid

70 cents; John bought 2 notebooks and 10 pencils,

of the same kinds, and paid 80 cents. What was the

price of one notebook?

Point out that if notebooks cost x cents each, and pencils

cost y cents each, we can write the two sentences

3x 5y = 70

2x lOy = 80 .

Now we need to discuss what,this means in terms of the solu-

tion leing an ordered pair that satisfies both equations;

the intersection of the solution seto

1.2 To graph the equations and thus find the intersections of the

graphs, it is convenient to write the "y-form" of each --

in each case we write a rule for a function which assigns to

each x a value for y which gives a point (x,y) on the

line. Thus we have:
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Y = x ± 14

1
y - 5 x ± 8

1,3 We graph the two equations (see 9H, pp. 789-792) and find that

they inte7sect at (15 Thus the price of one notebook is

15 cents,

1.4 Here point out that, since at the intersection the ordered

pair is the same for each equation, we could have bypassed the

graph and moved from the two equations in 1,2 to the equation

in one variable

1
x A- 14 - 7 x 4- 8

Solving algebraically leads us to the solution 15, and thus

to 15 cents as the price of a notebook.

Following some practice on equations with integral solutions,

lead into ones whose solutions are not integral, to emphasize

the need for the algebraic method.

Section 2. Systems which do not have unique solut±on

2.1 Have a student graph such a system

y = 3x 2

1. y = 3x - 5

Look for intersection and observe none. Students will probably

see that the lines have sameslope -- promise discussion of

parallel lines in a later chapter.

2.2 Look at algebraic solution of the system above:

3x 2 = 3x 5 .

Note that its solution set is



Now give him one like

r 2x ± 3y -= 6

i4x ± 6y = 12

to graph. In puttinE into the yform, he gets the same equation

for both, hence only one line. Here slopes and y-intercept are

correspondingly equal.

Point out algebraic solution gives equation

2

which is true for all values of x. Solution set is line
2y = - X R.
3

Section 3. Graphs of Inequtji ies: (F C., pp. 418-421; 9H, pp. 752-

760)

3.1 Discuss graph of x > 2 as answer to question "where are all of

the points which represent

ordered pairs such that the

first coordinate is greater

than 2?" Here noint out

that a half-plane is involved,

and discuss how to indicate it

by shading, and that the line

x = 2 should be a dash line t

indicate that it is not included.

3.2 Show that the graph of x > 2 is

the union of the half-plane x > 2

and the line x = 2. Then provide

practice on others of this sort -

such as y < 3 y > 4, x < 8, etc.



3.3 What about graph of y > x, y < x y > 2x? etc.? Discuss

these in terms of hall-planes with edge y =

3.4 Consider graphs which ere "strips" -

e.g., -3 < x < 5.

(Not if above notation has not

been used before, here is the place

to talk about it as abbreviation

for:

-3 < x and x < 5, or for

x > -3 and x < 5

Y x, etc.

3.5 Graphs of inequalities involving absolute value. Compare graphs

in plane of

ixi = 3

lxi > 3

and lxi < 3.

Section L. Systems of Inequalities: (9H, pp. 820-821)

4.1 Discuss intersection of half-planes, etc.

x < 2

y > -2.

Point out "doubly shaded" area

as the graph of "x < 2 and

y > .
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4.2 Consider other systems, such as

and

y < x

x > -2



GRADE 7 - CHAPTER 10

DECIMALS; SQUARE ROOTS; REAL NUMBER LINE

Background:

1. Expanded notation for decimal, using integral exponents.

2. A rational number Iat can be expressed as a repeating or

terminating) infinite decimal; approximation of a rational

number to specified number of digits.

3. Points for rational numbers on the number line.

4. Pythagorean Theorem.

5. Unique factorization property.

6. Properties of the ration-1 number system, especially density.

7. Operations with rational nu bers, using decimal notation.

Note! While this background is assumed, review will surely be called

for.

Purpose:

To develop belief in the existence of irrational numbers using

geometric and arithmetic approaches.

To develop ability to approximate square roots.

To examine the properties of the real number system.

Procedure:

Section 1. Motivation for irrational numbers;

1.1 Recall of familiar set s of numbers: counting numbers, whole

numbers, non-negative rationals integers, rationals. Properties
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of each set shared with previous sets, properties not shared with

previous sets.

1.2 Use of Pythagoream Theorem to find length of one side of a right

triangle, given the lengths of the other two sides.

(a) All lengths counting numbers: 3 )4, 5; 8 10; 5, 12, 13; etc,

Useof unique factorization property to find square roots of

numbers which are perfect squares: '576

5 15
(b) All lengths rational:

"
2 _.

2 2' 4

it 1 where a and b are perfect squares

One length irrational: 3, 2

/05..

What about lif? It is the length of a segment, but what

kind of number is it? A counting number? A rational number?

Section 2. Intuitive argument for the theorem: If n is a counting

number and ViT is a rational number, then is an

integer.

Sect ion

Exercises similar to those in 1.2(c), in which square roo s

are to be described by inequalities; e.g, 1/5 is a number

between 2 and 3 which is not a rational number.

Decimals which name rational numbers:

a
,D I Recall of = definition for rational nuMber.

Use of division algorithm to find decimal name; argument that the

decimal will have a repeating block of no more that b 1

digits. (ISSM Vol. 1, p. 525.)

3.2 Given a repeating decimal, find the name for the number.
b

Vol. 2, p. 366 ,MJHS, Vol. 2, p. 250.)

3.3 Generalization that every repeating decimal names a rational

number.

-156-

161



3.4 Repeating decimals in which the repeating block is 0 (terminat-

ing).

Review of expanded notation.
2

(110) +6(ij0
0 5677 = 0 +

3,

= 0
,

567 ) + 0

7 10

567

(2 .5

567

(2 5

(b ) Theorem: The decimal for f':T (if a and b are relatively

prime) will have a repeating block 0 if b has only 215

or 5's or both as prime factors.

Use of theorem to determine whether decimal for a given

will terminate, and, if so, the number of digits before the

repeating block 0 begins. (NITHS Vol. 2, p. 251.)

Section 4. D cimals which name irrational numbers:

4.1 Possibility of designing patterns for infinite decimals which do

not repeat. Such decimals are names of irrational numbers.

.1010010001... (1SSM Vol. 2, p. 370.)

4.2 Recall from Secuion 2 that square roots of most counting numbers

are not rational, i.e., irrational.

Procedure for approximating square roots of counting numbers by

iteration method. (JFISM Vol. 20 p. 262.)

Question: Should a flow chart be attempted?

Section 5. The real nuMber line:

5.1 Location of points for rational numbers.
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Using fraction names separate each unit segment into the

number of congruent paits named by the denominator and count

off the number of those parts indicated by the numerator.

Using decimal name show successively smaller intervals

which contain the point.
WG.,we

.51 is on the segment with endpoints

Include such cases as

Location of points for irrational numbers.

and .6

.51 and .52

.515 and .516 etc.

) Location of points f r square roots of counting numbers.

Use diagonals of rectangles with vertex at the origin to

locate points for If, -47[, 15, etc.

Use additive property of segments on a line to locate ioints

for such numbers as (1/ + 1/) and 315. Also locate

points for negatives. (ISSM Vol. 2 p. 357, MJHS Vol. 2,

p. 257.)

(b) Location of points for non-repeating infinite decimals:

as in Section 5.1(b), show successively smaller intervals

which contain the point. (ISSM Vol. 2, p. 360.)

5.3 Real number line as union of set of points corresponding to

_tional numbers and set of points corresponding to irrational

numbers.

Section 6. Density of the real numbers:

6.1 Density of rational numbers.

Name a rational number between

Name a rational number between
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6.2 Density of irrational numbers.

Name an irrational number between .101001000... and .101101110

Name an irrational number between and -t/,

6.3 Density of real numb

Name a rational number between .101001000... and .101101110,

Name an irrational number between .T and .10.

-179-

151



GRADE 7 - CHAPTER 10

APPENDIX

WHAT, ANOTHER PROOF THAT i/7 is IRRATIONAL?

If there is any novelty in this proof it is that it does not

appear to use the unique factorization theorem. We give a proof for

the special case ,X7 which does not appear to have a generalization

to VT1, even if n is not a perfect square:

The proof does assume a familiarity with odd and even integers

and these facts:

1. The product of two odd integers is an odd integer.

2. The product of two integers, one of which is even is even.

In fact, if this proof should be presented to 7th graders) it

might be well to make a table of all cases:

A B A x B

odd odd odd

even odd even

odd even even

even even even

And now the proof:

A

b
Let us suppose that we could discover a rational number = such

2
that T = ,/:. This would, of course, mean that -- = or A

2=2B 2
.

B
2 1,

Since A and B are integers, we may ask two simple questions: Is

A even or odd? Is B even or odd?
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First we ask, can A be odd? If this Tere possibl_ then

would be odd and so A2 = 215 states that an odd number is equal to an

even number which is impossible, Thus, our first conclusion is

If AJB = then A is even.

c
Now what about B? Can B be odd? If this were possible then Et

is odd and we have A
2

. 2B Now, remember we now know that A is

even; let us say A = 2a and so A
2

= 4a
2

= 29
2

and so

2 2
2a- = B-.

\

Again this states that an odd number
, 2)

equals an even number 2
2

Hence we have our second conclusion, which we combine with our first

conclusion:

If A then A is even and B is even.

Finally, we are ready for the coup de grace

Can V-2- be rational? We claim not Suppose we could, from all

the fractions such that = sele,rt the one in which x is

the smallest possible positive integer. Suppose we write that fraction
A

as T . We are now in deep trouble because we have assumed

and yet our conclusion above states that A and B are both even.
A

Since this is so, we may divide both A and 9 by 2; say = a

A a
and = b. Thus, T. T3- and so = and yet a is a smaller

positive integer than A. But this contradicts our choice of Al

Thus any assumption that is rational inescapably leads us

to a contradiction, Our only consistent conclusion is that there can

be no rational number whose square is 2.
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GRADE 7 - CHAPTER 11

PARALLELISM

Background:

Many of the ideas of parallelism have been discussed prior to

this chapter, and even more of them are rather intuitively simple for

students. But there is a need to summarize, every so oftPn, ideas

that are scattered about in previous intuitions and in previous logi-

cal presentations. This is the first of such summaries which concerns

itself with parallelism. Each future summary will, of course, extend

and deepen these ideas,

We are assuming some understanding of points, lines and planes in

2 and 3 dimensions. Such ideas as intersection and intersecting as

set and relation respectively are needed; also the ideas of incidence:

point is on line, line contains point, point is in plane, plane con-

tains point, line is in plane, plane contains line.

There must have been some discussion of 2 dimensional graphs

and of linear equations, but not much use is made of these in this

chapter. We will need the meaning of polygon, regular polygon, side,

angle of polygon, tetrahedron, edge face and vertex of tetrahedron

and measure of segment angle, area and volume.

Purpose:

The purposes of the chapter are as follows:

1. To strengthen, and sometimes to define, the concepts of parallel

and skew relationships in 2 and 3 dimensions.

2. To illustrate the concepts of parallelism for the basic 1 and

2 dimensional figures.
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To associate 2 and 3 dimensional concepts as often and fully

as possible at this level of mathematics.

To interconnect concepts of similarity witl. hose of parallelism

in simple ways as related to parallel lines and planes.

To connect synthetic concepts of parallelism with analytic

geometry for lines parallel to the coordinate axes only.

6. To stucly the transversal figures in 2 and 3 dimensions

noting especially the relationships between congruent angles and

parallel lines.

7. To develop slightly some ideas of proof with respect to parallelo-

grams and rhombuses and to use such an approach to review congruent

triangles.

8. To consider parallel ne of lines and planes.

Rationale:

Parallelism at this p int of the curriculum, followed by perpendi-

cularity (at the beginning of Grade 8), summarizes two of the fundth

mental ideas of geometry, affine and metric. These chapters illustrate

how many, individual ideas come together into larger, more general and

more abstract concepts.

Also, these concepts are needed to help clarify such later con-

cepts as linear equations in two dimensions, and much later in three

dimensions; the concept of translation which relates to both transfor-

mation and vector; and to locus problems, trigonometry and complex

numbers. Once parallelism is introduced we can present formally such

figures as parallelograms, rhombuses and trapezoids and the theorems

-which concern the measures of their sides and angles and of their

areas. Parallel planes permit discussion of prisms and later of

cylinders.
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Section 1. Parallel one-dimensional objects:

1.1 Line parallel to a line defined as two lines in the same plane

which do not intersect.

1.2 Skew lines introduced to reinforce the need for "in a plane"

being in the definition.

1.3 Extension of parallelism to rays ahd segments; use idea of

"carrying line" or, if you prefer, "line containing segment",

"line containing ray"

1.4 Network or grid of equidistant parallel lines in plane; use both

perpendicular sets and non-perpendicular sets; also use exer-

cises in which the units are the same on the two axes and other

exercises in which the units are not the same.

Typical Exer ises:

1. Draw the following figures:

(a) In 2-space, two lines parallel to a fixed line. Can these

two new lines intersect in just one point?

(b ) In 3-space two lines parallel to a fixed line. Can these

two lines intersect in just one point?

In 2-space, two lines each parallel to a given line through

a point not on that line.

(d) In 3-space, two lines each parallel to agiven line through

a point not on that line.

Notice that "draw" is used to mean sketch or create without the

exact instruments of straight-edge and compasses. The latter

job is always referred to as "construct".

The exercises above can play a valuable role in providing a place

to discuss the place of "model" in geometry. We are trying to

lead the student to accept the parallel property (or postulate)

later in his life. Can we do this by implying that this geometry



we are now developing is one model for the universe they live in,

for many purposes the best model, but not the only model. Prob-

ably other, non-Euclidean models should not be mentioned at all,

but just some leaving open of the door for the study of such geo-

metries later without, at that time, creating a feeling that we

have destroyed all the geometry previously taught and accepted.

2. Work with regular polygons similar to this.

(a) Consider the following regular hexagon and its diagonals:

Consider

A

the

Is there a side parallel to AB?

Is there a diagonal parallel to AB?

Is there a side parallel to AD?

Is there a diagonal parallel to AD?

Is there a side parallel to CE?

Is there a diagonal parallel to CE?

following regular pentagont

Is there a diagonal parallel to AB?

Is there a side parallel to AB?

Is there a diagonal parallel to AD?

Is there a side parallel to AD?

For which regular polygons will there be a side parallel to a

side? a side parallel to a diagonal? a diagonal parallel to

a diagonal?

3. Draw a diagram of a cube and letter the edges from a to 2.

Start by considering a and b, then a and c, then a and

d, etc., and complete this table:
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x intersects y x is parallel to y x is skew to y

a intersects b a is parallel tO, d a is skew to g

intersects d

intersects e a is parallel to i a is skew to n

intersects

b intersects

etc. etc. etc.

4 Two segments "at random

Note: There are 6u state-

ments to classify.

A boy starts to invent a game in which he holds a straw in each

hand and drops them simultaneously onto a table top from a height

of at least one foot. If the straws cross each other he wins a

point. Two boys then play in turn but find that the game leads

to some difficulties which need to be resolved:

1) Does "cross" mean "intersect" or must a point of one straw

be between the endpoints of the other straw?

(2) Did you really mean the segments were interse-ting or that

the lines containing them were? What happens to the game if

you choose the latter meaning?

(3) What happend to the game if one straw may be thrown and then

the other? What ts the combination of skill and luck which

is involved?
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(4) Let us actually perform the game and make some tables to

estimate probabilityn Would the gam3 be the samc if the two

traws were different lengths? If there were two straws of

each of the two different lengths? or 10 straws of each

of these two lengths? or 10 straws all the same length?

Whet do you mean by probability in these examples, anyhow?

(5) Discuss the relationship between the game and the mathema-

tical model of the segments. It will soon become evident

that the rules of the game evolve as one tries to pl,y it,

and that the geometric model by segments or lines is a good

way to discuss what you want to agree upon for the rules.

If one felt like it, one could mention that this is also the

way that geometry itself delreloped: the agreements that

people made, the procedures which are used developed through
_ _

centuries as people did geometry. This might avoid the im-

pression that someone wrote geometry from page one on as a

great work of art and we still study it. In this sense our

game with straws could be a model for geometry.

However, it must be admitted that the other direction was the rea-

son for inventing the game. Line segments "at random" in a plane

is a mathematical model of the game we a)- trying to invent.
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3
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Set-In 2. Parallel _-dimens1A. 1 bjects;

2,1 Plane parallel to a plane (imitate Section 1.1).

2 2 Discuss absence of "skew" planes,

2.3 Line parallel to a plane; defined es non-intersecting.

2,4 Extend concept so that any t o objects in the following list are

defined as parallel: line, segment, ray, plane, half-plane; all

by means of carrying lines and planes.

2.5 Two parallel lines (rays, segments) determine a plane.

2.6 Equations of lines parallel to coordi axes; inequalities for

strips and 2-space intervals.

Typical Exercises:

1. A very useful type of exercise for this part of geometry is the

always-sometimes-never exercise. The following example will

illustrate little of what can be done with it:

lt is assumed that geometric objects are given with the relations

among them stated in the hypothesis of each problem below. With

the hypothesis of the problem decide whether the fact given in the

conclusion will always be true, sometimes be true or never be true.

Encircle the letter to indicate your decision with the following

meanlngs:

A The conclusion i- alwa true.

The conclusion is sometimes true.

The statement is never true,

A S N 1) Hypothesis: Two planes are parallel.

Conclusion: A line in one of these planes is parallel

to the other.

A S N 2 Hypothesis: Two lines are parallel.

Conclusion: A plane containing one of these lines is

parallel to the other.
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Hypothesis:

Conclusion:

A S N (4 Hypothesis:

Conclusion:

A S N (5) Hypothesis:

Conclusion:

A S N (6) Hypothesis:

Conclusion:

A S N Hypo hesis:

Conclusion:

A S N (8) Hypothesis:

Con lusion:

A S N (9) Hypothesis:

Conclusion:

A S N (10) Hypothesis:

Conclusion:

A liie is parallel to a plane.

A plane containing the Iine is parallel

to the plane.

A line intersects a plane,

A plane containing the line is parallel

to the plane.

A line intersects a plane.

A plane containing the line intersects

the plane.

Two parallel lines are each parallel to

a plane.

The plane containing the lines is parallel

to the plane.

'wo intersecting lines are parallel to a

plane.

The plane containing these lines is

parallel to the plane.

Two planes are each parallel to a line.

The planes are parallel to each other.

Two lines are each parallel to a plane.

The lines are parallel to each other.

A line is parallel to one of two parallel

planes.

The line Is parallel to the other plane.

2. Consider a circle in a plane and a line intersecting the plane.

Now consider the set of all lines which contain a point of the

circle and are also parallel to the fixed line. Finally, con-

sider a second plane parallel to the first plane. What is the

set of segments between these two planes? Draw a sketch of this

situation. Try with triangle; with quadrilateral.
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Use pa 1 prIsms, exercises to go from easy to hard, first

examples to supply some patterns and later examples to ask for the

students to make their own. Here are some typical ones to discuss

with a class:

Supply pa tern of box.

Supply pattern for doubly-oblique rectangular prism.

(c) Ask for pattern for singly-oblique prism.

-ive pattern of regular pentag nal prism.

AFk for pattern for regular hexagonal prism.

What is the graph of x 2 in lspace? in 2--pace?

What is the graph of L < x < 3 in 1-space? in 2-space?

6. What is the graph of l<x<3 and ") < y < 10 in 2-spa--

.7. What is the graph of x > 0 in 1-space? in 2- pace? What is

the graph of x > 0 and y > 0 in 2-space?

Section 3. Transversals:

3.1 Review: Defs of vertical angles, adjacent angles, linear pair,

complementary angles supplementary angles; and facts about

them:

(1)

(-)

( 3)

Vertical angles congruent.

Complements of congruent angles are congruent;

supplements of congruent angles are congruent.

Linear pair is supplementary; converse not necessarily

true.

3.2 Defs: transversal lines to o lines in 2-space, in 3-space;

to two planes in 3-space.

3.3 Defs: transversal planes to lines and planes in 3-space.

3.4 dihedral angles.
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Del's; in 2-space and 3-spao : corresponding angle- alternate

interior angle-

Parallel property: Through point not on line, one and only one

parallel line exist

(There was some doubt in the group about the wisdom of studying the

parallel property at this time. Students have already much intuition

about tftis property, but need it be stated in the text. Others in the

group thought it wise to spell out the fact and that it was time to do

so. No one meant that we would introduce a tight deductive system

beginning with this postulate at this time. That is one reason we use

the word "property" rather than "postulate".)

3=7 Properties in space and in 3-space;

(1) parallel congruent angles

(2) congruent a gles parallel

These apply to both corresponding and to alternate interior angles=

3.8 Construction: Line pa aliel to line through fixed point.

3.9 Defs: parallelogram, rhombus, trapezoid ; not extended to 3-space;

also rectangle and square not used formally, but saved for later

discussion of perpendicularity in Grade 8.

"Probably defined with only one pair of sides parallel".

3.10 Prove some theorems about quadrilaterals as example of deductive

sequence. See below for suggestions.

3.11 Ask for some constructions nd discuss sufficient data.

3.12 Segment parallel to side of a triangle; ratio of segmen s, ratio

of areas.



' ypical Exercises:

1, More ASN problems, for example: (Remind we are alva-s in

3-space.)

A S N (1) Hypothesis A line intersec-s one of two parallel

lines.

Conclusion The line intersects the other parallel

line.

A S N (2) Hypothesis: A line intersects one of two parallel

planec.

Conclusion: The line intersects the other parallel

plane.

A S N (3 Hypothesis: A plane intersects one of two parallel

planes.

Oonclusion; This plane intersects the other parallel

plane.

A S N (4) Hypothesis: A plane intersect- one of two parallel

line-

Conclusion: The plane intersects the other parallel

line.

Ask students to invent definitions for some concepts before

teacher or book presents them: dJ.hedral angle vertical dihedral

angles, adjacent dihedral angles, linear pair of dihedral angles,

complementary dihedral angles, supplementary dihedral angles,

betweenness for half planes,

Suggestions for theorems to be proved in deductive sequence:

(a) Diagonal of parallelogram creates two congruent triangles.

(b) Opposite sides of parallelogram are congruent.

If opposite sides of quadrilateral are congruent, then

figure is parallelogram.
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(d) Diagonals of parallelogram bisect each other.

( ) If diagonals of quadrilateral bisect each other, then

figure is a parallelogram.

This about all. These will serve to review and keep alive the

ideas

(f)

(g)

of congruent triangles. Also, save for Grade 9 these:

Diagonals of rhombus are perpendicular.

Proof for sum of angles of triangle is 180.

4. Require constructions from given data and careful paragraph

describing what has been done. Note the need of distinguishing

and discussing problems which have insufficient data and thus

lead to more than one soluton, problems which have contradictory

data, and problems which have a unique solution. Here are some

typical examples:

(a) Rhombus, given a side and en angle.

(b) Parallelogram, given two sides (which?).

Rhombus, given two diagonals and one side.

(d) Trapezoid, given one side, one diagonal, and one angle.

A few problems to show the direction of development and the slope of the

incline of difficulty might illustrate what is meant herec Let us ex-

pand the meaningof item (b) on the preceding list.

(1) Can you have a parallelogram with two adjacent sides congruent

to these segments:

A

If so, construct such a parallelogram.

(2 ) Can you have more than one parallelogram with the data given in

problem (1)? If so construct a parallelogram of this sort which

is not congruent to that which you constructed for (1).
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Can you have a -aralielogram with two adjacent sides congruent to

the segments below, and the angle between these sides congruent to

the angle below:

A

If so, construct such a parallelogram.

(4) Can you have more than one parallelogram with the data given in

problem (3)? if so, construct a parallelogram of this sort which

is not congruent to the one you constructed for

6

7

Construct a figure similar to a given figure starting with the

following: rhombus, parallelogram, trapezoid.

BEll BC Ad = 3, DE = 2

DB = 4, Find BC

(E- ier ones first, of coursed

LADE and LABC are right angles,

so we also have DE II BC; AD =

DE = 6, AB = 12.

(a) Find the area of &ODE and area of nABC

(b) Find area of trapezoid DEBC,

What is the ratio of the areas of 6ADE and 6ABC?



See 4. TrunoverbalE to three or more lines and planes:

4.1 Three or more coplanar parallel lines and transversal lines.

4,2 Three parallel lines and transvers 1 planes.

4. 3 Three parall_l planes and transversal lines; also transversal

planes.

4,4 Intuitive understanding of segments ut off by ana on such

transversal lilies,

4,5 Median of trapezoid and relationship to diagonal

4,6 Show connection between nets of parallel lines and parallel

planes to coordinate y tems in 2 and 3 dimensions; do not

restrict to perpendicular sets of lines and planes.

Typical Exercises

1. Show how to divide segment into 7 (or any number of par con-

gruent segments by edge of ruled sheet of' paper

Median of trapezoid

bisects each diagonal.

El is midpoint; F is midpoint,

Prove: AG = GH = HC

Should we give hits of dotted

lines?

Develop this problem; do not

just throw it at them.



CONTENTS OF GRADE 8

Sequence A

Chapter 1: Perpendicularity

Section 1: Perpendicularity of One-dimensional Objects

1.1 Right angle and perpendicular lines

1.2 Extension to line, ray, segment by concepts of
11 carryinu line"

1.3 Construction of perpendicular line through fixed point

1.4 Construction of bisector of segment

1.5 Locus in plane of points equidistant from two fixed points

1.6 Proof concerning diagonals of rhombus

Section 2: Perpendicularity of Two-dimensional Objects

2.1 Dihedral angles

2.2 Extension of perpendicularity from planes to half-

planes by concept of "carrying plane"

2.3 Locus in 3-space of points equidistant from two fixed

points

2.4 Definition of line perpendicular to plane

2.5 Perpendicular skew lines

2.6 Line perpendicular to two lines at some point determi-

nation of plane

2.7 Mutually perpendicular lines; same for planes

2.8 Plane through fixed point, perpendicular to fixed line

Chapter 2: Coordinate Systems - Distance

Section 1. One Dimensional Coordinate System

1.1 Coordinate on a lin2

1.2 Distance between two points on a line

1.3 Algebraic description of subsets of the line

Section 2. Two Dimensional Coordinate System

2.1 Coordinates in the plane

2.2 Distance between two points in the plane
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2.3 Alp:ebraic description of subsets of the plane

Section 3. Three Dimensional Coordinate System

3.1 Coordinates in Space

3.2 Distance between two points in space

3.3 Algebraic description of subsets of space

Section 4. Polar Coordinate System

Chapter 3: Displacments

Section 1. Physical Quantities

1.1 Quantities

1.2 Operations (review

Section 2. Vector Quantitcs

Section 3. Vectors

3.1 Activities

3.2 Equality

3.3 Opposite of a vector

3.4 Addition of vectors

3.5 Zero vector
.3.0 Commutative principle for vector addition

3.7 Associative principle for vector addition

3,8 Summary of properties of addition

39 Solution of vector equations

Section 4. Multiplication of a Vectol° by a Number

4,1 Developing meaning of multiplication

4.2 Multiplication and parallelism

Section 5. TranslatiOn

Section 6: Decomposition

6.1 Decomposing in terms of two vectors

6.2 Naming vectors

Section 7: Extension to Vectors in 3-Space

Section 8: Applications
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Jter Eroblem .6.nalysis Stra

Section l Tianslation of Phrases

1.1 Mathematical phrases to English phrases

1.2 Class discussion

1.3 Characteristics of translations of English phrases

1.4 Exercises

1.5 English phrases to mathematicc phrases

1.6 Class discussion

1.7 Characteristics of translations of mathematical phrases

1.6 Exercises

Section 2 Translation of Sentences

2.1 Mathematical sentences to English sentences

2.2 Class discussion

2,3 The translation process

2.4 Characteristics of translations to English sentences

2.5 Sentences involving restricted domain

ies

2.6 Exercises

2.7 English sentences to mathematical sentences

2.6 Class discussion

2.9 Exercises

Section 3 Problem Analysis and Strategies

3.1 Basic attitudes toward problem analysis

3.2 Organization techniques (a first strategy)

3.3 Example of first strategy at work

3.4 A second strategy

3.5 Exercises

3.6 Organizing information with drawings or diagrams

3.7 Exercises

3.6 Organizing information in tabular form

3,9 Exercises

3.10 Estimation process

3.11 Exercises

3.12 Problem analysis based on analogy
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Cbapter 5: Number Theory

Section 1: Even and Odd Integers

2: Informal Discussion of Statements and PrLpf

3: Factors, Divisibility, Tests for Divisibility, and the

Division Algorithm

4: Prime Numbers Sieve of Eratosthenes, Prime Factorization

5. The Euclidean Algorithm and the GCD

Chapter 6: The Real Numbers Revisited - Radicals

Section 1: Motivation

Section 2: Review of Facts about the Real Number system

2.1 Notation for real numbers

Section . Roots of Numbers

3.1 Square roots

3.2 Definition of the n-th root of a

3.3 (possibly) Introduce x1/2
1 4

etc.

Section 4: Computat-,-In with Radicals

4.1 Use of factorization to find roots

4.2 Irrational square roots

4.3 Product of square roots

4.4 Square roots of rational numbers

Section 5: Review of Real Number Properties and the Number Line

5.1 Properties of the real number system

5.2 Real numbers and the number line

Chapter 7: Truth Sets of Mathematical Sentences

Section 1: Addition and Multiplication.Properties of Equality and

Inequality

1.1 Concept of equivalent sentences

1.2 Addition property of equality

1.3 Multiplication property of equality

1.4 Addition and multiplication properties of inequalities

1.5 Applications to verbal problems
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Secti 2: Permissible Operations Equivalent Sentences

2.1 Addition and multiplication

2.2 If a = b, then a
2

= b
2

; converse not true

L'.3 Use of "ab = 0 if and only if a = 0 or h:= 0"

2.4 Restrictions on denominators containing veriables

2.5 Squaring both sides of an equation

Chapter 8: Quadratic Polynomials as Functions

Section 1: Graph of the Quadratic Function

1.1 Graphs of f and f x -x2

2
1.2 Graph of f : x ux-
1.3 Graph of f x >ax2 + k

1.4 Graph of f : x )a(x - h)

1.5 Graph of f x )a(x - h)2 ± k

1.6 Point out need to factor quadratic polynomials

Section 2: Factoring Polynomials

2.1 Meaning of "over the integers", etc.

2.2 Type ab ac = a(b + c)

2.3 Type ax + ay + bx + by = + b)(x + y)

2.4 Perfect squares

2.5 Difference of squares

2.6 Type x2 + bx + c, by completing the square

, .7 Type ax
2

+ bx + el by completing the square and by

inspection

Section Solving Quadratic Equations

3.1 Same as "finding zero of function"

3.2 Solution by factoring, including completing the square

3.3 Formula as a short cut
2

Section 4: Writing the General Quadratic in Form - h) + k

4.1 Completing the square to get the form

4.2 Use the graph of a single quadratic function to solve many

related quadratic equations
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Chapter 9: Probability

Section 1: Dependent and independent Events

2: Conditional Probability - Bayes Theorem (WST)

Expectation

4: Variation SL,andard Deviation

5: Normal Distribution; Physical ab e va ions

Chapter 1 Parallels and Perpendiculars

Section 1: Regions

1.1 Separation of a plane by parallel lines

1.2 Separation of a plane 1:y n parallel lines and m others

perpendicular to th.A1

1.--; Extension to 3-space with parallel end perpendicular

planes

Lion 2: Combining Parallel and Perpendicular Relations

2.1 Line perpendicular to one of two parallel lines (p anes

2.2 Two lines perpendicular to the same line (plane)

2.3 Plane perpendicular to one of two parallel lines (planes

2.4 Two planes perpendicular to same line (plane)

2.5 Relation of parallel and perpendicular with respect to

reflexive, symmetric, transitive relations

Section 3: Distance between Parallel Lines and Parallel Planes

3.1 (Review) Distance between two points

3.2 Distance from a point to a set of points

3.3 Distance between two sets of points

3.4 Altitude of parallelogram, of trapezoid

3.5 Ecluations and inequalities for planes parallel to co-

ordinate planes.

Section 4: The Quadrilateral Properties

4.1 Review properties of sides, diagonals, angles of figures

4.2 Informal approach to "necessary and sufficient"
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Section 5: Symmetries

5.1 Symmetry in a line (in 2-space and in 3-spa )

5.2 S mmetry in a point in 2-space and in 3-space)

53 Symmetry in a plane (in 3-space

5.4 Symmetries of triangles

5.5 Symmetries of rectangles

5.6 Symmetries of a circle

Symmetries of 3-dimensional figures

Section Angle-Sum Proofs

6.1 The parallel property

6.2 Angle measure sum for triangles

,3 Angle measure sum for convex polygons

Chapter 11; Properties and Mensuration of Geometric Figures

Section 1: Motivation of Numerical Measure for Areas

Section 2 Arbitrary Unit versus Standard Unit

2.1 Selection of unit

2,2 Metric system

Section 3: Assigning Measures to Segments and to Regions

3.1 Formulas for perimeters and areas

32 Measure and Congruence

4: Properties of Regular Polygons

Section 5: Models of Solids

Section E) The Sphere

6.1 Surface of the sphere

6.2 Volume of the sphere

Chapter 12: Spatial Perception and Locus

Section 1: Relationships between two (or more) Given Point Sets

2; Using a Set of Points to Evolve Another Set of Points

Sets of Points Meeting Given Conditions



Chapter 13: Systems of Equations in Two Variables

Section 1: Solution Sets of Systems of Equations and Inequalities

1.1 Review definition of solution set of equation or in-

equality

1.2 Define solution set for system of equations or inequalities

Section'2: Equivalent Equations; Equivalent Systems

2_1 Definition of equivalent as "having same solution set"

2.2 Replacement of an equation in a system by an equivalent

equation r'sults in an equivalent system

2 Linear comb'mation method of solution

Section 3: Systems of Lin-ar Equations

3.1 Review of graphical solution

3.2 Graphical interpretation of linear combination method

Section 4: Graphical Solution of Systems of Inequalities

Section 5: Applications

5.1 Word problems needing two variables

5.2 Use of mathematical models

5.3 Introduction to linear programming



GRADE 8 CHAPTER 1

PERPENDICUIARITY

Eackgroand:

y of the ideas of perpendicularity of lines are already known

to the student at this time, but the careful extension of this con-

cept to perpendicular rays and segments is probably new. Thu concept

of dihedral angle has been used and discussed, but it is here extended

to define perpendicular planes. The further extension to perpendicu-

lar half planes and of line perpendicular to plane are quite new but

are illustrated by familiar facts about cubes.

Simple constructions have been introduced to copy segments and

angles and to bisect an angle, but here the constructions of line per-

pendicular to line and point bisecting segment are introduced and

proved.

It is hoped that the idea of locus is not new, but its application

to perpendicular biser..ting line and perpendicular bisecting plane of a

segment is formalized.

The rhombus and square are known so their perpendicular diagonals

should not need much time to introduce.

Purpose:

The purposes of -bids chapter are as follows:

To strengthen, and sometimes to define, the concept of perpendicu-

lar relations in 2 and 3 dimensions.

To illustrate the concept of perpendicularity for 1 and

dimensional figures.

To associate 2 and 3 dimensional concepts as often and as

fully as possible at this level of mathematics.
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To introduce some new constructions with straight edge and com-

passes and to review old constructions in harder problems.

To illustrate ,,he idea of locus in perpendicular bisecting lines

and planes without trying to teach the general idea of locus.

To provide much inductive work with perpendicularity in

dimensions, but no proof.

7. To introduce 3 mutually perpendicular lines and 3 mutually

perpendicular planes as preparation for coordinate geometry in

3-space.

Rationale._

Parallelism has been introduced by itself in a former chapter.

Now another basic relationship among lines and planes in 2 and 3-

space is isolated from other relationships. It is both a summary and

an extension of ideas about perpendicularity.

The discussion of the intereiationships between the concepts of

parallelism and perpendicularity are summarized in a later chapter.

Thus we have jus'c, one more example of the planned spiral approach in

the curriculum. Many of the properties of the triangle and quadri-

lateral are being introduced all along the way to prepare for sum-

maries of such facts later. It is clear that some ideas are intro-

duced in the present chapter to prepare for coordinates in 3-space

in the chapter which follows immediately. Some future topics which

will use the ideas of perpendicularity are these: mensuration of

geom tric figures, transformations, and tangency.

Section 1. Perpendicularity of one-dimensional objects:

1.1 Right angle as degree measure 90; perpendicular lines as con-

taining a right angle.

1 2 Extend perpendicular to other one-dimensional objects line, ray,

segment in all combinations) by concept of carrying line; note

that perpendicular does not imply intersect.



1.3 Construction: line through fixed point perpendicular to fixed

line (whether point is on line or not); proof by congruent tri-

angles.

1.4 Construction: bisector of segment; proof by congruent triangles.

1. Locus in a plane; points equidistant from two fixed points.

1.6 Prove: Each diagonal of a rhombus is the perpendicular bisector

of the other diagonl; therefore true for square; but not true

for non-square rectangle

Typical Exer_is s:

1.

2.

E

LAOC is a right angle; a0D iE

a right angle; mLAOB = 30. What

is mLCOD?

Given that AB n11": A, B and

F are collinear; C, D and E

are collinear; and order and

separation as indicated by the

figure.

Answer these questions: Encircle either T or F to indicate

that the fact is true or false:

,

F (1) AB intersects CE

F (2) AB i CD

F (3) AB intersects CD

F (4) A1T intersects CE

F (5) AB intersects CD

F (6) AB i CD
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(7) AB intersects CJ)

F (8) BF I DC etc

More ---1N questions similar to these:

(a) Hypothesis: Object 0 J Object *

Conclu: ien: Object 0 inters:cts Object *

(b) Hypothesis: Object 0 intersects Object *

Conclusion: Object 0 1 Object *

Hypothesis: LABC is a right angle.

Conclusion AB ig7

(d ) Hypothesis: /ABC is a right angle.

Conclusion: BA BC

Hypotlisis: BA i BC

Conclusion: LABC is a right angle.

4 Use the following exercise to pr pare for Section 1.3 above:

If PA = PB and QA = Q, then PQ I AB. Assume all points

mentioned are collinear.

The same hypothesis given in Exercise 4 could prepare for

Section 1.4 above by proving that PQ bisects A.

6. Prove this theorem in connection with Section 1.5:

If PA PB, QA = QB and R is on PQ, then RA = BB.

Note that this fact is also true in 3space.

Work up to such construction problems as thi

Square, given a side.

(b) Rectangle, given two sides.

RhLmbus, given two diagonals.

(d) Parallelogram, given two diagonals.

Rectangle, given a diagonal and a side.

objectives:



To show how these types of problems may suggest thinking about

sufficiency of data, consider these examples:

(1) Can you have a quadrilateral with two diagonals congruent

to these segments?

A

If sO, construct such a quadrilateral. Can you have more

than one such quadrilateral? If so construct another which

is not congruent to the first.

Can you have a parallelogram with diagonals congruent to the

segments in Exercise (1)? Constr such a parallelogram.

if you can have another, non-congruent parallelogram, con-

struct one.

Can you have a quadrilateral with diagonals perpendicular to

each other and congruent to the segments in Exercise (1)?

If so, construct one. Can you have another, non-congruent

quadrilateral which fits these conditions? If so, construct

one.

(4) Can you have a rhombus with diagonals congruent to the seg-

ments in Exercise (1)? If so, construct one. Can you have

another, non-congruent rhombus which fits these conditions?

If so construct one.

(5) Can you have a square with diagonals congruent to the seg-

ments in Exercise (1)2 If so construct one. Can you have

another, non-congruent square which has such diagonals? If

so, construct one.

Extend the ideas of paper folding used in previous chapters. Here

use this technique to find the altitudes and perpendicular bisec-

tors of sides of triangles. Use a helpful selection of triangles

from scalene, isosceles and equilateral; acute, right and obtuse.
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. Start with four different triangles and use them to do the follow-

ing constructions (with ruler and straight edge):

(a) Construct the three a1titudes.

(b) Construct the three medians.

c) Construct the three angl_ bisectors.

(d) Construct the three perpendicular bisectors of the sides.

Use different size and different shape triangles within the class

or even for ea'liqi pupil. Be sure Jaye some obtuse triangles to

construct altitudes and perpendicular bisectors of sides.

Se tion 2. Perpendicularity_ of two-dimensional _bj cts:

Dal's; measure of dihedral angle, right dihedral angle, perpendi-

cular planes a- containing a right dihedral angle.

2.2 Extend perpendicular to two dimensional objects (planes or half-

planes) by concept of carrying plane; note that perpendicular

does not imply intersects.

2.3 Locus in 3-apace; points equidistant from two fixed points.

Del': line perpendicular to plane as perpendicular to all lines

in plane through its foot; extend to one-dimensional objects

(line, segment, ray) perpendicular to two-dimensional objects

(plane, half-plane); perpendicular does not imply intersects.

2.5 Discuss perpendicular skew lines, perhaps by means of line to

which each of them is perpendicular; extend to line perpendicular

to two lines and intersecting them at distinct points.

2.6 Line perpendicular to two lines and intersecting them at the same

point; line perpendicular to plane determined by two intersecting

lines (no proof of any of this at this stage).

2.7 Three mutually perpendicular lines; three mutually perpendicular

planes.
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Plane containing fixed point and perpendicular to fixed line

(whether line contains point or not).

Typical Exercises:

1.
FP is a flagpole standing on level

ground at point P, R and Q are

points on the ground so that RP =

PQf and RQ - 7, Copy the

figure and add the line which is per-

pendicular to both FP and

The following figure is a cube. By means of the figure answer the

questions.

AE is skew to DC. Name a segment perpendicular to both and

intersecting both.

(b) AE is skew to DC. Name a segment perpendicular to both, but

not intersecting either.

Find a segment skew to Id=. such that there is a segment marked

in this figure which is perpendicular -t,o both. Name the seg-

ment perpendicular to both.

d) Find a line :)arpendicular to two intersecting lines so that

the intersecting lines are not perpendJ ular to each other.

(g)

Describe the plane through C perpendicular to CG.

Describe the plane through E ierpendicular to HG.

Describe the line through D perpendicular to the plane DCGH,

(h) iJecribe the line through F perpendicular to the 'plane ADHE.
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Draw a picture of a cube and label the eight vertices.

) Using these letters name three lines such thst each pair is

perpendicular.

(b) identify three planes in the figure such that -ach pair is

perpendicular.

Identify a line perpendicular to two intersecting lines.

(d) Identify a line perpendicular to a plane.



GRADE 8 - CHAPTER

COORDINATE SYSTEMS - DISTANCE

Background Assumed:

Knowledge of the real number line.

Familiarity -ith coordinates of points on a line and coordinates

of points in a plane and how to plot them.

Ability to graph linear functions and y =

From Grade 7, Chapter 5, measure of segments.

From Grade 7, Chapter 11, some in'rrductory knowledge of:

(1) equatiorl of lines parallel to the coordinate axes,

inequalities for strips,and 2-space intervals.

Set-builder notation e.g. ((x,y) : x + y > 2).

Purpose:

To develop mathematical machinery:

(1 ) to descrIbe algebraically sets of points that form familiar

geometric figures, and, conversely, to describe geometrically

solution sets of equations,

(2) to be able to prove geometrical theorems analytically,

(3) to solve graphically many problems that are usually solved

algebraically.

This chapter brings together algebra and geometry and lays the

foundation for the study of a body of mathematics called analytical

geOmetry.



ction 1. One di_

1.1 Distance

ional coor inate system.

Intuitive development of the concept of distance. What is the

distance between San Francisco and Los Angeles This is a tough

question, because we wonder which road, by airplane exactly where

in San Francisco do we start and exactly where do we stop and

what is the unit of distance. How far from Joe's house'to Bill

house? It should be clear from such a short discussion that we

will have diffiulty getting what everybody would agree to be an

"exact" answer.

Consider three coll).nean points:

Have stude ts measure the length of AB, T3Z, and AC using

some unit and have them notice the apparent relationship between

the three lengths. Connect this up with the relation betweenness.

The npmber associated with AB is called the distance between A

and B with respect to that unit and is denoted by AB.

Consider three non-collinear points and make measurements as above

to motivate the triangle inequality, AB ± BC > AC.

From the above it should be possible to pull out the idea that

given two points A and B in space, and a unit of measure then

there is a number that corresponds to these two points. This num-

ber is the distance between A and B and is denoted by AB.

