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FREFACE

During a four-week session which started June 27, 1966, a
tewm of mathematicians and mathematics teachers formulated pre-

iminary recommendations for the curricular experimentation which

SM3G plans to carry on during the next few years. A list of the
participants in this session follows.

The recommendations take the form of detailed ocutlines of
most chapters of a mathematics program for grades seven Lhrough
nine. These will provide a framework for the experimental writing
to be carried out during the coming academic year.

At the opening plenary session the participants reviewed the
recommendations of the New Orleans Conferernce and agreed to outline
a curriculum for grades seven through nine which would be in gen-
eral agreement with the New Orleans recommendations. Three sub-
committees were formed. The first was asked to consider further
the role of mathematical models in this new curriculum. This
committee submitted its report at the end of the first week, and
the members of the committee were co-opted into the other two
committees or undertook special assignments.

The second subcommittee waszs asked to congider the topiles
in geometry that should be incorporated in the curriculum for
grades seven through nine, keeping in mind that for those students
taking more than three years of secondary school mathematics the
tenth grade course would probably include at least a semester of
formal synthetic geometry. The third subzommittee was asked to
consilder the topics in arithmetic and algebra to be included in
the seven through nine curriculum.

The latter two subcommittees met together from time to time to
discuss the meshing together of the geometric and the algebraic
sequences.

Occasional plenary sessions were held so that the entire
group could discuss the materials which had been produced. At a
final plenary session the general reports of the gecmetry and of
the arithmetic-algebra subcommittees were received, and plans for

the next steps in the over-all project were discussed.
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thiz uocument by a topiecal outline for Grade 7. This in turn is

followe.: by de ed outlines of most chapters for Grade 7.
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Grades 3 and 9 are treated similiarly.
The next section of the report is designed to facilitate

comparisons between the present SMSG program and the proposed

i

new one. A zummary outline of the new program for (rades 7 through
9 is T llowad by a list of chapter headings from the present
SMSG books for these three grades. In this latter the location of
the corresponding materizl in the new segquence is indicated.

The report concludez with & number of papers of a genesral
nature which were prepared during the session. Tncluded also is
outline of a unit on vectors which had been prepared in the
summer of 1965 at the request of the SMSG Panel on Science for

consideration ia the new curriculum.
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REPORT OF THE GEOMETRY COMMITTEE

The Philosophy or the Geometry Progrem

I. Hovw is Geometry teo he Conceived?

Most of our knowledge (certainly our scientific knowledge) refers to
or is set in the framework of physical space. When a child begins to crawl,
he discovers geometric properties of space by pressing against walls, by
patiently putting things in cupboards and just as patiently taking them
out, by finding paths which take him back to where he started. This knowl-
edge, gained concretely and intuitively over the years, is in a conventional
treatment carefully formulated and structured in a tenth grade geometry
course.

We propose to approach geometry as a subject which is suggested by
and modeled on ouyr experience with physicsl space. Its basie concepts--
for example, points, lines, segments, etc.--are suggested by objects of
experience; its results car be interpreted in physical space and confirmed
to a high degree of approximation. Treated in this way, geometry can be-
come an important branch of knowledge, not Jjust a mental exercise.

The important relstion between physical space and the geometric
theory we idealize or absturact from it appears twice: First in forming
the rconcepts, since points, planes, spheres, etc., as conceived mathe-
matically do not seem to exist in the physical world. Second, In apply-
ing grometry, for we must interpret physically or form a physical model
of the concept. A point in a surveying problem may be interpreted as the
overlap of two crosshairs in e telescope or in a dynamical problem as the
sun or the earth.

Remark: The bearings of geometry on physical reality are important
and exciting; they should be treated with judgment as opportunitiles
arigse. But they should not dominate. We are presenting a course in

geometry, not a course in its application to reality.

1. How is Geometry to be Treated?

il, We assume two boundary conditions: (1) The student has studied the

SMSG texts for grades four, five, and six (or the equivalent) and so

1=
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comes Lo us with s nontrivial geometric experience: (?) sl

par«d for a deductive trestment of geometry as part of = tenth grads course.
The SM3G texts for grad.s four, [ive,and six contain a rich body of

geometrical material, including nonmetrical geometry, propzitiesz of geo-

Lric Tigures, measursment (length; area, vglume),an@ corgruenc:. Since

ol

we ars not sure how much of this material tlhe student is immediately able
to apply, we naturally begin by employing the spiral method: We review,
refine, and amplify the material already studied. Thus Chapter 1, "The
Structure ¢. Space - Nonmetrical Properties," enriches and expands the
qualitative geometric knowledge gained in grades four, five, and six and
introduces new ideas such as convexity and orientation. This approach

is continued for congruence in Chapter 4 and for measure in Chaptsr 5.

Throughout the development we have the problem of presenting the sub-
Ject in a concrete, lutuitive, descriptive way without reducing it to a
collection of more or less isolated facts. We try to take care of this
by a second application of the spiral method: We focus on a new concept
'/ concentrating on its essential features, later returning to treat its
more complex aspects and its relation to other concepts. The concept of
parallelism, Tor example, first introduced in Grade 7, Chapber 1, appears
again in Grade 7, Chapter 11, "Parallelism,” and Grade 8, Chapter 11,
"Parallels and Perpendiculars.” The concept of measure which is used
throughout the course 1s specifically studied in four chapters that are
distributed through grades seven, eight, ani nine. As the preceding
sentences suggest, we have chosen a dominant geometrical concept or re-
lation as the unifying feature of each individual chapter, within which
the pertinent properties are developed for all the appropriate geometri-
cal figures to which the concept or relation is applicable.

One of the problems in teaching geémetry at this level involves the
quality of student understanding. Since much of the material is descrip=-
tive and concretely presented, the child may merely be developing the
ability to repeat descriptions and recognize figures.. We want him Lo
comprehend properties of figures, to perceive interrelations between
parts, toc recognize familiar notions (e@g,g congruent triangles) in a
complex and unfamiliar situation. To this end we try to develop and re-

fine his intuitive grasp of geometrical properties. (Consider how much

ERIC
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mors a topologist "sees" in a simple closed curve chalked on zn inner tube
than the proverbisl man in the street. Or suppose a child has an intuition

that a ciicle is round. Does he realize that is has a different roundness

from a kidney beanAC:::j:}j that it is a convex curve, or that its interior
is a convex set?) One p}Dcedure we use for coping with this problem is

to take a familiasr figure, say, = cube, and ask the student to find in it
several illustrations of an idea, for example, line perpendicular to plane,
parallel lines, parallel planes, line parallel to plane, skew lines, a
common perpendicular to two skew lines. This practice tends simultaneocusly
to sharpen perception of figures and comprehension of concepts.

The treatment indicated should foster a good understanding of the
concrete basis and the intuitive significance of geometric ideas. In ad-
dition, we proposz to sharpen and enrich understanding of the deductive
process. For this purpose we introduce many <«amples of deductive reason-
ing. These range from a one- or two-step informal proof which is not
written down (the problem asks for a conclusion that reguires application
of one or two familiar principles in a diagram) to a deductive chain of
several propositions which follow from a given set of geometrice propsr-
ties. A chapter on deductive regsoning is included to initiate g dis-
cussion of deductive reasoning in methematics by using examples and
illustrations from algebra and geometry.

A student who has had a course of this type should be well prepared
to make the adjustment to the more formai deductive treatment of geometry
in grade ten. He should have assimilated a large body of geometric knowl-
edge which rests on a concrete and intuitive basis and is partially struc-
tured by deductive proof. The problem of organizing this knowledge logic-
ally should not seem unnatural or remote to him. He certainly will not
have the familiar double difficulty of trying to learn what the subject
matter is about while he attempts to understand the deductive rethod. Is
it too optimistic to hope that our program will permit an sppreciabls

saving of time in grade ten while fostering increased understanding?
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LEFCR OF THRE FRAL ANATLYSIS COMMTTITER

The Outlining Principles of the Real Analysis Group

A group of people assigned the task of developing an outliine for the
mathematics to be presented in the seventh, eighth, and ninth grades is
faced with a most formidabls vroblem if there are not some broad, general
guidelines adopted from the v-ry beginuning. The subgroup responsible for
the seguencing of the mathematical concepts related to real analysis, as
opposed to geometry, met together frequently during the early days of the
outlining session, and I believe the following general restrictions
served as guldelines to our discussions:

(a) The background which we would assume for all students would be
that found in the present SMSG texts for the fourth, fifth, and sixth
grades.

() The mathematics to be introduced in the seventh, eighth, and
ninth grades should be of value to all students as necessary for any
intelligent, responsible future citizen, regardless of occupation. As
a consedquence of this decision reflecting a recommendation of the New
Orleans planning sessilcn, we consclously replaced some specilal topics
(modular arithmetic, finite fields) by those we I'elt were more appro-
priate, for example, the elements of probability and statistics.

(¢) The work of other groups who have given considerable thought
Lo the mathematice suitable for these grade levels should not be ignored.
It did not seem reasonable for us to retrace the deliberations of the
Cambridge Conference, the New Orleans planning group, ete., but to
respond responsibly to thelr recommendations.

{d) Some of the criticism of the excessive formalism in the filrst
round SMSG material is Jjustified. We should keep in mind the critiecs'
view that physical situations were not used to provide heuristic motiva-
tion for the mathematical development nor was the mathematics developed
used to analyze physical probleme. However, the latter complaint has
been met in part by special projects of SMSG which may ge used by the

writing group.



(e) There must be continuity from chapter to chapter both in writing,
in concept, and in depth of sophistication. These attributes in any text-
book writing are so important that this may dictate placement and treatment
of many topies.

When w2 turned to the consideration ol the specific sequencing of
topics for the thre: grades under consideration, we felt that:

(a) The concept of function should be introduced early in the seventh
grade and used where appropriate but without excessive fanfare. The ides
was to make the concept of function a familiar part of the student':s back-
ground. Moreover, in illustrating the applications of mathematics to
physical situations, it was hoped that examples coul . be found to show
parent from isolated information.

(b) Ceometry and analysis must be interwoven throughout the course,
each supplementing and leading the other. Graphical illustrations with
coordinate systems lend clarification to many mathematical topies. (Again,
in retirospect we know that there is a great deal of work remaining for the
writers before this desirable integration can be realized.)

(e¢) The "structure" of the rational number field and the real number
field should remain a unifying thread throughout the introduction of suc-
cessive topics concerning rutional and real numbsrs without excessive
formalism. Some acquaintance with formal proof is desirable. Topices in-
troduced should lead somewhere. Concerning any area, we hope that the
student will eventually be able to say, "Aha, now I understand this!"

(&) In adopting a spiraling of material throughout these three grades,
care must be taken to see that subject matter is used, at least in prob-
lems and hopefully in subsequent subject matter, before being studied again.

(e) Logic should be fused into the course material so that the pre-
cision of reasoning required in mathematics would gradually become acces-
sible to all students. We felt that it was unnecesgsary to provide g
separate chapter on truth tables, excessive formalism, or the idolatry of
symoolism. (See Whitney's chapter, "On the Role of Logic in Elementary
Mathematics.")

(f) Both notaticn and terminology introduced in these grades should

be compatible with present-day usage in mathematical texts at higher

10
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levels., Here we felt perfectly at ease in accepting the recommendation
of the New Orleans planning group that the "open" of sentences could be
sbandoned.

An initial outline of topies for real analysis, fulfilling the cri-
teria described above, resulted in the following sequence which was agreed
upon before more individual attention was given to the separate chapters.

We have separated the material into various grades as we thought

appropriate.

Grade 7: Real Analysis Group

A. Graphing, Functions

We chose to begin the year by using the plotting of points in a
coordinate system as a means of reviewing and extending the students®
knowledge of the integers (both positive and negative) acquired in the
sixth grade. This also provided a natural way to introduce the concept
of a function.

B. Solutions of Simple Mathematical Sentences

The purpose of this chapter was to begin an informal discussion of
"solutions” of mathematical sentences. This provided us with an opportu-
nity to review the arithmetic operations of the positive rationgls. If
the rationals are to be delineated as a deductive algebraic system, then
this seemed to be an appropriate place for the students to be presented
with these facts. On the other hand, if we choose to extend the opera-
tions to the negative rationals, then we could not see where the negative
rationals would be used for several chapters. Conseguentily, two versions
for the introduction of the rationals have been suggested to the writing
group. One version restricts its attention at this time to the positive
rationals and in Chapter E motivates the extension of operations to nega—
tive rationals graphically. The other version introduces the rational

field here, and Chapter E is modified accordingly.

C. Ratio, Percent, Decimals

Frankly, we succumbed to the pressures of tradition which require
that these topics be included in any curriculum. We viewed this chapter
as a possible means of increasing the student's arithmetic skills with
nonnegative rationals.

-6-
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D. Combinatorics and Probability

Here we felt that the recommendations of the New Orleans planning
group required the introduction of this material, and we again had an
opportuniiy to reinforce a student's skills with positive rationals and
the notion of function. We felt that the SMSG Probability Group could
provide suitable material for this chapter. We preferred to reinforce
computation skills as the student studies new topics rather than through

routine drill materisl.

B. Graphing: The Negative Rationals and Extending Arithmetic Operations

to the Rational Field

We have remarked under B that the content of this chapter depends
upon the approach taken there. However, at this point at the very latest,
we felt that the explicit axioms for the rational number field should be
displayed and discussed. This discussion should emphasize the fact that

we have a deductive basis for the proofs in algebra.

F. Solutions of Systems of Mathematical Sentences

We wished to reinforce the student's skills in graphing linear func-
tions, as well as present problems regulring computation with the negative

rgtionals. This should include the graphing of inequalities.

. Square Roots, Nonrepeating Decimals, Real Number System

We felt that the student should be introducsd to the need of uumbers
beyond the rational field. Moreover, square roots were needed for the
discussion of distance in the chapter to follow. We wanted the student
to know that the real number system satisfied sll the properties of the
rational field as well as an additional axiom of completeness. We do not
recommend a formal extension of the rationals to the reals, and informality

should suffice.

H. Distance, Pythagorean Theorem, Circles

We are again using the material presented in the previous chsapter,
that 1s, graphing, the real numbers, etc. We thought that the analytic
treatment of circles could provide the format for interesting mathematical
sentences involving inequalities, for example, the set of all points out-

side a circle, etc.

Ay
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Grade 8: Real Analysis Group

A, Exponential Function, Logarithms, Scientific Novaticn
We attempted to arrange material so that each year began with a topic

which would involve the student in overt activities as they explcered ths
subject matter. The construction of the logarithms table (as in the Jau-
bridge Report) and the knowledge of a slide rule was chosen bheczuse we
felt other fields would need this information about this ftime. Moreover,
exponential functions seemed to occur in many diverse fields and should
be understood. This subject matter permitted a review of exponents and
factoring begun in the fifth grade. (In the final outline this material

appears in the ninth grade. )

B. Messurement

The purpose of this chapter was to implement the concepts on measure-

]

ment introduced in the seventh grade and to provide practice in logs, ete.,
of the preceding chapter. It was recommended that a statistical point of
view of relative error, deviation, normal distribution of measurements be
included so that we could c@nﬁect these concepts with the probability in-
troduced in the seventh grade. (In the present sequence this Chapter 1is

now in the ninth grade outline. )

C.  Problem Analysis (Strategies)
It was felt that an early chapter should be devoted to developing

the student’'s awareness of a variety of strategies for problem analysis.

Since problem solving is a major activity in mathematics, whether in al-

gebra, geometry, or applied mathematics, some early and continuous recnge
nition must be given to the specifiec skills necessary to complete chis

activity sueccessfully.

D. Number Theory

This chapter was designed to review and extend the "FPactoring and
Primes" concepts developed in grades four through six and to establish
the unique factorization theorem for integers. The theorem was needed
for the following chapter on the real numbers. We alsc wanted to use
the chapter to develop some beginning concepts of logic in simple situa-

tions ("if-then," converse, negation).

13




B. The Real Numbers Revisited--Radicals

We felt that sometime in the eighth grads the students should again
face the axiomatic nature of the real numbers and review the structure.
vioreover, theorems as direct consequences of tnese axicms could be pre-
sented. The solution of classical problems (duplicating the cube, ele. )
could lead to this reconsideration; radicals could be discussed in detail

with the corresponding review of exponents and absolute value.

F. Solutions of Equivalent Mathematical Sentences

This chapter was delayed to this point in order that operations
yielding nonequivalent sentences were available. We wanted to formalize
the process of obtaining equivalent problems bringing logic, the struc-
ture of the real number system, and properties of order into play. We
wished to be able to write precisely about systems of equations and

inequalities in the next chapter.

G.  Systems of Equations and Inequalities, Linear Programing

We thought this subject matter would lend itself naturally to review-
ing many topics as well as introduce the student to interesting applica-
tions in modeling.

The eighth grade continuation of probability and statistics could

be inserted after B, or other places might be desirable.

Grade 9: 7 al Analysis Group

We felt that the students' preparation was now adequate for the pres-

entation of substantial mathematical ideas. Hence, our outline became

to the writers.

A.  Quadratic Polynomials (as Functions)

This chapter could serve as =zun ideal place to study the translation
of axes and relate these translations to the previous introduction of
vectors as displacements. Likewise, the zeros of quadratic functions
could lead to a treatment of factoring as needed. (In the final version

this chapter appears in grade eight.)



B. Systems of Mathematical Sentences Involving Quadratic as well as

Lipnear Functions

Here the possibility of review of factoring, radicils, solving quad-
ratic equations is present.

C. Locus Prgblems

(Conic sections first round)

D.  Vectors
. Trigonometric Functions

F. Inferential Statistics

G.  Complex Numbers

The integration of the seventh and eighth grade geometry and real
analysis changed the order of some of the materials, particularly in the
eighth grade. GSpecifically, we dropped exponents and logasrithms while
substituting quadratic functions of grade nine to appear later in the year.
The measure theory was combined with the geometric subj=ct matter and
moved to grade nine. These decisions may need review.

Using geometry as a process of "modeling' the real world, we saw that
this could lead naturally to the need for coordinates as necessary to pro-
vide more "local" information in physical problems. Hence there appeared
to be sufficient reason to start the seventh grade with a chapter on
geometry and to follow this immediately with A of our outline for grade
seven. Thereafter the blending of geometry and the real analysis suf-
fered from the demand that chapter outlines had to be produced simultane-
ously. Moreover, the real analysis group thought that it had to consider
in greater detail several questions which are not reflected in the out-
line. Bome of these specifiec guestions were:

1. Notation for Functions. We believe that the introduction to

functions should be quite informal with examples to illustrate that the
student has used the idea for quite some time. We finally agreed that
the notation

f: x—a2x + 3,



as opposed to ordered pairs, was best for this grade level. It seemed to

us that even the generality
1 x——pf(x)

could he postponed by a judicious choice of functions.

2. Variables. We feel that this %topic has been subject to so much
discussion during the past ten years that we need not add further confu-
sion. Ou- position is simply "Avoid the use of the term variable as a
mathematical entity at this grade level.” It is hoped that the written
material will make clear the role of the variables used.

3. A Motivation of Negative Multiplication by Means of Vectors on

a Line. Professor H. Whitney presented an outline whereby the definition
of multiplication of negative numbers becomes a consequence of the study
of a one-dimensional vector space along the number line. However, it
was not clear to some of us how certain difficulties relating the "scalars"
to the "vectors" are to be avoided. Further investigation of this ap-
proach is certainly warranted, especially since displacements are to be
introduced in space in the eighth grade.

L. Poly

or functions flourished again. We decided that we could restrict our

womials. The usual discussion regarding forms, expressions,

attention to quadratic functions and avoid for the time being the distinc-
tions which invariably arise. We did not believe that it was necessary
for everyone to know the theory of polynomial rings.

Finally, in detailing the outlines for the chapters we have described,
it appears that we have lost sight of some of the general criteria which
we set for ourselves. We urge the writers to return to this document when-

ever the details have obscured the attitude we sought to impart.

. ;-11_



of grades seven, .1ght, and nine. (For some philosophical remarks on
modeling, see Appendix A.)

I A, "Mathematical model” (noun) and "modeling" (verb) should be
brought into the picture early in the seven-nine sequence and should be
a thread worked in throughout the sequence, since every application of
mathematics to the real world involves a model. Some models are by
now implicit (most of the time we are not aware of the model), while
others are explicit and need to he worked out in detail.

B. As part of ary first chapter in the seventh grade book, we
should begin to tallk about mathematical modeling. (See Appendix Bl.)

C. At an app-opriate place in each succeeding section of material
(on geometry, probability, etc.), bring in "modeling" again along with
some examples for which the subject matter at hand provides mathemati-
cal models.

D. Later when more mathematical maturity has been gained by the
student, more emphasis in the form of a specific chapter may be given

to modeling.

II A. For the teacher, provide clear expositions of what is meant
by mathematical models and modeling. Give the teacher a feeling for
the goal to be achieved by the persistent thread on modeling that runs
through the three~year sequence. (See Appendix B2.)

B.  For students, provide a variety of examples (see IIT A3).
Some of these should carry through in a spiral fashion. (See some of
the examples in Appendix C.)

C. Lead the student to appreciate the hard work and extreme care
which must go into mathematical models of great complexity, such as
those that permit man to place a capsule on the moon. He should then
be moved to exhibit the same care, hard work, and attention when using

mathematics in solving a problem within his power.

-19-
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D. Aim for freguent reiniorcement and for a wide variety of experi-

nces that will eventually illustrate all the important features of

]

mathematical modeling.

E. In addition to the examples that come up as part of the text,
supply material of the following sort: (1) longer expository articles
or "feature" films in an "inspiration-guidance' mold on uses of mathe-
matics and mathemetical models in various fields; (2) short film clips
that either provide data for a modeling sequence or illustrate such a
sequence.

IIT A. TFeatures of Good Modeling Examples

1. Real life situations must be real (that is, not phony), inter-
esting, and must contain a question for which the answer is not obvious
or trivial. The solution in the mathematical model ought to be capable
of interpretation and testing in the real 1ife situation.

2. The mathematical model needed %o analyze the situstion and
implicit in the description of the situation.

3. For some exsmples the mathematical manipulations should be
within the capabilities cf the students at the time the example is in-
troduced. For others the model may call for new techniques, and the
model can serve as motivation for the introduction of new mathematics.
For still others (not too large a nunber), the skills needed could be
well beyond the capabilities of the student, but nevertheless, the
problem can serve as motivation for the continued study of mathematics.

L.  Examples should be devised so that the models will have to be
and this selectivity in devising the first model and successive models
should result in approximations, some of which are good for one purpose
and others better for slightly different purposes.

5. It should be emphasized that any model is only an attempt to
represent certain aspects of the situation which are important for par-
ticular restricted purposes.

6. The purpose of constructing the mathematical model is +o
clarify relationships so as to exhibit clearly the important features of

the situation and contribute to answering questions which could not be

18
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answered easily without the model, 1l.e,,

[

nalysis with the ultimate ob-
jective of prediction.

B. Things to Wateh in Introducing Modeling

1. Avoid sloganeering.

[
"

Don't model the sindent to death (as with sets).

2. jse a variety of nomenclature, since words have different con-
notations in the physical world.

L Get some examples in which the situation or concepts are ab-
stract and the model is concrete; e.g., a model for the real numbers
is the number line which draw.

5. Achieve a proper balance in introducing models. Don't give
the impression that mathematics exists only because of its applications.
On the other hand, remember that only a small fraction of s.udents
using the texts are going to t. mathematicians.

6. Remember the need to revisit the real world frequently during
a course, not Jjust at the beginning,

It Cet examples in which complete reliance on the physical model
or on intuition leads us astray, whereas the mathematical model may
lead to "truth" uncontaminated by the prejudice of physical experience
or "common sense.’

8. Remember the need for a careful selection of workable examples;

others may better be left for general remarks about applications.

=1h-
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APPENDIX A

Philosophical Remarks on Model-Making
by M. L. Juncosa

Pervading almost every element of the set of human intellectual
phenomena.” This holds for existential, physical, sociological, concep-
tual as well as concrete phenomena; ii matters not which. This pursuit
of causation and knowledge of structure can be motivated by desire for
comfort, fear of the unknown, satisfaction of curiosity, ete. One finds
this in theories on the origins of primitive religlons and magic.

For the sclentist--and this includes mathematicilans--a strong moti-
vation is the desire for predictability; that is, within certain bounds
the structure or model can be interpret=d as being "consistent." For
the inductive scientist, results of the theory, il.e., predictions, will
"agree" with experiments. For the mathematician, contradictory theorems
will not result.

To arrive at conclusions, a process of what some people call model
building is engaged in. The primitive man invents concepts of super-
natural gods with anthropormorphic attributes, such as anger at broken
taboos, and enormous powers, such as the power to cause awe-inspiring
meteorological phenomena.

The scientist observes physical, economic, sociological, biological,
or psychological phenomena; he invents an idealization of them according
to some laws which may exist from previously studied "similar" (maybe
even "isomorphic") situations or which he constructs ad hoe, containing
what is felt is the "essence" of the observations; then as what he calls
a logical consequence of these laws, he makes certain statements or pre-
dictions, asserting that he has now an explanation, a theory, or more

modestly, a model (not necessarily unique and which may or may not be

-15-
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The mathematician ceonstructs many conceptual models of other concepts

or theories that he is in the process of exploring. He frequently finds

L : o= A, =) o~ D e T = == i - o= 5 3 3 aF e e e s b
that in the model or ilmege he may have greater Insight or may be able to

uzse language which is not quite available for the original. This enables

an "end-run" in the proofs of goal theorems or suggests new goal theorems

and techniques for the original. It is not uncommon that he makes physical
models and pictures as models for his theory for greater elucidation and
inspiration.

It is essential to recognize the universality and variety in the
philosophy of mocdeling, regardless of what it is called. Not only does
everyone do modeling at some intellectual level, but frequei y transi-
tions from one world to another and back agaln are mede. “n engineer may
make a mechanical model (here called analog) of springs, weights, and
dash-pots for an electrical circuit of resistances, capacitances, and in-
ductances, or vice versa. And if he has a mathematical model as well, he
may not even make, i.e., physically construct, the mechanical or the
electrical analog but will rather solv: the pertinent equations inter-
preting the results for either of the physical situations, talking in
the isomorphic language of the one most familiar to him, even though he
may be solving a problem concerning the other primarily because "it is
easier (for him) to see it that way."

(We like to point out that usage of this word "model" differs markedly.
We are using "model” as a copy, picture, image, representation, formula-
tion, ete., of the original, as in the usage where Klein and Poincare
models are examples of non-Euclidean geometries. This is in contra-
distinetion to the use of the word in connection with an artist's or
photographer's subject where the original is the model. No strong pref-
erence is expressed here, but we chose the usage in this work because of
the confirmed usage in many applied mathematical circles.)

Returning to the variety of instances of the practices, we have

1. the process of going from the real world to the real world,
cited above (construction of analog computer, slide rules, ete.);

2. the process of going from the real to the conceptual, mathe-
matical, and then back to the real (mathematical physiecs, mathematical

biology, mathematical economics, operations research, applied mathematics



_n gensral, the process being admirably described in Burrington's a,r"tiic;LeE,'l
"On the Nature of Applied Mathematics');

3. th= process of going from the conceptual to the real and back
again (construction of Venn diagrams and switching circuilts for set theo-
retic and Boolean operations, construction of finite group multiplication
tables, construction of rings, trees, graphs, knots, cross caps, Klein
bottles for ecertain topological objects);

4. the process of going from a conceptual to another conceptual
without passing to the real and back again {identification between real
numbers and points on a line, language structures as trees or graphs ) ;

5. and even proces.es of goling from lower to higher conceptual
levels and back, as well as vice versa.

Some model-making goes from deterministiec conceptions to probabilistie
ones and back, as exemplified by solving either the heat esquation or the
potential eguation by random walks, which is a speci:” case of the so-
called Monte Carlo method. Polya's model of contagion is another example.

Since the criticisms of the previously constructed curriculum in-
cluded the insufficient lisison with the physical world, we take as pre-
cepts the goals of R. C. Buck's article,? in particular goal No. 1, and
to a lesser extent goals Nos. 2, 3, and 6, as having relevance to the
question of modeling. And in particular, we further restrict attention
to the philosophy as applied to real world problems. While the term has
not appeared in many parts of mathematics in the past, the term "mathe-
matical models" is used very extensively in biology, economics, management
psychology, operations research, control gppliestions, chemistry, statis-
tical mechanics, ete., where work has only recently been "mathematized."
Thus we accept this usage, recognizing that modeling is & broader intel-
lectual concept and cautioning strongly against a monopoly on the use of
the term to avoid polarization of attitudes among people who should recog-

nize the universality of the process. Thus many words have been used and

LR s Burrington, "On the Nature of Applied Mathematics," American
Mathematical Monthly, April, 1949. See Appendix D3.

2 R. C. Buck, "Goals for Mathematics Instruction,” American Mathe-
matical Monthly, November, 1965. See Appendix De2.
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with Aifferent coannatationa. Theay should be kept and used appropriately
with the purpose of the particular choice being held in mind. Synonyms
should always be pointed out with their slightly different shades of
connotation indicated.

Another observastion aon models is the strong essence of approximation
present, particularly in real world problems involving either continuous
variables or large numbers of variables (e.g., gases, populations, traffic)
in some probliems. We have silmple examples of this in the representation
(model) of a flat =heet of paper as a rectangle for most purposes but as
a rectangular parsailelpiped (') when one is interested in estimating the
volume of a book; the habitable world in antiguity or much smaller locali-
ties today as a flat segment of a plane (ignoring the local mountains,
valleys, rivers) but the habitable world as a sphere today (or happily
for Eratosthenes seeking an esvimate of the size of the earth), or the
earth as oblate spheroid for satellite work because of the precision re-
quired in orbit computation; the circulatory system as a pump; a zas
(collection of molecules) as a fluid; ete. These approximations fre-
quently are made to enable the recognition of mass behavior or macro=
scopic behavior; at other times they are made to make a problem either
mathematically tractabie or computationally feasible.

An essential factor in a good model in this class of situations 1is
that of stability; small deviations in the original should result in small
variations in the predicted result. In other words, the conceptual trans-
formation from the real world of observations through the model, through
the mathematical operations and back to the real world prediction is con-
tinuous with respect to the appropriate norms. A poor model in these
gituations is one with enormous variations in the results for small devia-
tions in inputs. Parenthetically, we should observe that occasionally
it is because of the nature of some startling variation in the predic-
tions by inadequate models that original discoveries are made by entirely
new formiiations.

In another class of models the essence of approximations does not
figure strongly or even at all. In these it is siructure that 1s impor-

tant: Do the variables in the problem figure linearly or not? Can an
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algebralc group structure be assumes in the model for the phenomenon or
not? Is the model for the world Euclidean (parallel postulate, ete.) or
not? Problems Tor which tree-like or graph-like models are constructed
have this Tlavor. It is important to recognize that the notion of sta-
bllity seems to be irrelevant here. The familiar problem of the three
houses desiring three utilities withoul overlapping connections from “he

mains to the homes, modeled as an attempt to construct a certain (impos-

sible) graph of six vertices, is again structural. Stability and approxi-

mation considerations are irrelevant, there being no "neighboring" prob-

lem. (The "solution" is "possible” as soon as the number of homes is

reduced to two.) Perhaps it is worthwhile to discourse on these differences.

-19-
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APPENDIX B

1. Suggestions for initial introduction to modeling in the first chapter

of Lhe seventh grade book

Stsrt with examples of the uses of models (not necessarily mathe-
matical) of real world phenomena and objects. Some of these may be physi-
cal, for example, clay models of animals, and others conceptual, such as
the plane or the sphere as models of the earth. Point ov. some of the
obvious features of such copies of real phenomena. Indicate the special
way in which we will use the word "model"; i.e., for us if the artist is
painting a portrait, it is the picture, not the lady, that is ths model.
Following this, remark that mathematical models are characterized by the
use of ideas represented by mathematical symbols in constructing the

model, rather than cla;-. paint, or strictly verbal description.

2. A sample of material on modeling which might be included in the

teacher's manual

The purpose of this topic is to develop the idea of modeling as a
means by which mathematics is related to problems which arise in the real
world. At times the process should be made explicit so that the student
can see the following: the real 1life situation translated into a mathe-~
matical model, the mathematical manipulation within the mathematical
model, the obtaining of a result, its interpretation back in the life
situation, and the ftesting of the validity of the result snd therefore
of' the adequacy of the model. This process should be emphasized at ap-
propriate points throughout the texts.

The word model is not strange to the students. Model cars, model
alrplanes, and models of most objects are part of his environment. How-
ever, the philosophical connotaticns associated with mathematical model-
ing--that of providing an interaction between mathematics and reality--
is likely to be a new chanel of thought for a seventh grade student.

A general discussion with the class focused on the various reasons

for constructing models could direct the students' attention towaris

]
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such practical aspects as size, location, ease of handling, highlighting,
and opportunity for further study. TL is suggested that encouragement

be given to the student to think up synonyms for models, such as picture,
likeness, illustration, image, copy, representation, replica, reflection,
pattern, resemblance, and facsimile. In addition to enhancing the idea
of modeling, the synonyms give rise to a zonjecture concerning the degree
of likeness one may expect or desire in a model. OF course at best s
model is somewhat less than the original. However, the validity of a
model is related to its usefulness or how well it does what it was in-
tended to do.

It is intended that this discussion will converge on models of real
world objects or situations that are formulated by mathematics. At this
point a problem within the frame of reference of g seventh grade student
should be offered to illustrate the facility that a mathematical model

offers in predicting a solution.

21
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AFFENDIX C

Tvamples of Modeling Suggested During our Discussions
= =] ] -

1. Tind the volume of the body of a man six feet tall. Buppose
the average thickness of his head is 7 inches, his arms 3 inches, his
truck 10 inches, his legs 4 inches.

Possible models suggested might be:

Model 1 Model 2

Test the accuracy of the students' models by submerging them in water
and calculating the change in helght of thc water.
2. Measuring the earth as in "How Far is it From Here to There?"

Mathematics Teacher (Feb. 1965), 57:123-130, by I. Fisher.
3. Reflection example. Idea: begin at A, touch the wall, and

arrive at B in as short a time as possible.

£ v - RS
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I, Refraction example. Idea: Run from A to line L at r ft/s 2.,
and walk from there to B at w ft/sec. To what point on line L should I

head in order to reach B in the shortest

time possible? B

|
|
gl

A @

second time: Use the problem of apparent change of direction of a
stick immersed 1n water, in some other medium.

5. Lemonade stand.

6. Simple linear programing problem, perhaps after systems of
linear equations.

7. An automotive plant produces one kind of automobile and one kind
of truck. Bach car uses l%'tons of steel, and each truck 3 tons. Each
car when sold brines $300 profit, and each truck $400. The total number
of vehicles that the plant can produce in a year is half a million. The
total amount of steel available to the plant is 975,000 tons. How many
cars and how many trucks should be scheduled for the yesar's production
to maximize the total profit?

Instructions to the teacher:

a. Draw graphs of tons of steel used in the production of n cars,
then n +trucks. Note graphs are dots on line segments terminating when

n=0 and n = 500,000 {intersection of straight line segment and integers).
b. Draw graph (lattice of ordered number pairs of cars, trucks) of
permitted numbers of cars and trucks satisfying vehicle capacity restriec-
tion (constraint).
¢. Draw graph of number pairs of permitted production satisfying
steel capacity constraint.
d. Draw intersection of the two sets of above lattice points. This
set of points is a set satisfying both contraints (as well as non-

negativity of production).

-23-
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trucks

ears

e. Nete that this set 1s a convex set, an important notion for op-

f. Investigate various points on "boundary" of lattice region. Cal-
culate profits as one moves from A to B, A to C, B to D, C to D
Note that profits [3@0 % (no. of ecars) + 400 x (no. of trucksi]‘ increase
for all of these directions. Note also increase from E +to F and E to
G, suggesting nonoptimal character of interior of region.

g- Conclude that optimal "mix" of production is represented by num-
ber pair assocliated wiih D.

h. Alternatively, draw the lines 300C + 4OOT = P for various values
of P. BSee what happens as P increases. For what value of P does one
of these lines touch ABDC at a simgle point? (Compare with the appendix
to Grade 8, Chapter L4, the isoperimetric problem. )

8. There are 5 pickup points--A, B, C, D, and E--for taking stu-
dents to school in a certasin community which is considering the construa-
tion of a new school at one of four possible sites--a, b, ¢, and d. The

table of distances is given below.

-2l
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The numbers of students to be picked up at A, B, C, D, and E are ___,
s s , and  , respectively. It is desired to choose the site

which will result in the minimum total time of travel to and from school

by the town's student populstion. Which site is chosen?

Supply the data according to some real situation in a community.

Let the class propose similar problems: a new housing development
and bus service within a certain radius, a town library to be used by
townspeople and two high schools, ete.

Let the students collect the data. Can they discover the general
pattern common to these problems?

9. The Tunnel. BSee Studies in Mathematics, Vol. XI, by George
Polya, Chapter I, p. 1l-L.

This is a problem in applied geometry which could be well used to-
motivate the study of similar triangles or used after the topic has been
studied.

Look alsgo at the remark regarding the generalization of a problem,
page 39.

10. Give a sbudent a ruler (preferably a metal tape measure). How
many objects are in his classsroom that he can measure? Write a list
with the names of the objects and, whenever possible, attach a number to
it which represents its measure. Are there any objects that are not
measurable? Is there any measure other than the tépe which could be
used? Now go (or think of going) outdoors. What objects would you find?

Which can be measured with the same tape measure?

-25-



Professor Polya gave us some ideas on . deling in mathematics instruc-
tion. He spent a short period with us, and we also went to his lectures
on "Problem Solving."”

He reminded us that seventh graders are very young and that problems
introduced at that age must be appropriate for their level. '"They won't
believe what they don't understand, and they should not believe what they
don't understand.”" He hoped that in good mathema*tics education this
skeptical attitude is encoursged.

In class a problem led to the solution of a system of three dlinear
equations. He tried to indicate by the use of pieces of cardboard the
relation of the planes associated with the equations: he turned to the
elass, "If you don't know this, believe it!" But he add-d quickly,
"Please believe it half way!"

He suggested the use of graph paper in making models of solids. The
box (you don't have to use a word like parallelepiped, which is too hard
to spell and to pronounce) is the basic principle for drawing many ob-
jects around us. It should be used by teachers also so that their drav-
ings on the board would improve.

The following diagrams illustrate Professor Polya's ideas. We think
that problems of the following type could be devised:

1. Build a toy chest for a little brother (or sister);

2. Build a doghouse.

3. How much material is needed, etc.?

26—
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APPENDIX D

Excerpts and Refersnces about Modeling

Passed on with the Compliments of the Modeling Committee

A. Excerpt from the GCMC Report of CUPM on a Course in Applied Mathematics

On Applied Mathematics

At the heart of applied mathematics is the process of model building.
What you need to deo is to take a situation in another field--it doesn't
matter whether this is ergineering or physics or economics or biology or
what have you--which you would like to understand better and to invent a
mathematical model that will (hopeful.y) help you to understand that situa-
tion. You then proceed to analyze this mathematical model, including par-
ticular numerical examples 1f they are relevant, and finally see what you
have learned through the mathematical model abont the original "physical"
gituation. Now a course in applied mathematics could be organized around

either the field of human endeavor to which mathematics is being applied

around the process of model bullding itself. A sequence of situations
from various fields of applications could be chosen, for instance, to il-
lustrate each of the following aspects of model building.

1. A mathematical model of, say, a situation in physics must be
complicated enough so that it honestly represents the real world without
omitting any essential features of the physical situation and yet be
simple enough so that you have a fighting chance to do something with it
mathematically. Typically these two don't meet at first try, and it is
an exciting struggle to obtain a sufficiently simple mathematical model
without losing the essence of the problem.

2. When you have made a mathematical model, you hsve to consider

all its consequences, those that you like because they agree with your

28

33



bk

e

O

ERIC

Aruitoxt provided by Eic:

phyesicel intuition about the problem ag well as those whose physical im-
plications come as a real shock. This frequently leads to a refinement
of the model as well as to

analyzed.

3.

aw problems that need to be formulated and

The analysis of the first mathematical formulation of, say, an
engineering situation may raveal that the eugineer doesn't really know
what it is he wants to undcrstand, to build, or optimize.

cal model serves to focus on the question that actually

iould be asked:
What are we trying to optimize, for instance, or when does the engineer

The mathemati-
wish to consider two mathemagtical solutions equivalent?

The attempt to
build a satisfactory mathematical model forces the right question about
the original situation to come to the surface.

I,

A model is always an approximation to reality and should there-
forc be stable with respect to perturbations in the less certain of its
mathematical assumptions.

If such charnges in the assumptions cause a
major upset of the mathcmatical conclusions, then the conclusions may be

B.

physically suspect, for we often cannot be completely sure of the preci-
Attempts to obtain stable rather than unstable
mathematical models are a very interesting aspect of model building.

The Goals from R. C. Buck's Article "Goals for Mathematics Instruction”
Which are of Particular Importance in Modeling
Goal 1:

and rcality.
Goal 2:

To provide understanding of the interaction between mathematics

To convey the fact that mathematics, like everything else, is
Goal 3:

built upon intuitive understandings and agreed conventions and
that thess are nrct cternally fixed.

To dcmorstrate that mathematics is a human activity and that
Goal 6:

its history is marked by inventions, discoveries, guesses both
good and bad, and that the frontier of its growth is covered

by intercsting unanswered guestions.

To show that complex things are sometimes simple and simple things
arc somctimes complex and that in mathematics, as well as in other

fields; it pays to subject a familiar thing to detailed study and
to study something which seems hopelessly intricate.

-29-
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C. Digest of R. 8. Burrington's article "On the Nature ci’ Applied Mathe

=l

matics,” American Mathematical Monthly, (April 1949) 56:221-2h2.

D. £ General Bummarization of Modeling

When considering problems that sre concerned with applying mathe-
matics to situation in the real world, one is often confronted with the
issues in a complex envirvonment full of distraction. It remains to de=-
velop a well-organized structure so that the essentials of the problem
can be viewaed with less confusion. The delicacy of such a task lies in
the following:

1. Removal from the original setting of only the barest features
of the problem. This requires due examination of the original setting to
gain direction in determining that which is fundamental. The result of
gsuch an effort is a simplified, idealized concrete or physical model of
the original problem.

2. This idealized model 1s to be made the subject of mathematical
investigation by direct translation to mathematical terms, i.e., an iso-
morphlism. Essentially this translation is = mathematical model of the
idealized model of the original problem.

3. Through manipulative computation a solution is obtained for the

mathematical model.

L., The solution is interpreted in terms of the idealized model.