This correspondence, then, is a function,

D : (points) A, distance)d

Consider what happens to the distance between A and B as point

B gets closer and closer to point A.

This leads us to 0 as the distance between point A and point

A, that is AA = O.
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Note here t at the distance between points A and B is either

positive or zero; it is zero whenever A and B are names for

the same point, and positive whenever A B.

1 _c Coordinates on a line. (See Mathematics for Junior High School,

Vol. 2, Part 1, pp. 21-23.)

One to one correspondence between the points on a line and the

real numbers giving the real number line.

Show how to coordinatize the line by choosing an arbitrary point

as the origin, and an arbitrary unit.

1.3 Di.; ance between two points on a line.

The coordinate of a point on a line gives the distance from the

origin to the point and also tells the direction from the origin

to the point.

The absolute value of a real number, a, gives the distance

between the origin and point A with coordinate a. Consider

the number line:

A B GHK M
1 1 1 1 1

-2 -1 0 1 2 3 4 5

Find the distances PK and CH.

Notice that if P and Q have coordinates p and q respec-

tiyely that PQ = IP q.

At this point it might be well to consider two distinct points P

and Q with coordinates p and q and examining the numbers

p q and q - p. One of these is positive and one is negative.

This can be connected up with the concept of sense on line and

also with the concept of directed distance. q - p is the
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'1,irected distance from P to Q and it is positive if the posi-

tive sense of the line is in the dire tion from p

If this informal bit on directed di tance does not get into the

text, it should be noted in the TC for the teachers.

Define: midpoint of a seg ent.

Find the coordinat_ _f the midpoint of segments FM, AE BF.

Develop formula for coordinate, m of the midpoint of P
0,

p q
if P, and Q have coordinates p and g. mo

Exercises of the following type:

1. Given F(2 5) and Q(-)4,3)

(a) Find the coordinates of the midpoint of

Find the coordinates of the point P. on PQ such
1

that FR = T PQ.

Find the coordinates of the point S such that Q.

is the midpoint of PS.

1.4 Algebraic description of subsets of the line. (See Math. for

Junior High School, Vol. 2, Part 1, pp. 65-71)

At this stage of the game we make the convention that if P has

coordinate p in a given coordinate system, we nay refer to P

by simply naming its coordinate p.

Segment FK (in diagram, page 3) consists of the points F, K,

and all points between F and K. Analytically we may say

FK = fx : 1 < x < 4) or FK is the solution set of the sente _e

1 < x < 4.

Develop the following:

If p < q segment : p < x <

half line : x g), (x x < q)

ray : X > qJ, (x : x <
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If p < q open interval x : p < x < pl

Finn the solution sets of the following sentences and graph the

solution set name the set if it is a familiar geometric

figure:

1. x =. 2

2. x - 14 = -12

5. x < -2

6. x - 4 < -6

7. 3 < x < 7

x 7 > 10 8. -2 x -

9. x greater than 3 and x less than 7

10. x greater than 3 or x less than 7

11. x greater than 3 or x less then

12 . or x < -2

Describe tho following sets of points, graph them and then name

the set if its graph is a familiar figure.

13. (x 5 < x < -2)

14. fx x
2

< 4)

16. ix - 21 ,.-.. 3

17. lx + 7! = 5

Section 2. Two dimensional coordinate system:

2,1 Coordinates in the plane. (See Vol. 2, Part 1, IDID 23-30)

Set up the X-axis Y-axis and review the plotting of points and

discuss and note the one-to-one correspondence between points in

the plane and the set of all ordered pairs of real numbers ,Y).

This would be a good place to consider developing the concept of

cartesian product A x B where A and B are sets of numbers.



Begin with A ) and B an3 form A X B and

finally consider R x R where B -1,7-; the set of all real num-

bers. Then, point out that for each (x,y) EBxR eh-cis a

point in the plane and for each point P in the plane there

corresponds an ordered pair of real numbers (z1b) 11 X R.

Definition of the four quadrants showing how the two coordinate

axes separates lie plane into 4 disjoint sets of points.

ENercises of the following type.

1. Consider a square with side 5. If the x-axis and y-axis ere

sides of the square, what are the coordinates of the vertices

of the square if one vertex is in the third quadrant? Con-

sider the other quadrants.

Consider an isosceles triangle with base 6 and altitude 4,

if the vertex is at the origin and the y-axis bisects the

base what are the coordinates of the vertices of the tri-

angle? Consider all cases.

Give an algebraic description of the set of points in each

quadrant.

Consider two sentences of the form y = 2x 4- 4, graph these

two sentences, these twc lines separate the first quadrant

into three convex regions. Find algebraic descriptions of

each of these three reg.ons.

2.2 Dia ance between two points in a plane.

Use ideas developed in 1.2 to find the distance between two points

on the X-axis, Y-axis and on lines parallel to the axes.

Give problems finding the distances between points A and B that

are in different quadrants.
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Find the distdnce AB for:

A(0j) B(0,-3)

2. A(-8,0 B(2,0)

3. A( B(8,-2)

4. A(-

Have students see that the formula developed in 1.2 ean be

used here.

As a discovery exercise, consider the problem: find AB for

A(2,4) end B(6,1).

Review subscript notation such as

Develop proof of distance formula

P P
1

Give problems so that the square roots involved are within the

square root development in Grade 7. Keep the distances mostly

rational, but have few that are irrational.

Some problems could involve finding areas of figures that are

plotted in the plane.

Develop the formula for finding the coordinates of the midpoint

of the segment joining P1(x1,y1) and P2(x2,y0). This can be

done using similar triangles or using the distance formula just

developed. It could be that the algebra involved here it too

heavy for them to use the distance formula. The similar tri-

angle method has simple algebraic manipulation.

Give problems using midpoim; formula and distance formula.

Prove some originals and theorems from synthetic geometry by

using coordinate geometry.



Exercises:

1. Consider nABc with vertices A B(5 9 C(11,6).

Find the lengths of the sides AB, BC, and AC.

What kind of a triangle is dABC?

Find the coordinates of the midpoints of AABC.

(d) Prove that the line joining the midpoints of segments

AB and BC is parallel to AC and is half the length

of AC.

2. Consider nABC with vertices 1(3,10) B(3 and C(9,4).

(a) Find the lengths of the sides.

(b) What kind of a triangle is it?

1
(c) Find the midpoint D of AC and prove that BE AC.

2

Given F(3,4). Find F1 such that the origin 0 is the
1

midpoint of PP .

L. Given P(3,4) and Q(6,8). Find 3 poin s equidistant

from P and Q.

2 Algebraic description of subsets of the plane. (See Vol.

Fart 1, pp. 30-335 93 -110)

1. Sentences in one variable.

For k and m real numbers consider sentences of the types:

x k, y k

y < k- k < x

k, x > k, x < k, x < k, y > k, y > k y < k,

k < x < m, k<x<rn, ete.

Judicious use of set notation sometimes clarifies things here

((x,y) : 2 < x < 5).

Consider the following sets of points; describe and name the

geometric figure where possible.

(1) ((x,y) : x > 2 and y > 4)



: or

half plane: ( : > 4)

strip: [(x,y)

rectangular region: ((x,y) : 4 and -1 < y

Give problems involving ab-olute value and inequalities.

2. Sentences in two variables.

rectangular region: ((x,y) : 2 < x < 1 and -1 < y < 3)

line: ((x,y) : 2 x +y = 2)

Develop concept of slope of a line see Vol. 2, pp. 374-

378).

Use definition as rise over run and get slope formula for the

line through P_ and m -
Y Y-
2 1

-x2 xi

Consider the lines y = mx where m is a real number and

discover that m is the slope.

Consider the type of line with m > 0, m = 0, m < 0 and

slope undefined. Introduce terms horizontal and vertical

lines.

Define x-intercept and y-intercept of a line.

Plot the line y = 2x and then consider the line y 2x + 3.

Discuss the family of lines y mx where m is a real

number, y = 2x b where b is a real number.

Consider lines of the type y = mx + b.

Problem: Describe two lines which have no slope.

Develop the conditions for parallel lines by examining the

character of the equations of lines which are parallel.
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At this point, the student hes the mathematical machinery to

prove the theorem: Two non-vertical lines are parallel if and

only if they have the same slope.

Consider the lines of the type y = mx + b and y = x ± b.

Develop the conditions for perpendicular lines by examining

the character of the equations of lines which are perpendi-

cular.

At this point if the student can use the Pythagoream Theorem

and its converse, he could prove that: Two lines neither of

which is vertical are perpendicular if and only if the product

of their slopes is -1.

Exercises:

This set of exercises should contain originals and proofs of

theorems found in any standard analytic geometry text.

1. Consider the quadrilateral A(0,0) B(2,4) C(7,4) and

Prove that this quadrilateral is a trapezoid.

Join the midpoints of the sides and prove the figure is a

parallelogram, and find the lengths of its sides.

2. Find p so that the line px + 3y 7 is:

(a) parallel to the line y = 2x 4;

(b) perpendicular to the line y -3x - 7.

3. In the family of lines y = mx 4, find the line parallel to

y x.

4. Describe geometrically and algebraically the set of points in the

plane 3 units from the origin.

Describe geometrically and algebraically the set of points in the

plane 3 units from the segment with endpoints A(0,0) and

B(5,0).
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S,ction Three dimensional coordilate sysuem-

Coordi ntes in space.

Use suitable ideas from Grade 8, Chnpter 1, in introducing co-

ordinates in space. Make liberal use of the math room as one

octant and use the intersections of the floor and walls at one

cornr,: of the room to illustrate the three mutually perpendicu-

lar lines, Name the coordinate planes and the octants and show

that the three mutually perpendicular planes determined by the

three mutually perpendicular lines separate space into 8 dis-

joint regions. Note that the labelling of the coordinate axes

is arbitrary. Many people prefer to label the axes in such a

way that they form a right-handed coordinate sy-tem.

Develop one-to-one correspondence between the ordered triples

(x,y,z) and the points in space.

.2 Distance, between two points in space.

1. Show that if the two points happen to both be on a co-

ordinate, axis or on one of the coordinate planes, then we

already have developed a formula for finding the distance

between the two points,

Do some work in plotting points in three space.

First, find the distance from the origin to a point in space,

say to P(1/5,2,)4). Generalize to formula for OP if P has

coordinates (x,y,z). Use a rectangular box as a model.

Consider P1 x1' y
1'

z1 ) and P2 (x21 y
2,

z2
-)

whereP
1

and

P2 are in the first octant. Practics visualizing planes

containing the points P1 and P2, and the resultant box

or rectangular parallelepiped formed. Establish the co-

ordin.tes of the 8 corners of the box and the lengths of

the sides of the box, then determine the length of diagonal.

Practice finding some distances between points in space.



Have student ccnider the formulas for the midpoint of a segment

in a one-dimensional and two-dimensional coordinate system and

then guess the formula for the three-dimensional coordinate syste-

Some students may want to prove their guess.

Describe geometrically and algebraically the set of points in

pace 3 inches from the origin.

Algebraic description of subsets of space.

1. Sentences in one variable.

half- aces: x>k yCk, z <k etc.

((x,y kj

3-dimensional rectangular region:

((x,y,z): k < x < m and n < y < - and
-

Discovery exercises.

Describe the following sets of points=

(1) (a) (x : x 1)

(b) ((x,y) : x = 1)

(c ) [(x,y,z) : x = 1

(d) [(x,y) : x y 1)

((x,y,z) : x y = 1)

((x,Yyz) x y z = 1)(f)

(2) (d) ((xly) : x
2

+ y- = lj(x : x2 = 1
2

((xa) :
x - 1) (e) [(x,y,z) : x

2
+ y

2
)

(x,y,z) : x
2

. 1] (f) ((x,y,z) : x
2
+ y

2
+ z

2
= 1}

3)

(5)

In all parts of (2 ) change the symbol tt_11

In all parts of (2) change the symbol "=" t: ">".

Describe geometrically and algebraically the set of

points in space 3 units from the segment with end-

pointF A(0,0,0) and B(5,0,0).

-203-



Section 4. Polar Coordinate System:

Consider a fixed point 0 and the ray OX in a plane as pictured:

Now put a scale on the ray as pictured:

0 I

1

I -I-

I+ 5 6

--
imagine the ray OX with the scale on it rotating counter-clock-

wise around 0 (that is point 0 remains fixed). Imagine the point

at I tracing out a circle of radius 1, the point at 2 tracing
--

out a circle, radius 2, etc. If you allow the ray OX to rotate

counterclockwise through 360° it will have returned to its original

position and the whole plane will be covered with concentric circles

t 0 and radii 1, 2, 3, 4, etc.
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Below is picture of pert of the plane:
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If ray OX is rotated

the nicture.

len it is shown as ray OX
1

in

Question: Can you locate a point P in the plane if you know

that the ray OX will pass through the point for the first time after

a counterclockwise rotation of 135° and that the distance from 0 to

P is, 3? Try other rotations and any distance from the point 0 that

you wish.

Now consider the other question; pick any point P in the plane;

can you find a counterclockwise rotation of OX that will pass through

P and also find the distance from 0 to P?

This is clearly a scheme that assigns to each point in the plane

a rotation (angle) end a number. The point 0 is called the pole

and OX is called the polar axis of a polar coordinate system.

Questions:

1. Could you assign different rotations and the s me nutber to the

same point?

2. Could you assign different rotations and different numbers to the

same point? if a point P can be located by a rotation of s°

and a number r (the distance OP) then by convention we say

that the ordered pair s
o

are polar coordinates of the point

P.

Is there a one-to-one corre,,pondence between the points in a plane

and the set of ordered pairs of real numbers for the first com-

ponent --d rotations for the second component?

4. In the exercises have students piotting points that bring out

the ideas discovered in answering the above questions.

5. Describe geometrically the locus of all points (r,s° ) in the

plane if:

r = 3

r < 3

r >3
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GRADE 8 - CHAPTER 3

DISPLACEMENTS

Purpose;

To develop a mathematical system using the physical concept of

displacement. To introduce the concept of a vector that will be a

useful tool in science as well as mathematics. The language of

vectors and its use in science is appearing earlier in the student's

educa-,;ional program. The concept of a vector will be useful for all

citizens to help them understand the world in which they live.

Backg ound Assumptions:

Knowledge of the structure of the rational number system, rec-

tangular coordinate system in the plane, properties of parallelo-

grams and the Pythagorean theorem.

Moredock and Sandmann:

The following is an adaptation of portions of the outline by

Moredock and Sandmann. They propose much exploratory work using

acetate, We heartily endorse the exploratory technique throughout

the development of the chapter, but we suggest that more readily

available materials may be as satisfactory as acetate. A force table

to show the relationships of the mathematical model to a particular

physical situation might prove helpful at the proper time.

Section 1, Physical Quantities:

1.1 Quantities

As examples we mention:

length of an object

speed of an airplane

/olume of a test tube

10 feet

550 miles per hour

1000 cubic centimeters



These physical quantit- an be rerresented by a segment usin-

an appropriate scale. The quantity is specified by naming a

physical unit of measurement and - number, Thus, in the third

example above, the unit of measurement is the cc and the number

is 1000,

1,2 Operations (review

A very brief review of appropriate ations (addition, multi-

plication) on the above type of physical quantity.

The total mileage traveled on a five-day vacation trip,

given the mileages day by day.

(b) The number of cubic centimeters JAI a gallon is about 3787

How many gallons can be put in a tank measuring 16 meters

long, 10 meters wide, and 7 E meters high?

Section 2, Vector Quantities:

There are quantities that cannot be adequately described by a

measurement on a scale alone. Describing a trip along a road in-

volves distance -- that is a number (referred to a unit of measure-

ment) -- and a direction. Each of the two diagrams below shows the

same pair of points A and B,

ip from A to B

A A

These arrows

Trip from B to A

(subsets of rays) give two bits of information --

the length of the arrow denotes the distance traveled and the arrow-

head indicates the direction. Each arrow has a starting point and

an ending point.

These arrows can also b- interpreted as showing a displacement

a change in position. In the first case, a body (particle) at A

has been moved (or displaced) to B. In the other B is displaced
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to note that it is easy for u to abuse the language by saying

that B is displaced to A, when we mean that an object originally

at the point B has been moved to the point A.

There are many indeed, infinitely many -- two-mile trips in

an easterly direction. Observe that the various arrows that represent

these trips are ell parallel to one another and have the same length.

Thus if we model the family of trips by selecting one of these arrows

as a representative, we are coJicentrating on the direction and length

aspects .

Vom pick out any arrow. See how it is a representative -mple of

all arrows with the same direction and same length. In fact it can be

used to determine any arrow you wish with that length and dir ction.

(See Sandmann and Moredock for further details on above.)

Vector is the more common name for the idea represented by the

arrow.

We will name the vector by a single letter with en underbar; a.

Very brief mention of a few other physical quantities that are

vectors: position (bearing), velocity, force merely as illustra-

tions that there are further applications they may be studied later.

pection 3. Vectors:
_

An important application of study of vectors is in analyzing

changes in the location of a body (displacement). We use this physical

situation to motivate most of the succeeding development.
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3,1 Activi ies

In the first diagram below apply the displacement represented by

the vector a to each of the points C and D. In the second

diagram draw the arrow with initial point at P that represents

the vector b that may be applied to Q to give R.

Activities like this should develop confidence that:

(a) given any point and any vector, the point may be displaced

by the vector,

given any ordered pair of points, there is a unique vector

that displaces the first point into the second, and

given any point and any vector, there is a unique point

which is displaced into the given point by the given vector

2 Equality

Two concepts need suggesting here:

(a) if vectors are equal, then every point is displaced the same

by one vector as by the other;

(b) if just one point is displaced the same by a es by b,

then a = b.

Opposite of a vector

Let b be a vector. If G is a point and if G is displaced to

H by b, then there is a vector that moves H into G. This

new vector is the opposite of b and i s denoted by -b.
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The opposite of a vector essentially backs up, or returns home.

Develop confidence in

Addi,Aon of vectors

-= a

By a b applied to A we shall mean the result of applying a_

to A resulting in A and then applying b to A' resulting

in A", so a + b applied to A results in A"; so if a + b_
applied to A results in A" and c applied to A results in_

A", then a b c. This may be pictured as follows:

A"

/a. +

) A'
A - -6

Or it could be pictured this -day:

The vector a is called the

.

sometimes, re.ultant of a and

Problem: given vectors c, gi find a vector e such that

= c + f.

Problem: given a vector g, find two vectors c and d whose

sum is e How many such pairs c d
;

are there?



Clearly there are infinitely many pairs.

3.5 Zero vector

Add a vector and its opposite. Use this to motivate a zero

vector. Denote the zero vector by Q Develop confidence not

only in b + (-1) = 0, but also in (-b) + b = 0. Also discuss

c + 0 and 0 i c.

The zero vector acts, in vector addition, like the number zero in

number addition. The opposite of a vector acts, in vector addi7

tion, like the opposite of a number in number addition.

3.6 The commutative principle for vector addition

Ts a + b = b + a?

From the picture it appears that a + b = b a. Recall the

special cases of c + + c and c + 0 = 0 + c.

However, in general, maybe it is like the following, with

A2 A4



Prove that A
2

= A using congruence of triangles
4

So we see that vector addition is commutative just as addition of

real numbers is commutative.

From the picture illustrating a + b = b + a; we ,ree that one way

of finding the displacement of A when a and b are both

applied to A in succession is by "completing the parallelogram".

Using this idea solve the following problem: Forces acting in

specified directions on objects may be represented by vectors.

Find the resultant of forces F and F' acting on A if F

is a force of 8 lbs. acting in an easterly direction and F' is

a force of 6 lbs. acting in a northerly direction.

a

The resultant force on the object is a force of 10 lbs. acting

in a direction between east and northeast.



The associative principle f r vector addition:

Consider -:_dition of three vectors a, b, c. Application of

a + b + c to a point F means apply a, then b, then

Develop meaning of sum as vector that "closes the polygon

a + b c

Continue Tiscussion to a+b+c+d+ e, say. Do not confine_
attention to the planar case. Develop sum as vector that "closeJ

the polygon" where polygon may be nonplanar.

Can shortcuts in an extended sum be taken? Use this to motivate

inquiry about associativity. Show in the usual fashion that

a + (b + + b) c.

Thus the as ociative law for vector addition looks much like the

associative principle for addition of numbers.

Summary and review of properties of addition.

a + b is a vector (closure)

a + b b + a (commutative)

a + b) + a a + (b + c) (associative

zero vector 0 exists ouch that a + 0 = a = 0 + a

for each vector a, opposite -a exists such that

a + ( 0 = (a) + a.

Relate these properties to those for the addition of numbers. Point

out that these properties make the addition of vectors structurally

the sane as the addition of numbers (integers, rationals, or reels).

This may be the first time that students have seen a mathematical

system for something other than numbers, and this should be

exploited here.



3.9 Solution of vector equations.

Given a point D and a vector a and a vector b. Suppose that

displaced to A by a and that D is displaced to B

by b. Is there a change of position from A to B? Yes, by

Section 3.l(b). How can this displacement be expressed in terms

of a and b? Observe that we are trying to solve the equation

a

One way of describing the displacement from A to B is t: take

the path from A to B to B. Vectorially expressed, this means

k.nat the desired displacement is the sum of -a and b. By

associativity, we verify that (-a) + b satisfies our equation:

a ((- b) = (a ))+b=0+b=b.

Note that we are deferring until Grade 9 the discussion of an

operation called subtraction. Of course there is no objection if

a student realizes for himself that all the ingredients are here

and if he wishes as an individual project to pursue the properties

of such -n operation,

If vectors a and b are represented by arrows with common

starting point, then we may (usually) form a parallelogram with

these segments as adjacent sides. One diagonal, with appropriate

arrowhead, represents the sum a + b; the other diagonal repre-

sents + b or (-b ) + a, according to the positioning of the

arrowhead.



Section 4. Multiplication of a vector py a number

4.1 Developing meaning of multiplication.

Consider a + a + a + a._

a

We like to have a name for the vector a + a + a + a Let us call_
it 4a. We note that 4 is a number and a is a vector. The

vector 4a is called the product of the number 4 and the vec-_
tor a. The operation of forming the product of a number and a

vector is called multiplication.

So far in our development the number has been a positive integer.

Now develop an intuitive feeling for the meaning of the product of

a real number by a vector.

Examples:

/
ia

In particular, develop intuition that the arrowhead is reversed

in case the multiplier is a negative number.

observe the following: (-2)a

of the number -2 and the vector

Here

a, while

posite of the vector obtained by multiplying

a. Since the results are the same, we may

tion and write simply -2a, interpreting it

like.
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Multiplication and parallelism.

Problem 1: Given a vector c and a point Q. Consider the

various points obtained by displacing Q by the vectors kc for

all numbers k, What is the locus of these displaced points?

After plotting several displacements

of Q, the students should observe

that for each k the point into which

Q is displaced by ke lies on the line

through Q parallel to an arrow repre-

senting c,

Problem 2: In Problem I consider the

line through Q that is parallel to an

arrow representing c. Pick any point

R on this line. Is there a nuMber k such that kc applied to

Q will result in R?

Suppose, for example, that the distance QR is twice the length

of c; in this case, k = 2. In general we see that there is a

number k and that in order to find it we compute QR and divide

QR by the length of c. This is like measuring distance, using

the length of c as the unit of distance.

Since the above is always possible, we now have a one-to-one

correspondence between the points on the line and the real numbers.

Exercises here could be to find endpoints for Kc applied to Q

and to find the numbers k such that kc maps one given point

into another given poiht.

Goal is to develop confidence in the following property: two

nonzero vectors can be represented by parallel arrows if and only

if each of the vectors is a multiple of the other by a number.

qection 5. Translation;

A vector describes a transla:ion of the plane or of ,pace) WST.



c ion 6 Decomnosition

6.1 Decomposing a vector in terms of two given vectors.

_

Problem Let a and b be two (noncollinear vectors and_ _
let c be any vector, Express c in terms of a and b,_ _
that is, find numbers k and m such that c = ka .4- mb._

Let E be a point and apply c

to P obtaining Q Draw the line

through P parallel to a and the

line through Q parallel to b

note the intersection of the lines.

We may measure k and m so that

b = ka ± mb.

Observe that the same result is

obtained by drawing the line through

Q parallel to a and the line

through P parallel to 1c) This is

an application of the commutative

property for vector addition.

For other problems, retain the same a and b, but alter a so

that we need a negative number for k and/or m.

1 =
1

_21a_
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6,2 Earning vectors,

From the previous work it should be clear that any vector can be

expressed in terms of two nonzero nonparallel vectors.

Ask the students to think about two convenient vectors such that

all other vectors can be expressed in terms of these two in the

above manner. Eventually show them two unit vectors that are

perpendicular, and label them i and j.

Now consider mi for all numbers m, nj for all numbers

and mi nj'. for alI2numbers_ m, n. Recognize as the familiar

rectangular coordinate system.

Typical Exercises:

Plot 4i + 2j, - . Given vector c in plane of

and j, find the coefficients of i and j (by graphical

means ) in the decomposition of c.

Section 7- Extension to Vectors in -9pace.

With three mutually perpendicular vectors I, j, k,

extend the development in Section 6 to three-space. This should not

be hit too hard, but it will be helpful in developing spatial visuali-

zation and space perception.

ql

It should be clear that pi A- qj rk for all real numbers

gives the three-dimensional rectangular coordinate system.

Section 8. A plications:

Pp

If applications to the "real world", world of work, etc., can be

found that are understandable by the 8th grader, they should be included

in this chapter. Possible topics are vector diagram for air speed,

ground speed, and wind velocity for an airplane in flight; same for a

ship steaming in the ocean with a current.
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GRADE 8 - CHAPTER 4

PROBLEM ANALYSIS STRATEGIES)

ground Assumptions.:

Graphing in one and two dimensions.

Informal introduction to use of variable as a symbol for a number.

Techniques for finding solutions of sentences in one and two vari-

ables.

Real numbers and propert1es.

Rational:

Students should develop many valid patterns for problem-analysis,

such as: willingness to guess solutions and then derive further infor-

mation from the resulting data, working backward on a problem, sketching

(pictures), organization of data in tables, graphing, recognition that

a functional relation is involved; in short, willingness to approach

problems in more than one way in order to organize the final presenta-

tion of the problem solution.

Purposes

1. To provide the student with the techniques which will enable him

to translate the conditions of a problem into a mathematical sen-

tence or system of sentences.

2. To provide the student with a variety of techniques for problem

analysis, and develop flexibility in his manner of approach.

UNDER NO CIRCUMSTANCES SHOULD A STUDENT BE FORCED TO GO THROUGH A FORMAL

PROCEDURE OF ANALYSIS IF HE HAS DISCOVERED A METHOD OF SOLVING A PROBLEM

EARLY IN THE ANALYSIS.
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_Note; In the writers opinion, and others, Sections 1 and 2 are far too

"heav7 Much of what is in these sections could occur in the

Teacher's Commentary as directions for the Teacher.

How do people make discoveries? What is the process 'f any) that

leads to the solution of problems in mathematics, nuclear fission, roc-

ket design, neural surgery, conservation of natural resources, etc?

These are possibly questions that many students might ask. However,

many of them really want to know how they can invent correct solutions

to problems and why these solutions are constructed the way that they

are. The purpose of this chapter is to give you some help in organi-

zing your approach to problem solving in mathematics and to, perhaps,

improve your problem solving techniques.

Section 1.- Translation of Phrases:

1.1 Mathematical Phrases to English Phrases.

Many problems that occur are stated either orally, in written

form, or in both forms. They usually are not too clearly under-

stood at first, and they usually stimulate more questions than can

be answered immediately. (In fact, one significant activity in

problem analysis is very often trying to determine what the real

questions or concerns are in a problem.) However, one first major

step toward the solution of some problems is one translation of

the problem into a form which will permit some form of organized

analysis. The English language is far too disorganized to permit,

in general, any efficient problem solving techniques to be develop-

ed. For example read the following excerpt from an insur nee

policy:

premises means unless otherwise indicated (1) all premises
where the named insured or his spouse maintains a residence
and includes private approaches thereto and other premises
and private approaches thereto for use in connection with
said residence, except business property and farms, (2) in-
dividual or family cemetery plots or burial vaults, (3) pre-
mises in which an insured is temporarily residing, if not



owned by an insured, and (4) vacant land, other than farm
land owned by or rented to an insured. Land shall not be
deemed -vacant following the commencement of any construc-
tion operations thereon unless such operations are being
performed solely independent contractors in connection
with the constr sion of a one or two family dwelling for
the insrred

As you can see this statement, while useful, is very cumbersome to

apply to a situation. In mathematics the attempt is consistenuly

made to keep definitions, statements, etc. as clear and concise

as possible.

In order to effectively develop your problem solving skills and

understandings, we win first look closely at the process of

translation. In the beginning many of the phrases you will be

asked to translate will simple. It is extremely important

that you practice care:-)Illy the techniques introduced so that

you can develop some skill in working with more complex situa-

tions,

1.2 Class Discussion.

Try to write an English phrase which clearly interprets the mathe-

matical phrase

1
R 7 W

if you had some difficulty in doing the above, relax; you a e

probably not alone.

Let's see what we do know and what we don't know about this phrase.

You should remember that variables such as R and W are usually

names for numbers. You do not know exactly what number they repre-

sent, but you do know that they represent definite but unstated

numbers. Furthermore you should notice that the phrase represents
1

the DIFFERENCE of the two numbers R and and that the num-

1 1
ber

)7 1'1

is the result of multiplying the numbers 7 and W.
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Now you are faced with the task of finding out something more

about the variables. You know that R represents a number,

BUT is it the number of rings around Saturn? Is it the number

of rocks in a garden? Is it the number of redheads in a mathe-

matics class?

AF you can see there are unlimited possibilities for R, and it

is impossible to state exactly whet E or W could represent

until we know more about the origin of the phrase. Furthermore,

it becomes obvious that you must be able to state clearly what each

variable in a phrase represents before you make your first attempt

to translate or interpret the mathematical phrase. (Note: you

should not hesitate to revise your statements, throughout the

translation process; in fact, this process is encouraged as you

gain more understanding about the situation.)

For example, you could say: "Let R represent the answers on a

test".

First revision "Let R represent the number of answers on a

test."

Second revision: "Let R represent the number of correct answers

on a test. And let W represent the number of

wrong answers on a test".

The point here is that you should try to identify the variables es

clearly and completely as possible (revising many times, if neces-

sary). Now one possible translation of the above phrase might be

the following:

If R represents the number of correct answers on a test)

and W represents the number of wrong answers on the same

test, then the phrase R - T4- W is: "the difference between

the number of correct answers on a test and one-fourth of the

number of wrong answers".



1 Some Characteristics of a Translation of a Mathematical Phrase to

an English Phrase Are

(i)

(2)

The variables are clearly identified (usually as numbers

The variables are as completely identified as possible.

(Bevisions are encouraged, if necessary.)

Basic operations are identified and considered in the trans-

lation.

(4) The context of the I ,nslation of the phrase makes sense, and

the final translation is a correct English phrase.

1.4 Exercises:

Write an English phrase which is correct translation of the given

mathematical phrase. Be sure to state clearly what each variable

represents

1.

2.

3,

4.

5.

6.

7.

8.

9,

in your translation.

10.

11.

12.

13.

14.

15.

16.

17

18,

(2)(3.14159)r

lw + lw

a + b + c

x = 2y

m 5

(186,000

(3.14) r3

s -4- (s ) 7

6ot

2L + 2W

(3.14)d

1
T bh

s
2

prt

n i-- 8

4- y
2

1.5 Translation: English Phrases to Mathemati 1 Phr ses:

Do you remember that the symbols:

(1) "+" in a phrase is sometimes translated "the sum of" Or

"exceeds". (Name some other translations.)

(2) "-" in a phrase is sometimes translated "less than"

difference between", "decreased by", etc.
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in a mathematical phrase is sometimes translated the

product of", "times", etc.

(4) "+" in a mathematical phrase is sometimes translated "the

quotient of", "divided by", etc.

"Translation" is used here in the loose sense meaning that these

English words sometimes lead to the indicated operations of

x,

1.6 Classroom Discussion:

There are many English translations which can represent the symbols

indicating the operations of addition, subtraction, multiplication,

and division. Can you write two more English translations of the

above symbols?

1.7 Characteristics of Translations of English Phrases to Mathematical

Phrases:

In translating an English phrase to a ma nematical phrase it is

important that you practice:

(1) Idel ifying clearly all variables which are used (as numbers

(2) Identifying as completely as possible all variables used.

(It becomes important i communicating your ideas to your-

self and others that you try to use complete, correct,

English sentences to do this.)

(3 Recognizing the English translations of symbols of Operations

in all of their various forms.

1.8 Exercises;

In each of the exercises write a mathematical phrase which is a

translation of the English phrase. Identify clearly what the

variable or variables represent. Choose a variable if none is

given, and use only one variable unless directed to do otherwise.

- 225 -

230



1, The number of dollars earned in t hours at three dollars an hour,

The total number of yards in 1. feet of cotton material and

yards of wool material.

3. The difference in cents between q quarters and d dimes.

4. The number of yards in t feet.

5. The average of three test scores x, y) and z

6. The sum of two consecutive integers.

7. The product of two consecutive even integers.

8. Fifteen inches more than twice the number of inches in the length

of a rectangle.

9. One thousand times the thrust of a Saturn rocket.

10. The number of dollars in the cost of a house increased by fifteen

percent of the cost of the house.

11. The number of miles traveled in t hours at 6000

12. The cube of a number.

13. The square of a number deer ased by the square of another number.

14. Seven more than a number.

15. The sum of a number and its reciprocal.

16. Thirty percent of x pounds of gold.

17. The product of two numbers increased by the first number. (Use two

variables.)

18. The sum of the squares of the digit of a two-digit number. (Use

two variables.)

19. The larger of two numbers multiplied by the difference of two

numbers. (Use two variables.)

20. The square of an integer diminished by the difference of the pro-

duct of the integer and the next consecutive integer.
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21, The area of a triangle increased by fifteen.

22. The difference between the numerator and the denominator of a

fraction if the numerator exceeds the denominator by 5.

23. The sum of the reciprocals of a number and a larger number.

(Use two variables.)

24, The tens digit of a two digit number is three more than the

units digit. Write a phrase representing the number. (Use

only one variable.)

25. Write a phrase for the number of inches in the perimeter of a

square whose side is s inches long.

26. The ratio of calories in the soft drink "Instant Pop" to "E and

X" is one to nine. Write a phrase for the number of calories in

a bottle of "Brand X" in terms of the number of calories in a

bottle of "Instant Pop".

27. The speed of a particular satellite in orbit decreases by 6

miles per day. Write a phrase representing the number of miles

decrease in speed over a period of 36 hours.

28 The number of students receiving A's in one mathematics class

is determined by squaring the number of students in the class,

decreasing the resulting number by the product of the square

root of three and the number of chairs in the room, and then

dividing this quotient by 295. Write a phrase representing

+he number of students receiving A's in a mathematics class.

29. Write a mathematical phrase representing the speed of a plane

flying with the jet stream if the plane is moving at a constant

speed of 500 miles per hour.

30. Write a mathematical phrase representing the speed of a plane

flying against the jet stream which is moving at a constant

spe6d of 500 miles per hour.
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31. Write a mathematical phrase representing the number of miles

raveled by a plane flying for 6 hours with the jet stream

-which is moving at a constant speed of 500 mph,

32. Write a mathematical phrase representing the number of miles

traveled by a plane flying for 6 hours against the jet stream

which is moving at a constant speed of 500 mph.

33 The temperature now, decreased by 32.

5
34. The product of the temperature now, decreased by 32, and.

9

35. The product of a number and the sum of two numbers. (Use two

variables.)

36. A number increased by the sum of two numbers. (Use two variables.)

37. The product of the first number and the second number increased by

the product of the first number and the third number.

Given three numbers a, b, c the opposite of the second number

increased by the square root of the difference between the square

of the second number and the product of four, the first number and

the third number all divided by the product of two and the first

number.

39.. The square of the first nuMber diminished by twice the product of

the first number and second number, increased by the square of the

second number. (Use two variables.)

40. The product of the sum of two numbers and the difference of the

same two numbers. (Use two variables,)

Section 2, Translation of Sentences:

2.1 Mathematical Sentences to English Sentences.

You have been using mathematical sentences formed by combining

mathematical phrases such as "3n 4. 111, 11211, "25 7" etc., with

mathematical verb forms such as ">", ".<!', etc. Many times

one or two mathematical sentences represent or serve es a model

of a situation, which takes several English sentences to describe.
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Consider the following sentence; 35x + (70)(40) - 50(x + 40).

Translating this sentence is like writing a story when you know

the ending. (I.e. for now, the ending to our story is the sen-

tence: 35x ± (70)(40) . 50(x ± )40)). Let's see if we cnn work

backward and write a problem which is an English translation of

this sentence. This process should provide you with some in-

sight into how to go about translating and analyzing some prob-

lem's.

2.2 Class Discussion:

3x (70)(40) = 50(x 40)

Can you tell what situation or situations his particular

sentence represents?

What do you need to know first so that all of you will inter

pret this sentence in a similar manner?

You know that the variable, x, must represent a number but

the number of what? Could it represent:

(a) The number of pounds of candy selling for 35 cents a

pound?

(b) The number of ounces of uranium in a radioactive com-

poundof uranium and radium?

The nuMber of hours a car is driven at an average

speed of 35 miles per hour?

(4) "rite another phrase describing the variable x.

2.3 The tra slation Process still classroom discussion):

Let's agree to the following statement as one int rpretation of

the variable x.

"Let x represent the number of ounces of gold in a compound."

(It is only fair to point out that we might have to reviSe and

improve this statement as we become more involved in the problem



Now:

(1) What does 35x represent? You can see that we also have to

know what 35 represents. Let 35 be the cost in dollars

of one :)I_Ince of gold

Now state what 35x represents Is the following statement

correct? -35x represents the cost in dollars of x ounces

of gold.

(3 ) What does 4o represent? Could it represent the following?

"40 represents the number of ounces of pure platinum in the

compound", (Note that you now have decided that your com-

pound consists of ld and platinum. Revise your statement

about the variable.)

(h) What can 70 and (701(40) represent now?

"70 represents the cost in dollars of one ounce of pure

platinum". Why did we choose 2E2. ounce? Would you believe

2 ounces? "(70)(40) can represent the cost in dollars of

40 ounces of platinum at 70 dollars an ounce".

5 "=" means "is equal to", _ tbe same a " etc.

(6) A- 40 now can represent the number of ounces of gold

added to the number of ounces or platinum". Do you see why

we can say this now, but could not state it at the begining.

(7) Now "50" can represent the cost in dollars per a_ ce of the

mixture of gold and platinum.

The following is one possible translatiom

The plating of a secret satellite must be a mixture of pure
platinum and gold. Exactly forty ounces of pure platinum
must be used in order for the satellite to perform correctly.
Pure platinum costs 70 dollars an ounce, and gold costs 35

dollars an ounce0 The cost of the mixture of platinum and
gold must be 50 dollars an ounce. How many ounces of gold
must be used in order to make a mixture which costs 50
dollars an ounce?
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Now try writing a translation of your own where x represents the

number of pounds of candy selling for 35 cents a pound.

2.4 Some Characteristics of Translations of Mathematical Sentences to

English Sentences:

I) The variable or variables are clearly identified as to what

they represent. (Usually a number of

(2) Each part of the sentence is clearly identified as to what it

represents.

(4)

The translation must make sense. In other words, the parts

must fit together in a reasonable way (i.e. x cannot repre-

sent the number

problem).

of tickets sold for a car-wash in the same

You must be willing to write, and think. The authors have

never heard of

"writers

hundreds

single student being permanently injured by

cramps" or "over-thinking", but they have observed

of students succeeding in and enjoying mathematic.,

because they were willing to read, write}

experiment, and con'ecture.

rewrite, think,

2.5 Translation of Sentences Ini.rolving Restricted Domains;

Sometimes the domain of the variable is dictated by the given

mathematical sentence.

Example: Write an English translation for the following sentence:

2x + 1 = 12 .

Since the solution set of this sentence is
(1-\

) it would not be

meaningful to write an English translation which requires that the

variable represent a whole number.

Class problem: Write a mee ingful translation of this sentence.
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C Exercises

Write an English translation of the following sentences. State

clearly your choice as to what each variable or variables repre-

sent, and then state what each part of the sentence represents.

Be sure your translation makes

imaginationt

1. 24 = 12w

2. 40 = 2w + 2(3w)

3. 312 =. ()(24)(h)

L. A = (3.1416)(16)2

64 = a2 + 25

6. m - . 17

7. 2n - 1 = 18

8. 81 = s2

9. 96 = bh

10. 150 - (1500)(.05)(t)

11. 763 = t-(15)(20 + bl)

12. V = (5)(10)(12)

13. X - 600 - 100

600 7oo

sense!

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29r

Be creative use your

x(3 a) = 3x + ax

25q + 10d + 5n = 250

C A- .050 = 2500

1 1 1
10 20

5F = (C - 32)
9

x +(x+1 )+(x +2)

x > 3 and x < 7

lyl = 5

m > 2 or

a + y + z

=

=

72

(.50)(17)

77.5
3

,30x + (.1+0)(x +1 )
2

rn. v
K

c32)

E (.009)v2

1
y = x + 3

2600 . (4) 30. 360 - (10

2.7 Translation: English Sentences to Mathematical Sentences:

Let's use your ability to translate English phrases to mathemati-

cal phrases to write translations from English sentences to mathe-

matical sentences. Remember, in the last section, many times it



took only one sentence to represent several English statements.

As in the last section, before the final translation of English

statements can -oe made, you must:

(1) know and state clearly what the variable or variables

represent;

(2) translate each part of the problem in term of wh t the

variab2e represents;

be sure your translation makes sense;

(4) know what the domain of the variable is.

2.8 Cissroom Discussion: Try to Complete the Following:

Consider the following problem: (The numerals in parentheses

refer to the statements above.)

(2) A t iangular sail has a base which is 6 feet less than

the altitude.

(3) The area of the sail is 312 square feet.

(1) Find the altitude of the sail.

Your translation might go something like this:

Select a variable or variables and tell what they represent.

Let the variable represent something in the problem that you

are trying to find. For example:

(1) Let h be the number of feet in the altitude of the tri-

angular sail.

e).-t
oes.: 0.3



(2) Then h 7 is the -,:umbe- feet in the base of the sail.

(,) The number of square feet in the area of the sail

(4) I know that the area of any triangle is represented by the
1

formula A = bh where A, b, and h are any numbers of

arithmetic.

(5) Therefore, the translation of these English sentences into

an open sentence is:

312 = A4

2.9 Exercie

Tran late the following English sentences into mathematical sen-

tences which could help solve the problems. State cleariy what

each variable represents end what eaeh part or your sentence re-

presents. Use only one variable unless directed to do otherwise.

Do not find the solution sets of the mathematical sentences at

this time.

1. The area of a rectangular-shaped lot is 5000 square feet.

The length of the lot is twice as long as the width. Find

the width of the lot.

2. A first number is three moe than a second nuMber, The sum

of the two huMbers is 31, What are the numbers.?

Jimmy is now twice as old as his sister Kathy. In two years

the sum of their ages will be thirteen. What are their ages

now?

I. A car travels for eight hours at an average speed of

miles per hour. How far does the car travel?

A car travels 232 miles in 4 hours. What was the

average speed of the car?
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6. An odd number which is increased by the next consecutive odd num-

ber is equal to 148. What are the two numbers?

7. Shady Hills High School collected 175 dollars in one day for a
1student scholarship fund. The number of nickels was 2 times

the number of quarters and the number of dimes was 1100 more

than the number of nickels. How many nickels, dimes, and quart

were collected? (Remember, 175 dollars is the same as 17,500 cents.

8 The sum of two numbers is 135. The larger number is more

than three times the smaller number. What are the two numbers?

The number of centimeters in one inch is approximately 2.54.

Find the approximate length of a bar of silver, in centimeters,

if the bar is one yard long.

10. The number of feet in a mile is 5280. How many miles does a

runner go if he runs 1320 ,ards?

11. The number of square inches in a square foot is 144. How many

square feet are there in 7 = square inches?

12. The number of minutes in one hour is 60. A car is traveling at

30 miles per hour. How many miles per minute is the car travel-

ing?

13. The number of seconds in one minute is 60. A car is traveling at

30 miles per hour. How many miles per oecond is the car travel

ing?

14. The nuMber of feet in one mile is 5280. A ear is traveling

miles per hour. What is the speed of the car in:

(a) feet per hour?