5. Finally, the solution is interpreted in terms of the original
problem.

The validity of the results depends upon the extent to which the

&) - =30~
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CONTENTS OF GRADE 7

Chapter 1: The Structure of Space

Section

1:
2: Incidence Properties

The Structuring of Space in Terms of Point, Line, Plane

Review of Graphs of Section 1.3 as Graphs of Functions

3: ©Separation Properties

h: Convexity

5: “rientation on a Line or on Parallel Lines

6: Orientation in a Plane
Chapter 2: Graphs and Functions, Variables
Section 1l: Coordinates

1.1 Point Plotting

1.2 Translation, Reflection, and Symmetry

1.3 Add. of Pos. Rationals, Mult. by Pos. Integers
Section 2: Function

2.1 Illustrations

2.2 Obzervation of Function as Ordered Pailrs
Section 3: Graphs of Functlons

3.1

3.2 Review of Graphs of Other Relations

3.3 Coin Tossing Experiment

Chapter 3:
"positive Version®™ (Dean)

The Positive Rationals

Section 1l: Sentences and Their
Solution Sets.

as solution for

o o'

X = a

Alternate Version {Corcoran)

The Set of Rationals

Section 1l: The Opposite Function

1.1 Opp: x = —Xx

1.2 ={-x) = x
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Section

48]

Section 3:

Section 4:

.1
L.,z
L.3

G.h

Section 5:

5,1

Arithmatic Operations
from the Point of

View of Equatlons

Order for the Posi-

tive Rationals

Decimals

Expanded Notation,
Positive Exponents
Extension to Nega-
tive Exponents
Scilentific Notation

Repeating Decimals

Percent (as Function)

% s x

X
—
100

Section

Section

Section

Section

Section

2

3.1
3.2

5.1
5.2

Properties of Rational
Numbers

Assume that Operations
of Addition and Multi-
plication Exist such
that 01d Properties
(Closure, Commutati-

vity, ete.) Hold

v
> Attention to Existence

of Additive Inverse

Absolute Value Func-
tion

Definition

Distance from O on

the Number Line

Addition and Multi-
plication of
Rationals

Review Addition of
Integers

Extend to Addition of
Rationals
Multipiication of

Rationals

Division of Rationals
Definition

a
Prove = = 1

Subtraction of
Rationals
Review Subtraction

off Integers



6.2 Practice Subtraction
6.3 Subtraction as Distance

on the Number Line

Chapter 3%; Solution of Mathematical

Sentences
Secrtion l: Decimal Names for Rationals
1.1 Expanded llotation, Posi-
tive Exronents
1.2 Extension to Negative
Exponents
Scientific Notation

Repeating Decimals

Section 2: Ordering the Rationals
2.1 Basie Order Properties
2.2 Add. and Mult. Proper-
ties of Order
2.3 Order of Rationas on
the Number Line

2.4 Density of Rationals

Section 3: Iutroducing Percent

3.1 As a Function,

%:x—:i—ﬁ

3.2 Practice Computations
Section U4: BSolutions of Equations
and Inegualities
Restatement of Prgperties
of Equality and Order
4.2 Solutions of Equations

“and Inequalities of Forms:

X +a =">b; ax = b,

1]
2]

ax + b = ¢, ax + bx
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{2 Congruence (Replication of Figures)

V2
Section l: Congruence of Segments; of Angles
2: Division of Segmenrts and Angles into Two Congruent Parts
3: Addition Propezrt, ar Segments
L Subtraction Property for Segments
5 Addition and Subtraction Froperty for Angles
6:; Vertical Angles
T: The Concept of Congruence
3 Congruence of a Figure with Itself
9: Congruence of Triangles
10: The 555 Congruence Property
11: The SAS Congruence Property
12: The ASA Congruence Property
13: Motions by Means of a Coordinate System
13.1 8liding (Translation)
Turning (Rotation)

3.2
13.3 Flipping (Reflection)

Chapter 5: Measure

Section 1: Linear Units of Measurement

1.1 Linear Units of Measurement
2 Applications of Linear Units

1.3 Linesr Measure and Circles

Section 2: Angular and Arc Measure
2.1 Angle Measure
2.2 Bum of Measures of Angles of a Triangle
2.3 Arc Measure and Central Angles
2.4 Triangle Inscribed in a Semi-Circle
2.5 Angles Inscribed in Circles

Section 3: The Pythagorean Property and Applications
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Section L4: Eguivalence of Polygonal Regions
4.1 Equivalent Region Building
4.2 Decomposing Regular Polygons

4.3 Forming Rectangular Regions

Section 5: "Greater Than" (in a Geometric Sense) for Segments, Angles,

Planar Regions, Spatial Regions

Chapter 6: Ratioc and Similarity
Section 1: Magnification and Contraction
. Informal Illustrations

1
1.2 Introduction on Coordinate System
Section 2; The Concept of Similarity
2 Begin to Refine Relationship of Previous Illustrations

Comparison to Congruence
Section 3: Ratio and Proportion
3.1 Meaning of Ratio; Symbols

2 Proportion as Equality of Ratios

Section 4: Defining Similarity
Section 5: Sufficiency Froperties for Triangles
5.1 Exploratory Work Leading to AA
5.2 Exploratory Work Leading to 888
5.3 Exploratory Work Leading to SAS
5.4 Corresponding Lines (Altitudes, etc.) in Similar Triangles
Section 6: Similarity Mappings
6.1 Applications, from 1.1 and Others
6.2 Local Maps
6.3 Scale Drawings and Blueprints
6.4 Tangent Ratio

FPossible Addition:

Section 7: Percentage Problems Using Proportions
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Chapter 7: Combinatories and Probability
(From SMSG Text on Probability for Junior High, Chapter 1-6)
Section 1: Fair and Unfair Games (Chapter 1)

Section 2: Finding Probabilities (Chapter 2)

Section 3: Counting Outcomes (Chapter 3)
3.1 Tree Diagrams
3.2 Pascal's Triangle (Without Binomial Theorem)
Section 4: Estimating Probabilities by Observation (Chapter 4)
L.1 Organization of Data
4.2 Notion of Average and Expectation
Section 5: P(A u B) (Chapter 5)
Section 6: P(A N B) (Chapter 6)

Chapter 8:
Alternate Version (Corcoran)

Dean Version Graphs of Lineszr Functions; Va_iation
Bection 1l: Review of Negative Section 1: Graphs of Functions
Rationals as a Set 1.1 Review Coordinate System
of Numbers; "Oppo- and Association of Points
site" Function and with Their Coordinates
Its Graph 1.2 Graphs of Functions with
Restricted Domains
Section 2; Multiplication of =a Bection 2: Slope and Intercepts
Positive Rational by 2.1 Review Graphs of Linear
a Negative Rational Functions in First

Quadrant

2.2 Experimental Development
of Slope

2.3 Develop Notion of Slope
in Terms of Difference
of x and y Coordi-
nates, and Notion of

v-Intercept
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Section 3:

Section 4:

Section 5:

Section 6:

Section T:

Section 8:

Section 9:

Section 10:

Graphs of Multi-
plication by a

Positive Rational

Multiplication of a
Positive by a M=ga-
tive, and the Distri-

butive Law

Multiplication by =

Negative Rational

Addition and Subtrac-

tion Revisited

More on Opposite
Function:

Absolute Value Func-
tion; Graphs
Applications

Graphing x —2ax + b;
Role of Parameters a

and b

Also, GSpecial Trestment of Multi-

plication

b

o

Section 3:
3.1

3.2

=

Section

Section S:

Section 6:

Slopes of Special Lines

and Sets of Lines

A Closer Look at Slope
Sperial Cases of
f@:x-=>mx +b
Increasing and Decreas-
ing Functions

f @ x —2mx in Terms of
m as a "Multiplier"
Variation

Direct Variation

Inverse Variation

4.3 Other Kinds, Such as

X =%kx£

Solution of Equations

Like: 3x +2 =5x - 3
by graphing
f@x-3x+2
g 1 x=5x -3
Scale Drawings as

Functions



Solutions of Systems of Equations and Inequalities

Solving Systems of Equations

19!
(T
[
ot
=
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HoOH RO

Problem Leading to a System of Linear Equations

Writing Equations in "y-Fora"

(-
S

Graphic Solution

et

.4 Algebraic Solution by "Comparison"

o
o

Practice on Solution of Systems

Section 2: BSystems Which Do Not Have Unique Solutions

2.1 Graph of System when Lines are Parallel
2.2 Algebraic Solution of Such a System
2.3 Graph when Lines are Coincident
2.4 Algebraic Solution of Such a System
Section 3: Graphs of Inegqualities
3.1 Graph Which is a Half-Plane, as of x = z
3.2 Graph Which is Union of Half-Plane and Edge, as of x =2
3.3 Graphs Where Edge of Half-Flane is an Oblique Line through

the Origin, as of y > x.
3.4 Graphs of Inequalities Involving Absolute Value, as of
x| >3, |x| <3, ete.
Section 4: Systems of Inequalitics

4.1 Graph which Is Intersection of Half-Planes, as of System

X <2
y = -2

4.2 Graphs of Other Systems, including:

and

<
A
”
»
N

Chapter 10: Decimals; Square Roots; Real Number Line

Section 1: Motivation

1

1.1 Recall of Familiar Sets of Numbers

1.2 Review of Pythagorean Theorem; Arithmetie Interpretation
2

2: Numbers Which Are Not Rational

Section

-38-
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Section 2: Names of Rational Numbers

3.1 % as a Repeating cor Terminating Decimal

3.2 How Tell for % Whether Tts Repeating Decimal Will
Terminate?

3.3 Find % Name for a Repeating Decimal

Section 4: Irrational Numbers
4.1 Infinite Decimals which Do Not Repeat
4.2 Iteration Method for +5 (Flow Chart?)
Section 5: Real Number Line
5.1 Location of Rational Points
5.2 Location of Irrational Poilnts
5.3 Completeness of Real Number Line

Section 6: Properties of Real Number System Emphasis on Density

Chapter Li: Parallelism

Section 1l: Parallel One-Dimensional Objects
1.l Definition of Parallel Lines
1.2 Skew Lines
1.3 Extension to Rays and Segments
1.4 Network ("Grid") of Equidistant Parallel Lines
Section 2: Parallel Two-Dimensicnal Objects
2.1 Plane Parallel to Plane
2.2 No "Skew" Planes
2.3 Line Parallel to Plane
2.4 Extension of Concept by Means of "Carrying" Lines and
FPlanes
2.5 Two Parallel Lines Determine a Plane
2.6 Equations of Lines Parallel to Axes; Inequalities for
Strips and 2 - Space Intervals.

Section 3: Transversals

y

Review Definitions
.2 Define Transversal Lines

2
.3 Define Transversal Planes
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Define Dihedral Angles

g
~

.5 Corresponding Angles, Alternate Interior Angles, in

2- and 3- Bpace

3.6 Parallel Property
3.7 Properties of "Parallel <> Congruent Angles"
2.8 Construction of a Line Parallel to a Linre through a

Fixed Point
3.9 Define Parallelogram, Rhombus, Trapezoid
3.10 Proofs of Theorems about Quadrilaterals
3.1l Construction=
3.12 Segment Parallel to Side of a Triangle; Ratios
Section L: Transversals to Three or More Lines and Planes
4.1 Three or More Parallel Lines and Transversal Lines
4.2 Three Parallel Lines and Transversal Flanes
4.3 Three Parallel Planes and Transversal Lines; Also
Transversal Planes
4.4 Intuitive Understanding of Segments Cut Off by and on
Transversals
4.5 Median of Trapezoid; Relation to Diagonals

4,6 Nets of Parallels and Coordinate Systems
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GRADE 7 - CHAPTER 1

THE STRUCTURE OF SPACE - NONMETRICAL PROPERTIES

Basic Theme:

Most of our knowledge (certainly our scientific knowledge) refers
to or is set in the framework of physical space. When a child begins
to crawl he discovers geometrical properties of space by pressing
against walls, by patiently putting things in cupboards and just as
patiently taking them out, by .inding paths which take kim back to
where he started. This knowledge, galned concretely and intuitively
over the years, 1s formulated and structured traditionally in tenth
grade geometry.

In this chapter we are studying the most basic threads of this
knowledge which are involved in our conception of space. We do not
study space as a void, bu% as "filled" with figures -- some bounded,
some unbourded. The particular way in which we do this "filling" or
"structuring" or "modeling" determines the nature of our geometric
theory., We do it by conceiving (or imagining) the basic figures to be
linear: points, lines, planes. These seem the simplest and most
natural ones to choose -- they are suggested by familiar objects of ex-
perience, dots on paper, fence poles or stakes, taut cords, lines of
sight, ete., etc. These concepts certainly can be realized in the
physical world to a very high degree of approximation and form what is
possibly the most important and useful mathematical model the human

race has developed.

Irn later chapters, we study other, more subtle, aspects of how we
conceive (or model) space: congruence -- the idea that figures can be
copied freely anywhere in space; measure -- the application of real
numbers to compare figures in space and specify their sizes; simi-
larity -- the idea that figures can be "blown up" (or shrunk) uniformly

anywhere in space.
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One very important outcome of our study is the idea of a coordinate
system -- the idea that points in space can be given "addresses", that
they can be labelled in a systematic way by specifying certain real nur-
bers which tell us where the points are. This plays a double role:

(1) it enables us to study points (and figures also) by means of their
addresges, the numbers that label and locate the points; (2) 1t enables
us to take numbers and plot them to find the corresponding points and =o
to pleture and study numbers and numerical relations by means of our

model of space.

Purpose:
To review the nonmetrical ('qualitative") properties of space and
the associated "linear" figures (point, line, plane, segment, ...) and

to consolidate and extend this knowledge as a model of physical space.

Background:
Nonmetrical geometry was begun in Grade L, Part I, Chapter 5; the

ideas have been used in Grades 5 and 6 as needed.

1. he structuring of space in terms of print, line; plane.

a) What physical objects suggest the ideas of point, line,

~

plane?

(b) How do we conceive pointe, line, planes? How can one inter-
pret point, line, plane (say in classrocm)? Do our inter-
pretations correspond exactly to our concepts?

(c) How are the idea of point, line, plane interpreted by people
who are mathematics practically? E.g., sclentists, engi-
neers, surveyors, map makers, carpenters, people vho lay
foundations for buildings, bridge builders.

Some of the material MJHS, Vol. 1, Part I, Chapter L, pp. 105-
112 can be used here, but it should be amplified and supple-

mented.

2. Incldence Froperties: how points, lines, planes are related to

each other.



Throughout the treatment reintroduce and reinforce the language
of incidence: line contains point; plane contains point, line;
point is on line, ete.

(a) Determination properties of points, lines, planes, and
linearity (flatness) of planes.

Use counterexamples as well as examples in studying a pro-
perty, ¢.g., “or "two points determine a line" ask whether
two points determine a ray or a circle. Cylinders and cones
are good counter-examples for the linearity of a plane.

(b) Intersection properties of lines, planes.

(¢) Introduction to non-intersection properties of lines, planes:
Parallelism of lines, of planes, of lines and planes; skew-
ness of lines.

Example: Find illustrations of parallel lines, parallel planes,

ete., in classroom.

te: De sure to introduce the verb "intersect" as well as the
noun "intersection” as in the phrase -- "two figures inter-
sect" .

3. BSeparation Properties

MJHS, Vol. 1, Part I, 4-6, 7, 8, 10 is a first approximation --

some tightening is indicated below.

(a) Betweenness of points; the definition of segment (MJHS, Vol.
1, Part I, 4-6).

(b) Tdea of ray, half-line.

Review concept of ray (Grade 4, Part I, Chapter 5) and nota-
tion.

Give exercises in recognizing rays and specifying them by
symbols.

Introduce idea of opposite rays.

-3
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Define half-line as ray v.ch endvnoint deleted. (Half-line
-

AB is AB with A deleted.) Observe (lightly) that a

half-line has an opposite half-line just as a ray has an

opposite ray.

A Problem of Terminology: Ray and half-line are examples of

"semi-infinite intervals": the first closed, the second open.
The term "ray" has been pre-emntied in elementary mathematics for
the closed type. In many ways the open type is more useful (e.g!j
in separation) and more fundamental, particularly because it is
easier to adjoin an endpoint (apply set union) than to delete it.
But this very useful type of copen semi-infinite interval is stuck
with the long name half-line. A simpler terminology might be ray
(or half-line) for the open type and closed ray (or closed half-
line) for the closed type.
(¢) Separation of line by point into two half-lines.
Property: BSuppose points A, B, C are on line [{
B

a
is between A and C. Then separates ¢ into half-

line RA and half-line BC.

Suggestions for class discussion and exercises:

ll?

Does a point of a segment separate a segment into two figures? If

50, can you specify the figures?

The same for a ray.

The same for a circle; a plane; a sphere.

Do two points of a line separate it in some sense? Clarify.
The same for a segment.

The same for a circle; a plane; a sphere.

Into how many pieces is a line separated by 1 point, 2 points, 3
points, 7 points, n points? What kind of pieces?

The same for a segment; & 18y; & circle; a figure eight.
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Suppose £ and B are points of a line 4. Can you describe the
figures into which A and B separate £? The same for a seg-

ment,
The same where three points A, B, C are given.

Make some separation problems of your own.

(d) The concept of half-plane.

We begin by trylng to give some ind_cation of the nature of
a half-plane before studying the separation of a plane, just
as we had the idea of ray {or half-line) before we studied

the separation of a line.

Exploratory Discussion:

(1) Given an endless, wiggley curve w in a plane P, we have:

a feeling that w has two sides. A and B appear to be on
opposite sides of w, B and C on the same side. Can you
make this idea geometrically clear? How could you use geo-
metric ideas that we know to test that A #nd B are on
opposite sides of L ; that B and C are on the same side
of L? Will ycur test work for D and E, A and F, G

and C7

=45=
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£ in plane P we feel it has two sides. A and

B appear to be on the same line of £, B and C on oppo-

Can you now find a simple test that A and B are on the
same side of L and B and C on opposite sides? Choose
several additional points and apply your test.

(3) Given line £ and point A not on £.

Find a point which is on the opposite side of £ from A.
Can you find several? How many are there? The set composed
of all such pbints is called a half-plane; £ is the edge
or boundary of the half-plane. Sometimes we say the half-

plane is "opposite' point A.
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Separation of plane by a line into two half-planes.

Property: DSuppose line L 1is in plane P. Let A, B be

points of P such that AB intersects £. Then £ sepa-

rates

Note:

P dinto two half-planes.

The two half-planes may be described as the half-planes

with edge L that are opposite A and B respectively.
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Exercises:
(1) 1Is a plane separated by a ray? A segment? A point? A
g ir i
horseshoe curve like this ! , s a 107
(2) Into how many parts do two lines separste a plane? (Or
ghould we ask for Max and Min number of parts?
(3) Into how many parts do th ee lines separate a plane? (Ask

for Max, and Min?)

(4) Same for 4, 5, 6 lines.
See challenge problem at the end of section (g) below.

(5) Does a half-plane contain a segment; a rav: a line?

(6) Does a half-plsne contain « half-plane? More than one?

(f) Separation of space by plane into two half-spaces.
Try to treat half-space like half-plane in (d), without
necessarily repeating the discussion on the wiggly curve.
Final definition: Given plane P and point A not in P.
The set of all points X not in P such that AX inter-
sects P is called & half-plane. Plane P 1= its boundary

or face.

Exercises:
(1) 1Is space separated by a half-plane? A line? A ray? A seg-

ment? A point? An open box (conceived as & surface)?
(2) Into how many parts do two planes separate space? (MSX}
Min?)

(3) Similarly for 3, 4, 5 planes. Compare your results with
Exercises (2), (3), (4) of the last sectionm.

(k) Does a half-space contain a segment, a ray, a,line, a tri-

angle, a half-plane, a plane?
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(5) Doec a half-space contain a half-space? More than one?

(g) Angles and triangles (MJHS, Vol 1, Part I, 4-8); between-

ness of rays.

(1) Follow text treatment for angles, interior, exterior,
and separation. List the separation theorem as a

Geometric Property.

Introduce betweenness of rays. Exploratory discussion
should motivate definition: "B 1is between 63 and
= A -3 ,

¢ if OB intersects some segment that joins a point

— =
of OA +to a point of OC

Exercises I:

Q

= = >
(1) Suppose 5% is between é@ and OC so that 6% inter-
sects some segment ?@; P on QA, Q@ on 6% (see figure
-
above). Can you find a segment that joins a point of O0A +to

—
a point of 5% which does not meet OB?
(2) Suppose 6% is hetween éﬁ and 6%, and 0x 1s between 53
and 6%. What betweenness relations for rays Follow?
U . . . = —
(3) Given ZABC draw several rays that are between BA and BC.
Draw several more. Can you imagine all such rays? What

figure do they seem to form (cover)?

(4) Given Z/ABC 1in plane P. Draw several rays with endpoint

— .
A in plane P +that are not between BA and E&. Exclude
= , ~
BA and é%. Draw several more. Can you imagine all of
th

hem? What figure do they seem to form?

Exepgises II:

(1) Given /ZABC. Can you find a point in ‘te& interior? A seg-

ment? A ray? A line?

(2) The same for the exterior of /ABC.
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Can you find a ray which separates the interiocr of ZABC in-
to two parts? If so, describe the parts. Can you find an-
other? A third? Mpare your answers with your classmates

answers.

The same for = segment.

(iii) Sharpen text treatment for triangles, interior, ex-

terior and SEPSTStiOﬁ a

Exercises:

(1)

Given AMABC. TFind a point in its interior. Can you find
another? Still another? Can you find a segment in the in-

terior of AABC? Another segment? A ray? A line?
The same for the exterior of AMARC.

Can you find a figure that separates the interior of AABC
into two parts? Describe the figure and the parts. Can you
Tind ancther?

The same for the exterior of AARBC.

According to the rules of a game, you are safe only when
you're in the interior of a large triangle whose vertices X,
R and T are marked by poles with flags, which are joined
by ropes from which lanterns hang.

(a) A fog comes up and the corner at T becomes invisible.

How can you make sure that you are safe?




(k) The fog thickens and the corner at Y is blacked out.

What would you do then?

(a) Suppose X 1is visible. What is the lcast information

vou must know in order to he sgsafe?

(6) Given OABC draw a segment from A to a point of BC. Draw
several. Try to imagine all of them. What figure do they

form?

(7) The same but using B and AC.

(8) Compare (6) and (7). What geometric fact (facts) is sug-

gested?
i e aSeEe

(9) Civen AABC. Extend its sidews: to form lines AB, BC, AC.
Into how many regions do they separate the plane? Try to

degscribe these regions.

(10) Challenge Problem. Given n 1lines in a plane in general

position -- that is,; each line intersects every other line,
snd no three of the lines meet in a vwoint. Into how many
regions do the lines separate the plane? BSuggestions:
(a) Try n=1, 2, 3, k4.
(b) Make a table of the function n =R, where R_ is
the number of regions for n lines.
(e) Could you get R3 from R2; R4 from R3?
Note: The corresponding problem in space is more

difficult and is the basis for Polya's film "Let Us

Teach Guessing'.

(nh) Curves; simple closed curves.
Give some interesting examples of non-planar curves (spirals
on a cylinder, the path of a ship (or better, an airplane)
that travels constantly on a N.E. course, etc.) as well as

planar ones.
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Separation of its plane by a planar simple closed curve,

Interior, exterior of such - curve; planar region=.

Include in discussion a rica set of axamples and counter-
examples of separation of surface by a simple closed curve:
sphere; torus (surface of doughaout or inner tube); several
types of pasted strip: eylinder, Moebius strip, and other
twisted strips; possibly surface of pretzel. Maybe surfaces

of solid models of letters, e.g., A, B, D, R, etc.

It may be desirable to motivate separaticn of plane (which
may at first seem trivial to the kids) by starting with some
of the examples al.ve. DNote that the plane separation pro-
perty is a characteristic property of planes which is not

shared by all surfaces.

Make point that human beings don't know innately that space
has these separation properties -- they are not triviel, they
had to bLe learned. Consider tiny saucer-1like bugs who live
on a huge torus. They might not live long encugh to dis-
cover that their space was not separated by all simple closed
curves on it. (Note: The projectivs plane which is a very
respectable mathematical entity, and is closely related to
our safe Euclidean world, is neither "separable” nor

"orientable" .)

Exercises:

Possible Challenge Problem. A child wandered off from his parents

in a park that was fenced, but had several gates. Guards at the

gates reported he had passed through their gates as follows:

Gate 1L -~ 3 times
Gate 2 -- 77 times
Gate 3 -- 5 times
Gate 4 -- 7 times

Where would you lock for the child?
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(2)

(3)

(6)

(7)
(8)

(3)

Given a circle and its interior. Draw a simple path (curve)
which Joins two points of the circle and lies wholly in the

interior of the circle (except of course for the two p@ints)g

i

Does the path separate the interior? Test several psth

Similarly for a ring bounded by two circles, taking a path

that joins two boundary points of the ring.

Given a circular cake, what is the maximum portion of the
cake you can get by one continuous cut with a knife through
the cake? The minimum?

The same for a cake in the shape of a ring, like an angle
cake.,

Into how many parts is a sphere cut by a great circle?
(Explain the idea of great circle if necessary.)

The same for 2, 3, 4 great circles.

The same for 2, 3, h, 5 great circles in "general posi-
tion", that is, no three circles intersect in one point.
(Compare similar problems for lines separating a plane in
Sections (e), (g).)

Separatlion of space by a (simple) closed surface (maybe just
take one or two examples, e.g., sphere, box, ellipscid). In-
terior, exterior of a closed surface; spatial regions. Maybe

make this an exploratory exercise.

Convexity.

Try the treatment in Geometry Part I, 3-3, selecting exercises

from Problem Set 3-3; look over Moise and Downs "Geometry" Problem

Set 3-k4.
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Is o line a convex set? A ray? A half-line? A segment?
Similarly for s plane, a half-plane, an angle, an angle in-
terior, a triangle interior, a triangle.

Similarly for space, a half-space.

If you take a point away from a line will the resulting
figure be convex?

The same for a plane, for space.

The same for a ray, a half-line, a segment.

Is the figure composed of a line and a point not in the line
convex? BRBriefly stated: If we add (or adjoin) a point to a
line iz the resulting figure convex?

The same for a plane, a ray, a segment, a half-line, a half-
plane.

How many different Lypes of convex sets can you find on a
linet

The same for a plane; for space.

What can the intersection of two lines be? Two segments;
two rays?

What can the intersection of two triangular regions (union
of triangle and its interior) be? Will the intersection be

convex?

Suppose set A 1s given. When you take a certain point
away from A, the resulting set is convex. Can A be con-

vex? Must A be convex?

Given two points P and Q.

(a) Can you find a convex set S +that contains P and Qf

5k -
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(h) Can you find a "larger” one (that is, one that contains
S) thet contains P and QFf

() Can you find a "smaller" one (that is, one that is con-
tained in 8) that contains P and QY

(d) Can you find one that is neither "larger" nor "smaller"
than 87

(e) Is there a "largest” convex set that contains P and
Q (that is, one that contains all the others)? Ts

there a "least”" convex set that contains P and QFf

(f) 1s there & least convex set that contains three non-

collinear points P, Q, R?

(g) The same for the union of AB and point C.

(h) The same for four coplanar points P, Q, R, S.
P,

(i) The same for four noncoplanar points Q, R, 8.

(j) The same for the union of Aﬁ and C; of A and C.
Note tThat (j) is touchy since the answer depends on tLhe
parallel postulate. The problem still seems valuable and
can be approached as a limiting form of (g) for larger and

larger AB.

Exercise. Is the union of two convex sets convex? Try sinmple
cases, e.g., triangular regions, segments, convex quadrilateral

regions.

Exercise., Can you find az figure whoge union with a circular

region is convex? Can you find a convex one?

Exercise. Have teacher sign a waiver if this is used. Suppose
you're standing in a room and you can shoot anybody in the rocom
with your water pistol. Must the room have a convex shape?

Explain.




Orientation.

(

a

)

Orientation on a line or oun parallel lines.

Given points ——fp———tp—-"d———oro £ on line ¢
P :

. -}
A B C E
we observe that the "trip” from A to B and the "trip”
from C to E are rightward; the “ " from C to D dis

ig trip
leftward. We say the sense from A to B on £ is the
same as the sense from C +to K, but is different from or
opposite to the sense from C to D. Briefly, A-B and
C-E have the same sense and both have different sense from
C-D. (The notion of ordered pair of points (A,B) or

directed segment or arrow AB are implicit.)

This is probably best approached by discussing a trip, re-
ferring to highway markers US 1 North, US 1 South, etc.
Give student opportunity to conclude these are just 2
"senses" on the line, that is, we can find two pairs, say
A,B and C,D (see figure above), such that every pair of
points of the line has the same sense ag A-B or the same
sense as C(C-D. Note that A-B and B-A have opposite

senses. Maybe use notation A,B instead of A-B?

Extend 1dea to pairs of points on parallel lines.
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(1) Bame finger exercises in recognition of senses of pairs

(2) Suppose B is between A and C. What can you conclude

about the senses of A-B, B-C, A-C?

(3) Given three points A, B, C on a line. Can vou find a con-
dition involving sense of pairs of the points that guarantees

B is between A and (7%

(k) Suppcse A, B, C, D are collinear and B is between A and
C; C 1s between B and D. What can you conclude about

senses of pairs of these points? See (2).

(5) Given four points A, B, C, D on & line. What must you know
about senses of pairs of the points in order to conclude that
B 1is between A and C and C is between B and D? See

(3).

Discuss rays on a line and bring out that they have a natural

orientation, e.g., AB  is rightward, BC leftward, ete. Try
to get the kids to develep a criterion for two rays on a line

having the same sense: A% and CD have the same sense if

and only if AB contains é% or E% contains A%.

Discuss rays with opposite sense. Relate sense of rays to
sense of point pairs. Briefly discuss sense of rays on
parallel lines,

Indicate that there is no natural way to define sense of

point pairs on two intersecting lines.
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(b)

We might be tempted to say A-B and C-D have same sense,
namely, rightward, but the dotted horizontal line suggests
they have opposite sense, namely, A-B upward and C-D
downward.

Orientation in a plane.

Try trestment along lines of Prenowitz and Swain "Congruence
and Motion in Geometry", D. C. Heath, pp. 31-32, pp. 46-47.
Try to use some of the material in Problems 72-76, p. 48,

and the theorems, p. L49.

Note: Just as we referred to sense of point pairs, it may be

- —
good to speak of sense of pairs of rays OA, 0B (with
a common endpoint). And, of course, sense of "directed
segments" or "arrows" corresponds to sense of "directed

angles” .

Try to give some exercises relating sense in the plane to
compass directions N, E, 8, W. For example: If you face
north and make a quarter turn in which direction will you
face? If you face north and make a "three-quarter” turn and
are then facing east, what was the sense of the turn? If you
face north and make 13 successive quarter turns, all with
the same sense, how will yéu be facing? This can be modified
for a combination of quarter, half and three-quarter turns.
If you faced north, closed your eyes, z2nd turned and found

yourself Tacing west, what kind of turn could you have made?
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If you face north in front of a mirror, how dozs your image
face? If you then make a quarter turn clockwise, how do you
face? How does your image face? What kind of turn did your
images make?

Note that you can compare orientation for two parallel planes,

just as for parallel lines.

Exploratory discussion. Make many wire Pigures to indicate

right angles, put arrows on ends labeled 1 and 2. Put
them on a table and ask kids to try to get them to fit so

2

2 1

that the "1"-ends coincide oy sliding and turning on the
table. When this is done, how many piles are there? There
should be, of course, just 2 -- this indicates that there

are just 2 senses in the plane., Observe that

2

and

2
cannot be gotten to fit in the way described.
Repeat the procedure using bent wires to represent two unsqual
segments that meet to form a right angle -- make many such

figures which are all congruent. Do not label endpoints.

‘Jﬂ
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Orientation in Space.

Try to use corkscrews and wood screws to get across idea of
right-handed screw -- try to get a left-handed wood serew and
drive it into a piece of wood.

Make comparisons of right and left hands, gloves, and the
difference in orientation of an object and its image in a
mirror.

Make many wire models of three mutually perpendicular rays,
with arrcws on endpoints labeled 1, 2, 3 and repeat experi-
ment of (b) for 2 rays,

Compare with figures formed by thumb, index finger and

middle finger of right hand and same for left hand.

Make several congruent wire models of 3 mutually segments
of different lengths and repeat experiment.

Do same thing using paper clips bent as indicated:

A

[




(It is appropriste to note .hat a chapter with this title would be

subject to considerable criticism. Hence, a less terrifying title

should be sought.)

Background Assumptions:

The student is familiar with the positive rationals together with
addition, subtraction, multiplication, and division of positive ra-
tionals. Negative whole numbers have been introduced, but not the nega-
tive rationals. Coordinate systems in the plane using all four guad-

rants are known, but with integer coordinates. In Chapter 1 the geo-

metrical concepts of points, lines, planes, etc., have been introduced
from the point of view of abstractions of physical situations; hence,
a "modeling".

Rationale:

Physical situations are to lead to. an introduction of a coordi-
nate system in the plane as a means of indicating that "local" prob-
lems often require more than the "global" geometric properties in their
solution. Physical situations will also lead to graphs, functions, and
graphs of functions. The situations chosen should reflect the basic
reason for obtaining functions and their graphs; to wit, that this ana-
lysis yields information of a global sort not apparent from local ob-
servations. Properties of the function -- as an entity itself -- are
discernable and can be used in a predictive fashion. Try to point this

out over and over.
Purpose:

We propose that functions be introduced early and used where
appropriate without belaboring the concept as a concept, such as hap-

pened with sets.

-61-
66



CGraphing will wermit review of the multiplication of positive

ratic.als. Moreover, the use of leltcrs to represent the coordinates

s R L T . P S o 2 o ac _

S0 oo point might make the Lransition to statements o X 3~ %a moxrc
might ; 7

meaningful.

Section 1. Coordinates:

1.1 A problem should introduce the student to the need for "local"
information, beyond geometric concepts, for the analysis of a
problem.

Lxample: An east-west road and a north-south road intersect in
froat of school. The Englich teacher lives directly =ast of
school and the librarian lives directly north of school. If both
teachers leave home at eight o'cloeck in their ecars and each
travels at a constant speed, will they crash st the schoolyard
cornery

(Note: Insufficient information to solve the problem has been
done on purpose, but this view should not be labored; merely
point out that sometimes this does happen. In the meantime, we
know that, at least, we need a coordinate system.)

Now tura to graphing proper. In all four guadrants with integer

coordinetes; with rational coordinates in the first quadrant.

Here the treatment in Introduction Lo Secondary School Mathe-

matics - Chapter 19, page 301ff should be noted; also Grade 6,
Chapter 5 (SMSG). i

The emphasis is a pedagogical way t0 involve the student. Stu-
dents enjoy some of the "games" of Grade 6, such as, "what ordered
pairs give rise to points forming a letter A?" -- or a triangle
or a square,

Treat lightly the onc-to-one correspondence between points and
ordered palirs! BShow that the coordinates For a point change as

the coordinate axes change -- both translationally and in scale.

¢
ey
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Use (a,b) or (c,d) or (x,y) to denote the coordinates cf a

generic point. (This should be an unsophisticated introduction

of variable -- no definition thereof.)

A typical problem:
(1) Given the point whose coordinates are (c,d); plot
c (i)‘

(e +2,d), (e,d +2); (e -1,4d), (e,d - 1); (5,

eteo.

1.2 Translation, Reflection, and Symmetry.
(See Grade 6, Part 1; Grade 9, Part II)

(2) Grade reflection about vertical axis (e,d) = (-c,d)
(This could be done from the point of view of "oppositing"

on lines parallel to the number line!)

(b) Graph reflection about horizontal axis (c,d) — (e,-d).

("Oppositing" again?!)

Example: Take a point (1,2) and reflect about all axes;

connect the peints; what figure results?

(¢) Translations:
First, by adding 2 +to each horizontal coordinate, then, by
adding 1 to each vertical coordinate. Now, one might try

(e,d) to (e +2,d + 1) but this could be too difficult.
(d) Symmetry - Intuitive discussion of what this means.

(e) Invariance of area under tranzlations and reflections.

For example, use this to "prove" that the area of a triangle

is

2 bh &8s follows:

(D:‘h) (b;mh)




lone

Warning: This section must be tied together with the geometry

githc. previously or later.

Graphs which lead to discovery of linear functions.

The section permits considerable practice in reviewing the addi-
tion and subtraction of positive rationals, multiplication of
positive rationals. Plotting will be largely in the firast qua-
drant, but the student will be encouraged to "discover'" what the
extension in the 2nd, 3rd, and bth quadrants might be. This could
lead to the student wanting (?) +to define 2(-x).

Example 1: Plot the points: (1,1 +2), (5,5 + 2), (%-,§!+ 2);

A 4o, 1 .
(2,2 +2), (3 3t 2), (ié'gig +2), ete,

Observe linear nature - draw line.

a ,%) on this line? Do this graphi-

cally also solve a + 2 =

Question: For what a 1is (

2

=]

Question: What are the conditions on (c,d) such that (c,d) is
on the line?

Example 2: Plot the points: (2,2 -3), (3,3-3), (1L,1-3),
( ] 2 2, L1

,i; ‘ 7
15030, (5,573, (3.8 0 3)-
Observe linear nature - draw line.

ﬂMWH‘

Question: For what a is (a,5) on this line? Do graphically:

also a =3 =5,

Write the condition of (e,d) such that (c,d) 1is on the 1ine.

6l
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"l = 5 1 . - I l :L = =
Exemple 3@ [0t the points: (1,13 +2), (53 =.3 +2), ete,

Carry out same procedures a8s above.

Otner examples shnll be used so that the student has a feeling for
(x,mx + b) 1in the first quadrant for various m and b, Bxpand
to include some negative b, and m = -1, although we cannot use

other negabtive m yet.

T+ is important that the key graphs to be known "oold" are (x,x)
and (x,-x) (or y =x and ¥y = °X if this form is preferable) .
Also the student should know the constant function (x,b) and
the vertical lines (b,y).

At this point further talk about the "opposite function" is both
possible and desirable. However, the writers may find the shift
from a linear to a planar presentation of the idea might be con-

fusing to the student. HANDLE WITH CAREL:

The writers may wish to try at this time a definition of a(-b)

motivated by points on a graph.

}/ . this point being on the
// gsf’ggsgégfs‘"natural" extension of a
)‘ié%_§gess**§ 1ine "implies"

a(-b) = -(ab).

GO0D LUCK:

_éﬁg()



Section 2. Function.

Words of Warning: It is essential that "function” be treated zcme-

guage throughout the texts.

Since this idea has not been attempted at this level before, many

versions will probably- be necessary. The followiug is one version:

2.1 Illustrations:
These illustrations (examples) are to show that the students' pre-
vious experience has often been concerned with an association of

bjects of one set to objects of another set. Indeed, this notion

Q

is so pervasive a notion as to warrant its formulation for more

intensive study in itself., The assoclations will be represented

in many ways. We shall want to return as often as possible to our

"rationale" .

(a) Sons — Fathers - an easy, natural relationship
Father — Son - an easy relationship, but ambiguous for large
families!?

(b) Persons — Weights - Here is an opportunity to point out that
the function as a whole gives information that piece-by-piece
data does not. Student might suggest:; What is maximum
weight? What is avzrage? What is range? How do weights
cluster around the average?

(¢) Person — Heignt - Similar comments as in (b) above. How do

the two functions correlate?
(d) Plane figure — Area

(1) Just the essociation - easy example without much strue-

ture.

,Eéi
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(ii)  Restrict domain to regular polygons of side 1. Use
cross~ruled paper to estimate area. Here one can
study the properties of the graph, showing rate of
growth as the number of sides increases. Is it

linear?
(iii1) Restrict domasin to squares of side a.

(iv)  Back to (i) -- investigate measure properties:

M(A U B) <M(A) + M(B)
M(AU B) = MA) +M(B) if ANB = ¢
A <B=> MA) < M(B)

(This, of course, must be done with a light intultive
touch, but it emphasizes our rationale.,)
Pulse Rate - See experiment in "Math. through Living Things".
While we cannot at this stage compute percents, we can take
"first differences" and so construct a new function
D(x) = P(x + 1) - P(x). Ask about symmetry of the pulse
funetion P.

Stacking and Overlapping Books (Migg, through Scilence,

Part 1)

[

Again take first differences: should get something like a
harmonic series.

Translations and Reflections: Take the ones from Section 1.2

Use pictures to illustrate.

(2,1) -2,1)

\Emgﬁ‘




P
o

More careful observation of function as ordered pairs:

=

Tn this discussion the main emphasis is still cn "association” as
key ingredient of function. However, it should be pointed out

that yvou really don't "know" a function until you know the ordered
pairs which constitute the association or function. Thus, we can
know the existence of a function (such as the daily noon tempera-
ture at the North Fole) without knowing the function. Whether or
not a function should be defined to be a set of ordered pairs is

still an open guestion. In any case, we should not make a fetish

out of this representation ¢« ordered pairs.

tion: Gradparent — grandchild seems natural.
Give a set of ordered pairz and ask the class to guess the rule.

Point out that ordered pairs do not have to be ordered pairs of
numbers.
Notations: Show mappings - for example on the son-father associla-

tion:

Joe's
* father

= o fathar
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Show arrow from one line to another:

0 1 2 3 i
} i i\\l I T
P 1 %\3 -

f, g, h, A, 5, T, ete.

fJoe — Mr. Jones

F - for fatherhood: F : 4« Pete = Mr. Brown

vJohn = Mr. Wilson

(Joe — 120

W - for weight: W : <Pete — 150
LJohn — 110

M - for multiplication: M=c = 3¢ (e = 0)

r - for reflection about vertical axes:
r = (a,b) = (-a,b)

Generically, £ x-flx)

or f:x-y

(y is determined from x by a rule) and reinfcrce by examples

above.

Section 3: Graphs of Functions

3.1 Review graphs of Section 1.3 - now recognize as functions. Use

graphs to solve equations and inequalities. Try 3x +2 =x + 5
by graphing f : x 2 3x +2 , g : x »x +5 and getting point of
intersection.

Check result.




(e)

height and welght relations.

Is it a function? Average weights for some height to get a
function if necessary. Any conclusion?

Fulse rate:

Area of sguare of side =a.

tossing:

Have eazch class member toss a coin 10 times and record
(iumber of heads, number of tails) = x. Now consider the
function whose value at x 1s the number of students whose
result is x.

Same data, but consider the function whose value at x 1i=s
the number of studemnts whose result i1s lesc than or egual to
x. How is this obtained from (a)?

Re-do (a), normalizing so that value at x is the fraction
of the class whose result is x. Re-do (b) in like manner.
(The idea behind this problem is to give the students =
"distribution" function which can lead to the chapter on

Probability.)
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GRADE 7 - CHAPTER 3
(The "Positive Version")

THE POSITIVE RATIONALS

This version OfrChEPEET 3 implements the view that there is a lot
to learn about positive rationals which has nothing or little to do
with their "opposite numbers" and indeed for several chapters (measure,
ratio, and similarity, probability) there is little or no need for
them. What is needed in these chapters ig an early introduction of the
notion of a mathematiral (@pen) sentence and a solution for the same.
In addition some review is needed of the algorithms for the addition
and multiplication and decimal notaticn for positive rationals. Other
new topics are order, density, inequalities in two dimensions, and
percent.