(b) feet per minute?

(c) feet per second?

15. A boy runs against a head wind for one mile and averages 10 miles

per hour. He returns one mile running with the wind and averages

15 miles per hour. How fast can the boy run in still air (no wind)

and what wasthe speed of the wind? (Use two variables; -write two

sentences. Remember: d = it)
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16, Students in the mathematics club at Shady Hills High School sold

special plastic bookcovers to raise money for their annual vaca-

tion in Hawaii. The club received 4,000 dollars from the sale

of the bookcovers. What was the cost of all of the bookcovers if

the margin of profit was 500 percent?

17. Captain Horatio Eilgewater carries a cargo of snarfs on his ship.

Captain Hook carries a cargo of bminfs on his ship. Together they

have 33 snarfs and bminfs. The number of snarfs that Captain
2

Bilgewater has is 2 the numher of bminfs that Captain Hook

has. How many bminfs does Captain Hook have?

. Three consecutive odd integers add up to 75. What is the smallest

of these three numbers.

19. Three consecutive odd integers add up to 57. What is the middle

number of these three numbers?

20. Three consecutive odd integers add to 117. What is the largest of

these three numbers.

21. What number divided by of itself is equal to 27?

22. Oliver Baconfat, a 300 pound sprinter on the Shady Hills High

School track team, wants to buy a pair of size 17 track shoes.

The shoes cost 2 dollars more than two times the amount of

money Oliver has now. If the shoes cost 20 dollars and 50

cents, how much money does Oliver have now?

23. The area of a trapezoid is 512 square

inches. The length of each base is 24

inches and 36 inches, respectively.

What is the length of the altitude?
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24. The volume of a box is 632 cubic

inches. The length is 3 times the

width and the height is 4 times the

width. What is the width of the box?

25. Horatio Algae, a cousin of Captain Bilgewater

built a circular swimming pool in his backyard.

The pool covers an area of 1700 square feet.

What is the diameter of the pool?

26. As a boy, Horatio Algae sold papers on,a street corner. He re-

ceived 1 cent for each paper sold du-ng the week and 2 cents

for each paper sold on Sunday. During one week he sold 1700

papers including Sunday sales. He received 22 dollars for the

week. How many papers did he sell on Sunday? (Use two variables;

write two openLsentences.)

27. Horatio Lox, another cousin of Captain Bilgewater's, is a rocket

fuel expert and was preparing a new mixture for an experimental

missile. He finds that the amount of liquid hydrogen must be

exactly 17 percent of the rest of the secret ingredients. The

total smount of the final mixture has to be exactly 4 gallons.

How much liquid hydrogen has to be used?

28. If you take one-third of a number, you get the same result as if

you subtract 93 from the number and add sixteen to one-half of

that difference. Find the number.

Section 3. Problem Analysis and Strategies:

3.1 Basic Attitudes Toward Problem Analysis:

There is no permanent procedure or formula for analyzing and

solving every problem. It is clear that the reason for analyzing

problem situations is to arrive at a solution, if solutions exist.
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Now tha-L you have had some practice translating problem situa-

tions, let's look more closely at the strategies for problem

analysis and try to develop some usuable problem analysis methods.

Several techniques will be discussed. Many analysis methods you

will eventually use will probably be a mixture of the procedures

developed here. Do not hesitate to vary your method of attack.

Basic Prin iple: Every person can do something toward solving

a given problem.

You have developed some ability to translate or create a mathe-

matical model of a stated problem situation. Not all models have

to be in the form of mathema icsl sentences. You could also use

drawings, tables of data, graphs, or any combination of these

which will organize your understanding of the problem. The most

important thing in learning to solve problems is to write or do

something to organize the information in as many ways as you can

until you score a "break-through". Don't give upl

3.2 Organization Techniques (A First Strategy)

14, Read or listen to the problem as often as you can. List any

words or expressions that you don't understand. Get these

cleared up

if you can solve the problem now, or at any other point in this

procedure, then do sot Use an analysis procedure only to explain

your work, and, perhaps, to check your result.

(2) List all of the information which is given. You might use

translation techniques to do this, tables, graphs, drawings

with information indicated on the sketch, or a combination

of these procedures. Revise this part continuously as you

analyze your problem. Try to decide if any information is

given which is not necessary for the solution of the prob-

lem. Keep checking on this situation throughout the whole

analysis procedure.
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(3) Try to state exa-tly what you're looking for and if possible

in wnat form you think the solution might bc. (A number, 2

graph a drawing a table of data, etc.)

(4) Identify specifically anything else that is not known in the

problem. You may not be given enough information to solve

the problem. This is a good place to start checki_g on this

possibility.

(5) If it is possible to represent the unknown or unknowns by

variables, then do so and translate the appropriate parts

clearly into mathematical phrases,

(6) Perhaps there is a basic relationship that exists that can be

represented by a formula. If so, write it down. If appro-

priate, write a mathematical sentence or sentences which

translates or is a model of the problem. If you have had

to simplify the problem, or have ignored any physical pro-

perties of the situation in order to write your transla-

tion, be sure to indicate this. (Don't be afraid to do this,

since it may be the only way to get to a final solution.)

3.3 Example of this Strategy at Work (Class Discussion Froble-):

Now let's try these steps on a problem. This problem was chosen

particulacly, because the analysis and solution are not immediately

obvious. We hope to illustrate some things in problem analysis

which every student can do You are not expected an this time to

be able to perform the manipulations necessary to determine the

answer to this problem, but you can analyze itl

"Two satellites are placed in the same sized circular orbit. The

first satellite is traveling 8 miles per minute faster than the

second satellite. The faster satellite requires 2 minutes less

time for the 30 000 mile trip around the earth than the slower

satellite. Find the rate of speed of each satellite in miles per

minute."
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The Analysis

Step (1) Read the problem.

Step (2) List the given information: (try to use your own words);

make a sketcho

The orbit is in form.

(b) Speed of satellite number one is 8 miles per minute

than the speed of the second satellite.

than the) Orbit time of first satellite is

second satellite.

) Length of one orbit is

ate exactly what fo to be foun'',.

for satelli es.

(a) The speed of the first satellite in miles per minute.

(b) The of the second satellite in per minute.

Step (4) What else is unknown?

(a) The time it takes the first satellite to complete the

30,000 mile orbit.

(b) The it takes the

Step

mile orbit.

to complete the 30,000

Rebresent the unknowns by a variable or variables, and trans-

late English phrases to mathematical phrases if you can.

(a) Let x represent the speed of the farst satellite in

miles per minute.

(b) Then represents the speed of the second satel-

lite in miles per minute.

c) Let t represent the number of minutes it takes the

first satellite to complete orbit.



Then represents the numbe_ uf minutes the second

satel_lite tm.kes tr, complete the orh=it.

Step (6) Write a sentence or sentences which are translations of the

problem or represent a basic relationship between the given

information and the variables.

(a) The basic relationship that exists is:

distance = (rate) (time)

(b) Therefore for '-ae first satellite, we can write the

sentence:

30,000 (x)(t

For the second satellite we write:

30,000 = (x 8)(

7.4 A Second Strategy:

If you cannot do Step 6 or any of the other steps, ask yourself

these questions and try to answer them:

(1) Have I ever solved a problem like this one before? If so

how?

(2) Is any part_ of this problem like a problem T have solved

before? if so, can I use the procedures I know to solve

pert of this problem? Can I change the method I know

slightly and solve this problem?

Can I draw another figure or figures which will represent all

or any part of the problem? If so do it; At least try

drawing several figures and labeling them.

(4) What are some ways I know of that might get an answer like

the one I want?

(5) What is the domain of the variable or variables in this

problem? Is it restricted? If so, why is it restricted?

(6) Can I estimate the answer? Check your estimate in the prob-

lem; it might give you a clue toward the solution of a prob-

lem. If you cannot estimate the answer, take a "wild" guess,

and try to check that guess. It is very likely that you

might pick up a clue toward solving the problem by doing this.
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If you have done everything indlcat: here in this list faith-

fully and you still do not have a translation, then seek help.

At least you know a great deal about the problem, and your

efforts neatly written up can serve as a basis for discussion

of the problem.

Remember -- realistic problem situations do not present problems

in neat packages that are all of one type. You should not ex-

pect to solve one problem and then do the next thirty problems in

exactly the same way. You should, however, expect to use infor-

mation, concepts, and procedures developed in solving other prob-

lems to help analyze new problem situations, but problem analysis

is not exciting or profitable if it involves only repetition of

rote, mechanical procedures.

3.5 Exercises:

Analyze the following problems. Any statement you make should be

clear, complete, and concise. Consider the following problem:

"The length of a rectangle is 3 feet less than twice its width

and the perimeter of the rectangle is 48 feet. Find the length

and width of the rectangle."

1. What do you know about the perimeter of the rectangle?

2. How would you compare the length and width of the rectangle?

3. What are you trying to find?

4, How can y_u represent the width of bhe rectangle?

5. How can you represent twice the width of the rectangle?

6. How can you represent the length of the rectangle?

7. Draw a figure which represents the rectangle and label the

length and width.

8. Is there a basic relationship between the length, width, and

perimeter of the rectangle? If so, state it.
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9. Write a sentence representing the relationship between the unknowns

and the given information.

Consider the following problem:

"Oliver Baconfat and his friend Shadow Jones race snails. The

rate of speed of Oliver's snail is 8 miles per week less than

that of Shadow's snail. If Oliver's snail requires 5 weeks to
2

go the same distance that Shadow's snail goes in 3 weeks, how

fast does each snail travel in miles per week?"

(Be alert - This is a slightly different approach to problem analysis.)

10. Guess a value for the speed of Shadow's snail. (Your guess has to

be > 8. Why?

11. How fast does Oliver's snail travel if you use your guess for the

speed of Shadow's snail?

12. How far does Shadow's snail travel in 3 weeks? (Remember,

d = rt. Use your guess for the speed.

13. How far does Oliver's snail travel in 5 weeks? (Continue to use

your guess.)

14. According to the problem both snails travel the same distance.

Are your answers for exercises 12 and 13 the same? Do you

see a plan for finding a correct "guess" which will make them

the same? If not, try another guess and see what happens.

Now analyze the following problem in a similar manner, and write an

open sentence representing the translation, if possible.

"The flower border of uniform width around the outside of the

student quadrangle at Shady Hills School has the same area as

the quadrangle. The width of the quadrangle is 60 feet and

the length Is 90 feet. Find the width of the flower border."

(Count the sidewalks cutting through the flower beds as part

of the flower beds.)
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Draw a careful sketch of the quadrangle and its surrounding flower

bord Label the parts which are given.

16. What are you trying to find? Use a variable to represent it, and

label this unknown part on y ur sketch

17. Using the given width of the quadrangle and your variable, can you

write an open phrase representing the outside width of the flower

border? Label this on your sketch.

18. Using the given length of the rectangle and your variable, can you

represent the outside length of the flower border? Label this on

your sketch.

19. State a basic relationship, which you know from previous work,

between the length, width, and area of a rectangle.

3.6 Organizi g Info o_ with Drawings or Diagrams:

The following examples and problems ere illustrations of situa-

tions where a drawing or sketch is a particularly helpful way of

organizing an analysis of a problem. It is not possible to give

a complete list of helpful diagrams, because each problem will

have probably a unique sketch which will be moat helpful in

analyzing the problem. We will discuss a variety of situations

in hopes that your skill in using this technique can be strengthened.

Example A; (Classroom Discussion

Consider the following problem:

"Given two different points A and B, each ten feet from a wall,

and 15 feet apart. Start from point A, touch the wall and

stop at point B. Where would you touch the wall in order to

arrive at B and to have walked the shortest distance possible?"

(1) Draw 5 veral diagrams (to scale or on graph paper, if pos-

sible), and experiment with different possibilities. (At

least 5 or 6)
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tr\/ t/ N./ \
/a,

1

15ft. B A 15ft . B A 15ft .

(2) Is there a geometric relationship which will help you

analyze all cases? Can you draw auxilliary line segments

so that there are right triangles invol:ed in all dia-

grams?

(3) Can you assign variables to represent the lengths of AC,

( 5 )

BC?

Did drawing several diagrams and experimenting lead you to

choose one situation as the most likely?

Can you use the Pythagorean Theorem or the Triangle in-

equality Theorem to analyze your conjecture?

Example B: (Classroom Discussion)

"Suppose that the sides of an equilateral triangle are doubled.

What effect will this have on the area of the larger triangle

compared to the ori inal triangle?"

Make a guess now before you start:

(1) Construct two equil-teral triangles as described above.

(2) Find the midpoints of each side of the larger triangle and

connect these with segments.

3) Now what is your guess about the ratio of these two areas?

(4) Can you justify your guess with a proof using SSS, SAS

or the formula for the area of a triangle?



Example C: (Classroom Disc - ion)

"Suppose that we have a box containing 3 marbles: 1 red, 1

gxeen, and 1 yellow. If one marble is picked at random, there

are 3 possibilities, We shall call them R, G, and Y, for

red, green, and yellow, respectively."

If the marble is returned to the box, and again a marble is

selected at random, we have 3 possibilities for the second

draw, also. The outcomes of the succession of 2 draws can be

described in terms of "color on first draw and color on second

draw". They are shown in this tree diagram:

First draw Second d-a

G

(1) On the first draw there are possible outcomes.

(2) For each possibility on the first draw there are

possibilities on the second draw.

The total number of possible outcomes on the 2 draws is



Complete the tree diagram for 3 draws of the marbles assuming

that each marble picked is returned to the box before the next

draw.

First draw Second draw Third draw

Use the tree diagram for picking marble 3 times to help you

answer the following:

(1) On 3 draws, how many possible outcomes are there?

(2) In how many outcomes is the red marble picked exactly twice?

(3) In how many outcomes is the green marble picked at least

twice?

Example D:

A highway patrol car traveling at 100 mph starts after some bank

robbers, who are traveling 95 mph on a freeway, 15 minutes after

they have passed the patrol station. How long after they _Aart

chasing the robbers will they catch them?

( Draw two different horizontal segments starting from dif-

ferent points on a third vertical segment and extending in

the same direction.
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(2) if the length of each of these segments represents the dis-

tance traveled by the robbers and the highway patrol res-

pectively, how do these lengths compare?

3.7 Exercises;

In each of the following problems present the given information

in the form of a picture or a sketch. It is not necessary to

solve the problem unless you wish to do so. However you should

state your guess as to the answer based on your drawings.

1. Two students run at 15 feet second from a point A to a

line L, and walk from the line to point B on the other

side of I, at 5 feet/second, To what point on line L

should the first student head in order to reach 8 first.

2. Due to increasing population a certain city of ancient

Greece found its water supply insufficient, so that water

had to be channeled in from a lake in the nearby mountains.

And since, unfortunately, a large hill intervened, there

was no alternative to tunneling, (See Figure 1.)

Source of
Water supply

Working from both sides of the hill, the tunnelers met in

the middle as planned.

How did the planners determine the correct direction to

ensure that the two crews would meet? How would yOu have

planned the job? Remember that the Greeks could not use
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radio signal or telescope, for they had neither. Never-

theless, they devised a method and actually succeeded in

making their tunnels from both sid meet somewhere inside

the hill. Think about it.

A school is located five blocks east and six blocks north of

the home of two brothers. The older brother walks four

blocks east and two blocks north to his girl friends house.

They walk from there one block east to - donut shop, and

then proceed directly to sc ool. The younger brother cuts

across vacant lots to a point one block directly west of

school and then proceeds to school. How far does each boy

walk to sehool?

Organizing Information in Tabular Form:

Many times it is especially interesting to arrange information in

tables. In fact, such an arrangment is often times the only

efficient way of gaining any insight into the solution of the

problem.

Class Discussion Problems:

Example A:

There are three bus pickup points A, B, and C for taking stu-

dents to school in a certain community which is considering a

new school at one of two possible sites, a and b. A is

four miles from a, 2 miles from b, and B is 3 miles

from a, 3 miles from b, and C is 6 miles from a, 1

miles from b. 200 students are picked up at A, 250 students

from B, and 225 students from C. It is desired to choose the

site which will result in the minimum total time of travel to and

from school by the town's student population. Which site is

chosen?

(1) Can you organize a table giving the distance to a and b

from each of the points A, B and C?
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(2) Can you organize a table giving the total student distances

from each point A, B, and C to sites a and b?

(3) Can you now guess which site meets the required condition?

Example B:

The following list represents the results of 100 throws of a die..

How does the occurrence of the results compare with the theoreti-

cal probability- of rolling a 1, 2, 3 4, 5, or 6?

100 throws of a die

53344 11!166 53213 46451

54563 41353 35335 65536 64112

43253 62454 53263 33423 21531

24131 64235 26563 22522 21355

Example C:

Ts there a relationship between the length anC width of the leaves

of a particular tree?

(1) Select 20 leaves from a tree or bush and measure the length

and largest width of each leaf,

(2) Construct a table listing this data and include the sum,

the difference (length - width the product and the ratio

( eagth - width),

Caa you now state whether a relationship exists for yc

leaves'i If tnere is one which method of comparison gave ,

this information?

3,9 Exercises:

In each of thc following problems, present the given information

in tabular form and try to answer the questions about this data.



3.10 Estimation Process

In this section we wish to focus your attention upon the techni -

que of "guessing" an answer and the information which can be de-

rived f--,m this approach to problem analysis.

Classroom Discussion:

Example A:

Suppose that we sketch a wire around the earth at the equator.

(Assume that the earth is a smooth sphere of diameter 8000

miles.) If we cut the wire, insert a piece one foot long and

then hold the wire above the surface so that it is the same

distance abe,e the earth all uhe -way around, how far above the
22 \

surface will the wire be? (Use ii
7

(1) Let's guess an answer and see if it is too large or to

small. First guess: feet.

The diameter of the new circle of wire would now be

8000 miles + 2 (? feet). Why 2 times your first guess?

(Don't forget to change 8000 miles to feet.)

How does the circumference of the new wire circle compare

to the original wire? (How are you going to compare these

two numbers; by addition, subtraction, division, or multi-

plication?)

(4) Was your guess too large or too small?

(5) Unless you see how to work the problem directly, revise

your guess and check your results again.

Example B:

A farmer found that it took 240 feet of fence to go around his

rectangular farmyard. He nOticed that one of the sides was 40

feet long. How long are the other sides?

(1) Let's guess feet for the width.



(2) How do you check your guess? Was it too large cr too small?

(3) Can you solve this problem using a sentence?

Example

Tne radar operator on an aircraft carrier detects a contact

moving directly toward the carrier. He estimates the distance

to the contact at 400 miles and the speed of the contact at

350 miles per hour, How long will it take one of the carrier's

planes to intercept the contact if it flies directly toward the

contact at 450 miles per hour?

(l) Guess the time it takes the carrier to intercept the contact,

(2)

hours.

How do you check your guess?

How far does the contact fly in the time you guessed?

How far toes the aircraft carrier plane fly in the time you

guessed?

(5) Can you use the method you used in checking your guess to

solve the problem?

3l1 Exercises

In the following problems guess the answers to the questions and

try to see if pne method you used to check your guess can be modi

fied to solve the problem.
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3.12 Problem Analysis Based on Analogy:

Sometimes problems in their or-iginal form are too complicated to

solve. These problems can often be analyzed by simplifying the

situation and then looking at the simpler model. We would like

to look carefully at this method on the following problems.

Class Discussion:

Exa ple A:

What is the longest line segment --hat can be dr.-n in the interior

of a sphere from a give point on the sphere La a different point

on the sphere.

(1) Suppose we simplify our situation and consider a circle and

try to figure out what the longest segment would be from a

given point on a circle.

If we draw a segment from the given point through the center

of the circle, how does this segment compare with every other

segment in the circle from the gi,Ten point?

Can we extend this analysis to a sphere.

Example 9:

Mr. X has to go to a town T, 78 miles from his house. He can

take a bus at 11:50 AM and, 35 minutes later the train, which gets

him to his destination in 45 minutes.

If he decides to drive, and he can count on an average of 50 mph,

when would he have to leave to get to T at the same time?

Simpler Form:

Part 1: How long does the trip take ty bus,and train leaving at

11;50? What is the time of arrival?

Part 2: In what time can a distance of 78 miles be covered,

traveling at a rate of 50 mph?

Some additional suggestions:

Some problems in which the student is faced with - the problem of

constructing geometric figures with indufficient data, or that there

is not a unique solution.
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GRADE 3 - CHAPTER 4

APPENDIX

THE USE OF FUNCTIONS TN PROBLEM S LVINO

in accord with our increased imphasis on function we point out

here how to use factions in solving some of the problems mentioned in

Chapter 4, Problem Solving. In addition we also discuss the isoperi-

metric problem of determining the rectangle of fixed perimeter with

maximal area. It turns out that this provides a classic example of the

inter-lay between synthetic geometry and analysis.

Of course we realize that not all problems are facilitated through

the use of functions. However, if the student, when stumped, will ask

"What function lurks in the background" he may find that he has a new

outlook on the problem and a new tool which will prove effective.

1,1oreover, since graphing of functions creates a model of the problem,

this attack will show, particularly for simple problems, the unity of

a variety of problems Such an example Is provided in these pages in

8 consideration of Problems 8, 17, and 27 of Chapter 4, done here on

pages 6-' It should be clear that this general method will apply to

any rate problem, including the well known work and mixture problems

Indeed, to make our point we might claim that by an introduction of a

function, the student has a tool of such wide applicability that this

gives him a general method for solving all the traditional problems of

high school (We grant the existence of counterexamplesI)

As a first example of the sort of thing that we can do, although

we would not recommend this as the first example for the student to

see, we shall analyze the "Two Satellite" problem on page 3, Section

3.3.
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Two satellites are placed in the same sized circular orbit. The
first satellite is traveling 3 miles per minute f,Ister than the
second. The faster satellite requires 2 minutes less time for
the 30,000 mile trip around the earth that the slower satellite.
Find the rate of speed of each.

Analysis;

The student must see that the basic functional relationship here

is Distance = Hate x Time. That is, that the function D :

associates the time traveled with the distance traveled, which is com-

puted by multiplying the rate of travelling by the time. 'his multi-

plication, (RT), has been graphed earlier and Looks like this:

distancet

t ime

In this problem we lave two satellites, a fast one, F, and a slow one,

S. Let us graph the appropriate function of each. We can't do it

specifically because we don't know, yet their respective rates. But

we do know that the rate of F, call it f, is greater than the rate

of S, call it s. That is f > s. And from past experience with

multiplication functions we know that their graphs should be related

thusly:

,st)
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each satellite goes 30,000 miles. En er on graph:

We also know that the difference in time for each to go 30,000 miles

is 2 minutes. Thus the difference between the first coordinates of

B and A is 2, that is t T = 2. Thus

309000 =fT= s

We also know that f is 8 greater than s, so a = f - 8. Thus

30,000 = f T

30,000 = (f - 8)(T ± 2).

Now we can use the first equation to relate and

thus

30,000
30 000 \

8)(T + 2

30,000
T

It is interesting to contrast this solution wi h the "Box" solu-

tion. We reproduce this solution in its entirety; it is essentially

self explanatory.
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Now

30,000
0

..... 0 60

,

time F's time = 2. Thus
30000 30 000

f
-

f - 8

Note: This equation is even easier to solve that the ,_ne we derived.

The student who can solve the problem is this way has no need

of analysis procedures.

We d- not give up the function approach easily. As we said, the

function approach is for the student who has tried everything -- and

has not been successful. It is fair to point out that for the usual

high school problem, the solution itself is of little importance and

has no value in the market place. However, the method of solution may

indeed have a value in the market place -- certainly the ability to

give new ones with new insights is a highly prized one.

The function approach gives promise of being applicable to less

stereotyped kinds of problems. The approach does have some of the

aspects of generality; in particular a variety of information falls

out of the general solution. For example, our same graphs give us

solutions for the next two proble

SECOND two satellite problem:

If F and S are fired into orbit from the same place and time,

when will they be on opposite sides of the earth?

The graphical interpretation is essentially the same except that

we look for points with the same time coordinate which are 15,000

units apart on the distance scale.
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(We have ignored here the point that we must first find the rates.

THIRD twu satellite problem:

Two satellites, F and S are fired into the saLi,- orbit which

is 30 000 miles in circumference. F is travelling 8 miles per

minute faster then S. When will the faster one rendezvous with the

second?

We take our analysis from

the graph,

ft - st 30,000

(f = s)t 30,000

f 8

30 000
-

F=ft

1 30,000

As to the many excellent points which Chapter 4 makes we add that

many can be rephrased in terms of functions. oome of them should be:

We shall now cite section and page numbers of situations in which some

additional clarity can be gained by an alternate statement using func-

tion. We put in quotation marks an alternate way of expressing his

question or answer.
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Page 2. Section 1.2. °Consider the function (R4 )-R . Try to

write an English sentence which clearly interprets what is meant."

Page 3. "Write an English phrase which describes the as ociation men-

tioned in the functions below".

1. t 6ot

2. L .4,7 21, + 2W .. .. etc.

Page 4ff. Section 1.8, "In each of the exercises determine a function

-thich interprets the English phrase On

11 t

(k,n)---k + 3n

6. + (x + 1)

19. x,y)-..mex(x,y) + x - y

x,y)

tr(5, if x < y

29. + 500

30. )00

31. (i,t)---6(i 5oo)t

32. ,l,t) 6(j - 5oo)t

Pa 7. Point out that en equation such as 35x + 70.40 - 50 x + 40)

is the statement that the graphs of two functions f and g:

0 if x y

_L : X + 70.40 g : 50(x + 40)

intersect. (It is of course conceivable that they won't inter-

sect.)

Page 9. Satellite Plating Problem (A rate problem). Analysis:

Key question: If x ounces of gold are used, what is the cost?

The function is

. 40 + 35x .
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If the student does not see the function right off the question can

be asked in terms of 0 ounces of gold, 1 ounce of gold, 10

ounces of o1d, etc.

Please no e that this approach is not a 'guess the answer"

approach. It is rather "What's going on" approach. Indeed I

feel that pressing the student for a complete answer to the whole

problem is wrong and tends to make him gun shy. George Polya not

withstanding!

Page 10: Plot various graphs of functions on either side of (=).

This will be tough for several variables situation; but in the

two variables case, letting one act as a parameter and plotting

for different vulues of the parameter may give real insight.

Page 11: The sail problem. We can write a functio

However this is an instance of forcing the use of function.

indeed, I find it hard to improve on Chapter 4's solution.

Can you?

Page 12ff: Problems 1-14 seem routine. Indeed, on most "age" and

"number-digit" problems I have found the introduction of function

to be uncomfortable pedantry. However it may be that some of

these examples, especially rate problems must be done with function

to pave the way for greater things.

Problem 8 deserves a:little more attention:

If x and y are the two numbers we have

x + y = 135

y = 23 ± 3x

Graph each:

and
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_500Problem 1. %: - tells us that 500 Thus
100 100

from the function x-4,-x + 5x we obtain the rule for the total

take from selling x books.

Problem 17:

+ b = 33

8
' b
3

Graph each: $O1

is snarfs b is bminfs

Rec 11 Problem 8

St8

s+b=33

Problem 22: x--62x + 2 tells us that if x is the amount of

money 011ie has now, the shoes cost 2x + 2. Solve

2x 1- 2 20 .)0.

Problem 27: If a is the amount of the secret ingredient and

h is the amount of hydrogen then

ii

s h = 4

=
100Is

Graph: Note similarity with

Problems 8 and 17.

Problem 26: If w is the number of papers sold on weekdays and

s is the number of papers sold on Sunday we study the function

w + 2s. The side conditions w + s = 1700 and

w + 2s 2200 set up the problem. In connection with this prob-

lem Jean Calloway has pointed out that to motivate the need (use-

fulness) of the function, this problem should be expanded by

giving a table of sales and profits for several weeks. There is

nothing like repeated pencil pushing to motivate the need for a

single function to do it all at once! This excellent suggestion

for motivating the need for a function should be applied in many

places.
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Page 21: (I eantt pass up this remark.) In Example A, try reflec-Ang

the point B across the line on which I lies'

Page 23: Example D: See the "Two Satellite" problem, second part!

Page 24: 1 Function approach clearly worke. Try a_y one!

2: I don't see any function lacking here!

Section 8 Tebles are functions'.

ISOPERIMETEIC PROBLEMB

This class of problems provides one of the nicest interplays of

synthetic geometry and analysis in the entire industry! We probably

cannot hope to show, analytically, that among all geometric figures

with a fixed perimeter the circle has the Largest area. However, as

Pamela Ames has pointed out, cut and paste techniques can lead to this

conclusion.

A more restrictive problem: Among rectangles with a fixed peri-

meter, which ones have the largest area 7 can be solved both by

cutting and pasting and, more precisely, by analysis. The actual

amount of precision depends of course on the analytic tools at our

disposal.

Cut and Paste Solution:

Give each student a dozen straws soda type_ and some grid paper.

-262-

FLS



Directions:

1, (a Take one straw and cut it into four - gments that can be

used to form a rectangle. Note that ihe method of cutting

will ta)e some good thinking (or even help) the first time.

Hopefully, they will eventually cut the straw -Into two

segments and then cut each segment into two congruent se

mcnts.

Place the rectangle formed by these segments on the grid

paper and trace the region.

(c) Count the squares to get a measure for the region (the area

2. Repeat the above procedure with --ch of the other straws using

segments of different lengths,

AHA: The maximum rectangular area with a given perime-er is a square:

Analytic Solution -- beginning with a story problem:

John has 2)4 feet of fencing to make a rectangular shaped pa for
his do2:. What should its dimensions be so that the dog will have
the most play area?

(If the student knows that a square has the largest area amoung all

rectangle of fixed perimeter, then the solution is trivial: )4s . 24,

s 6.)

We first draw a schematic picture of a rectangle:

Perimeter = 24 = 2(a + b)

Area = ab

Problem: How to choose a and b so that ab is maximised subject

to the side condition a + b = 12? The perimeter relation yields

b = 12 - a and so we seek the maximum of the area function

2 _

a a 12 - + 12a



Or: Maximise a(12 - a).

Plot the graph of this function:

If graphing is the only tool at

the disposal of the student, tlien

the maximum (6 -)6) must be read

from the graph. From the analysis

he then concludes it is a .quare.

If completion of the square is a technique et our disposal we argue:

2 2 2
-a 4- 12a = - 12a 4- 12a + 36) + 36

= -(a 6)2 + 36.

Now the expression 36 - (a - 6)2 clearly has a maximum when the sub-

tracted term which is positive is at a minimum, and since the sub-

tracted term is a perfect square this happens when a 6 - 0 when

a . 6. From this b . 6 and the max area is 36.

Another type of solution, variation of a parameter, is also

available to us in an intuitive and graphing form.

Consider ab = K For different values of K, what ia the graph?

Try, in turn, K = 1 2 4, 8, 16, 32, 36, 40 50, locL

Note that each curve of this family is symmetric a out the line

a . b. (See Next Fag

After plotting these curves on the same graph, let us now plot

the condition

a = 12 - b.

This line cuts some of the curves ab = K, but not others. Since we

seek a point of Intersection of ab K and a + b = 12 we must
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select a value of K for which the curve ab K and a + b . 12 in-

tereot. However, we want K to be as large as possible. Intuitively

this will be the value for which the line a + b - 12 angent to

oh K. From the symmetry of the figure the point of tangency will

occur when a b and thus a b - 6, i.e., at the point of inter-

section of a + b = 12 and a = -- This conclusion is not one we

could have easily justified without the variation of parameter method.

Or, pursuing this more a-:alytically, for any K, if ab K and

b = 12 - a then

a(12

0 = a
2

- 12a + K

or

which will have one solution for a if and only if the discriminant

12
2

4K = 0 that is when K 6. and thus a . 6 = b.
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A variation of this problem is to assume that one side of the

rectangle is given free along one line; the other three sides to have

a fixed sum. The equivalent of the story problem is to imagine that

John is to build his pen along the back wail of his lot, the back wall

beina: 60 feet long. He still has 24 feet of fencing. What shape

(rectangular) should it be? This Is a particularly nice problem since

uare is not the answer, and the student's intuition may not be as

accurate. The analysea of each variety are essentially the same.

An important variation of greater difficulty is to remove the

restriction of rectangular regions -- try a triangle, and various other

polygons. What happens as the number of sides increases? Try for the

circle as the solution to the general isoperimetric problem in the plane.

At some point in this experimentatio3:1 the students may want to re-

place -trews with string, One nice observation will be that whatever

figure is considered, making it convex if it is not already improves

the size of the area at no cost of peri
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GRADE 8 - CHAPTER 5

NUMBER THEORY

Background Assumptions:

A good bit of experience with the properties of the arithmetic

operations as applied to integers. Al o a good deal of familiarity

with integers multiplication facts factoring, dividing large

numbers, etc.

Purposes:

1, To teach the meaning of the unique factorization theorem for in-

tegers and its uoe in computation; tests for divisibility and

tests for primality,

tudy of proof in some easy situations where short arguments

suffice. Discussion of "If ... then..." statements, converse

negation.

To pursue some ideas of mathematical interest just because they

are interesting -- mathematics is more than just models of the real

world.

5.1 Even and odd integers,

Motivation

Sometimes we are interested in only some aspects of a number.

Street addresses - even nuMbers on one side, odd numbers on the other.

Square dances squares of 4 couples. Bridge or other partnership

card games. Circuits, computer storage - only interested in one of

two states.
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The "facts about even arc odd numbers have probably already been

discussed in Grades 4 - 6, Review these by asking questions like:

Is the sum of two even numbers even

2. Is the sum of an even number and an odd number even?

3. is the sum of two odd numbers even?

4. Is the product of two odd numbers odd?

5. Is the product of two even numbers even?

6. Is the product of an even number and an odd rumber even?

7. If the sum of two numbers is even and one of them is odd, what can

you say about the other one?

8. If the product of two numbers is even and one of them is even, what

can you say about the other one?

Collect all of this information in the form of addition and multi-

plication tables for even and odd.

After the children have worked with enough examples try to get

them to give a definition of "even". Of "odd". Let this discussion

lead into rather more formal statements of the theorems about even and

odd nurnbers

5.2 Informal disiussion of statements and proof.

Some discussion about mathe _tical statements (true or false),

about the form they usually take ("If ..., then...9, and quantifiers

("some", "all", "There is") Try to reformulate the statements about

even and odd as theorems in the "If then...." form. Ask questions

about the converse, etc.

For example if the students were led to propose as a definition

of "even"; n ds even if it has a factor 2; or n is even if there

is an integer n' such that n = 2n'; then a direct proof using the

distributive property can be given of the theorem:

"If rn and n are even, then m n is even."
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Point out that if m and n are not both even, then the state-

ment malces no claim about m + n.

Ask 31)out the truth of:

"If m + n is even, then m and n are even"

After you have a definition for even, try to get one for odd If

odd turns out to be "not even", then try to say what that would mean;

1,e n is odd if and only if there is an /I such that n = 2nr

This sh uld give a natural lead-in to the general definition of

divisibility and the division algorithm. As an exercise it might be

suggested that the student make a flow chart for the division algo-

rithm.

Some theorems which can be given for which the student can give a

more or less formal proof at this stage are:

1. If m and n are even, m is even

2. If m and n are even, then mn is even.

3. If m is even and m n is even, then n is even.

4, If in and n are odd, then m n is even.

5, if m and n are odd, then m n is even.

6. If m and n are odd, then inn is odd.

7. If in is even, m
2

is even.

8. If m is odd, then m
2

is odd.

To show that a proposed statement is false; e.g., "If mn is

even, then m and n are even", point out that it suffices to find

one example in which the theorem is false, 5 -6 is even but 5 is

odd. This might lead to a general examination of the unmentioned

quantifiers in the statements made above.

(While negations of "if..., then..." statements as well as contra-

positives might naturally arise in this discussion, postpone considering

such things until later as there are too many complications for a first

try at this sort of thing.)



Factor- div ibi.lit, t--

algorithm,

for divisibility and the division

Motivation See Sectton 10-1 in First :_parse in Algebra

(pp, 248-71)

With very little more effort, one can get a definition of divisi-

bility by 2, 4, 5, 10 and also 3, 6 and 9. While devising these

tests one could develop the division algorithm: a bq r where

0 < r < b.

In the exercises for this section one could extend the proofs

of the previous section to prove theorems such as

If d divides a and d divides b, then b divides

a b; a - b; kb; ab; and ax by for any

integers x and y.

As a lead in, theorems such as:

If 4 divides n, then 2 divides n.

Ask about the converse.

The following might be proposed:

If 2 divides n and 3 divides a, then

divides n. Converse.

One might also propose the theorem:

If d divides ab, then d divides a or d

divides b.

Let the students discover that this is true if d is prime,

but not necessarily true otherwise.

5.4 Prime Numbers, the Sieve of Eratosthenes, Frime Factorization.

There are versions of this material in Chapter 10-2 and 10-3 of

First Course in Algebra and Cnapter 11-2 in Introduction to Algebra

(pp. 464-476). However, the sieve can be done in such a way that other

questions arise. The conclusion that if no prime less than or ----- 17

divides n, then n is prime can be obtained.
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You may want to raise the Question: "Hcm many pries are there?"

If he division algorithm has been discussed in 7.3, Euclid's proof

that there are infinitely many primez;, can be turned into a constrctive

proof showing that given any set of primes there is always another prime

not in the given set. (In the Teacher's Commentary the analogous argu-

ment for primes of the form )4k - I can be given.)

Following thi,, section something similar t- the last two sections

of Chapter 10, FCA, pp. 266-282 might be added, since the laws of ex-

ponents have not appeared so far in the outlines for Grades 7 and 8.

5.5 The Euclidean Algorithm and the GCD.

Purpose'

As a follow-up to the message in Chapter 4 on Problem Analysis,

and as a _eview and different way of looking at the work of Chapter 2,

Grade 7, or, graphing of straight lines, one can pose the question of

solving equations of the form ax + by - c, where a, b and c are

integer% for integers x and y. One version of this material is con-

tained in ESSAYS ON NUMBER THEOR/ II, Chapter 4, pp. 19'726,

Rationale:

This section would have to be included as an example of "interest-

ing" mathematics. It would be hard to defend the position that this is

something everyone should know. There are easier and more direct ways

of getting the GOD and then the LOM for adding rational numbers On

the other hand, it certainly does shLw the work on linear equatio - in

a new light and offers opportunities for arithmetic manipulations with

another goal in mind.

5 5- (Alternative)

See Hassler Whitney's paper on the "Introduction of Mathematical

Concepts" (p. 4) for another and shorter way to introduce the GOD.

This introduces modulLir arithmetic and could lead to GCD ,Ind, he claims

to F.T.A.
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When the &le1idean Algorithm is developed, there are two very

nice flc- charts which could reinforce and clarify this algorithm

on p.. 30 of the New Orlenns Conference Feport, March 14-18 1966.
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GRADE 8 - CHAPTER 6

THE REAL NUMBERS REVISITED - RADICALS

_kground

Exponents- (NOTE: While Chapter 3, Grade 7 has some work with

scientific notation, rationals in expanded form with

extension of exponent notation to negative exponents,

there is not at present in the seventh or eighth grade

outlines a specific place where the laws of exponents

are reptated and worked with. To assume that this

was done before the seventh grade and need not'be done

again until the eighth grade is a mistake. It

should somehow be worked into the seventh grade out-

line and probably reviewed and restated in the NUMBER

THEORY chapter of the eighth grade after the unique

factorization theorem.)

Solution set of an equation

Order: If 0 < a < b and 0 < a < d, ac < bd.

Geometric construction for separation of segment line congruent

segments.

Absolute value: lxl.

Properties of even and odd numbers.

Decimals Square Ro ts the Real Number Line (Ch, 10, Grade 7)

-thagorean Theorem

Purposes:

Review of the real number system motivated by the consideration

of certain problems which do not have rational solutions; decimal nota-

tion for rational and irrational numbers; meaning of radical and practice
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in computations involving radicals; functions involving radicals; review

and summary of ---Terties of the real numbers and properties of subsets

of the real numbers.

6.1 Motivation

Suggest problems requirJ_ng irrational numbers in their solution

such as:

1. A biologist has a cube with edge 3 meters, in which a man is to

1:)e enclosed for a specified time. This cube is just large enough

to provide him with sifficient air for the time he is to occupy

it. He now wishes to build a cube which will be just large enough

for two men -- that is, to build a cube which has double the

volume of the first. What should be the length of its edge?

This is the same problem that Greek geometers tried to solve two

thousand years ago. They set different restrictions on the prob-

lem, however; they required that the edge be determined by geo-

metric construction, using only compass and straightedge. It

has been proved that the compass-straightedge construction cannot

be done. Can you solve the problem using numbers? Try different

lengths for the edge, to see whether you can find an edge which

gives a volume of 54.

2. Present a description of the golden section. This could be made

the subject of a film strip. See the Disney film, "Donald in

Mathemagic Land", part of which relates to the golden section.

Also see Nicolet film number fourteen -- strophcid golden sec-

tion, and vases.

6.2 Review of Facts about the Real Number Sys See MjHS, Vol. 2,

Chapter 6, pp. 235 ff.)

6.2-1 Notation for real numbers. Use exercises to recall:

(a)

(b)

Every infinite decimal names a real number.

If the infinite decimal is a repeating decimal, it

names a rational number; if the infinite decimal does
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not repeat It names an irrational number.

Possibility If repeating decimals are w-itten in

expanded form it might not be a bad idea to spend

a few minutes talking about the meaning of the symbol

e ,g

4 3 3
10

102 10-

3(- + +
1° 10- 10

The notions of limit and of infinite series are both

ideas which are really difficult to teach and to learn.

Early exposure and a longer period of time to get used

to the idea might prove helpful in later work. The

student has already seen the disguised manipulation:

r =

lOr

9r =

r =

3.7
3

Writing out the repeating decimal in expanded form

might pave the way for future belief in the validity

of work with infinite series. We don't suggest doing

any more than simply noting that the indicated infinite

series above is another way of denoting the rational
1

number
3

A rational number may be named by a fraction of the
a

form , a is an integer and b is a counting

number.

A numeral of the form v or where a is a

counting number, names a real number; if lia7 is the

product of two equal integral factors a is a

ratiohal number; otherwise it is an irrational number.



6.2-2 Proof that ,/:=7, is irrational= (Alt= ver ion -- 1SSM,

Vol. 2, pp. 362ff.

6=3 Roots of Numbers. (See FCA, Chapter 11, and PFCA-H, Chapter 15)

1. Square Roots

Definition of V and - with a > 0.

Di,cussion of solutions of equations of the form x = a with

appropriate restriction on a.

For ell real numbers x. Ix = xl. -ix =

In the exercises use function idea to practice finding the domain

and range of functions such a

f

g : x

h
2

etc.x -

2. Definition of nth root of Solution set of x3 = a; x . a.

(MJHS, Vol. 2, pp. 272ff.)

Domain and range of functions f : X-- )e g : x. ; etc.

Should we introduce x =
2'

etc., here or wait until the

chapter on the exponential function?

6.4 Computations with Radicals.

1. Use of factorization theorem in finding roots:

Ex. 47f, 4122

2. Irrational squa _ roots.

125 j 96
'

/757. ete.777

Recall of the theorem: If xi is a counting number and

is rational, then ir'T is an integer.
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Proof of theorem: If 0 < a then

Review of iteration method for approximatlng roots.

3. Product of square roots.

a) Theore . c = 1;17; a > C b > 0.

(b) Use of theorem to write root in the form a 1 a rational

and b a positive integer without square factors.

Ex. 17E, V450 etc.

Use of commutative and associative properties of multi-

plication.

Ex. 21/57 ° 31/77

(d ) Use of distributive property.

Ex. 51/ ; 5(21/ + 15) 15 V7)(15 1/7)

(e) Radicals with variables.

Ex. 14x 2 Since domain is the set of reals.

,-
Since domain is non-nega-

tive reals, = x
2

x > 0.

4. Square roots of rational numbers.

) Theorem: fi _1 b > 0.
b

AT

(b) Use of theorem to simplify radicals (as defined above

Ex.
25

,/rEAlso use variables: . Restrictions on x?

)17 r-
vs_ . Restrictions on on b? on ab?

Restrictions on a? on b?
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Review of Properties of the Real Numbers and the Real Number Line.

1. Properties of the real number system

Use exercise sets to recall field properties. (See Ex.

of MJHS Vol. 2)

Include questions on subsets to emphasize properties not possessed

by subsets. (See PFCA H, p. 184).

Emphasize -rder properties.