One other advantage is that this work with positive rationals as
well as the succeeding mathematics gives the student & great deal of
added mathematical maturity and readiness for the operations with

negative numbers.

From Chapter 2: Graphing and the whole set of rationals. From
Grade 6: Arithmetic operations on + and x. Also the concept of
rational numbers as quotients of integers (Grade 6, Part II, p. 369)

and a minimal introduction of solving a xn =b (see below).

Section 1. Sentences and their solution sets.

A nice introductory treatment occurs in ISSM, Vol. II, Part 2,
p. 279 which could be tasken over if it is modified to work also with
3x = 12 as well as x + 3 = 12. Take care to keep all equations with
positive coefficients and positive solutions. Keep inequalities

positive.



Reca’.l from Grade 6, Part I, p. 113 that they have seen "Find the

-
. - . e . 2 - s
rational number n which makes (the) sentence T xm = 1 true". Buz
3 - " - 1" ~11 e ”2 - L“!Y - -1 -
they may not have seen, Solve 3 X n =2 or = xXn = ig ; although

3
they have divided rational numbers {Grade 6, Part IT, p. 307FF) . Note,

Ibid, pp. 340-345 that in an "Exploration” section they consider

n X % = f and 1 pp. 349-353 they hzve had a brief treatment for
solving % X n = % . In particular the notabion of juxtaposition for

multiplicstign as in 3x = 12 will have tc be introduced.

We should also consider the remarks of R.C. Buck about our use of
equations and inequalities as tools for inference. This will be new to
the student.

Show that Ux =8 if and only if 2x = 4, or U4x =8 4if and only
if % = 2. Or, perhaps the chain of inference: Uux =8 im, .ies that
bx - 4 =8 - 4 =14 which implies that U4{x - 1) = 4, which implies
that x - 1 = 1, which implies that x = 2; and conversely. Various
routes to the conclusion x = 2 should be encouraged and suggest a
game for the students. How much logic should be included here is an

open question.

Now, from the Grade 6 background (see also ISSM, Vol. I, Part 2,
p. 195-196) the students are ready tu see that, for examples

= ¥ means 3x = 4

[}
it

is the solution for 3x = 4 ; means 4 + 3 ; 4 +

Il
=

is the solution for 2x = 1 ; means 1 + 2 ; 1 + 2 = x means 2%

IV T TR OR] =
AT POV =

means 3 + 4 ; 3 < L4 = x means Ux = 3

il
(W]
S

ig the sclution for Lx -

Ryl W¥

ete.

After some more examples try: If b # O,

o
-
w

|
o
{

b = x means bx

it
A

% is the solution for bx = a ; % means & +

as a pattern.

By



: : : hoo,
Now make the phileosophical peint that the rational 3 is the

"defining
number whose key property is that it is the solution of
primary

3x = 4. Repeat with special examples until exhausted and then with
symbols =& and b. (We should also do inequalities here. but we had
better wait until a later section when we have discussed the result

of multiplying or dividing an inequality by a positive number.)

Section 2. Arithmetic operations from the point of view of equations.

Here is a somewhat fresh approach to addition and multiplication
of rational numbers utilizing their properties a. solutions of equa-

tions. Since

Lo,

3 is the solution of 3x =4
and

% is the solution of 2y = 1,
L 1 1 o C . . - . :
3 5 should be the solution of some eguation of the form bz = a.
If 3x =L thenm 2-3x =24 --- or 6x =8
if 2y =1 then 3.2y =3-1 =--- or 6y = 3,

By addition we conclude that 6x + 6y = 8 + 3 or that 6{(x +y) = 11

=- which is an equation of the desired form, i.e., the solution of

, . 11 ] Lo 11 ! 1 :
6z = 11 which is % should be x +y, or & = 3 + 5 - Compare with

. . L1 2 1 8 ,3_1

= o o7 - _- = = PR 2L o= . = = 4+ = = = .
the conventional algorithm: 3 * 3 L 3 2 + 3 3 2 ZYE=7T

A similar, but easier, trick provides the algorithm for multiplication:

From 3x =4 and 2y = 1 we get, by multiplication (3x)(2y) = L1,
b
= g .

P
|

or 6(xy) =L, or % .

With these operations at our disposal proceed to solve some mathe-

matical sentences.



Section 3. Order -- See ISSM Vol. I, Part 2, p. 276ff.

This is a good place Lo insert some story problems Lo help

heighten the interest in ..mparing rational numbers. Here are a

couple?

1.

You are the manager of a baseball team. You need a new short-
stop. You can trade for Willie Much or Mickey Little, both of
whom appear to be equally good glove men. In previous play,

Willie Much has come to bat 225 +times and has 53 hits. Mickey
Little has come to bat 183 times and has 43 hits. On the basis
of this information, which would you choose? (An analysis of this
information, which would you clioose? (An analysis of this problem
might well include whether there is any significant difference in

these players anyway.)

You go to a picnie and are invited to Joln either of two tables.
At Table A there are now sitting 7 people with 5 quarts of
ice cream. At Table B +there are sitting 10 people snd 7

quarts of ice cream. At which table will your share of the ice

cream be the greater? (Be careful, if you compare % and fé 5

you haven't counted yourself!) Introduce the notation a < b and
its equivalent b > a. (Point out that the "big side of the wedge
is near the bigger number'.) Verify the transitive property:

a<b and b < c implies a < ¢, Use this to compare % aud

6 , oo ' 6 .
i via % > g = % = %% = Tﬁ . Compare fractions with equal de-

nominators and then with equal numerators. Derive the decision
method for % < % (ad < be). Point out that from ad < be we can

: ac.t
infer T < q-

. + ] i
Discuss density: a < b implies = <f£§—§—§l < b. Consider prob-

lens like:

Find three numbers between 2 and % .

3
P . L1 L , ) ; . 1 1
Discuss the function: x —a§ . BShow that a < b implies a > T
Show that the ray [1,o] gets squeezed into (0,1].

4=
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Prove: a < b if and only if a + ¢ < b + c.

a < b implies ac < bc and if ¢ > 0 then ac < be.

Graphing inequalities in one and two dimensions.

Do ones of the form a <x <b and c <y <4,

and ((%,y) : x+y <1l and x >0 and y >0},
and ((x,¥) + y >x > 0)

Decimals -- Compare with Grade 6, Part I, p. 59ff.

Section 4.

Motivate need for decimals by the desire to have an easy method

for comparing rationals. Return to problem of finding several numbers

2 3
between 3 and e
Bxpanded notation, using positive exponents (ISSM, Vol I, Part 2,

309-314)
Extension to negative exponents (ISSM, Vol IIL, Part 2, 386-388)
Scientific Notation (ISSM, Vol II, Part 2, Chapter 21, 379-394)
Rationals as Repeating Decimals (ISSM, Vol I, Part 2, 325-334)

Secti@n 5. Percent.

Practice computations of the form "Find a% of b". Point

out that "of" means multiplication here.




GRADE 7 - CHAFTER 3
(Alternate Version)

THE SET OF RATIONALS -

Background Assumptions:

1. BStudents have the complete set of integers at their disposal and

have had extensive work with the non-negative rationals.
2. Operations introduced thus far are:

Addition, subtraction, multipliecation, division for non-
negative rationals.

Addition and subtraction for negative integers.
3. Other ideas already introduced included:

Use of variables as names of numbers.

Informal solution of sentences (missing addend, etc.).
Ordering of integers and positive rationals.

Use of multiplication property of one for changing form of =a
fraction.

Decimal estimates for numbers named by fractions.

Simplifying complex fractions.
Rationale:

1. The negative rationals will be introduced by the opposite funetion
in order to complete the set of rationals as soon as possible. The
negative rationals have been left "dangling" since the student was

introduced to the negative integers in Grades 5 and 6.

2. If the complete set of arithmetic operations (addition, subtrac-
tion, division, and multiplication) is introduced early for the
set of rationals, these skills can be used and reinforced through-

out the rest of Grades 7, 8, and 9.




The rational number system will be "endowed” (informally) with the
familiar properties that the student has been working with in the
set of positive rationals. Special note will be made of the fact
that every rational number has a unique additive inverse, and a
unique multiplicative inverse. It is recommended that unigueness
not be proved here, only a statement that it can be proved, and
then plan to prove it in later grades when the discussion of

structure becomes more formal.

Purposes:

o

To provide a meaningful review of operations with integers and
positive rationals, and extend the operations of +, x, -, +, to
the negative rationals and to simple expressions containing vari-
ables.

To review, early in the Tth year, the basic properties of the inte-
gers and the positlve rationals and extend, informally, these pro-

perties to the set of rationals.

Section 1. The Opposite Function.

1.1

1.2

Opp: x = -x. Tie in with student's knowledge of the integers.
(Refer to Chapter 2, Graphing, Function, and Variables). There
should be little difficulty convincing the student of the exis-

tence of the opposite of % such that % X (- %) + 0. (Use re-

flections about the origin on the number line as in Grade 9, First
Course in Algebra, Part 1.)

it _H is now

Note that we should simply point out again that the
being used to indicate a new unary operation. The connection
between "oppositing" and subtracting should be made clear when

appropriate.
Establish -(-x) = x. (See p. 109, FCA, Part 1)
This will be handy to have when we discuss subtraction.

Some appropriate exercises are in the above reference.



Section 2. Properties of Rational Numbers.

2.1

The following properties are familiar and have been stated for the
positive rationals, and the integers. We will assume that there
exists operations of addition and multipliecation such that the old

operations defined previously for some of the rationals still hold

tributivity.) This section can provide a light review or arith-
metic operations with the positive rationals, combined with a

light reinforcement of the structure developed so far.

In this section some attention should be gifen specifically to the
fact that every rational number has an additive inverse. (See FCA,
Chapter 5)

Note: It is recommended that the raised dash, 3, not be intro-
duced., This is awkward notation with rational numbers in fraction
form, and the symbol is dropped soon after it is introduced. It
is suggested that the language of the students be carefully de-
veloped so that he reads (-3) as the "negative of 3", "the
opposite of 3", or "the additive inverse of 3". The student
should be discouraged in the beginning from reading (-3) as
"minus 3" or '"negative 3". "Minus" tends to confuse the issue
with the operation of subtraction, while "negative" tends to

become confusing when variables are introduced.

Section 3. Absolute Value Function.

3.1

Definition and practice with definition. f : x —?{ x it x 20
(See FCA, pp. 113-116) x A x <0
Distance between a rational number and O on the number line is
the absolute value of that number. (See FCA, pp. 113-117)

This will be helpful in establishing the "sign" of the number

which is the result of an addition.

~78-
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Section 4. Addition and Multiplication of Rational Numbers.

4,1 Review addition of Integers. (See FCA, Part 1, pp. 121-129. Also.

5.3

Grade 6, Chapter k4, pp. 193-236, and Math. For JHS, Vol. 2, Part 1,
pp. 12-21)

Addition of Rational Numbers as a natural extension of the addi-
tion of integers as done on the number line in Grade 6.

Review addition of positive rationals, then do addition of all
rationals. Polnt out that with absolute value we can now dupli-
cate "algebraically" the "arrow" routine on the number line which
becomes tediocus for rational number addition.

Discuss the additive inverse of a rational number, graph on the
number line, and informally convince the student of the existence
and unigueness.

Multiplication of Rational Numbers

Develop first intuitively as in Math. For JHS, Vol. 2, Part 1,
pp-. 34-38. Also consider using rate of temperature increase or
decrease, or increase and decrease of the area of a rectangle.
Alsc use graph y = -2x +to motivate multiplication of negative
rationals. Use absolute valuc n~ 3tion. (See FCA, Part 1, pp.
146-147)

Prove: -a = (-l)a (pp. 155-156, FCA, Part 1) for all rational
numbers a.

Discuss and graph on the number line the multiplicative inverse
of the rationsl numbers. (See pp. 162-164, FCA, Part 1) The
multiplicative inverses of -1, and 1 should have particular
attention.

Note: Throughout all of these discussions rational numbers in
fraction form should be represented ”='%" rather than :% 5

or f% . We can handle these situations later.
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Section 5. Division of Rational Numbers.

5,1 Definition of division. "a divided by ©b", means a times the

muitiplicative inverse of b, b # 0. (See FCA, Part 1, pp. 223-

.
P

227)

i . , L. =5 5

This definition should cause no trouble with 5 or Ef? since
we will have established in the previous section that thé multi-
pilicative inverse of <15 is - %% -

5.2 TProve: = 1 for all rational numbers a # C. In particular we

o

need ;% . 1  to simplify complex fractions. (See MTHS, Vol. 2,
Part 1, p. 45 for exercises, and FCA, Part 1, pp. 224-229, also
pp. 234-241)

Properties of the fraction form of the rational number. (FCA,

Part 1, pp. 233-235)

Section 6. Bubtraction of Rational Numbers.

6.1 Review subtraction of integers from Grade 6.

Definition: a - b means a + (-b). Be sure to make clear that

here we have a double use of the "-" sign. (See FCA, Part 1,
p. 210)

Remind students of the statement -(-x) = x developed in Section
1.

Establish -(a + b) = (-a) + (-b).

Practice in subtraction as in FCA, Part 1, pp. 211-218.

1,
N

Subtraction in terms of distance on the number line as in FCA,

Part 1, pp. 219-222.

O™
()
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GRADE 7 - GHAFTER:S%
(Alternate Version (continued))

THE SET OF RATIONALS:; SOLUTION OF MATHEMATICAL SENTENCES

Background Assumptions:

1. Multiplication, addition, division, subtraction or rational
numbers.
2. Ordering of integers and of positive ratiomnals.
Rationale:

1. This chapter will allow the student to use his newly acquired
gkills in operating with the rationzls while he learnz a little
about the process of finding solution sets of mathematical sen-

tences.
2. Properties of order and equality will be discussed and reviewed.
Purposes:

1. To prepare for a formal approach to the solution of eguations and

inequalities.

2, To review decimal notation for rational numbers and to discuss the

density of the rationals.

Section 1. Decimal names for Rational Numbers.

1.1l Expanded notation using positive exponents. (Is8M, Vol. 1, Part
2, pp. 309-314)

1.2 Extension to negative exponents. (ISSM, Vol. 2, Part 2, pp. 386-
388)

1.3 Sclentific Notation (ISSM, Vol. 2, Part 2, Ch. 21, pp. 379-394)



1.4 Rationals as repeating decimals. (ISSM, Vol. 1, Part 2, pp. 325-
334)

Section 2. Ordering the iationals.

2.1 Basic properties of order. (9H, pp. 186-196)
Fromr notation: a b 1s the same as b < a.
"Comparison" property (9H, p. 191)
Transitive property (9H, p. 193)

2.2 Addition and Multiplication properties of Order.

See FCA, Part 1, pp. 187-190, and pp. 195-197.

Prove: 1if x # 0O, then % = 0.

2.3 Order of rationals.

Discuss order of rationals on the number line.

2.4 Density of rationals.

Section 3. Introducing percent.

3.1 "9%'" as a function. Define %: x — —— . Hence the symbol %

100
will mean "multiply by T%S " or "multiply by .0L".

3.2 Practice computation. "Find a% of b", etc.

Section 4. Solutions of Equations and Inequalities.

4.1 Restatement of properties of equality and order as in FCA, Part 1,

pp. 204=-205,
4.2 Solutions of equations and inequalities of the form
Xx +a=5b, ax =b, ax +b =c¢, and ax + bx = c,
and inequalities of similar form.

Informal use of the properties of rational numbers, properties of
equality, and properties of order. The notion of equivalent sen-

tences should be started here, but not developed in full.
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Graphs of solution sets should be done also.
Applications to verbal problems and simple translations required.

Ample practice with rationals in fractional and decimal form

should be provided.

I
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GRADE 7 - CHAPTER L

CONGRUENCE (REPLICATION OF FIGURES)

Background:

Congruence of segments, # Lles, triangles, copying, etc.: Grade 5,
Part I, Chapter 4. Measure of segments and angles: Grade L4, Part II,
Chapter 9; Grade 5, Part II, Chapter 7.

Purpose:
1. Review above material.
2. Introduce SAS and ASA motivated by the corresponding copying prob-
lem (SSS to be reviewed).
3. Give practice in making elementary deductions based on the tri-
angle properties.

4. Begin to refine the vague idea that "congruent figures can be
made to coincide" by introducing specific types of motions (slide,
turn, flip),

(a) physically,

() intuitively,

(e) 1in a grid or coordinate framework.
Retionale:

We continue the process of structuring or modeling space, begun
in Chapter 1. We conceive space - not merely as structured in terms of
the points, lines and planes that fill up every part of it but as belng
"homogeneous'", as being everywhere the same. This vague language indi-
cates a key property of Buclidean geometry (and incidentally of the

classical non-Euclidean geometries): Figures can be copied freely in

space. The concept of replication is studied formally in this chapter
for triangles, but its wider application is indicated at least *.. .i-

tively by exercises in which other types of figures appesar.

8l
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A related concept: Ruler and compass procedures enable us to
replicate the most fundamental figures, particularly triangles, but
they yield little for replication of figures in general. For this pur-
pose we need the thread of motlons (or ispggﬁries). A motion operates
on any figure to produce a congruent figure. We start to weave this
idea into our structure by introducing thre= typss of isometry: +trans-

lation, rotation, reflection (in a line?).

1. Congruence of segments, of angles.
Review and refine, emphasizing that two segments (or two aﬁgleg)
are congruent if one is a copy of the other. Briefly review the
concrete process for copying segments and angles by ruler and
compass .
Connections Between Congruence and

Incidence Properties
Exercise 1l:; Given AB = BC, can A, B, C be on a line? Must
A, B, C be ona line? Can A, B, C be in a

plane? Must they be in a plane? Why?

Exercise 2: Similarly for. AB = BC, BC = CD.

Exercise 3: Similarly for AB = BC, BC = CA.

Exercise 4: Similarly for AB = BC, BC = CD, CD = DA.

Exercise 5: Similarly for AB £ BC, CD = DA.

Exercise é: Suppose AB = CD and A, B, C, D are on one line.
Must AC = BD? Can it? When?

Exercise 7: Suppose AB = CD and AC = BD. Can A, B, C, D be

on a line? Must they be?

oo

Exercise Suppose O, A fixed and OA

,8§,
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Try similer problems for congruence of angles, e.g., involving

/AOB = /BOC Z ZCOA, etc.

Division of segments and angles into two congruent parts.

Define midpoint of a line segment and angle bisector.

Exercises: A set of finger exercises similar to those given
in Section 1.
A set of paper folding exercises along the lines

of the following:

Give 5 triangles to be used as patterns (make

them rather large). They might be an acute scalene
triangle, an obtuse scalene triangle, a right scalene
triangle, an obtuse isosceles triangle, and an equi-
lateral triangle.

Note: They are not familiar with this terminology.- Just give

them as a "random'" set of triangles. Label each triangle by a
single capital lettzsr in the interior of the triangle
(A,B,C,D,E).

Directions:

(1) Make two copies of each of thesc (by tracing, or by ruler
and protractor or by straight edge and c@mpasses)g Label
the interior of each copy by the letter corresponding to the

given figures and cut the triangles out.

(2) A median of a triangle is & line segments that joins a vertex
4 _ .
of a triangle to the midpoint of the opposite slde. How many
medians does a triangle have? Take one of your triangles
that is labeled A and follow these steps:

(a) Fold to find the midpoint on one side. Do not fold the
whole paper. Just pinch the paper to indicate the mid-
point.

(b) Now fold the triangular region to show a median of the

triangle.



i
!

{¢) Repeat (a) and (b) for each of the other two sides of
the triangle.

Now follow these three steps for each of the triangles

lsbeled B, C. D, and E.

(

) An angle bisector of a triangle ...

s

{continue in manner of (2))

Note: Given the background of the students, it does not seem
advisable to fold the altitudes and perpendicular bisectors

of the sides at this time.

3. Addition Property for Segments.

Suppose AB = PQ, BC = QR, B 1is between A and C, and Q is
between P and R. Then AC = PR. (Note: betweenness was intro-

duced in Chapter 1.)

R
e ; *—7H—2»
A B ¢ 7 @
P
Motivated (a) by using sticks; {b) by applying compasses to test
AC = PR in & drawing.

Exercise: Suppose AB ¥ FQ, BC = QR. How are AC and PR

related?

(Accept answers using sticks (pencils), drawings.)

Another version: Suppose AB = PQ, BC = QR. Must AC = PR%
Can AC be greater than PR? less than PR?

Query: Maybe last problem should be motivation for the topic.

Warning: Additivity is a simple property and intuitively very
familiar; i1t is merely one part of the geometrical postulate

"If equals are added to eguals, the sums are equall)’ Don't let its
essential simplicity get lost in the verbiage. Maybe réfer to the

underlying idea as "addition of sticks".
:
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Exercise l: 1In figure, given AB = CD, what can you conclude?

(a) —f——— —e———8
C

B D

(b) & =; — _ — l .

Exercise 2: 1In figure, given AB = FG, what can you conclude?
>—i e i} —¢
A B C D B F G
(Note: make CD = DE and BC = EF 1in the diagram but do not
make this given information to see if the students are inferring

more than betweenness from the diagram.)

Exercise 3: Similarly given AB = BC, BC = tDh, CD = DE.
[ i'fi } -} }—8
A B c D E
Exercise 4: Similarly given AB = CD.
B C
A D
Exercise 5: Similarly given OA 2 OA', AB = A'B', BC = B'C'.

¢t B A' O A B C

Subtraction Property for Segments.

, AB
igs between P and R. Then EE

Suppose AC

e

)

2 PQ, B is between A and C, and Q

R

QR. Treat lightly!

L

Exercise l: In figure, given AC = BD what can you conclude?

P ——————o
D A B c



Exercise 2: What can you conclude from (information indicated

figure?
r A B
[ o & —~ - —9
A G oD
Exercise 3: What can you conclude:
( Y A
G sment. e B S
A B C D B
Exercise 4: What can you conclude?
o N
@ | e
A B c D E
Ixercise 5: The same for
YT Y
—f o o o |
A B c D E
Exercise 6: The same for
C T
>———f—o—| s+
B! A 0 A B

(Note: This might suggest reflection of the line in point O.

Will the students see it as the same exercise as Exercise 37)

Addition and Subtraction Property for Angles.

in)

Make this a parallel development to Sections 3 and 4; only do it

in one section.
Statement of Addition Property for Angles.

Suppose /ABC = /PQR, /CBD = /RQS, BC is between BA and
Ei, and é% is between Qﬁ and @%. Then /ABD =

= /PQS.
Treatment similar to Sections 3 and 4.

Note: Betweenness of rays is to be introduced in Chapter 1.



Vertical Angles.

Try to use definition in terms of opposite ray. Also stress other

form (see MJHS, Vol. 1, p. 398).

Query: Introduce opposite ray in Chapter 1 or here?®
Geometric Property: Two vertical angles are congruent.

Motivation: Construct a pair of vertical angles on cardboard, cut
out the angular regions and try to make them fit. Use scissors or

sticks to form dynamic models of vertical angles.

Give practice in picking out pairs of vertical angles, %*}

Example: Find angle vertical to a giv ' n one. How many

pairs of vertical angles are formed?
The Concept of Corigruence.

Review the concept for figures in general. Find examples in
classroom; dou't restrict to planar figures. Please make
examples of wire, cardboard, etc. Include some reference to
modeling: what 1s an exact copy; under mass production do we get
exact copies. Might refer to such things as printing presses,
boxes of screws, printed T.V. circuits, automobiles, etc. See
also the chapter on Empirical Validity in Geometry in Basic Con-

cepts of Geometry by Prenowitz and Jordan (publisher, Rlaisdell).

Exercise: Given a set of figures

- paco PV

(a) Find pairs which are congruent.

(b) Discuss how to make them coincide by slide, turn, flip.

Include in this exercise examples that are not triangles, some

wire models, some non-planar cardboard figures, etc.

Note: Possibly use color and keep examples simple.
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Congruence of a Figure with Itself.
Stress identity congruence as well as non-identity.

Work with isosceles triangles, equilateral triangles, rectangles,
circles, squares, hearts (cardioids to you!), scalene triangles,
regular polygons. Include some unbounded figures, friezes, etec.,

wall paper patterns; tilings of a plane.

4%

Refer to axes of symmetry; illustrate and discuss in class:

reflection symmetry, rotation symmetry, translation symmetry.

Exercise: Find the symmetries of each of the letters of the
alphabet. Perhaps standardize by using the capital
letters on a typewriter. Students could even group
the letters according to their symmetries. Bee manu-
script "Mathematics of the Alphabet" submit'ed by
Ranucci to SMSG Panel on Supplementary Publications.

Exercise: List the motions (symmetries) of a simple figure, e.g.,
equilateral triangle, rectangle, square. What happens
if you combine two of these motions, that is, follow
one by another?

Congruence of Triangles.

Review and refine definition; emphasize correspondence between
sets of vertices. Thus AABC = APQR means AB, BC, AC,
(ABC, ... = PQ, QR, PR, ZPQR, ... .

Practice in finding corresponding parts when certain ones are

given.
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10.

11.

The 8855 Congruence Property of Triangles.

Use a written set of class exercises based on the construction of
triangles given the three sides (See Grade 5, Chapter L, pp. 19k4-
195). Have students compare results and see the congruence of the

triangles obtained.

State and discuss the 3885 congruence property.

Develop the construction for the bisector of an angle.

Exercises; What can be deduced from the given figure?

reise:

=3
5
o

Exercise: Construct the three angle bisectors of several gilven

triangles.
The SAS Congruence Property of Triangles.

Use a written set of class exercises based on the construction of
triangles given two sides and the included angle. Have students
compare the results and see the congruence of the triangles
obtained.

State and discuss the SAS Congruence propearty.

Exercise: What can be deduced from each of the following figures?

JAAN




Deduced Property: If two sides of a triangle are congruent then
the oppogite angles are congruent.

12. The ASA Congruence Property of Triangl-s.
Use a written set of class exercises based on the construction of
triangles given two angles and the included side. Have students
compare their results and see the congruence of the triangles ob-
tained.

State and discuss the ASA Congruence Property.

Exercise: What can be deduced from the given figure?

}“* | o

Include some where the side is not included:

Deduced Property: If two angles of a triangle are congruent then

the opposite sides are congruent.
13. Motions by means of a Co-ordinate system.
13.1 Sliding (translation)
Discuss sliding as a physical process. BSlide a wire triangle on
a table top. Try giving different directions that still cause a
slide. Build up to the "neatness" of co-ordinatizing the situa-
tion.
Exercises: A series of problems with a given finite point set and

a mapping that determines a translation.

Example:
A = (;;l)g B = (l;?—); C = (3;2)
Map A—>A', B-B', C-C if

(a) (x,y) = (x+ 3,V¥)

(b) (x,y) = (x,y + 1)

_93=

a8



(e) (tyy) = (x =3,y +h)

For each of these, plot A, B, C and A', B', C'.

Draw AMABC and M'B'C'. How arz these triangles related?
Have the students orient one trisngle and see if the orientation

(see Chapter 1) has been changed.
13.2 Turning (rotation)

Discuss turning as a physical process. Turn a wire triangle on
a table top. Try giving different directions that still cause

a turn. PEmphasize a Tixed point for each turn.

Exercises: A series of problems where the students are given two
finite point sets that are related by a rotation.
Have them plot the point sets and draw the figures.
Let them try to find how the second point set was
derived from the first.

Examglgz

(a) A" = (-1,-1), B' = (-1,-2),
C' = (_31_2)

A=(1L,1), B=(1,2),<—=(p) a (-1,1), B' = (-2,1),
¢ = (3,2) ¢t = (-2,3)

(e) A' = (1,-1), B' = (2,-1),

C' = (2§=3)

For each of these, plot A, B, C and A', B, C'.
Draw &MABC and M'B'C'. How are these triangles related?

Have the students check to see if the sense of orientation has

changed. Have students locate fixed points of each turn.
13.3 Flipping (reflection).

Discuss flipping as a physical process. Flip a wire triangle on

a table top. Try choosing many different lines for the axis of
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the flips. Discuss the possibility of doing this by coordinatiz-

1

ing the plsne in a "neat "manner (make the axis a coordinate

Exercises: Again use a series of problems where only the
vertices are actually transformed and then the

figures are drawn:

(a) (x,y) = (x,-y);
(b)  (x,y) = (-x,y);
(e) (x,y) = (y,x);

(@) (x,y) = (-y,-x).

Note the change in orientation under this transformation.
Perhaps give a brainbuster which involves a slide reflection.
Possibly include a problem where axis of reflection is x = 2

or y = -6.

:
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GRADE 7 - CHAPTER 5

MEASURE

Purpose:

To introduce a metric for geometry. To review and extend the
concepts of linear measure and angular measure and extend to arc
measure. To work with the equivalence of polygonal regions within

a plane on a non-numerical basis.

Rationale:
1. To begin further work with measure concepts early in the 7th grade.

2. To provide the tools to move from congruence to similarity.

3. To begin to deve_cp the interrelations of measure and congruence

although this requires the real numbers for its full development.

4, To begin the Pythagorean Property for use in several other chapters
although it is hoped that this property will be re-investigated as
the students develop irrational numbers and the algebraic skills

for some alternate proofs of the property.

Background:

in Grades 4, 5 and 6. The terminology of nonmetric geometry. Con-
gruence of segments and polygonal regions. They have NOT had irrational

numbers of any form (V2 ,+/7,x, ete.)

Section 1. Linear Units of Measurement.

1l.L Linear Units of measurement
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A careful redevelopment of what is reant by linear units of mea-
surement. The last time this was done was in Grade L, Chapter 9.
(It was reviewed briefly in Grade 3, Chapter 4, pp. HOT-409.)

The concept needs to be redeveloped along the lines of MTHS Vol. 1,
pp. 249-251, 260-274 or ISSM Vol. 2, pp- 1-32. However, much less
detail and expansiveness should be necessary due to thelr back-
ground. Be sure to use the congruence concepts developed in
Chapter 4. Extend the concept of congruent segments to the idea
that congruent segments have equal measure. Discuss the idea

that every line segment has a measure. Tread (but lightly) on
the idea that this measure often is a npumber familiar to them,

but that the measures of many line segments are numbers which
they have not studied yet. Until they meet these numbers, they

can only give such measures by approximation.
Applications of Linear Units.

Use of concept developed in 1.1. See the same reference for

many ideas. Add such things as the amount of wire needed to make
a 3—inch cube, ete. Might end with = "discovery' exercise for
the "perimeter" of a circle. Use some additivity of segments by
measure (see last chapter for additivity using congruence). Per-

haps some WST exercises on the Archimidean Property (see below) .

Consider the number line (with or without negative numbers) :

0

|l o
N wew
o)

Somewhere on this line appears a point with the coordinate %%5 .
Even though we cannot place it on the number line as we have N
started it above, let us think about it on the line and answer

some questions:



(a) Continue marking off congruent unit segments from zero
and label the pointes they determine with the numbers
1, 2, 3, 4, 5, ete. What is the number on the point
Just before %%5 7 Just after it? Which is closer?

(b) Start again with a segment of half the length of the

unit. BStep it off on the number line and mark the

successlive steps 1, 2, 3, ete., thus:

S 5 L5
segment P o3 2 3 b o9
] I I I ] I
Unlt Segment i O 1 2
4 . : . : 172 o
What is the label on the mark Just before ?ii T Just

after it%? Which is closer?

(¢) Repeat the process of (b) with a segment which is 0.1
the size of the unit. Again, with a segment 0.01 the
length; and then 0.001 +the length.

1.3 Linear measure and circles.
A brief review of circles and segments associated with circles
(see Grade 4, Chapter 5 and Grade 6, Chapter 9). An initial

development of the circumference of a circle and the number =

(see MJHS Vol. 1, pp. 491-500 and ISSM Vol. 2, pp. 181-187).
Exercise: (Please get some real factsi)

The park ranger stated that this stana of redwoods has an average
diameter of 4.2 feet when measured 6 feet from the ground.

The Colonel Molotov Tree has a diameter of 8.3 feet when measured
in the same way. Lots of "modeling" involved here. Might have them
find such things as: the average circumference of the trees; the
lengths of fences (to thwart souvenier hunters) if the fences are

5 feet from the trees; the lengths of semi-circular walks around

the trees, etc.

-g8-
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Sectior 2. Angular and Arc Meas.re.

2.1 Anpngle measure.
This has been carejg;ly developed in Grade o, Chapter 7 and re-
viewed slightly in Grade 5, Chapter 3. The development at this
time is essentially review but important. The vocabulary for
angles should be introduced (acute, right, obtuse). For refer-
ence, see MJHS Vol. 1, pp. 287-295 or ISSM Vol. 2, pp. 75-79,
90-94.
Use some additivity of angles by measure.

2.2 The sum of the measures of the angles of a triangle.

This has been introduced as a property in Grade 6, Chapter 3.
It is needed for further work this year and should be restated
and its implications more carefully investigated.

Bxercises:

(1) An obtuse triangle is a triangle with one obtuse angle.

What can you say about the masures of the other angles?

(2) If the vertex angle of an isosceles triangle is 839,
what is the measure of each of the other angles?
(3) If one angle of an isosceles triangle is ?Oé, what is

the measure of each of the other angles?

(4) If one angle of an isosceles triangle is lQhD, what is

the measure of each of the other angles?

(5) An acute triangle is a triangle that contains three acute

angles. Could an acute triangle have two angles of EDQ

and 359?

If one angle of an acute triangle is 150, what can you

—
o
S

say about the measure of each of the other angles?
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(7) A right triangle is a triangle that contains one right

angle. Could a right triangle contain two right angles?
Could a right triangle con ~in an obtuse angle? What can

you say about the other two angles of a right triangle?

() If one angle of a right triangle is 23°, what is the

measure of each of the other angles?

(9) What is the measure of each of the angles of an isosceles

right triangle? An equilateral triangle?
(10) Pind x: (Note: +they do not have linear pairs yet)

(2)

(b)

2.3 Arc measure and central angles.
The terminology of arc and central angle has been started in Grade
6, Chapter 9, pp. 567-576 and is reviewed in MJHS Vol. 1, pp. 481-
486. The concept of an arc degree is new and might be developed
in che manner of MJHS Vol. 1, pp. 4B87-495. Be sure to introduce

semi-circles, quarter circles, ctcc.



Teacher suggestion for Sections 2.4 and 2.5:

2.4

Exercise:

= @

Make a circle nailboard by placing nails arocund a circle every 10
or 15 degrees. Use rubber bands or string to help the students

gee inscribed angles and the invariance of measure under certain

A triangle inscribed in a semi-circle.

This section might be a set of exploratory exercises of this

nature:

Given: ABC inscribed in
circle O with O
lying on AB, (B = 4o°

Problem: Find the measure of ZC.

Solution:
x + x + 40 + 40 = 180
2x = 100
x = 50

ZC =x + 40 = 90
Repeat this basic problem for many different /B's. Try to get
to a student statement of the property: A t:iangle inscribed in

g semi-circle is a right triangle.



-
2.

5

Begin with a set of class exercises to "discove. the measure of

an inscribed angle ‘n terms of its intercepted arc.

Example Exercise:

(1)

(2)

Draw a circle and with z protractor draw a central angle AQRB
such that AB = 40°,
Choose any point C on the circle and draw ZACB. Measure

ZACB with your protractor.

Choose aty other point D on the circle and draw ZADR.

i

Measure ZADB with your protractor.

Repeat this procedure for at least four other points on the

cirecle.

Be certain to crystalize what is meant by "an inscribed angle."

Property: The measure of an inscribed angle is one-half the mea-

sure of its intercepted arc.

Discuss that this is not true if the vertex of the angle does not

lie on the circle.

Exercises:

(1)

Find x:
(a)

etec.
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(6)

‘Example:

Is /B = /D? Try to explain why

or why not.

D

il
ZABC is an 1Inscribed angle and ABC 1is a semi-circle.

What is the measure of ZABC?Y

Draw a circle O and a diameter RS of this circle. If

A is any point on the circle, what is the measure of /RAS?

Given: circle 0O with
diameter AR

£e = 110°

Find the measure of ZACO

and JBOC and ZACB.

Draw a 2 1inch line segment. Take a piece of cardboard with
a corner (right angle) and use it to draw as many right tri-
angles as you can with the 2 1inch segment as the hypotenuse.
(Note: theAthgtéﬁuse of a right triangle is the side oppo-
site the right angle.)

o
H

or

What do you observe? (probable answer: it gets crowded!)
{(hopeful answer: the third vertex lies

on a circle.)



Suggestion:
The problem might profits" Ty be done in two stages:

(1) Draw the right trisi_.es. What do you observe? (it
gets crowded!)

(2) Repeat as in (1) but do not draw the right triangles.
Just mark the position of the third vertex. What do

you observe? (The third vertex lies on a circle.)

The Pythagorean Property and Applications.

The background limitations here are formidable. However, this
toplc has been developed in MJHS Vol. 2, pp. 192-205 or ISSM
Vol. 2, pp. 335-343.

In each of these references, the background limitations are
essentially the same as for this chapter so the developments
might well be comparahble if these have been successful. Some
additional applications are listed below (the references contain

many good ones, 1too).
Exercises:
(1) Find =x:

(a)
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Note: The problem 2B probably cannot be solved by the
students. Yet there is a unique solution. Might some
find this interesting?

(3) A rectangle is a quadrilateral with four right angles. If
ABCD is a rectangle and AB = CD = 7 and AD = BC = 2k,
find AC and BED.

(L) TIf ABCD 1is a rectangle and AC =25 and BC = 15, find
the perimeter of ARCD.

Section g. Equivalence of Polygonal Regions.

Some definition for equivalence must be given. Keep it very
simple. Possibly mention the relation to area measurement, but
stress the idea that one region could be used to exactly "cover"

the other.
4.1 Equivalent region building.

Intuitively develop feeling of a polygonal region in a plane, and
discuss what is meant by two polygonal regions being equivalent

but not necessarily congruent.,
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Develop the following problem carefully in the written text so that

the student learns the rules of this particular set up.

Take four congruent equilatersl triangular regions. Lay them on
your paper to form a polygonal region following these rules:

(1) No triangular regions overlap.

(2) Each triangular region has a common side with at least one

When you get a polygonal region, draw its boundary on your paper.

Then, try to find another polygonal region formed by the same
rules that is not congruent to the first one. They should get:

— 5 A

These are the only three such non-congruent regions that meet the

requirements. Stress that the regions are equivalent.
Exercises:
(1) Repeat the example problem using 5 such triangular regions.
(2) Repeat the example problem using U4 congruent square regions.
(3) Repeat the example problem using 5 congruent square regions.
Suggested extensions for those who find these intriguing:

(a) use 6, 7, 8, ... triangular regions,

(b) use 6, 7, 8, ... square regions,

(e¢) use some number (3,4,5,...) of regions which are con-

gruent regular pol;gons of mor. sides.

Challenge Problem:

Use 6 congruent square regions to form eguiralent polygonal

regions in the plane by following these rules:

(1) No square regions overlap,




o

o

P
[N
S

Each square region has a common side with at least one other

sguare region.

Pamn
LY

) No four sguare regions have a point in common.

) her 'in a row."

-

(

This is the challenge: Find all such non-congruent, equivalent

are no more than four square regions

i

polygonal regions (there are more than 20) and find a method
of convineing yourself that there are no more.

Note: There are 25 reglons that fit the above rules (I think).

-

onus: Exactly 12 of your above regions can be cut out and
folded along the common sides of the square regions to get a cube.

ind them.

53]

Decomposing regular polygons.

Establish the intuitive feeling that every regular polygon has a
"center" and that by Joining this center to each vertex, the regu-

lar polygon of n sides is decomposed into n  congruent iscsceles

triangles.

Exercises: Give traceable patterns of regular polygons with the
centers and the line segments joining each vertex to
the center. Have students cut these out and arrange

them in a line. That is,

See if they recognize that the eguivalent region so

ormed is always elther a parallelogram or a trape-

zoid. See if they can generalize to a regular poly-
gon of Y1 or 72 sides.

Forming rectangular regions.

Discuss the "niceness" of measure as related to rectangular re-

gions (remind them of approach to finding ares; i.e., covering

with square regions).
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Exercises: Decomposing and doubling to get rectangles. Use

scissors, encourage tracing regions, think freely.

(5) Same ideas can be done with other familiar figures and with

some that are not common such as a cross.
Note: Two possible Challenge Sections.

(1) Decomposing regions with various goals; e.g., any triangle to
a parallelogram. Some of these could be extremely challenging

and certainly non-trivial.

ERIC Lot
443
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]

) Develop some of these same equivalence ideas for spatial
regions.

£

Section 5. Greater than (in a geometric sense, for segments, angles,

planar regions, spatial regions.

Build situations where one set is a subset of another set of the
same type. OSome exploratory development leading toward the prin-
ciple that the measure of a subset does not exceed the measure of

the superset.

Exercises:

D A C
I R l
| ] |

(1) Segment AD is a subset of CD.

(2) The .aterior of JFVG is a subset of the interior of /ZMVN.

T
Fr——— — G

D E

-AA, = = —————— o - s = H
(3) Polygonal region ABCDEFGHA is a subset of curvilinear

region ABCFIHA.
(4) TIf a sphere is inscribed in a cube, the spherical region is

a subset of the cubical region.



GRADE 7 - CIAPTER 6

RATIC AND STMITARITY

To introduce the jidea of not-necessarily-equivalent-but-metrically-
related figures where one is a uniformly enlarged copy of the other--
similar figures. To extend the idea of ratio and proportion. To relate
the concept of geometrically similar figures to the more common usages
in which the similarity may nct be exact. To generalize isometry trans-

formations to similarity transformations.

Rationale:

This chapter continues the process of structuring or modeling

physical swace begun in Chapter 1 (Nonmetrical Properties) and con-

tinued in Chapter 4 (Congruence and Replication) and uses the metric
(

properties developed in Chapter 5 (Measure). Experience with physical
kig

objects suggests a generalization of congruence in which one figure is

a magnified "copy" of another. This notion is idealized (modeled) in

the concept of similar figures -- a figure which is a "uniform" en-
lar, =ment of another. The general definition (barely hi te in the
chapter) requires that the figures be related by a 1-1 <o - _. . >ndence
which multiplies all distances by a fixed constant. Such correspon-
dences, called similarity mappings, form a generalization of the con-

cept of motion (or isometry).

Background .Assumptions:

The concept of congruence; congruence of angles; some sufficiency

theorems for congruence of triangles (SSS, SAS, ABA); the concept of
1

inear measure; planar co-ordinate systems.
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Section L. Magnification and Contraction:

Note: This section is to be exploratory -- the physical examples

and finger exercises are not to be developed or discussed at great
d: th. The geometric term "similarity'" should not be used. The

student should be allowed and encouraged to range widelv within

tion or contraction has occurred. Rely strongly on the students'
intuitive beliefl that line segments will be transformed into line

segments.

1.1 A discussion of blowing balloons (with pictures on them), project-
ing a =lide (on a surf-.e perpendicular to the projector), seeing
through a telescope, microscope, and binoculars, taking a picture

with a2 camera.