Real numbers end the number line.

p. 279

a
) Location of point for rational number T by geometric

construction.

(b) Location of point for irra ional by ge -etric construe-

tion.

(c) Location of pcint for infinite decimal by nested intervals.

Use 3-t as an example. (See AIRS, Vol. 2, pp. 256, 261-5)

One-to-one correspondence between real numbers and points

on the line.

Exercises in ordering on the number line, numbers named by

different k-_nds of numerals (fractions, decimals, radical

absolute values).
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GRADE 8 - CHAPTER 7

TRUTH SETS OF MATHEMATICAL SENTENCES

EPckground Assu pti ns:

Students have had some experience with the solution of some types

of linear mathematical sentences with integral and rational coeffi-

cients. No formal methods of solution have been presented.

Studen haA, had methods of solution of systems of mathematical

sentences.

Rationale:

The development of a reasonably careful discussion of the solutions

of mathematical sentences has been postponed until now because we wanted

to discuss some operations which would not necessarily result in equiva-

lent sentences, e.g., squaring both sides of a sentence, and multiplying

both sides of an equation by an expression which is zero for some value

or values of the variable.

Purposes:

1. To identify clearly the concept of equivalent mathematical sen-

tences and to state precisely the "permissible" operations which

will always lead to equivalent sentences.

2. To identify clearly the operations on mathematical sentences which

may nrb lead to equivalent sentences.

To provide additional practice in problem analysis and problem

solving techniques.

Procedure:

1. Review addition property of equality and its use in solving equa-

tions. Introduce the concept of equivalent sentences, p. 133-135.

First Course in Algebra - Part I.
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2. Review multiplication property of equality and its uses in solving

equations. Use concept of equivalent equations. p, 167-170

First Course in Algebra - Part T.

Apply these two properties to the solution of inequalities. Use

concept of equivalent inequalities. p. 187-200 - First Cou- e in

Algebra - Part T.

4. Include appropriate verbal problems -- see above references to

First Course in Algebra,

Consider the question of "permissible operations" for equivalent

sentences, in general. p. 377-394 - First Course in Algebra -

Part II.

6. Discuss the theorem - If a = then a
2

= b
2

and the fact that

the converse is not 7,rue.

7. Consider equations of the following type

(x 3)(x - 2)(x - 4) = 0.

This may be written as the equivalent compound sentence

x 3 = 0 or x - 2 = 0 or x - 4 = 0.

This is another situation where equivalent sentences arise.

p. 388-389 - First Course in Algebra - Fart 11.

Consider fractional equations and restrictions upon denominators

containing variabl p. 391-394 - First Course in Algebra -

Part TI.

9. Consider the operation of squaring both sides of an equation and

the fact that this operation does not always result in equivalent

equations. A check is necessary to determine the solutions of the

original equation. However, if boundary conditions are noted a

logical check is not necessary, only a check for accuracy, e.g.,

Vi = 2 - x and 0 < x < 2.

p. 394-398 - First Course in Algebra - Part 11.
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GRADE 8 - CHAPTER 8

QUADRATIC POLYNOMIALS AS FUNCTIONS

Background Assumptions:

1. Functions Notation f x f(x); linear functions; graphs

of linear functions.

2. The real nuMber system, axioms and definitions, operations.

3. Solution of Mathematical Sentences

4. (Graphs of absolute value furA;ion)(See First Course, pp. )48-473)

Rat_ionale:

The graph of f x--1.-x2 will be constructed. This will be

compared with the graphs of the followins:

2
-x

2
xtr-ax

2
x k

%2
+ k

In each case, the zeroes of the function will be discussed This

will lead to the discussion of how to find the zeroes algebraically.

Since ab = 0 if a = 0 or b = 0, we would find it hel2ful to be

able to factor quadratic polynomials.

Factoring, by use of the distributive property, of polyno ials of

the following types
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ab + ac a(b + c)

ax + ay + bx + by = + y) + b (x + y) = (a + b)(x + y)

a
2

+ 2ab + b2 = a
2

+ oh + ab + b
2

= (a + b)(a b)

b- = a2 - ab + eb b
2

= (a + b)(a - b)
2

will lead to the factoring of x + bx + c, and of ax
2

+ bx + c,

by completing the square, and finally by inspection for those poly-

nomials which can be factored over the integers.

Now we go back to use factoring in the finding of the zeroes of

quadratic functions, and thus solving quadratic equations by factor-

ing over the integers and by completing the square to factor over the
_

reels. Finally we solve the general quadratic equatior ax
2

+ bx + e = 0

by completing the square, and thus develop the quadratic formula.

Factoring skills can also be put to work to rewrite ax
2

+ bx + c

in the form a(:- h )2 + k. This form is convenient for determining

the minimum (or aximum) of the function, and thus for constructing its

graph.

Froma single graph of a function in form ax
2

+ bx + c, the

student can be shown how to find solution sets of many equations, by

moving one (or both) of the axes.

Purpose:

1. To study in some depth the graph of the quadratic function.

2. To deve1op and practice the more common types of factoring of

linear and quadratic polynomials.

3. To present methods of solving quadratic equations.

Procedure: Ref :First Course, pp. 733-536

Section 1. Graph of the quadratic function.
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1.1 Graph of 2
and of f :

0
Do gr ph of xx2 carefully for -4 < x < - include

1 1 1 1 \

2
to _how th shape of the parabola.

Point out: symmetry with respect to y-axis; range is non-

negative reals; domain is set of reels.

Show graph of
2

x -x

symmetry is preserved.

1.2 Graph of f x--1.-ax
2

.

as a reflectiou about the x-axis;

Consider graphs of x--ax2 for 0 < a < 1 and for a > 1,

and compare with graph of x--11-x
2

.

Show graphs of
2

for -1 < a < 0 and for a < -1 as

reflections Of the corresponding cases above.

Perhaps generalize on x--w-ax
2

for a 0 in terms of !al.

1 3 Graph of f x 1w-
2

k

Discuss effect of k for k > 0 and k < 0.

For k < 0, consider the zeros of the function (new term-

explain it!)

Ask what about zeros for k = 0, and k > 0. (This hints at

complex numbers)

l.4 Graph of f : -

Discuss effect of h for h > 0 and h < 0.

Consider the zeros in both cases.

1.5 Graph of f : x a(x - h)2 ± k.

Summarize how the graph of x
2

is affected by values of a,

h, and k.

Talk about zeros of the function, also maximum or minimum, symmetry,

turning point.



1.6 Two algebraic questions:

(1) How can a quadratic function in form ax
2

+ bx + c be re-

written in form a(x h)
2

+ k, to make graphing simpler,

as well as to aid in locating line of symmeLry, turning

point, and maximum or minimum value. (Merely develop

feeling of a need for factoring skills of some sort.)

(2) How can the zeros of a function in form ax
2

+ bx + c Le

determined algebraically? Since ab = 0 if and o.ly if

a = 0 or b = 0, this calls for being able to factor the

polynomial over some set of numbers.

Section 2. Factoring Polynomials. (9H, 556-572, 577-588, 591-621)

2.1 Meaning of factoring over the integers, over the rationals,

over the reels.

2.2 Type ab + ac = a(b + c).

Simple use of distributive property,

2.3 Type ax + ay + bx + by = (a + b)(x + y).

Multiple use of distributive property.

_

2.4 Perfect square, a
2

+ 2ab + b
2

,

Show use of distributive property, as:

_2
a
2

+ 2ab + b
2

a2 + ab + ab + b- - a(a + b) + b(a + b) a + b)2

Discuss characteristics of a perfect square trinomial.

2.5 Difference of squares, a
2

- b
2

Show use of distributive proper y, as:

a
2

b
2

= a
2

ab + ab - b
2

- a(a - b) + b(a

Then observe short cut from reversing the product:

2
(a + b)(a - b) = a

2
- b- .
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Move on to types:

a
2

+ 2ab + b
2

- c
2

= (a + b)- -

2.6 Factoring a polynomial of form

square'.

a + b + c)(a + b - c)

+ bx + c by completing the

Also show by inspection for those factorable over the integers.

2.7 Factoring a polynomial of form ax
2

4- bx + c by completing the

square, and by inspection for those factorable over the integers.

Section 3. Solving quadratic pquations

3.1 Discuss "finding zero of function ax
2

+ bx +

equation ax
2

+ bx + c = 0".

as "solving

3.2 Solve by factoring; i.e. ab = 0 if a = 0 or b - 0.

Emphasize factoring by completing the square as the general

method, giving roots both over the rationale and over the reels.

Hint at complex roots.

3.3 Development of formula:

Generalization of completing the square.

Emphasize its significance in that it relates the roots to the

coefficients.

section 4. Going from ex
2

+ bx + c to

4.1 Use of completing the square to write ax
2

+ bx + e in form

a(x h)2 + k and thus draw the graph quickly and accurately.

4.2 From the graph of a single function of form ax
2

+ bx +

the solutions of many quadratic equations can be found by

giving the function a succession of values.
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GRADE 8 - CHAPTER 10

PARALLELS AND PERPENDICULARS

Background:

Separate chapters have been introduced on parallelism in Grade 7)

and perpendicularity (in Grade 8 ). The present chapter summarizes, re-

vf synthesizes and extendJ these chapters.

From work with measure we need the concept that the length of a line

segment and the distance between two points are the same number arrived

at in different ways. The first is a function from the set of segments

in space to non-negative real numbers; the second is a function from

pairs of points to non-negative real numbers. We are now ready to ex-

tend the concept of "distance between" to a function whose domain is

any pair of geometric figures. (There is still a problem to straighten

out here! Will we accept a line segment of length 0? How about "two"

points which have a distance of 0 between them?)

Many properties of specialized quadrilaterals are assumed to be

already known and are summarized here. Some simple reflections in

points, lines, and planes as transformations are used as background for

discussing symmetries of 2 and 3 dimensional figures. The concept

of symmetry of a figure is then made a little more general.

Although the parallel "property" has been introduced and intuitive

facts associated with it, we incorporate it here into a deductive se-

quence.

Purpose:

The purposes of this chapter are as follows:

1. To consider sets of parallel and perpendicular lines and planes and

the number of regions they determine in 2 and 3 space.
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2. To develop deeper intuition in 3-space for the relations of

parallel and perpendicular among lines and planes.

. To define distance between parallel lines and planes, but within

the broader context of distance between two geometric objects.

/1. To survey and e=xtend concepts related to quadrilaterals.

5. To lay a simple and intuitive found tion for the concept of

necessary and sufficient conditions.

6. To extend the concept of reflections in point, line, and plane

te symmetries of polygons.

7, To provide one more short deductive sequence, this time applied

to parallel lines.

Rationale:

Counting regions is a way of associating numbers with geometric

figures. In a sense it is a function from a certain set of geometric

figures to the natural numbers. This use of number is not a metric

use, but a combinatorial use of numbers for counting.

Parallel and perpendicular lines and planes taught separately

are rich subjects, but in this chapter we consider the richer inter-

connections between these two relations.

Distance up to now is a function on a pair of points, now it is

extended and generalized, still including former ideas as special

cases.

Symmetries are very definitely considered here as one more step

along the road which stretches from reflections (in Grade 7) to trans-

formations (In Grade 9). There are symmetries that are not reflections;-

later there will be transformations that are not symmetries.

Many times we have used the fact that the degree measure of the

angles in a triangles add to 180, but here, for the first time, we

prove this fact in a miniature, deductive system.
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Section 1. Regions:

1.1 Study number of regions ot counting the lines) into which a nlane

is separated by two parallel lines; by n parallel lines.

1.2 Study number of regions (not counting the lines) into which a plane

is separated by two perpendicular lines; by two parallel lines al:f1

transversal perpendicular to them; by net of n lines and

others perpendicular to them.

1.3 Extend ideas of 1.1 and 1,2 carefully to some problems in -space

with parallel and perpendicular planes.

Exercises:

1. Use

(a)

sequence of simpler problems to reach such problems as these:

How many regions of a plane are formed by 4 parallel lines

and 5 lines perpendicular to them? (Ans: 30)

How many regions of a plane are formed by n parallel lines

end by m lines perpendicular to them= Ans: (n + 1)(m + 1)

2. Just a few suggestions for problems in 3-space:

) a, p, and .6" are planes so thP+ allp and a 1 g . Into

how many regions do these seperat- space? (Ans: 6)

( ) a p, and X are 3 mutually perpenclicular planes. Into

how many regions do they separate space? (Ans: 8)

(c) Into how many regions is space separated by n parallel

planes? (Ans: n + 1)

Perhaps some challenge problems of ',his level, but not any harder:

(a) What is the maximum number of regions you can create in a

plane with 3 lines? with 4 lines? with 5 lines?

(b) What is the maximum number of regions you can create in space

with 2 planes? with 3 planes? with 4 planes?
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Section 2. Combining Parallel and Perpendicular Relations:

2.1 Line perpendicular to one of two parallel lines; line perpendicu-

lar to one of two parallel planes.

2.2 Two lines perpendicular to same line; two lines perpendicular to

plane.

23 Plane perpendicular to one of two parallel lines; plane perpendicu-

lar to one of two parallel planes.

2,4 Two planes perpendicular to same line; two planes perpendicular to

same plane.

2.5 Consider relations of parallel and perpendicular with respect to

reflexive relations, symmetric relation, and transitive relation.

(We assume that these terms have been introduced in connections

with numbers, so we are making use of an old idea here. They are

intended to reinforce and review such an idea, not to introduce

it.)

Exercises:

1. More ASN exercises in 3-space: (The problem of whether a line

should be considered parallel to itself; a line in a plane parallel

to the plane; and a plane parallel to itself might well be con-

sidered by some other group of people, and by the writers. Here

the viewpoint is that two lines must be distinct in order to be

parall 1, and so on.)

A S N (1) Hypothesis: Two planes are parallel.

Conclusion: A line perpendicular to one of these planes

is perpendicular to the other.

A S N (2) Hypothesis: Two lines are parallel.

Conclusion: A plane perpendicular to one of these lines

is perpendicular to the other.
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A S N ( Hypothesis: Two planes are parallel.

Conclusion A plane perpendicular to one of these

planes is perpendicular to the other.

A S N (4 ) Hypothesis: Two lines are parallel.

Zonclusion: A line perpendicular to one of these lines

is perpendicular to the other.

A S N (5) Hypothesis: Two planes are perpendicular.

Conclusion: A line perpendicular to one of these

planes is perpendicular bo the other.

A S N (6) Hypothesis: Two planes are perpendicular.

Conclusion: A line perpendicular to one of these

planes is parallel to the other.

A S N (7) Hypothesis: Two planes are perpendicular.

Conclusion: A line parallel to one of these planes is

perpendicular to the other.

A S N (8) Hypothesis: Two lines are perpendicular.

Conclusion: A plane parallel to one of these lines is

perpendicular to the other.

A S N (9) Hypothesis: Two lines are perpendicular.

Conclusion: A line perpendicular to one of these lines

is parallel to the other.

A S N (10) Hypothesis: A plane is perpendicular to a line.

Conclusion: Another plane perpendicular to the line is

parallel to the first plane.

A S N 11 Hypothesis: Two planes are perpendicular.

Conclusion: A plane parallel to one of these planes is

parallel to the other plane also.

2. Fill in the following table with the letter F or T with the

following meanings: (Assume we are in 3-space.)
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T The relation has the property,

F The relation does not have the property.

Reflexive Symmetric Transitive

1 b

a i b

alIP

a p

Note a and b are lines; a and p are planes in this

standard notation; 7,_1 lines or planes contidered in the

transition relatio are distinct.

Section 3. Direction of a Plane.

3.1 What do a family of parallel lines in 2-space have in common:

slope.

3.2 What do a family of planes in 3-space have in common: the slope

of a plane is difficult to define; go back te the plane for in-

spiration.

3.3 Another characteristic of a set of parallel lines in 2-space:

there is a line perpendicular to al_ the parallel lines; go back

to 3-space and see if this helps.

3.4 Hurrah: For each set of parallel planes there is a line perpen-

dicular to all planes this does not imply only one line).

Discuss "characterization" of a family of parallel lines by the

slope of the line found perpendicular to them ; if we could get

to the idea of slope of line in 3-space we cOuld do the same --

perhaps in the future.



Exercises:

Have students draw diagrams to illustrate th ideas above.

Section 4. Distance between Parallel Lines and Parallel Planes.

4.1 Review: Distance from point to point is length, or is measure of

se,7ment.

4.2 Def: Distance from point to set of points as minimum of distances

to points in the set; apply to line, segment, circle, and plane.

(The problem of unusual sets where the idea of a greatest lower

bound is needed should be avoided. Just simple cases here.)

4.3 Def: Distance from set to set as minimum of distances from point

in one set to point in other set; apply to line and circle, two

circles (completely outside or one contained in other), two

parallel lines, two parallel planes two intersecting lines.

4.4 Def: "the" altitude of a parallelogram or of a trapezoid; alti-

tude as segment and as number.

4.5 Equations of planes parallel to coordinate planes; inequalities

for "strips" and 3-space intervals. (See previous work in

Section 2.6 of Grade 7, Chapter 11, Parallelism)

Typical Exercises:

(In the following discussion note the difficulty in keeping pure

meanings for the phrases "distance from A to B" and "distance be-

tween A and B". More thinking must be done to say when we want to

talk exactly, and when we may use colloquial expressions in these situa-

tions.)

1. A point is 6 inches from the center of a 3-inch circle. How far

is it from the circle.

2. A point Is 2 inches from a circle which has a radius of 3

inches. How far is the point from the center of the circle.
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D. A point lies on the perpendicular bisector of a 4-inch segment

and is 3 inches from the segment. It moves parallel to the

segment through 6 inches. How far is the point now from the

sec_2nt?

A point is at the center of a 5-inch circle. This point moves

12 inches in a direction perpendicular to the plane of the circle.

How far is the point now from the circle? Now the point moves 5

inches parallel to the plane of e circle; how far is it now from

the circle? If the point had moved 21 inches instead of

how far would it have been from the circle?

5

(More thinking needs to be done about the use of such expre ions

as "The point moves parallel to a line", or "The point moves

parallel to a plane". The meaning is clear, but how should we say

it in mathematics? Can a point move or is it not fixed in space?

Should we not say "moves on a line which is parallel to the line.

These indicate some of the difficulties.)

5 A 6-foot flagpole is attached to the vertical wall of a building

_t a point 20 feet above the horizontal street. The pole makes

an angle of 1A-c3 with the horizontal. How far is each end of the

pole from the street?

6. A line is 6 inches from the center of a 2-inch circle How far

is the line from the circle?

Two circl-s have radii of 9 and 10 inches. What is the dis-

tance between the circles if:

a) Their centers are 20 inches apart?

(b) Their centers are 2 inches apart?

c) Their centers are 6 inches apart?

. Two sides of a parallelogram are 6 inches and 12 inches and

the angle included between them is 30°. What is the distance

between the pairs of parallel lines containing opposite sides? Is

this the same as the distances between opposite sides (as segments)?



9, Compute the area of the parallelogram in Exercise 8 in two ways and

compare your answers,

10. In 3-space what is the graph of the following sentences:

(a) 4 < x < 7

(b) 4 < x < 7 and -3 < y < 2

4 < x < 7 and y < 2 and 6 < z

11. What is the distance between two interse ing lines?

Section 5. The Quadrilateral Properties:

5.1 Review, summarize and interrelate properties of parallelogram,

trapezoid, rhombus, rectangle and sqnare; properties of sides,

diagonals and angles are intended.

5.2 Study the sufficiency and begin the idea of necessity of condi-

tions on a very intuitive level; necessary and sufficient condi-

tions as such to be studied later.

Typical Exercises:

1. The following problem is a large one and may not be wise to in-

clude as a whole, but it is extremely valuable. It would be ex-

cellent summary material and might well be worth 2 or 3 days

of class time.

Directions: In the following table, consider the five types of

geometric figures listed across the top with respect to the

sixteen statements at the left (to save space the statements are

referred to by number and listed below). If the geometric figure

at the top always has the property at the left, fill in the table

with an A; if the figure sometimes has the quality, use an S;

and if it never has that property, use an N.

200



Rectangle Square Rhombus Parallelogram Trapezoid
1.

2.

3.

etc.

Statements:

1. Both pairs of opposite angles are congruent.

2. Both pairs of opposite sides are congruent.

3. Each diagonal bisects two angles.

4. The diagonals bisect each other.

5. The diagonals are perpendicular.

6. Each pair of cons cutive angles is supplementary.

7. Each pair of consecutive sides is congruent.

8. Each pair of consecutive angles is congruent.

9. The diagonals are congruent.

10. Both pairs of opposite sides are parallel.

11. Three of its angles are right angles.

12. Its diagonals are perpendicular and congruent.

13. Its diagonals are perpendicular bisectors of each other.

14. It is equilateral.

15. It is equiangular.

16. It is both equilateral and equiangular.

2. Another, valuable use of this table is to turn the problem around

end thus ask the following question: Are the data at the left of

a line sufficient to assume the figure is the type named at the

top? Use the letters A, B, N to mean always, sometimes and

never as follows:
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A The (inta being true, the figure must be that given.

S The data being true, the figure may or may not be that

given.

N The data being given, the figure could never occur.

Section 6. Symmetries:

6.1 Def: Symmetry in a line, in 2-space, in 3-space.

6.2 Def: Symmetry in a point, in 2-space, in 3-space.

6.3 Def: Symmetry in a plane,j.in -space.

6.4 Symmetries of triangles: isosceles, equilateral.

6.5 Symmetries of rectangles: non-square, square.

6.6 Symmetries of a circle.

6.7 Symmetries of three dimensional figures.

Exercises:

1. For each of the following figures use a ruler and draw all lines

of symmetry. Then write down the number of lines you have found.

Then mark each point of symmetry :..7)u can find.
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2. Tell for each figure how many planes of symmetry there are; then

how many lines of symmetry; then how many points of symmetry.

Equilateral
Base Regular Te rahedron

For each of these figures.rind reflections in all lines of symmetry;

then rotations about center of 1800, 1200, 900, or whateer you

Sphere

need to make the figure coincide with itself.

;C

A

4. Symmetries of a circle rotations about the center only.

Section 7. Angle - S Proofs.

7.1 The parallel property.

7.2 Proof: Angle measure sum for triangles.

7.3 Semi-probf: Angle sum measure of convex polygons.

Exercis

The usual kinds. See SMSG and other books.
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GRADE 8 - CHAPTER 11

PROPERTIES AND MENSURATION OF GEOMETRIC FIGURES

(Review and Summary)

Background:

Metric System, Grade 4, Part II, Cllapter 9, pp. 476ff.

Unit Segments, Unit Angles, What is Area?, Grade 5,

Part II, Chapter 7, pp. 407ff.

Chapter 8, pp. 475ff.

Congruence, Grade 7 Chapter IV

Measure Grade 7, Chapter V.

Purpose:

L. Review and extend notion of measure; develop some degree of

comfort with the metric system.

2. ( ) Based on the summary in Chapter 10, Section 5 review and

extend formulas for perimeters and areas and apply to

problems involving real numbers. Derive the formula for

the area of a trapezoid.

(b) Deepen the understanding of the relation between congruence

and measure: (congruence equal measure, converse is not

tr-e).

Review properties of regular polygon. Compute perimeter, radius,

apothem area. Develop (WST) formula for area of circle.

4. Develop properties of solids:

(a) with parallel bases: boxes, cylinder.

(b) pyramid, cone

_299_
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(c) develop formtlas for surfaces and volumes of solids.

(d) sphere WST).

OUTLINE

(1) This is the fourth exposure to measure and it is important to

continue this development building on previous learning ex-

periences.

First, measure was based on congruence: Two segments axe con-

gruent if one is an exact copy of the other; the same holds for

regions.

Next: linear measure was given a numerical lue.

The third time, in Chapter V, Grade 7, area is developed in terms

of equivalent regions. This section contains excellent examples;

review some, bring in new ones. Although we are generally con-

cerned with convex pmlygonal regions, an example could be intro-

duced to show that not all regions are convex, yet can be de-

composed as indicated.

But now we want more; we want a numerical measure for areas.

Show that not all regions can be decomposed easily into equiva-

lent regions. For example:
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It would not be possible to decompose this region equivalent to

another region. But we can try the following in order to esti-

mate the area:

MN= II ME MI
11111211.511111111MillNumiummom.maimpumum

"Recall that area of a surface is the number of square units con-

tained in it" (MTH, Vol. 2, Part II, p. L70). Lead from this to

the necessity of essigning a measure, which is a number, not only

to segments, but also to polygonal regions. Discuss closeness of

approximation in diagram above.

Develop next the idea of arbitrary unit versus standard unit by

examples:

1
1. ) Draw 6ABC 6DEF with ratio of similitude 7 . AB, BC, CD

are arbitrary and represent units on which DE, EF, and FD

are based.
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2(b) If segment RS has measure I then a . --- , and b .
3 3

since a is contained three times in the given segment and

twice in b.

1

Similarly, if then

4

(c) Recipe for cooking: The weight of an egg could be the unit.

(d) Facing off distances: Length of step is the unit.

(e) Came: Go forward until I count to five; unit of time; inter-

val from 1 to 2, etc.

Next, ask questions of this type: Can you choose the units when paying

for your lunch? weighing yourself? reading a map? buying gasoline?

2. Include questions of the type: What would be a reasonable unit of

measure to express:

(a) The distance from your home to school.

(b) The height of a telegraph pole.

(c) The 7.ength of a desk.

(d) The depth of a bookshelf.

(e) The length of the hands of a wrist watch.

(f) The length (?) of periods in a school day.

(g) The weight of a beam for a bridge.

(h) The weight of flour in a cake.

(i) The amount of milk in a cake.

Depending upon Chapter 5, Grade 7, and the degree of detail given to

metric measure, review and complete metric measures for distances,

areas volumes and weights. Include here or at the end of the text

table with metric measures.



Raise question. Con you give the corresponding metric measures in

above?

Point out simplicit: of U.S monetary system compa2 ' to British system.

In the same way, compare linear measures

inch, foot, yard, etc

cm, dm, m, etc , with

4 Tnclude questions of the type.

(a) Which is longer, an 8 inch or 12 cm pipe?

(b) Tf the speed limit on a highway is 60 mph., does a driver

break the low if he travels ECL 90 km per hour:

(c) Would you expect to pay more for 3 calurts of- milk or for

litclos of milk?

It may be preferable to use measure for areas, volumes, weights, etc.,

(2) and (3) in this outline are first presented. But since the

students are probably familiar with these ideas a review here and

application later in the chapter ought to work out successfully.

2(a) Review the formulas for perimeter and area of parallelogram

and triangle and develop the formula for the area of the

trapezoid (See MJI-1, Vol. 2, Part II, Chapter 11, pp.

451-455)

Next refer to the statement in Chapter 5, Grade 7, page 2: ". every

line segment has a measure Tread (but lightly) on the idea that this

measure often is a number familiar to them, but that the measures of

many line seg ents are numbers which they have not studied yet. Until

they meet these numbers, they can only give such measures by approxi-

mation. (NOTE: there are approximations of different natures in-

volved,)

Now, we are ready to assign the exact measure to segments, the interior

of plane figures, surfaces of solids, etc. The students have studied

real numbers. There are times when rational approximations are impor-

tant. Refer back to Chapter 5 and see how good the approximations

were at that time, when only rational numbers were known to the students.



Use examples as on page 145 (reference gixen above ), finding the lenFth

of diagonals nnd perimeters. Other examples:

1. Find the perimeter of the polygon PROBLEMS.

Can you draw a polygonal region

like "PROBLEMS", whose peri-

meter js 12 units?

2. A rectangle and a parallelogram have equal base and height. One

angle of the parallelogram has a measure of 45°. How do the

diagonels of the two figures compare? their perimeters? their

area (Emphasize the role of a good diagram). First assign

numerical values to h and h, then generalize.

A

Repeat with mLK = 600 mLK =

3'



Compute the length of the median of a trapezoid: assign definite

values to b
1

b
2'

then-generalize.

Use similar triangles, develop
1,

formula ktpi + b2 . Now, de-

rive area in different way.

bi

Repeat for isosceles triangle and use different ways suggested by

the diagrams.

A
m -= a + 2c

A
11_ = r + s

A
EH = 2FH Use
ratios to find MN.

Measure is based on congruence. Use examples that

extend the idea from segments and plane figures to

3 dimensions: Boxes, can goods: identical containers,

equal contents equal weights) equal prices (?).

Example 1:

In contrast: the area of a rectangle is 48 square inches. Are

the following rectangles congruent?

12

16



Example 2:

Given L_I L
2'

AB ; CD ; GH and ED = 2,TH
-1

[Authors: do not use subscripts]

p_ P
F6

P_

The length of which segments is the distance between L
1

and L_? Call this distance h.
2

(b) What have the triangles in common? (You will get different

answers.) If AB = b, what is the area of LNABP1? What is

the area of triangle ABP ABP3, ABP4, ABP ABP6 ABP7?

Are any of these triangles congruent?

(d) Could yoU find a p int on L bay Q / P such that

APJQB 6AP1B?

(e) HOW d.o the areas of the triangles compare to the area of

rectangle CDFF?, rectangle GHJK?

Formulate conclusions from the above.

Develop the understanding of the formula by using both geometric and

algebraic approach:

Example: What is the effect upon the perimeter of a rectangle if the

length and the width are doubled? What is the effect upon the area?



p = 2a + 2b 2(a + b) A -
1 -1

p
2

= 2(2a + 2(2b) )(2b)

= 2(2(a + b)) = 4(ab)

2131
=

-1

The student should recogniZe when there are linear factors, quad-

ratic factors; aluebra and geometry should support one another.

(3) Review properties of regular polygons. Introduce or review the

vocabulary: center, radius, chord, apothem, circumscribed

circle, inscribed polygon.

Compute p, given r and

r, given a and s

a given r and s

Let the student visualize by making their own diagrams, what

happens to the perimeter of an inscribed regular polygon, as the

number of sides goes from 4 to 8 to 16, etc. Then, show

with geoboard: nails, equidistant on the circle, rubber bands

forming regular n-gons.

Compare p to c

and area of interior

of 6 to sector as

increases.



Let tem measure the perimeters amd record results. Have each

student cut out a disk of different size, from stiff paper, or

use any circular object available. Have them measure the dia-

meter and the circumference by wrapping a string around; have

them compare the ratio . Exchange the circular objects and

try it again. What is the value of this ratio? How do these

values compare? Since it ought to be close to 3 but (hope-

fully) is not exactly 3, it is some number, let's call it Tc.

c
So, if , = 31, c = id or c = 2J1r, A Z 3.14. How do the

d

perimeters obtained before, compare? Ts -vp

2r -.

[See MTH, Vol. 1 Part II pp. 490-500.]

See whether the relation, informally and experimentally only,

of course can be "discovered": as n becomes very large,

p C a

Observe at the same time that the interior of the polygon comes

closer and closer to the interior of the circle.

1The transition from A = ap to A
0

= nr
2

is then a simple
2

step. Again: as nco, A polygon-,-A0 [See MIH, Vol. 1,

Part II, 11-7, p. 500.1

(4) Assemble as many models of sblids as possible. Where do we see,

indoors and outdoors, in a store, factory, etc. objects like some

of these?

Analyze the properties and let students "discover" some way of

classification.

Introduce the terms: face, edge, vertex, surface, diagonal, volume.

Have the student think about a wire model, a cardboard model before

"dissecting" the solids.

Let them count the number of vertices, faces and edges and record

in a table. .Can they discover Euler's formula, V F E = 2?



Let the student see what plane contains a diagonal in a cube or

urism W112L dimensions must be known to determine others.

Just as the length of a segment is the number of units contained

in it and the area of a surface is the number of square units

contained in it, introduce the volume of a solid as the number of

cubic units contained in it.

1 inch

1 cm

sq. inch

1 sq. cm

1 cubic inch

1 cubic cm

Now group solids according to:

(a) Parallel bases; Prisms and cylinder; boxes with squares,

rectangles, triangles-as bases; cylinder with circles as

bases (of course, the interior of these polygons is meant);

V = Bh.

(b ) Pyramids and cones. V Bh. [See MjH Vol. 2 Part 11,

pp. 465-4891.

(a) Compile a list of formulas as a result of the above.

Students should make models of as many solids as possible. Have

different students use different dimensions, but prisms and

pyramids with congruent base and height should be made, similarly

for cylinder and cone, [see MjH, Vol. II, Part II, pp. 491-710]

so that volumes can be compared and experimented with.
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There is an excellent opportunity to apply real numbers, similarity

and design problems from reaL lire",

Example: A container must have a certain capacity. Should it be

made of tin or with tin tops and cardboard si,-s? Which is more

economical? Which shape, cubic, cylindrical or rectangular? Et

The Sphere WST)

(4d) (1) Start with The Earth as representation of the sphere.

Use parts of K.TH, Vol. 2, Part II, pp. 511-529.

(2 ) Surface of sphere.

Experiment: Take a bowling ball hopefully, en eighth grader can

get one -- and saw it in half. Put two nails in, as shown in diagram.

Get a ball of heavy string

1. First: Tie the string at A and wind

around without slipping, until the

total hemisphere is covered. Mark the

end of the string by a knot.

Next, take a guess: how much of the

string used above will be needed to

cover the interior of circle B?

Write your guess on a piece of

paper.

Now tie, as before et A, the

string at B and carefully cover

the circular region. How much of

the string used in I did you use

this time? How does your guess

compare with the experiment?
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Stude: s may be able and willing to try the experiment with some

nther spherical object. There is hope that the result will be

close to: the surface of the hemisphere is

circular region or

or

sphere - 2=2SH

sphere - 43-(r
2

twic that of the

Volume of sphere.

Use 12-5, MJII, Vol. 2, Part II, pp. 533ff.

OR:

The volume of the sphere can be though of as the sum of the

volume of a very large number, n, of pyramids cones), whose

vertices are all at the center of the sphere. And as

B small part of S, and the sums

1
Vpyramid 3

Sum of all volumes of pyramids,

1
V = h (13 + B + ... B

n
)

A .3_.... 1 -2

1
. 2v 4=

sphere

4
V = =

3

Lots of intuition neededl [See MTH, Vol. 2, Part II, pp. 533-544].
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GRADE 8 - CHAPTER 12

SPATIAL PERCEPTION AND LOCUS

Background:

All of the concepts and figures in this chapter have been en-

countered before -- points, lines, planes, angles, triangles,

circles spheres, etc.

Purpose:

Tha chapter is designed

1. to review and summarize the student's previous knowledge about

geometric figures and the relationships between them,

to extend his intuition and to help him formulate more precisely

his insights into the relationships between geometric figures

3. to introduce locus problems.

Plan:

The material lends itself most easily to class discussion and

exploration. For this reason writing a chapter that looks interesting

on paper may not be easy. It may be that the best solution is to have

short introductory statements followed by sequences of leading ques-

tions. The important writing for the chapter would be the Teacher's

Commentary. This should contain suggestions for introducing the

questions by situations which would catch the student's attention,

suggestions for possible ways to guide the discussion, to provoke the

appropriate questions, and to use the answers that come from the stu-

dents to develop the kind of understanding which is being aimed at.



In the first section the aim is to encourage the student to specu-

late about possible relative positions of a fixed number of points, a

fixed number of lines, a fixed numbe7- of planes a given number of

lines and planes, etc. In the second section the aim is to let the

student establish for himself that there is a smallest number of

points which "determine" a line, a plane, 3-space and to find the re-

strictions which must be placed on them so that the statements hold;

similar questions f_Jr geometric figures such es triangle, angle,

circle, etc. Finally in the third section the aim is to let the stu-

dent find the set of points which satisfy various geometric conditions.

The idea is to pull together and sum up the student's knowledge, ex-

perience and intuition about geometric figures in space and their re-

lationships with each other, and to extend these to situations he has

not yet met.

12-1. Relationships between two or more given point sets:

1. TWo point sets.

( ) Two points.

What is the shortest path between two points N end S on

the teacher's desk? Is there a different path just as short?

What is the shortest path between New York and San Francisco?

Is there more than one path with this length?

How good a model of the surface of the earth is a plane?

A sphere?

(b) Two lines.

Do two lines always lie in a plane? How many planes?

Suppose two cars are traveling on straight roads, one leading

northeast and the other due north. Will there be a junction

where the cars can switch roads?

Do two lines always have a point in common? If they are in

the same plane?
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If two lines have a point in common, can they have more than

one?

Two planes.

Do two planes always meet? they do meet how many points

do they have in common?

Three point set

(a) Three points.

Is there a line containing all three points? More than one?

Is there a plane containing all three points? How many such

planes?

(h) Three lines.

Given three lines, do they always have a point in common? Do

at least two of them have a point in common? More than one

point in common?

A I /
Three planes. _eo int. Math. pp. 433-35)

3. Points and lines.

4. Lines and planes.

12-2. Using a point set to evolve another point set.

1. Points

How many points can you pick arbitrarily if they are to lie on a

line?

How many points can you pick arbitrarily if they are to lie in the

same plane?

How many points can you pick a bitrarily if they are to lie in

-space?
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Given three points, how many triangles can you form which have

these points as vertices? Two of these points as vertices and the

other 2 point on the triangle not a vertex?, etc.

Given three points, can you find a circle which contains these

three points on its perimeter? is there more than one such circle?

How many?

Given three points, can you find an al_gle which contains them?

How many such angles? if one point is the vertex of the angle, how

many angles contain the three points?

The preceding questions are designed to indicate the ideas which

are aimed at in this section. It is hoped that the authors w-ll have

imagination and couch the questions in more imaginative ways; e.g.,

will a three legged stool placed on a smooth floor rock? Why do four-

legged tables always seem to rock?

12-3. Sets of points meeting given conditions:

(The aim of this section is to introduce locus problems and to

see that the problem is considered in one, two, and three dimensions

whenever feasible.)

A treasure is buried on a deserted island. The treasure map says

that the treasure chest will be found at the same distance from each of

two tall trees 500 yards from the beach. Where should we dig for the

treasure?

Concoct other problems which ask for the set of points:

(a) at a fixed distance from a circle.

(b) at a fixed distance from a line segment.

(c) at a fixed distance from a line.

(d) equidistant from a circle.

equidistant from the sides of an angle.

equidistant from the vertices of a triangle etc.

15-
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GRADE 8 - CHAPTER 13

SYSTEMS OF EQUATIONS IN TWO VARIABLES

(See Ch. 15 FCA; Ch. 22 PFCA-h; Ch. 7 Int. Math.)

Background:

Graphs of linear equations.

Solution sets of equations and inequalities.

Graphical solution of systems of equations.

Graphs of simple inequalities, involving strips and half planes.

Purpose:

1. To extend the definition of solutions sets to systems of

equations and systems of inequalities.

2. To formulate the concept of equivalent systems and introduce

the method of linear combinations for arriving at algebraic

solutions.

3. To examine various cases of systems of equations and their

graphical interpretation -- inconsistent, consistent, dependent;

parallel, coinciding, and intersecting lines.

4. Extend work with systems of inequalities to general linear

inequalities and to regions bounded by several straight lines,

in preparation for finding convex regions in elementary linear

programming problems.

NOTE: We have left locus problems (intuitive geometric notions about
point sets in the plane and in 3-space) for a short Chapter 12.



-3-1. Solution sets of systems of equations and inequalitiea:

1. Review definition of wolution set of ar equation or inequality.

2. Define solution set for systems of equations and inequalities.

Give examples in which the solution set contains no ordered

pairs, 1 ordered pair, infinitely many; e.g.,

2x

+ y

+ y

-5,

= -2.

Y 5,

2x y = 5.

Hr2x y . 5,

6x + 3y = 15.

At this point the solution sets are to be found by examining

the graphs.

13-2. Equivalent equations and Lquivalent systems of equations;

1. Two equations or two systems of equations are equivalent if they

have the same solution sets.

2. If an equation in a system of equations is replaced by an equiva-

lent equation the resulting system is equivalent to the original

system.

Linear combination of left members of two equations (when right

member is zero) used to construct simpler equivalent system of

equations.

(See Int. Math. Ch. 7, pp. 37)4-81; also FCA Ch. 15, pp. 468-484)

Ex mple: (Tax y - 5 = 0,

- 3y + 5 . O.

First replace 2x - y 5 0 by a(2x y - 5) + (x - 3y + 5) = 0

for an appropriate a. The appropriate one is a = -3. The

resulting equivalent system is

_4115x + 20 = 0,

x - 3y + 5 = 0.

Now replace x - 3y + 5 = 0 by a(-5x + 20) + b(x 3y + 5) = O.

One might choose a and b = 1 or one might take a = 1

and b = 5.
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We evenuuelly get the equivalent system:

= 4,

LY 3;

for which the solution set is clearly (()4,: )).

13-3. Systems of Linear Equations:

1. Review of graphic solution.

2. Graphical interpretation of linear combination and sblution sets.

Family of lines through a point.

A look at the possible cases:

Li
1

and. the same line fx + y = 2

2x ± 2y = 4.

Li =and L
2

parallel: x + y 2,

2x 2y -7.

1,1 and L
2

intersect in a single points:

y = 2,

y = 4.

13-4. G.raphical Solu ion of Systems of Inequalities:

(See FCA pp. 485-492)

Many examples of increasing difficulty and complexity; e.g.,

fy < x,
x > 2.r

2 II < 2/

Ix! < 1-

3. + 3y < 1,

x y > 2.

4. f2x + 3y < 2,

2x + 3y > 0.
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5. 2x + y 2,

x + y < 1,

x < 3.

x 1-y < 5,

y< 3x +4,

y < -x +4.



13-5, Applications

1. Find several word problems which really need t variables to

state tfte conditions. There are some in Chapter 4 on Problem

Analysis (see Section 2.9, No, 15 and No. 26, also Section

3,5 No, 9), Devise a number of these which may best be solved

algebraically to show the usefulness and power of the methods

given earlier in this chapter,

2. Perhaps this is a good time to have a modest discussion of

mathematical models as the way in which mathematics is useful

in solving problems which arise in the real world.

Then J modest introduction to linear prog,ramming by means of

several examples will use the techniques of Section 13-4 to

find the convex region over which we wish to maximize a certain

functi%n of two variables.

1) The examp]e given in Problem 7 of Appendix C of the Report

of the Modeling Committee is a good introduction.

(2) Diet problems, production problems, etc., will illustrate

the usefulness of this idea in many different contemporary

business situations.

[For an exposition appropriate for Junior High and as a source of

problems at this level, see Chapter 7, pp. 212-222 of Some Lessons

in Mathematics, Edited by T. J. Fletcher, Cambridge University Press,
_

1965.]
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CONTENTS OF GRADE 9

Chapter 1: Exponents, Logarithms Slide Rule

Section 1: Laws of exponents (integral exponents)

Section 2: An exponential function, namely f n -42n

2.1 Graph of n 2n for -4 < n < 5_- _-
2.2 Extend table and use for computation with numbers as

powers of 2

2.3 Extend laws to include rational exponents

Section 3: Computation Usir4 Powers of 10

3.1 Construct table of powers of 10, as in Cambridge Report

3.2 Computations with numbers as powers of 10

Section 4: Introduction of Log Notation
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Section 5: Slide Rule Construction and Use

5.1 A simple slide rule for addition and subtraction
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5.3 Use of a commercial slide rule

Settion 6: Expbnential and Logarithmic Functions
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Chapter 2: Transformations
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3: Composition of Transformation
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Chapter
Systems of Sentences

Chapter 4

Not ing available at this time

Chapter 5 Measure Theory

Section 1: Distance as a Function

Section Measure as a Function

2.1 Length

2.2 Area

Volu e

Section l="); Angle Measure as a Function

Section 4: Othr Measures

4.1 Measurement of a circular arc by means of arc degrees

4.2 Ares of a curAied surface

Chapter 6: SLatistics

Section 1

1.1 Organization of data - grouping, histograms

1.2 Continuous model of discrete situation

1.3 Computation - algorithms for mean, variation, for

grouped data

Section 2:

2,1 EqtimPtio,ls of mean and variance

2.2 Confidence intervals for mean

2.3 Chebyshev's Inequality (WST)

Section 3:

3.1 Hypothesis testing: (Null hypothesis: quality control,

errors of first and second kind)

Section 4

4.1 Binomial Theorem

4.2 Normal distribution

4.3 Central, Limit Theorem



Chapter 7: Deductive Reasoning

Section 1: Illustrations of Logical Relationship between Statements

1.1 Congruence and similarity for triangles

1.2 Similarity of triangles, congruence of two angles of each

1.3 Similarity of triangles congruence of one angle of each

1.4 In a triangle, unequal sides and unequal angles

1.5 For quadratic function, relation of positive discriminant

and real zeros

1.6 Medians of triangle, congruence, similarity

Section 2: Suggestions for Geometry topics

2.1 sonverse of Pythagorean Theorem

2.2 Triangle inequality

2.3 Standard results on quadrilateral

2.4 Circles, chords, secants

2.5 Areas of similar triangles proportional to squares of

lengths

Section 3: Illustrative Problems

3.1 The 30-60 right triangle the isosceles right triangle

3.2 Bisector of angle and division of opposite side of

triangle

3.3 Failure of initial attempt at angle trisection

3.4 Geometric construction of harmonic mean

ChapLer 8: Vectors

Nothing available at this time

Chapter 9: Circular Funbtions

Section 1: Periodic Motion

2: Sine and Cosine Functions

3: Domain and Range of Sine and Cosine Functions

4: The Tangent FunctioA

5: Circular Functions and Angles

6: Radian Measure
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Sectjon FuncLions of Angles

o: Results of the Definitions in terms of positive and

negative)

9 Numerical Values of Fun tions in Any Quadrant

10: Graphs of Functions

11: Trigonometry of the Eight Triangle

12: An Alternative Suggestion

Chapter 10: Tangent

Section 1: Circles tnad Linc Tangents

1.1 The tangent envelope of a circle

1.2 I,nes tangent to a circle

1,3 Constructing tangents

1.4 Angles formed by tangents

Section 2: Tangent Lines and Planes in Two and Three Space

tion 3: Circle and Line Tangencies Extended
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Section 4: Tangent Plane Curves and Tangent Curved Surfaces
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5.1 The conics
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5.4 Pursuit cnrves

Section 6: Line Tangents to Any Curve

Section 7: Line of Support

Chapter 11: Measure

In progress not compIete ut this time

Chapter 12: Complex Numbers

Nothing available at this time
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GEinl 9 - CHAPTER 1

EXPONENTS LOGARITHMS, SLIDE RULE

Background Assumptions:

Properties and operations with real numbers .