Exercises: A series of problems involving dilatation from a focal
point by drawing and using a numerical property (e.g.,
directions "go twice as far" or "go half as far".)
These should contain some pointwise dilatations for
straights (and curves?) and some closed polygons.
Students may be working in two- or three-space
-- don't ask. A sample problem in detail occurs at the

end of this outline (Apvendix A).




(b)

it - i1
twice

' . : -
"twice' Thalr"

(b)

(4) Might include a problem using focnl polnt but no numeri-

cal property to show change in shape. For example, show =a
completed dilatation that was done incorrectly and have
students explain what was done wrong and what happened
differently as a result.

(5) Question for thought: do you see your pictures in the

exercilses as being in two-space or three-space?

1.2 A continuation of the above ildeas by introducing a co-ordinate
system to the plane and vsing the origin as the focal point. The
written discussion might develop this very car~=fully for one prob-

lem. DNice example of adopting a model for neatness and clarity.

-112-
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xercises: A series of problems involving dilatation by use of co-
ordinates and a numerical property (e.g., directions
"double each co-ordinate' or "halve each co-ordinate").
Be sure to use some ratios sveh as 3 for rational
number practice (but only on positive numbers at this
point). A sample problem occurs in detail at the end

of this outline (Appendix B).

] . _ - _~ ""double" » . - )

(L) A =(1,-1), B=(1,3 .5 M=(2,-2), N = (2,6)
C=(2,0 = D= (4,2) R = (L,4), P = (8,4
Plot and draw ABCD Plot and draw MNQOP

by

) P
D 7
I
(2) A =(1,3), B=(-2,2), C = (0,-1) oouble"

wl

:P‘—_:E;

2,6
- g,

Pan ey S
ﬂ”u _t'\_/

3
-h,h)
= (0,-2)
“lot and draw EFG

o0

Plot and draw ABRC

Ve

(3) Might include a problem where only one co-ordinate is doubled

to show change in shape. That is, double just the y co-
ordinate and see the elongation.

(4) Might give two point sets where the points of one have been
reflected in the origin and doubled to get the other. Have
students graph cach aud see what happens. See if they can
discern the minner in which the second point set was derived
from the first.

(5) Check to see if the students recognize the focal points by
having them draw rays from the origin through +he vertices

for a problem.




(6) Might have students draw some corresponding pairs of line

I

gments in the similar figures and .ry to compare their

relative positions and sizes.

Section 2. The Concept of Similarity:

st1ll not definitive but is a more refined

i

Note: This section is

exploration.

]
”._J

Begin trying “» refine the relationship of the figures worked with
in the first two sections. 8See if students can recognize similar
and non-similar figures and verbalire what they are looking for.

Give some emphasis to what i1s not sufficient for this relationship.

Exercises:

(1) Ceorge's family moved into a new house and George told his
friends: "My new bedroom is similar to the old one except
that it is twice as big and has three windows instead of two'.
Luw 18 he using or misusing the geometric idea of similarity?

(2) Sarah said: "All people are similar: each has a head and two

it -

arms and two legs". How was she using the word "similar"?

(3) 1Is what a person sees with corrective eyeglasses similar to

what he sees without his glasses?

(4) A science teacher tells his class that a certain apparatus
involving marbles and wires is similar to the solar system,

Is it similar in the geometric sense of the word?

{5) @Give some sets of figures where the student is to try te
find similar figures and explain why he thinks they are
similar. Make some "~lose” enough to get arguments. (Build
the idea that we need sometining more than the eye or our
rulers.)

=11h-
Q

LRIC 119

Aruitoxt provided by Eic:



Fa
™
S—

Compare any two rectangles o they necessarily have this
similarity relationship we are locking for? (To build the

iuc. that angle congruence is not enough.)

(7) Compare two equilateral quadrilaterals that are not congruent
o they have this similarity relati-nship? (To build the

idea that "doubling' sides 1s not enocugh.)

2.2 Further refining of this similarity relationship through a compari-
son to congruence (developed in Chapter L4) and equivalence (de-
veloped in Chapter 5). Develop a need for properties of rafio and
proportion. Begin erffort tco get a definitive statement of this

similarity relationship.

Exerciges:

(1) Given a square

(a) Make a congruent figure and explain why you think it is
congruent.
(b) Make an equivalent figure and explain why you think it

is equivalent.
(e¢) Make a similar figure and explain why you think it is
similar.
(2) Repeat a, b, ¢ for a triangle and some other shapes.

(3) Given: +two triangles ABC and RST
AB = 4, BC =10, AC =12, RS = 12,
(a) If these triangles are congruent, do you know the length

of ST? RTY
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(b) If these triangles ars similar, do you know the length

i

(L) Civen: two trisngles ABC 2nd RST
AB = L, BC = 10, RS = 12

(a) If these triangles are congruent, do you know the length

? RI?

Al

of AC?
(b) If these triangles are similar, do you know the length
of AC? ST? RT?
(5) Given: 1wo triangles ABC and RST
AB =3, BC =4, 8T =56

(a) 1If these triangles are congruent, do you know the length
of AC? ST%? RT?
{(b) If these triangles are similar, do you know the length
of AC? ST? RI?
(6) Some exploratory soblems relative to sufficiency situations;
E.g.,
(a) 1If three angles of one triangle are congruent to three
angles of another triangle, are the triangles similar?
Thy or why not?
(b) 1If four angles of one guadrilateral are congruent to
four angles of another gquadrilateral, are the quadri-
laterals similar? Why or why not?

Section 3. Ratio and Proportion.

3.1 Develop the meaning of ratio and symbols for (rebuild from Grade 5,
Chapter 9, but along the lines of MJHS Vol, 1, Chapter 9). Stress
different names for the same ratio (see same references). Use some

non-numerical ratios, such as line segments.

Exercises: see references.
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1)
B
no

Develop proportion as egual’ty of ratios.

Froperty: %-: §~(%5d = be

Prop .ty: sd =bc = =2 if b5 #0, d£0
Tne'ude a sequence of equal ratios and the idea of a constant of

proportionality.

— aB _BC _ AC
Exomples N %o " Mo T F

If the measure of MN is L4, the measure of AB is ...

(give a value for k in some problems bul nc. all).
E§§r§§§esz See Grade 5, Chapter 9§

MJHS Vol. 1, Chapter 9

Geometry, pp. 361-364

Section 4. Defining Similarity.

L1

Formalize the definition of similarity for convex polygons

(corresvponding angles congruent and corresponding sides propor-

tional}r
Note: Do not stress the convex restriction. Broad definition

is mainly to allow similarity of squares. Discuss problem of

defining similarity for other figures (wiggly lines, simple

closed curves). Stress correspondence property.

fxercises:

(1) 8everal problems where, given similar figures, the student
sets up the correspondences.

(2) Some exploration of types of figures that are always similar:
pairs of isosceles right triangles, equilateral triangles,
50-60-90 triangles, squares, (regular tetrahedrons, cubes?).
Try to see why this is so and look for correspondences in more

than one way.



Discover the similarity of any two circles -= have students

—~
L]
R

try to explain why.

(4) Problems that require completing the proportions for similar
figures:

If /MABC ~ ASTR then Qg

|

Section 5. BSufficiency Properties for Triangles:

5.1 Exploratory work in class -- everybody draw a triangle (using
p@rtract@rs) with certain given angles, and compare with neighbors.
Perhaps a written set of class exercises that will lead to the idea

of AAA similaritvy.
Short w—itten discussion of sufficiency (relate back to congruence
properties) .
Statement of the AAA similarity property.
Exercises:
(1) Find similar triangles (a few short deductive sequences),
and state the proportional sides, e.g.:.

(b) (e) (d)

{(a)

(2) Use the 180° property for triangles to develop AA

similarity property.

(3) More finding similer triangles and stating proportional

sides:

(a)  (b) (e)

12




(4) What is sufficient for two right triangles to be similar?
(5) What is sufficient for two isosceles triangles to be similar?

(6) 1Is there a congruence property like this similarity property?

Why or why not?
(7) Brainbuster:

(a) Find similar triangles:

(b) Find x:

L

1

5.2 Exploratory exercises in class for 8SS5 to be done "y construc-

-

tion or with sticks (e.g., take a triangle -- form a new triangle
by halving Lengths), Again a set of written class problems might
be ugeful.

Short rehash on sufficiency (perhaps S83S for quadrilaterals).
State 8SS5 similarity property. Some more discussion on proper-
ties that contain three ratios rather than twvo.

Exercises:

(1) Are these triangles similar? If so, state the correspon-

dence of sides and angles.

, 7 -7 . 7
(2) Given triangle ABC and triangle RST, ST " - ®RS

- Btate the similar triangles showing correspondence.

(3) Given: AB =5, AC =3, CB=7 and MV =2L, NO =9,
MO = 15. Are there similar triangles? Show why or why not.

L -119-
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5.k

(L) Why are all eguilateral triangles similar?

osceles

ol

(%) 1s the proporticnslity of two pairs of sides of 1
triangles suffic 1t for simllar.ity?

(6) 1Is there a congruence property like this similarity property?

Discuss why or why not.
Exploratory lLxercises in Class for SAS Similarity Property:

Statement of BAS property © r similarity. Bring back propor-

be = 2 = if b £ 0, d4o0.

1]

tion property ad §

o

Exercises:

(L) Are these triangles similar? If so, state Lhe correspondences

involved .

T and AC TS5 = AB s RT.

1S

(2) 1In triangles ABC and RST, A
Are there similar triangles? If so, state the similarity.

If not, discuss what is lacking.

Doez the line joining the midpoints of two sides of a tri-

a3
~

angle form a new triangle that is similar to the original
triangle? Discuss why or why not.
(4) What is sufficient for two isosceles triangles to be similar?
(5) 1s there a congruence property like this similarity property?

Discuss why or why not.

Add corresponding lines to two similar triangles (such as medians,
altitudes, angle bisectors, midlines) and consider how they are
related. Use this to review all three similarity properties and
to reinfcerce the concept of similarity as being ratio-preserving

2aor all corresponding linear parts.
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(Tris section might be too difficult, but it is worth a try after

they preceeding work.)

BExercises:

(1) y
///Exxix\\x
M 0
Given: OMABC - AMNO, AX and MY are angle bisectors.
What can you deduce?
(2)

Given: OABC - AMNO, BS and NT medians.
Whzt can you deduce?
(3) Might sneak in some questions relat’ve to ratios of areas

for two similar figures (such as squares).

Section 6. Simile ity Mappings.

6.1

Find the similar trianglés implied in Section 1.1. Go back to
these and set up a mathematical model in which similar triangles
can be found. Also use some old chestnuts like the height of the
flagpole, the tennis serve, the river width, me and my shadow

versus the tree (these are.noct "old" to them).

A thorough discussion of local maps as models for local geography
(ggg stereographic maps, etc). A careful consideraticn of the
limitations of the maps as models and what similarity (in the

pure geometric sense) can be assumed. Thought should be given to
hills and valleys, river paths, highway jogs, <tc. and how these
eppear on the map. Teachers should be encouraged to brin in some
local maps so the students can compare to an area they are "bicycle-

familiar" with. .

-121-
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6.4

Working with scale dreing and blue prints (see MJHS, Vol. 2,

pp. 384-389). Add some discussion of ratios of non-equivalent

.{
Wt
Cx
o

mparable units (e.g., L foct to 1 mile is nct 1:1 but
1:5280) . Careful attention to how exact the "similarities" of
prints and scale drawings are.

Natural place for some right angle trigonometry -- maybe Just

the tangent.
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GRADE 7 - CHAPTER 6

APPENDIX A

1.1 Sample Problem in Detail:

Nete: This problem would probably appear in the latter half of
the problem set. However, figures might generally be nonover-

lapping. A

Given:

C

(a) Reproduce the given figure on your paper (by tracing if

— - - 5
(b) Draw Ok, OB, OD, and OC.

(¢) Measure OA with a ruler. Multiply the length by

M o

M s

and select a point R on Sz such that OR == 0A,

3
2

(d) Measure OB with a ruler. Multiply the length by

and select a point S on S% such that 05 = % OB,

oo

(e) Measure OC with a ruler. Multiply the length by

and select a point T on 5% such that OT = % 0C.

N froas

(f) Measure OD with a ruler. Multiply the length by
and select a point U om 0D such that OU = % oD,

(g) Draw the polygon RSTU.

(h) Give some explanation of how ABCD and RSTU are re-
lated. (Note: mnot to be included in all problems.)
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GRADE 7 - CHAFTER 6

APPENDIX B

1.2 Sample Problem in Detail:
Note: This would be a problem found in the latter half of the
problem set. The exact terminology and symbols are dependent on
preceeding development.
Given: A co-ordinate system with the point set M - (A,B,C,D,E)
where A = (1,2), B = (2,3), C=(3,3), D=(3,-2),
E = (1,0),

(a) Make a graph of M.
(b) Draw the polygon ABCDE.

(¢) Form a second point set N = (R,S,T,U,W} where
(x,y) = (bx,by) and A >R, B-S, C-T, D-U,
E -»W. (That is, the co-ordinates of R,S,T,U,W are

respectively four times those of A,B,C,D,E)

(d) Make a graph of N on the same co-ordinate system.
(Note: 1In earlier problems, N might be graphed in a

second co-ordinate system to avoid overlapping figures.)
(e) Draw the polygon RSTUW.

~(f) Give some explanation of how ABCDE and RSTUW are

not to related.
be

(g) Draw OR, 0S8, Of, OU, and OW where O is the ori-

included f

on all gin.

problems \(h) What do you seem to observe about these rays?




CRADE 7 - CHAPTER 6
APPENDIX C

NOTE ON PERCENTAGE

After the concepts of ratio and proportion are developed in the
early part of the chapter in connection with similarity, the following

treatment may be used to develop a comprehensive view of percentage.

;8

€1 A ¢ =
Since 38% = .38 360

following problems will illustrate how we may now work with ratios as

we may write a percent as a ratio, The

percents.

Ezample 1: A movie theatre has 960 seats. If 15% of these seats

are in the reserved section, hov many seats are in the reserved section?
Let n represent the number of seats in the reserved section,

We know that the ratio of reserved seats to the total number of
15
seats = —= ,
avs = 100
Also, the ratlio of reserved seats to the total number of

seats = 2
== i = 96@ Bl

Since i%% and §§6 are different names for the same ratio, then

D _ 1

——

100 ~ 960
Example 2: The enrollment of & school is 050 students. Of these
228 are freshmen. What percent of the total school population is the
number of freshmen?
Let n represent the number of percent of freshmen.
i%g represents the ratio of the number of freshmen
to the total school population.

We know tnat
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Also, the ratio of the number of freshmen to the total school
opulation is 220
1.1d 1 15 =~
pop v 950

are different names for the same ratio we

Since and —=

= I—l —
100
have

n 228

mA =100 T 950 C

Example 3: A man found that he saved $768 one year, If this was 8%

of his total income for the year, what was his total income?

l.et n represent the man's total income.

1.7 - - 768 . Jp—— s . 2 = = 2 LI |

We know that - represents the ratio of the savings to total
income.

8 , , , .
Also, igg represents the ratio of the savings to total income,

n 100 °
The above three problem types include almost all significant

problem types that the student is likely to encounter in percentage.

The percentage concept and its applications should be applied

throughout .

Some applications will occur in (7-VII), (8-1), (8-1V), (8-v1),

Q. -126-
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GRADE 7 - CHAPTER 8

Background:
From Chapter 2: Opposite function. Opp: x — =X
Chepter 3: Addition and Subtraction of any two rationals,
Percent

Chapter 6: Similar triangles

1. Multiplication of any two rationals.
2, The class of functions f : x 2 mx for all rational m.
3. Absolute value function.

Rationale: WST; hopefully this will be evident from the ensuing

outline.

5.1 Review of negative raticnals as

g set of numbers. Opposite func- b | |

tion and its graph
, (X,SDPP(X)} =
Opp(x) = -x s (x,-x)

Opp: x — -x

Observe that plotting a number of
points on this function, we seem to
obtain a straight line. Essay a
proof using similar triangles.
5.2 Multiplication of a positive rational by a negative rational.
(For a similar but alternate treatment see Appendix to Chapter

3, Alternate version.)
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A general reticnale is exemplified by the following:

Let us consider the following reascnable situation: A man who
lives on —he west side of town starts walking eastward, along the
main street of the town, at the rate of 2 miles per hour. At
oo he reaches the very center of town. Watural questions are:
Where will he be at 1 PM, at 2 PM, at 3 PM? Wherewas he at 11 AM,

at 1C AM? If he startsad

W]

t 9:30 AM, where did he live?

A natural model, the number line suggests itgelf:

9:30 10 am 11 am Noon 1 pm 2 pm 3 pm
P i S R b I N R

WEST Center of ' EAST
Town

'_J
o |
) e

7 — i i
-3 -2 L2 -1 0
A simple application of the law that says:

Distance traveled in miles in the time of T hours = Rate 1in
miles per hour X Time in hours traveled, or more briefly,

D =R-T. Tn this case D = 2T +tells us that at 1 PM he 1is
2 miles east of the center of the town, at 2 PM he is 4

miles, and at 3 PM he is 6 miles east of the center of town.

Another model for way of representing our situation 1s to regard

distance traveled as a function, (3,6)

\U‘

¢ T = 2T, which expresses the

zssociation of time traveled with

M

T, +the distance in miles traveled

e

n T hours at the rate of =2 [ (2,4)

miles per hour.

Let us make a graph of this function.
The origin corresponds to the man's
location at noon the center of town. (1,2)

We shall plot several points. We
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note an important result: The points appear to lie on a straignt
linel If we draw in the straight line, we may use it to read off
other values. Suppose we wish to see how far our man has gone in,

miles. OFf

say, 10 minutes or % hours. Our graph ftells us:

course we can check this % = 2 X % . The graph not only gives us
a pleture of how the distance traveled changes with time, but also

permits us to obtaln more information without further calculation.

Now let us think about the question

"Where was our man at 11 AM?" Surely

he was west of the center of town,and 7
indeed since 11 AM is 1 Thour before N
n@@ﬁg he was 2 miles west of the B
canter of town. On the model which :
expresses our function D : T — 2T

this suggests that the time 11 AM K ﬁLﬁ,L,j L L
should be represented by (-1)

(1 hour before noon) and the distance (-1,-2) J{:
from the center of town is 2 miles ’ }/ |
west or =2. Thus we plot the point | '
{:1;—2) to represent the information (—E;—hagf N
that 1 hour before noon he was 2 /

miles west of the center of town. In

the same way the point (-2,-4) de-

notes the fact that 2 hours before noon (10 AM is represented by
the negative number -2) our man was 4 miles west of the center
of town (4 miles west 1s represented by the negative number -4).
In the same way (-3,-6) would denote the fact that at 9 AM he

was 6 miles west of the center of town. Of course, he began his
walk at (9:30 AM, so (-3;-5) does not represent an attained posi-

tion.



Now we observe that the points (-2,-4) and (-3,-6) 1lie on the
extension of the line we have drawn. (An argument via similar tri-
angles could be zZiven here.) And so, by extending the line, we
could obtain further information without further calculation. Thus

we find that the polnt (%-3—5) lies on this line. The point

5 =
(- g=?=§) corresponds to the fact that % or 2 § hours before

noon (9:30 AM)QGur man was 5 miles west of the center of town.

And, of course, we can check that, since in 2 % hours he can

D__i

= 5 miles; thus he must have started 5 miles west

o

walk 2 =

Y

of the center of town.

But now what of all this? By using negative numbers to represent

times before noon and miles west of the center of town in our

dictance function D : T — 2T, we conclude that 2(-1) = -2 and
(-2

2(-2) = -4k and 2(- %) = -5.

Let us now consider some other examples of multiplication. Sup-
pose the man had been crawling at é miles per hour. What then?

straight line.

— '(hgg)
_ - N | 1 | L ! I -
-130-
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Extend to

Conclude =(-1)= - %

5.3 Graphs of multiplication by a positive rational number,

From the D = RT example go to multiplication by 3, %3 %; and
generalize to multiplication by m(m > 0). First do for mx for
positive x and then extend line into Third Quadrant. Plot lots
of points and cbtain a little drill in the multiplication of
rationals. Denote numbers both by fractions and by decimals.
Multiplication by m(m > 1)

by 1(m = 1) (the identity function)

by m(m < 1)
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Obtain rule: If a >0C and b >0 +then a(-b) = -(ab) = b(-a).

5.4 Multiplication of a positive by a negative and the distributive
law.
From the distributive law: Since ab - a(-b) = a(b + (-b))=a =0

=0
Then a(-b) = -{ab)
Some space should be given here to the mathematical philosophy of
what laws a system of numbers should obey and the fact that the
rules we have for multipiication are merely definitions, albeit
ones which were suggested in a natural way.
5.5 Multiplication by a negative rational.

Now that we have multiplication of a positive by a negative we
can consider the function f : x — (-2)x when x is positive,
Plot points of this form: (x jmgx) when x 1is positive. This
leads to a line in the Fourth Quadrant. Many of the steps in the

previous sectlons can be repeated.

Point out that the opposite function is also multiplication by -1.

Extend line for x = -2x into Fourth Quadrant.

Obtain Rule: If a >0 and b >0  then (-a)(-b) = ab.

Use distributive law to show agreement of this result. Point out

that this derivation yields rule:

-132-
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5.6

5.7

5.8

2.9

5.10

For =ll rationals, (-2)(-b) = ab and (-a)b = -(ab). Check

all cases with the previously graphed functions. (A discussion

of how many cases will arise is an interesting combinatorial

problem.)
Establish commutativity of multiplication for the rationals.
Addition and subtraction revisited. Use -a = (-1)a .
Example:
-2-3=-2+ (-3) = (-1)2 + (-1)3 = (-1)(2 +3) = (-1)5 = -5 .
More on COpposite funection
-(-2,-3) = (-1)(-2,-3) = (-1)(-5) =5

Opp. (x - 1); its graph

Absolute value fun~tion; their graphs.
X—>IX‘ }’;Z}IX‘Fll X'z%‘j{ —ll X’=}élx|
l | 77 | i\j x#ff*\\\\
x - |2x| = |-2x| = 2]x] x 53‘%'31 x = -2]|x|

Applications.

Any you can think of, but certainly percent decrease problems.

Graphing x — ax + b; the role of the parameters a and b.

Discuss the cases:

It
—
(Wi
~
o]
1
-
-
o
A
‘O:

(1) a
(2) a=1, >0 (4) a=>0, b>0

il
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(5) >0, b<O
(6) a <0, b=>0

Slope and intercept.
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GRADE 7 - CHAPTER 8
(Alternate Version)
(To accompany "Alternate Versions'" of Chapters 3, 3 %)

GRAPHS OF LINFAR FUNCTIONS; VARIATION

Backgrecund:

l‘?

Addition, subtraction, multiplication and division of rational of
rational numbers.

An introduction to "percent" function, the opposite function, the
absolute value function.

Coordinates, graphs of linear functions in the first quadrant.
Solutions of mathematical senternces.

Ratio and S.milarity

Ratlionale:

This chapter will exztend the concepts of functions and graphing

presented in Chapter 2. The operations with rational numbers will be

available from Chapter 3 slong with beginning techniques for solution

of mathematical sentences. Ratio and Similarity also provide a realis-

tic background for the discussion of slope and concurrency.

Purpose:

li

Mo

To provide some understanding of and some skill in graphing func-

tions of the form f : x — mx + b.

To provide a strong graphical background for the solutions of sys-
tems of sentences by Linear Combination.

To provide a background of Variation as a function, graphical re-

presentation and applications.
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Section L. Graphs of Functions:

eview brietrly the reciangular coordinate system and association

[
i
=
bl

of points with their coordinates.

H__.H

.2 Graphe of Functions with restricted domalns.

Example 1: Graph the following four functions on the same coordi-

nate axes:

(L) & :x—-2x, 0<x =<2
(2) M:x—2, 2<x<k
(3) 0:x—=2x -8, L<x=<6

(4) G o x=—2x - 1h, T<x=<9
Example 2: Graph the following function:
T :s -8, 0<s (tie in Area Function)

Example 3: Graph the following function:

r"
-l, 0=x<2
K@= 5%7 1, =2 <x <0
2, b <x <6
L =X =

xample 4: Graph the following function:

? *
x, x>0

A3 ox ;%3L=x} x <0

Section 2. Slope and Intercepts:
2.1 Review graphing of linear functions in first guadrant.

.2 Experimentally develop concept of slope.

Example: Draw the graphs of the following functions on the same
coordinate axes. :
S : x = 3x

L s x—=3x + 1




2.3

3.1

E: x—=

Ask students to select two arbitrary points on each line (probably
a lattice points to start with) and i en write the ratio of the
difference of the y coordinates to the difference of the x
coordinates for each pair of points. (Select additional points

and repeat pracess>g Have students identify the coordinates of

the points where these lines cross the x and y-axeg.

Example: Continue the same process with several sets of functions
T i x—=mx +b where m and b assume many different rational
values .

From the students work in Section 2.2 abstract a simple notion of
slope in terms of the change in the y &and =x coordinates of
points on the graph of a linear function and the notion of the
y-intercept.

Discuss clopes of linear functions £ : y = a and lines parallel
to the vertical axis. (WST, Discuss slopes of parallel lines and
intersecting lines.

Prove: 3 points are collinear if the slopes of segments deter-

mined by them are the same.

Section 3. A Closer Look at Slope.

Discuss the caseg £ : x 2 mx + b
(1) m=0

. -1, b>0

[l

Ly
B
]

(2) m=1
(3) m>0 where b >0
(L) m <O where b >0

=1 where b <O

H

I

(8) m = and m

-137-
142



(6) m >0 where b < Q

(7) m <0 where b <O

3.2 Discuss (WST) the idea of increasing and decreasing linear
funetions.

3.3 Discuss, in particular, [ : x = mx in terms of m being a
"multiplier" as in the function for distance, rate and time
d : t 2rt .
How the graph of this function
changes when r 1is doubled,

halved, increased by 2, etc.,

ﬂ = E
, e
can be investigated. / :
= R _ }

Another example:

Consider the function A : w —= 4w

Section 4. Variation: (See MFJHS, Vol. 2, Part 2, pp. 392-411)

4,1 Direct variation d : x — kx with applications and graphs.

L.2 Inverse variation I : x —=
4.3 Other kinds of variation S : x = Kx , ...

Section 5. Discuss solutions of equations ....e:

3x + 2 = 5x - 3 by graphing

Section 6. Scale drawings as a function with spplications.

(See ref. above.)

(Tie in with Chapters on Measure, Rates and Similarity).
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GRADE 7 - CHAPTER 8
(Alternate version)

AFPPENDIX

Subtitle: A simple minded motivated approach to the multiplication of

negative numbers.

We wish to define multiplication for all rational numbers. When
this is done, and theilr basic properties investigated we shall have
developed a mathematical system which 1s sufficiently strong to solve
a wide variety of useful problems. 1In ®arlier sections we have seen
that we could add and subtract any two rational numbers to good ad-
vantage, although the rules for doing so were rather complicated. We
may expect that the rules for multipllicatlon are also complicated. Tt
ir a pleasant relief to lzarn that they are not gquite as bad as the
ones for addition. One might feel that if mathematiclans were worth
their salt they would devise ways of doing these arithmetic operations
more easily. but it turns out that if we want to define addition and
multiplication so tha” the nice properties we found for the positive
numbers are satisfied there is really only one way to do this. This
important theorem we shall not prove here. Rather, we shall spend our

time trying to show the naturalness of our definitlons. There is no

need for secrecy, as far as the definitions themselves go. We shall
define multiplication so that

(-a)b -(ab) = a(-b) and (-a)(-b) = ab.

Thus (-2)3 = -6, (-3)2 = =6 and (-2)(-3) = 6.

Fortunately these definitions can be interpreted physically; in-
deed the need for these mathematical manipulations arises in agll sorts
of mathematical applications and we should want our definitions to re-

flect this. We shall consider an example, albeit a somewhat artificial
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one in an attempt to give a natural motivation for our mathematical
definition.

Example 1: The Weather Bureau reports that it is now O degrees
Fahrenheit (DDF) and that for several hours the temperature has been
steadily rising at the rate of 2° per hour. They forecast that this
rigse w:ll continue throughout the day. Assuming this forecast to be
correct, a number of natural questions arise: What will the tempera-
ture be one hour from now, 2 hours from now, 3 hours from now? What
was the temperature one hour before now, 2 hours before now? I the

minimun temperature ocec. rred 2 hours before now, what was it?

[Kv] ‘l\ !

The answers to these questions are intultively easy: One hour
from now the temperature will be 2°  above zero, 2 hours from now
the temperature will be 40 above zero and 3 hours from now the
temperature will be 6° above zero. How about before now? Since the
temperature is rising, it must have been colder one hour ago. Indeed,
since the change in the temperature is a rise of 2° an hour, it must

~0

be that one hour before now the temperature was =2 below zero, or

-2°, Similarly, two hours ago tre temperature was -4° ana 2 % hours

ago it was —§D, Let us represent this data in a table:

Time Temperature in degrees

Now J
1l hour from now 2
2 hours fron now L
3 hours from now 6
1l hour hefore now -2
2 hours before now =L
2 %!hrsa before now -5

It is clear that the top half of our table is constructed by multiplying
the number of hours from now by the rate at which the temperature is
increasing. In symbols: Temp = 2 »Time, or in a more abbreviated form,
if we let F stand for the temperature in degrees Fahrenheit and T

for the time passed in hours we have a formula: F = 2T,

-1h0-
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The important observation to make in this: We can st.ll use this
rule for determining the bottom half of the table if we make two other
interpretations. To begin with, let us use a negative number to repre-
sent time before now. Thus we denote, one hour ago as -1, 2 hours
b fore now we denote as -2, and so on. Remember, the temperature is
rising at the rate of 2° per hour and we have interpreted this as a
ﬁﬁsipiyg, 2, ‘Thus if the rule F = 2T 1is to hold here it must be
that 2(-1) = -2. That is we must define

2(-1) = -2

and similarly that 2(-2) = -4 and 2(-2 %) = -5. More generally we
will want to define
If b >0 then 2(-b) = -(2b).
Under this definition the formula F = 2T holds for all of the table.
The rule F = 2T 1is an indication that once again, a function is
at work in the background. The function is the association of time,
T, with the temperature at time T,

T — 2T

The association works as follows:

-(hours from now) (now) +(hours from now)
T 0 1 2 3 )y 5 f
(time) T I R [ | | N
' | ﬁ!// ¢ F = 2T
-(below zero) +(above zero)

el
—d“y_,’l

Y -3 - -~ 1 , &
e s S S A U SRV SR S SR

(Temrp) F
Degrees Fahrenheit

Draw in some more arrows to show how the numbers are associated by the

function.

=141~

146



Temp , /1 &Y _ ()=o)
L ) \§;> —
If we plot the pairs (T,2T) the graph of T . .
D P 7 97 gi 1Y &2,&)7: (2:2;2)
the function T -»2T looks like this. You T ®
should plot some other points of the graph 7 (1,2) = {1,2-1)
5’ '
of this function, especially choose rational T
1 —
values for T ©between O and 4. - e f e
(time)
T 27 . T
- — (-1,2-(-1))=(-1,-2) @ 4
1/2 1
: , T
3/h 3/2 (-2,2:(-2))=(-2,-4) = 1
2/3 /3 .
- : T
S/ 5/2 (-2%,2- (22))=(-23,-5)

This graph gives us 1n essence &
picture of multiplication by 2.
It is important to note that in
the first quadrant the points lie
on a line.

Let us draw in the suggested

line. Tf we extend this line into

the third quadrant we find that the R

points (-1,-2), (-2,-b), (-2 %, -5) +
lie on this line. Thus, once more, T
wve agree that the line should picture T
multiplication by 2, that is, the T
points on the whole line should be ' .
of the form (T,2T) and we are -1

forced to define
2(-1) = -2, etec.,
and in general
Tf b >0 then 2(-b) = -{2b).

In the rule 2(-b) = -(2b) what happens if w
(-b) becomes (-(-1)) =1. And so 2(-b) equals 2. Now what about
~(2b) if b equals -1? Is it true that 2 = -[2(-1)]? Now

let b equal =17

1]

9 _1le-
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2(-1, = -2 ty what we have just learned, and so the question becomes,
does 2 = -{-2)? This answer is of course YES. Thus, by very similar
arguments for the general case, 2(-b) = -(2b) for 211 b, positive,
zero, or negative.
Not let us consider a second and colder example:
Example 2: The Weather Bureau reports that it is now 0° F and that
, . N ‘ R 1 2 A0
the temperature is steadily falling (decreasing) at the rate of 2~ F
an hour.
Again we can ask the "natural” guestions: What will the tempera-
ture be one hour from now, 2 hours from now, 3 hours from now; what
. i . 1
was 1t one hour before now, &€ hours before now, 2 = hours before now?
=
Again the answers are easy to determine and we 1list our results in

a table Jjust ss before.

Time Temperature 1ln degrees

Now 0
1 hour from now -2 (2 degrees below zero),
2 hours from now -4
3 hours from now -6
1 hour before now 2 (2 degrees above zero)
2 hours before now Ly
2 % hrs. before now 5

OQur arguments for these calculations are similar to the ones in
Example 1 except that in this problem it is getting colder, tempera-
ture decreases. Can we use the rule F = 2T? NO! -- And we shouldn't
expect that rule to work since "+2" was used to represent an in-
crease in temperature. Therefore it is natural to use (-2) to de-

note a decreasing rate of changing temperature. Thus our rule should

F = (-2)T.

If this is our rule, then it tells us that one hour from now the

relation -2 = (-2)1 should hold. The rule should give us for the




relation holding two hours from now that -4 = (-2) +2, and 3 hours
(—2)5;

1]

from now that -6 = (-2)3. In general, a hours from now -(2a)

Thus we are led to the general rule for multiplication
If b >0 then (-2)b = -(2b).

Now what about the rule F = (-2)T -(2T) for the bottom half

I

of the table? One hour before now the temperature was 2°  above zero
(+2). Again we must interpret time before now as = negative number; one
hour before now is reprassented by -L1. And if cvr rule F = (-2)T is
to hold for this case it must be that
2 = (-2)(-1). -

If we make this definition then the rule F = (-2)T will hold. Simi-
larly, we define (-2)(-2) =4 and (-2)(-2 %) = 5, 1In general we
have

If b >0 then (-2)(-b) = 2b.

With this definition the rule F = (-2)T holds for the entire table

given in Example 2.

Again this rule means that a function is at work. The function

associates T — (-2)T and it can be displayed as follows:

- +
R A
(time)
- +
| | =) 1 N I. T
_ _ 2 3 Ly 5
(temp)

Draw in some more lines!
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As before let us plot some
noints corresponding to the
entries in the table. Again
they appear to lie on a

straight line in the next

(-2, (-2)-(-2)=(-2,4)
)

-+

figure. The polints corres-
ponding to entries from the
top half of the table appear
in the fourth guadrant; the
poirt~ corresponding to
entries from the bottom half

duadrant.

This graph gives us picture of
multiplying numbers by (-2).
Again we see that it is natural

to define {(-2){-1) = 2, |

(-2)(-2) = L4, and so on.
In general:

If >0 then (-2)(-b) = 2b.

F o T-y-27
@ .
(-1,(-2)(-1)=(-1,2) -
I I | P L
o ®
4 (1,-27=(1.(-2)01)
— @ |
(2,-b)o(2, (-2} 2"
—
— i I I

Our rules thus far are:

1. 2(-b) = =(2b)
2. (-2)b = -(2b) if b >0
3. (-2)(-p) = 2b if b > 0.

B
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We ran 1n fact show that 2 and 2 hold for all b, positive or
nagative -- or zero. For example, ir 3 if we try using a2 znegative
number for b, say b = =3, (and thus -b 3) we get (‘J)k%) ( 3)
and thus by 1 we can conciude that (2)(3) = -(2:3), But this 1z Jjust
the result of 2 when b = 3. Thus we can see that 3 holds for b = -3,
and similarly we can see that 3 holds for all b, In just the same way
w= can show thawt 2 helids for all b.

Now it must be easy to see that in =ither of our examples, if we

had changed the rate of ftemperaturs rise cor fall the resulting rules
far maltiplication wouid nave beew the same. That is, thz actual value
“2% had nothing to do with the real part of our reasoning. However it

is st1ll informative to sketch the development from the function and

graphing point of view, and to see the effect of multiplication by

various numbers. For example, let us replace 2 by “E'a
.
Let us consider the function x *%(gﬁx a

Piot some points in the first quadrant and then draw ths line,
extending it intc the third guadrant. Now plot some points which
should fall into the third guadrant. Dc they fall on the line? Now

n

read some point from the line, If your point is, say, (c,d) is

af(g%)c?
— — f : x-= %x
™ —
u - -
IR A SO D G R O S S R N T Lt
Q pr— ——
* - _ -
]
o -1hé-
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Compare the graphs of the functions x —2x, x — x, and

X —a(%)xﬂ It may be helpful to plot all three graphs on the same

figure.

Now consider the function x —%—(é)xa Plot points and see
whether they seem to fall on a line. They shouldi Carry out the

same investigations as with the previous example.

_ —_
i x:—?—gx
> — ]
11 ¢ + S L1 [T I
— e -
— ° -
When you are done compare the graphs of the functions
x - =2x X = =X and X ;%-(%)x .

A general query: If a > 1, where will the graph of x — ax lie

in comparison with =x — x. What if O <a < 1%

If a < -1 compare the graphs of x 2 ax and x — -x.

If -1 <a <0 compare the graphs of x — ax and x — -X.
From these examples and their obvious extensions to all rational
numbers we obtain the following rules as the basis of multiplieation
on the set of all rational number.
1. a(-b) = -(ab)
2. (-a)b = -(ab)

3. (-a)(-b) = ab
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Another possible explanation of these rules lies in an application
of the distributive law. If the distributive law 1s to hold for our
numbers then we can argue as follows:

0 =2:0=2(L+(-1)) =21 +2(-1) =2 + 2(-1).

Since 0O = 2 + 2(-1) it is clear that we must have 2(-1) = -2,
Similarly, since O =01 = (2 + (-2)) 1L =2 1 + (-2)+1l=2 + (-2) -1

it is clear that (*2) o1l = -2, Knowing these two results we have
0=-2.0=(-2)(1+ (-1)) = (-2) -1 + (-2)(-1).

Now since (-2) *1 = -2 we have that 0 = -2 + (-2)(-1). Thus
(-2)(-1) = 2.

We can of course perform these arguments more generally by replac-
ing 2 by a& and 1 by b +to obtain derivations of the three rules

above from the distributive law appliled to negative numbers.,

Perhaps a more Important observation for us is that similar calcu-
lations provide a proof of the distributive law for all rational num-
bers;, i1f we have defined our multiplication already by the three rules
above.

Finglly there is a nice interpretation of these laws in terms
of area. The area of rectangle

PQRS is bfaA + {(-a)). On the

other hand it is

Area of PVIS - Area of QVIR

or

bA = ban

Hence b(A + (-a)) bA - ba.

But from distributivity again we

I}

have

b(A + (-a)) = DA + b(-a).

Hence ©b(-a) -(pa).
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GRADE 7 - CHAPTER S

SOLUTIONS OF SYSTEMS OF EQUATIONS AND INEQUALITIES

Ba - kground Assumptions:

1. EKational numbers with the four fundamental operations.

2. Graphing of linear functions.

3. PFamiliarity with terms half-line, half-plane, intersection of
lines, etc.

L, BSolution of simple equations and simple verbal problems.

5, Set language, including "union" and "intersection”.

Ra*ionale:

Introduce a problem for which it is convenient to use two vari-
ables and write two equations, as motivation for the solution of sys-
tems of equations. Graphic solution 1s developed, then a need 1is
created for an algebralc solution to de.i .ith problems whose solu-
tions are not integral. For this purpoc~ the "comparison” method is

introduced .

Systems leading to parallel or to coincident lines will be con-
sidered. Graphs of simple inequalities will be discussed, as a back-

ground for later work in linear programming.

Purpose:

1. To extend the student's knowledge of graphs to enable him to

solve certain types of problems.

2. To show how algebraic methods can sometimes be of help in

getting a more exact result than is possible through graphs.
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To consider intuitively systems for which the soluticn set is

either @ or an infinite set, thus leading to parallelism in

g later chapter.

To develop better understanding of simple inequalities through

graphing their solution sets in the coordinate plane.

To reinforce concepts of union and intersection of sets.

Procedure:

Section 1. Solving systems of equations:

lﬁl

Introduce a simple problem which is more easily solved by

writing two equations than by confining oneself to a single

equation, €.g8.,

Problem: Mary bought 3 notebooks and 5 pencils and paid

‘}__AH

70 eents; John bought 2 notebooks and 10 pencils,
of the same kinds, and paid 80 cents. What was the

price of one notebook?

Point out that if notebooks cost x cents each, and pencils

cost y cents =ach; we can wrlte the two sentences

3x + 5y = 70
2x + 10y = 80 .

Now we need to discuss what this means in terms of the solu-
tion t=ing an ordered pailr that satisfies both equations; 1l.e.,

the intersection of the solution =ets.

To graph the equations and thus find the intersections of the
graphs, it is convenient to write the "y-form" of each -- i.e.,
in each case we write a rule for .a function which assigns to
each x a value for y which gives a point (x,y) on the

line. Thus we have:



vy = - =x + 14

x + 8,

= A

y = -

1.3 We graph the two equations (see 9H, pp. 789-792) and find that
they inte-sect at (15,5)., Thus the price of one notebook is
15 cents.

L.4 Here point out that, since at the intersection the ordered
palr 1s the same for each equation, we could have bypassed the

graph and moved from the two equations in 1.2 to the equation

in one variable

”
+
s
=
Ii

1 .
= - =x + 8

5
Solving algebraically leads us to the solution 15, and thus
to 1% cents as the price of a notebook.

1.5 Following some practice on equations with integral solutions,
lead into ones whose solutions are not integral, to emphasize

the need for the algebraic method.

Section 2. Systems which do not have unigue solutions.

2.1 Have a student graph such a system as

jy=3}{+2
1? 3x -5

Look for intersection and observe none. Students will probably

Il

see that the lines have samé slope -- promise discussion of

parallel lines in a later chapter.

Mo
o

Look at algebraic solution of the system above:
3 +2 =3x -5 .

Note that its solution set is @.
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Now give him one like

o
w

f2x + 3y = 6
Lx + 6y 12

I

to graph. In putting into the y-form, he gets the same equation
for both, heiice only one line., Here slopes and y-intercept are

correspondingly egual.

2.4 Point out algetraic solution gives equation

I
LA IO
™
+.
i
1]

I
W]
e
+
n

which is true for all values of x. Solution set is line

y:— X‘Fgg

Wi

Section 3. Graphs of Inequuiities: (F. C., pp. 418-421; 9H, pp. 752~
760)

3.1 Discuss graph of x = 2 as answer to guestion "swhere are all of
the points which represent

ordered palrs such that the Y
first coordinate is greater

than 2%" Here point out

that a half=plane is involved, — o
and discuss how to indicate it

by shading, and that the line

¥ = 2 should be a dash line to

indicate that it is not included. ¥

3.2 Show that the graph of x 2> 2 is
the union of the half-plane x = 2

and the line x = 2. Then provide N T—
practice on others of this sort -

such as y <3, y >4, =x <8, ete.

ERIC o2
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o
L

3.4

What about graph of y = x, ¥y <x, y = 2x%, etec.? Discuss

these in terms of hali-planes with edge y = x, y = 2x, etc.
Consider graphs which are "strips" -
e.g., =3 <x <5,
(Note: if above notation has not
heen used before, here is the place
to talk about it as abbreviation
for:

-3 < x and x <5, or for

x>-3 and x <5 .)

Graphs of inequalities involving absolute value. Compare graphs

in plane of

lxi = 3,
|x| > 3,
and x| < 3.

Section 4. Systems of Inequalities: (9H, pp. 820-821)

Aél

Discuss intersection of half-planes, etc.

Xx <2
y = -2,

Point out "doubly shaded" area
as the graph of "x <2 and
y = =2',

_153_—.
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4.2 Consider other systems, such as

and
qr x <5
L-B <y <5

154 -
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GRADE T - CHAPTER 10

DECIMALS; SQUARE ROOTS; REAL NUMBER LINE

Background:
1. Expanded notation for decimal, using integral exponents.

2. A rational number can be expressed as a repeating (or

o]

terminating) infinite decimal; approximation of a rational

3. Points for rational numbers on the number line.

=

Pythagorean Theorem.
5. Unique factorization property.
6. Properties of the rational number system, especially density.
7. Operations with rational numbers, using decimsl notation.
NWote: While this background is assumed, review will surely be called
for.
Purpose:

To develop belief in the existence of irrational numbers, using

geometric and arithmetic approaches.
To develop ability to approximate square roots.

To examine the properties of the real number system.

Section 1. Motivation for irrational numbers:

1.1 Reeall of familiar set s of numbers: counting numbers, whole

numbers, non-negative rationals, integers, rationals. Properties
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of each set shared with previous sets, properties not shared with

previous sets.

L.2 Use of Pythagoream Theorem to find length of one side of a right
triangle, given the lengths of the other twc sides.
(a) All lengths counting numbers: 3, L4, 5; 6, 8, 10; 5, 12, 13; etc.

Use.of unique factorization property to find square roots of

numbers which are perfect squares: #5?6 ) V225 .

(b) A1l lengths rational: % » 2, 55 2, %?, %;.

J

, where a and b are perfect squares.

ojw ]

r

(¢) One length irrational: 3, 2, v/13.

What about 137 It is the length of a segment, but what

kind of number is it? A counting number? A rational number?

Seetion 2. Intuitive argument for the theorem: If n 1is a counting
number and Vn is a rational number, then /o is an
integer.

Exercises similar to those in l.g(c), in which square roots
are to be described by inequalities; e.g., J§ is a number

between 2 and 3 which is not & rational number.

Section 3. Decimals which name rational numbers:

5.1 Recall of %' definition for rational number.

Use of division algorithm to find decimal name; argument that the
decimal will have a repeating block of no more that b - 1
digits. (ISSM Vol. 1, p. 525.)

name for the number.

250, )

3.2 Given a repeating decimal, find the

b
(1ssm, vol. 2, p. 366, MJHS, Vol. 2, p.

3.3 Generalization that every repeating decimal names a rational

number.
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5.4 Repeating decimals in which the repeating block is O (terminat-
ing) .

(a) Review of expanded notation.
2

5 ' 3
0.5675 = 0 + 5(17) + 6(5 ) + 1(35) + 0

13
0 + 567 (TE ) + 0

il

(2 +5)°
(23 .53)
(b) Theorem: The decimal for % (if a and b are relatively

prime) will have a repeating block O if b has only 2's
or 5's or both as prime factors.

Use of theorem to determine whether decimal for a gilven %
will terminate, and, if so, the number of digits before the

repeating block O begins. (MJHS Vol. 2, D. 251.)

Section 4. Decimals which name irrational numbers:

4.1 Possibility of designing patterns for infinite deeimals which do
not repeat. BSuch decimals are names of lrrational numbers.

.101001000L, s & (IssM vol. 2, p. 370.)

L.,2 Recall from Section 2 that square roots of most counting numbers

are not rational, i.e., irrational.

Procedure for approximating square roots of counting numbers by

iteration method. (JHSM Vol. 2, p. 262.)

Question: Should a flow chart be attempted?

Section 5. The real number line:

5.1 Location of points for rational numbers.
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(a) Using fraction name: separate each unit segment into the
number of congruent pacvits named by the denominator and count
off the number of those parts indicated by the numerator.

(b) Using decimal name: show successively smaller intervals

which contain the point.
651 is on the segment with endpoints .5 and .6
.51 and .52
.515 and .516 etc.

—

Include such cases as .9.
5.2 Location of points for irrational numbers.
(a) Location of points for square roots of counting numbers.

Use diagonals of rectangles with vertex at the origin to

locate points for 2, ¥3, VL4, /5, etc.

Use additive property of segments on a line to locate points
for such numbers as (V2 + J§) and 3#%; Also locate
points for negatives. (ISSM Vol. 2, p. 357, MJHS Vol. 2,
p. 257.)

(b) Location of points for non-repeating infinite decimals:
as in Section 5.1(b), show successively smaller intervals

which contain the point. (ISSM Vol., 2, p. 360.)

5.3 Real number line as union of set of points corresponding to

rational numbers and set of points corresponding to irrational

numbers.
Section 6. Density of the real numbers:

6.1 Density of rational numbers.
Name a rational number between % and

Name a rational number between .L and .10.
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Density of irrational numbers.

Name an irrational number between .10L0O01000...

Name an irrational number between Y2 and

Density of real numbers.

Name a rational number between .101001000.

Name an irrational number between .1 and

/3.

.« and

and .101101110..

.101101110...



GRADE 7 - CHAPTER 10
APPENDIX

WHAT, ANOTHER PROOF THAT V2 I8 IRRATIONAL?

If there is any novelty in this proof it is that it does not
appear to use the unique factorization theorem. We give a prool for
the special case +v2 which does not appear to have a generalization
to v/n, even if n is not a perfect square!l

The proof does assume a familiarity with odd =and even integers
and these facts:

1. The product of two odd integers is an odd integer.

2. The product of two integers, one of which is even is even.

In fact, if this proof should be presented to Tth graders, it
might be well to make a table of all cases:

A B A % B
odd odd odd
even odd even
odd even even
even even even

And now the proof:

- A
Let us suppose that we could discover a rational number B such
. A : A% 2 22
that B = Y2. This would, of course, mean that 5 =71s OF AT =2B"
E B ]

Sinee A and B are integers, vwe may ask two simple questions: Is

A even or odd? Is B even or odd?
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]
First we ask, can A be odd? If this were possible, then A~
2 2 , ,
would be odd and so A” = 2B° states that an odd number is equal to an

even number which is impossible. Thus, our first conclusion is

If A/B = /2 then A 1is even.

18]

Now what about B? Can B be odd? If this were possible then B

]
is odd and we have A® = 2B, Now, remember we now know that A is
even; let us say A = 2a and so A = Aag = EEE and so
2 2
2a =B .

i ) _ ) . 2 2
Again this states that an odd number (B7) equals an even number 2a .
Hence we have our second conclusion, which we combine with our first
conclusion:

If él@W: VY2 then A is even and B 1s even.

Finally, we are ready for the coup de grace!

Can 2 be rational? We claim not! Suppose we could, from all

the fractions % such that % = Jgg selent the one in whiech x 1is
the smallest possible pésitivérinteger. Suppose we write that fraction
as % . We are now in deep trouble because we have assumed

A ()

2= 2

and yet our conclusion above states that A and B are both even.

Since this is so, we may divide both A and B by 2; say '% = a

& % = Y2 and yet a 1is a smaller

B 7 A a )
and 5 = b. Thus, E =5 and so
itive integer than A. But this contradicts our choice of Al

g
o]
w
',.J

Thus, any assumption that Y2 is rational inescapably leads us
to a contradiction. Our only consistent conclusion is that there can

be no rational number whose square is 2.
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GRADE 7 - CHAPTER 11

PARALLELISM

Background:

Many of the ideas of parallelism have been discussed prior to
this chapter, and even more of them are rather intuitively simple for
students. But there is a need to summarize, every so often, ideas
that are scattered about in previous intuitions and in previous logi-
cal presentations. This is the first of such summaries which concerns
itself with parallelism. Each future summary will, of course, extend

and deepen these ideas.

We are assuming some understanding of points, lines, and planes in

na

and 3 dimensions. BSuch ideas as intersection and intersecting as
set and relation respectively are needed; slso the ideas of incidence:
point is on line, line contains point, point is in plane, plane con-

taing point, line is in plane, plane contains line.

There must have been some discussion of 2 dimensional graphs
and of linear equations, but not much use is. made of these in this
chapter. We will need the meaning of polygon, regular polygon, side,
angle of polygon, tetrahedron, edge, face and vertex of tetrahedron,

and measure of segment, angle, area and volume.

Purpose:
The purposes of the chapter are as follows:

l. To strengthen, and sometimes to define, the concepts of parallel

and skew relationships in 2 and 3 dimensions.

2, To illustrate the concepts of parallelism for the basic 1 and

2 dimensional figures.
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3. To sssoclate 2 and 3 dimensional concepts as often and as fully
as possible at this level of mathematics.
4, To interconnect concepts of similarity wit. hose of parallelism

in simple ways as related to parallel lines and planes.

5. To connect synthetic concepts of parallelism with analytic

geometry for lines parallel to the coordinate axes only.

6. To study the transversal figures in 2 and 3 dimensions
noting especially the relationships between congruent angles and

parallel lines.

7. To develop slightly some ideas of proof with respect to parallele-
grams and rhombuses and to use such an approach to review congruent

triangles.

8. To consider parallel nets of lines and planes.

Rationale:

Parallelism at this point of the curriculum, followed by perpendi-

mental ldeas of geometry, affine and metric. These chapters illustrate
how many, individual ideas come together into larger, more general and

more abstract concepts.

Also, these concepts are needed to help clarify such later con-
cepts as linear equations in two dimensions, and much later in three
dimensions; the concept of translation which relates to both transfor-
mation and vector; and to locus problems, trigonometry and complex
numbers. Once parallelism is introduced we can present formally such
figures as parallelograms, rhombuses and trapezoids and the theorems
which concern the measures of their sides and angles and of their
areas. Parallel planes permit discussion of prisms and later of

cylinders.
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Section 1. Parallel one-dimensional objects:

1.1 Line parallel to a line defined as two lines in the same plane
which do not intersect.

1.2 Skew lines introduced to reinforce the need for "in a plane"
being in the definition.

1.3 IBExtension of parsllelism to rays and segments; use idea of

"ecarrying line" or, if you prefer, "line containing segment",

"line containing ray".

U4  Network or grid of egquidistant parallel lines in plane; use both

=

perpendicular sets and non=-perpendicular sets; also use exer-
cises in which the units are the same on the two axes and other

exerclses in which the units are not the same.

Typical Exerciges:

1. Draw the following figures:
(a) 1In 2-space, two lines parallel to a fixed line. Can these
two new lines Intersect in Just one point?
" (b) In 3-space, two lines parallel to a fixed line. Can these
two lines Iintersect in just one point?
(¢) 1In 2-space, two lines each parallel to a given line through
a point not on that line.
(d) In 3-space, two lines each parallel to a;given line through
a point not on that line.
Notice that "draw" is used to mean sketch or create without the

exact inspruments of stralght-edge and compasses. The latter

job is always referred to as "construct".

later in his life. Can we do this by implying that thils geometry

1
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we are now developing 1s one model for the universe they live in,

for many purposes the best model, but not the only model. Prob-

ably other, non-Euclidean models should not be mentioned at all,

but Jjust some leaving open of the door for the study of such geo-

metries later without, at that time, creating a feeling that we

have destroyed all the geometry previously taught and accepted.
2. Work with regular polygons similar to this.

(a) Consider the following regular hexagon and its diagonals:

Is there a side parallel to AB?

Is there a diagonal parallel to AB?
A L Is there a side parallel to AD?

Ts there a diagonal parallel to AD?

Is there a side parallel to CE?

Is there a diagonal parallel to CE?
(b) Consider the followlng regular pentagon:

Is there a diagonal parallel to AB?
15 there a side parallel to ABR?

4

Is there a diagonal parallel to AD?

5 there a side parallel to AD?

H

{e) For which regular polygons will there be a side parallel to a
side? a side parallel to a diagonal? a diagonal parallel to

a diagonal?
3. Draw a diagram of a cube and letter the edges from a to Z.

Start by considering a and b, then a and ¢, them a and

d, etc., and complete this table:

Q -;65_
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x dintersects ¥y X 1s parallel to ¥y x 1s skew to ¥
a intersects b a 1is parallel to . d a 1is skew to g
a 1intersects 4
a intersects e a 1is parallel to 1 a 1is skew to h
intersects £
interzects ¢
etc. etc. eta.
b _
B c
| . Note: There are 6t state-
e ;b . h ments to classify.
[ A SR A T
P Ve

h. Two segments "at random".

A boy starts to invent a game in which he holds a straw in each
hand and drops them simultaneocusly onto a table top from a height
of at least one foot. If the straws cross each other he wins a
point. Two boys then play in turn but find that the game leads
to some difficulties which need to be resolved:

(1) Does "cross" mean "intersect" or must a point of one straw
be between the endpoints of the other straw?

(2) Did you really mean the segments were intersecting or that
the lines containing them were? What happens to the game if
you choose the latter meaning?

(3) What happené to the game if one straw may be thrown and then
the other? What is the combination of skill and luck which

is involved?




(4) Let us actually perform the game and make some tables to
eztimate probability. Would the gamz be the samec 1f the two
straws were different lengths? If there were Ltwo straws of
each of the two different lengths? or 10 straws of each
of these two lengths? or 10 straws all the same length?

What do you mean by probability in these examples, anyhow?

(5) Discuss the relationship between the game and the mathema-
tical model of the segments. 1t will soon become evident
that the rules of the game evolve as one tries to pl.y it,
and that the geometric model by segments or lines is a good
way to discuss what you want to agree upon for the rules.

If one felt like it, one could mention that this is also the
way that geometry itself developed: +the agreements that
people made, the procedures which are used developed through
centuries as people did gecmetry. This might avoid the im-
pression that someone wrote geometry from page one on as a
great work of art and we still study it. In this sense our

game with straws could be a model for geometry.

However, it must be admitted that the other direction was the rea-
son for inventing the game. Line segments "at random" in a plane
is a mathematical model of the game we are tryling to invent.
5. M Line a2 1s parallel to §§
and intersecté side EE of
MMPQ at 1ts midpoint. What
ide MQ?
MP; what can

does it do to
Suppose MR =
you say about MS?
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Section 2. Parallel two-dimensional objects:

.1 Plane parallel to a plane (imitate Section 1.1).

M

2 2 Discuss absence of "skew" planes.
2,3 Tine parallel to a plane; defined as non-intersecting.

2.4 Extend concept so that any two objects in the following list are
defined as parallel: 1line, segment, ray, plane, half-plane; all

by means of carrying lines and planes.
2.5 Two parallel lines (rays, segments) determine a plane.

2.6 Equations of lines parallel to coordinate axes; lnequalities for

strips and 2-space inlervals.

Typical Exercises:

1. A very useful type of exercise for this part of geometry is the
always-sometimes-never exercise. The following example will

illustrate a little of what can be done with it:

It is assumed that geometric objects are given with the relations
among them stated in the hypothesis of =ach problem below. With
the hypothesis of the problem decide whether the fact gilven in the
conclusion will always be true, sometimes be true or never be true.
Fncircle the letter to indicate your decision with the following
meanings:

A The conclusion 1s always tzue.

8 The conclusion is sometimes true.

N The statement is never true.
A 8 N (1) Hypothesis: Two planes are parallel.

Conclusion: A line in one of these planes is parallel

to the other.

A 8 N (2) Hypothesis: Two lines are parallel.

Conclusicn: A plane containing one of these lines is

parallel to the other.
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A 8 N (3) Hvpothesis: A 1li:= is parallel to a plane.
Conclusion: A plane containing the line is parallel

to the plane.

A S N (4) Hypothesis: A line intersects a plane.
Conclusion: A plane containing the line is parallel

to the plane.

A 8 N (5) Hypothesis: A line intersects a plane.
Coneclusion: A plane containing the line intersects

the plane.

A 8 N (6) Hypothesis: Two parallel lines are each parallel to
a plane.
Conclusion: The plane containing the lines is parallel

to the plane.

A S N (7) Hypothesis: ™wo intersecting lines are parallel to a

»lane.

Conclusion: The plane containing these lines 1is

parallel to the plane.

A 8 N (8) Hypothesis: Two planes are each parallel to a line.

Conclusion: The planes are parallel to each other.

A 8 N (9) Hypothesis: Two lines are each parallel to a plane.

Conclusion: The lines arse parallel to each other.

A 8 N (10) Hypothesis: A line is parallel to one of two parallel
plau=s.

Conclusion: The line is parallel to the other plane.

2. Consilder a cirecle in a plane and a line intersecting the plane.
Now consider the set of all lines which contain a point of the
circle and are also parallel to the fixed line. Finally, con-
sider a second plane parallel to the first plane. What is the
set of segments between these two planes? Draw a sketch of this

situation. Try with triangle; with gquadrilateral.
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s patisans o prismes, exercises to go from casy to hard, firs

examples to supply some patterns and later examples to ask for

students to make thelr own. Here agre some typical ones to discuss

with a class:

(a) Supply pattern of box.

(v) Supply pattern for doubly-oblique rectangular prism.
(e) Ask for pattern for singly-obligue prism.

(d) ~ive pattern of regular pentagonal prism.

(e) Ark for pattern for regular hexagonal prism.

What is the graph of x = 2 in l-space? 1in 2-space?
What is the graph of 1 < x < 3 1in l-space? 1in 2-space?
What is the graph of 1 < x <3 and % =<y =< L0 in 2-space?

What is the graph of x > 1in i-space? 1in 2-space? What is

the graph of x >0 and y > 0 in 2-space?

Sectilon 3. Transversals:

3.1

W
N

(W] (W]

O

ERIC

Aruitoxt provided by Eic:

Review: Defs of wvertical angles, adjacent angles, linear pair,
complementary angles, supplementary angles; and facts about
them:

(1) Vertical angles congruent.

(2) Complements of coungruent angles are congruent;
supplements of congruent angles are congruent.

(3) Linear pair is supplementary; converse not necessarily
true.

Defg: +transversagal lines to two lines in 2-space, in 3I-space;

to two planes in 3-space.

Defs: +transversal planes to lines and planes in 3-space.

Def': dihedral angles.

e

[

the



.5 Defs: 1In 2-space and 3-space: corresponding angles, alternate
interior angles.
3,6 Parallel property: Through point not on line, onz and only one

parallel line exists.

(There was some doubt in the group about the wisdom of studying the
parallel property at this time. EStudents have already much intuition
about this property, but need it be stated in the text. Others in the
group thought it wise to spell out the fact and that it was time to do
so. No one meant that we would introduce a tight deductive system
beginning with this postulate at this time. That is one reason we use
the word '"'property" rather than "postulate'.)
3.7 Properties in 2-space and in 3-space:

(1) parallel — congruent angles

(2) congruent angles — parallel

These apply to both corresponding and to alternate interior angles.
2.8 Construction:; Line parallel to line through fixed point.

*
3.2 Defs: parallelogram, rhombus, trapezoid ; not extended to 3-space;
also rectangle and sguare not used formally, but saved for later

discussion of perpendicularity in Grade 8.
"Probably defined with only one pair of sides parallel".

3.10 Prove some theorems about quadrilaterals as example of deductive

sequence. See below for suggestions.
3.11 Ask for some constructionus and discuss sufficient data.

3.12 Segment parallel to side of a triangle; ratio of segments, ratio

of areas.

fﬁé



ypical EBxercises:

I
a

More ASN problems, for example: (Remind we are always in

3-space.)

A S8 N (1) Hypothesis:

Conclusion;

A S N (2) Hypothesis:

Conclusion:

A S N (3) Hypothesis:

. Goneclusion:

A S N (4) Hypothesis:

Conclusion:

A line intersects one of two parallel
lines.
The line intersects the other parallel

line.

A line intersects one of two parallel
planec.

The line intersects the other parallel
plane.

A plane intersects one of two parallel
planes.

This plane intersects the other parallel

plane.

A plane intersects one of two parallel
lines.
The plane intersects the other parallel

line.

Ask students to invent definitions for some concepts before

teacher or book presents them: dihedral angle, vertical dihedral

angles, adjacent dihedral angles, linear pair of dihedral angles,

complementary dihedral angles, supplementary dihedral angles,

betweenness for half planes.

Suggestions for thecrems to be proved in deductive sequence:

(a) Diagonal of parallelogram creates two congruent triangles.

(b) Opposite sides of parallelogram are congruent.

(e) 1If opposite sides of quadrilateral are congruent, then

figure is parallelogram.
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(a) Diagonals of parallelogram bisect each other.

(e) 1If diagonals of quadrilateral bisect each other, then

figure is a parallelogram.

This about all. These will serve to review and keep alive the
ideas of congruent triangles. Alsc, save for Grade S these:
(f) Diagonals of rhombus are perpendicular.

(g) Proof for sum of angles of triangle is 180.

4., Require constructions from given data and careful paragraph
describing what has been done. Note the need of distinguishing
and discussing problems which have insufficient data and thus
lead to more than one solutlon, problems which have contradictory
data, and problems which have a unique solution. Here are some
typical examples:

(a) Rhombus, given a side and an angle.

(b) Parallelogram, given two sides (which?).

(¢) Rhombus, given two diagonals and one side.

(d) Trapezoid, given one side, one diagonal, and one angle.

A few problems to show the direction of development and the slope of the
ineline of difficulty might illustrate what 1s meant here.. Let us ex-

pand the meaning of item (b) on the preceding list.

(1) Can you have a parallelogram with two adjacent sides congruent

to these segments:

A o——— R C —_— D

If so, construct such a parallelogram.
(2) Can you kave more than one parallelogram with ths data given in

problem (1)? 1If so, construct a parallelogram of this sort which

is not congruent to that which you constructed for (1).
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(3) Can you have & parallelogram wilh two adjacent sides congruent to
the segments below, and the angle between these sides congruent to

the angle below:
I

— - — F
D

]

If so, construct such a parallelogram.
(4) Can you have more than one parallelogram with the data given in
problem (3)% If so, construect a parallelogram of this sort which

is not congruent to the one you constructed for (3).

5. Construet a figure similar to a given figure starting with the

following: rhombus, parallelogram, trapezoid.

6. A
DE || BC, Ad =3, DE =2
DA\ E |
DBE = 4, Find BC
B C (Easier ones at first, of course.)

ZADE and /ABC are right angles,

so we also have DE || BC; AD = 8,

DE = 6, AB = 12,

(a) Find the area of OMADE and area of AMAEC.
(b) Find area of trapezoid DEBC.

(¢) What is the ratio of the areas of OADE and AABC?




O

ERIC

Aruitoxt provided by Eic:

tion L. Transversals to three or more lines and planes:

Sec

4.1 Three or more coplanar parallel lines and transversal lines.

4.2 Three parallel lines and transversal planes.

4.3 Three parallel planes and transversal lines; also transversal
planes.

L,y Intuitive understanding of segments ut off by and on such
fransversal lines.

4.5 Median of trapezoid and relationship to diagonals.

.6 Show connection between nets of parallel lines and parallel

planes to coordinate systems in 2 and 3 dimensions: do not

restrict to perpendicular sets of lines and planes.

Typical Exercises:

Show how to divide segment into 7 (or any number of parts) con-

gruent segments by edge of ruled sheet of paper.,

Median of trapezoid // - ”\\
bisects each diagonal. / \\

[ E—
E is midpoint; F is midpoint. .

Prove: AG = GH = HC

Should we give hits of dotted
lines?

Develop this problem; do not

just throw it at them.
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CONTENTS OF CRADE 8

Sequence A

Perpendicularity

Perpendicularity of One-dimensionsl Objects

Right zngle and perpendicular lines

Extension to line, ray, segment by concepts of

"carrying line"

Construction of perpendicular line through fixed point
Construction of bisector of segment

Locus in plane of points equidistant from two fixed points
Proof concerning diagonals of rhombus

Perpendicularity of Two-dimensional Objects

Dihedral angles

Extension of perpendicularity from planes to half-

planes by concept of "earrying plane"

Locus in 3-space of points equidistant from two fixed
points

Definition of line perpendicular to plane

Perpendicular skew lines

Line perpendicular to two lines at some point: determi-
nation of plane

Mutually perpendicular lines; same for planes

Plane through fixed point, perpendicular to fixed line

Coordinate Systems - Distance

One Dimensional Coordinate System
Coordinate on a line

Distance between two points on a line
Algebraic description of subsets of the line
Two Dimensional Coordinate System
Coordinates in the plane

Distance between two points in the plane
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2.3 Algebraic description of subsets of the plane
SBection 3. Three Dimensional Coordinate 3Bystem
3.1 Coordinates in Space
3.2 Distance between two points in space
3.3 Algebraic description of subsels of space
Section 4. Polar Coordinate System
Chapter 3: Displac:a=ments
Section 1. Physical Quantities
1.1 Quantities
1.2 Operations (review)
Section 2. Vector Quantites
Section 3. Vectors
3.1 Activities
3.2 BEquality
3.3 Opposite of a vector
3.4 Addition of vectors
3.5 Zero vector
3.6 Commutative principle for vector addition
3.7 Associative principle for vector addition
3.8 Summary of properties of addition
3.9 Bolution of vector equations
Section 4. Multiplication of a Vectur by a Number
4.1 Developing meaning of multiplication
L.2 Multiplication and parallelism
Section 5: Translation
Section 6: Decomposition
6.1 Decomposing in terms of two vectors
6.2 Naming vectors
Section 7: Extension to Vectors in 3-Space
Section 8: Applications
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Chapter 4: [Problem Analysis .Strategies)
Section 1: Translation of Phrases
1.1 Mathematical phrases to English phrases
1.2 Class discussion
1.3 Characteristics of translatious of English phrases
1.4 Exercises
1.5 English phrases to mathematice™ phrases
1.6 Class discussion
1.7 Characteristics of translationz of mathemstical phrases
1.8 Exercises
Section 2: Translation of Sentences
2.1 Mathematical sentences to English sentences
2.2 Class discussion
2.3 The translation process
2.4 Characteristics of translations to English sentences
2.5 Sentences involving restricted domain
2.6 Exercises
2.7 English sentences to mathematical sentences
2.8 Class discussion
-9 Exercises
Section 3: Problem Analysis and Strategies

1l Basic attitudes toward problem analysis
.2 Organization techniques (a first strategy)
3 Example of first strategy at work ’
3.4 A second strategy
3.5 Exercises
6 Organizing information with drawings or diagrams
3.7 Exercises
3.8 Organizing information in tabular form
3.9 Exercises
3.10 Estimation process
3.1l Exercises

3.12 Problem analysis based on analogy
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Chapter 5: Number Theory

Section 1 Bven and 0dd Integers

2: Informal Discussion of Statements and Proof

3 Factors, Divisibility, Tests for Divisibility, and the
Division Algorithm

Y: Prime Numbers, Sieve of Eratosthenes, Prime Factorization

5: The Euclidean Algorithm and the GCD

Chapter 6: The Real Numbers Revisited - Radicals
Section l: Motivation
Section 2: Review of Facts about the Real Number system
2.1 Notation for real numbers
Section 3: Roots of Numbers
3.1 Square roots
3.2 Definition of the n-~th root of a
3.3 (poseibly) Introduce xl/g, xl/a, etc,
Section 4: Computati»n with Radicals
4.1 Use of factorization to find roots
L.2 Irrational square rpots
4.3 Product of square roots
4.4 Square roots of rational numbers
Section 5: Review of Real Number Properties and the Number Line
5.1 Properties of the real number system

5.2 Real numbers and the number line

Chapter 7: Truth Sets of Mathematical Sentences

Section 1: Addition and Multiplication .Properties of Eguality and
Inequality

1.1 Concept of equivalent sentences

1.2 Addition property of equality

1.3 Multiplication property of equality

1.4 Addition and multiplication properties of inequalities

1.5 Applications to verbal problems
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Permissible Operations for Eguivalent Sentences

Addition and multiplication

-

If a = b, then a = b ; converse not true
Use of M"ab = 0 if and only if a =0 or b = 0"
Eestrictions on denominators containing veriables

Sguaring both sides of an equation

Graph of the Quadratic Punction

Graphs of f ;.x —%xg and f : x E%—xg
Graph of T : x E%;xg

Graph of f : x E%axg + k

Graph of f : x —a(x - h)g

Graph of f : x —a(x - h)g + k

Point out need to factor gquadratic polynomials
Factoring Polynomials
Meaning of "over the integers", etc.

a(b + e)

Type ab + ac
Type ax +ay + bx + by = (a + b)(x + y)

Perfect squares

Difference of squares

Type XE + bx + ¢, by completing the sguare

Type axg + bx + ¢, by completing the square, and by
inspection

Solving Quadratic Equations

Same as '"finding zero of function"

Solution by factoring, including completing the sguare
Formula as a short cut

Writing the General Quadratic in Form a(x - h)2 + &k
Compisting the square to get the form ’

1Ise the graph of a single quadratic function to solve many

related quadratic equations



Chapter 3: Probability

Section 1: Dependent and Independent Events
2: Conditional Probability - Bayes' Theorem (WST)
3: TDxpectation
4: Vvariation, Standard Deviation

5: Normal Distribution; Physical Observations

Chapter 10: Parallels and Perpendiculars

Section 1l: Regions

1.1 Separation of a plane by parallel lines

1.2 Separation of a plane 'y n parallel lines and m others
perpendicular to thom

1.3 Extension to 3-space with parallel and perpendicular

planes

Combining Parallel and Perpendicular Relations

Line perpendizular to one of two parallel lines (planes)

Two lines perpendicular to the same line (plane)

Pnrm

Plane perpendicular to one of two parallel lines (planes)

Two planes perpendicular to same line (plane)

N
Ul oW

Relation of parallel and perpendicular with respect to
reflexive, symmetric, transitive relations
Section 3 Distance between Parallel Lines and Parallel Planes
3.1 (Review) Distance between two points
3.2 Distance from z point to a set of points
3.3 Distance between two sets of points
3.4 Altitude of parallelogram, of trapezoid
3.5 Byuations and inegualities for planes parallel to co-
ordinate planes.
Section 4: The Quadrilatersl Properties
L.l Review properties of sides, diagonals, angles of figures

4,2 Informal approach to "necessary and sufficient”
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Chapter
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Symmetries
Symmetry in a line (in 2-space and in 3-space)

2

Symmetry in a point (in 2-space and in 2-space)

3 Symmetry in a plane (in 3-space)

Symmetries of triangles

Symmetries of rectangles

Symmetries of a eircle

Symmetries of 3-dimensional figures
Angle-3um Froofs

The parallel properiy

Angle measure sum for triangles

Angle measure sum for convex polygons

Properties and Mensuration of Geometric Figures

Motivation of Numerical Measure for Areas

Arbitrary Unit versus Standard Unit

1 Selection of unit

Metric system

Assigning Measures to Segments and to Regions
Formulas for perimeters and areas

Measure and Congruence

Propertiss of Regular Polygons

Models of Bolids

The Sphere

Surface of the sphere

Volume of the sphere

Spatial Perception and Locus
Relationships between two (or more) Given Point Sets
Using a Set of Puints to Evolve Another Set of Foints

Sets of Points Meeting Given Conditions

Ry
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Chapter 13: ©Systems of Hquations in Two Variables
Section 1l: Solution Sets of Systems of Equations and Inequalities
1.1 Review definition of solution set of eguation or in-

equality

-
no

Define solution set for system of egquations or inequalities
Section Equivalent Equations; Eguivalent Systems

1 Definition of equivalent as "having same solution set"

o m
!

> Replacement of an equation in a system by an equivalent

PO
o

equation r-=ults in an equivalent system

Linear combination method of solution

.
L

Systems of Lirear Eguations

w M

Section

oo

Review of graphical solution
Graphiical interpretation of linear combination method

Section Graphical Solution of Systems of Inequalities

Section Applications

Word problems needing two variables

MW o
=

Use of mathematical models

T
e no

Introduction to linear programming




GRADE 8 - CHAPIER 1

PERPENDICULARITY

Background;

Many of the ideas of perpendicularity of lines are already known
to the student at this time, but the carefuvl extension of this con-
cept to perpendiecular rays and segments is probably new. L'he concept
of dihedral angle has been used and discussed, but it is here extended
to define perpendicular planes. The further extension to perpendicu-
lar half planes and of line perpendicular to plane are guite new but
are illustrated by familiar facte about cubes.

Simple constructions have been introduced to copy segments and
angles and to bisect an angle, but here the constructions of line per-
pendicular to line and point bisecting segment are introduced and
proved.

It is hoped that the 1dea of locus is not new, but its application
to perpendicular bise~ting line and perpendicular bisecting plane of a

segment 1s formalized.

The rhombus and square =z2re known so their perpendiculsr disgonals

should not need much time to introduce.

Purpose:
The purposes of tais chapter are as follows:

1. To strengthen, and sometimes to define, the concept of perpendicu-
lar relations in 2 and 3 dimensions.

2. To illustrate the concept of pervendicularity for 1 and 2

dimensional figures.

3. To associate 2 and 3 dimensional concepts as often and as

fully as possible at this level of mathematics.

-18L4-
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L, To introduce some new constructions with straight edge and com-

passes and to review old constructions in harder problems.

. To iilustrate che i1dea of locus in perpendicular bisecting lines

and planes without trying to teach the general idea of locus.

A. To provide much inductive work with perpendicularity in 3

dimensions, but no proof.

7. To introduce 3 mutually perpendicular ilines and 3 mutually
perpendicular planes as preparation for coordinate geometry in

3-space.

Raticnale:

Parallelism has been introduced by itself in a former chapter.
Now another basic relationship among lines and planes in 2 and 3-
space 1s isolated from other relaticonships. It is both a summary and
an extension of ideas about perpendicularity.

The discussion of the inte.relationships between the concepts of
parallelism and perpendiculerity are summarized in a later chapter.
Thus we have just one more example of the planned spiral approach in
the curriculum. Many of the properties of the triangle and quadri-
lateral are being introduced all along the way to prepare for sum-
maries of such facts later. It 1s clear that some ideas are intro-
duced in the present chapter to prepare for coordinates in 3-space
in the chapter which follows immediately. Some future topies which
will use the ideas of perpendicularity are these: mensuration of

geometric figures, transformations, and tangency.

Section 1. Perpendicularity of one-dimensional objects:

1.1 Right angle as degree measure 90; perpendicular lines as con-

taining a right angle.

[
nJ

Extend perpendicular to other one-dimensional objects (line, ray,
segment in all combinations) by concept of carrying line; note

that perpendicular does not imply intersect.
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180



Constructicn: line through fixed peint perpendicular to fixed
line (whether point is on line or not); proof by congruent tri-
angles,

Construction: Dbisector of segment; proof by congruent triangles.
Loecus in a plane; points equidistant from two fixed points.
Prove: BEach diagonal of a rhombus im the perpendicular bisector
of the other diagonsl; therefore true for square; but not true

for non-square rectangle.

Typical Exercises:

ZAOC is a right angls; /ZBOD is
a right angle; mfAOB = 30. What
is mZCOD?

c
L ] ————— = -
Given that AB l D : A, B and
D -
° F are collinear; C, D and E
AG Be o . N .
) are collinear; and order and
j

separation as indicated by the

figure.

Answer these questions: Encircle elther T or ¥ +to indicate

that the fact is true or false:

T F (1) 2B intersects OB
T F (2) AB | CD
T F (3) AB intersects CD
T F (4) XB intersects CE
T F (5) AB intersects CD
T F (6) AB | CD

-186-
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T F (7) AE intersects 0
w56 ete.

=
B
@

3. More "3N questions similar to these:

(a) Hypothesis: Object @ | Object ¥

Coneclusicn: Object @ intersccts Object ¥

(b) Hypothesis: Object @ intersects Object ¥
Conclusion: Object ¢ i Object

(¢c) Hypothesis: ZABC 1is a right angle.

Conclusion: KE L.XE

(d) Hypothesis: ZABC 1is & right angle.
Conclusion: BA J_ BC

(e) Hypothesis: BA iﬂ%ﬁ?
Conclusion: ZABC is a right angle.

4, TUse the following exercise to prepare for Section 1.3 above:

D ]

If PA = PB and QA = @B, then %@ i.ABi Assume all points

mentioned are collinear.

5. The same hypothesis given in Exercise 4 could prepare for

Section 1.4 above by proving that .§§ bisects AB.
6. Prove this theorem in connection with Section 1.5:
If PA =PB, QA =QB and R 1is on PQ, then RA = RBE.

Nocte that this faet is alsc true in 3-space.

Work up to such construction problems as these as objectives:

—J

(a) Sguare, given a side.

(r) Rectangle, given two sides.

(e) Rhcmbus, given two diagonals.

(d&) Parallelogram, given two diagonals.

(e) Rectangle, given a diagonal and a side.




To show how these types of problems may suggest thinking about
sufficiency of data, consider these examples:
(1) Can you have a guadrilateral with two diazonals congruent

to these segments?

A B c D

If so, construct such a guadrilateral. Can you have more
than one such quadrilateral? 1If =o, construct another which

is not congruent to the first.

(2) Can you have a parallelogram with diagonals congruent to the
segments in Exercise (1)? Constr. - such a parallelogram.
If you can have another, non-congruent parallelogram, con-

struct one.

(3) Can you have a guadrilateral with diagonals perpendicular to
each other and congruent to the segments in Exercise (1)%

If s0, construct one. Can you have another, non-congruent
guadrilateral which fits these conditions? If so, construct
one.

(4) Can you have a rhombus with diagonals congruent to the seg-
ments in Exercise (1)? If so, construct one. Can you have
another, non-congruent rhombus which fits these conditions?
If so0, construct one.

(5) Can you have a square with diagonals congruent to the seg-
ments in Exercise (1)% If g0, construct cne. Can you have
another, non-congruent square which has such diagonals? If
g0, construct one.

8. Extend the ideas of paper folding used in previous chapters. Here
use this technigque to find the altitudes and perpendicular bisec-
tors of sideé of triangles. Use a helpful seiection of triangles

from scalene, isosceles and equilateral; acute, right and obtuse.
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Start with four different triangles and use them to do the follow-

ing constructions (with ruler and straight edge):

(=) Construct the three altitudes.

(b) Construct the three medians.

(¢) Construct the three angle bisectors.

(d) Construct the three perpendicular bisectors of the sides.

Use different size and different shape triangles within the class
or even for es<h pupil. Be sure © 21ave some obtuse triangles to

construct altitudes and perpendicular bisectors of sides.

Section 2. Perpendicularity of two-dimensional objects:

2.1

2.5

2.6

o
S

Def's: measure of dlhedral angle, right dihedral angle, perpendi-

cular planes as containing a right dihedral angle.

Extend perpendicular to two dimensional objects (planes or half-
planes) by concept of carrying rlane; note that perpendicular
does not imply intersects.

Locus in 3-space; points equidistant from two fixed points.

Def: 1line perpendicular to plane as perpendicular to all lines
in plane through its foot; extend to one-dimensional objects
(line, segment, ray) perpendicular to two-dimensional objects
(plane, half-plane); perpendicular does not imply intersects.
Discuss perpendicular skew lines, perhaps by means of line to
which each of them is perpendicular; extend to line perpendicular

to two lines and intersecting them at distinect points.

Line perpendicular to two lines and intersecting them at the same
point; line perpendicular to plane determined by two intersecting
lines (no proof of any of this at this stage).

Three mutually perpendicular lines; three mutually perpendicular

planes.



Plane containing fixed point and perpendicular to fixed line

P
1

(whether line contains point or not).

Typical Exercises:

il
1. —_
FP 1is a flagpole standing on level
ground at point P, R and Q are
P points on the ground so that RP = 3,
R <=9 N PQ = and RQ = 7. Copy The
N figure and add the line which is per-
7 x"& ~ . -—
~ pendicular to both FFP and Ré.
\"\\ Q
2. The following figure is a cube. By means of the figure answer the

guestions.

(a) AE 1is skew to DC. Name a segment perpendicilar to both and
intersecting both.

is skew to DC. ©Name a segment perpendicular to both, but

(b)

s 2l
o

t intersecting either.

(¢) Find a segment skew to BG such that there iz a segment marked
in this figure which is perpendicular +o both. Name the seg-

ment perpendicular to both.

(d) Find & line ozrpendicular to two intersecting lines so that

the intersecting lines are not perpend’ ular to each other.
(e) Describe the plane through C perpendicular to CG.
(f) Deseribe the plane through E perpendicular to HG.
(g) Deseribe the line through D perpendicular to the plane DCGH.

(h) Lescribe the line through F perpendicular to the plane ADHE.




O

ot

Draw a pilcture of a cube and label the eight vertices.

(a) Using these letters name three lines such *+ha+ each pair is

perpendicular.

(b) Identify three planes in the figure such that »ach pair is

perpendicuiar.
(c) Tdentify a line perpendicular to two intersecting lines.

(d) Identify a line perpendicular to a plane.
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GRADE 8 - CHAPTER 2

COORDINATE SYSTEMS - DISTANCE

Background Assumed:

Knowledge of the real number line.

Familiarity with coordinates of points on a line and coordinates

of points in a plane and how tc plot them.
Ability to graph linear functions and y = |x]|.
From Grade 7, Chapter 5, measure of segments.
From Grade 7, Chapter 11, some in’ rrductory knowledge of:

(1) equatiors of lines parallel to the coordinate axes,

inequalities for strips,and Z2-space intervals.

(2) Set-builder notation, e.g., {(x,y) : x +y > 2}.

Eurg@se:

To develop mathematical machinery:

(1) +to describe algebraiczlly sets of pointe that form familiar

geometric figures, and. conversely, to describe geometrically

to be able to prove geometrical theorems analytically,

— ~
) M
—

[¥X
-

to solve graphically many problems that are usually solved

algebraically.

This chapter brings together algebra and geometry and lays the
foundation for the study of a body of mathematics called anslytical

geometry.

- lg}gg
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section 1. One dimensional coordinate system:

Distance

Intuitive development of the concept of distance. VWhat is the
distance between San Francisco and Los Angeles? This is a tough
question, because we wonder which road, by airplane exactly where
in San Francisco do we start and exactly where do we stop and
what is the unit of distance. How far from Joe's house 'to Bill's
house? It should be clear from such a short discussion that we
will have diffi.ully getting what everybody would agree to be an

"exact” answer.

Consider three collinear points:

» o — ,
A B C

Have students measure the length of AB, BC, and AC using

some unit, and have them notice the apparent relationship between
the three lengths. Connect this up with the relation betweenness.
The number sssociated with AB is called the distance between A

and B with respect to that unit and is denoted by AB.