2. Function concept

Some knowledge of positive integral exponen s and laws for multi-

plying and dividing powers of a given base.

Rationale:

The laws of exponents for integral exponents will be d -eloped,

and extended to rational exponents.

Computation 1-r using exponents and with the slide rule will be

developed as a way of trading multiplication for addition. Develop-

ment of the idea of computing with powers of 2 will be followed by

the construction of a table for powers of 10 which approximate the

integers from 1 to 99, following the development in the Cambridge

report. Some experience in computation by powers of 10 will lead to

the introduction of logarithmic notation. 2n will be introduced as

the function F g
n2n, and the function concept will be used for

clarification wherever possible. The log function L n-o-log2 n will

be introduced and an intuitive feeling for the functions as inverses of

each other will be aimed at, but not formalized.

The table ef powers of 10 (i.e., logs of the integers) will be

used to construct a "slide rule" on -Li - in. graph paper, from which
10

the manipulation of the slide rule to add and subtrac-c logs will be

explained. Having developed this understanding, the student should be

prepared to use a commercial slide rule effectively.



Purpose

1. To review and exte d the meaning of exponents and operations with

exponents,.

2. To introduce the logarithmic function by thinking of it intuitively

as the irlrerse of the exponential function.

To develop informally the laws of logarithms.

4. To develop a table of logarithms to base 10 first as powers of

10, and then as logarithms.

5. To provide experiences in computing, using addition of exponen

(i.e. logs) to replace multiplication of numbers, etc.

6. To develop under tinding of the slide rule and how it operates.

Procedure:

Section 1. Laws of exponents (for integral exponents

(See First Course in Algebra, Form-H, Chapter 14)

Section 2. Al exponential functiou,

2.1 Construct a table of ordered pairs (n,2n) for -4 < n < 5,

integral Graph the points, and draw a smooth curve. Point out

that for 0 and m-41-2
m 2M - 211+m

2.2 Extend the table in both dire tions_and use it to perform compute-

3 -27tions such as 8 -128 - = 21° 1024

(512) . 2-5 .29 = 24 . 16

-2 3 -6 1

2.3 Justify and develop 2' for n rational, and extend laws to
-32cover rational exponents. Find points such as

on the graph done in 2.1.
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Justify and define
(21/3 1/3

,

Let (2
1/3) 2

A

Then -3
1 2 (21/32 (21/3)2

1/3)(21/3)(21/3)1[ (21/3

= 2 2 2
2

. 4

Let
22)1/3

Then B
3

= (2
2

)
1/3

- 2
2 1/3 1

= 2
2

= 4

A B

Hence we define

Note that our law

as follows

(21/3) 21/3)1

1/3

/sholds for x 0; x
r

ion 3 Computa-i a using powers_ of 10.

.1 Construction of table of pors of 10.

1/s

Point out that instead of powers of 2, as in 2.2, :powers of 10

could be used for computation, which might be convenient since 10

is the base of our number system. Construct a table of powers of

10, getting the preliminary valuez as described in thE Cambridge

report, Appendix B, pp. 73-7o.

E.g., 2
10

= 1024

. 3
2
10 - 10

3/102 - 10

(NOTE: In teacher's manual, explain a method of getting corrected

values -- see Cambridge report).

It would probably be well to construct as class work powers of

10 corresponding to whole numbers from 1 to 20, and then

assign the rest of the whole numbers to 100 by groups, as home-

work.
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Use the

scientific

Example

table, just constructed, for simple computations, usir,

notation to get the "characteristic".

1: 160 x .07

1
.160 = 16.o x lo-

1
= 10

.200
10

1

-1
0.7 - 7 x 10

1
16o x .07 - lo20 = 10.044 - 101 - 11 101

2: 262 1.4

262 - 26.0 X 101 = 101.1'11-3 x 101
102.413

1
= 1.0 X 10

1.14- 1 10.144
1.4 4'7 X 10-

262 1.4 ..= 102.413
102.26910.144

. 1°1-26 9 10'

110

Example

19 0 10 = 190

Example : (129)4
1.

129 - 13.0 X 10- = 10
113 x 10

1

(129)
4 - 10

4.452
. 10

4 . 10
8.452

101.452 107

icg = 140,000,000

Section 4. Introduction of log notation:

4.1 Since we are expressing positive numbers as approximate powers

10, it would simplify matters if we had a shorter notation for

such a statement as, "The power of 10 which is about equal to

7 is .844".

Explain that there is! We can say "log10 7
.844" or, more

briefly, "log 7 = .844".

Have the class rewrite the table made in 3.1 in this more conven-

ient form i.e.,
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log n

,000

2 .300

.475

etc.

4.2 Some practice in usi g this table.

Section 5. Slide Rule Construction and Use:

5,1 Brief consideration of how two number lines can be manipulated to

do addition and subtraction. This is trivial in itself, but leads

to question: "Could a similar pair of numberlines, with logs of

numbers, be manipulated to add logs, th multiplying the numbers?

5.2 Construct a slide rule, as follows:

1
(a) Using inch graph paper and a table of 10:-9, draw a line

10
as in A on the diagram. Line should be 10 inches long,

with 10 inches as one unit. Below the line, assign numbers

0, .1, .2, ..., 1 to the appropriate intervals. Above the

line, mark off log 1, log 1.1, log 1.2, etc., as shown.

(b) Use ruler to transfer the points marked above line A to

line B, drop "lot" from label of each, and write both above

and below the line the numerals which indicate the numbers

whose logs corresponds to the coordinates of the points on the

numberline originally set up in A. This corresponds to the

C and D scales in a slide rule.

Line C could be marked as Line A, in 6.1, except that 5"

would be the unit. This would give scales corresponding to

the A and B scales on the slide rule.

Use of commercial slide-rule -- show briefly the essentials --

skill will depend upon amount of practicing the student does.
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ion 6,

6j'.. Discuss

An raph

Exponential and logarit_ ic fun

, ex and x = loga y

on same axes.

ions:

Poll out symmetry with respect t graph of

Applications of exponential functions (See SMEG Elementary

Functions, Chapter 4)
_

'9acterial grow h, pp. 146-1_47

Law of coding, p. i86

Healing oi wounds, p.

Radioactive decay, pp, 131-132
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6

log 8

.0log
log 10

=-1-1og 20
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70
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log 90
rx.) log 100
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-3307 335

i;
loE7

'5) 2

2)4

6

7-77-1 o g 2,8

--wg---log 3

--log 35

-erilog 4

g Lk5

rn-log

-ell-10g 5. 5

--"-log 6

--1og 6. 5

-.t..1-1og 7

o g 7. 5

8

log 8. 5

g 9.5
log 10



GRADE 9 - CHAPTER

TRANSFORMATIONS

Background:

There are many concepts already introduced which are summarized and

used in this chapter. Here is list of the most important ones:

1. Translations, rotations nnd reflections

2. Stretches and contractions

3. Vectors; composition of vectors

4, Coordinntes in 2 and 3 space

Parallel e'd perpendicular lines end planes

6. Distance, length, congruence

7. Similarity

B. Symmetries of polygons and polyhedra

This show- the great potential of this chapter to inte,-7rate many

ideas from the past learnings of the students.

EalaaLt:

The purposes of this chapter are as follows:

1. To combine previous ideas concerning specific transformations and

reach the generalization of a rigid motion.

2. To relate certain, special examples of transformations to their

form in analytic geometr7.

To discuss parallel and perpendicular projections of a line on a

line, and of a plane on a plane.

4. To consider the projection of a point onto a lire or Jnto a plane

a function; and to extend this to the projection of any geometric

figrre onto a line or onto a plane.
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To -econsider stretch-- and cortrar-tions from the newer viewpoint

of transformations even though they were introduced earlier in

connectior with similarity.

6. To present general definitions of both congruence and si ilarity

which will apply to any geometric figures.

To advance tne ideas of symmetries of polygons along the road to-

-ward the concept of groups of transforations.

To connect the static idea of symmetry with the dynamic idea of

reflection and rotation.

Rationale:

The concept of transformction is basic in mathematics. But, as is

true with all Such basic ideas it shouL- discussed only after stu-

dents have had much experience with special cases of transformations.

By the time this chap&er is reached there seems to be enough of this

background to summarize and to generalize, So we begin to express the

beginning ideas of transformation in a slightly more abstract way.

Since there is a great deal in common in the ideas of transformation

and function it is suggested that the writers try to capitalize on

these similarities as much as they can.

A second objective is to review and strengthen previous ideas as

well as to generalize. Such an objective needs neither explanation nor

excuse.

Finally, the possible future extension of the ideas which appear

in this chapter is obvious if one considers the analytic definitions

of transformations in a plane and in space.

Section 9-1. Rigid motions and reflections:

1.1 Relate transformations to previous idea of vectors; connect trans-

lations with new idea of directed line segments.



Di,,cuss only the following analytic geometry represen ations of

translations;

In 1-space; f(x) 0-w-f -

in 2-space; f(x,y) = 0-m-f x ft,y - k) = 0

In space: f(x,y, 0-0-f(x - h,y k2. m) = 0

1.3 Rotations in 2-space about a point; in analytic geometry discuss

only the following representations of such rotations;

(a) In polar coordinates: p = f(6)-10.p = f(e Lb)

(b) In Cartesian coordinates; Just rotations of 900 and its

multiples,

1.4 Rotations in ace about lines.

l7 Reflections in a point; symmetric taken to mean that a figure is

its own reflection, in analytic geometry discuss only the follow-

ing:

(a) In 1-space; f = 0 f (-x) = 0

(b) In 2-space; f-(xly) 0*gia-f(-x0-y) = 0

( In -space: f(x,y,z) . 0

1.6 Reflections in a line; symmetric taken to mean that a figure is

its own reflection; in analytic geometry discuss only the follow-

ing;

a) In 2-space: f(x,y) = 0-00-sp-f(-x,y) etc.

(b) In 3-space: f(x,y,z) = 0-0-00-f -x,-y,z . 05 etc.

1.7 Reflections in a plane; symmetric taken to mean that a figure is

its own reflection; in analytic geometry discuss the following;

In 3-space: f(x y,z ) 0-440.f(-xly,z) = 0 etc.



Typical Exercises:

1, Point F has coordinates 1- find the coordinates of P _

P180, 270' P360'
which are the results, respectively, of rotating

about the origln of 90° 180°, 270° and 360°.

2. A translation moves P(3,4) to FT(5

with the same translation?

Where does (-4

The translation x' 3 on a line moves F 5 to PT and

Q(7)

PQ and

4, The translation

What are the coordinates of

and compare them.

x 4- 2

Y = y 3

and Q(-31)) to Q'. What are the coordinates of FT and QT?

Compute PQ and PTQ,1 and compare.

How far is each point in space moved by the translation which

moves (3,5,6) to ()417,-2)?

FT and QT? Compute

in 2-sp -e moves F to PT,

In 1-space, which of the following graphs are symmetric in the

origin?

x < 3

3

- 21 > 3

7. In 2-space, which of the following graphs are symmet ic in the

origin? Which in the x-axis? Which in the y-axis?

a) y = x2

(b) xy = 12

(c) x
2

y
2

= 4

(d) x Y = 5

8, In 3-space is the graph of x y
2

z
2

= 16 symmetric in the
2 .

origin? In what lines and planes is it symmetric?
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Proj ectioc:

2 1 Parallel projectio s of s equivalent to translations and

vectors.

2.2 In 2-space, parallel projections from line to line; use both

parallel lines and intersecting lines.

In 3-space, parallel projections from plane to plane; use both

parallel planes and intersecting planes.

2.4 Central projecti

tions.

f pace; equivalent to stretches and contrac-

In 2-space, central projection from line to line; use both parallel

lines and intersecting lines.

26 In -space, central projection from plane to plane; use both

parallel planes and intersecting planes.

2,7 In 2-space, perpendicular projection of point on line as function;

the projection on a line of a point, a segment, a geometric figure.

2.8 In 3-space, perpendicular r' ajection of point on plane as function;

the projection on a plane of a point, a segment a region, a geo-

metric figure.

The following diagrams will be helpful in connection with the foregoing

topics. Each diagram has the topic numbers beside it to which it

pertains.

2.1



2.2

2.3

Pt

QI

fl
0

2J, 2.5 2J,
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2 .

2 .

P

7
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2 .8

Typical Exercises;

2.8

l. Consider the projection parallel

to the direction d. Copy the

figure and mark PI and Q!0 the

projections of F and Q, respec-

tivelly, from line a to line b.



2. a and b are intersectin7 lines

Copy this figure and mark Pi and

Q' the central projection (with

center 0) from a to 13 of P

and Q.

the projection of a -triangle onto a plane always a triangi

4 A segment has lengtl 5". What can you say about the length of

its projection onto a given plane?

Section 3 Composition of transformations:

3.1 Composition of two translations.

3.2 Composition of two rotations about point in 2-space; or about

line in 3-space.

Composition of 2 reflections in 2-space in two parallel lines;

in 2-space in 2 intersecting lines; in 3-space in 2 parallel

planes; in -space in 2 intersecting planes.

3.4 Rigid motions as composition of translations and rotations; com-

position of rigid motions.

Composition of =etches and contractions with rigid motions end

reflections.

Typinal Exercises:

1. Point P is first reflected in line a to get P'; then P'

is reflected in line b to get

each of these situations:

P11 Mark P' and P" for
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Consicer the translation

end the rotation

about 0, P is ca ied to T

by the translation, then PT iJ

carried to P by the rotation.

Copy the figure and mark the posi-

tions of P and P".

3 0

On the sa e diagram as 2 first carry P to (;),T by the rota-

tion, and then carry QT to Q" by the translation. Is

the same as 1!?

Invent a combination of transformations that will carry triangle

ABC into triangle ATE'C' for each of the following cases:

(b)

B'

3 15

A'



(e)

(f)

A

(g)

( h)

Section 4, Congruen e as an isometric correspondence:

4.1 Show that congruence can be thought of as 6:.distance preserving

correspondence.

Typical Exercise:

1. We are given triangle ABC and

A'B'C' with this correspondence

of points set up:

X f(X)

A

X AB
X e BC
X E AC

A'

B'

C'

X' 6 A'B'
X' E. B'C'

X' S A'C'

Ai/B

so that A'X' = AX
so that B'X' = BX
so that C'X' = CX

Prove that 6ABC = AMB'C' by proving that if X and Y are

points of 6ABC, then X'Y' = XY for all X and Y.

-341-



oecuion 5 Similartl,y as a ratio preserving orres 7e:

l Show that similarity can be thought of as a ratio preserving

cspondence

Demonstrate similarity of odd shaped 2-dimenst nal and dimen-

sional figures.

75's DiscusL, similarity as composition of congruences and stretches

and contractions

5.4 Discuss congruence as special case of similarity, or similarity

,,s a generalization of congruence.

5.5 Slicing similar polygons into similar triangles.

5.6 Similar tetrahedrons, pyramids and pr4 es; all cubes are similar;

all regular tetrahedrons are similar.

5.7 Similar cylinders, cones and spheres; all spheres are similar

Typical Exercises:

l. Find three ways of drawing a figure si ilar to each of these, but

twice the size in each linear dimension.



We Ai h to slice a polygon into triangles so that the vertices of

the triangles are a subset of the vertices of the polygon. In

each of the following exercises one figure has been out into such

triangles. Discover how many different ways the other, similar

figure can be cut into triangles so that they are respectively

similar to the triangles in the first figure.

(d)

legular pentagons

Section 6 Further work on symmetries:

6.1 Review symmetries of isosceles trian le, non-square rectang e,

equilateral triangle and square (See Grade 8, Chapter 10,

"Parallels and Perpendiculars", Section 5.4 through 5.7).

6.2 Make tables of compositions of transformuetions of these figures

jnto themselves. Note that the order above is in the order of

increasing difficulty. Make clear whether rules allow flips to

the other side or not; first do without flips and then with them.

6.3 Consider properties common to the tables of 6.2 in order to dis-

cuss the properties of a group; relate to other groups: modular

number systems, operations with numbers.
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6.4 Transformations of a cube into itself, of a tetrahedron into

itself; probably not continued to the composition of the trans-

forma'A,

Typical. Exercise:

The usual approach to symmetries is by way of motions (reflec-

tions spiti flips) which "leave the figure unchanged". It is now

sr3gested that a new approach to the same problem be made by a

slightly more abstract method. We will remove the need for motion.

The following exercise shows what this means.

1. You have two objects: a board with a hole in- it and a block of

wood which will fit into the hole. First let us consider that

both the hole and the block are equilateral triangles:

On both the block and around the hole are painted letters to

identify the vertices. The letters appear on both sides of the

block. In how many ways can the block be placed in the hole?

List th se ways.

Note: The answer might begin like this:

Identification
of way

Next to vertex
A B C

1 A B

2 A C B

3 B A C etc.



Then a composition of "substitu-

tions might _,ad to a table of 1 1 2

operations which could start 2 2 I

like this: 3 3

4 4

5 )

6 6 etc.

6

The porpose of the exercise is to point in the direction of

permutation groups. It is interesting to students that al1

permutations of ABC appear in this equilateral triangle

problem, but not all permuta ions of ABCD arc u ed when we

do the corl'esponding problem for a square.



Condensed Outline.

GRADE 9 CHAPTER 7

MEASURE THEORY

Measure theory (_ scriptive and semiformal

additivity, invariance under congruence.

Application to length, angle, area, volume.

Rationale.

Chapter 5 serves as an interlude in the development of an apprecia-

tion for numbers as used in geometry. The student has been exposed to

virtually all the traditional formulas for mensuration of geometrical

figures, so many that he may have lost a perspective on the basic

principles. In general each of these formulas has been accorded a

justification appropriate to the student's level when it was intro-

duced. Now is an opportunity to pause and survey the accomplishments

spread over several years, examining from a considerably more mature

viewpoint the fundamental ideas without paying attention to the multi-

tude of detailed consequences of the basic principles. Customarily a

chapter listing the "postulateg' for this portion of geometry includes

a long list of derived results that may permit the student to feel

security in the details without grasping fully the principles; we have

selected to build en entire chapter on the fundamentals so that their

importance will not be underestimated.

What to accoulish?

What are the fundamental properties of measure.

Sometimes we measure how far apart two figures are, sometimes how

big a figure is.
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In the first cal.egory, wE talk about how far apart for two

points two parallel lines, a line and a point, tlqo parallel

nlanes, etc. All these arc distanceF. Review that the base

luea is the distance between a pair of points, since the other

applications are obtained from i together with the notion of

a minimum. What is distance? How is distance related to

other aspects of geometry?

(b) In the second category, we use different words (length, area,

volume ) in describing how big a figure is, depending on

whether the figure

three-dimensional .

is one-dimensional, two-dimensional,

All of these can be collected under

heading of "measuret . In the

by discussing the length of a

We extend tc figures that are

of straight pieces (perimeter

or

the

one-dimensional case we begin

"straight" figure, a segment,

not straight, but are composed

of polygon, or length of poly-

gonal path ) and later we extend to length of curve, In the

two-dimensional case we begin with the area of a very simple

figure, a rectangular region, a region with a simple type of

boundary. We extend to other regions whose boundaries are

composed of straight pieces and eventually are able to con-

sider regions enclosed by curves. An analogous discussion

applies in three dimensions. In any of these cases, with

what do we begin as fundamental? How do we do the exten-

sions? Just what is a measure? How is it related to other

aspects of geometry? Is there a relation between measure and

distance?

A third category, pot mentioned above, concerns angles. From

one viewpoint, the measure of an angle may be thought of as

telling how big the angular region is, and thus belongs to

tegory (b). But from another viewpoint the meawire of an

angle may be thought of as telling how far apart the sides of

the angle are, how far apart in the sense of rotation, and



thuz belongs to category (a) . So angle measurement has a

somehat special role. Just what properties does it have

of one type) and what of the other type?

After posing the above questions, we try to agree on some answers.

1, Distance

First, distance is a function. Each (unordered) pair of points

in space belongs to the domain; the range is a set of nonnega-

tive numbers.

Second the image of a pair of dintinct poin-- is a positive number.

(The image of each pair of coincident points is zero.)

Third, if A, 3- C are any points then d(A,C) is equal to or

is less than d(A,B) d(B,C) according as B is or is not a

point that is (collinear with and) between A and C.

The first two properties emphasize what distance is while the

third relates distance to other aspects of geometry.

2. Measure

(a) Length

First, measure is a function. Its range is a set of non-

negative numbers. Its domain consists of various one-dimen-

sional sets; among these are all segments, all polygons, all

circles, and intuitively) various other sets that WST we

do not identify fully.

Second, the measure of a segment is the same number as the

distance between the endpoints.

Third, a set congruent to a measureable set is also measurable

and the measures are the same.

Fourth, the union of finitely many measurable sets, no two of

which "overlap", is measurable and its measure is the sum of

the measures of the individual sets.
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Tread extremely lightly on the possibility of a set without

measurc but leave the door open.

The first property emphasizes what length is. The second

identifies that the starting place for a development is

Tle measure of a. segmeht and also ties together the nc ions

of measure and distance. The third property relates measure

to the congruence idea. Whereas the second property asso-

ciates distance with measure for segments, the fourth pro-

perty permits extension of this association by considering

the measure of a polygonal path (or polygon).

We mention a fifth property that helps us in describing the

concept of length of a curve. Thus far you have had only

one or two opportunities to apply this property, although

it wiii be used extensively in your later mathematics.

We shall not formulat,.i it as carefully as we do the others

because we do not have enough mathematical background.

Fifth, if a measurable set is a good enough approximation

to another measurable set, then the measures are approximately

the same.

Our difficulty in Iormulating this property is the vagueness

about an approximation being "good enough",

(b) Area

First, area is a function. Its range is a set of nonnegative

numbers. Its domain consists of various two-dimensional sets

among these are all recuangular regions (thdt is, two-dimen-

Sional intervals), all convex (boUnded) polygonal regions, all

circular discs, and (intuitive) various other sets that WST

we do not identify fully.

Second, the measure of a rectangular region is the product of

the measures of segments forming two sides of its boundary

with a common endpoint.
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Third, a set congruent to a measurable set is also measurable

and the measures are the same,

Fourth, the union of finitely many measurable sets, no two

of which "overlap', is measurable and its measure is the

sum of the measures of the individual sets.

Fifth, if a measurable set is a good enough approximation to

another measurable set, then the measures are approximately

the same.

The first prrTerty emphasizes what area is. The second iden-

tifies that the starting place for a development is the mea-

sure of an interval and also ties together the notions of

area with lz,ngth and hence with distance. The third, fourth,

fifth properties are copies of the corresponding ones for

length.

(c) Volume

First, volume is a function. Its range is a set of nonnega-

tive numbers. Its domain consists of various three-dimen-

sional sets; among these are all rectangular parallelepipedal

regions (that is, three-dimensional intervals), all convex

(bounded) polyhedral regions, all sphrical balls, and

(intuitively) various other sets that WST we do not

identify fully.

Second, the measure of an interval is the product of the

measures of segments forming three sides of its boundary wi h

a comtr_Jn endpoint.

Third) a set congruent to a measurable set is also measurable

and the measures are the same.

Fourth, the union of finitely many measurable sets, no two

of 'which "overlap", is measurable and its measure is the sum

of the measures of the individual sets.
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Fifth, if a measurable set is a good enough approximation to

another measurable set, then the measures are approximately

the same.

The comments on these properties are the analogs of the re-

marks on area, The fact that most of the feature of mea-

sure are the same for all dimensionalities should now be

clear.

Angle mer. ure

First, measure is a function. Its domain is the set of all

angles. Its range consists of real numbers between 0 and c,

for some appropriately chosen positive number c. In degree mea-

sure c = 180, while in other scher:es c may be another positive

number.

Second, two congruent angles have 'he same measure.

Third, if B lies in the interior of LAVC, then

m LAVB m LBVC = m LAVC.

4. Other measures

) An example of a derived measure is the measurement of a

circular arc by means of arc degrees, where this assign-

ment is based on the measure of the central angle and the

issue of whether the arc is a major arc or a minor arc.

(b) Another measure is illustrated by the area of a curved

surface, a topic we prefer to throw open for theoretical

consideration to the best students only.

The entire body of material in Rationale should be brought into

focus. Many applications of the ideas have been used during the past

few years on the student's training on some sort of basis. The more

important of these should be reviewed in order to assist in formula-

ting the principles. (Examples include the area of a triangular re-

gion as half the area of the interior of a corresponding parallelogram



or the volume enclosed by a tetrahedron s one-,,ixth the volume of the

interior of a corresponding prism, or the length of a circle as being

approximated by the length of a polygon, or every regular hexagon with

side of a given length as the same area for the enclosed region.)

After the principles have been formulated and have been further

illustrated by known examples further knowledge should be stimulated

about such questions as:

) the length of a curve such as the boundary of a normal

window,

) the shortest polygonal path that passes through specified

points,

(c) the perimeter of spherical tfiangle (of simple type)

(d) the area of the interior of an ellipse -- exploratory and

intuitive!,

(e) the volume of a doughnut -- exploratory and intuitive!

The long-range forward look is toward the measure ideas treated

in the calculus. Tie-in strongly with probability notions also1
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GRADE 9 - CAAPTER 7

DEDUCTIVE REASONING

A. This chapter in Grade 9 was formerly listed by the Geo etry

Committee under the title "Triangles: Deductive Treatment

B. Purpose (in brief ): To give an elementary approach to deduc-

tive reasoning, preparation for the more serious level of

rigor at Grade 10.

Goals (in more detail):

(1) An introduction to the notions of axiom, definition

theorem, proof.

(2) The nature of "if .. then ...".

3) Distinction between a conditional statement and Its con-

verse.

(4) Practice with contrapositives (WST: eneugh practice so

that the verytop-notch student may discover for himself

that a contrapositive is logically equivalent to the

original).

(5) Proofs by elimination of all but one alternative one

type of "indirect" proof

Proof by one example: often used to accomplish a disproof

by counterexample.

Subject matter (in summary): Select material from algebra and

from the synthetic study of geometry, especially designed to

meet the above goals. Although part of the material may be

familiar to the student from an informal approach, a significant

portion should be new.

E. A few illustrations of the logical relationshib between statements:



(L) If two triahL:le= are congruent, then they are similar, If

two triangles are similar, then they are congruent, If two

triangles are not similar, tIlen they are not congruent,

(2) If two triangles are similar, then two angles of one tri-

angle are congruent re,pectively to two angles of the other

triangle. If two angles of one triangle are congruent res-

pectively to two angles of another triangle, then there is a

similarity of the one triangle onto the other,

If two triangles ere similar, then one angle of'one triangle

and one angle of the other triangle are congruent to each

other, If one angle of one triangle and one angle of another

triangle are congruent, then the triangles are simalar.

(4) Accepting that "In a triangle the angle opposite the longer

of two sides has a greater measure than the angle opposite

the shorter sideh, deduce that "In a triangle the side oppo-

site the larger of two angles is longer than the side oppo-

site the smaller angle",

If a quadratic function has a positive discriminant, then 'he

function has two (real ) zeros. If a quadratic function has

two (real) zeros then it has a positive discriminant. If a

function has two real) zeros, then it is a quadratic function

with a positive discriminant.

(6) Two medians of one triangle have lengths 20 and 12; two

medians of another triangle have lengths 16 and 10. Can

the two triangles be congruent? If so, how? Can they be

similar? If so, how? By more than one corre pondence?

Some suggestions for geometry topics to be developed:

(1) The converse of the Pythagorean theorem.

(2) The triangle inequality (AB BC ). AC if A, B, C are

noncollinear). (Remark: Preparation for chapter on Vectors

later in Grade 9.)
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(4)

(5)

A treatment of standard re ults on quadrilaterals, extending

the student's knowledge attained in earlier grades.

A deductive chain of theorems concerning circles, their

chords and secants, (Remark: A later chapter in Grade 9

is entitled Tangency.)

Areas of similar triangles are proportional to the second

powers of the lengths of any two corresponding sides or any

two corresponding altitudes. (Remark: This is another steJ

on the spiral to a more detailed study of areas and lengths

under similarity that is scheduled for a later chapter in

Grade 9,)

A few illustrative problems (perhaps illustrating the upper bound

on difficulty):

(1) Concerning right triangles:

30-60-90 if and onlY if hypotenuse is twice as long as one

leg; isosceles if and only if hypotenuse is 12 times as

long as one leg.

In a triangle the bisector of an angle separates the opposite

side into segments that are proportional to the adjacent

sides of the triangle.

Prove the failure of the initial attempt at angle trisection.

(4) Geometric construction of the harmonic mean accompanied

by real world applications of the harmonic mean, not

called by this name.
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Ou line Only

GRADE 9 - CHAPTER 8

VECTORS

1. Abstract from displacement concept

2. Operations on vectors

3. Decomposition

4. Association (intuitive) of vectors with analytic geometry

Vector geometric proofs (simple)

Length of vectors
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GRADE 9 - CHAPTER 9

CIRCULAR FUNCTIONS

Background Assumed.:

1. Basic geometric concepts - angle, degree; properties of the right

triangle, relation of the measure of an arc to the measure of its

,;orresponding central angle, properties of the isosceles right

triangle and the 30-60-90 degree triangle.

2. Coordinate systems in two dimensions.

3. Ability to work with radicals.

4. Ratio and proportion.

Purpose:

1. To introduce general definitions of the sine, cosine and tangent

funcidons.

2. To discuss some of the basic properties of these functions.

o introduce radian measure.

4. To derive numerical values of the above functions for the quad-

rantal angles and angles such as
30o, 135o

300 etc.

To define these functions for the coordinate free right triangle.

6. To solve simple verbal problems involving the right triangle.

Procedure:

1. Periodic motion and its prevalence.

(a) succession of day and night

(b) change of seasons

(c) passage of second hand on a watch over a specified point
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(d) spring

(e

(f)

(g)

-vibrating stri g

cams circular)

pistons (circular)

Point out that all periodic motIon has circular motion as a model,

of rourse, not necessarily uniform motion,

Sine and cosine functions.

Consider the unit circle with circumference 27r. If we study the

motion of a point P as it moves along the circle in a counter-

clockwi e direction, we can locate P exactly by knowing how far

it has traveled along the circle from the point (1,0).

The distance it has covered is the length of the arc from its

starting point to its stopping point. We shall regard motion in

a counter-clockwise direction as positive and motion in a clock-

wise direction as negative.

At every point in its progress point P is associated with an

ordered pair of real numbers, We may say that the motion of P

defines a function f. With each arc length we associate an

ordered pair of real numbers (x0y) the coordinates of P5 or

f a"10,...(xy)

where a is the distance traveled. Since it is inconvenient to

work with a function whose range is a set of ordered pairs ard

since each coordinate is itself a function of a we define two

functions, as follows:

Cosine: a-s.x, where x is the ordinate of the point

determined by the distance.
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Sine: ay9 where y is the absci sa of the point

aetermined by the distance.

From the definition of the sine function it follows that this func-

tion is periodic with a period of 2n. For every arc length of

2A the correspondence of a and x is repeated.

A si- ilar comment may be made with reference to the cosine func-

tion.

Domain and range of sine and cosine functions.

The sine function maps the arc length into the

ordinate. The diagram shows this corresponden e,

The domain of the function is the set of real

numbers since the arc length may represent any

number of revolutions either in a positive or

a negative direction. The range of the func-

tion is -1 < sin a < 1 since the ordinate

never exceeds 1, or falls below -1 (see

diagram

The cosine function maps the arc length into

the abscissa. The diagram indicates this

correspondence, The domain of the functic,

is the set of real numbers since the arc

length may represent any number of revolu-

tions either in a positive or a negative

direction. The range of the function is

-1 < cos a < 1 since the abscissa never

exceeds 1, or falls below -1 see

diagram).

We now have the follo lng results;



cos 0 . 1
cos 0 corresponding to the

arc length 0 we have the
0 abscissa 1.

In a similar manner,

cos -7- - corresponding to the
2

arc length we have the

abscissa 0.

show dia rammatically that

30
cos it = -1, cos = 0 cos 2Tr = 1

2

311sin = I sin it = 0, sin =
2 2

sin 0-= sin 2ir = O.

There is an alternative method of determining the domain and range

of the sine and cosine functions as follows:

For the arc length AP, or 8,

sine a = PQ cosine a = og.
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In the right triangle OPQ,

2
= (OQ)

2
(PQ)2

2 . 2
1 cos a sin a

An exa ination of this equation reveals that sin a < 111 and

cos a < Ill.

4. The tangent function.

Introduce the tangent function as follows:

tangent: a-0,
)1

1 where x is the abscissa of the point
Y

determined by the distance, a and y is the ordinate

of the point determined by the distance, a.

As the diagram indicates, the tangent function is undefined when

the arc length is

the arc length is

ordinate is 0.

Circula

2
or 2E When

2

3gor the

functions and angles.

The circular functions are closely related to the funm-ions of

angles. In establishing degree measure, we can divide the cir-

cumference of the circle of unit radius into 360 equal arc

lengths and measure a central angle by the number of units of arc
1

length it includes. For example, if an angle includes r of the

circumference, or units of length, we say that the measure of
2

the angle is t- x 3600, or 90°. Thus sin sin 90 = 1. We

will soon define the sine, cosine, and tangent functions of

angles.
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6 Radian measure.

We introduce another unit for measuring angles, the radian,

In unequal circles, arcs subtenc, g equal angles have the same

ratio as the corresponding radii. In the figure below

If S =

OA

OA
r

ST
or =

r r

the ratio 2 S'
. 1.

r r'

If we select es a unit of measure of the central angle an arc

whose length is equal to the radius, we have a new unit of mea-

sure called the radian. This unit of angle measure is independent

of the length of the radius of the circle.

Since C = 2gr, an arc whose length is r c n be laid off exactly

2g times to complete one rotation. Thu , one complete rotation

requires arr radians in radian measure) or 360° in degree mea-

sure. Hence,

2TE radians = 3600 .

The following proportion may be used in converting from degrees to

radians and vice versa:

number of degrees number of radians
360 2g
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Functions of angles.

An angle is said to be in standard position if, and only if, its

vertex is at the origin and its initial ray extends along the

positive x-axis. Every angle is

equivalent to one and only one

angJ_e in standard position if we

place an angle in standard position,

e.g., LAM, one of the angles

between the terminal ray and a ray

of the x-axis must be a positive

acute angle, or a right angle, or

zero. For any given angle 9 in

standard position and reference

angle is the smallest nonnegative

angle between the terminal ray of

and either ray of the x-ajcis.

Consider any angle 6 not an integral multiple of 900, placed

in standard position, with its terminal ray cutting the unit

circle at P.

sin 9 = ordinate of P

cos e abscissa ef P

tan 6= ordinate of P
abscissa of P

If the angle 8, not an integral multiple of 90°, is placed in

standard position, and its terminal ray does not cut the unit

circle at P we define the functions as follows: P is any point

on the terminal ray.

in
ordinate of P

s e
polar distance of P

abscissa of P
cos e

polar distance of P

ordinate of P
tan e - --abscissa of P
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That these two definitions are consistent may be seen from the

diagram below.

Since LDPQ AOPTQT the following ratios are equal.

PQ P7 '

OP OP'

OQ 0Q7

OP OPT

sin

PQ P'Q'
aT, - - tan e

Results of Definition.

The results of the last section lead to the following conclu-

sions for functions of angles in the four quadrants

sin 0 - positive

cos 0 - negative

tan e - negative

sin 0 - positive

cos e - positive

tan e - positive

sin 0 - negative

cos e - negative

tan 0 - positive

Exerci

sin e - negative

cos e - positive

tan 0 - negative

1. In which quadrants may the angle e terminate if

a tan e is negative.

(b) cos e is positive.,
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2, Tn Tghich quadrant does the angle e terminate if

(a)

(b)

sin e is negative and cos e is positive.

tan 9 is positive and cos 9 is negative.

Find the values of cos 6, and tan 6 if sin 9 =

is in quadrant ITT.

9 Numerical values of functions in any quadrant.

and

Review the properties of the 30-60-90 degree triangle and the

isosceles right triangle. Apply to such problems as the follow-

ing:

(a) Find the numerical value of cos 120
o

,

(b) Find the numerical value of tan

(c) Solve the equation tan 0 = 1, e in quadrant III.

10. Graphs of functions.

The graph of y - sin 6 may be plotted from a table of values.

9
A

7
A _ 7A7 37T IT 1

sin e 0 1

The periodicity of the curve may be observed when the curve is

extended for values of 9 greater than 2g and for negative

values of 9.

y - cos x - Same treatment

y . tan x - Emphasize points of discontinuity

11. Trigonometry of the right triangle.

Definitions of the functions for 0° < e < 90° have been estab-

lished on the system of coordinates. Next, we redefine the func-

tions in terms of the sides of a right triangle (coordinate free

emphasizing the consistency of the two definitions.
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Use these new definitions in the analysis and solution of a variety

of problems which can be found in any standard text.

12. NOTE.

It has been suggested that the above unit may not be fully

covered because of time limitations. Moreover, there is some

question as to whether so extensive a unit is necessary as part

of the background that all college-bound students should have at

this level. An alternative treatment, much shorter in scope and

in teaching time would start with the general definitions of the

functions restricted to quadrant I. The definitions can then be

applied to the functions of acute angles of a coordinate free

right triangle.
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GRADE 9 - CHAPTER 10

TANGENCY

Purpose:

To develop and formalize the traditional line tangent to a

circle and circle tangent to a circle concepts.

To extend the intuitive concept of tangency for "straights"

and curves in both two and three space.

To develop a broader intuitive concept of lines tangent to a

curve through the use of tangent envelopes.

Backgroun . yes

Rationale:
_

The rationale for much of the content in this chapter is

primarily explorative and thought provoking. It should present a

wide new range of extremely fertile ideas and provide some concrete

experience background for many of the ideas of analytic geometry,

differential calculus, and advanced geometries.

The ratiionale for placement of this chapter late in the 7-9

sequence is twofold: there is a relative maximum of mathematical

methods and background to be used and there will soon (10-12) bc

further work of a more definitive nature with these ideas.

Section 1. Circles and line tangents.

1.1 The tangent --velope of a circle.

It is suggested that this idea be started with a paper folding

exercise in class:
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Exercise: Take a sheet of paper with a circle and its center

drawn. Fold the paper so that a point of the circle is on the

center. Repeat this process with many other points on the

circle.

Result: This will give some members of the tangent envelope of

the circle that is concentric with the given circle and has a

radius that is one-half the given radius.

Center the written discussion on the idea that while no new

circle is actually formed by this process (a polygon does evolve

there is a feeling for a circle. Perhaps have the students draw

that circle (with compasses). Discuss how the folds are related

to this new circle.

Exercises:

1. Give a circle with points indicated on the circle every

10°. Label the points 0, 1, 2, 35. Have the students

join the points by a mapping which is of the form:

a (mod 36) where n is an integer,

0 < n < 35, a is a parameter with

integral values.

Note: Students catch on to the modulus system quickly

through reference to the clock.

Example: 5
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Could the students draw the determined circle? Perhaps

several different examples might be given of this form.

Aside: n 6 (mod 36) gives the same result as

- 30 (mod 36). Would any student note this -- or

care

Give a circle and a point exterior to the circle. Have tile

student draw many members of the family of lines through the

given point. Ask for some thought (and perhaps written dis-

cussior) about how these lines are related to the given

circle. Probably they can note: one line through the

center (Thanefully not three points of intersection);

many lines through two points of the circle but not the

center; two lines through exactly one point of the circle;

many lines that do not intersect the circle.

1.2 Lines Tangent to a circle.

Define secant and line tangent to a circle.

Define point of tangency.

Property: A line tangent to a circle is perpendicular to the

radius drawn to the point of tangency.

Exercises:

1. How many lines tangent to a given ciqle can be drawn

through a given external point? Why?

2. ... through a given internal point? Why?

3. ... through a given point on the circle? Why?

4. If a line is perpendicular to a diameter at one of its end-

points, is the line tangent to the circle? Prove your

answer.

Note: they should be able to do this if the chapter on

deductive reasoning was successfult
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A point is 8 units from a circle of radius 5 units.

A line is drawn through the point tangent to the circle.

What is the distance from the given point to the point of

tangenc,7:

6. A line tangent to a circle is drawn from a given point.

The distaa-2e between the given point and the point of

tangency is 8 and the radius of the circle is 5. What

is the distance of the given point from the center of the

circle? from the circle?

Draw a circle. Draw three lines that are tangent to the

circle such that no two of the lines are parallel. Describe

the resulting figure.

Note: this problem mi,it be repeated for J4, 5, lines.

8. Given: AB tangent to circle 0 at B

AC tangent to circle 0 at C

Prove: AB AC

AO bisects LBAC

9. Given: AB tangent to circle 0 at M

BC tangent to circle 0 at N

AC tangent to circle 0 at P

AB = 8, BC = 7, AC = 11

Find BM, BN, NC, CP, PA, AM

Note: This might be extended to a quadrilateral etc.

10. Given: circle 0 with diameter AB

.je I AB at A, m AB at B

Prove,,e Ilm
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1.3 Constructing t ngents.

Develop:

(1) construct a line tangent to a given circle at a point on

the circle.

... through a point external to the circle note that

exactly two are determined)

3 Construct a circle inscribed in a given triangle.

(4) Construct the three excircles of a given triangle (the

excenter is the point of concurrency of the angle bi-

sectors of one interior angle and two exterior angles

See Intro, to Geometry by Coxeter,jpp. 11-12.

(5) Construct some of the members of the family of circles

tangent to a given line at a given point on the line.

(6) Construct some of the members of the family of circles

tangent to a given line and through a given point not

on the line.

(7 ) Construct some of the members of the family of circles

tangent to each of the sides of a given angle.

Challenge Problem: The Nine Point Circle

See Coxeter pp. 18-19. 71

Note: this is highly constructable but might it spoil this

gold mine for later work?

Angles formed by tangents.

Should the measures of certain angles (tangen- chord, tangent/

secant etc. ) be developed at this point?
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Section 2. Tangent lines and planes in two and three space.

Short discussion of what is meant by "a line tangent to a curve"

"a line tangent to a surface" and "a plane tangent to a surface".

Keep it light.

Exercises:

A set of highly intuitive, discussion provoking problems that re-

quire visualization and some verbalization. Might try such things as:

1. A line tangent to: a parabola; a sine curve; a tangent curve;

a given polynomial curve.

2. A line tangent to: a sphere; a conical surface; a cylindric

surface; a torus.

A plane tangent to: a sphere; a conical surface; a cylindric

surface; a torus.