Consider three non-collinear points and make measurements as above

to motivate the triangle inequality, AB + BC > AC.

From the above it should be possible to pull out the idea that
gilven two points A and B in space, and a unit of measure, then
there is a number that corresponds to these two points. This num-

by AB.

£

ber is the distance between A and B and is denote
This correspondence, then, is a function, D,

D : (points) A, B-—=(distance)d .

Consider what happens to the distance between A and B as point

B gets closer and closer to point A.

This leads us to O as the distance between point A and point

A, that is AA = O,

L]
"
O
HP
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Note here that the distance between points A and B is either

positive or zero; it is zero whenever A and B are names for

u
3]

100

tLe same point, and positive whenever A £ B.

Coordinates on a line. (See Mathematics for Junior High School,

Vol. 2, Part 1, pp. 21-23.)

One to one correspondence between the points on a line and the
real nunbers giving the real number line.

Show how to coordinatize the line by choosing an arbitrary point

as the origin, and an arbitrary unit.

Distance between two points on a line.

The coordinate of a point on a line gives the distance from the
origin to the point and also tells the direction from the origin
to the point.

The absolute values of a real number, a, gives the distance
between the origin and point A with coordinate a. Consider

the number line:

A B C D E ¥ G H K M

I
o

|
4+

|

I
A
+
-

4 3 2 -1 0 1 2 3 4 5

Find the distances FK, AD, and CH.

Notice that if P and Q have coordinates p and g respec-
tively that PQ = |p - qf.

At this point it might be well to consider two distinet points F
and Q with coordinates p and ¢q and examining the numbers
P-9g and g - p. One of these i1s positive and one is negative.
This can be connected up with the concept of sense on line and

also with the concept of directed distance. g - p 1is the



directed distance from P to Q and it is positive if the posl~-

tive sense of the line i1s in the direction from P to Q.

If this informal bit on directed distance dees not get into the

text, it should be noted in the TC for the teachers.

Define: midpoint of a segment,

Find the coordinate of the midpoint of segments FM, AE, BF.
Develop formula for coordinate, m,, Of the midpoint of Pq

+
if P, and @ have coordinates p and (. My = E%gﬁi .

Exercises of the following type:
1. Given P(2,5) and Q(-4,3)
(a) Find the coordinates of the midpoint of FQ.
(b) Find the coordinates of the point R on FPQ such
that PR = % PQ.

(c¢) Find the coordinates of the point S such that Q
is the midpoint of PS.

Algebraic description of subsets of the line. (See Math. for

Junior High School, Vol. 2, Part 1, pp. 65-71)

At this stage of the game we make the convention that if P has

v

coordinate p 1n a given coordinate system, we may refer to
by simply naming its coordinate p.

Segment FK (in diagram, page 3) consists of the points F, K,
and all points between F and K. Analytically we may say

FK = {x : 1 <x <k} or FK is the solution set of the sentance

1 <x <k,

Develop the following:

If p <q segment : x:p<x<ql
half line : x:x>ql, [x:x<q]
ray : {x:x>aq), {x:x<q}
~-195~.
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If p <q open interval : {x : p <x < p}

Find the solution sets of the following sentences and graph the

solution set -- name the set if it is a familiar geometric

figure:

l. =2 5., x < -2

2, x - 1h = -12 6. x - Lk < -6

3. x >3 Te 3 <x <7

b, x+7>10 8. -2<x-5<2

9; x greater than 3 and x less than 7

10. x greater than 3 or x less than 7

11. x greater than 3 or x less than -2

12, x >3 or x < -2

Describe the following sets of points, graph them and then name

the set if its graph is a familiar figure.

13, {x:5<x < -2} 18, x| -3 =4
b, (x : x° <k} 9. |x| +7 =2
15. x° > 20. |x ~2| <k
6. |x -2 =3 2l. x| +2>5
7. |x+7] =5 etc.

Section 2. Two dimensional coordinate system:

2

El

Coordinates in the plane. (See Vol. 2, Part 1, pp. 23-30)

Set up the X-axis, Y-axis and review the plotting of points and
discuss and note the one-to-one correspondence between points in
the plane and the set of all ordered pairs of real numbers (X;Y).
This would be a good place to consider developing the concept of

cartesian product A X B where A and B are sets of numbers.



B o
G

2.2

Begin with A = {1,2,3} and B = {k,3] and form A X B and

he zet of all real num-

-t

finally congider R x R where R t
bers. Then, point out that for each (x,y) € R x R there is a
point in the plane and for each point P in the plane there

corresponds an ordered pair of real numbers (z,b) £ R X K.

Definition of the four quadrants showing how the two coordinate

axes separates the plane into L4 disjoint sets of points.

Ezercises of the following type.

L. Consider a square with side 5. If the x-axis and v-axis are
sides of the square, what are the coordinates of the vertices
of the square if one vartex is in the third quadrant? Con-
sider the other quadrants.

Consider an ilsosceles triangle with base 6 and altitude Uk,

o

if the vertex is at the origin and the y-axis bisects the
base what are the cnordinates of the vertices of the tri-
angle? Consider gll cases.

3. Give an algebraic description of the set of points in each
guadrant.

L. Consider two sentences of the form y = 2x + 4, graph these
two sentences, these twoc lines separate the first quadrant
into three convex regions. Find algebraic descriptions of

each of these three reg ons.

Distance between two points in a plane.

Use ideas developed in 1.2 to find the distance between two points
on the X-axis, Y-axis and on lines parallel to the axes.

Give problems finding the distances between points A and B that

are in different quadrants.



Find the distance AB for:

1. A(o0.7), B(0,-3)

2. A(-8,0), B(2,0)

3. A(8,5), B(8,-2)

4. A(-2,-2), B(-2,5)
Have students see that the formula developed in 1.2 can be
uged here. 5
As a discovery exercise, consider the problem: find AB Tfor
A(2,4) and B(6,1).

Review subscript notation such as JEl(xl;fl)g Pg(xgjyg);

Develop proof of distance formula

B.P

1z

#ng - xl)g + (v, - vy

Give problems so that the square roots involved are within the
sgquare root development in Grade 7. Keep the distances mostly

rational, but have few that are irrational.

Some problems could involve finding areas of figures that are
plotted in the plane.

Develop the formula for finding the coordinates of the midpoint
of the segment joining Pl(xlgyl) and Pg(xggyg)d This can be
done using similar triangles or using the distance formula just
developed. It could be that the algebra involved here it too
heavy for them to use the distance formula. The similar tri-
angle method has simple algebraic manipulation.

Give problems using midpoint: formula and distance fermula.
Prove some originals and theorems from synthetic geometry by

using coordinate geometry.
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Exercises:

P

1., Consider OABC with vertices A(2,3), B(5,9), C(11,6).
(a) Find the lengths of the sides AB, BC, and AC.
(b) Wnat kind of a triangle is AABC?

(c) Find the coordinates of the midpoints of AARC.

AB and BC is parallel to AC and is half the length
of AC.
2. Consider OABC with vertices A(3,10), B(3,4), and c(9,4).
(a) Find the lengths of the sides.

(b) What kind of a triangle is it?

M| =
=
[

(e) Find the midpoint D of AC =and prove that BD =

3. Given P(3,4). Find P'  such that the origin 0 is the

midpoint of PPl.

4. Given P(3,4) and Q(6,8). Find 3 points equidistant
from P and Q.

2.3 Algebraic description of subsets of the plane. (See Vol. 2,
Part 1, pp. 30-33, 93 -110)

1. Sentences in one variable,
For k and m reaal numbers consider sentences of the types:
x=k,¥y=%k, x>k, x>k, x <k, x<k,y>k,y >k, y <k,

Yy<k; k<x<m, k<x<m, k <x <m, ete.

Judicious use of set notation sometimes clarifies things here
((x,y) : 2 <x <5].

Consider the following sets of points; describe and name the
geometric figure where possible.

(1) {(x,y) : x>2 and y >4}

i
advel
‘b»r“ [}
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(2) {(x,y) : x>2 or y>L}
(%) half plane: {(x,y) : x > 4)

(%) strip: [{x,y) : 2 <x 5)

(5) rectangular region: {(x,y) : 2 <x <4 and -1 <y < 3)

Give problems involving absolute value and inequalities.

Sentences in two variables.

rectangular region: {(x,y) : 2 <x <k and -1 <y <3}

line: {(x,y) : 2 X +y = 2}

Develop concept of slope of a line (see Vol. 2, pp. 374-

3783,

Use definition as rise over run and get slope formula for the
, , : , Yp = V1

line through El(xl’yl) and Pg(hg,yg) , m o= EE‘TEE; .

Consider the lines y = mx where m d4is a real number and

discover that m is the slope.

Consider the type of line with m >0, m =0, m <0, and
slope undefined. Introduce terms horizontal and vertieal
lines.

Define x-intercept and y-intercept of a line.

Plot the iine ¥y 2x and then consider the line y = 2x + 3.

Discuss the family of lines y = mx where m is a real

number, y =2x + b where b is a real number.
Consider lines of the type y = mx + b.
Problem: Describe two lines which have no slope.

Develop the conditions for parallel lines by examining the

character of the equations of lines wkich are parallel.
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At this point, the student has the mathematical machinery to
prove the theorem: Two non-vertical lines are parallel if and
only if they have the same slope.

X + Db.

=2

Consider the lines of the type y =mx +b znd y = -
Develop the conditions for perpendicular lines by examining
the charscter of the equations of lines which are perpendi-
cular.

At this point if the student can use the Pythagoream Theorem
and its converse, he could prove that: Two lines neither of
which is vertical are perpendicular if and only if the product

of their slopes is -1.

Exercises:

This set of exercises should contain originals and proofs of

theorems found in any standard analytic geometry text.

1!

Consider the quadrilateral A(0,0), B(2,4%), <¢(7,4), and D(3,0).

(a) Prove that this quadrilateral is a trapezoid.

(b) Join the midpoints of the sides and prove the figure is a
parallelogram, and find the lengths of its sides.

Find p so that the line px + 3y =7 1is:

(a) parallel to the line y = 2x + i;

(b) perpendicular to the line y = -3x - 7.

In the family of lines y = mx + 4, find the line parallel to

Describe geometrically and algebraically the set of points in the

plane 3 units from the origin.

Describe geometrically and algebraically the set of points in the

plane 3 units from the segment with endpoints A(0,0) and

B(5,0) .
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3

Section -

P

Mo

Three dimensional coordinagte system:

Coordinates in space.

Use suitable ideas from Grade 8; Chapter 1, in introducing co-
ordinstes in space. Make liberal use of the math room as one
octant and use the intersections of the floor and walls at one
cornr. of the room to illustrate the three mutually perpendicu-
lar lines. Name the coordinate planes and the octants and show
that the three mutually perpendicular planes determined by the
three mutually perpendicular lines separate space into 8 dis-
Jjoint regions. Note that the labelling of the cocrdinate axes
is arbitrary. Many people prefer to label the axes in such a

way that they form a right-handed coordinate system.

Develop one-to-one correspondence between the ordered triples

(x,v,2z) and the points in space.
Distancz between two polnts in space.

1. Show that if the two points happen to both be on a co-
ordinate axig cr on one of the coordinate planes, then we
already have developed a formula for finding the distance

between the two points-
Do some work in plotting points in three space.

First, find the distance from the origin to a point in space,
say to P{/5,2,4). Generalize to formula for OP if P has

coordinates (x,y,z). Use a rectangular box as a model.

Consider El(xl’yl’zl> and P,(x,,¥,,2,) where P, and
EE are in the first octant. Practicz visualizing planes

containing the points Pl and PE’ and the resultant box
or rectangular parallelepipad formed. Establish the co-
ordinates of the 8 corners of the box and the lengths of

the sides of the box, then. determine the length of diagonal.

Practice finding some distances between points in space.

202-
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Have student consider the formilas for the midpoint of a sefment
in a one-dimensional and two-dimensional coordinate system and
then guess the formula for the three-dimensional coordinate system.

Some students may want to prove their guess.

Describe geometrically and algebraically the set of points in

space 3 inches from the origin.

3.3 Algebraic description of subsets of space.

1. ES=zntences in one variable.
half-gpaces: x>k , y <k, z <k, ete.

{(x;y}z): x > kJj

3-dimensional rectangular region:

((x,y,2): k <x<m and n<y < and q <z <r)

-. Discovery exercises.

Describe the following sets of points:

(1) (a) f{x :x =1}
(v) {({x,y) : x =1}
(c¢) [{x,y,2) : x =1}
() ((x,y) : x+y =1}
(e) ((x,y,2) : x +y = 1)
(£) {(x,y,2) : x+y + 2 =1}
(2) (&) (x:x" =1 (4) ((x,y) : x5 +y° = 1)
(0) ((oy) + %" = 1) () ((x,7;2) ¢ x° + y°)
(e) ((x,y,2) : X = 1) (£) [(x,y,z) : X+ Y+ 2% = 1]

(3) In all parts of (2) change the symbol "=" to "<".
(4) In all parts of (2) change the symbol "=" to ">",

(5) Describe geometrically and algebraically the set of
points in space 3 units from the segment with end-

points A(0,0,0) and B(5,0,0).
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Section 4. Polar Coordinate System:

Consider a fived point 0 and the ray 0X in a plane as pilctured:

0 e — =X
Now put a scale on the ray as pletured:

0— et
1 2 3 4

e

6

Ul o+

Imagine the ray O0X with the scale on it rotating counter-clcck-
wise around O (that is point O vremains fixed). Imagine the point
at 1 tracing out a circle of radius 1, the point at 2 +tracing
out a circle, radius 2, etc., If you allow the ray oxX

, .0
counterclockwise through 350

to rotate

it will have returned to its originsl
position and the whole plane will be covered with concentric circles
at O and radii 1, 2, 3, b4, etc.

20k~
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Below is & pilcture of part of the plane:

900
i
e
;Fg7
=0 — T
1355 ~._ x

180° i o

- o It 2 3 N 5 6] 3600

2250

—[270°
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- A — 3 .0 . el
If ray OX 1is rotated L5, then it is shown as ray O ; in

the picture.

Question: Can you locate a point P in the plane if you know
that the ray O0X will pass through the point for the first time after
a counterclockwise rotation of 135® and that the distance from 0 to
P i1s 3?7 Try other rotations and any distance from the point O that

you wish.

Now consider the other question; pick any point P in the plane;
can you find a counterclockwise rotation of OX +that will pass through

P and also find the distance from 0 +to P?

This 1s clearly a scheme that assigns to each point in the plane
a rotation (angle) and a number. The point O 1is called the pole

and OX is called the polar axis of a polar coordinate system.

Questions:
1. Could you assign different rotations and the same number to the

same point?

no

Could you assign different rotations and different numbers to the
same point? If a point P can be located by a rotation of g°
and a number r (the distance OP) then by convention we say
that the ordered pair (r,sg) are polar coordinates of the point
P. -

3. 1Is there a one-to-one correspondence between the points in a plane

and the set of ordered pairs of real numbers for the first com-

ponent and rota*tions for the second component?

4, TIn the exercises have students plotting points that bring out

the ldeas discovered in answering the above questions.

5. Describe geometrically the locus of all points (r,s°) in the

plane if:

(a) r =3 (d) 2<r <3
(b) r <3 (e) 8° = 90°

(e) >3 (r) 8° = 60°




GRADE 3 - CHAPIER 3

DISPLACEMENTS

Purpose:

To develop & mathematical system using the physical concept of
displacement. To introduce the concept of a vector that will be a
ugeful tool in science as well as mathematics. The language of
vectors and its use in science is appearing earlier in the student's
educational program. The cbncept of a vector will be useful for all

citizens to help them understand the world in which they live.

Background Assumptions:

Knowledge of the structure of the rational number system, rec-
tangular coordinate system in the plane, properties of parallelo-

grams, and the Pythagorean theorem.

Moredock and Sandmann:

The following is an adaptation of portions of the outline by
Moredock and Sandmann. They propose much exploratory work using
acetate, We heartily endorse the exploratory technique throughout
the development of the chapter, but we suggest that more readily
available materials may be as satisfactory as acetate. A force table
tc show the relationships of the mathematical model to a particular

physical situation might prove helpful at the proper time.

Section 1. Physical Quantities:

1.1 Quancities

As examples we mention:

length of an object 10 feet

speed of an airplane 550 miles per hour

volume of a test tube 1000 cubic centimeters
=207~




These physical guantities can be reyresented by a segment using
an appropriate scale. The quantity is specified by naming a

rhysical unit of measurement and a number. Thus, in the third

exampie above, the unit of measurement is the cc and the number
is 1000,

1.2 Operations (review)

A very Lrief review of appropriate cperations (addition5 multi-

plication) on the above type of physical quantity.

(a) The total mileage traveled on a five-day vacation trip,
given the mileages day by day.

(b) The number of cubic centimeters in a gallon is about 3785.
How many gallons can be put in a tank measuring 16 meters

long, 10 meters wide, and 7 % meters high?

Section 2. Vector Quantities:

There are guantities that cannot be adequately described by =
measurement on a scale alone. Describing a trip along a road in-
volves distance -- that is, a number (referred to a unit of measure-
ment) -- and a direction. Each of the two diagrams below shows the

same pair of points A and B.
B B

Trip from A to B Trip from B to A

A A
These arrows (subsets of rays) give twe bits of information --
the length of the arrow denotes the distance traveled and the arrow-
head indicates the direction. Each arrow has a starting point and

an ending point.

These arrows can also be interpreted as showing a dilsplacement,
a change in position. In the first case, a body (particle) at A

has been moved (or displaced) to B. In the other B is displaced

-208-
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to A; mnote that it iz easy for us to abuse the language by saying
that B 1s displaced to A, when we mean that an object originally

at the point B has been moved to the point A,

— -

There are many -- indeed, infinitely many -- two-mile trips in
an easterly direction. Observe that the vsrious arrows that represent
these trips are all parallel to one another and have the same length.
Thus if we model the family of trips by selecting one of these arrows
as a representative, we are coacentrating on the direction and length

aspects.

FVow pick out any arrow. See how it is a representative sample of
all arrows with the same direction and same length. In fact, it can be
used to determine any arrow you wish with that length and direction.

(See Sandmann and Moredock for further details on above.)

Vector is the more common name for the idea represented by the
ATrOoW.

We will name the vector by a single letter with an underbar; a.

Very brief mention of a few other physical quantities that are

vectors: position (bearing), velocity, force -- merely as illustra-

tions that there are further applications they may be studied later.

Section 3. Vectors:
An important application of study of vectors is in analyzing
changes in the location of & body (displacement). We use this physical

situation to motivate most of the succeeding development.



Eal

3.2

3.3

Activities

In the first diagram below apply the displacement represented by
the vector a to each of the points © and D. In the second
diagram draw the arrow with initisl point at P +that represents

the vector b that may be applied to Q to give R.

b o P R

C

Activities like this should develop confidence that:

(a) given any point and any vector, the point may be displaced
by the vector,

(b) given any ordered pair of points, there is a unique vector
that displaces the first poini into the second, and

(e) given any point and any vector, there is a unique point
which is displaced into the given point by the given vector.

Equality

Two concepts need suggesting here:

(a) 4if vectors are egqual, then every point is displaced the same
by one vector as by the other;

(b) if just one point is displaced the same by a as by b,
then a = b.

Opposite of a vector

Let b ve a vector. If G 1is a point and if G 1is displaced to

H by b, then there is a vector that moves H inte G. This

new vector is the opposite of b and is denoted by -b.

H.




o

The opposite of a vector essentlally backs up, or returns home.

Develop confidence in g(—i) a-

Addiniaon of veectars

By a + b applied to A we shall mean the result of applying a

to A resulting in A' and then applying b to A' resulting
applied to A results in A"; so if a + b

applied to A results in

in A", so a + b

applied to A results in A" and c

|

A", then a2 + b = ¢. This may be pictured as follows:
A”

{3

"

‘V:E

|
_ .
1o

A

—
L="8

Or it could he pictured this way:

a

The vector ¢ 1is called the sum (sometimes, resultant) of a and

b.
Problem: given vectors ¢, f, find a vector e such that
e=c¢+f.
< bl
Problem: given a vector g, Tfind two vectors ¢ and 4 whose

sum is c¢. How many such pairs (c,d) are there?
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3.6

Clearly there are infinitely many pairs.
Zero vector

Add a vector and its opposite. Use this to motivate a zero
vector. Denote the zero vector by 0. Develop confidence not
only in b + (-b) = 0, but also in (-b) + b = 0. Also discuss

¢+ 0 and 0+ c.
The zero vector acts, in vector addition, like the number zero in
number addition. The opposite of a vector acts, in vector addi-

tion, like the opposite of a number in number addition.
The commutative principle for vector addition

Is §+EEE+E?

From the picture it appears that a + b = b +a. Recall the

c+ (=¢) =(-¢) +c and c+0=0+c.

special cases of
However, in general, maybe it is like the following, with

A, %Aua
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1o

Prove that A_ = A , using congruence of triangles, etc.

2 b
S0 we see that vector addition is commutative just as addition of

real numbers is commutative,

From the pleture illustrating a +b =b + a, we <=2z that one way
of finding the displacement of A when a and b are both

applied to A 1in succession is by "completing the parallelogram”.

Using this idea solve the following problem: Forces acting in
specified directions on objects may be represented by vectors.
Find the resultant of forces F and F' acting on A if F

is a force of 8 1bs. acting in an easterly direction and F' is

a force of 6 1bs. acting in a northerly direction.

o

The resultant force on the ebject is a force of 10 1bs. acting

in a direction between east and northeast.

-213-
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2.7 The associative principle for vector addition.

o

Consider cedadition of three vectors a, b, c. Application of

I

+b+c toas point P means apply a, then b, ther e,

Develop meaning of sum as vector that "closes the polygon'.

Continue “iscussion to a + b +c¢c +d + e, say. Do not confine

1

attention to the planar case. Develop sum as vector that "ecloses

the polygon'', where polygon may be nonplanar.
2

Can shortecuts in an extended sum be taken? Use this to motivate
inquiry about associativity. Show in the usual fashion that

a+ (b+c)=(a+Db) +c.

Thus the associative law for vector addition looks much like the
sssociative principle for addition of numbers.

Summary and review of propertiez of addition.

is a vector (eclosure)

+
-+

b
-b =D +a (commtative)

|

Fan™

a+b) +ec=a+(b+c) (associative)

[t}

ero vector O exists such that a + 0 =8 =0 + a

for each vector a, opposite -a exists such that

a+ (-a) =0 = (-a) + a.

Relate these properties to those for the addition of numbers. Point
out that these properties make the addition of vectors structurally

the same as the addition of numbers (integers, rationals, or reals).

This may be the first time that students have sgen a mathematical
system for something other than numbers, and this should be

exploited here.
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Sclution of vector equations.

Given a point D and a vector g and a vector b. Suppose that

by a and that D 1is displaced to B

D is displaced to A
by b. Is there a change of position from A +to B? Yes, by

Section 3.1(b). How can this displacement be expressed in terms

of a and b? Observe that we are trying to solve the equation
at+ _* =b.

One way of describing the displacement from A to B is t take
the path from A to D to B. Vectorislly expressed, this means
vhat the desired displacement is the sum of -a and b. By
associlativity, we verify that ('E) + b satisfies our equation:
a+ ((-a) +b) =(a+(-a)) +b=0+D = b,

Note that we are deferring until Grade 9 the discussion of an
operation called subtraction. Of course there is no objection if
a student realizes for himself that all the ingredients are here
and if he wishes as an individual project to pursue the properties

of such nn operation,

If vectors a and 1 are represented by arrows with common
starting point, then we may (usually) form a parallelogram with
these segments as sdjacent sides. One diagonal, with appropriate
arrowhead, represents the sum a + b; the other diagonal repre-
sents (-a) +b or (-b) +a, according to the positioning of the

arrowhead.
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Section i, Multiplication of & vector by a number:

4.1 Developing meaning of multiplication,

Consider a +a + a +

+i.
?fa;-ﬁ
a

We like to have a name for the vector a +

Js
+
jo

.+ a. Let us call

it LYa. We note that 4 is a number and a 1s vector. The

=W

vector 49. is called the product of the ;umber and the vec-

tor a. The operation of forming the product of a number and a

vector is called multiplication.

5o far in our development the number has been a positive integer.
Now develop an intuitive feeling for the meaning of the product of

a real number by a vector.

In particular, develop intuition that the arrowhead is reversed

Examples ;

[

in case the multiplier is a negative number. Then we are able to
observe the following: (-2)a = -(2a). Here (-2)a is the product
of the number -2 and the vector a, while -(2a) 1is the op-
posite of the vector obtained by multiplying the number +2 by

a. Since the results are the same, we may simplify the nota-
tion and write simply -2a, interpreting it in either way we

like.
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4.2 Multiplication and parallelism.

Problem 1: Given a vector ¢ and a point Q. Consider the
various points obtained by displacing Q by the vectors ke for
all numbers k. What is the locus of these displaced points?
After plotting several displscements

of Q, the students should observe

that for each %k the point into whiech f-
® 1is displaced by ke lies on the line /

- £ Q

o
through @ parallel to an arrow repre-

\un

senting c.

Problem 2: In Problem 1 consider the

line through Q that is parallel to an

arrow representing ¢. Plck any point

R on this line., Iz there a number k such that ke applied to

Q will result in R?

Suppose, for example, that the distance QR 1is twice the length
of ¢; in this case, k = 2. In general we see that there is a
number k and that in order to find it we compute QR and divide
QR Dby the length of c¢. This is like measuring distance, using

the length of ¢ as the unit of distance.

Since the above is always possible, we now have a one-to-one
correspondence between the points on the line and the real numbers.
Exercises here could be to find endpoints for Kc applied to @Q
and to find the numbers k such that kc maps one given point
into another given point.

Goal is to develop confidence in the following property: two
nonzero vectors can be vepresented by parallel arrows if and only

if each of the vectors is a multiple of the other by a number.

Section 5. Translation:

A vector describes a translation of the plane (or of space) WST.

Q o P oot




Section 6., Decomposition:

6.1 Decomposing a vector

Ezdblem: Let a and

let ¢ be any vector

that 1s, find numbers

——

Let F Dbe a point and apply ¢

to P obtaining Q.

through P parallel to a and the
line through @ parallel to b and -——

note the intersection

We may measure k and m so that

¢ = ka + mb,

Observe that the same

cbtained by drawing the line through
Q parallel to a and the line

in terms of two given vectors,
b be two (noncollinear) vectors and

. Bxpress ¢ in terms of a and b,

k¥ and m such that ¢ = ka + mb.
;
/
/

Draw the line

of the lines,

result is

through P parallel to b. This is

an application of the

commutative

praoperty for vector addition.

For other problems, retain the same a and b, but alter

that we need a negative number for k and/or m.

—
—— T

Jea
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6.2 Naming vectors,

Fxj

rt
-
i

1t should be clear that any vector can he

1

ron > previous work

expressed in terms of two nonzero nonparallel vectors.

Ask the students to think about two convenient vectors such that
all other vectors can be expressed in terms of these two in the
above manner. Eventually show them two unit vectors that are

perpendicular, and label them 1 and j.

|
~——

Now consider mi for ell numbers m, nj for all numbers n,
and mi + nj . for all numbers. m, n. Recognize as the familiar
rectangular coordinate system.
Typical Exercises:
Plot Li + 23, -31 + (%)i . Given vector c¢ 1in plane of 1
and j, find the coefficients of 1 and Jj (by graphical

means) in the decomposition of c.

Sectlon 7. Extenmsion to Vectors in 3-space:

With three mutually perpendicular 'v* vectors i, 4, k,
extend the development in Section 6 to three-space. This should not
be hit too hard, but it will be helpful in developing spatial visuali-
zation and space perception.

It should be clear that pi + g + rk for all real numbers p,

g, r gives the three-dimensional rectangular coordinate systemn.

Section 8. Applications:

If applications to the "real world", world of work, etc., can be
found that are understandable by the 8th grader, they should be included
in this chapter. Possible topics are vector dlagram for air speed,
ground speed, and wind velocity for an airplane in flight; same for a

ship steaming in the ocean with a current.
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GRADE 8 - CHAPTER 4

PROBLEM ANALYSIS (STRATEGIES)

Background Assumptions:

Graphing in one and two dimensions.

Informal introduction to use of variable as a symbol for a number.
Technigques for finding solutions of sentences in one and two wvari-
ables.

Real numbers and properties.

Rational:

Students should develop many valid patterns for problem-analysis,
such as: willingness to guess solutions and then derive further infor-
mation from the resulting data, working backward on a problem, sketching
(pictures), organization of data in tables, graphing, recognition that
a functional relation is involved; in short, willingness to approach
problems in more than one way in order to organize the final presenta-

tion of the problem solution.

Purposes:

1. To provide the student with the techniques whieh will enable him
to trauslate the conditions of a problem into a mathematical sen-
tence or system of sentences.

2. To provide the student wikh a variety of technigues for problem

analysis, and develop flexibility in his manner of approach.

UNDER NO CIRCUMSTANCES SHOULD A STUDENT BE FORCED TO GO THROUGH A FORMAL
PROCEDURE OF ANALYSTS IF HE HAS DISCOVERED A METHOD OF SOLVING A PROBLEM
EARLY IN THE ANALYSIS. '




Note: 1In the writers opinion, and others, Sections 1 and 2 are far too
"heavy''. Much of what is in these sections could oceur in “he

Teacher's Commentary as directions for tne Teacher.

How do people make discoveries? What 1s the process (3f aﬂy) that

leads to the solution of problems in mathematics, nuclear fission, roc-
ket design, neursl surgery, conservation of natural resources, ete?
These are pessibly questions that many students might ask. However,
many of them really want to know how they can invent correct solutions
to problems and why these sclutions are constructed the way that they
are. The purpose of this chapter is to give you some help in organi-
zing your approach to problem solving in mathematics and to, perhaps,

improve your problem solving techniques.

Section 1.. Translation of Phrases:

1.l Mathematical Phrases to BEnglish Phrases.

Many problems that occur are stated either orally, in written
form, or in both forms. They usually are not too clearly under-
stood at first, and they usually stimulate more questions than can
be answered immediately, (In fact, one significant activity in
problem analysis is very often trying to determine what the real
guestions or concerns are in a problem.) However, one first major
step toward the solution of some problems is one ~F translation of
the problem into a form which will permit some form of organized
analysis. The English language is far too disorganized to permit,
in general, any efficient problem solving techniques to be develop-
ed. For example, read the following excerpt from an insurance
policy:
premises means unless otherwise indicated (1) all premises
where the named insured or his spouse maintains z residence
and ineludes private approaches thereto and other premises
and private approaches thereto for use in connection with
said residence, except business property and farms, (2) in-
dividual or family cemetery plots or burial vailts, (3) pre-
mises in which an insured is temporarily residing, if not
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owned by an insured, and (4) vacant land, other than farm
land owned by or rented to an insured. Land shall not be
deemed vacant following the commencement of any construc-
tion operations thereon unless such operations are being
performed solely ™ independent contractors in connection
with the constrt vion of a one or two Tamily dwelling for
the insvred.
As you can see this statement, while useful, is very cumbersome to
apply to a situation. In mathematics the attempt is consisteully
made to keep definitions, statements, etec., as clear and concise

as possible.

In order to effectively develop your problem solving skills and
understandings, we will first look closely at the process of
translaticn. In the beginring many of the phrases you will be
asked to translate will "¢ simple. It is extremely important
that you practice carelilly the techniques introduced so that

you can develop some skill in working with more complex situa-

Class Discussion.
Try to write an English phrase which c¢learly interprets the mathe-
matical phrase:

' 1

R - T W

If you had some difficulty in doing the above, relaxg you are
probably not alone.
Let's see what we do know and what we don't know about this phrase.

You should remember that variables such zz R and W are usuzlly

names for numbers. You do not know exactly what number they repre-

sent, but you do know that they represent definite but unstated
numbers. Furthermore, you should notice that the phrase represents

the DIFFERENCE of the two numbers R and % W, and that the num-

ber %'W is the result of multiplying the numbers % and W.



Now you are faced with the task of finding out something more
about the variables. You know that R represents a number,

BUT is it the number of rings around Saturn? Is 1t the number

of rocks in a garden? Is it the number of redheads in a mathe-

matics class?

As you can see, there are unlimited possibilities for R, and it

is impossible to state exactly what R or W could represent
until we know more about the origin of the phrase. Furthermore,

it becomes obvious that you must be able to state clearly what each
variable in a phrase represents before you make your first attempt
to translate or interpret the mathematical phrase. (Note: you
ghould not hesitate to revise your statements, throughout the
translation process; in fact, this process is encouraged as you
gain more understanding about the situation.)

For example, you could say: '"Let R represent the answers on a

test".

First revision: "Let R represent the number of answers on a
test.”

Second revision: "Let R represent the number of correct answers

on 8 test. And let W represent the number of
wrong answers on a test".
The point here is that you should try to identify the variables as
clearly and completely as possible (revising many times, if neces-
sary). Now one possible translation of the above phrase might be

the following:

If R represents the number of correct answers on a test,

and W represents the number of wrong answers on the same

test, then the phrase R - % W dis: "the difference between

the number of correect answers on a test and one-fourtli of the

number of wrong answers'.



1.7 Some Characteristics of a Translation of a Mathematical Phrase to

an English Phrase Are:

{1) The variables are clearly identified {(usually as numbers ) .

(2) The variabies are as completely identified as possible.
(Revisions are encouraged, if necessary.)

(3) Baszic operations are identified and considered in the trans-
lation.

(4) The context of the i .nslation of the phrase makes sense, and

the finasl translation is a correct English phrase.

Write an English phrase which is correct translation of the given
mathematical phrase. Be sure to state clearly what each variable

represents in your translation.

1. 60t 10. i
r

2, 2L + 2W 11. (2)(3.14159)r
3. (3.14)a 12. 1w + 1w
b, % ﬁh 13. a +b + e
5 e 14, x =2y
6. prt 15. m - 5
Te n +8 16. {186@@@)3 m

x +y 4 1y 3
8 2 17@ 3 (SULLF) r

2, .2 . i ) .
9. a + Db 18, s + (s -a) + 7

1.5 Translation: English Phrases to Mathematical Phrases:
Do you remember that the symbols:

(1) "+' in a phrase is sometimes translated "the sum of", or

"exceeds". (Name some other translations.)

(2) "-" 4in a phrase is sometimes translated "less than", "the

difference between", "decreased by", etc.
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1.6

L.7

1.8

(3) " <" in a mathematical phrase is sometimes translated "the
prcduct of'", "times", ete.

(k) "+" in a mathematical phrase is sometimes translated "the
quotient of", "divided by", etec.

"Translation" is used here in the loose sense meaning that these

English words sometimes lead to the indicated operations of

Classroom Discussion:

There are many English translations which can represent the symbols
indicating the operations of addition, subtraction, multiplication,
and division. Can you write two more English translations of the

above symbols?

Characteristics of Translations of English Phrases to Mathematical

Phrases:

In translating an English phrase to a mathematical phrase it is
important that you practice:
(1) Ider Lfying clearly all variables which are used (as numbers).
(2) Identifying as completely as possible all variables used.
(It becomes important i+ communicating your ideas to your-
self and others that you try to use complete, correct,

English sentences to do this.)

(3) Recognizing the English translations of symbols of operations

in all of their various forms.

Exercises:

In each of the exercises write a mathematical phrase which is a
translation of the English phrase. Identify clearly what the
variable or variables represent. Choose a variable if none is

given, and use only one variable unless directed to do ctherwise.
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1. The number of dollars earned in t hours at three dollars an hour.

2. The total number of yards in Lk feet of cotton material and n

vards of wcol material.

3. The difference in cents between q gquarters and d dimes.

L. The number of yards in t feet.

5. The average of three test scores x, y, and 2.

6. The sum of two consecutive integers.

7. 'The product of two consecutive even integers.

8, Fifteen inches more than twice the number of inches in the length
of a rectangle.

9. One thousand times the thrust of a Saturn rocket.

10. The number of dollars in the cost of a house increased by fifteen

percent of the cost of the house.
11. The number of miles traveled in t hours at 6000 mph.
12. The cube of a number.
13. The square of a number decreased by the square of another number.
14, Seven more than a number.
15, The sum of a number and its reciprocal.
16. Thirty percent of x pounds of gold.

17. The product of two numbers increased by the first number. (Use two
variables.)

18. The sum of the squares of the digit of a two-digit number. (Use
two variables.)

19. The larger of two numbers multiplied by the difference of two
numbers. (Use two variables.)

20. The square of an integer diminished by the difference of the pro-

duct of the integer and the next consecutive integer.
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21.

22,

25,

26,

27.

8.

29.

30.

The area of a triangle increased by fifteen.

The difference between the numerator and the denominator of a

fraction if the numerator exceeds the denominator by 5.

The sum of the reciprocals of a number and a larger number.

(Use two variables.)

The tens digit of a two digit number is three more than the
units digit. Write a phrase representing the number. (Use

only one variable.)

Write a phrase for the number of inches in the perimeter of a

square whose side is s 1inches long.

The ratio of calories in the soft drink "Instant Pop" to "T-and
X" is one to nine. Write a phrase for the number of calories in
a bottle of "Brand X" in terms of the number of calories in a

bottle of "Instant Pop".

The speed of a particular satellite in orbit decreases by 6
miles per day. Write a phrase representing the number of miles

decrease in speed over a period of 36 hours.

The number of students receiving A's 1in one mathematics class
is determined by squaring the number of students in the class,
decreasing the resulting number by the product of the square
root of three and the number of chairs in the room, and then
dividing this guotient by 295. Write a phrase representing

the number of students receiving A's 1in a mathematics class.

Write a mathematical phrase representing the speed of a plane
flying with the jet stream if the plane is moving at a constant
speed of 500 miles per hour.

Write a mathematical phrase representing the speed of a plane
flying against the jet stream which 1is moving at a constant

speed of 500 miles per hour.
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33,
34 a
35

Lo.

Write = mathematical phrase representing the number of miles

.raveled by a plane flying for 6 hours with the jet stream

which is moving at a constant speed of 500 mph.

Write a mathematical phrase representing the number of miles
traveled by a plane flying for 6 hours against the jet stream

which is moving at a constant speed of 500 mph.

The temperature now, decreased by 32.

The preoduct of a number and the sum of two numbers. (Use two
variables,)

A number increased by the sum of two numbers. (Use two variables.)
The product of the first number and the second number lncreascl by

the product of the first number and the third number.

Given three numbers a2, b, ¢ the opposite of the second number

of the second number and the product of four, the first number and
the third number all divided by the product of two and the first
numbex.

The square of the first number diminished by twice the product of
the first number and second number, increased by the square of the
second number. (Use two variables.)

The product of the sum of two numbers and the difference of the

game two numbers. (Use two variables.)

Section 2. Translation of Sentences:

2.1

Mathematical Sentences to English Sentences.
You have been using mathematical sentences formed by combining
mathematical phrases such as "3n + 1", "2", "25 - 7", ete,, with

mathematical verb forms such as "=", ">" ) "< ete, Many times

of a situation, which takes several English sentences to describe,
~228-
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2.3

Consider the following sentence; 35x + (70)(L0) = 50(x + L4O).
Translating this sentence is like writing a story when you know
the ending. (I,e.j for now, the ending to our story is the sen-
tence: 35x + (70)(L40) = 50(x + 40)). Let's see if we can work
backward and write a problem which is an English translation of
this sentence. This process should provide you with some in-
sight into how to go about translating and analyzing some prob-

lems.

Class Discussion:
39x + (70)(%40) = 50(x + h4O)
(1) Can you tell what situation or situations this particular
sentence represents?

(2) What do you need to know first so that all of you will inter

pret this sentence in a similar manner?

(3) You know that the variable, x, must represent a number but
the number of what? Could i1t represent:
(a) The number of pounds of candy selling for 35 cents a
pound ?
(b) The number of ounces of uranium in a radioactive com-

pound .of uranium and radium?

(c) The number of hours a car is driven at an average

speed of 35 miles per hour?

(4) T*rite another phrase deseribing the variable x.

The translation Process (still classroom discussion):

Let's agree to the following statement as one interpretation of
the variable =x.

"Let x represent the number of ounces of gold in a compound.”
(It is only fair to point out that we might have to revise and

improve this statement as we become more involved in the problem.)
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Now:

(1)

—
s
p—

()

(5)

(6)

(1)

The

What does 35x represent? You can see that we also have to
know what 3% represents. Let 35 be the cost in dollars

of one sunce of gold.,

Now state what 35% represents. 1s the following statement

correct? 3%x represents the cost 1n dollars of x oOunces
of gold.”

What does U40O represent? Could it represent the following?
"LO represents the number of ounces of pure platinum in the
compound" . {Note that you now have decided that your com-

pound consists of gold and platinum. Revise your statement

about the variable.)

What can 70 and (70, 40) represent now?

"TO represents the cost in dollars of one ounce of pure
platinum". Why did we choose one ounce? Would you believe
2 ounces? "(70)(L0) can represent the cost in dollars of

4O ounces of platinum at 7O dollars an ounce'.
"=" means "is equal to", "is the same as", etc.

“x + 40" now can represent the number of ounces of gold
added to the number of ounces of platinum”. Do you see why

we can say this now, but could not state it at the begining?

Now ""50" can represent the cost in dollars per ounce of the

mixture of gold and platinum.
following is one possible translation:

The plating of a secret satellite must be a mixture of pure
platinum and gold. Exactly forty ounces of pure platinum
must be used in order for the satellite to perform correctly.
Pure platinum costs 70 dollars aun ounce, and gold costs 35
dollars an ounce. The cost of the mixture of platinum and
gold must be 50 dollars an ounce. How many ounces of gold
must be used in order to make a mixture which costs 50
dollars an ounce?
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2.5

Now try writing a translation of your own where x represents the

number of pounds of candy selling for 35 cents a pound.

Some Characteristies of Translations of Mathematical Sentences to

English Sentences:

(1)

(2)

(k)

The variable or variables are clearly identified as to what

they represent. (Usually a number of ...)

Each part of the sentence is clearly identified az to what it
represents.

The translation must make sense. In other words, the parts
must fit together in a reasonable way (i;e,? ¥ cannot repre-
sent the number of tickets sold for a car-wash in the same

problem) .

You must be willing to wrlte, and think. The authors have

never heard of a single student heing permanently injured by
"writers cramps" or "over-thinking', but they have observed
hundreds of students succeeding in and enjoying mathematiec.

because they were willing to read, write, rewrite, think,

experiment, and conjecture.

Translation of Sentences Involving Restricted Domains:

Sometimes the domain of the variable is dictated by the given

mathematical sentence.

Example: Write an English translation for the following sentence:

2x + 1 = 12 .

Since the solution set of this sentence is (%%), it would not he

meaningful to write an English translation which requires that the

variaple represent a whole number.

Class problem: Write a meaningful translation of this sentence.
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Exercises:

Write an English translation of the following sentences. State
glearly your choice as to what each varilable or variables repre-
sent, and then state what each part of the sentence represents.