Make these very open ended and provide help for the teacher in

the teachers manual as to method of handling and expectations.

Section 3. Circle and line tangencies extended:

3.1 The relationships of two circles.

Discuss all cases:

oo oo
Exercises: See SMSG Geometry Chapter 13.

3.2 Three on more tangent circles.

Develop relative to two different conditions: tangent by pairs

and all tangent at one point.
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Exercises: See SMSG Geometry Chapter 13.

See also Coxeter Intro. to Geometry

Be sure to include families of tar it circles and

conditions that lead to these.

Section 4. Tangent ELlEa curves and tangent curved su aces:

If this is handled WSTWSTWST, it might be quite interesting;

two tangent sine curves. However, it might be too difficult to estab-

lish what is meant by "tangency" under such conditions. It should be

worth a try on a highly intuitive level -- just to assure that the

students have at least tried to think about such things.

Mig-* consider such things as:

(a) two tangent parabolas at some point other than the vertices,

(b) a family of parabolas tangent at the vertices,

(c) the family of curves of the form y = x
2n

, n
2

(d) y 1
2

and x y- = 1,

(e) two tangent ellipses or families,

(f) two tangent spheres ... or families,

(g) a cylinder tangent to a sphere (aha ... Mercator

(h) a cone tangent to a sphere aha Lambert).

Section 5. Tangent Envelopes:

Teaching n e: do not have long discussions of these -- EXPLORE,

Each sub-section (5.1,5.2,5.3) might eavily be

done in one day. If the students get intrigued,

let them change the given conditions and see what

happens on their own.

5.1 The conics.

(a) Parabola: given a line and a point not on the line.

Fold the given point onto one point of the line.

Repeat for many other points of the line.
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Given a circle a d a point interior to the circle.

Fold the given point onto one point of the circle.

Repeat for many other points of the circle.

Hyperbola Given a circle and a point exterior to the

circle. Fold the given point onto one point

of the rirr!le. Repeat for many other points of

the circle.

5.2 Joining points on a circle.

Several interesting T1twists 'i can be put on Problem 1 of Section 1.1

Example: n2n (mod 36)
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Extension: n-z-an + b mad

Some students will really carry this a long way if

plenty of labeled circles are provided to help

minimize the "busy work'A .

5.3 Working in a co-ordinate system.

Problem: Consider the set of lines through

a
2

.

with slope

Directions: Draw some of these lines using at least these values

-2, .
1

" 2 '
3.for a ; -3,

Teachers note: This gets the tangent envelope for the curve

whose equation is y x3 so it included one

example.of a line tangent to a curve at a point

of inflection, Don't let this be missed.

5.4 Pursuit Curves.

Note: Should these be included since the others have actually

been members of the tangent envelope to one curve under

consideration?

Dog who "re-aims" every 2 sec. is chasing a rabbit who runs

in a straight path.

(b ) Same rabbit but smarter dog -- he "re-aims" every second.

Rabbit who runs in a circle where the dog (who re-aims

every 2 sec. ) is at the center.

Section 6. Line tangents to any curve.

Work from the preceding tangent envelopes toward some understanding

of the tangent to a curve at a given point in terms of the limiting posi-

tion of the secants through the point. Give lots of curves and stress

looking for the point. Give lots of curves and stress looking for the

entire tangent envelope -- then pick out some "interesting" points on

the curve to look at specific nembers. The student should be able to
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develop some feeling in terms of tangents relative to curvature, cusp

as opposed to turning point and points of inflection. Take what t'le

student is sensing, and discuss in terms of the secants at each point.

Be sure the student develops some ability to verbalize relative to

these things. The brave of the bold or the fool-hardy might try a

discussion of the tangents to y = Ixl.

Note: this section is very important. Section 5'"brings on the

cannon" but Section 6 fires itl

Section 7. Line of supportI

See some material on linear programming -- this is a somewhat

di ferent sense of tangency but might be discussed at this point.
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GRADE 9 - CHAPTER 11

MEASURE

Very brief outline:

1. Use, In parts, material found in Geometry, SMSG, Volume 2,

Chapters 12, 15 and 16. It can be exprected that not much of

this material will find its way into the 10th grade semester

course of geometry.

2. Measure was, in the following order, treated earlier:

Gr-de 7 = Chapter 5

Grade 8 : Chapter 11

Grade 9 Chapter 4 measure theory).

Concentrate in this round of measure on developing further the

understanding of the concept of similarity by providing examples of

linear, quadratic and cubic measures.

Exa--le: What are the changes in the perimeter, area, volume of an

object if a dimension is doubled, halved, etc.?

Try to aim at theorems, informally only, to show their power: we

don't have to compute the surfaces or volumes of two similar solids in

order to compare them.

Start possibly with: How many geometric objects can you name?

What formulas do you know?

Make a list with some ordering principle

Name 1 Diagram 1 Dimensions 1 Perimeter 1 Area 1 Surface I Volume

(well labelled) which ever applies.
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The purpose of this would be three-fold:

(1) Motivation this may become more and more of a problem when

review does not contain some ingredients of preview, and

topics have appeared repeatedly.

(2) Review and su ryJ

(3) A ready list of reference to use in the subsequent discussion

-- the formula should be more than a recipe to get answers;

this can become an important link in bringing algebra and

geometry together.

Include the following questions:

(A) 1. Giventa,square region of side s; double the side. What is

the effect on p, on A? Make a diagram.

2 Given a 30-60-90 triangle; multiply sides by 3 What

happens to the altitude and median upon the hypotenuse?

To the perimeter? To the area? Repeat for either values:
1

Multiply the sides by 5, by by T , by n. Make a

diagram.

The radius of a circle is halved. What is the effect on

on A? Can you tell from a diagram in this case as much as

you could in Exercise 1 and 2?

Generalize: Do we have to carry out the computation or can we draw con-

clusions? What will hold generally?

(B) Next change the questions to:

1. How must tile edge of a cube be changed if it is to be eight

times as large? be twice as large in volume?

. A circular region is to be divided into 3 equal parts by

Concentric circles. How can this be done?
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Before turnng !,o volumes, contrast the relation of linear mea-

sures and areas of similar figures to questions of the type,

(emphasis on analysis of the algebraic formulas):

l. Given a triangle with base c and height h. What is the

effect upon the area if the base is multiplied by 3 and

the height halved? If the base and the height are multi-

plied by 5?

2. The radius of a circle is multiplied by 5. What happens

to the area? to tha circumference?

What happens to the volume of a cylinder (r,h) if the

height is doubled? If the radius is doubled? if the

height is halved and the radius doubled? If the radius is

halved and the height doubled?

4. Which will make the volume of a cone larger, doubling the

radius or doubling the height?

Now discuss similar solids, produced by passing a plane parallel'

to planeLof:bass.

By comparing:

(a) .edges, altitudes, radii etc.

(b) areas of cross sections, lateral faces, at

( ) volumes of similar solids,

develop now systematically the relation

p, A
1

V
1a

2
b ' A2 ( V2
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NOTE I: ft may seem wiser to complete the work on measure with the

"WST" development of surface and volume of the sphere now,

rather than present it in Grade 8, Chater 11. This would

leave for Grade 8, The Earth as a representation of a -phere

and allow more time to discuss more fully:

great circles

small circles

location of a point on the earth

measurement along a meridian

time difference,

etc.

NOTE II: In the original outline appears: Pythagorean relationship

and trigonometry.

The g.c. feel that this should be omit ed a'd this point.

However, the following suggestion is for inclusion when this topic

is handled in its proper setting:

Given a right triangle and

(A) any two parts (sides) the third side can be computed by the

Pythagoream Theorem (no angles can bedetermined

any two parts (one side and one acute angle, or two sides), the

triangle can be determined completely by trigonemetric functions;

sides and anc!les can be computed.

(B)



Chapter 1

UMMARY OUTLINE, GRADES 7-9

Grade 7

Non-metric Geometry - The Structure of Space

Point, line plane. Incidence. Separation. Convexity.
Orientation on a line, in a plane.

Chapter 2 Functions Variables

Coordinates. Function. Graphs of functions.

Chapter
_

The Set of Rationals - Solution of Mathematical Senten es

Definition of rational number. Addition and subtraction of
rationals. Decimal names for rationals. Ordering the ra-
tionais. Per cent. Solving equations and inequalities.

Chapter 4 Congruence - Replication of F gures

Congruence of segments, of angles. Addition property for
segments. Subtraction property for segments. Addition and
subtraction property for angles. Vertical angles. The
concept of congruence. Congruence of a figure with itself%
Congruence of triangles. SSS congrue-ce property. SAB.
ASA. Motions by means of a coordinate system.

Chapter 5 Measure

Linear units. Angular and arc measure. The Pythagorean
property and applications. Equivalence of polygonal re-
gions. "Greater than" for segments, angles, planar regions,
spatial regions.

Chapter 6 Ratio and Similarity

Magnification and contraction. Concept of similarity. Ratio
and proportion. Defining similarity. Sufficiency properties
for triangles. Similarity mappings.

Chapter 7 Probability

Fair and unfair games. Finding probabilities. Counting
outcomes - Tree diagrams. Pascal's triangle. Estimating
probability by observation. Organization of data leading
to average and expectation. P(A u B). P(A n B).

Chapter 8 Graphs of Linear Functions; Multiplication of Rationals

Review of negative rationals. Multiplication of positive by
negative. Graphs of multiplication by positive rationals.
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Multiplication of positive by negative and DitribL,Give Law.
Multiplicaton by nega-five rationals. Addition and subtrac-
tion revisited. Opposite functions absolute value function.
Applications. Graphing x-ax A- b.

Chapter 9 Solutions of Systems of EaRati221L and Inequalities

Solving systems of equations. Systems which do not have
unique solutions. Graphs of inequalities. Systems of
inequalities.

Chapter 10 Decimals, Square Roots, Real Number Line

Motivation. Numbers which are not rational. Names of rational
numbers. Irrational numbers. Real number line. Properties
of real number system.

Chapter 11 Parallelism

Parallel one-dimensional objects, two-dimensional objects.
Transversals. Transversals to three or more lines and planes.
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Grade 8 (Sequence A)

Chapter 1 Perpendicularity

Pelpendicularity of one-dimensional objects, of two-dimensional
objects.

Chapter 2 Coordinate Systems - Distance

One-dimensional coordinate system. Two-dimensional coordinate
system. Three-dimensional coordinate system. Polar coordi-
nate system.

Chapter 3 Displacements Vectors)

Quantities. Vector quantities. Vectors. Physical multipli-
cation of vectors by a number. Translation. Decomposition.
Applications. Extension to fectors in three-space.

Chapter 4 Problem Analysis

Translation of phrases. Translation of sentences. Problem
analysis and strategies.

Chapber 5 Number Theory

Even and odd integers. Infoii±al discussion of statements and
proof. Faltors, divisibility, tests for divisibility and the
division algorithm. Prime numbers, the sieve of Eratosthenes,
prime factorization. The Euclidean algorithm and the GCD.

Chapter 6 The Real Numbers Revisited - Radicals

Motivation. Review of facts about the real number system.
Roots of numbers. Computation with radicals. Review of
properties of the real numbers and the real number line.

Chapter 7 Truth Sets of Mathematical Sentences

Review addition and multiplication properties of equality and
inequality. Apply to inequalities and to problems. "Permis-
sible Operations." If a = b, then a2 = b2 and converse.
Fractional equations and restrictions on denominator. Squar-
ing both sides of equation and equivalent equations.

Chapter 8 Quadratic Polynomials as Functions

Graphing a quadratic function. Factoring polynomials. Solv-
ing quadratic equations. Going from ax2 + bx + c to a (x-h)2+k.
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Chapter 9 Probability

Dependent and independent events. Conditional probability.
Bayes1 Theorem. Expectation. Variation, standard deviation.
Normal distribution. Physical obs ations.

Chapter 10 Parallels and Pelpendiculars

Regions. Combining parallel and perpendicular relations.
Distance between parallel lines and parallel planes. The
quadrilateral properties. Symmetries. Angle sum proofs.

Chapter 11 Properties and Mensuration of Geometric Figures

Motivation of numerical measure for areas. Arbitrary unit
versus standard unit. Assigning measure to segments and
regions. Properties of regular polygons. Models of solids.
The sphere.

Chapter 12 Spatial Perception and Locus

Relationships between two Or more point sets. Using a set
of points to evolve another set of points. Sets of points
meeting given conditions.

Chapter 13 Systems of Equations in Two Variables

Solution sets of systems of equations and inequalities.
Equivalent equations; equivalent systems. Systems of linear
equations. Graphical solutions of systems of inequalities.
Applications.
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Grade

Chapter 1 Eafiasits, Logarithms, Slide Rule

Laws of exponents. An exponential function, f:n..2n. Compu-
tation using powers of 10. Introduction of log notation,
Slide rule construction and use. Exponential and logarithmic
functions.

Chapter 2

Chapter 3
and 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Transformations

Rigid motions and reflections. Projection. Composition of
transformations. Congruence as an isometric correspondence.
Similarity as a ratio preserving correspondence. Further
work on symmetry.

Sys-tems ef Sentences

Measure Theory

Distance. Measure. Angle measure. Other measures.

Statistics

Organization of data - Histrograms. Mean. Variance. Confi-
dence intervals for mean. Hypothesis testing. Binomial theo-
rem. Normal distribution. Central limit theorem.

Deductive Reasoning

Illustrations of logical relationships between statements.
Suggestions for geometric examples. Illustrative problems,

Vectors

Circular Ftnctions

Periodic motion. Sine, cosine, tangent functions. Domain
and range. Circular functions and angles. Radian measure.
Functions of angles. Numerical values of functions. Trigo-
nometry of the right triangle. Graphs of functions.

Tangency

Circles and line tangents. Tangent lines and planes in tw
and three-space. Tangent plane curves and tangent curved
surfaces. Tangent envelopes. Line tangents to any cUrve.
Line of support.

Chapter 11 Measure

Chapter 12 Complex Numbers
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COMPARISON OF THE NEW owl= AND TEE ORIGINAL

Mathe a ics for Junior High School, Volume 1

Chapter and Topics

Chapter 1

Chapter 2
2.2
2,3

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

What is Mathematics?

Numeration
The Decimal System
Expanded Numerals
(Other number bases

Whole Numbers

Non-Metric Geometry

Factoring and Primes

The Rational Number System

Measurement

Area, Volume, weight, Time

Ratio, Percents, and
Decimals

Chapter 10 Parallel, Parallelograms,
Triangles, Right Prisms

Chapter 11 Circles

Chapter 12 Mathematical Systems

Chapter 13 Statistics and Graphs

Location in New Outline

No comparable chapter.

No chapter.
Gr. 7, Ch. 10
Gr. 7, Ch. 3

No mention.

No explicit treatment.

Gr. 7, Ch. I

Gr. 8, Ch. 5

Gr.

Gr.

Gr.

Gr.

7, Ch. 3, 8

7, Ch.
8, Ch.
9, Ch.

5
11
5 and 11

Gr. 8, Ch. 11

Gr. 7, Ch. 3, 6, 10

Gr. 7, Ch. 11
Gr. 8, Ch. 10

Gr. 7, Ch.
Gr. 8, Ch.
Gr. 9, Ch.

No chapter.

No comparable chapter.
Gr. 9, (7h, 6

Chapter 14 Mathematics at Work in No comparable chapter.
Science



Mathematics for Junior High School, Vol

Chapter and Topics

Chapter 1

Chapter 2

Chapter

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Rational Numbers and
Coordinates

Equations

Scientific Notation, Decimals,
Metric System

Constructions, Congruent
Triangles, Pythagorean
Property

Relative Error

Real Numbers

Permutations and
Selections

Probability

Similar Triangles and
Variation

Non-Metric Geometry

Volumes and Surface Areas

The Sphere

Location in New Outline

Gr. 7, Ch. 3, 8
Gr. 7, Ch. 2
Gr. 8, Ch. 2

Gr. 7, Ch. 3
Gr. 8, oh.

Gr. 9, Ch. 1
Gr. 8, Ch. 11

Gr. 7, Ch. 4,

No t eatment.

Gr. 7, Ch. 3 10
Gr. Ch. 6

No treatment.

Gr. Ch. 7

Gr. 7 Ch. 6, 8

No comparable chapter.

Gr. 8, Ch. 11
Gr. 9, Ch. 11

Gr. 8, Ch. 11
Gr. 9, Ch. 11

Chapter 13 What Nobody Knows About
Mathematics No comparable chapter.



First Course in Algebra

Chapter and Topics

Chapter 1 Sets and the Number Line

Chapter 2 Nume-al and Variables

Chapter 3 Sentences and Properties
of Operations

Chapter 4 Open Sentences and English
Phrases

Chapter 5 The Real Numbers

Chapter 6 Properties of Add_4tion

Chapter 7 Properties of Multiplication

Chapter 8 Properties of Order

Chapter 9 Subtraction and Division
for Real Numbers

Chapter 10 Factors and Exponents

Chapter 11 Radicals

Chapter 12 Polynomial and Rational
Expressions

Chapter 13 Truth Sets of Open Sentences

Chapter 14 Graphs of Open Sentences in
Two Variables

Chapter 15 Systems of Equations and
Inequalities

Chapter 16 Quadratic Polynomials

Chapter 17 Functions
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Location in New Outline

Gr. 7, Ch. 3

No chapter.

Gr. 8 Ch. 7, 13
Gn 7, Ch. 9

Gr. 8, Ch. 4

Gr. 7, Ch. 10
Gr. 8, Ch. 6

No specific chapter.

Gr. 7, Ch. 8
No comparable chap

Gr. 7, Ch. 10
Gr. 8, Ch. 6

r. 7, Ch. 10

Gr. 8, Ch. 5
Gr. 9, Ch. 1

Gr. 8, Ch. 6

No po1vnemia1s.
Quad. Gr. 8, Ch. 8

Gr. 7, Ch. 3
Gr. 8, Ch. 7

Gr. 7, Ch. 2,

Gr. 7, Ch. 9
Gr. 8, Ch. 13

Gr. 8, Ch. 8

Gr. , Ch. 2
Gr. 8, Ch. 8



ON APPLICATIONS

Clyde L. Corcoran

This "second round" planning group was given, as one of its tasks,

the problem of impaiting to the student some understanding of the role of

applications of mathematics to the real world. This was supposed to be

done for the students in a meaningful way. T submit that we have not

really faced this problem squarely as yet, and there are some good rea-

sons why this is so.

1. It is easy to say, "Let's get the sequence of mathematical

topics organized, and then the writers can illustrate the use of the

ideas where appropriate." This, I claim, will result in artificial

situations of little value.

2. Real "practical" applications of mathematics do not tend to be

peLlanent entities. For example, while applied problems in percent might

be valuable to t present suburban resident, they really could be termed

vital to a pioneer crossing the plains a hundred years ago. The mathe-

matics of the "honeycomb" was interesting to a very few twenty or thirty

years ago, but now this interests a whole spectrum of individuals con-

cerned with lightweight metal construction and fusion processes.

3. Most meaningful applications require extensive backgrounds in

subject areas other than mathematics. Nbst students do not have the

extensive backgrounds and hence understand neither the mathematics in-

volved nor the application. Usually the situation which is described in

a few sentences is so artificial or trivial that the student is not inter-

ested and is unable to see any use of it in the real world.

I submit that we really do not wish to teach "applications" as such

but that we really should try to expose the student to the techniques of

applying mathematics. I'm speaking of the techniques and reasoning pro-

cesses which allow a professional mathematician to analyze and solve

problems in many diverse fields of study without really being expert in

those fields.

I also submit that we should make clear to the student that there

are at least two categories of important applications of mathematics.
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On is thr application of mathematics to itself (i.e., algebra to geometry)

to derive additional mathematics, and the other is the application of

mathematics to other fields of study. I feel that the "internal" appli-

cation of mathematics was slightly exposed in the first round MSG but

that it is important enough to be explicitly pointed out as it occurs in

this second round development.

If we accept the hypothesis that we should concentrate on teaching

the techniques of applying mathematics to "practical" situations rather

than trying to teach specific techniques for handling certain practical

problems, then we should devise a program which will at least illuminate

these procedures.

A possibility for one such program could be as follows: It might

be possible to create a series of units for each grade level which would

allow the teacher to select and present an "application problem" in

depth. The major purpose of this approach would be to expose the tech-

niques for applying mathematics rather than try to say that we are teach-

ing mathematics applied to biology, home economics, mechanics, economics,

chemistry, and so on.

It is hoped that problems within the ability of the students could

be devised so that the student would experience many of the same proce-

dures that mathematicians would use in tackling a problem. Also it is

hoped that many different parts of mathematics would enter naturally into

the analysis and solution of the problem (arithmetic, algebra, geometry,

probability, linear algebra, etc.). I would hope that the studen+ weuld

erience the necessity of having to clarify the prOblem

the basic questions are), plan methods of attack, search out and eul,-t

data, and organize that data to reveal information about the problem as

well as develop models of the problem as needed.

MLny of the situations in the Mathematics Through Science series or

in Mathematics and Living Things might be redesigned to accomplish the

above objectives. Some linear programing problems like the standard

"diet" problem also might have some possibilities for this kind of expo-

sitic,n. The seventh grade problems could be highly structured,-but

eighth and ninth grade problems could leave more to the student's origi-

nality and creativity with some open-ended questions included to forestall

the impression that all problems can be answered.
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To summarize, I think that we are on Lirmer ground if we attempt to

teach basic techniQues for applying ma hematics rather than try to teach

ecific applications of mathematics. Perhaps we would even satisfy

some of the critics who say that these publications are too concerned

with folmal mathematics rather than mathematics of the Trealfl world.
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SOME COMMENTS ON THE ROLE OF "FLOW CHARTING"

IN JUNIOR HIGH SCHOOL MATHEMATICS

S. Sharron

There is no need to list the ways in which the computer has

become an essential part of the everyday technological world.

Suffice it to say that any student who attends high school today

should have the opportunity of expo-ure to a curriculum that in-

cludes some recognition of the role of computers in our technologi-

cal society.

Having made this premise, one is confronted with the problem of

the nature, degree, and location of this topic in the high school

curriculum. To understand the operational aspects of a computer is

a varied and complex undertaking that is not entirely in the pro-

vince of a mathematics course. At least .n appreciation for the

mathematical activities associated with Lomputer 1.1e should he part

of the high school mathematics program, A student shOuld be able to

think in terms of computer problem solving techniques (even if only

at basic or introductory levels) if he is to prepare for almost any

vocation in a world where there are seemingly, unlimited horizons

of activity for the ever increasing use of the computer,

A method of communication between an individual and the computer

has been accomplished by the development of procedural languages which

have as their purpose the task of relating to the computer some "un-

ambiguous plan telling how to carry out a process in a finite number

of steps." The algorithm (as the plan is called) requires a highly

sequential step by step method of computing a problem and an early

link in this line of communication is the "flow chart" (a first trans-

lation from English to diagram). Because of the careful, well dis-

ciplined procedure required in preparing a flow chart, a student

would of necessity need to have the mathematical algorithm well in
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mind if he is to complete a successful flow chart. A successful flow

chart is one which could be converted to the appropriate machine lan-

guage for a particular computer and which will enable that computer to

complete the problem successfully.

Almost immediately a high school mathematics teacher sees here a

real world related method of reinforcing computational skills. Not

only does-t2 student become motivated by the idea of computer work,

but he must develop a working knowledge of the mathematics involved.

Some points seem worth m tioning at this time:

(1) One should bear in mind that the flow chart though less for-

mal than the machine language requires the student to put down a

series of low order steps (with well disciplined care and forethought)

for a simplem4nded mac-nine, This is the prime pt ose of flow chart-

ing. It is not intended to be an end in itself, and unless it ulti-

mately ends up in a computer after having been translated to the

appropriate machine language with the results for the student to see,

the motivational factor for flow chartin, becomes shaky.

(2) The knowledge of flow chart language notation required for

effective computer-oriented work requires preparation and learning

time. The SMSG test, Algorithm Computation and Mathematics, concerns

most of its size with this objective. A brief presentation directed

at a lower level fo- 7th to 9th graders could be made, but practice

and reinforcement is still required if any usable degree of technique

is to be achieved.

(3) A flow chart is an early step in computer programming, and

the completed program is useful to the computer in that it can be

stored and reused whenever needed. Once a successful flow chart has

been constructed, 't becomes available for repeated use as written

communication structured in detail form to serve an assortment of

machine languages. For the student who constructs a flow chart, the

experience of exploiting a mathematical algorithm may be rewarding
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and often he gains insight, but the flow chart itself is not usually

a necessary part of the student's working equipme!t in order for him

to function in matmntics. In other words the flow chart referred

to is often employed as a part of the chain of events leading to

effective use of a computer.

(4) many (not all) assumed to be simple mathematical algorithms

when flow charted offer a method of primitive manipulation not suit-

able (though perhaps interesting) for the sills we hope to have the

students reinforce, e.g,, see the New Orleans report, page 30, Long

Addition Algoria.hm (1) and (2),

It may appear that the points raised are sufficient reason to

drop the whole thing. On the contrary, these points are intended to

indicate difficulties to be overcome and pitfalls to avoid. The

original premise still stands, but it is not intended that the junior

high school mathematics program should become a course it. computer

programming if for no other reason than that flow charting is essentially

an application or exploitation of mathtmatics and is not usually mathe-

matics per se.

Often in trying to construct a flow chart, one finds a need for

more mathematics or a better understanding of the mathematics he

already has available. This is desirable in the interest of teaching

mathematics and situations spread out through the 7th to 9th grade

will occur where some flow chart activity will be effective. For

example, the development of the flow chart for the Euclidean algorithm

(g.c.d.) as shown ;Ln SMEG test, Algorithms Computation and Mathematics,

chapter 3, section 2, pages 113-121 offers an excellent opportunity for

a student to gain depth in understanding this topic which is part of

the proposed 8th grade chapter on number theory.

In 7th grade, the introduction of flow charting could begin with/

computers (a discussion on what they are and how they are utilized),

and the flow chart syJabols and variables applied to simple problems/
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such as;

A 4-L >< W

(See SMSG text Algorithms Computation and Mathematics, chapter

If during the course of the year the student is introduced to a

selected number of flow chart experiences (little more than one per

chapter starting with flow charting as one example of modeling), he

should be ready to reap more of the benefits in 8th grade offered by

flow charting problems like the Euclidean algorithm, making decisions

(is A > B?, if so, what then, or if not, what then?), and looping

(to do iterative processes). Again in 8th grade the activity should

be a limited number of selected problems giving preference to those

appropriate for understanding the mathematics in the 8th grade pro-

gram over the techniques required for programming.

It would appear that flow charting the long addition, subtraction,

multipliction und division algorithms are too involved in computer

orientation to give the best returns for mathematical benefit to the

student. Another caution to be exercised in the selection of flow

chart activities can be illustrated by the following example. Grade

7, chapter 10, (proposed) introduces a method of approximating 15

to a specified number of digits by an iteration method. The flow

chart for this process shown in chapter 5, section 1) pages 223-225

of the earlier referenced text, is an excellent opportunity for the

student to gain a thorough understanding of the Newton method,



1

h 71(F; -
a

4 6

but the mathematics used in getting assignment box 3 is more advanced

than his grade level. If a i_ow chart activity is to be used at this

time, consideration would have to be given to the student's frame of

reference.

Early in the 7th grade the teacher should introduce the uses to

which computers have been put in industry, a briof history of how

computers have developed, and a look into the future. This is the

preface suggested to the introduction of flow charting. The SMSG

text, Algorithms, Computation and Mathematics hereafter referred to

simply as the ACM text offers considerable data along these lines in

Chapter 1, Section 1-1 1-2' which could be reworded and made more

suitable for 7th grade.

An interesting activity based on an idea by Engelbart provides

a game atmosphere along with educational results that tends to dis-

sipate the mystery associated with computers.
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Four children are arranged in a line in front of the clfAss from

left to right.

Audience

T-A-

Teacher (the primary
signal source)

They are told that their right hand must be clearly LIF or down in

doing what follows. The child, D, on the extreme left is told that

his signal comes only from the child, C, on D's immediate left,

The signal is C dropping his hand from up to down. At such a signal

from C, D chanzes the position of his right hand. Child C gets

his signal only from child B on CTs immediate left and the signal

is the same; that is, C accepts a signal only from B which takes

place when B drops his hand from up to down. Upon receiving such a

signal from B, C changes the position of his hand. Similarly B

gets his signal when A drops his right hand from up to down. Notice

that raising a hand from down to up is no signal Child A is the

only one who gets a signal from the teacher, by means of a hand clap

-,- a finger snap.

Practice may be necessary before the teacher begins to signal,

The teacher begins the first signal after having each hand in the

down position. Notice that after 16 pulses (teacher signals) all

the 1-,ands are in the down position again.

When the four element system seems to be functioning smoothly,

the children are given cards labelled 1, 2, 4 and 8 distributed

to A, B, C, and D respectively. The pulses begin again and is

interrupted occasionally to ask how many signals have been given.

Each time, the class will notice that the number of signals given is

equal to the sum of the numbers held up. If one is interested in
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pursuing the binary systeT, the class may be given the opportunity to

figure out how specific numbers (which cards to be held u ) should look,

the limit of the counter can be increased to 31 by adciJog an-

other element land),

One interesting activity that may be performed is to have the

teacher signal enough pulses to enter a number, say, !7 on the com-

puter. Having done that, he can add another n mber, say, 6 to the

system, The result will be cards held up in which the numbers will

total 11, The last activity can be varied;but taking into considera-

tion the limitations of the machine, the class can see from this demon-

stration that the teacher,by his selection of pulses, actually pro-

grams the numbers to be added.

The idea of a flow chart to give expression to an algorithm is

inherent in this demonstration but it needs further discussion and

direction when the teacher transfers this experience to real compu-

ters. A follow-up activity could be something on the order of the

exercise shown below.

Complete the exercises using the sample as a guide.

Sample:
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The
ending

bell
ings

Take out your
lunch
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(d)

The previous exercises were intended to show that there is at least

cne order that could be associated with the regions of each problem.

The following exercise gives the student an opportunity to arrange a

sequence for a list of actions based on a Fiven situation.

Exercise: Often we go into a supermarket without any idea of how we

are going to accumulate the items we wish to purchase and

the result is that we end up walking back and forth, some-

times unnecessarily so. Arrange a tour through the store

below, using arrows so that the shortest trip is made in

order to pick up the items on the list.
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frozen meat, fish
and poultry

[

dairy products

paper
goods

J

soft
drinks H.resh

vege-
tables

F--
, dog
and

1 cat
foods

house-
hold
and
sundry
u ems

canned 1-7Wnned
meat fruit
and , juices
fish

canned canneu
fruits vege-

tables

-enter--

1

frozen
vege-
tables
and TV
dinners

frozen 1

dessertal
I and Ice]

cream

7

bread
and

baked
goods

leave

can

fresh
fruits

1 doz. eggs

2 cans of peas

4 fr:\r dinners

2 lbs. fresh tomatoes

1 Lax face tissues

I can opener

1 _oaf of bread

1 carton diet-cola

1

2
doz. muffins

An expression of how to do something is essentially what is meant

by a flow chart; however, it is expedient for pedagogic reasods as well

as our desire to have this work computer oriented, to adopt a suitable

flow chart notation. The introduction of this notation could take the

following form:

The action box is for action to be taken. We will use a rec-

tangle which contains a statement describing the action to be taken,

e.g.,



[ _T, the clock divide ten by two

Thls could be followed by an exercise consisting of statements which

imply action and some which do not. It would be the task of the

student to select those statements which would be appropriate for

use in an action box (assignment box is the term we wish to use

evontually but it would be too confusing to use at this time

1That time is it?

Close the door

A brown house.

Add seven to three,

(no)

(yes)

(no)

(Yes)

Inasmuch as flow charting concerns itself with classes of prob-

lems and not a specific problem, it is questionable as to whether or

not the following early examples should include constants since they

really never appear on a flow chart. However, the reason for em-

ploying a flow chart sequence of a problem using constants at this

stage is to try to relate specific problems with which the child is

already familiar to the idea of a class of problems.

The input box is reserved for information that must be given in

order to solve a problem, e.g.,

A car travels at an average rate of 65 mph for a period

3 hours.

car rate: 65 mph

time: 3 hrs



The left corner 15 cut to resemble the popular version of a

punched card. (Ref.: Algorithms, compntatioh and Mathemati_cp,

SMSG, page a)

The output box is represented by the form

which suggests a piece of papei torn from a typewriter or line

printer.

Suppose in the example just given you are to find the distance

traveled for the given time; then the output box would have in it

which is the information resulting from the solution.

If we want to construct a flow chart for the same problem then

we can use the boxes and arrows together to get

multiply 65 by 195 ITL.

The circular start and stop boxes suggest the round buttons commonly

used to start and stop pieces of machinery.

(a) Which is the output box?

(b) Which is the input box?
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Which is the action box?

(d) Construct a flow chart for finding the distance a car

travels if it's average rate of speed is 45 mph and

the time in travel is 6 hours.

(f

How does this flow chart differ from the first one?

Using R to represent the rate of speed, T to repre-

sent the time in travel, and D to represent the distance

try to design a flow chart that could be used to express

an entire class of problems of the same kind

2111311113061.9=1110 D R x T

(It is not likely that the student will produce the chart illustrated

here, since there are many ways of denoting what is to take place.

After proper recognition of any creaGive result on the part of the

student, it is suggested that a discussion lead by the teacher and

inspired by the variety of attempts, be used to introduce the form

above. The purpose is simply to provide consistency in form and

notation, and to be expedient in our objective of learning how to

use flow charts as an expression of an algorithm.)

The input box is representative of a set of punch cards each of

which has some input data which will involve the constants necessary

to perform a specific problem, but the flow chart being an expression

of an algorithm is not intended to be concerned with specific problems

and so variables rather than constants are used. Samples of variables

as used in Qomputer language are:

409



A, B, X, T, R. Y or such descriptive combinations of

letters as: DIST, AREA; LENGTH, FLRR. (For a more detailed

explanation of variables as used in computer language, see

ACM Sec. 2-4.)

Notice that the variables are limited to upper case Roman lett

which are the usual symbols available to compu-ceos. Also, there

are not enough letters available for use as vaiables so combinations

of letters are employed. Sometimes a descriptive combination of let-

ters helps to remind us of how the variable is being used. We regard

an unbroken string of letters (no intervening punctuation, operation

symbols or parentheses ) as one variable or one symbol. That is to

say, an expression like XN is not considered to contain either of

the variables X or N but rather to be a symbol in its own right.

When used for flow charting, no variable should be considered to

appear as part of another variable. Samples of acceptable and un-

acceptable symbols for variables could take the form of an exercise,

(1)

) PXQ

125 (no)

(4) VARIABLE (yes)

(yes) 5)

(6) A B

(7) AB (yes)

(8) 6

"In any computing problem, there corresponds to each variable

used in that problem a location in the computer's storage. By assign-

ing a number to a variable we mean simply reading the number (des-

trnctively) into the storage location corresponding to that variable.

When evaluating arithmetic expressions a variable is to be treated as

a name for the number to be found in the corresponding storage location.

The number in the corresponding storage location is referred to as the

value (or current value) of the variable. During the course of a com-

putation many different values (perhaps even millions) may be assigned
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to a given variable. Thus it will not be meaningfAl to speak of th,

value of a variable without specifying the time or, more precisely,

the stage of the computing process But once the stage of the process

is specified, the value of the variable is uniquely determined.

A storage location may be hard to visualize. If so, here is an

analogy whi h cannot lead to error. Consider that to each variable

there corresponds a wooden box. To make the correspondence clear we

engrave on the boxes the corresponding variables. ut remember that

the variable is a name not for the box but for the number inside.)

Three boxes with identification

Now if we want to assign 2.5 to the variable X, we open the box

labeled X, dump out the contents and put in 2.7.

Assignment may be done in an input step as in the previous flow

chart example. When we come to the input box

we empty out the boxes labeled E and T and fill them respectively

with the values punched on an input card.

Another important way of making an assignment is by means of the

action box which hereafter will be referred to as an assignment box.

In our previous flow chart example the assignment box looked like the

following:

-4o6-
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The product of E and T is assigned (indicated by a left-

pointing arrow) to variable D. At this time we empty out the box

labeled D and fill it with the product resulting from R x T.

Some examples of inadmissible and admissible assignment boxes

will help the student to understand their limitations.
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Assignment Box Admissible or not Reason lf not admissible

A x W

ExT4--D

P 2 x (L + W)

4

2 x (L + W ) 12

(yes

(yes

(yes

(yes

(yes

__Ignments are made only
to variables, not to
constants.

R x D is not a variable.

Assignments are never
made to constants.

2 X (L w) is not a
variable.

Referring once more to the previous flow chart example

Figure_ 1
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We have learned about three basic kinds of steps that occur in the

sequence of a flow chart called "input", "assignment and uOUtpUtT.

Step 2 is the box (assignment)

Step 3 is the box (output)

Stop 1 is the box (input)

Note: The problems shown below are based on some that appear in

the SMSG Mathematics For The Elementary School Grade 6, Part II. This

is a very elementary stage in claw charting and does little more than

offer the student a plan by which he can visualize the procedural

sequence for a given problem from start to finish. It does, however,

provide exercise in the use of variables as developed in the earlier

flow chart discussion. Perhaps this stage of the development would

be most suitable with the proposed Grade 7, Chapter 5 on Measure.

Exercises,

In each of the following exercises your job is to convert the

Instructor's problems into a flow chart similar to that of Figure 1.

1. Mike went bicycle riding every day after school for a week and

he kept a record of the distances he traveled. The distances

were A, B, C, JD, and E miles. What was the average dis-

tance traveled per day?

2 Terri divided Q quarts of ginger ale among F friends at her

birthday party. How many ounces did each guest get? (There are

32 ounces in a quart.)

How many shoe bOxes can be packed in a carton whose base is 2

sq. ft if the carton is b ft. high? Each shoe box is ft.

by ft. by
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Answers to Exerci.

A ,-

If a flow chart is truly en expression for a class of problems

then the same flow chart should be an effective representation for

the -olution of many specific problems of the same type Consider

the car problem again, only this time there are many situations which

require a solution and the data for each of the e is given in the table

Shown,

aAR PROBLEM DATA TABLE

Wmph) T(hrs)

47,0 6.3

54.6 2.7

11.7 0.1

36,8 0,5

64,4 3,2

1

2.9
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If we have a stack of input punch cards each containing e differ-

ent single line of data for R and the corresponding T from the

table, then this stack could represent the entire table. The ehLy

change needed to be made to the flow chart in Figure 1 is that it be

repeated and simple repetition is easy to expre-- in flow chart

language, by forming a loop as shown in Figure 2.

D R x T

Figure 2_

Now the flow chart tells us that after starting:

Step 1. Assign the data from the first punch card to the

variables R and T in the input box. One may

think of a messenger who takes the number 47,0

from the first bunch card to the wooden box labeled

RI dumps out what may be in it, and puts the

47.0 into it instead. He also puts 6.3 in the

wooden box labeled T in the same manner. (This

is what is meant by destructive read-in.)

Step 2. The product of R and T is assigned to D.

This time our messenger empties the wooden box

labeled D and replaces the contents with the

number resulting from the product of R and T.

Step 3. This step merely calls for printing the current

value of D (just computed in Step 2 ) along with

the first punch card constants for E and T.

Instead of stopping the process after Step 31 the flow chart

tells us (by the arrow leaving the output box) to go back to the

input box, remove the first punch card from the stack, allowing the
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next c- A. (if there is any ) to become first, end repeat t. pr-cess.

It ls understood that if a flow chart arrow carries us into an input

box and the_c ar(Jn't ,,tny panch cards left in tne stack, then the com-

putation is to stop. Otherwise, Figure 2 would suggest an endless

loop with no way of stopping.

Siice by this repetitive process there is likely to be many

printings (each to indicate a value of D), putting the variables

E and T along with D in the output box of the flow chart arranges

for the printing of the contributing data with each value of D.

This enables a person to know just which specific problem the value

of D is a solution to. A sample of the print-out for the fir-t

three punch cards is shown below.

When a person attempts to solve a problem one technique in

organizing his thoughts is to make a list of the things to be done

which includes the order to be followed. There are times, however,

when one approaches a fork in the'road and what follows is a direct

consequence of the decision made at the fork. For example,

get up in the mornin

is this a school day?

yes

go to school

lk
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Which way to go after Step 2 depends on the answer to the question in

Step 2. If the answer is yes the next step is I.

This new addition to our flow chart lancl;uage is called a decision

box or a condition box and will appear oval in shape.

4,true

With this new flow chart tool we hasten to improve our car prob-

lem flow chart to that of Figure 3.

any more
cards to be

read

Figure 3

At this stage of our flow chart development we have accumulated some

basic essentials adequate for expressing many mathematical algorithms.
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ax b 0

1

Suggested for the
propsed Grade 7)
Chapter 81 either as
an exercise for the
student or an activity
for the entire class
to do at tne blackboard.

any more cards
to be read?

stop

es

true

false
4

- 0

-B

"All Real
Numbers"
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The prime factorization of whole number A,

The flow cha2t that follows is a suggestion that takes liberties

with the more formal notation actually used in computer work. It i

done in the interest of providing a clear picture of the mathematical

algorithm involved with loss of the intricacies of a more complex

flow chart. For example, it is assumed in the chart below that a

list of primes is available. This is certainly a possibility and

there are flow chart procedures for calling on these rather than

saying "assign the next prime to Pu in Step 4.

A likely place for this activity appears to be the proposed

Chapter 5, Grade 81 on number theory.

Start

4

A
= an integer
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Not * For box 3 the teacher may prefer to check for P as e divise_

of A by using the gfeatest integer function

For box 7, the teacher may prefer to use

r.
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PROBABILITY AND STATISTICS

Richard Dear and Martha Zelinka

Put succinctly, the goal for the probability and statisticF naterial

in grades seven through nine is the capability of understanding for ex-

ample, the report of the Surgeon-Gener:,1 on smoking and cancer. The gen-

eral attack is to present in grades seven and eight the material on prob-

ability written by SMSG, INTRODUCTION TO PROBABILITY, which is now being

revised. The material for grade nine on statirtics does not appear to

have been written, and we give here only the briefest of outlines for

Undoubtedly we are trying something new here, but we have in our new

syllabus for seven through nine more power and a considerably more so-

phisticated student. Remember too that the slower student is expected

to take longer to do all this material. The grade placement of all the

material should be judged only for the college-capable student. No one

has yet challenged the utility of statistics nor the social responsibility

of mathematics to present it. What remains is the real challenge of writ-

ing it so that it becomes feasible for students at this level.

A number of "tin-ins" exist to connect probability and statistics

with the envisaged even-nine syllabus. In grade seven computation of

probabilitie:, gives rise to computation with positive rationals and in-

equalities between positive rationals. Computation of the probabilities

of the forffl P(A u B) and P(AfIB) even use a little set theory! The

use of tree diagrams is a crude flow chart; perhaps a real flow chart

could be drawn to solve a whole class of probability problems. Of course

the entire subject is an open invitation to modeling, but basically the

most often used tool is combinatorial counting. Please note that this

is done in seven-nine without a tedious development of the calculus of

permutations and combinations. Such a development is particularly true

of the use of Pascal's triangle, which is done WST* as the attached

sample shows.

WST = "With Simple Tenderness" an instruction to the pianist from
Mcilowel, "To a Waterfowl".



racic eght varia_ce and -Landa,1 deviation call for squares and

Fiquare roots; a relocation of the origin to coincide with the mean uses

anslation of cooidinates, change of scale9 negative numbers, and abso-

luLe value. Also probability provides an opportunity to have another set

funcion and to point out still one more measure."

Nondiscrete probabilities can be finessed on a problem such as

IlArhat is the probability that when a stick is broken at two places; the

three resulting parts form a triangle." This problem uses two-dimensional

inequalities and further accentuates probability as area.

The notion of expected value arises with the measurement of any

physical quantity and the inherent expe:ir-ntal errors.

General remarks: INTRODUCTION TO PROBABILITY was written without

presuming the notion of "function." In rewriting, it will probably be

expeditious to use this concept to obtain a simplified exposition. The

same is true of absolute value, introduced in Chapter 10.

Special topics in Volume 2Bernoulli trials, Bertrand's ballot

problem, and Markov chains--can be reserved for grades ten through

twelve. A similar remark holds for permutations, combinations, n.

and Sterling's formula.

-418,-

423



Topics in Probability

Grades 7, 8, and 9

Introduction to T7tobability

Parts I and II, Student Text, SMEG, 1966

This text is programed, and therefore the number of pages used for

any topic might be mdsleading. It is important also to check with re-

vi -d version (currently being done

Grade Chapters 1-6, approximately three weeks

Chap. 1 Fair and Unfair Games

Chap. 2 Finding Probabilities

Chap. 3 Counting Outcomes: Tree diagrams

Pascal's triangle without binomial theorem

Chap. 4 Estimating Probabilities by Observation:

organization of data leeding to notion of average and

expectation

Chap. 5 NA u B)
ST)

Chap. 6 NA n B)

Grade Part I, Chapter 7, aproximate1y three weeks

Part II, Chapters 8 and 10

Chap. 7 Dependent and Independent Eve s

(Review P(A U B) P(A n B).)

Chap. 8 Conditional Probability

Bayes' Theorem

Chap. 10 Expectation

Variation, Standard Deviation

Normal Distribution

Physical Observations )

WSL!!

Grade 9:

Chap. 1 Organization of datagrouping, histograms

Continuous model of discrete situation

Computationalgorithms' for mean, variation, for grouped data
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Grade 9: (continued)

Chap 2 Estimation of mean cn1 variance

Confidence intervals for mean

Chebyshev's Inequality (WST)

Chap. 3 Hypothei Testing (Null h o hesis: Quality Control Errors

of first and second kind)

Chap. 4 fmnomial Theorem

Normal Distribution

Central Limit Theorem WST)

-420-
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Pascal's Triangle

Introduce it as in Part I of Probability. Chap er 3, page 2

a little more than in Part I, Chapter 3.

List outcomes of tossing 1, 2, 3, and 4 coins. Make tree diagram,

and list result in form of table. Continue as in Part 2, Chapter 9-3,

page 207.

First Second
Coin Coin

As the number of outcomes increaEes, keeping track of the possible

outcomes is more difficult. One useful way of listing them is by means

of a "tree" diagram, as pictured below:

First Coin Second. Coin

Possible outcomes are

HH, HT, TH TT. There

are four.

If a third coin is added, the number of possibilities is doubled

again is seen in this diagram:

First Coin Second Coin Third Coin

Possible outcomes are

HHH, HHT, HTHI HTT, THH,

THT, TTH, TTT. There

are eight.



First Three Coins

HHH

HHT

HTH

Hi2T-

THH

THT

TTT

Fourth Coin

Possible outcomes are

HHH, HHHT, HHTH) HHTT)

etc. There are sixteen

outcomes.

Now list the results in form of a table. How many times do

2, 1, 0 heads appear?

1 coin

2 coins

3 coins

L. coins

Next wite

1 head

1 time

2 heads

1 time

3 heads

1 time

4 heads

1 time

and Pascal is born.

0 heads

1 time

1 head 0 heads

2 times 1 time

2 heads 1 head

3 times 3 times

3 heads 2 heads

4 times 6 times

1 1

1 2 1

1 3 3 1

1 4 6 4 1
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1 time

1 head

4 times

0 heads

1 time



At this pont, frequency distributions can be i "-duced airi

recording properly data obtained in experiments.

Look at Part II, Chapter 10-2, leading up to Expecta ion.



VECTORS ON A. LINE

Hassler Whi ney

BackgrouncL

Positive rationale; integers under addit5on; SMSG Grade 6,

e;Purpo

To show the theory of directed measuremen i.e., one

dimensional vector space.

(b ) The rational numbers operate; the operation on the

rationale comes out as a corollary, in a natural manner.

Remarks:

This is an outline, showing a general method; hence some of

it is rather sketchy, but should be easily filled in. Here are

three principle examples:

Example 1. An actual line, or line with origin; elements

pictured as vectors (arrows ). We tip the line, to hinder any con-

cept of "the natural direction".

Example 2. Directed interval of time.

Example =;. The rationale, or reals.

The e3;position is thought of as carried out for all these

examples, at each point. Of course other examples may be brought

in. We hope to end with some remarks on areas, for further under-

standing of both the general principles and applications.



1, Vectors.

We think of a line, and vectors,

pictured by arrows which may slide

along the line. As a picture, each

arrow has a start and an end.

Two vectors are added as follo- :

Usual way.

Associative law trivial. Commuta-

tive law; Interchange the two arrows.

If one of them has the opposite direction,

swing around a parallelogram for the

picture.

By turning an arrow around, we form the opposite. Clearly

opp opp v = v;

v + opp v = oppv + v = O.

(We note that we now have a group.

Ex. For real numbers opp 3 = 3; opp

Ex. Time: If u is the time interval t = t
2 l (say 10 min.

and v is the time interval t
3

t
2

(say -13 min.) then u v is

the time interval t3 t_ (say -3 min.)

Exercise. If Ann was 3 when Beth was born, and Beth was 2

when Carol was born how old was Ann when Carol was born? (Ans:

5 or 6 )

Rationals as operators.

First define

= lv.= 2v = v + v etc.

Just es the positive number line was extended we now extend the abbve.

This obviously gives:
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Note that

More generally,

-1v = opp vl -2v - opp v + opp v, etc.

oppv + opp v = opp(v v

opp u ± opp v = oppu + v

the above may now be writtem

nv h(opp

Also, turning the picture around (opp opp v

n(opp = nv.

How did one picture 1/3 on the number line? Go one third

the way from 0 to 1. Do this with 0 and v, giving (1/3)v.

Thus if this is 11'

v' + v' + v' V, v' = (1/3)v.

We now picture 2 3)v: this is 2((1/3) ):

1 1 2
v + v V.

3

We now And ( /n )v Just as for positive rationals,

rv + sv (r s)v, positive rationals

Again (picturing v as going from 0 to 1), the fact that

r = opp r makes clear that

rv + sv (r + s)v, all rationals r s.

From the picture, it is clear that

-(2/3)v = opp((2/3)v) (2/3)(opp v).

It is equally clear that

(2/3)v = opp(-(2/3)v) = (2/3)(opp

which is the above with 2/3 replaced by

(2/3). Thus we have:
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(opp opp(rv ) (Opp any rational r.

Apply tnis to opp v:

(opp r)(opp v) = rv.

Now (perhaps not before) apply this to the rationals:

(opp r)s = opp(rs) (opp s ),1

(epp r)(opp
f all rationale s.

Givo various numerical examples! Go through some proofs -gain, with

num,ers on number line in place of vectors in general.

It is also clear on a picture that

r(u ru + rv.

r

Next we note an obvious fact from picture: If nu . nv then

u = v. Converse clear Hence also, obtain:

If ru rv r rational, r 0, then u = v.

We still need the associative law. Take any v, and ra ional

We 119ve:

s)v] = 1

hence

more generally,

Also, we have

1
= sv
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1 1 1 1 1
A- 7:17s+ sv

[

1.
711-(sv

shr

1 1-
± )(s

n n

using what was proved above gives, replacing 3 by

(rs)v = ( v

where at the moment r must be a positive rational. But if r is

negative, then opp r is positive and we have x writing

(rs)v ((-pp r')s) = (opp(r's))v = opp(( 's)v) = opp

etc. Hence the above holds for all rational r and s.

=opp

Applying this to the number line gives the associative law for

multiplication.

Note that we have proved that our vector line is a vector pace;

or at least when we have proved that the real numbers form a field.

For this, we must still show that multiplication is commutative.

As a little earlier, we find that

S) = S

hence

1 1
s = s

Continuing,

1 in
= = s ;

hence

rs = sr,

at the moment if r is positive. For r negative, apply opposites
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as before. The required properties of our vector space and rational

nu ber system are proved.

ibtraction, multiplication division.

We study these operations in the rational number system,

how do we s lve

3 = 7?

By examination, we see that 4 is the answer. Here is another way

From 3, we wish to get to 7. Just go back to 0, then go to 7;

3 7) --- 7;

our new answer is 3 7.

This seems foolish, for three reasons: It is complicated; it

takes us through a much longer journey (is this really the same as

4?), ai,d it requires using negative numbers, not needed in the answer,

However, our symbols are supposed to be simply names for things;

-3 7 is another name for 4, and just our picture of it looks

like a journey.

The new method is helpful when we wis:: t tell a person how to

get from one number to another, i.e. solve

r + x =

in some fashion: the answer can be written as

X pp r S.

Suppose we give two definitions of the minus sign:

-r = opp r; s - r s + (-r)

These do not conflict, and the second reduces to ordinary subtraction;

for a - b = c if and only if a ---. c A- b.
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Vari us common properties are immediately verified. Thus,

-0 = 0; ) r;

+ s) = -r -r -

-r + s s - r;

z) (y + z) x y;

- z) (y z) = x y.

(The lest two will be compared with formulas for multliplication

-d division.)

We know already that

(-x)y = x(-y) = -xy,

(-x)(-y ) =xy.

Two more easy formulas;

x(y - z) xy - xz, y - - y) = xz = xy.

Others now follow.

Theorem. In a vector space, rv 0 if and only if r = 0

or v = O.

We know that Ov . 0 (two senses of "On); r0 . 0, at once

from definition. If v 0 and r 0, the definition of rv shows

that rv 0 (use (1/n)v, then m/n)v.) For the rationals, the

usual theorem on xy = 0.

For ease iL studying division, we wish something like "opposite"

which works for multiplication in place of addition. What replaces

0? Its property for addition is: x + 0 = 0 + x = x, all x. For

multiplication, 1 has this property: 1-x x -1, - x all x.

Now in place of "opposite" we have "reciprocal":

Theorem. If x / 0, there is a unique number y such that

xy . 1.



If x = m/n, use y n/-:_ proof immediate, as in Grade 6.

In fact, see the diagram for a special case: X 15; a third of

is 1/5, and five thirds of x is 5/5 = 1. For negatives, say

use y . -5/3.

from

Now

Now find the unique solution of

ax = b (where a

go back to 1, then to b:

0

X rec a

(re a) b) (a (rec a).) b 1- b

.b:

= pc,

Just as we introduced the minus sign, now introduce fractions:

For 0 l/x = rec x and y/x = y(ree x).

x - (l/x) = (1/x ) . x

= y if and only if xy =, 1.

As for a formula for subtraction, we have

1 1 1

xy x y

Two formulas for subtraction give, for division:

1

The following are very easily proved:

Now

a 0
I . a; 7 = 0 (b 0);

a ad
T bd

zx x-
zy y

/ 0 if a / 0 (b

be
= (b d / 0).
bd

if and only if ad .bc b 5d / 0).
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Two formulas we specifically mentioned for subtraction give, same

method) for division,

ac
=

bd

a

b d

The rules for addition are easily proved:

ad

be

a b a + b a c ad + bc
+ = +

b d bd

( ,d 0)

(b,e

As using opposites, using reciprocals correspondingly give

Now we find at once

-a_
T

_a

c ad - be
bd

Note that in all these, the symbols may represent any rational num-

bers. (Look at particular cases, integral and non-integral.)

All the usual working with fractions follows with ease from the

above.

4. Directed measurement.

We suppose w- have a set of "quantities", which form in a

natural way a vector space.

Example 1. Directed line segments, parallel to a given line.

L,-:ample 2. Directed time intervals.

Example 3. Possible changes jn quantity of water in a reservoir.

We know then how to add quantities, and multiply them by rational

or real) numbers.
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Here is a particular question: In the given vector space/ suppose

we choo-e a fixed non-zero vector, say V, and wish to compare quanti-

ties (vectors) with this one. How do we do this?

For any vector v, we may write v = aV for some number

This gives a correspond nce

Fv thus

associating with the vector v the number a. If we call V the
n T,

-unit-

= eV.

then we may say v "has a units"; this means merely that

We can choose various "unit" vectors V; each gives an isomor-

phism of the vector space onto the vector space of real numbers.

Suppose we had the unit V/ and now choose another, W. Then

write

Now for any vector

then

1
W = V . dW: d =

if

v = V, vbW,

v = a dW ad)W; b . ad;

v = b cV = (bc )V; a = bc.

However, it is much simpler to work directly in the vector space, and

not in the number system since the isomorphism depends on the choice

of unit.

Example. With directed distances ft and in 1:are vectors,

and 1 ft = 12 inches. This is a real 29na1ity. Length

3 ft for instance.

=433-
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OUTLINE -- VECTOES
H. S. Moredock
W. H. Sandmann

Part I -- Developing a Mathematical System

I. Scalars

Many of the quantities which we encounter can be described bY a number

or measure and a unit of measure.

Examples:

Length of an object

Outside temperature

Mass of an object

Volume of a tank

Speed of an airplane

Time to eat lunch

Distance between two cities

5 inches

- 64 degrees

315 grams

11 cubic feet

530 miles per hour

35 minutes

118 miles

etc. (EX. from physics - mass energy, change - metric units )

In each case the measurement ca, be represented by a distance ( interval )

on an appropriate scale. These are numbers obtained from scale readings.

For these reasons we call these numbers scalars.

Operations with scalars - ( real numbers )

Problems that call for adding, subtraction, multiplication, divi ion.

( Review properties of an ord_red field. )

Have students actually combine volumes masses, etc. to fix operational

properties of scalars.

II. Vector Quantities

There are qu ntities that cannot be adequately described by a measurement

on a scale alone.

A. Describing trips.

If we wish to know the distance between two cities, we do not care

to know particularly if the distance is measured from city A to city

B or from city B to city A. We are interested only in a scalar, 115 miles.



However, if we axe making a trip, it ou]d n diifeiio tc. ,c

f---1 city A to city B or t-

to indiste these trips.

A

From A to B.

Trips of two miles east along a road:

At -n_ious places:

fror:! 1,0 city A. Wu use arrows

A

From D to A

Notice that these arrows convey two pieces of information.

Thei length represents the distance traveled, and the points of thell

arrows indicate direction. Each arrow has a starting point and an

ending point.

Developing I4anIn of a Vector.

It would be im ossible to represent all the trips of 2 miles east.

We would like to generalize all 2-mile trips east by a singe representation.

In other words, we would like to fo m a mathematical model of all physical

trips which are 2 miles east.

Place a piece of acetate over the arrows.

On the acetate, mark the starting point of each arrow.

Select one arrow. Slide the acetate ( without rotating )

so t the mark for the starting point of this arrow moves to the ending point.

Look at the other arrows. Are the marks on the acetate for their

starting points now at the ending points?

Then the movement of the acetate, using one of the arrows as a guide

provides a representation for the various 2-mile east trips shown.

Start over again. This time mark some other possible starting points

on your paper for 2-mile east trips.
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race the acetate in the same 6eginning positin as before, Mark on

it the additional starting points you just made.

Using one of the arrows as a guide move the acetate without rotating

that the mark for the starting point now coincides with the ending point

of the arrow.

Lobk at the position of the new marks. They show the ending points

for the new arrows. ( might make indentations for these ending points through

the acetate onto the paper so that the new arrows can be drawn. )

This shows the generality of the representation. This on movement of

the acetate, using a single arrow as a guide, represents all the 2-mile east

trips by showing the ending point for any given starting point.

Go on to other examples, This time on paper show only one array,

-nting a trip, and some scattered starting point for trips of the same type.

Place acetate on arrow and points, and mark the starting points on

acetate, Move acetate as indicated by the one arrow. The marks on the acetate

now show the ending points. From a few of the starting points draw arrows to

show that these are trips of the same type -- i.e. same distance and direction.

Do enough of these to show that only one a row is needed to provide

the instructions for moving the acetate.

This gives an enlarged meaning for an arrow, from that of represent-

ing a single trip. AB a "programmer" for moving the acetate, this arrow

becomes a representative of a type of trip.

With this broader me_ ing the arrow can now represent our idea of

a vector.
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At this time, the phrase type of trip" can be replaced by the term

"displacement."

Use the new terminology to develop familiarity.

III. Displacements

Displacement a

A.

B

C

D

Given d splacement a as defined. Apply this displacement to points

C, C.

Lay on the acetate and mark the starting point of the arrow c I the

oil-As. Move the acetate according to the arrow representing the displacement.

Mark the ending points on paper and label them Al, B1, Cl, and D1 respectively.

Al is the result ef applying displacement a to A, etc.

Do the inverse also. Given the application of a displacement to some

points. Find the displacement.

Given: the application of a displacement to point A results in

Find and represent the displacement.

Displacement

Lay on acetate and Mark point A and starting point where arrow

representation is to be made Slide acetate to where mark coincides with A.

Mark ending point for arrow. Then draw the arrow representing the displace-

ment.

Might consider extending displacement to objects and give representations.

Have student move an object .( block) on the blackboard or a chair in the room

and have students represent the displacement on paper by a vector.



Keeping separate the representation of a displacement and the

re_ esentation of its applications helps to keep these two ideas separa e

for the youngsters.

Develop definition for equality.

Suppose displacement a, when ap lied to A results in A and suppose

when displacement b is applied to A
'

A
1

Combining two displacements.

Displacement a

also the result.

Displacement b

Given displacement a and displacement b as represented above. What

is the effect of combining these two displacements on point A below? By

"Combining" we mean applying one displacement and then the other. Observe

the effect of applying to point A displacement a followed by b.. We shall

call this combining, a b, and represent it as shown.
A
1

A

Displaeement a b

(displacement a followed by displacement b

A2
0-

Place acetate on arrow for a and point A. Move acetate according

to arrow for a. Mark point Al on paper. Now place acetate on arrow for b

and point Al. Move acetate according to arrow for b. Mark A2 on paper.

The location of various points should be spotted on acetate. Point A is

the result of applying displacement a followed by b to point A.



Wh t would be the displacement that resulto in A2 directly when

applied to A? Let us call it c.

Displacement c

A
1

Since displacement 2±12 and displacement c have the same result when

applied to point A, we write: ad-b = c. This is summarized in the vector diagram

a b = c

(note: might introduce "resultant" here. If this is done it should

remain with the physical model.)

Give many problems of this type:

Given: Displacement c+d, a combination of two displacements. Find

a single displacement e which gives the same result. Relate these representations

to displacements of objects. Now go on to this type of problem.

Given: displacement c. Find two displacements a and b which when

combined give the same result es displacement c. (note: relate this to want-

ing to displace an object to a cerLain point but there are obstacles in teh

way. Find a combination of displacements )
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problem.

Students will find that there are many correct answ rs for this

Show analogy with numb rs. Given a number, 17, there are several

pairs of numbers which have ly as sum; 5, 12; 8, 9; etc. But for any pair

of numbers there is a unique sum. Is this true of vectors?

Discuss: closure property for vector addition. This helps in

physics. Student needs closure in later work where closure mathematically

has correspondance to physical world.

B. Commutative Principle.

Investigate another property. Given: two displacements a and 12,

combined in different order.

Displacement a + b Displacement b + a

Apply these two displacements to a point, A. ( Use acetate in

usual fashion.)

A

Do you get the same result?

Have students try come examples on their own before any

generalizations are made.
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Since displacement a+b and displacement b+a have the same result

when applied to point A, we write,

This is a commutative property for vector addition. This is

summarized in the vector diagram

Give serveral other exercises of this type.

C. _ociative Principle

where displacement c is the

single displacement which

has the same result as either

combination of displacements

a and b

Combining three displacements. Given: three displacements

a, b, and a . Fine the combinauion, a + b + a . Since displacements

re combined in pairs, there are two ways of finding the combination,

keeping the same left-to-right order of a + b + c

I. Finda+ b, then find (a+b ) +_

II. Find ( b + c ) then find a = ( b +

Let us look at the vector diagram for each way.

( a + b

Note that d is found as the

single displacement for a+b

tl-cm p is the single dis-

pl-ezement for d+c or ( a +

a + ( b + c

Note that e is found as the

single displacement for b+c,

so q is the single dis-

+ a placement for a+e or a 1- ( b +
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Now, apply displacements of p and q to point A. use acetate

and the arrows for p and Lwove.)

Do you get the same resul

Then ( a -1=b) d-c=a+ (b+c)

This is the associative property for vector addition. Have students

go through this development with other vector triples.

Relate to numbers: ( 5 ± 7 ) 5 + ( 7 + 6 )

The commutative and associative prope ties together give a groat deal of

flexibility for vector addition.

Have students provide twelve expressions for adding three

displacements a, b, c

a +c-,b(h+cd= a,c+ etc.

Have them draw a. vector diagram for each expression and observe

the final single displacement in each case is the same.

This should give them a feeling that the commutative and associative

properties yield a rather significant result.

Compare with addition of numbers having the same flexibility. Relate

this flexibility to displacement of objects

D. Special Displacements Zero and Opposite.

Think of the displacement which leaves a point in its origin 1

position.

We call this the zero displacement and use the symbole to name it.

Consider the displacement a () and apply it to point A. make

drawing ) Do you get the same result as if you had applied only

displacement a ? Then a . a. Likewise 4- a = a .



Displacement ED is the identity displacement for yector addition.

Compare with the number 0 .

Another special displacement:

Think of a. displacement a. which displaces point A to Ai as shown.
A
I

A

Now think of the displacement which displaces A
1

back to A. We call

this displacement the opposite of displacement a , and name it displacement

Consider displacement a + -a and apply it to point A. make

drawing- ) Does it leave the point in its original position as would zero

displacement?

Then a + also C. -a. + a =

Have students find and show opposi es of given displacements. Also

find oppoites of opposites, etc.

Relate to returning objects tp original positions. ( Reciprocating

motion, pendulums, clock balance wheels )

Find displacement - ( a + b )

Apply displacement a+b to point A resulting in A2. Then find the

displacement that displaces A2 to A. This is called the opposite of a + b

or - ( a + b ) and is shown below.



=tudents do some of these problems.

Now find di placement - a. b

A 0,

Again, apply displacement a + b to point A as shown above. The

displacement -a + ( -b ) ts represented below at left.

-a

Apply it to point A2 as shown bel

Displacement -a ( -b ) displaces A2 to A as did displacement - a + b

Then - a + b ) n_

Notice that displacement -b + ( when applied to point A2

displaces A2 to A through Al, reversing the displacement a + b.

Relate this "back-tracking" or reversing of original dis-

placement of objects.
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E. Summary and Review of Properties of Addition.-
For any displacements a b and c

I. a + b is a displacement

2. a+b a

3. a + b ) + c = a + + c )

4. There is a displacement called the zero displacement,

such that

a + E) = E) + a

5 For each displacement a. there is a displacement 7a, called the

opposite of displacement a, such that

a + ( -a ) -a ) + a

Relate these properties to those for the addition of numbers. Point

out that these properties make the addition of displacements structurally the

same as the addition of numbers ( integers, rationals or reels. )

(Note: This may be the first time that students have encountered a.

mathematical system for something other than numbers. Make the most of it.

F. Subtraction

(Note: The main reason for introducing subtraction at this point is

to continue the structural similarity with numbers and show that subtraction

is related to addition for vectors in the same way as for numbers. The physical

interpretations for vector subtraction is quite limited at this level. To

introduce relative displacement and relative velocity for junior high students

seems questionable, Use of vector subtraction to determine change in velocity

may be discussed in connection with acceleration later. In the meantime this

limits applications of vector subtraction to displacements'and velocities that

are "in line.")

The following example show how addition and subtraction are related

for numbers.

What number is 8 - 5 ? It is that number which when added to 5 equals 8.

Then it is the number 3. ( In formal terms a-b = n if and only if n+b = a- )
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We define subtraction for displacements in the .me way.

Displacement a - b is that displacement which when added to

displacement b has the e result as displacement a.

This can be shown by the following vector diagram.

Given: displa e -nts a and b as show.

Find: displacement a. b

The dotted arrow represents displacement a-b because it shows

that the addition of a-b to b results in a

Now find b - a b-a

The dotted arrow represents displacement b - a because it shows

that the addition of b - a to a results in

Have students do this type of exercise with given pairs of dis-

placements. Emphasize connection with addition. Also have students find

displacement a b along with displacement a - b. Note that subtraction_
is not commutative.

The physical counterpart of this would be as follows: two objects

start from some point; object A is given displacement a; object B is given

displacement b. a - b is the relative displacement of object A ith respect

to object B in the process. b - a is the relative displacement of A with

respect to A.

This would probably be a difficult idea to get across to junior

high youngsters, even with "in line" displacements. There is some work

on this later with velocities.
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It might be possible to find applications from economics and linear

programming that would be helpful here..

Problem: Spaceship docking is accomplished by ground telling spaceship

where it is with respect to the trailer. It is hard to find

things in space just by looking. Ground launches trailer and

keeps track; also it knows the location of the spaceship. It

tells the spaceship where to look for the trailer.

Showing subtraction another way:

Since each displacement has an opposite, subtraction can be shown

another way.

Have students show displacement a - b see drawing below in the way

they have just learned. Then have them represent displacement

a ( ) as shown in the following drawing.
a - :b

Do the displacements a - b and a

that is, the same direction and magnitude ?

Then a - b . a ( -b )_

hav the same result;

Give exercises asking students to show subtraction in these two ways.

Show analogy to numbers 5 - 8 . 5 +

Show that a

447



IV. Multiplication cif Vectors by Scalars

A. Developing meaning

Multiplication by scalars can be introduced through repeated addition.

a +a+ a+ a

Have students represent the

repeated addition of a dis-

placement such as a+a-Ya+a_

After having them do a few,

including some that require ex-

tensive repeated additions that

may run off the paper, suggest

that these laborious repeated

additions can be replaced by a

single displacement having the

same result.

Note displacement 4a above which describes the same displacement as

a 4-a+ad-a. Note that 4 isascalar andais the vector, and that they_
are combined in this special way shich is called multiplication of a vector

by a scalar.

Give exercises having students represent, for example,

b d-b-Fb-l-b+b-Fb and 6b. Have them describe but not draw displacement 137b.-_ _ _

a

7 E.
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Develop meaning for I a, as shown
7

left, and for a, .7 a

1.8 a, etc.

Include 0 a and I a.

Develop meaning for multiplication

by negative scalar as show for

( -2 ) a.



Note the following distinction:

-2 ) a multiplication of a by negative 2

: the opposite of displacemtn 2 a

These displacements have the same result, ( -2 ) a

Then we can think of displacement -2a either way.

Have students make representations of several displacements of

this type, including - 7 a , 3.2 a , etc.

Develop idea through the activity below that for any scalar k and

displacement a there is a displacement ka

Given displacement a and point A. Have students mark points

showing various displacements of A such as 3 a, - 1 1 a
7

- 5ia etc.

3

Lead them to sketching the line where all these displacements of A will be,

and that for every scalar k there is a point on this line for displacement ka

applied to point A.

Now turn this around. Choose an arbitrary point on this line for a

displacement of A. Is there a scalar k such that k a is the dis-_
placement applied to A ?

We assert that there is although in finding k, we often have to

resort to an approximation.

This develops the idea of a one - to - correspondence between the

points on this line and scalars.
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Have students work this kind of exercise:

A
/ 2

A

Given displacement b and pcint A.

Find displacement kb which displaces

A to A1 Also find displacement kb

which dIsplaces A to A2.

Students find k approximately.

A /
-1 0

With this kind of activity, students will soon realize that this

similar to measurement, using b as a. unit.

To make these activities easier for students, it might be well to

consider scaling the vector representations of the displacement- so that they

will have a scale available.

At left shows the vector representation of

displacement c scaled in tenths. Also

the use of the rulings on ruled paper might

be considered.

( It might be worthwhile to develop a telescoping vector.

ruling

LL ' _

sliding tube or board

Felt could let it stick to paper or acetate. A blackboard vector

would be handy. )

B. Some Prpperties of Multiplication By Scalars.

1+5
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The first drawing shown on bottom of preceding page, shows the

construction of displacement 2 ( a + b ). The second shows the construction

of 2 a + 2 b. Comparison of these two representations shows that they have

the same direction and magnitude.

then, 2 (a+b) = Pa+ 2 b.= =

Have students make similar constructions. Try 3 a + and=

3 a + 3 b ( = b ) and 1 a -I- 1 b .

2

I ad to general pattern: + b = ka+kb. Note that=
that + sign is for vector addition.

Next have students make a representation of displacements ( 2 + 3 )

and of 2 a + 3 al and compare. Does ( 2 + 3 ) p, equal 2 a 3 a

More investigations of this type should lead to the genera result:

for scalars k and m . and displacement a,

(k+m)a = ka+ma=

Note the use of + sign for addition of scalars and for addition

of vectors.

Have students study these two expressions to determine what they mean:

( 2 X 3 ) a 2 ( 3 a )

Then have them construct representations of these displacements in

stages, and compare results.

Does ( 2 X 3 ) a equal



Note the multiplication of two sc-lars (kXm and the multiplication

of avector byascalar ( (kXm)a)

Summarize these properties by discussing different ways of construeting

and naming a dispfacement.

For example, have students describe the construction of :

4 a + 8 a

etc.

also

5 ( a + b )

5 a + 5 b

Developing a system for Describing Displacements

A. Describing a Displa ement in Terms of Two Given Displacements.

After seeing that a displacement may be described in different ways,

the students should be ready to discuss the impoAant idea of describing a

displacement in telms of other displacements.

(Note that the ideas discussed here are those of linear dependence

and independence) and a vector basis, but are not labeled az such )

Shown at left is a case in which one

displacement, b ) can be expressed in

terms of another displacement, a, as

follows:
b 2 a

Whenever this occurs for two displacements a and b such that

b = k a, they are said to be parallel.
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c = 2a + lb

c = lb.+ 2a

Supp_ ;e a and b are two non-zero

non-parallel diseements (one cannot

be expressed in terms of the other),

and c is another displacement. Ex-

press a in terms of a and b.

Draw displacement c. Then sketch lightly

a line for a and one for b to find

where they meet. Draw k a and m b as

shown. Then find what the scalars k

and m are.

This shows another way of drawing k a

and m b and finding the caine result

for scalars k and m.

Present other displacements to be ex-

pressed in tel s of displacements

Help the students get started on the

constructions.

Include a case in which the scalars k and m are approximated. Also include

cases where k or m is negative.

and b.

Provide enough experience so that students see that there is a general result:

For any displacement) say c there are sclars k and m such that

c =ka+mb

Start with another pair of non-zero, non-parallel displacements and lead to the same

general result: any other displacement can be expressed in terms of these two

displacements.
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A Convenient Way of Naming Displacements

The idea that any displacement in 2 dimensions can be expressed

in t-rms of two nen-zero, non-parallel displacements can be used to set

up a convenient way of diignating displ- ments.

Ask students to provide suggestions. Keep raising question of

convenience. Give hints when needed.

Show two orthogonal unit displacements.

Why at a right angle? Why both unit

displacements? What are the advantages?

A unit suggests a scale, Develop one.

Why can we go in negative direction also?

Students begin to see the familiar co-

ordinate system.

Now, discuss expressing another displace-

ment, say c as shown, in term of the

two unit displacement i and j

Have students deve101:', the two expressions shown, and show how they

are obtained: c = 3 i 2 j

= 2 j + 3 i

Then provide other displacements to be expressed similarly.

Next, provide a variety of expressions, such as a . 5 1 + )

and have students provide the drawings related to each.
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7

6

5

2

- 2 1 1 2 3 4 5
-1

Give students experience in using this notation.

Given displacement a

4 i

Note that the displacement could

be described by just naming the

scalars in an agreed upon order.

a : (4,5)

tional:

Given displacement a, (4,2). Apply

this displacement to point A.

1. Use this new notation and go back to consider addition of

vectors, and multiplication by scalars.

2. Position vectors.

Dot product.
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Part II -- Enlarging the Physical Development

I. Scalars

A. Have students look at physical quantities which are completely

specified by a "number" and a unit ( volume, time temperature, period,

etc. ). The discussion of physical scalars should not be general or abstract.

The point to emphasize is that there is more to a volume than is indicated by

considering porous materials like .ponges or coke. In this case there are two

volumes of pos ible interest: the air volume and the solid volume. In each

sciar considered the student should see and hadle examples of the material

being discussed. It would be helpful if the discussion included how one would

assign a value to the quantity being discussed. It would be very desi able

to discuss the whole idea of measurement.

The physical quantities selected above are used tu introduce

the algebra of scalars. Since the algebra of units is a, very confusing area

the whole problem may be sidestepped by introducing the mathematical model. If

each set of scalars is always reduced to the same unit basis then the mathematical

model becomes the "number" associated with the physical scalar. The mathematical

model is then a set of numbers. The idea of forming a mathematical representation

of a physical quantity or system helps a great deal later in the development of

vectors. Multiplication of a vector by the scalar produces another physical

quantity. The mathematical model will have different meaning. As an example,

Newton's second law (F = ma). Force end acceleration are physically different

but the mathematical model in some cases will be the same. Introducing the

mathematical model at this time should pave the way for its use at these later times.

If some physical quantities are listed which are not scalars it can

be established or made reasonable that a description of the " real world" may need

different or entended mathematical ideas.
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Displacement in the form of ( chess or checker moves ) can be introduced as

an :3xample and can be tied in with the following vector development. There

are probably better examples than the board moves in checkers but they should

be something the student can actually do. The examples should not be thought

experiments s.e. hypothetical trips etc.

II. Vectors

There is a class of phyuical quantities which need for their de-

scription a number and a direction ( also units ). This section will define

a vector and develop the algebra of vectors. Since displacement is an idea

which is easily grasped the difinition will be formulated in these terms. The

foimulation of a mathematical model from experience in the "real world" should

be carried throughout.

The definition of a vector follows from "physical" experience.

The use of a frosted acetate overlay allows the student to develop for himself

the basic properties he associates with vectors. The formal definition and

representation I.- as a directed movement of a plane should be

quite logical and real. This may be a good place to have the student

tentatively identify other physical quantities with vectors velocity,

acceleration, force. The question is raised how do we determine whether or not

any of these quantities can be represented by vectors. To do this we must

establish the algebraic properties of vectors.

B. Return to the acetate and establish the rules for vector operations

of addition, multiplication hy a scalar ( -lumber ) etc. Introduce additive

inverse, zero element, maybe unit vector, Follow these with the CAD laws.

All of this should be done with acetate by the student -- operations are

to be made reasonable.
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There should be no formal mathematical proofs. It should be emphasized that

tifle displaced ceetate is the physicdl world and can be represented by

mathematical systems of vectors.

C. Using experiments have the student discover and test other

physical quantities as to the feasibility of using a vector model to represent

them. In this section there should be come examp],s which do not lend them-

selves to vector representation. Pressure might be a reasonable example,

electric current another. An an example of vectors, velocity seems to be

quite straightforward. Acceleration whould be considered. Concurrent forces

could niso be introduced. If forces and acceleration can be introduced than

scalar physical ) multiplication _an be considered in an operational sen e

s.e. mass multiplying acceleration is equal to force.

D. Since multiplication by a scalar is introduced in the section on

displacement the extension of this in physics could be very helpful. In dis-

placement the multiplication by scalars is essentially a change in scale. No

new physi al quantity is generated by this multiplication. There are some

cases in which multiplication by a scalar generates a new physical quantity.

Momentum, for example, is formed by the scalar multiplication of mass and

velocity. Porce is related to acceleration multiplied by mass. This approach

could lead a long way to establishing the operational ideas in science. Cause

( force and effect ( acceleration ) can be established at this time. It is

here that the idea of a mathematical model helps considerably. The force

diagram and acceleration diagram are different in the real world but to the

mathematical model they are equivalent. Note: If Newton's second law is the

resultant force which is the cause of the acceleration, physically it is hard

to find the resultant force.
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Represen_ing the forces by a vector model we can quite easily find the sum or

resultant vector. This vector referred to the physical situation can give the

magnitude and direction of the acceleration.. Another utilitarian aspect of the

mathematical model comes when we ignore rotation. The model does not have to

correspond directly to the physical case. If rotation is to be ignored, the

mathematical model will have all vectors meeting at a point. This model will

describe the motion of the bodies center of mass. Sometimes this is enough fer

the physical situation and makes life much simpler. Forces should be considered

only after the student is fairly familiar with vectors.

The possibility of introducing dot products should be investigated.

This is not easy. The mathematical concepts are hard and experiments involving

energy are difficult to make work. Th y are possible, however.

Also the feasilility of rotations must be considered. This means not

only rigid body sort of rotations but also point rotations. PSCC does not discuss

rigid body rotations or torques.

F. Added note to outline.

Introduce the idea of constructing a mathematical model from kinematics

( displacement, velocity, acceleration ) Kinematics does not clutter up the

situation with physical constructs like force, momentum, and energy. This allows

a student to stuay physical systems without considering the cause of the systems

behavior. Wher algebra of vectors and development of models is fairly well es-

tablished then introduce physical constructs ( force etc. ) and cause and effect
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A possible "flo " diagram might aid in establishing the procedure.

Physical

Model

Physical Model
basel on
Mathematical
Model

III. Velocity as a Vector

Investigate the falling sphere case:

Scale

{

Mathematical
Model

Results of
erations on

athematical
Model

Sphere 1

Sphere 2

fast

slow

Drop each sphere by itself and

(syrup?) observe its motion. The student

can be told or demonstrate for him-

self that each sphere falls at a

constant rate or veln-ity. There

are a number of methods by which one can describe the motion of the L A set of

ordered pairs can be obtained by observing the distance covered by the sphere from

some origin during various time intervals. A graph of these ordered pairs can be

used to describe the mion of the sphere. If, instead of the sphere falling, a

bubble is i troduced at the bottom and allowed to rise we have a different situation.

Again measurenents can be made and a graphical model developed to describe the motion.

Another possible way which conveys as much informatIon is to state the rate at which

the ball moves. Since the object may move either up or down a direction should be

assigned to the rate. This discussion leads one to suspect a vector representation

may be possible.
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At any position along the tube the sphere falls at a constant rate ( speed ) and

is moving either up or down. Therefore let us make a mathematical representation

of this motion by using a. vector of a length proportional to the rate and pointing

in the direction of the motion. This does not establish that a vector representation

is possible for veic ,dty but we can test. it. Do velocities (Joey the algebra of

vectors? Let us describe the motion of two balls in the column of liquid. Let 0
represent a fast ball and

than Release the

represent a ball which moves at a slower rate

and time its fall over a known distance on the

scale. From this data the velocity of the ball corresponds to a vector with a.

suitable magnidude and pointing downward. Now perform the experiment with two

balls. Release the first and let it drift downward to a prescribed mark on

the scale. As it moves past the mark release the rm and start the timer. Wh,n

the two balls pass one another the fast ball has traveled a distance relative to

slow ball equal to their initial separation. Dividing this distance by the time

gives t'J relative velocity of the two balls. This relative velocity can hopefully

also be represented by a vector. Our two experiments have provided the velocity of

one object referred to the scale and velocity of a second object with respect to the

first object. Our vector repre entation of these velocities says that the addition

of the velocity and the relative velocity should give the velocity of

referred to the scale. Perfoim the sum of the two velocities and check by a third

experimen-L: Dropping by itself and computing its velocity.
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The introduction of subtraction can be accomplished by inserting a straw in

the dropping tube and blowing a bubble. An alternative way t produce a rising

sphere would be to seat a light ball on the end or the straw and push it to the

bottom. The rising sphere is considered to have a negative velocity. Measulament

procedures similar to those de-

-,,straw scribed in the previous section

yield the necessary velocities.

By using three balls it can be

ball demonstrated that the CAr laws

hold. The motion of a sphere in

in a viscous medium is used only as one of may possible means of introducing students

to vector ideas. Other possible schemes that seem possible are:

Longitudinal pulses propagating down springs. A

very weak spring under low tension will have a

reasonable velocity of propagation.



2. A moving endless belt with a ball rolling on it.

Ramp can be folmed y bending a plastic ruler. It is

attached to the system and allows smooth injection of

the ball onto the belt. The ramp should permit various

velocities to be reproduced. Tapeq cementer' to the fler

and belt make distance measurements easy and from

corresponding time measurements the velocities can be

calculated.

When the student has convinced himself that velocities can be rep-

resented by vectors he should proceed to develop the mathematical

model of the physical situation has has been observing.

is relative to

is relative to scale

Operation
of addition
to find v
with respect
to scale

Va

Physical Model Mathematical Model
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The result of the vecto- addition is referred to the physical situation.

For the case of the rising ball the

operation of srbtractions and fol-

(')

lows the above sequence of operations.

The mathematical model is not tiedvQ
to any reference plane since there

. has been no discussion of bound vec-

Nip

tors. The operation ( s ) to be applied

to the mathematical model are inferred from the physical situation. It is in ti,e

physical world that we associate velocities with scales and reference frames. It

is also possible in the mathematical model to have reference frames, but at this

stage a reference to axes would probably just confuse the issue. It should be

mentioned also that we are working in velocity space. Distances should not

appear on the physical model.

The previous discussion has been concerned with in line velocities. It may

be wol h while to extend the treatment of velocities to oblique motions. A simple

Lethod may be through the use of clear lucite tubes on aluminum vee rails with

marbles. These systems should be fairly friction free and the velocities constant.

taid 'on

horizontal
surface

Even if friction is a problem a onall piece of tape at one end of the tube

or rail should establish a uniform velocity. The analysis should follow that

discussed above or in the section on displacement.
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TV. Acceleration

If ac eleration i- introduced through in line motion some conceptual

difficulties can be avoided. In more general motions acceleration occurs both

from a ihange in length of velocity vector and also from a change in direction.

There is much to be said for following the pattern used in physics of discussing

accelerat.!_ons where analytic length of the velocity vector changes and then follow-

ing with changes only in direction. Consideration of motion where both changes

occur is left to the last. The standar ballistic problem of shooting a projectile

in a horizontal direction also presents unnecessary complications. It combines

both a constant horizontal motion with a vertical linear acceleration. The

complication in this situation comes f om resolving the vectors into ol_hogonal

components -- vertical and horizontal. At this stage the vectors should be

left free.

The question arises as to how far to carry the investigation of

acceleration. A change in length of the velocity vector will establish in the

students' minds that acceleration can be represented by a vector. In a physical

sense the change in direction is important but at the early stages not completely

necessary. If straight line motion becomes the common thread throughout the

book, changes in direction should not be attempted.

There exists a greet problem in measuring acceleration. At present

we do not have simple acceleration measuring instruments. The standard and

maybe the best treatment probably lies along using a tape which is marked by a

spark at equal time inter als. Successive differences in distance and the time

interval gives the acceleration. An attwood's machine or inclined plane will

give low accelerations and make measurement quite easy. Also they operate with

constant acceleration and hence average accelerations do not enter.
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Hop fully there are more imaginative ways of letroducing accelerations. The

major criterion for an experiment should be that the measurements should be

simple and obvious and the accelerations easil:y calculated. The vector charac-

teris ic is the imporLant item, not the experiment or the physics. Finally,

the analysis can be carried out in a manner similar to displacement and velocity.

V. Forces

In this experiment the student is limited to a discussion of concurrent

forces. Omit for the present the observation of forces exerted on extended

bodies -- distributed forces. A force table is an easy piece of equipment to

work with and involves only concurrent forces. In describing the operation

of a force table the student should underbtand what is meant by strings. A

string can transmit a force only along its length; s.e. it is incapable of

sustaining any shear forces.

I. Forces in general.

Forces are associated with dynamics and for the first time we are

considering physical quantities which cause something to happen. Tnis is

different from merely describing the motion or behavior of a system. In d

scribing physical phenomena we introduce new quantities which are censidered

to be the cause of something happening. Force is such a quantity. If a system

is at rest or in uniform notion and this ,'tate is observed to change a net force

is acting on the system. Later we can consider quantitatively the effect of new

force on the motion of a body.

Forces are subtle physical quantities and the development of

mathematical models corresponding to general situations is quite difficult. By

this we mean a generalization or inference from a specific example is liable to

lead to quite erroneous conclusions.
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II. Equilibrirl on a force table.

ring

512

If we consider th case where the Wo strings exert equal and opposite

forces on Lhe ring -LI-ere is no motion. Before the strings were attached there

was no motion and no net force on the ring. There still is no motion and the

state of the system remains the same, hence there is no net force acting on the

system. The problem is now to describe the pnysical system by a mathematical

model. If we remove F2 the ring slides to the left. Removing 31 allows the ring

to move to the right. If we change either F1 or F2 one at a time similar changes

in the state of the ring occur. Since both direction and magnitude are involved

we can try as a. possiblity a vector model. Let F1 and F2 correspond to two

vectm-s which add to give the null vector. If vector F1 is shortened, then the

sum does not result in the null vector and we have a new vector to the right

which gives the correct direction to the motion in the physical case. Shortening

F2 also yields a correct result. If one of the forces is replaced by two vec-

tors, the various algebraic rules can be established.

This analysis does not show that forces can always be represented by a

vector model of this type. Forces cannot in general be moved arbitrarily.