Be sure your trancslation makes sense! Be creative, use your

imagination!

1, 24 = 12w 16, x(3 +a) = 3x + ax

2. k40 = 2w + 2(3w) 17. 25g + 10d + 5n = 250
3. 312 = (5)(24) (n) 18, C + .05C = 2500

b, A = (3.1416)(16)° 19. ilo ng:) ;%

5. 64 = ag + 25 20. = g—(c - 32)

6., m -1 =17 2L, x+(x+1)+(x+2) =72
7. 2n - 1 =18 22. x >3 and x <7

8, 8L =s" 23. ly| =5

9. 96 = bh 2h, m>2 or m< -b

10. 150 = (1500)(.05)(t) 25. g—«%ﬂ = 77.5

11. 763 = %(15)(20 + ph) 26. .30x + (.40)(x +1) =(.50)(17)
12. V = (5)(10)(12) 27. K = TEH%T

13. X - 600 = 100 28. I = (.009)v"

1, X + 600 = 700 29, y:—]é—erB

15. 2600 = (r)(k) 30, 360 = §(B)(1o)

Translation: English Sentences to Mathematical Sentences:

Let's use your ability to translate English phrases to mathemati-
cal phrases to write translations from English sentences to mathe-

matical sentences. Remember, in the last section, many times it
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2.8

took only one sentence to represent several English statements.

As in the last section, before the final translation of English

statements can ve made, you must:

(1) know and state clearly what the variable or variables

represent;

(2) +translate each part of the problem in terms of what the

variable represents;
(3) ©be sure your translation makes sense;

(L) know what the domain of the variable is.

C.assroom Discussion: Try to Complete the Following:
Consider the following problem: (The numerals in parentheses
refer to the statements above.)

(2) A triangular sail has a base which is 6 feet less than
the altitude.

(3) The area of the sail is 312 square feet.

(1) Find the altitude of the sail.

—

= altitude

Your translation might go something like this:

Select a variable or variables and tell what they represent.
Let the variasble represent something in the problem that you
are trying to find. For example:

(1) Let h bve the pumber of feet in the altitude of the tri-

angular sail.



(2) ™hen h - 7 is the number of feet in the base of the sail.
(2) The number of square feet in the area of the sail is?

(4) T know that the area of any triangle is represented by the
formula A = % th where A, b, and h are any numbers of
arithmetic.

(5) Therefore, the translation of these English sentences into

an open senternce is:

312 = z(%)(7).

roj

Exercis -=:

Translate the following English sentences into mathematical sen-

tences which could help solve the problems. State clearly what

each variable represents and what each part of your sentence re-

presents. Use only one variable unless directed to do otherwise.
Do not find the solution sets of the mathematical sentences at
this time.

1. The area of a rectangular-shaped lot is 35000 sguare feet.
The length of the lot is twice ass long as the width. Find
the width of the lot.

2, A Ffirst number is three mo.e than a second number. The sgum
of the two numbers is 31, What are the numbers.?

3. Jimmy ls now twice as old as his sister Kathy. In two years
the sum of +heir ages will be thirteen., What are their ages
now?

4, A car travels for eight hours at an average speed of 50
miles per hour. How far does the car travel?

5. A car travels 232 miles in U4 hours. What was the

average speed of the car?
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6. An odd number which is increased by the next consecutive odd num-

ber is equal to 148. What are the two numbers?

student scholarship fund. The number of nickels was 22% times
the number of guarters and the number of dimes was 1100 more
than the number of nickels. How many nickels, dimes, and quarters

were collected? (Remember, 175 dollars is the same as 17,500 cents.)

8. The sum of two numbers is 135. The larger number is 23 more

than three times the smaller number. What are the two numbers?

9. The number of centimeters in one inch 1s approximately 2.54.
Find the approximate length of a bar of silver, in centimeters,
if the bar is one yard long.

10. The number of feet in a mile is 5280. How many miles does a
runner go if he runs 1320 rards?

11. The number of square inches in a square foot is 14kL. How many

square feet are there in 7 = square inches?
12. The number of minutes in one hour is 60. A car is traveling at
30 miles per hour. How many miles per minute is the car travel-

ing?

13. The number of seconds in one minute is 60. A car is traveling at
30 miles per hour. How many miles per second is the car travel:
ing?

14, The number of feet in one mile is 5280. A car is traveling 30
miles per hour. What is the speed of the car in:

(a) feet per hour?
(b) feet per minute?
(c) feet per second?

15. A boy runs against a head wind for one mile and averages 10 miles

per hour. He returns one mile running with the wind and averages
15 miles per hour. How fast can the boy run in still air (no Wind)§
and what wasthe speed of the wind? (Use two variables; write two

sentences. Remember: d = rt.)
1 -235-
Q A
ERIC . 240




16,

19.

20.

21.

22 .

Studentes in the mathematics club at Shady Hills High School sold
special plastic bookcovers to raise money for their annual vaca-
tion in Hawaii. The club received 4,000 dollars from the sale

of the bookcovers. What was the cost of all of the bookcovers if
the margin of profit was 500 percent?

Czptain Horatio Bilgewater carries a cargo of snarfs on his ship.
Captain Hook carries a cargo of bminfs on his ship. Together they
have 33 snarfs snd bminfs. The number of snarfs that Captain
Bilgewater has is 2 5 the number of bminfs that Captain Hook

has. How many bminfs does Captain Hook have?

Three consecutive odd integers add up to T75. What is the smallest
of these three numbers.

Three consecutive odd integers add up to 57. What is the middle
number of these three numbers?

Three consecutive odd integers add to 117. What is the largest of
these three numbers.

What number divided by of itself is equal to 277

|

Oliver Baconfat, a 300 pound sprinter on the Shady Hills High
School track team, wants to buy a pair of size 17 track shoes.
The shoes cost 2 dollars more than two times the amount of
money QOliver has now. If the shoes cost 20 dollars and 50

cents, how much money does Oliver have now?

The area of a trapezoid is 512 square rﬁ%ﬁ‘%‘*‘*«sgsﬁ
inches. The length of each base is 24
inches and 36 inches, respectively. 36"
What is the length of the altitude? o
?
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2L,

48}
)

26,

27.

28,

The volume of a box is 632 cubic
inches. The length is 3 times the
3
width and the height is 4 +times the 3
width. What is the width of the box? <3 e
4
;*\ le

Horatioc Algae, a cousin of Captain Bilgewater's,
built a circular swimming pocl in his backyard.
The pool covers an area of 1700 square feet.

What is the diameter of the pool?

As a boy, Horatic Algae sold papers on:a street corner. He re-
ceived 1 cent for each paper so0ld during the week and 2 cents
for each paper sold on Sunday. During one week he sold 1700
papers including Sunday sales. He received 22 dollars for the
week, How many papers did he sell on Sunday? (Use two variables;

write two openisentences.)

Horatio Lox, another cousin of Captain Bilgewater's, is a rocket
fuel expert and was preparing a new mixture for an experimental
missile. He finds that the amount of liguid hydrogen must be

exactly 17 percent of the rest of the secretv ingredients. The

How much liquid hydrogen has to be used?

If you take one-third of a number, you get the same result as if
you subtract 93 from the number and add sixteen to one-half of

that difference. Find the number.

Section 3. Problem Analysis and Strategies:

3:1

Basic Attitudes Toward Problem Analysis:

There is no permanent procedure or formula for analyzing and
solving every problem. It is clear that the reason for analyzing

problem situations is to arrive at a solution, if solutions exist.



Now that you have had some przectice translating probleam situa-
tions, let’s look more closely at the strategies for problem
analysis and try to develop some usuable problem analysis methods.
Several technigues will be discussed. Many analysis methods you
will eventually use will probably be a mixture of the procedures

developed here. Do not hesitate to vary your method of attack.

Basic Principle: Every person can do something toward solving

a given problem.

You have developed some ability to translate or create a mathe-
matical model of a stated problem situation. Not all models have
to be in the form of mathematicel sentences. You could also use
drawings, tables of data, graphs, or any combination of these
which will organize your understanding of the problem. The most
important thing in learning to solve problems is to write or do
something to organize the information in as many ways as you can

until you score a "break-through”. Don't give upl
Organization Technigues (A First Strategy)

(l%_ Read or listen to the problem as often as you can. List any
7 words or expressions that you don't understand. Get these
cleared up!'
If you can solve the problem now, or at any other point in this
procedure, then do so! Use an analysis procedure only to explain
your work, and, perhaps, to check your result.

#

(2) List all of the information which is given. You might use
translation technigues to do this, tables, graphs, drawings
with information indicated on the sketch, or a combination
of these procedures., Revise this part continuously as you
analyze your problem. Try to decide if any information is
lem. Keep checking on this situation throughout the whole

analysis procedure.
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(3) Try to state exa~tly what you're looking for and 1T possible
in what form you think the solution might be. (A& number, o

graph, a drawing, a table of data, etc.)

(4) Tdentify specifically anything else that is not known in the
problem. You may not be given enough Information to solve
the problem. This is a good place to start checki g on this
possibility.

(5) If it is possible to represent the unknown or unknowns by
variables, then do so and translate the appropriate parts
clearly into mathematical phrases.

(6) Perhaps there is a basic relationship that exists that can be
represented by a formula. If so, write it down. If appro-
priate, write a mathematical sentence or sentences which
translates or is a model of the problem. If you have had
to simplify the problem, or have ignored any physical pro-
perties of the situation in order to write your transla-
tion, be sure t0o indicate this. (Don't be afraid to do this,

since it may be the only way to get to a final solution.)
3.3 Example of this Strategy at Work (Class Discussion Problem):
Now let's try these steps on a problem. This problem was chosen

obvious. We hope to illustrate some things in problem analysis

which every student can do! You are not expected at this time to

be able to perform the manipulations necessary to determine the

answer to this problem, but you can analyze it!

"Two satellites are placed in the same sized circular orbit. The
first satellite is traveling 8 miles per minute faster than the
second satellite. The faster satellite requires 2 minutes less
time for the 30,000 mile trip around the earth than the slower
satellite. Find the rate of speed of each satellite in miles per

minute.”
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The Analysis

Step (1) Read the problem.
Step (2) List the given information: (try to use your own words) ;
make a sketch.

(a) The orbit is _ in form.

(b) Speed of satellite number one is 8 miles per minute

than the speed of the second satellite.

(e) Orbit time of first satellite is than the

second satellite.

(d4) Length of one orbit is for __ satellites.

Step (3) State exactly what 5 to be found.

(a) The speed of the first satellite in miles per minute.

(b) The _ of the second satellite in = per minute.

Step (4) What else is unknown?
{(a) The time it takes the first satellite to complete the
30,000 mile orbit.
(b) The it takes the to complete the 30,000

miie orbit.

Step (5) Represent the unknowns by a variable or variables, and trans-
late Bnglish phrases to mathematical phrases if you can.
(a) Let x represent the speed of the first satellite in
miles per minute.
(b) Then ____ represents the speed of the second satel-
lite in miles per minute.
(e) Let t represent the number of minutes it takes the

first satellite to complete orbit.




Step (6)

(d) Then represents the number of minutes the second

satellite takes t~ complete the orbift.

Write a sentence or sentences which are translations of the
problem or represent a basic relationship between the given
information and the variables.
(a) The basic relationship that exists is:
distance = (rate)(time)
(b) Therefore for he first satellite, we can write the
sentence:
30,000 = (x)(t)
(¢) For the second satellite we write:

30,000 = (x - 8)(2)

2.4 A Second Strategy:

If you cannot do Step 6 or any of the other steps, ask yourself

(1)

(2)

(L)

(5)

(6)

Have I ever solved a problem like this one before? If so,

how?

Is any part of this problem like a problem T have solved

before? If so, can I use the procedures I know to solve

part of this problem? Can I change the method I know

glightly and solve this problem?

Can I draw another figure or figures which will represent all

or any part of the problem? If so, do it! At least try

drawing several figures and labeling them.

What are some ways 1 know of that might get an answer like

the one I want?

What is the domain of the variable or wariables in this

problem? Is it restricted? If so, why is it restricted?

Can I estimate the answer? Check your estimate in the prob-

lem; it might give you a clue toward the solution of a prob-

lem. If you cannot estimate the answer, take a "wild" guess,

and try to check that guess. It is very likely that you

might pick up a clue toward solving the problem by doing this.
-2h1 -
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o

If you have done everything indicateu hsre in this list Taith-
fully and you still do not have a translation, then seek help.
At least you know a great deal about the problem, and your

efforts neatly written up can serve as a basis for discussion

of the problem.

Remember -- rezlistic problem situations do not present problems
in neat packages that are all of one type. You should not ex-
pect to solve one problem and then do the next thirty problems in
exactly the same way. You should, however, expect to use infor-
mation, concepts, and procedures developed in solving other prob-
lems to help analyze new problem situations, but problem analysis
is not exciting or profitable if it involves only reretition of

rote, mechanical procedures.
Exercises:

Analyze the following problems. Any statement you make should be

clear, complete, and concise. Consider the following problem:

"The length of 2 rectangle is 3 feet less than twice its width
and the perimeter of the rectangle is U8 feet. Find the length

and width of the rectangle."
1. What do you know about the perimeter of tlhe rectangle?
2. How would you compare the length and width of the rectangle?

3. What are you trying to find?¥
Yy

k. How can you represent the width of Lhe rectangle?

5. How can you represent twice the width of the rectangle?

6. How can you represent the length of the rectanglef

7. Draw a figurs which represents the rectangle and label the

length and width.

8. 1Is there a basic relationship between the length, width, and

perimeter of the rectangle? If so, state it.

-2ho-
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9. Write a sentence representing the relationship between the unknownus

and the given information.

Consider the following problem:

"Oliver Raconfat and his friend Shadow Jones race snails. The
rate of speed of Oliver's snail 1s 8 miles per week less than
that of Shadow's snail. If Oliver's snaill reguires 5 weeks to
go the same distance that Shadow's snall goes in 3’% weeks, how

fast does each snail travel in miles per week?"
(Be alert - This is a slightly different approach to problem analysis.)

10. Guess a value for the speed of Shadow's snail. (Your guess has to

be > 8. Why?

How fast does Oliver's snail travel if you use your guess for the

-
-

speed of Shadow's snail?
2
3

12. How far does Shadow's snall travel in 3 weeks? (Rememb%r,

d = rt. Use your guess for the speed.)

13. How far does Oliver's snail travel in 5 weeks? (Continue to use
your guess.)

14. According to the problem both snails travel the same distance.
Are your answers for exercises 12 and 13 the same? Do you
see a plan for finding a correct "guess'" which will make them

the same? If not, try another guess and see what happens.

Now analyze the following problem in a similar manner, and write an

open sentence representing the translation, if possible.

"he I'lower border of uniform width around the outside of the
student quadrangle at Shady Hills School has the same area as
the quadrangle. The width of the quadrangle is €0 feet and
the length is 90 feet. Find the width of the flower border."
(Count the sidewalks cutting through the flower beds as part
of the flower beds.)

-2h3-
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15, Draw a careful sketch of the guadrangle and its surrounding flower

borde=. Label the psrts which are given.

16, What are you trying to find? Use a variable to represent it, and

label this unknown part on your sketch

17. Using the given width of the gquadrangle and your variable, can you
write an open phrase representing the outside width of the flower

border? Label this on your sketch.

18, Using the given length of the rectangle and your variable, can you
represent the outside length of the flower border? Label this on

your sketch.

19, State a basic relationship, which you know from previous work,

between the length, width, and area of a rectangle.

3.6 Organizing Ianformation with Drawings or Diagrams:

The following examples and problems are illustrations of situa-
tions where a drawing or sketch is a particularly helpful way of
organizing an analysis of a problem. It is not possible to give
a complete list of helpful diagrams, because each problem will
have probably a unique sketch which will be most helpful in
analyzing the problem. We will discuss a variety of situations

in hopes that your skill in using this technique can be strengthened.

Example A: (Classroom Discussion)

Consider the following problen:

"Given two different points A and B, each ten feet from a wall,
and 15 feet apart. Start from point A, touch the wall and

stop at point B. Where would you touch the wall in order to

arrive at B and to have walked the shortesti distance possible?"

(1) Draw several diagrams (to scale or on graph paper, if pos-

sible), and experiment with different possibilities. (At

least 5 or 6)

) NI
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(2) Is there a geometric relationship which will help you
analyze all cases? Can you draw auxilliary line segments
so that there are right triangles invol.ed in all dia-
grama?

(3) Can you assign variables to represent the lengths of AC,
BC?

(4) Did drawing several diagrams and experimenting lead you to
choose one situation as the most likely?

(5) Can you use the Pythagorean Theorem or the Triangle In-

Example B: (Classroom Discussion)
"Suppose that the sides of an equilateral triangle are doubled.
What effect will this have on the area of the larger triangle

compared to the original triangle?"
Make a guess now before you starti
(1) Construct two equilateral triangles as described above.

(2) Find the midpoints of each side of the larger triangle and

connect these with segments.
(3) Now what is your guess about the ratio of these two areas?

(4) Can you Jjustify your guess with a proof using 8885, B8AS,

or the formula for the area of a triangle?

25
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Example C: (Classroom Discussion)

"Suppose that we have a box containing 3 marbles: 1 red, 1
green, and 1 yellow., If one marble is picked at random, there
are 3 possibilities. We shall call them R, G, and ¥, for

red, green, and yellow, respectively.”

If the marble is returned to the box, and again a marble is
selected at random, we have 3 possibilities for the second
draw, also. The outcomes of the succession of 2 draws can be
described in terms of "color on first draw and color on second
draw'". They are shown in this tree diagram:

First draw Second draw

R

(L) On the first draw there are = possible outcomes.

(2) For each possibility on the first draw there are
possibilities on the second draw.

(3) The total number of possible outcomes on the 2 draws is

s

-2h6-
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Complete the tree diagram for 3 dravs of the marbles assuning
that each marble picked is returned to the box before the next
draw.

First draw Second draw Third draw

Use the tree diagram for picking a marble 3 +times to help you

answer the following:

(1) on 3 draws, how many possible outcomes are there? .

(2) In how many outcomes is the red marble picked exactly twice?

(3) In how many outcomes is the green marble picked at least

twice? .

Example D:

A highway patrol car traveling at 100 mph starts after some bank
robbers, who are traveling 95 mph on a freeway, 15 minutes after
they have passed the patrol station. How long after they start
chasing the robbers will they catch them?

(1) Draw two different horizontal segments starting from dif-

ferent points on a third vertical segment and extending in

the same direction.



2) If the lergth of each of these segments represents the dis-

N

pectively, how do these lengths compare?

fad

.7 DIxerclses.
In each of the following problems present the given information
in the form of a picture or a sketch. It is not necessary to
solve the problem unless you wish to do so. However you should

state your guess as to the answer based on your drawings.

1. Two students run at 15 feet/second from a point A to a
line L, and walk from the line to point B on the other
side of L, at 5 feet/second. To what point on line L

should the first student head in order to reach B Tfirst.

Due to increasing population a certain city of ancient

o

Greece found its water supply insufficient, so that water
had to be channeled in from a lake in the nearby mountains.

And sinece, unfortunately, a large hill intervened, there

was no alternative *to tunneling. (See Figure 1.)

Source of
Water supply

Working from both sides of the hill, the tunnelers met in
the middle as planned.

How did the planners determine the correct direction to
ensure that the two crews would meet? How would you have

planned the job? Remember that the Greeks could not use
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radio signal or telescope, for they had neither. Never-
theless, they devised a method and actuslly succeeded in
making their tunnels from both sides meet somewhere inside
the hill. Think about it.

3. A school is loecated five blocks ezst and six blocks north of
the home of two brothers. The older brother walks four
blocks east and two blocks north to his girl friend's house.
They walk from there one block east to a donut shop, and
then proceed directly to school. The younger brother cuts
across vacant lots to a point one block directly west of
school and then proceeds to school. How far does each boy

walk to school?

Organizing Information in Tabular Form:

Many times it is especially interesting to srrange information in
tables. 1In fact, such an arrangment is often times the only
efficient way of gaining any insight into the solution of the
problem.

Class Discussion Problems:

Example A:

There are three bus pickup points A, B, and C for taking stu-
dents to school in a certain community which is considering a

new school at one of two possible sites, a and h. A 1is

four miles from a, 2 miles from b, and B is 3 miles

from a, 3 miles from b, and C is 6 miles from a, 1
miles from b. 200 students are picked up at A, 250 students
from B, and 225 students from C. It is desired to choose the
site which will result in the minimum total time of travel to and
from school by the town's student population. Which site is

chosen?

(1) Can you organize a table giving the distance to a and b

from each of the points A, B, and C?

-2h9-
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(2) Can you organize a table giving the total student distances

from each point A, B, and C +to sites a and bY
(3) Can you now guess which site meets the required conditiont?

Example B:
The following iist represents the results of 100 throws of a die.
How does the occurrence of the resultsz compare with the theoreti-

cal probability of rolling a 1, 2, 3, 4, 5, or 67

100 throws of a die

h3:.53 53344 1h166 53213 Lehs1
=h563 41353 35335 65536 6h112
43253 62454 53263 33423 21531
24131 64235 26563 22522 21355

Example C:

Ts there a relationship between the length and width of the leaves

of a particular tree?

(1) Seleect 20 leaves from a tree or bush and measure the length
and largest width of each leaf.

(2) Construct a table listing this data and include the sum,
the difference (length - Widtﬁ); the product,; and the ratio
( ength - width).

{3) Can you now state whether a relationship exists for yc
leaves? If there is one,; which method of comparison gave

this information?

Exercises:

in tabular form and try to answer the gquestions about this data.

_ESQi
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Aruitoxt provided by Eic:

32.10 Estimation Process

In this section we wish to focus your attention upon the techni-
que of "guessing" an answer and the information which can bhe de-

rived fr-m this approsch to problem analysis.

Classroom Discussion:

Example A:

Suppose that we sketch a wire around the earth at the equator.
(Assume that the earth is a smooth sphere of diameter Slelele!
miles.) 1If we cut the wire, insert a piece one foot long and
then hold the wire above the surface sc that it is the same
distance abcve the earth a2l cthe way around, how far above the

surface will the wire be? (Use =1 = 2? )

(1) Let's guess an answer and see if it is too large or to

small. First guess: ] _ feet.

(2) The diamcter of the new circle of wire would now be
8000 miles + 2 (? feet). Why 2 +times your first guess?

(Don’t forget to change 8000 miles to feet,)

(3) How does the circumference of the riew wire circle compare
to the originsl wire? (How are you going to compare these
two numbers; by addition, subtraction, division, or multi=
plication?)

(4) Was your guess too large or too smsll?

(5) Unless you see how to work the problem directly, revise
your gu=ss and check your results again.

Example BE:

A farmer found that it took 240 feet of fence to go around h

)
L]

rectangular farmyard. He noticed that one of the sides was L4
feet long. How long are the other sides?

(1) Let's guess _ feet for the width.

-251-
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Aruitoxt provided by Eic:

(2) How do you check your guess? Was it too large cr too small?
(3) Can you solve this problem using a sentence?

C:

The radar operator on an aircraft carrier detects a contact

5
£
g
el
=
(T

moving directly toward the carrier. He estimates the distance

to the contact st 400 miles and the speed of the contact at

350 miles per hour. How long will it take one of the carrier’'s
planes to intercept the contact if it flies directly toward the
contact at L50 miles per hour?

(1) Guess the time it takes the carrier to intercept the contact,

hours.

(2) How do you check your guess?

(3) How far does the contact fly in the time you guessed?

(4) How far does the aircraft carrier plane fly in the time you
guessed?

(5) Can you use the method you used in checking your guess to
solve the problem?

Exercises

In the follcwing problems guess the answers to the gquestions and

try to see if the method you used to check your guess can be modi

f'ied to solve the problem.



Problem Analysis Based on Analogy:

scometimes problems in their original form =re too complicated to
solve. These problems can often be analyzed by simplifying the
situation and then looking at the simpler model. We would like

to look carefully at this method on the following problems.

Class Di ion;

Iy

cus

0]

Example A:

What is the longest line segment that can be drawn in the interior

of a sphere from a givce 1 point on the sphere Lo a different point

on the sphere.

(1) Suppose we simplify our situation and consider a circle and
try to figure out what the longest segment would be from =a
given point on a circle.

(2) If we draw a segment from the given point through the center
of the circle, how does this segment compare with every other
segment in the circle from the given point?

.3) Can we extend this analysis to a sphere.

Example B:

Mr. X has to go to a town T, 78 miles from his house. He can

take a bus at 11:50 AM and, 35 minutes later the train, which gets

him to his destination in 45 minutes.

If he decides to drive, and he can count on an average of 50 mph,

when would he have to leave to get to T at the same time?

Simpler Form:

Part 1: How long does the trip take by bus.and train leaving at

11:50? What is the time of arrival? '
Part 2: In what time can a distance of 78 miles be covered,

traveling at a rate of 50 mph?

Some additional suggestions:

Some problems in which the student is faced with - the problem of

is not a unigue solution.
_253_
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GRADE 8 - CHAPFTER U
APPENDIX

OF FUNCTIONS IN PROBLEM SOLVING

=

THE US
In accord with our increased emphasis on function we point out

Chapter 4, Prcblem Solving. In addition we also discuss the isoperi-
metric problem of determining the rectangle of fixed perimeter with
maximal area. It turns out that this provides a classic example of the

interplay between synthetic geometry and analysis.

Of course we realize that not all problems are facilitated through

the use of functions. However, if the student, when stumped, will ask

outlook on the problem and a new tool which will prove effective.
voreover, since graphing of functions creates a model of the problem,
this attack will show; particularly for simple problems, the unity of
a variety of problems. Such an example is provided in these pages in
a consideration of Problems 8, 17, and 27 of Chapter 4, done here on
pages 6-7. It should be clear that this general method will apply to
any rate problem, including the well known work and mixture problems.
Indeed, to make our point we might claim that by an introduction of a
function, the student has a tool of such wide applicability that this
gives him a general method for solving all the traditional problems of

high school! (We grant the existence of counterexamples!)

As a first example of the sort of thing that we can do, although
ve would not recommend this as the first example for the student to

see, we shall analyze the "Two Satellite" problem on page 3, Section

3.3.
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Two satellit are placed in the same sized circular orbit. The
first sat l is traveling 2 miles per minute fuster than the
second. The fauter satellite requires 2 minutes less time for

the B0,000 mile trip around the earth that the slower satellite.

Find the rate of speed of each.

Li
&

‘c ﬂ m

rw+

The student must see that the basic functional relationship here
iz Listance = Rate x Time. That is, that the function D : T—s=RT
assoclates the time traveled with the distance traveled, which is com-
puted by multiplying the rate of travelling by the Lime. This multi-
plication, (RT), has been graphed earlic: and looks like this:

iistancef

In this problem we rave two satellites, a rast one, F, and & slow one,
5. Let us graph the appropriate function of each. We can't do it
specifically because we don't know, yet, their respective rates. 3But
we do know that the rcte of F, eall it I, 1is greater than the rate
of 5, call it s. That is f > s, And from past experience with

0

multiplication functions we know that their graphsz should be related

thusly: F
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Now each satellite goes 30,000 miles. Enter on graph:

m

30,000

i(t,st) =
(£ 30,000)

We also know that the difference in time for each to go 30,000 miles
is 2 minutes. Thus the difference between the first coordinates of
B and A 1is 2, that is t - T =2, Thus

30,000 = f T =5t =8s(T + 2).

We also know that f is 8 greater than s, so s =f - 8. Thus

- . - ; . 0,000
Now we can use the first equation to relate £ and T, f = 39,000 s
thus

30,000 = (594%93 -8)(T + 2) .

It is interesting to contrast this solution with the "Box" solu-
tion. We reproduce this soluticn in its entirety; it is essentially

self explanatory.

,255=
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Now S's time - F's time = 2. Thus o5 21— =2

Note: This eguation is even easier to solve that tlhe .ne we derived.
The student who can solve the problem is this way has no need

of analysis procedures.

We do not give up the function approach easily. As we said, the
functicn approach iz for the student Wh@fhas tried everything -- and
has not bheen successful. It is fair to point out that for the usual
high school problem, the solution itself is of little importance and
has no value in the market place. However, the method of solution may
indeed have a value in the market place -- certainly the ability to

give nev ones with new insights is a highly prized one.

The function approach gives promise of being :pplicable to less
stereotyped kinds »f problems. The approach does have some of the
aspects of generality; in particular a variety of information falls
out of the general solution. For example, our same graphs give us

solutions for the next two problems:

SECOND two satellite problem:

If F and S are fired into orbit from the same place and time,
when will they be on opposite sides of the earth?

The graphical interpretation is essentially the same except that
we look for points with the same time coordinate which are 15,000

units apart on the distance gecale.
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(We have ignored here the point that we must first find the rates,)

THIRD twe satellite problem:

Two saotellites, F and S are fired into the sauw- orbit which
is 30,000 miles in circumference. F 1s travelling 8 miles per

minute faster than S. When will the faster one rendezvous with the

second?
We take our analysis from I F=t
the graph, ' v (
{ t,Tt
! j ( 3 )
£t - st = 30,000 ; !
(f - s)t = 30,000 | | > 30,000
i ! \ <
£f-s =28 i
£ = 30,000 ;'
1
I
|
1
1
!

many can be rephrased in terms of functions. ©Some of them should bel
We shall now cite section and page numbers of situations in which some
additional clarity can be gained by an alternate statement using func-
tion. We put in quotation marks an alternate way of expressing his

gquestion or answer.

O




Page

Page

2. GSection 1.2. 'Consider the function (R,;W)—=R - % . Try to

write an English sentence which clearly interprets what is meant.”
3. "Write an English phrase which describes the association men-
tioned in the functions below”.

1. t-—=60t

2. (L,W —=2L + 2W .... etc.

Lff. Section 1L.8. "In each of the exercises determine a function
which interprets the English phrase ..... "

l. t—3t

2. (k,n)—=k + 3n

6., X—wx + (x + 1)

(X,y)—e-max(x,y) + x -y

n_l
WO

b
a

or

O if x>y
(X:Y)
vly - x) if x <y

29, j—=3 + 500

31 (J,t)—=6(3 + 500)t
32, (3,t)—=6(J - 500)t
7. Point out that an equation such as 35x + 70 - 4O = 50(x + 40)
is the statement that the graphs of two functions f and g:
£ : x—=35x + 70 - 40 g : x—=50(x + L40)
interseet. (It is of course conceivable that they won't inter-
9. Satellite Plating Problem (A rate problem). Analysis:
Key question: If x ounces of gold are used, vhat is the cost?

The function is
x—e=T0 « 4O + 35x
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Page

FPage

f the student does not see the iunction right off the question can

—

te asked im terms of O ounces of gold, 1 ounce of gold, 10

m

cunces of 7old, ete.

Please note that this approach is not a "guess the answer'
approach., It is rather "What's going on'" approach. Indeed I
f'eel that pressing the student for a complete answer to the whole
problem is wrong and tends to make him gun shy. George Polya not

withstanding!

10: Plot various graphs of functions on e.ther side of (=).
This will be tough for several variables situation; but in the
two variables case, letting one act as a parameter and plotting

for different values of the parameter may give real insight.

] i ala - 6
11: The sall problem. We can write a function, a-ﬁﬁéﬁgﬁﬁéél .

3y

However this is an instance of forcing the use of functioﬁ.
Indeed, I find it hard to improve on Chapter 4's solution.

Can you?

12ff: Problems 1-1L seem routine. Indeed, on most "age" and
"number-digit"” problems I have found the introduction of function
1o be uncomfortable pedantry. However it may be that some of

these examples, especially rate problems must be done with function

to pave the way for greater things.

Problem 8 deserves a.little more attention:
If x and y are the two numbers we have
x +y =135 and
y = 23 + 3x A

L
Graph each: 50! . - ngf \\\

A
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et - ) n s s 500 ) .
. =, i s Se— T = = (=0 » e El l*” =
Problem 15. %: n 00 tells us that 500 150 5 Thus

from the funection =x-—=+x + 5x we obtzin the rule for the total

take from selling = books. b

p—

Problem 17: = 1is snarfs; b is bminfs:

= 33

+‘

5

b

wlle o

5

Graph ezch: 801

Problem 22: x—=2x + 2 +tells us that if x is the amount of
money Ollie has now, the shoes cost 2x + 2. 3Solve
2x + 2 = 20 - 0.
Problem 27: If a iz the amount of the secret ingredient and
h 1is the amount of hydrogen then

s +h =4

: 17+
b = ({5g)s

Graph: Note similarity with

Il

Problems & and 17.

¢ Problem 26: If w 1is the number of papers sold on weekdays and

5 1s the number of papers =old on Sunday we study the function
(w,8)—=w + 2s. The side conditions w + s = 1700 and

w + 25 = 2200 set up the problem. In connection with this prob-
lem Jean Calloway has pointed out that to motivate the need (use-
fulness) of the function, this problem should be expanded by
giving a table of sales and profits for several weeks. There-is
nothing like repeated pencil pushing to motivate the need for =
single function to do it all at once! This excellent suggestion
for motivating the need for a function should be applied in many

places.
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Page 21: (I can't pass up this remark.) In Example A, try reflec:ing

the point B acrcoss the line on which 7 lies!

W
memmmee— i~ — — = By

oy}

A
Page 233 Example D: See the "Two Satellite” problem, second part!
Page 24: 1: Function approach clearly works. Try any onel
2:

I don't see any function lurking here!l

Section 3.8 Tehles are functions!

ISOPERIMETRIC PROBLEMS

This class of problems provides one of the nicest interplays of
synthetic geometry and analysis in the entire industry! We probably
cannot hope to show, analytically, that among all geometric figures
with a fixed perimeter the circle has the largest area. However, as
Pamela Ames has pointed out, cut and paste techniques can lead tc this

conclusion.

A more restrictive problem: Among rectangles with a fixed peri-

meter, which ounes have the largest areg ? can be solved both by

cutting and pasting and, more precisely, by analysis. The actual
amount of precision depends of course on the analytic tools at our
disposal.

Cut and Paste Solution:

Give each student a dozen straws (soda type) and some grid paper.
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Directions:

1. (a) Take one straw and cut it into four segments that can he
used to form a rectangle. Note that the method of cutting
will take some good thinking (or even help) the first time.
Hopefully, they will eventually cut the straw intoc two
segments and then cut each segment into two congruent seg-
ments.

(p) Place the rectangle formed by these segments on the grid
paper and trace the region.

(e) Count the squares to get a measure for the region (the area).

2. Repeat the above procedure with each of the other straws using
segments of different lengths.

AHA: The maximum rectangular area with a given perimeter is a square!

Analytic Solution -- beginning with a story problem:

John has 2L feet of fencing to make a rectangular shaped paa for
his dcz. What should its dimensions be so that the dog will have
the most play area?

(If the student knows that a square has the largest area amoung all
rectangle of fixed perimeter, then the solution is trivial: Ls = 24,

5 ;69)

We first draw a schematic picture of a rectangle: b

Perimeter = 24 = 2(a + b)
Area = ab
Problem: How to choose a and b so that ab is maximised subject
to the side condition a + b = 127 The perimeter relation yields

b =12 - a2 and so we seek the maximum of the area function

a - a(l2 - a) = -a° + 12a




Or: Maximise a(l2 - a).

Plot the graph of this funection:

If graphing is the only tool at

=

the disposal of the student, taen
the maximum (6,36) must be read
from the graph. From the analysis

he then concludes it is a square.

0] lae,0)

Tf completion of the square is a technique at our disposal we argue:

2 2 2
-(a

~-a + 1l2a =

- 12a + ) + = -(a" - 12a + 36) + 36

(a - 6)° + 36.

Now the expression 36 - (a - 6)2 clearly has a maximum when the sub-
tracted term(which is positive) i1s at a minimum, and since the sub-
tracted term is a perfect square this happens when a - 6 = 0, when
a = 6. From this b = 6 and the max area is 36.

Another type of solution, variation of a parameter, is also
available to us in an intuitive and graphing form.

Consider ab = K. For different values of K, what is the graph?

Try, in turn, K =1, 2, 4, 8, 16, 32, 36, L0, 50, 100.

Note that each curve of this family is symmetric about the line

a =b. (See Next Page.)

After plotting these curves on the same graph, let us now plot
the condition
a =12 - b.

ince we

3]

This line cuts some of the curves ab = K, but not others.

12 we must

I

seek a point of intersection of ab =K and a + b




select 8 value of K for which the curve ab =K and a + b =12 in-
terzect. However, we want K to be as large as possible. Intuitively

this will be the value for whicp the line a + b = 12 is tangent to
ab = K. From the symmetry of the figure the point of tangency will
occur wvhen a =b and thus a =b =6, i.e., at the point of inter-
section of & + b =12 and & = o -- This conclusion is not one we

ily justified without the variation of parameter method.

ap]

could have ea

=

Or, pursuing this more analytically, for zny K, if ab = K and

b =12 - a then
a(le -a) =K ; or

which will have one solution for a if and only if the discriminant

122 - kK

0, that is when K = 36, and thus a = 6 = b.






O
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Aruitoxt provided by Eic:

A variation of this problem is to assume that one side of the
rectangle is given free along one line; the other three sides to have

a fixed

b}

um. The eguivalent of the ztory problem 1s to imagine that
John 1s to build his pen along the back wall of his lot, the back wall
being 60 feet long. He still has 24 feet of feuncing. What shape
(rectangular) should it be? This ls a particularly nice problem since
a square is not the answer, and the student's intultion may not be as

accurate. The analyses of each variety are essentially the =zame.

An important variation of greater difficulty is to remove the
restriction of rectangular regicns -- try a trilangle, and various other
polygons. What happens as the number of sides increases? Try for the

cirecle as the solution to the general iscperimetric problem in the plane.

At some point in this experimentation the students may want to re-
place straws with string. One nice observation will be that whatever
Tigure is considered, making it convex (1f it is not already) improves

the size of the area at no cost of perimeter.
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GRADE 8 - CHAPTER 5

NUMBER THEEORY

Background Assumptions:

A good bit of experience with the properties of the arithmetic
operations as applied to integers. Also a good deal of familiarity
with integers -- multipliecation facts, factoring, dividing large

numbers, etc.

Purposes:
1l. To teach the meaning of the unique factorization thecorem for in-
tegers and its use in computation; tests for divisibility and
tests for primality.

2. 8tudy of proof in some easy situations where short arguments
suffice, Discussion of "If ..., then... ' statements, converse,
negation.

3. To pursue some ideas of mathematical interest just because they
are interesting -- mathematics is more than just models of the real

world.

5.1 Even and odd integers.

Motivation

Sometimes we are interested in only some aspects of a number.
Street addresses - even numbers on one side, odd numbers on the other.
Square dances - squares of L4 eouples. BRridge or other partnership

only interested in one of

card games. Circults, computer storage

two states.
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The "facts' about even and odd numbers have probably already been

™

i
kA

discussed in Grades 4 -

Review these by asking guestlons like:

1 Is the sum of two even numbers even?

2. 1Is the sum of an even number and an odd number even?

3. Is the sum of two odd numbers even?

4. TIs the product of two odd numbers odd?

5. TIs the product of twoc even numbers even?

6. Is the product of an even number and an odd number even?

7. If the sum of two numbers is even and one of them is odd, what can
you say about the other one?

8. If the product of two numbers is even and one of them is even, what

can you say about the other one?

Colleet all of this information in the form of addition and multi-
plication tables for even and odd.

After the children have worked with enough examples, try to gst

"even". Of "odd". Let this discussion

them to give a delinition of
lead into rather more formal statements of the theorems about even and

odd numbers.

5.2 Informal discussion of statements and preoof.

Some discussion about mathematical statements (true or false),
about the form they usually take ("If ..., then..."), and quantifiers
("some", "all", "There is"). Try to reformulate the statements about

it

even and odd as theorems in the "If ..., then...." form. Ask questions

about the converse, etc.

For example, 1f the students were led to propose as a definition

of "even":; n is even if it has a factor 2; or n is even if there

is an integer n' such that n = 2n'; then a direct proof using the

distributive property can be given of the theorem:

"If m and n are even, then m + n is even."
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Point out +that if m and n =are not both even, then the state-
ment makes no claim about m + n.
Az mbout the truth of:
"If m+n is even, then m and n are even,'
After you have a definition for even, try to get one for odd. If

odd turns out to be "not even', then try to say what that would mean;

i.e., mn 1is odd if and only if there is an n' such that n = 2n' + 1.

This should give a natural lead-in to the general definition of
divigibility and the division algorithm. As an exercise it might be
suggested that the student make a flow chart for the division algo-
rithm.

Some theorems which can be given for which the student can glve a
more or less formal proof at this stage are:
and n sgre even, m + n 1is even.

and n are even, then mn 1is even.

-
b
B B

ig even and m + n is even, then n 1s even.

(ol
Hy

and n are odd, then m + n is even,

R LI e S A I
-
Hy

and n are odd, tlien m - n 1is even.

B 8 7 8

and n are odd, then mn is odd.

[
H
Hy

. 2
7. If m is even, m 1is even.

8. If m 1is odd, then m-  is odd.

To show that a proposed statement is false; e.g., "If imn is
even, then m and n are even', point out that it suffices to find
one example in which the theorem is false, 5 -6 1s even but 5 is
odd. This might lead to a general examination of the unmentioned
quantifiers in the statements made above.

(While negations of "if..., then..." statements as well as contra-
positives might naturally arise in this discussion, postpone considering
such things until later as there are too many complications for a first

try at this sort of thing.)

™Y
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Factors, divisibility, tests Tor divisibility and the division

algorithm.

Motivation - See Section 10-1 in First «ourse in Algsbra
(pp. 2k8-51)

With very little more effort,; one can get a definition of divisi-
bility by 2, 4, 5, 10 and also 3, 6 and 9. While devising these
tests one could develop the division slgorithm: a = bg + r where
0 <r < b.

In the exercises for this section one could extend the proofs
of the previous section to prove theorems such as:

If d divides a and d divides b, then b divides
a+b; a -Db; ka; Xb; =ab; and ax + by for any
integers x and y.

As a lead in, theorems such as:

If L4 divides n, then 2 divides n.
Ask sbout the converse.
The following might be proposed:
If 2 divides n and 3 divides n, then 6
divides n. Converse.

One might also propose the theorem:

If d divides ab, then d divides a or d
divides b.
Let the students discover that this is true if d 1s prime;

but not necessarily true otherwise.

5.0 Prime Numbers, the Sieve of Bratosthenes, Prime Factorization.

There are versions of this material in Chapter 10-2 and 10-3 of
First Course in Algebra and Chapter 11-2 in Introduction to Algebra
(pp. LBL-476). However, the sieve can be done in such a way that other
questions arise. The conclusion that if no prime less than or = /o

divides mn, then n is prime can be obtained.
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You may want to raise the question: '"Hov many prinzs are there?"
1f che division algoritihm has been discussed in 5.3, Fuclid's proof
that there are infinitely many primes, can be turned into z constre.ctive
proofl showing that given any set of primes there is always another prime
not in the given set. {(In the Teacher's Commentary the analogous argu-
ment for primes of the form U4k - 1 can be given.)