The physical situation determines where forces are applied and the points of

application must be considered in discussion of the detailed motion. The force

table has no problems along these lines since the forces always act at a point.

_inally, the analysis should be extended to forces aecing at various angles.
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RESTRICTING AND FREEING THE INTUITION

H. 0. Pollak

A comment in the " uggestions to SMSG on the Secondary School Mathe-

matics Program" is that algebraic topology is the applied mathematics of

the future. I am not sure of the immediacy of this threat; at the pres-

ent I know of the applications to physics, like the many-body problem and

general relativity, the many diverse applicatios of graph theory, uses

of fixed point theorems in engineering and economics, applications of

cohomology theory to the analysis of structures, as well as attempts to

use topology in understanding large electrical networks. However, the

question of building up some intuition on topological notions somewhere

in the secondary school is, it Leems to me, wid open, regardless of the

imminence of a flood of applications. There are a lot of interesting con-

cepts: dimension, deformation, orientation, fixed points, triangulation,

homotopy, cutting and pasting, connectedness and multiple connectedness,

open, closed, compact, curves--open and closed and arcs--surfaces, knots,

geodesic, and so forth. How important is it that everyone have a eel-

ing for some of these things?

Just in case we don't feel like solving this prdblem, let's general-

ize it. We had quite a discussion about automatically restricting a stu-

dent's intuition by always using rectangular coordinate systems. How

much more do we restrict the intuition by always using the invariants of

Euclidean geometry! Anyway, how do you tell when an implied restriction

of the intuition is a good thing and when it is a bad one? The first non-

rational numbers the student sees are 7r-Z- and w, but we are careful to

keep open from the very beginning that there are more. From the begin-

ning of SMSG 9 we drew a positive number line with an extra stub to the

left. We make sure that our first examples of functions as functions are

not all given by simple formulas or are even all continuous. But when

we introduce complex numbers, I don't recall that we do anything at all

to keep the intuition open for quaternions. The beginnings of plane

trigonometry ignore spherical, and I am not sure that there are any dis-

covery exercises for non-euclidean geometry in SMSG 10. Most of these
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choices seem immecThate1y intuitively correct to me. Why? How do I tell

a restriction on the intuition I like from one I don't like? Future

importance of the generalization, ease of keeping the possibilities open,

applicahiljty of the more general concept all have something to do with

it but don't seem to be the whole story,

The (ILL =Lion of the long uninterrupted stretch of rectangular coor-

dinates, inLi entally, rais.es the question of local coordinates. In

fact, every application of coordinates I can think of has the feature

that the coordinate system is only locally valid. "Two aisles up and

three aisles over" in the supermarket is not supPosed to take you through

the wall into the iaundromat next door, The numTring system on El.

Camino Real begins over again in each community, to my original confusion.

in Michigan there Ls a global numbering system on major roads which is

interrupted by a local numbering system in Incorporated units and resumed

when you get out into the farms again. When we count tree rings, the

very deformation of the polar system gives us significant information.

I think maybe a case can be made for some intuition-building for local

coordinate systems. When is it legal to think of the earth as flat?

When is noon at the North Pole?

In SMSG 6 last year, my son had a certain amount of trouble with

one particular aspect of graphing How do you pick the origin and the

scale on the little piece of graph paper you get for doing the homework

se that the problems all fit and don't run over into other problems and

are not so small that you can't see what you are doing? With the usua]

introspection, I find that in my own work I always make a quick judgment

on this point before I start plotting. We never teach the kids, as far

as I can remember, how to make each a judgment. This is both another

example of the local coordinate questiOn and also an application of

approximations.
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ON THE INTRODUCTION OF MATHEMATICAL CONCEPTS

Hassler Whitney

We shall illustrate some of the w in which -1 qu-stion may be

posed or a system may be set up for study, which will lead in a natural

manner to the elucidation of concepts. The important thing is first to

understand the workings of a simple situation, then to pull out some

underlying notions. The notions thus will be understood before being

formulated.

Just as in mathematical research, some qu tions may lead to a

variety of concepts and topics. Each of these is often worthy of study.

Then these topics may be compared and their relations studied. Thus a

much fuller understanding of the general situation becomes possible.

Over a month, term, or year, one wishes to cover certain topics.

If one is led to study and comprehend various notions and their rela-

tions -,Ithout at first demanding that they occur in a certain order, it

is then easy to summarize the principal facts and thus present the final

material in an orderly fashion which will he understood rather than

memorized.

I. Some Topics From Number Theory

1. Divisibility. Let us look at a multiplication

1

2

3

4

tablc and ask some

2 3 L. 5 6 7 8
natural questions. For instance,

what numbers appear in this table?

All (natural ) numbers, clearly.

But this is because of the first

row and column. Suppose we dis-

4

6

8

6

9

12

8

12

1u

10

15

20

12

18

24

14

21

28

16

24

32

card these. Then we can firA

numbers not appearing; for instance

1, 2, 3, 5, 7, 11, .

Some numbers appear several times in the table. What does this mean?

They are answers to different multiplication problems: 12 ---- 2 . 6 =

3 4 . L. 3, etc.
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This suggests e definition: The number n is s=221LL if there exists

numbers a and b, both smaller than n, such that n = ab.

Theorem 1, 7 is not composto, for trying 2, 3, 4, 5) 5, none of

these works,

Theorem 2. 9 is composite, for 3 is less than 9, 3 is less

than 9, and 3 3 = 9,

Remark "There are two numbers a,b" needs comment. The commonly

used "two- is not meant in the strict sense,

Remark: After a few such examples, one may point out the use of

"there exists" and "for all." In testing 9, we find 3; in testing 12,

we find 2, 3, 4, 6; in testing 7, we find nothing. In the latter case

all test numbers fail. Negations of quantifiers are already understood

in a basic manner.

Remark Is I "prime"? The fact that mathematicians choose mean-

ings of symbols (in particular, of words) becomes apparent. We consider

several cholc,s and finally pick one that seems msst useful. Contrast

with everyday arguments, which in reality depend on word usage.

Why bother about composite versus prime numbers? SeveraJ answers

may be suggested. A composite number may be "simplified": 63 = 7 9,

while 61 must stay as is. We can simplify 63 further: 63 = 7 .

3. We are running into the fundamental theorem of arithmetic.

Matiplication is oasy, -,,:Titing numbers in factored folm. Add

exponents. Note that addition is difficult. How do we square? What

numbers are squares?

Remark: Later, in Considering /2 , what sort of properties are

being used? Divisibility? Let us consider the relation to the funda-

mental theorem. That was easy! How about other roots? Students may

nd general theorems.

What numbers are divisible by 2? by 4? Let us look at the pattern:

4 5 6 7 9

2,4

We see a fact that may be expressed in several ways.

a. A:1 numbers divisible by 4 are divisible by 2.

b. Those numbers divisiblo by 4 form a subset of those divisible

by 2.
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c. if n is divided by 4, it is divisible by 2.

In c we may increase clarity by inserting "for all n ,..."

Another interpretation for e: Suppose we ale told that n is some

specific natural number. We wonder if it is divisible by 4. We think

of c to help us. Since n as given (though we do not know which number

it

P n is divisible by is divisible by

arc statements; i.e., each has a definite truth value, Then c may be

shortened to "If P, then Q." This we assert. How may we make use of

this? If we learn that F is true, we may at once assert Q.

Suppose we learn that n is not divisible by 4; i.e., F is false.

What happens to c? It certainly does not help us decide about Q. But

we still believe in c it simply gives us no information.

With still further examples, it will gradually become clear that the

way to be sure that a compound statement gives no infoemation is to see

that it is certainly true (without further knowledge). This will turn

out to be the reason that "If P, then Q" is called true if P is false.

Remark: It is useful to ask for proofs of such things as: If 1 .

then 1 1. For instance, I = 2; hence 2 = 1. Adding: 3 = 3; dividing

by 3 1 = 1. However, using statements whose truth value is obvious

makes definitions of logical relations seem artitrary. Using statements

with unknowns (i.e., quantifiers) like c forces us to consider the dif-

ferent possibilities and make usual logic natural.

It is not hard to see how further work will bring us to simple under-

standing of the various logical connectives. Afterwards their meanings

be codified and clarified.

2. Modular Arithmetic. We start with a pattern. Let a circle be

divided into n 20 spaces. Starting at 0, let us take steps of length

a = 6. Mark heavy dots at each spot reachd. The first five are shown

in the figure. What will the pattern of dots look like finally? Here

each even number has a dot. Will the dots be evenly spaced like this,

in all cases What will the final spaces between dots be like? One can
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ask different class members to experi-

ment with different n and a , and try

for conclusions.

Presenting the conclusions so far,

the gcd of n and a appears. Apart

from this, various ways of proving

facts occuring here may be suggested.

For instance, a more or less geometric

proof that the final spacing is even 1=first step
may be worked out. This is certainly 2=second stel)

0

a good topic for discussion in class. Later a more algebraic proof may

be given. Now the two proofs may be compared. The fact that if there

is a short space between two dots, all other spaces will be equally

short has its analogue in equations. The two -)roofs may be written side

by side, showing tneir final identity.

Having marked the "4" dot, how may we show that we have already cone

once around the circle? Different ways may be suggested. In particular,

the pattern may be shown along a line with multiples of 20 marked. Here

residues mod 20 appear. In the first segment of length 20, the leasL

residues appear. Equivalence (mod 20) and partitions come in naturally

(if enough time is spent on the topic). The complete pattern shois the

ideal generated by n and a ; the expression of (n, a) in terms of

n and a is found. The usefulness of negative numbers is also appar-

ent. Finally, if n is prime, we obtain divisibility properties concern-

ing primes. From here the proof of the fundamental theorem is rapid.

Comparison with a former proof is in order.

II. Multiplication of Negative Numbers

Having experimented with addition and subtraction of positive and

negative integers, let us try multiplication. Here is one type of experi-

ment that should be carried out: First, mark values of x y in a plane

with the usual coordinates. Start with non-negative x and y ; use

just integers. Now look for
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-12 -9 -6 -3 0 3 6 9 12 15

-8 -6 -4 -2 0 2 4 6 8 10

0 1 2 3 4 5

0 0 0 0 0 0

-3

-6

some other values. The pattern certainly suggests negative results. Why

should we choose, for instance, the top row shown? From 9, subtracting

3 gives 6; subtracting 3 nov gives 3; next, 0; next, -3; etc.

This makes a simple pattern. It now has the property: From -6, adding

3 gives -3; adding 3 gives 0; adding 3 gives 3; etc. Let us

state this in formulas: Adding 3 to 3k gives 3(k 1)1 or

3(k 1) = 3k + 3 .

How about bigger steps to the right? Soon the distributive law

appears. Thus desiring the simple pattern is equivalent to desiring the

distributive law. Note that a simple pattern appears first, use of a law

later.

Now how about filling in the lower left-hand part? Clearly we desire

positive numbers to keep the symmetry. We have found the product of

negatives.

Since many feel that negative times negative should be negative,

let us try this pattern also. Keep both patterns handy, and compare the

two while working in various ways with integers (or real numbers). More-

over, a model with product equal height with both definitions (two

models) is useful. One has sharp edges in the second model and has lost

nice symmetry.

III. Directed Lengths

Suppose we have a line with a starting point and a direction along

it. We have also a kit giving or manufacturing arrows or "vectors"

which may be laid on the line, each in its given direction, from the

starting point 0 or from certain other points. We shall study the
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resulting system. The application to measurement along a line (without

a starting point) will be clear enough; we do not consider this here.

With any vector in our kit, named u for instance, laid with its

"start" at 0, maTk its "end" with the syMbol u . This gives a picture

of a vector from the kit.

Let us assume we can add:

a. Given u and v from the kit, we can manufacture u + v ;

v may be laid after u , giving the same mark as u + v laid from the

start.

0 U+V

The construction makes clear that we have (or require):

b. Given u, v, w from the kit, we have (u + v) + w = u + (v + w).

Assume the kit contains a knife point with handle:

c. There is a vector 0 such that u + 0 = 0 + u for all u.

Assume a vector can be turned around; rather, it can be copied back-

wards:

d. Given u, there is a vector -u such that u + -u = -u + u = O.

Finally, assume commutativity:

e. For all u, v we have u + v = v + u.

We can of course mention "group," etc.

Let us now assume order on the line or between the points marked on

the line. (with the assumption about the points marked we need not

worry about the order being Archimedian.)

f. The marks are simply ordered: if u > 0, then u + v > v for

all v .

Now we ask, "TAlhat is the system like? What is the set of all possi-

ble marks on the line like?" One soon sees that there are two cases?

Case 1. There is a smallest positive vector. In this case it is

easy to see (class experimentation) that if we call this vector a , for

instance, that
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a, a -I- a, a + a + a, . -a, -a + a, ...

is the set of all vectors in our kit and gives all the marks on the line.

Let us devise a special notation.

(')a - a, ( ')a = a + a, "T)a = a + a + a,

etc. Also some similar notation for negative vectors. We now have

(m)a + (")a =a+a+a+a+ a. = (
'

')a ,

which suggests defining, among our new symbols,

( 7 e )

We then have the distributive law:

na + ma = (n + m)a, all n, m,

in fact, as is easily seen by using u in place of a .

Note that we have discovered the group of integers and have found

how this group operates on our kit of vectors.

Remark: We may prove the commutative law in this case.

Case 2. There is no smallest positive vector.

In this case it is interesting first to consiuer what we can do

just two vectors. We permit ourselves to construct others from these a.

It may happen that we may form ma + nb , obtaining 0 (with none of

b, m, n, zero). This brings us back to an earlier topic; also it la

be used to introduce rational numbers as operators on our kit. If tl e

is no such relation, the class may experiment with what may be done Lth

the two vectors. We discover that we may manufacture arbitrarily small

ones and are thus necessarily in Case 2.

Consider Case 2. We see that the marks on the line are dense. This

suggests assuming completeness. For instance, assume mechanically that

we may lay any number of vectors from 0 together and push a block down

from the right till it can go no further and then mark the point reached.

Through our mechanical model, consider now our possible operations.

Choose those vectors u which (with some fixed a ) have the property

u -1-111-u<a. Lay ail these from 0, and push the block against them,

giving v. It is quite easy to see that v + v + v = a. Thus we may
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divide" a vector by (') Now all rational numbers operate on our

hit. By completion, all real numbers operate. We have now constructed

the real nuniber system and its operation on our kit.

Summing up, the theory of directed lengths on a line is the theory

of a simply ordered set allowing the real numbers as operators, or the

theory of a one-dimensional vector space. We have accomplished several

things: We understand better the operations of measurement in one dimen-

sion; we see how the real numbers come in of necessity to measurement.

Note that if we choose a fixed vector a / 0 and express all vectors

as multiples of a, we obtain an isomorphism of the real numbers with

the system of yecto J, In particular, any vector equals x 1,)(!ti

also equals y feet. A true equation is

1 ft. = 12 in.

For some peculiar reason, many present-day texts fear to use lengths as

mathematical objects and are thus forced to say 1 foot "measures" the

same as 12 inches. Worse, one is supposed to write equations in numbers

only, making difficult the keeping track of actual vectors involved

(especially when changing "units").

IV. Logarithms

Having worked with a "slide rule for addition," let us try a "slide

rule for multiplication." First, choose it long enough to include 0.1,

1, 10, 100, 1000, say. Now try marking 2. From this we find 20. Also

mark 4, 8, 16. We already have a test for our choice of 2: Does 16

seem to be at a nice point between 10 and 20? If not, move 2 a

little. Now try some other numbers and resulting factors.

01 1 10

2 4 8 16

20
100

We noon note a nice property of the decimal system: When we mark

2, we may at once mark 0L2, 20, 200. Why do all these separately?
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Recalling our study of points on a circle, let us construct a circular

slide rule. Here 0.1, 1, 10, etc., will all be at the same pont. With

a carefully made cardboard rotating circle and a good manner of marking

and erasing, a group of people can soon construct a rather ace=ate rule.

Playing with these rules, properties of logarithms have an immediate

clarity, and the shape of the logarithm function (transferred to a graph)

has a strong reality.
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ON THE ROLE OF LOGIC IN ELEMENTARY MATHEMATICS

Hassler Whitney

We shall consider here the question of what logic is needed in the

study of elementary mathematics, say, through algebra and what and how

such logic may best be taught. To get at the heart of the matter, sup-

pose the following complaint is made during a class:

"I don't really understand what is going on."

Somewhere there has been a breakdown in communication so that the student

cannot follow the reasoning process. The real issue is that of the reason-

ing process and, more generally, of the communication of the ideas. We

shall use the term logic to cover this. For instance, in studying solu-

tions of quadratic equations, the use of "variables," the question of

whether a given "equation" is something you are supposed to solve or is

an identity or defines a function, and what is being proved versus what

is being discussed will be puzzling to the student. All such matters

must be considered in studying the logical structure of an exposition.

Since carrying on mathematics consists essentially in carrying on

precise reasoning, there is no question that logic must be considered in

the teaching of mathematics. Cne extreme position is to hold that the

student intuitively comes to understand what is going on and learns the

underlying reasoning process through actual use. This is the classical

position, which certainly has had a large degree of success. However,

one must also realize that it can also fail to a large extent (see the

quote above). At the other extreme, one can give a course in logic

perhaps especially for mathematics students, say, in a formal axiomatic

manner. The result is apt to be simply a new mathematics subject with

little actual relation to other math courses. (One recent text omits the

existential quantifier as being too complicated for a first course.)

In between, a text may contain a chapter on logic; it most likely studies

propositions through truth tables with unreal applications to real life

and has some discussion of quantifiers. Uses of symbols (a Etait towards

good communication) may appe r. Again the chapter is usually largely

forgctten in the rest of the -,00k.
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So far, no good solution is in sight. So to start, let us look at

a few statements occuring in the grades and see what formal logical ele-

ments are involved.

a. Yon can subtract b from a, provided that b < a. If ...,

then 3 ,

b. If 4 will go into n, so will 2 (vn). If
n

then Q.

(Actually, existential quantifiers are also involved if one used the

definition of devisibility.)

c. If 2 is divisible by n and 3 is divisible by n, then

6 is divisible by n. (Vn) Pn& On. Rn

d. None of 2, 3, 4, 5, 6 go into 7. Hence 7 is prime.

Not 3 ..., hence ....

There is certainly no difficulty in the student's grasping the intui-

tive meaning, in fact the precise meaning, of the above statements. Thus

the elements of logic in the restricted sense are well within the student's

power. When the logical elements get more complex, it becomes worthwhile

to analyze the logical structure. To this end the structure should have

been examined to some extent earlier, and the general problems of com-

munication should come commonly to the fore.

We suggest now a program for the "teaching" of logical concepts

during the general mathematical studies. The division into grades is

rather arbitrary, given for the sake of some kind of outline.

Early grades. The notions "true," "false," will arise; also "for

all," "there exist." Certainly one will distinguish between all, some,

none. Just how many is being more specific yet. Implication in its

general sense appears; see a above, for instance.

Grade 7. Here is a good time to give some actual number theory;

some examples of statements are given above. One can examine to some

extent the logical notions involved without introducing logical notations

other than for momentary shorthand notations. Students can give alter-

native formulations of statements. Those may be written out and com-

pared. Thus one has a real start toward equivalence of logical expres-

sions. This may be continued in grade nine.
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Grade 10. So far we suppose that symbols have been used in the very

concrete sense as names of numbers (or other things). For example, one

may have done some elementary work in solving equations.

Suppose we have been given a nuMber, which we may call x. We are

told that 5x - 2 = 2x + 13. Can we find this number? From the meani,-Ig

of thE equal sign, we know that we may add the same number, say, 2, to

both sides. Thus 5x - 2x = 13 2, and 3x . 15. The only answer to

this multiplication problem is 5 . Thus x must be 5. (We may now

check to see if 5 is really such a number.)

Note that there has been no use of "variables"; symbols are used in

their normal manner. Through further such examples one may compare the

meaning of equivalences and implications,

In the further study of solutions of equations, "solution sets" arise.

If we write dewn a series of equations, as would be done in solving an

equatior as above, one may ask a separate question. Consider each equa-

tion separately without being told that x was some definite number.

Then each equation is not a statement but a pattern with which we asso-

ciate a solution set. What is the relation between ';he equations? The

answer is obtained mathematically by almost the same procedure as in the

example above, but the meaning is now logically much more involved. The

difference between these meanings should be carefully considered.

Students should be given some help in reading and understanding the

texts. In particular, they will begin to realize that there are both

assertions, wtth strict mathematical meaning,and discussion, wlich may be

more vague in character. For example, "the equation" may have several

meanings, and one need not look for it precisely. Rather, they should

pull out the mathematical content of what is said.

The meaning of a statement as presenting information arises. For

example, we are told first that x is a number and that

(1) x2 + x - 6 0 .

What do we know about x ? From (1) we derive

(2) x - 2 or x =

4
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Now we learn that

( 3 ) x > 0 .

It follows that x 2, The information contained in (3) is larger

than that in (2),

Note that after having learned (2), we may say

(4) If x > 0, then x 2.

This seems extraordinary. Frim the small amount of information x > 0,

we obtain the precise information x = 2. This is so, since we are

assuming all the time that (1) holds. Thus the meaning of a statement

depends on what has been said before.

Consider now the statement

( 5) If x / 0, then = 1.

This is obvious; if we know that x is not 0, then we may form
x

and get the answer 1. The general Intera2tation o2 "if ..., then..."

is needed; the definition from truth tables will not do.

It is apparent that one is getting deeper into logical concepts.

However, at all times what is actually happening should be thoroughly

understood. Discussions of the logic merely confirm the understanding.

Higher grades. It may be useful to work with mathematical state-

ments expressed in logical form to some extent to see the picture clearly

and to help understand the workings of logic. For instance, suppose we

guess that every number divisible by both 6 and 21 is also divisible

by 126. Later we think this is not -o. How do we express this? There

is a number divisible by 6 and 21 but not by 126. We find such a

number, in fact. say, 42. Logically, we have seen the equivalence be-

tween the statements

not -( v n)(6 div n and 21 div nl2E div n),

( a n) (6 d.iv n and 21 div n and not 126 div n).

In particular, we note the manner of negating the implication, provided

that both parts of the implication are statements in advance (unlike in

(5)).



As in all parts of mathematics, one introduces a notion best when it

is needed. Implication, for instance, should not be introduced through a

definition with examples like: If 1 = 2, then 3 = 3. There is no point
0

in defining this. In "if x > 5, then x > 25" there is some real point

in a definition. (Moreover, the best definition is: This tells us nothing

if x is not > 5; and this definition has general application, which the

truth tables do not.) Is there ever ally need to introduce truth tables?

The following may give some reason fcr this.

Suppose we have learned that

If ab = 0 and a 0, then b = 0 .

We would like to prove

If x
2

= 0, then x = O.

Of course the best proof is to note that if x is not zero, we know

that )( is not 0 . But nevertheless, let us use the former state-

ment. Setting a and b equal to x (say x is a given number),

we have

If x
2

0 and x 0, then x = O.

We seem to need an extra hypothen is not 0; but certainly

we cannot believe this. We can ulTose x were not 0, o.

But this is strange enough that it calls for a very clear discussion of

truth values. The truth tables may help here.

We do not suggest going into a formal treatment at any point, ex-

cept in a separate course for those interted. For instance, consider

the fcllowing:

We see that if 6 div n then 2 div n. Also if 6 div n then

div n. We may state this as follows: If 6 div n, then 2 div n and

3 div n. If there is any possible question, let us test this: Suppose

6 div n3 we wish to show that 2 div n and 3 div n. We know that if

6 div k, then 2 div k for all k. Hence using this for our number n,

2 div n. Similarly, 3 div n.

Now let us see what a formal proof requires. The required formula

is:
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( Nfn) (6 div n 2 div n ) & ( n) (6 div n 3 div n )

( V n) (6 div n 2 div n & 3 div n)

A formal proof in almost any system is sure to be long and complex, cer-

tainly hiding the inherent extreme simplicity of the result.

We make one final remark to illustrate the meaning of a statement.

We wish to show that 4T is not rational. If it were, we could write
2

a = 2b
2

, for some smallest pair of integers a, b. Since a- is even,

we conclude that a is even: a = 2c. Now we have b
2

= 2c
2

i, n con-

tradiction to the choice of a and b . Hence iT is not rational.

We note two things: In working with a and b, since we have actual

integers before us, we know how to use them. In the end we found that

in reality there were no such animals. How explain that we worked with

them? All our statements had meaning and were true under the ha_antyl

that 17-2 was rational, not separately from this. Note also that in the

proof our statements were both true and false, a contradiction we became

aware of later.



THE USE AND IMPORTANCE OF DLE,INITIONS IN MATHEMATICS

H. 0. Pollak

One of the criticisms of curriculum reform in mathematics which

is commonly heard is that the material has became too formal. It is

claimed that the use of simple intuition has been replaced by refer-

ence to definitions and strict deductions from these definitions) and

that this is not in the spirit of good mathematics pedagogy. I don't

want to deal with the question of the validity of this criticism, but

to make a comment on the mathematical point which it involves.

The fact is that definitions mean many different things to mathe-

maticians at different times) and that definitions are used in very

different ways. I can best illustrate my point by some examples.

A. Consider the problem of defining inverse trigonometric func-

tions. A mathematically satisfying attack on defining arc sin X is

to list all the properties that you would like this function to have.

You find that it is impossible to have all these properties simul-

taneously; that is) they are internally inconsistent. You therefore

have to give something up, and you finally choose the definition

which appears to be most consistent with the calculus. Once you have

made this definition, you rigorously stick to it and rarely go back

to the intuition on which the definition is based. The reason for

this is that the intuition is unsafe. The only way you will compute

correctly with inverse trigonometric functions is to work very care-

fully with the branch that is consistent with the calculus.

B. An example at the opposite end of the scale is the definition

of an ordered pair from the notion of an unordered pair. This is an

exercise of mathematical showmanship to prove that you are clever

enough to use the set notion in order to define an ordered pair. You

will certainly never make use of this definition in working with

ordered pairs.
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C. Most examples, I am sure, fall somewhere between these two

ends of the spectrum; that is, we will sometiaes use the formal defi-

nition and sometimes the intuitive back!ground to the formal definition.

The formal definition of a function falls into this category. We first

build, up an intuition for the notion of a function from considering dif-

ferent ways to define it., Thus, we may use a picture, or a graph, or a

verbal description, or a table or a formula, or a machine (where you

imagine putting a number in at one end and another comes out at the

other). From such examples and many more you build up an intuition for

the notion of a function and finally make a formal definition as a col-

lection of ordered pairs. Later on, when you work with functions, you

sometimes use the definition and sometimes return to one or more of the

intuitive pictures which are behind the definition. Thus, if you want

to be careful in distinguishing between a relation and a funion, you

may very well find considerable pedagogical value in the formal definition.

On the other hand, if you want to discuss the notion of a f :icfion, you

will probably find the intuitive machine picture easier tha . any other

way. You just think of the output of one machine as the input of the

next.

We must not make the mistake in our curriculum materia of

assuming that definitions will be used in only one way, If a definition

always supplants the intuition which leads to it, this may result in

excessively dry materials. If a definition never supplants the intui-

tion which leads to it, it is pretty useless. We must be honest wi-J

the students and let the mathematical abstractions take over in any of

the variety of ways which might be most natural to the particular problem.
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UNINVITED COMMENTS ON THE DEFINITION OF FUNCTION

(3.S. Young

This is a footnote to Henry Polla's wise remarks about defini-

tion, but addressed to the definition of function as a collection of

sensed pairs.

In our book, Hocking and I give the definition the full treat-

ment; A function f ; A --13 is a triple (A,B,G), where A and

B are sets and G is a collection of ordered pairs (a,b) such

that the first element of each pair is in A, the second element of

each pair is in B, and each element of A is the first element of

one and only one pair of G.

One could comment, and I would not argue on logical grounds, that

A is not necessary; it could be defined by taking the union of the

first elements of pairs of G. But this is unimportant. In topology,

(and in some other places) there is real reason for signalling out

the set B. With A fixed, and with the same collection of sensed

pairs, changing B may really change properties of a function. Take

f(x,y)lx2 y2 B2, B2
for example A = (0,0), and

let G be the collection of pairs ((x,y),(x,y)). That is, each

point of A is paired with itself. Let f : A -4B, g : A -4B' be

defined by this collection. Then, f is deformable to a point (in

B), and g is not deformable to a point (in B'). We say f and g

are different functions because of the very practical reason that they

have different properties. Here the full notation and defirition

f : A )B is really useful. You need the fine distinction.

In mathematics through calculus, the set A, the domain, needs

to be carefully specified (even though it can be reconstructed from

G), but B is not terribly important, so long as it is big enough to

contain all of the second elements of pairs in G. One can make up



properties of elementary functions that change when one changes B,

but they are not _nes that cause confusion. To take one example,

let f be the function that assigns to each real number x the

number x
2

. One set that I could use for B is the set of real

numbers. With this B, it is true that B contains an open set

that is entirely contained in the image of A; for example, the

non-negative reals. Another set I could use for B is the set of

all complex numbers. Then, with this B it is not true that B

contains an open set entirely contained in the image of A. If you

feel you want to emphasize this sort of point, then you can make a

fuss about f A -4B, in an early course. Otherwise, I now pre-

fer to say, "A function f a set A into a set B is a collection

of ordered pairs, etc.", playing down A and B, and always calling

it f above.

I do want to keep the ordered pairs, not for logical reasons, but

for pedagogical reasons. (1) I believe the definition emphasizes the

single-valuedness better than any .ther. (2) It emphasizes the fact

that you really do not want a formula. You can explain how much free-

dom you have in defining a function easiest by considering an element

a and pointing out that it is just for that one a that you have to

decide on the second element of the pair (a, ). (3) It seems the

easiest way to get across that A and B need not be sets of num

bers, that in particular, in real life A need not be a set of num-

bers. (4) There are certain points of precision that come across

best in this framework. Consider the following Given the relation

-- if you want the term -- x
2

+ y
2

= 1. How many functions on

[-1,1] are defined by it? It is a very bright freshman who ever

says anything other than two for the answer. The point is, of

course, that for each x you have the choice of pairing with it

either +1/11 - x
2

or -1/1 - x , and clearly can get uncountably

many different functions. Continuous functions? That's a differ-

ent functions. Continuous functions? That's a different thing.

One has the same thing on the inverse of y =
2

.
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It is for reasons like these that I like ordered pairs. It is

only when I want to emphasize such points that I stick with the de-

finition of ordered pairs. Otherwise, I see no harm in saying, "Let

f be defined by f(x) = x
2

for all real numbers x", or even, "Let

f(x) = x2",

I agree thoroughly with Pollak's desire to use all sorts of ideas

for functions. The Begle meatgrinders (in his Calculus) are wonderful

for composition of functions, for example.

There are all sorts of mistakes that sensed pairs do not help

you avoid. The minimum of y = x
2/3

is at x = O. No amount of

sensed pairs will keep some freshmen from saying y' = 2/3x
-1/3

, and

setting y' = 0 and concluding there is no minimum. Here the func-

tion as a graph is the best approach. Incidentally, was anyone
,

bothered by fly = x
2/3
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ON THE SETTING AND FUNCTION OF SETS AND FUNCTIONS

Leonard Gillman.

Mathematicians tend not to care what an object is but only what

its properties are.

(1) A cardinal number is an object (thing, entity, set, element,

gizmo) associated with a set in such a way that two sets have the

same cardinal number if and only if they are equipotent.

One can now construct the theory of cardinals.

(2) An ordered pair (a,b) is an. object (thing, entity, set,-
element, gizmr) characterized by the following definition of equality:

(a,b) (a',Y) if and only if a a and b - b' (the meanings of

the last two equalities being already known)

One can now proceed to work with ordered pairs.

(3) We did not say what a cardinal number is nor what an ordered

pair is but only what their characteristic properties are. Those who-

wcrk in logic and 'oundations may supply definitions in terms of prior

notions. For exale, in terms of sets, we have

Definition. (a,h) = ta,br.

Theorem. (a,h) = (a',131) if and only if a = a' and b

The first thing we do is prove the theorem and then we never

again have to refer to the definition.

(4) The proof of this theorem is a good example of some set

theory just beyond the level of triviality of the popular school-

math set theory. For this reason. T urge anyone who may not happen

to be familiar with it to sit down right now and work it out. The

prior information needed is the definition of equality for sets

Uaxiom of extensionality two sets are equal if and only if they

have the same elements. In the proof, one can argue by counting

elements, but I consider that inelegant and urge its avoidance.



I conjecture that a lot of new-math authors left out the defini-

tion of ordered pair simply because they (fortunately) did not know

of it.

(5) Before deciding on a definition of function, first consider

seriously whether it ought to be defined at all, If so, consider care-

fully the uses to which it will be put and then choose the definition

most naturally sufted to them rather than whatever yields the quickest

derivations of formal properties. I have little doubt that the defini-

tion as a set of ordered pairs is the worst one.

(6) First, another example to suggest that a function from A

to B means more than just a subset of A x B (of a particular kind).

Recall that XY stands for the Eet of all mappings (functions) from

Y into X. The following paragraph appears on page 140 of my book

with Jerison:

Let p2 be a given mapping from a set A into

set 3, For each mapping g from B into

a set E, the composition g p carries A

into E. Thus, 09 induces a mapping

50' : EB )EA; explicitly,

Pig = g '09'

There is a duality between the properties one-one

and onto (provided that E haslmore than one

element): 419 is one-one if and only if p is

onto, and 9' is onto if and only if ,9 is

one-one. The verification of these facts is left

to the reader.

Evidently, if we augment the range of so, we alter the domain

o V2'.

The second half of the quotation is included as another candi-

date for the boruerline of sophistication. Once more, everyone is

invited to assess the level. The parenthetical proviso is needed in

just one of the four parts.
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(7) In seeking a definition of function, I do not worry about

how many functions are defined by x
2

y
2

= 1. I consider the

problem unimportant. It is not used, needed, or referred to in any

high school or college course -- mathematics or other. I'm for the

chap who says the answer is two.

(8) I suspect that the best way to think of a function is as an

association, i.e., as the process of associating, i.e., as the passage

from a given element to its associated element. The emphasis is on

the act of associating rather than on the totality of pairs of

associates. Note the suggestiveness of the notation: a -.)b.

(9) There are many important situations where this view is

natural° Maybe it always is.) For example, when Peano tells me

that every natural number has a successor, I do not picture a great

big set,

but rather the passage

f(1,2) , (2,3)

n n+.

It is possible that I think in terms of (shudder:) variables.

(10) I wonder whether anyone really does think of sets of

ordered pairs other than when picturing graphs. When you think of

sin analytically, do you say things to yourself like

sin?

I talk about solving the equation

sin x = cos x.

Is there anyone who thinks instead of specifying the set

pr
1

, (sin n cos)?

(11) The "set theory" discussed in school mathematics is

bringing increasing discredit to mathematics and mathematicians and

should be discarded. Right now is a good time.
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Here is another test problem; prove that the real line is the

union of the intervals [-1,1] [-2,2] , [-n,n] ,
40

Sets should be postponed until thei can be introduced with

significant content and applications -- for example, somewhere near

the level of the theorems mentioned above.

(12) Back to functions Let R be a set -- e.g., the set of

real numbers, Consider the following renditions.

[A] There exists a function f ; R X R -13. (thus, f is

a subset of (R X R) X R) such that, for all a, b, c, u,

v, x, y R,

if ((a,b), u)E f,

((b,c), v)E f,

((u,c), x)F f,

and ((a,v), y)6- f,

then x = y.

(Before continuing, try to figure out what the hell that

means.)

[B] There exists a function f R X R --4R. such that,

for all a, b, c R,

f(f(a,b), c) =

(Stop here too to dwell. Better than [A], eh?)

[C] There exists a binary operation defined on R

such that, for all a, b, cE R,

(a ,b) ec = a ° (b .c).

References. SMBG working papers:

H. 0. Pollak, The Use and Importance of Definitions in

Mathematics, 29 June 1966.

G. S. Young, Uninvited Comments on the Definition of Function,

30 June 1966,
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ON "ON THE ShTTING AND FUNCTIOE OF SETS AND FUNCTIONS"

Gail Young

In a well-known series of school texts occurs a chapter on .

rational numbers, one lige of which starts off with a section on

multiplication. On the page is an example (3,1) . (5,2) = (17,11).

I have derived a great deal of innocent pleasure showing this to pro-

fessional mathematicians and asking them what is going on, and not

one has ever realized that this is 3 .2 = 6, or, perhaps more fairly,

(-1-3) (4.2) = +6.

It turns cut that in (3,1), the 3" and the "1" are really

equivalence classes of ordel d pairs of whole numbers, and (3,1)

really is an equivalence loss of ordered pairs of these ordered

pairs.

To me, there is exactly one reason for ever going through anything

like this. Suppose that I have written down a set of axioms for some

mathematical system. I want to know that the axioms are consistent,

that I will never end up proving two contradictory theorems, I know

from Godel's work that I can never hope to prc7e from the axioms them-

selves that I will have no contradiction. Also I cannot hope to prove

all possible theorems and show no two are contradictory. What can I

doY I can fina some things whose existence I believe in already, and

show that with proper definitions these satisfy the axioms. If the

axioms were contradictory, the same contradiction would exist in the

things I believe exist, and surely I can't believe in contradictory

things, can I? (All this is discussed in the first chapter of R. L.

Wilder's Foundations.)

If I believe in the whole numbers, I can construct a model of the

integers (in some such way as this 8th-grade text,- which really does

it rather well), then 01 the rationals, then of the reals. Given the

reals, I can construct the set of ordered pairs of reals, define

'line" in terms of these, etc., and set a model of Euclidean geometry.

From that model I can get a model of non-Euclidean geometry, etc., etc.
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Every professional mathematician should see an example of such a

treatment once in his training. Conceivably, the 8th grade may be the

place? I don't believe it is, myself.

By this time the r,-;ader and I are both wondering what my point

was in saying all this. The point, I think, is this. A teacher

should be just as rigorous, as full of sensed pairs, sets, etc., as

the situation needs. The discussion of the rationals, short of this

one question of consistency, does not need all this apparatus. In

fact, it hides the real situation, which to my mind is that the

rationals form part of applied mathematics. That is, they are the

first complicated structure set up to handle physical problems sub-

dividing pies, piles of wheat, etc. To gec that across, and to get a

clear understanding of why they behave the way they do is, to my mind,

far better than any amount of equivalence classes or sensed pairs of

equivalence classes.

One incidental remark. If anyone can show that kids taught

rationals that way do better in mathematical subjects than kids who

have spent the same time doing something else, I will withdraw all my

objections. The test of curriculum development is irrational: what

happened in the classroom, and in the next course.

But I was making a further point. What I think Pollak, Gillman,

and I are all concerned with is the sort of question raised by the

example. Here is some perfectly good, valuable mathem6ties. When

does one teach it in the full form?

To go back to the rational numbers for a moment, that rational

numbers can be described by ordered pairs of integers, and that the

operations can be defined that way is an important concept to get

some grasp of. It is what lets one realise that the rationals can

also be looked at as part of pure mathematics. I would not regard it

as at all a bad thing to put in a couple of days in the llth or 12th

grade explaining this.
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Set theory. I wish Gillman had said a little more about set

theory in school mathematics. I suspect we are in agreement. To my

mind, the only place in school mathematics where set theory should

occur in any formal sense -- that is, with operations of C/ , n , ,

c fully used -- is in probability. And here I am actually only

saying that this is the way I first understood what was going on and

how I finally got to where I could work complicated problems involv-

ing combinations and permutations. I could go back to an underlying

set-theoretic situation and think things out.

There are a number of places, however, where the terms of set

theory, to my mind, provide a natural language for mathematical dis-

cussion. I don't know what Gillman wants to do about cardinal arith-

metic, but to my mind, 2 + 4 6 because if you take a set of 2

things and another set of 4 things and combine them you get a set

of 6 things. Kids should understand this. (Incidentally, this is,

of course, another example of applied mathematics.) The moment you

attempt the least formalization, you run into the question of whether

the sets are disjoint. You can put in the effort to discuss At/ B,

A U B, 0 etc. Should you? Again, the answer is what happens in

the classroom. Kids should understand that if you have 4 women and

5 Indians in a room you may have anywhere between 5 and 9 people.

I don't know when I learned this, but certainly not formally in school.

Would my mathematical education have progressed better if this had been

made fully conscious at any early stage?

In geometry, a line is a set of points. Why aay "A line is made

up of points" or any other 19th century language when you can say it

in a clear standard terminology? An angle is (1) "the figure

determined by two straight-line rays with a common end point"; (2) "the

union of two straight-line rays with a common end point". Either de-

finition is fine, for telling you what an angle is. Each is simple.

The first one (or modifications) seems vague to me in some ways.
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For example, do you mean the area between the rays? It is not as pre-

cise as the second, The second teaches something about a mathemati-

cian's use of language that the first does not. But "Let A and B

be two straight-line rays and let A 1) B = (xJ, x a common end point

of A and B, The angle AB is A u B ", That's just bad writing.

Nothing whatever was gained by the letters and symbols.

Back to functions. In (5), Lennie asks whether a function

ought to be defined at all. I think this is an important thing to

decide, and something that has not received enu h discussion in

school mathematics. One certainly wants a d ry type of defini-

tion, VTe sort of thing that gives you an id of ;hat the conc3Pt,is

but whe Aer you want a ral mathematical defin_tf-n, I am by no means

sure. The trouble with _athematical definitioliE _5 that you are apt

to believe that the definition tells you what T.,hcz thing really is.

A rational number darned well is not an equivalence class of ordered

pairs of integers -- though that is one aspect of rational numbers.

If I want to prove with complete rigor everything about rational num-

bers, I might start with this definition because I can use it in my

proofs. Do I want to prove the sort of things about functions that

need a rigorous definition? In school mathematics? Certainly in

much of advanced mathematics, one needs the full definition of my

last paper, or something equivalent. If Lennie proposed a defini-

tion of func...ion different from mine, but that would take care of

his example in (6) as well as my definition, I am sure each of us

could work with either one, and the advantages of one would likely

be a matter of personal preference.

Perhaps one should not define "function", but give enough aspects

of function so that every reasonable definition of function will occur

implicitly. My own pedagogical manner would lead me to give the pair

definition -- after motivation and doing all the others in terms

of it. I have great difficulty in being deliberately vague in the

classroom. If there is a clear way to say something precisely that

the audience can understand at some level, I usually have to say it

precisely,
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For functions, I buy completely Lennie's (8), (9), (10) with the

comment that I never think analytically of sin, but emotionally, and

that what I say to myself is things like "Ooh, boy, look at that!" I'd

never think of (1t,0) as sin.

That leaves (7).

Statement 1. Consider the expression x
2

= y
2

. How many i J-

tions does that determine? Even if we restrict ourselves to coni

ous functir-ls the answer is 4, y = x, y = -x, y = lxi, y = - ixl

Only two differentiable. The chap who says the answer is 2

my problem will say the answer is 2 in this case. But the answe_

his real, physical problem may be y = Ixl; consider reflections, fc

example.

Conider y
2

= 1. That determines two continuous functions.,

electrical engineer may, however, be interested in a square-wave f_nc-

tion, like this. These things can
AY

really happen, in real problems. I

think it important that the student's

intuition be freed, sometime, for such

things.

Statement 2. What I really want is for the student to be slapped

down by a counter-example every time he leaves out a vital word in a

hypothesis. I would like him to be scared silly every time he sees

the word "function" with nothing in front of it like "continuous",

"differentiable", "analytic". I rather like my example as a start

on this traumatization. But I don't really care how many functions

x
2

+ y
2

= 1 determines. I'll bet I could cook up a "practical"

problem where the answer is y = )1 x
2
, x > 0; y =

x <0, though.

Statement 3. One thing that R. L. Moore makes conscious in his

students is the tremendous importance of negative information in

mathematics. "You need compactness in the hypothesis, because here's
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a counter-example". As a group, Moore students all spend much more

time giving such examples than most people. I can't give a defini-

tion in class without giving quickly some examples of just what sort

of pathology has sneaked in with the definition.

No one understands commutativity until they see examples of non-

commutative structures, one thing that makes me wonder about the value

of all the name dropping in K-6,

To summarize. If you are going to give a rigorous definition of

function, really give it and really use it. What definition should be

decided only after seeing what the results of trying to write up each

approach look like. If not, the fact that functions can be defined

by sensed pairs should be brought out and used.

Shakespeare's summary: "Function is smothered in surmise."

Macbeth, Act 1, Sc. 2, [verbal communication from Warren Stenberg.]
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