Following this section something similar to the last two sections
of Chapter 10, FCA, pp. 266-282 might be added, since the laws of ex-

ponents have not appeared so far in the outlines for Grades 7 and 8.

5.5 The Euclidean A;gorithmrggg the GCD.

Purpose:

Az a follow-up to the message in Chapter 4 on Problem Analysis,
and as a review and different way of looking at the work of Chapter 2,
Grade 7, on graphing of streight lines, one can pose the guestion of
solving equations of the form ax + by = ¢, where a, b and ¢ are
integers, for integers x and y. Une version of this material is con=

tained in ESSAYS ON NUMBRER THEORY II, Chapter L4, pp. 19-26,

This section would have to be included as an example of "interest-

ing" mathematics. Tt would be hard to defend the position that this is
something everyone should know. There are easier and more direct ways
of getting the GCD and then the LCM for adding rational numbers! On

the other hand, it certainly does sh.w the work on linear eguations in
a new light and offers opportunities for arithmetic manipulations with

nd .

=

another goal in m
5.5a (Alternative)

See Hassler Whitney's paper on the "Introduction of Mathematical
Concepts" (p. L) for another and shorter way to introduce the GCD.
This introduces modular arithmetic and could lead to GCD and, ke claims,

to F.T.A.

-272-
€317
&

fad



When the Huclidean Algorithm is developsd, there are two very
nice flc° charts which could reinforce and clarify this algorithm

on p- 30 of the New Orleans Conference Report, March 14-18, 1966,

_2'_('35—
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GRADE 8 - CHAPTER 6

THE REAL NUMBERS REVISITED - RADICALS

Exponents. (NOTE: While Chapter 3, Grade 7 has some work with
scientific notatlon, rationals in expanded form with
extension of exponent notation to negative exponents,
there is not at present in the seventh or eighth grade
outlines a specific place where the laws of exponents
are restated and worked with. To assume that this
was done before the seventh grade and need not be done
again until the eighth grade is a mistake. It
should someshow be worked into the seventh grade out-
line and probably reviewed and restated in the NUMBER
THEQCRY chapter of the eighth grade after the unique

factorization theorem.)

Solution set of an equation,
Order: If O <a<b and 0 <c <d, ac < bd,

Geometric construction for separation of segment line congruent

segments.

Absolute value: |x|
Properties of even and odd numbers.

Decimals, Square Roots, the Real Number Line (Ch., 10, Grade 7T)

Pythagorean Theorem

Purposes:
Review of the real number system, motivated by the consideration
of certain problems which do not have rational solutions; decimsl nota-

tion for rational and irrational numbers; meaning of radical and practiece

o7k
<D




in computations involving radicals; functions involving radicals; review
and summary of p »perties of the real numbers and properties of subsets

of the real numbers.

6.1 Motivation
Suggest problems requiring irratlional numbers in their solution
such as:

L. A blologist has a cube with edge 3 meters, in which & man is to
be enclosed for a specified time. This cube is just large enough
to provide him with sifficient air for the time he is to occupy
it. He now wishes to bulld a cube which will be just large enough
for two men -- that is, to build a cube which has double the

volume of the first. What should be the length of its edge?

This is the same problem that Greek geometers tried to solve two
thousand years ago. They set different restrictions on the prob-
lem, however; they required that the edge be determined by geo-
metric comnstruction, using only compass and straightedge. It

has been proved that the compass-straightedge construction cannot
be done. Can you solve the problem using numbers? Try different
lengths for the edge, to see whether you can find an edge which
gives a volume of 54,

2. Present a description of the golden section. This could be made
the subject of a film strip. See the Disney film, "Donald in
Mathemagic Land", part of which relates to the golden section.
Also see Nicolet film number fourteen -- strophcid, golden sec-

tion, and vases.

6.2 Review of Facts about the Real Number System. (See MJHS, Vol. 2,

Chapter 6, pp. 235 ff.)

6.2-1 Notation for real numbers. Use exercises to recall:
(a) Every infinite decimal names & real number.
(b) If the infinite decimal is a repeating decimal, it

names a rational number; if the infinite decimal does
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(e)

(d)

not repeat it names an irrational number.
Posesihility: 1T repeating decimals are written in
expanded form, it might not be a bad idea to spend

a fewv minutes talking about the meaning of the symbol

it -1

ses 3 €.,

= 3 3 3
3= = 4 == e
10 lDE LDB
= 3(%% + EES + =£§ Foaa)
10~ 10

The notions of limit and of infinite series are both
ideas which are really difficult to teach and to learn.
Barly exposure and a longer period of time to get used
to the idea might prove helpful in later work. The

student has already seen the disguised manipulation:

ro= .3
10r = 3.3
9r = 3 .
r=.

3

Writing out the repeating decimal in expanded form
might pave the way for fufure belilef in the validity
of work with infinite series. We don't suggest doing
any more than simply noting that the indicatsd infinite

series above is another way of denoting the rational

H

slumber — .

3
A rational number may be named by a fraction cf the
form % s where a 1s an integer and b 1is a counting
number.
A numeral of the form +a or -va, where a is a
counting number, names a real number; if +a is the
product of two equel integral factors, a 1= a

rational number; otherwise it is an irrational number.
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6£.2-2 Proof that 2 1s irrational. (Alt. version =-- ISSM,

Vol. 2, pp. 362ff.)

6.3 Roous of Numbers. (See FCA, Chapter 11, and PFCA-H, Chapter 15)

1. ZSguare Roots

Definition of +Ya and -va with a > O.

(]

s = . . . = .
Discussion of solutions of eguations of the form x = a3 with
appropriate restriction on 2.

2 /2

=

For all resl numbers x, +x° = [x|, -=¥x" = -|x].
In the exercilses use runction idea to practice finding the domain
and range of functions such as:

sy
o x—«—ng

g 1 x—=/x - 3

, /2
h 1 %x—=v¥x -2 , etc.

Definition of nth root of a. Solution set of x

(MJHS, Vol. 2, pp. 272ff.)

3_ .. k4

no
]
o
kS
]
]

Domain and range of functions T : x=a—¥x3 ; 8 x—=7x ; ete.

-1
3. BShould wve introduce x %, X E , ete,, here or wait until the

chapter on the exponential function?

6.4 Computations with Radicals.

1l. Use of factorization theorem in finding roots:

Ex. +J&4l, -41225, - 3 %%E-, /11,56, /.008, etec.

2. Irrational square roots.

Recall of the theorem: If n 1is a counting rumber and /n

is rational; then +n is an integer.
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Proof of theocrem: If O <a <b, then Ja < /b .
Review of iteration method for approximating roots.
Product of square roots.

(a) Theorem: +a * vb = vab, a >0, b > 0.

(b) Use of theorem to write root in the form avb , a rational

and b a positive integer without square factors.
Ex, /18, 98, v/450 , etc.
(c) Use of commutative and associative properties of multi-

plication.
Ex. 2V/57 * 3/38

(d) Use of distributive property.
Bx. 2/3 + 543 ; 5(2/3 + 45) 5 (5 + ¥2) (5 - /2)

(e) Radicals with variables.

- [ 2 -
Ex 3x~ . Since domain is the set of reals.

BAE B |«

tive reals, +Vx =x , x > 0.

. /3 . A
. ¥x * % . Since domain is non-nega-
5 .

Square routs of ratiomal numbers.

> /e
(a) Theorem: = = =§!, a >0, b>0.
/o

o

(b) Use of theorem to simplify radicals (as defined above).

’ 25 2
Also use variables: %? = E%E . Restrictions on x7?
i% = %, v/a . Restrictions on a? on b? on ab?
ag a -
5 = (TiT) Vb . Restrictions on a? on b?
-278-
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roperties of the KReal Numbers and the keal Number Line.

2
|

1. Properties of the real number system

Use exerclse sets to recall field properties. (See Ex, 3, p. 279

of MJHS, Vol. 2)

Include guestions on subsets to emphasize properties not possessed

by subsets. (See PFCA - H, p. 184).
Emphasize order properties.
2. Real numbers and the number line.

(2) Location of point for rational number by geometric

olw

construction.

(b) Location of point for irrational +a by geometric construec-
tion.

(e) Location of point for infinite decimal by nested intervals.
Use = as an example. (See MJHS, Vol. 2, pp. 256, 261-5)

(d) One-to-one correspondence between real numbers and points

on the line.

different k nds of numerals (fractions, decimals, radical

absolute values).
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GRADE 8 - CHAPTER 7

TRUTH SETS OF MATHEMATICAL, SENTENCES

Fackground Assumptions:

ome types

)]

Students have had some experience with the solution of
of linear mathematical sentences with integral and rational coeffi-
cients. No formal methods of solution have been presented.

Students hayv » had methods of solution of systems of mathematical

sentences.

Rationale:

The development of a reasonably careful discussion of the solutions
of mathematical sentences has been poustponed until now because we wanted
to discuss some operations which would not necessarily result in equiva-
lent sentences, e.g., squaring both sides of a sentence, and multiplying
both sides of an equation by ar expression which is zero for some value

or values of the wvariable.

Purposes:
1. To identify clearly the concept of equivalent mathematical sen-
tences and to state precisely the "permissible" operations which

will always lead to equivalent sentences.

2. To identify clearly the operations on mathemstical sentences which

3. To provide additional practice in problem analysis and problem

solving techniques.

Procedure:

1. Review addition property of equality and its use in solving equa-
tions. Introduce the concept of egquivalent sentences, p. 133-135.

First Course in Algebra - Part I.
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Review multiplication property of equality and its uses in solving
equations. Use concept of egquivalent equations. p. 167-170 -
7iret Course in Algebra - Part I.

3. Apply these two properties to the solution of inequalities., Use
concept of equivalent inequalities. p. 187-200 - First Course in
Algebra - Part I.

4. Include appropriate verbal problems -- see above references to

First Course in Algebra.

Consider the question of "permissible operations" for equivalent

W

sentences, in general. p. 377-394 - First Course in Algsbra -
Part II.
6. Discuss the theorem - If a = b, then a = b and the fact that
the converse is not True.
7. Consider equations of the follewing type:
(x - 3)(x - 2)(x - &) = 0.
This may be written as the equivalent compound sentence --
x~-3=0, or x -2=0, or x -4=0,
This is another situation where equivalent sentences arise.
p. 388-389 - First Course in Algebra - Part II.

8. Consider fractional equations and restrictions upon denominators
containing variables. p. 391-394 - First Course in Algebra -
Part II.

9, Consider the operation of squaring both sides of an equation and
the fact that this operation does not always result in equivalent
equations. A check is necessary to determine the solutions of the
original equation. However, if boundary conditions are noted a

logical check is not necessary, only a check for accuracy, e.g.,
Yx =2 -x and 0 <x <2.

p. 394-398 - Pirst Course in Algebra - Part II.
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GRADE & - CHAPTER 8

QUADRATIC POLYNOMTALS AS FUNCTIONS

Background Assumptions:

1. Functions - Notation 1 : x—aaf(x); linear functions; graphs

of linear functions.
2. The real number system, axioms and definitions, operations.
3. BSolution of Mathematical Sentences
4, (Graphs of absolute value fun tion)(See First Course, pp. 448-453)
Rationale:
The graph of £ ; K—asxg will be constructed. This will be
compared with the graphs of the following:

Y—e— =X

In each case, the zerces of the function will be discussed. This
will lead to the discussion of how to find the zerces algebraically.

Since ab =0 1f a =0 or b =0, we would find it helnful to be

Q

gble to factor guadratic polynomisls.

Factoring, by use of the distributive property, of polynomials of

the following types
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ab + ac = u{b + ¢)

ax + ay + bx + by = a(x +y) + b(x +y) =(a + b)(x + v)

3
52 + 2ab + b = ag + ab + ab + bg =(a +Db)(a + 1)
3 3
a~ - bg - a~ - ab + ab - be = (a + b)(a - b)
2

will lead to the factoring of x + bx + ¢, and of axg + bx + o,
by completing the square, and finally by inspection for those poly-

nomials which can be factored over the integers.

Now we go back to use factoring in tne finding of the zeroes of

ing over the integers and by completing the square to factor over the

. , 2 .
reals., Finally we solve the general quadratic equatior ax + bx + ¢ =0

by completing the square, and thus develop the quadratic formula.

2
Factoring skills can also be put to work to rewrite ax + bx + c

, ] , 2 . . . -
in the form a(: - h)” + k. This form is convenient for determining

the minimum (or maximum) of the function, and thus for constructing its
graph.

From.a single graph of a function in form axg + bx + ¢, the
student can be shown how to find solution sets of many equations, by

moving one (or both) of the axes.
Purpose:
1. To study in some depth the grzph of the quadratic function.
2. To develop and practice the more common types of factoring of
linear and quadratic polynomials.

3. To present methods of solving quadratic equations.
Procedure: Ref:. First Course, pp. 533-536

Section 1. Graph of the guadratic functlon.
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, . 2
L.l Graph of £ : x—=ex , and of £ : X-—» -x .

2
Do graph of x—ex" carefully for -4 < x <l - include

1 ] 1. .
(% ,%)} (% ;fg) to show ti. shape of the parabola.

Point out: symmetry with respect to y-axis; range is non-
negative reals; domain is set of reals.
2 3 )
Show graph of x—e-x  as a reflection about the x-axis;
symmetry i1s preserved.
o P 2
1.2 Graph of f ; X—wax .
Consider graphs of X-a-axg for 0<a <1 and for a >1,
, 2
and compare with graph of x—ex .
. 2
Show graphs of x-eax™ for -1 <a <0 and for a < -1 as
reflections of the corresponding cases above.

Perhaps generalize on X-sax® for a # 0, in terms of |al.

1.3 Graph of f : x=asaxg + k.

Discuss effect of k¥ for kK >0 and %k < Q.

For k < O, consider the zeros of the function (new term-

explain it!)

Ask what about zeros for k = 0, and k > 0. (This hints at

complex numbers)
) . \ 2
1.4 Graph of f : x—wa(x - h)° .
Disruss effect of h for h >0 and h < O.

Consider the zeros in both cases.

Graph of f : x—wa(x - h)° + k.

[
%)

Summarize how the graph of X-—wXx is affected by values of a,
h, and k.
Talk about zeros of the function, also maximum or minimum, symmetry,

turning point.




1.6 Two algebraic questions:

(1) How can a guadratic function in form axg + bx + ¢ be re-
written in form =a(x - h)g + k, +to make graphing simpler,
ag well as to ald in locating line of symmelry, turning
point, and maximum or minimum value. (Merely develop
feeling of a need for factoring skills of some sort.)

(2) How can the zeros of a function in form ax® + bx + ¢ Le
determined algebraically? ©8ince ab = 0 if and o.ly if
a =0 or b =0, this calls for heing able to factor the

polynomial over some set of numbers.

Section 2. Factoring Polynomials. (9H, 556-572, 577-588, 591-621)

2.1 Meaning of factoring over the integers, over the rationals,
over the reals.

2.2 Type ab + ac = a(b + ¢).
Simple use of distributive property.

2.3 Type ax +ay + bx + by = (a + b)(x + y).
Multiple use of distributive property.

Perfect square, ag + 2ab + bgg

[}v]
o~

Show use of distributive property, as:

, - 7 - B .
2 + 2ab + b° =a° +ab + ab + b- = ala + 1) + bla +b) = (a + )"

Discuss characteristics of a perfect square trinomial.
) . ) o 2 2
2.5 Difference of squares, a - b .

Show use of distributive property, as:

ag -b° =a° - ab + ab - b° = ala - b) +bla -Db) = (a +Db)(a - D)

Then observe short cut, from reversing the product:

(a +Db)(a - b) = ag - bg.
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Move on to types:

(a + b)g e =(a+b+e)la+tb - c)

, 7 - ) 7
2° + 2ab + b° - 2 = (a + b))~ - o = (a + b +c)(a+b-c)

2.6 Factoring a polynomial of form xg + bx + ¢ by completing the
sqQuare.
Also show by inspection for those factorable over the integers.

) 2 ; .
2.7 Factoring a polynomial of form ax + bx + ¢ by completing the

square, and by ihspection for those factorable over the integers.

Section 3. Solving guadratic eguations.

, \ i . 2 .
3.1 Discuss "finding zero of funetion ax + bx + ¢ as "solving

equation ax® + bx + e = O".
3.2 Solve by factoring; i.e., ab =0 1if a =0 or b = O.

Emphasize factoring by completing the square as the general

method, giving roots both over the rationals and over the reals.
Hint at complex roots.
3.3 Development of formula:
Generalization of completing the square.
Emphasize its significance in that it relates the roots to the

coefficients.

Section 4. Going from :ax; + bx + c to 7§(X7—7h)?_% k.

; 2 . .
4.1 Use of completing the square to write ax + bx + ¢ in form

a(x - h)g + k and thus draw the graph quickly and accurately.

, .. ] 2 .
4.2 From the graph of a single function of form ax + bx + ¢,
the solutions of many quadratic eguations can be found by

giving the function a succession of values.



GRADE & - CHAPTER 10

PARALLELS AND PERPENDICULARS

Background:
Separate chapters have been introduced on parallelism (in Grade 7)
and perpendicularity (in Grade 8). The present chapter summarizes, re-

V3 ', synthesizes and extend. these chapters.

From work with measure we need the concept that the length of a line
segment and the distance between two points are the same number arrived
at in different ways. The first is a function from the set of segments
in space to non-negative real numbers; the second is a function from
pairs of polnts to non-negative real numbers. We are now ready to ex-
tend the concept of "distance between” to a function whose domain is
any pair of geometric figures. (There is still a problem to strezighten
out here! Will we accept & line segment of length 0% How about "two"

points which have a distance of O between them? )

Meny properties of specialized quadrilaterals are assumed to be
already known and are summarized here. Some simple reflections in
points, lines, and planes as transformations are used as background for
discussing symmetries of 2 and 3 dimensional figures. The concept

of symmetry of a figure is then made a little more general.

Although the parallel "property” has been introduced and intuitive
facts associated with it, we incorpeorate it here into a deductive se-

quence.

Purpose:

The purposes of this chapter are as follows:

1. To consider sets of parallel and perpendicular lines and planes and

the mumber of regions they determine in 2 and 3 space.

-287-

raLT>»

o n Fad



2. To d=velop deeper intuition in 3-space for the relations of

parallel and perpendieular among lines and planes.

3. To define distance between parallel lines and planes, but within

the broader context of distance between two geometric objects.

L, To survey and sxtend concepts related to guadrilaterals,

5. To lay a simple and intuitive foundation for the concept of

necessary and sufficient conditiomns.

6. To extend the concept of reflections in point, line, and plane

to symmetries of polygons.

to parallel lines.

Rationale:

7. To provide one more short deductive sequence, this time applied

Counting regions is a way of assoclating numbers with geometric

figures. 1In a sense it is a function from a certain set of geometric

figures to the natural numbers. This use of number is not a metric

use, but a combinstorial usze of numbers for counting.

Parallel and perpendicular lines and planes taught separately

are rich subjects, but in this chapter we consilder the richer inter-

connections between these two relations.

Distance up to now is a function on a pair of points, now it is

extended and generalized, still including former ideas as special

cases.

Symmetries are very definitely considered here as one more step

along the road which stretches from reflections (in Grade 7) to trans-

formations (in Grade 9).

There are symmetries that are not reflections;::

later there will be transformations that are not symmetries.

Many times we have used the fact that the degree measure of the

angles in a triangles add to 180, but here, for the first time, we

prove this faet in a miniature, deductive system.
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section 1. Regicns:

)]
g

1.1 Btudy numbter of regions (not counting the lines) into which a nlane
is separated by two parallel lines; by n parallel lines.

1.2 Study number of regions (neot counting the lines) into which = plane
is separated by two perpendicular lines; by two parallel lines acnd
transversal perpendicular to them; by net of n lines and m
others perpendicular to them.

1.3 Extend ideas of 1.1 and 1.2 carefully to some problems 1in 3-space

with parallel and perpendicular planes.

Exercises:
1. Use sequence of simpler problems toc reach such problems as these:
(a) How many regions of a plane are formed by 4 parallel lines

and 5 1lines perpendicular to them? (Ans: 30)

(b) How many regions of a plane are formed by n parallel lines

and by m 1lines perpendicular to them? Ans: (n + 1)(m + 1)
2. Just a few suggestions for problems in 3-space:

(a) o, B, and ¢ are planes so that o and « § . Into
k)

how many regions do these sepsrat- space? (Ans: 6)

(b) «, B, and ¢ are 3 mutually perpendicular planes. Into

how many regions do they separate space? (Ans: 8)

(¢) Into how many reglons is space separated by n parallel

planes? (Ans: n + 1)
3. Perhaps some challenge problems of this level, but not any harder:

(a) What is the maximum number of regions you can create in a

plane with 3 1lines? with 4 lines? with 5 lines?

(b) What is the maximum numb=r of regions you can create in space

with 2 ©planes? with 3 planes? with 4 planes?

=289,
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Section 2. Combining Parallel and Perpendicular Relations:

2.5

Line perpendicular fo one ¢f two parallel lines; line perpendicu-
lar to one of two parallel planes.

Two lines perpendicular to same line; two lines perpendicular to
plane.

Plane perpendicular to one of two parallel lines; plane perpendicu-

lzr to one of two parallel planes,

Two planes perpendicular to same line; two planes perpendicular to
same plane.

Consider relations of parallel and perpendicular with respect to
reflexive relations, symmetric relation, and transitive relation.
(We assume that these terms have been introduced in connections
with numbers, so we are making use of an old idea here. They are
intended to reinforce and review such an idea, not to introduce

it.)

More ASN exercises in 3-space: (The problem of whether a line
should be considered parallel to itself; a line in a plane parallel
to the piane; and a plane parallel to itself might well be con-
sidered by =ome other group of people, and by the writers. Here
the viewpoint is that two lines must be distinect in order to be

parall .1, and so on.)

A 8 N (1) Hypothesis: Two planes are parallel.
Conelusion: A line perpendicular to one of these planes

is perpendicular to the other.

A 8 N (2) Hypothesis: Two lines are parallel.
Coneclusion: A planec perpendicular to one of these lines

is perpendicular to the other.
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A S N (3) Hypothesis: Two planes are parallel.
Coneclusion: A plane perpendicular to one of these

planes is perpendicular to the other.

A 5 N (4) Hypothesis: Two lines are parallel.
Jonclusion: A line perpendicular to one of these lines

is perpendicular to the other.

A 8 N (5) Hypothesis: Two planes are perpendicular.
Conclusion: A line perpendicular to one of these

planes is perpendicular Lo the other.

A S N (6) Hypothesis: Two planes are perpendicular.
Conclugion: A line perpendicular to one of these
planes is parallel to the other.
A 8 N (7) Hypothesis: Two planes are perpendicular.
Conclusion: A line parallel to one of these planes is

perpendicular to the other.

A 5 N (8) Hypothesis: Two lines are perpendicular.
Coneclusion: A plane parallel to one of these lines is

perpendicular to the other.

A 8 N (9) Hypothesis: Two lines are perpendicular.

Coneclusion A line perpendicular to one of these lines

is parallel to the other.

A 8 N (10) Hypothesis: A plane is perpendicular to a line.
Conclusion: Another plane perpendicular to the line is

parallel to the first plane.

A S N (11) Hypothesis: Two planes are perpendicular.
Conclusion: A plane parallel to one of these planes is

parallel to the other plane also.

2. Fill in the following table with the letter F or T with the

following meanings: (Assume we are in 3-space.)




T The relation has the property.

' The relation does not have the property.

Reflexive Symmetric Transitive
alle | - -
a | b T
olle |

Note: a and b are lines; « and B are planes in this
standard notation; .l lines or planes considered in the

transition reiatiu; are distinct.

Section 3. Direction of a Plane.

3.1 What do a family of parallel lines in 2-space have in common:

slope.

3.2 What do a family of planes in 3-space have in common: +the slope
Of a plane is difficult to define; go back to the plane for in-

spiration.

3.3 Another characteristic of a set of parallel lires in 2-space:
there is a line perpendicular to al. the parallel lines; go back
to 3-space and see 1if this helps.

3.4 Hurrah: For each set of parallel planes there is a line perpen-
dicular to all planes (this does not imply only one line).

3.5 Discuss "characterization" of a family of parallel lines by the

slope of the line found perpendicular to them ; if we could get

to the idea of slope of line in 3-space we cbuld do the same --

perhaps in the future.
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Bxercises:

Have students draw diagrams to illustrate the ideas above.

Section 4. Distance between Parallel Lines and Parallel Planes.

4.1 Review: Distance from point to point is length, or is measure of
sesment .

4,2 Def: Distance from point to set of points as minimum of distances
to points in the set; apply to line, segment, circle, and plane.
(The problem of unusual sets where the idea of a greatest lower
bound is needed should be avoided. Just simple cases here.)

4.3 Def: Distance from set to set as minimum of distances from point
in one set to point in other set; apply to line and circle, two
circles (c@mpletely outside or one contained in @ther)ﬁ two

parallel lines, two parallel planes, two intersecting lines.

4,4 Def: "the" altitude of a parallelogram or of a trapezoid; alti-
tude as segment and as number.

L,5 Eguations of planes parallel to coordinate planes; inegualities
for "strips" and 3-space intervals. (See previous work in

Section 2.6 of Grade 7, Chapter 11, Parallelism)

Typical Exercises:

(In the following discussion note the difficulty in keeping pure
meanings for the phrases "distance from A +to B" and "distance be-
tween A and B". More thinking must be done to say when we want to
talk exactly, and when we may use colloguial expressions in these situa-
tions.)

1. A point is 6 inches from the center of a 3-inch circle., How far
is it from the clrcle.
2. A point is 2 1inches from a circle which has a radius of 3

inches. How far is the point from the center of the circle.
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and is 3 1inches from the segment. It moves parallel to the
segment through 6 inches. How far is the point now from the
seg..2nt?

L, A point is at the center of a 5-inch circle. This point moves
12 inches in a direction perpendicular to the plane of the circle.
How far is the point now from the eirele? Now the point moves 5
inches parallel to the plane of e eirele: how far is it now from
the cirele? If the point had moved 21 1inches instead of 5,
how far would it have been from the circle?

(More thinking needs to be done about the use of such expressions
as "The point moves parallel to a line", or "The point moves
parallel to a plane”. The meaning is clear, but how should we say
it in mathematics? Can a point move or is it not fixed in space?
Should we not say "moves on a line which is parallel to the line."?%
These indicate some of the difficulties.)

5. A 6-foot flagpole is attached to the vertical wall of a building
at a point 20 feet above the horizontal street. The pole makes
an angle of MSQ with the horizontal. How far is eachk end of the
pole from the street?

6. A line is €& inches from the center of a 2-inch cirecle. How far
is the line from the circle?

T. Two circles have radil of 5 and 10 inches. What is the dis-
tance between the circles if:

(a) Their centers are 20 inches apart?
(b) Their centers are 2 inches apart?
(¢) Their centers are 6 inches apart?

8. Two sides of a parallelogram are 6 inches and 12 inches and
the angle included between them is SGDs What is the distance
between the pairs of parallel lines containing opposite sides? 1Is

this the same as the distances between opposite sides (as segments)?
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9, Compute the area of the parallelogram 1ln Exercise 8 in two ways and

compare your answers.

10. In 3-space what is the graph of the Tollowing sentences:

(a) b4 <x <7
(b) 4W<x<7 eand =-3<y<2
(e) 4 <x <7 and -3 <y <2 and 6 <=z <8

11. What is the distance between two intersecting lines?

Section 5. The Quadrilateral Properties:

5.1 Review, summarize and interrelate properties of parallelogram,
trapezoid, rhombus, rectangle and square; properties of sides,

diagonals and angles are intended.

5.2 Study the sufficiency and begin the idea of uecessity of condi-
tions on a very intuitive level; necessary and sufficient condi-

tione as such to bhe studied later.

Twpical Exercises:

1. The following problem is a large one and may not be wise to in-
clude as a whole, but it is extremely valuable. It would be ex-
cellent summary material and might well be worth 2 or 3 days

of clasges time.

Directions: In the following table, consider the five types of
geometric figures listed across the top with respect to the
sixteen statements at the left (to save space the statements are
referred to by number and listed below). If the geometric figure
at the top always has the property at the lerft, fill in the table
with an Aj; if the flgure sometimes has the gquality, use an 5;

and if it never has that property, use an N.




Rectangle

Rhombus

Parallelogram

~ Trapezoid

Statements:

16,

Both pairs of
Both pairs of
Each diagonal
The diagonals

The diagonals

opposite angles are congruent.

opposite sides are congruent.

bisects two angles.
bisect each other.

are perpendicular.

Fach pair of consecutive sides is congruent.

Each palr of consecutive angles is congruent.

The dlagonals

are congruent.

Both pairs of opposite sides are parallel.

Three of its angles are right angles.

Its diagonals are perpendicular and congruent.

Its diagonals are perpendicular bisectors of each other.

It is equilateral.

It is equiangular.

It is both equilateral and equiangular.

Another, valuable use of this table is to turn the problem around

and thus ask the following guestion:

Are the data at the left of

a line sufficient to assume the figure is the type named at the

top?

Use the letters

never as follows:
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A  The data being true, the figure must be that given.
3 The data being true, the figure may or may not be that
given.

N The data being given, the figure could never ocecur.

Section 6. Symmetries:
6.1 Def: Symmetry in a line, in 2-space, in 3-space.
6.2 Def: Symmetry in a point, in 2-space, in 3-space.
6.3 Def: Symmetry in a plane,.in 3~space.

6.4 Bymmetries of triangles: isosceles, equilateral.
6.5 Symmetries of rectangles: non-sguare, square..

6.6 Symmetries of a circle.

6.7 Symmetries of three dimensional figures.

Exercises:

l. TFor each of the fcollowing figures use a ruler and draw all lines
of symmetry. Then write down the number of lines you have found.

Then mark each point of symmetry :»oa can find.
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2. Tell for each figure how many planes of symmetry there are; then

how many lines of symmetry; then how many points of symmetry.

3 3
3
5 5
Equilateral / - ) -
Base Regular Tetrahedron Sphere

3. For each of these figures find reflections in all lines of symmetry;
then rotations about center of 180°, 120°, 90°, or whatewer you

need to make the figure coincide with itself.

.
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4. BSymmetries of a circle, rotations about the center only.

Section 7. Angle - Sum Proofs.
7.1 The parallel property.
7.2 Proof: Angle measure sum for trlangles.

7.3 Semi-protf: Angle sum measure of convex polygons.

Exercises:

The usuwal kinds. See SMSG and other books.




GRADE 8 - CHAPTER 11
PROPERTIES AND MENSURATION OF GEOMETRIC FIGURES

(Review and Swmmary)

Background:
Metric System, Grade k4, Part II, Chapter 9, pp. L76LT.
Unit Segments, Unit Angles, What is Area?, Grade 5,
Part II, Chapter 7, pp. UOTFf.
Chapter 8, pp. U55FT.
Congruence, Grade 7, Chapter IV

Measure, Grade 7, Chapter V.

Purpose:

1. Review and extend notion of measure; develop some degree of

comfort with the metric system.

2. (a) Based on the summary in Chapter 10, Section 5 review and
extend formulas for perimeters and aress and apply to
problems involving real numbers. Derive the formula for

the area of a trapezoid.

(b) Deepen the understanding of the relation bétween congruence
and measure: (congruence = equal measure, converse is not
troe).

3. Review properties of regular polygon. Compute perimeter, radius,

apothem, area. Develop (WST) formula for area of circle.
4. Develop properties of solids:

(a)

with parallel bases: boxes; cylinder.
(b) pyramid, cone
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(1)

O

ERIC

Aruitoxt provided by Eic:

(e¢) develop formulas for surfaces and volumes of solids.

(d) sphere (WST).

OUTLINE

This is the fourth exposure to measure and it 1s important to
continue this development, building on previous learning ex-
periences.

First, measure was based on congruence: Two segments are con-
gruent if one is an exact copy of the other; the same holds for
regions.

Next: linear measure was given a numerical - lue.

The third time, in Chapter V, Grade 7, area is developed in terms
of equivalent regions. This section contains excellent examples;
review some, bring in new ones. Although we are generally con-
cerned with convex prlygonal regions, an example could be intro-
duced to show that not all regions are convex, yet can be de-

comppsed as indicated.

But now we want more; we want a numerical measure for areas.
Show that not all regions can be decomposed easily into eguiva-

lent regions. For example:
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It would not be possible to decompose this region equivalent to
another region. But we can try the following in order to esti-

mate the area:

J o A
(k ,f’ggyﬁ‘sssﬁ__ﬂgf/ (11 g;f’fii‘\g V

"Recall that area of a surface is the number of square units con-

tained in it" (MJH, Vol. 2, Part II, p. 450). Lead from this to
the necessity of assigning a measure, which is a number, not only

to segments, but also to polygonal regions. Discuss closeness of

approximation in diagram above.
Develop next the idea of arbitrary unit versus standard unit by

examples:

roj-

1. (a) Draw OABC ~ ADEF with ratio of similitude
are arbitrary and represent units on which TIE, EF, and FD

are based.
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, and b =

i

L'
Lt

(b) If segment RS has measure 1 then a =

since a 1s contained three times in the given segment and

twice in b.

Pt : ~ ———t —
Similarly, if then,4 T -~ ,
1 Lo

(e) Recipe for cooking: The weight of an egg could be the unit.
(a) Pacing off distances: Length of step is the unit.
(e) Game: Go forward until T count to five; unit of time; inter-

val from 1 to 2, etc.

Next, ask questions of this type: Can you choose the units when paying

for your lunch? weighing yourself? reading a map? buying gasoline?

2. Include guestions of the type: What would be a reasonable unit of

measure to express:

(a) The distance from your home to school.

(b) The height of a telegraph pole.

(¢) The length of a desk.

(d) The depth of a bookshelf.

(e) The Length of the hands of a wrist watch.

(f) The length (?) of periods in a school day.

(g) 'The weight of a beam for a bridge.

(h) The weight of flour in a cake.

(i) The amount of milk in a cake.
Depending upon Chapter 5, Grade 7, and the degree of detail given to
metric measure, review and complete metric measures for distances,
areas, volumes and weights. Include here or at the end of the téxt a

table with metric measures.
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Aruitoxt provided by Eic:

> Raise gquestion. Can you give the corresponding metric méeasures in
2. above?
Point out simplicit, of U.3. monetary system compa: ' to Eritish system.

In the same way, compare linear measures mm, cm, dm, m, egtc., with

inch, foot, yard, etc.

L Tnelude questions of the type:
{a) Which 1s longer, an 8 inch or 12 em pipe?
(b) Tf the speed limit on a highway is 60 mph., does a driver

break the law if he travels at 9390 km per hour?

—
]
S

Would you expect to pay more for 3 querts of milk or for 3

litezrs of milk?

I+t may be preferable to use measure for areas, volumes, weights, ete.,
as (2) and (3) in this outline are first presented. But since the
students are probably familisr with these ideas a review here and

spplication later in the chapter ought to work out successfully.

2(a) Review the formulas for perimeter and area of parallelogram
and triangle and develop the formula for the area of the
trapezoid (See MJIH, Vol. 2, Part II, Chapter 11, pp-
451-L55)

1

Next refer to the statement in Chapter 5, Grade 7, page Z: . every
line segment has a measure Tread (but lightly) on the idea that this
measure often is a number familiar to them, but that the measures of
many line segments are numbers which they have not studied yet. Until
they meet these numbers, they can only give such measures by approxi-
matiocn.” (NOTE:. +there are approximations of different natures in-

volved.)

Now, we are ready to assign the exact measure to segments, the interior
of plane figures, surfaces of solids, ete. The students have studied
real numbers. There are times when rational approximations are impor-
tant. Refer back to Chapter 5 and see how good the approximations

were at that time, when only rational numbers were known to the students.
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Use examples as on page U453 (reference given above), finding the length

of diagonals and perimeters.

1. (a)

(b)

Other examples:
Find the perimeter of the polygon PROBLEMS .
Can you draw a polygonal region

like "PROBLEMS", whose peri-

meter is 12 units?

2. A rectangle and a parallelcgram have egual base and height. One

angle of the parallelogram has a measure of 45@,
diagonals of the two figures compare?
ares

numerical values to h and

How do the

their perimeters? their

2

(Emphasize the role of a good diagram). First assign

b, then generalize.

D c i b B M
o
h /ff
v

- - 1,50 , 7

A b 2 I o ;
N _ M N 13 _u
7
h e

) b i h h

K L F K . L
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3. Compute the length of the median of a trapezoid: assign definite

values to bl’ bg; then generalize.
b
[————2—““~Tx& Use similar triangles, develop
b ' formula L(b. + :
/ 72 / formula 2(bl + bg)’ Now, de-
/ 7b277[%17 rive area in different way.
b'l

Repeat for isosceles triangle and use different ways suggested by

the diagrams.

EH

2FH Use
ratios to find MN.

z(b) Measure is based on congruence. Use examples that
extend the idea from segments and plane figures to
3 dimensions: Boxes, can goods: identical containers,

equal contents, equal weights, equal prices (%2).

In contrast: the area of a rectangle is U8 square inches. Are

the following rectangles congruent?

[
i

6
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Example 2:

Given L,||L,, AB =TD=GH and ED = 2JH
[Authors: do not use subscripts]

P PP P

! 2 "3 "L P Fg P? F B e
K )
o o 1 _
DG

(a) The length of which segments is the distance between Ll

and Lg? Call this distance h.

(b) What have the triangles in common? (You will get different
answers.) If AB = b, what is the area of AABP.? What is

1
ABP AEPM, ABP_, ABPS, ABP_?

the area of triangle ABP 7

2!! 3,—9

(¢) Are any of these triangles congruent?
(d) Could you find a point on L, say Q# Py, such that
NAQB = AAP BY -
(e) How do the areas of the triangles comﬁare to the area of
rectangle CEEF?; rectangle GHJK?
Formulate conclusions from the above.
Develop the understanding of the formula by using both geometric and

algebraic appfcach:

Example: What is the effect upon the perimeter of a rectangle if the
length and the width are doubled? What is the effect upon the area?
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plfga+2bf2(a+b) Ay = ab

P, = 2(2a) + 2(2b) A, = (2a)(2b)
= 2(2(a + b)) = 4(ab)
= 2p, = AAI

ratic factors; algebra and geometry should support one another.

(3

)

’

Review properties of regular polygons. Introduce or review the
voecabulary: center, radius, chord, apothem, circumscribed

circle, inscribed polygon.

Compute p, given r and a
r, given a and =
a, given r and s

Let the student visualize by making their own diagrams, what

happens to the perimeter of an inscribed regular polygon, as the

number of sides goes from 4 to 8 +to 16, ete. Then, show

with geoboard: nails, equidistant on the circle, rubber bands

forming regular n-gons.

Compare p to ¢
and area of interior
of A to sector as

n increases.
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(L)

Let them measure the perimeters and record results. Have each
student cut out a disk of different size, from stiff paper, or
use any circular object available. Have them measure the dia-
meter and the circumference by wrapping a string around; have
them compare the ratio % . Bxchange the circular objects and
try it again. What is the value of this ratio? How do these
values compare? Since it ought to be close to 3 but (hope-

fully) is not exactly 3, it is some number, let's call it .

So, if % =1, ¢c =nd or ¢ =2nr, w = 3.14. How do the

perimeters obtained before, compare? I=s A = 3%
[(Bee MJH, Vol. 1, Part II, pp. 490-500.]

See whether the relation, informally and experimentally only,
of course, can be "discovered': as n becomes very large,
p—=cC.

Observe at the same time that the interior of the polygon comes

closer and closer to the interior of the circle.

The transition from A = %'ap to AO = ﬂfg ig then a simple
step. Again: as n—e=«, A polygon——A, . [See MTH, Vol. 1,
Part IT, 11-7, p. 500.]

Assemble as many models of solids as possible. Where do we see,
indoors and outdoors, in a store, fectory, etc., objects like some
of these?

Analyze the properties and let students "discover" some way of
classification.

Introduce the terms: face, edge, vertex, surface, diagonal, volume.

Have the student think about a wire model, a cardboard model before

"dissecting"” the solids.

Let them count the number of vertices, faces am edges and record

in a table. ‘Can they discover EBuler's formula, V +F - E = 27

¥

-
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Let the student see what pline contains a diagonal in a cube or
prism. Wnal dimensions must be known to determine others.

Just as the length of a segment is the number of units contained
in it and the area of a surface is the number of square units
contained in 1t, introduce the volume of a solid as the number of

cubic units contained in it.

1 inch . 1 sq. inch 1 cubic inch
— — —
1l cm 1 =sgq. cm 1 cubic cm

Now group solids according to:

(a) Parallel bases: Prisms and cylinder; boxes with squares,
rectangles, triangles as bases; cylinder with circles as
bases (of course, the interior of these polygons is meant);

V = Bh.

(b) Pyramids and cones. V = = Bh. [See MJH Vol. 2, Part II,

pp. L465-489].

Wit

(¢) Compile a list of formulas as a result of the above.

Students should make models of as meny solids as possible. Have
different students use different dimensions, but prisms and
pyramids with congruent base and height should be made, similarly
for eylinder and cone, [see MJEH, Vol. II, Part II, pp. 491-510]

50 that volumes can be compared and experimented with.
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There is an excellent opportunity to apply real numbers, similarity

134

znd design problems from "real litfe

Example: A container must have a certain capacity. Should it be
made of tin or with tin tops and cardboard si.=s7 Which is more

economical? Which shape, cubic, cylindrical or rectangular? ZEtc.

The Sphere (WST)

(4d) (1) Start with The Earth as representation of the sphere.
Use parts of MJH, Vol. 2, Part 1I, pp. 511-529.

Experiment: Take a bowling ball -- hopefully, an eighth grader can
get one -- and saw it in half. Put two nails in, as shown in diagram.

Get a ball of heavy string.

1. PFirst: Tie the string at A and wind
around without slipping, until the
total hemisphere is covered. Mark the
end of the string by a knot.

Next, take 2 guess: how much of the

string used above will be needed to

cover the interior of circle B?
Write your guess on a piece of

paper.

2. WNow tie, as before at A, the
string at B and carefully cover
the circular region. How much of
the string used in 1 did you use
this time? How does your guess

compare with the experiment?

o -310-
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Students may be able and willing to try the experiment with some

nther spherical object. There is hope that the result will be

close to: the surface of the hemisphere is twice that of the

circular reglon or

)

SH sphere = 2nr"

2

or ] sphere = Urr

(3) Volume of sphere.
TUse 12-5, MJH, Vol. 2, Part II, pp. 53317,
OR:

The volume of the sphere can be though of as the sum of the
volume of a very large number, n, of pyramids (cones), whose
vertices are all at the center of the sphere. And as n—eo,

h—=r, B-— 3 amall part of &, and the sums B--3.

1
L.o= = T
prramid 3 o

Sum of all volumes of pyramids,

V ==2=h (B, + B, + ... B)

p 30 (1T n
o B _
As n-scw - L r ¢ Uxr
] 4 sphere 3 °
- L 3
V = — nr
3

TLots of intuition needed! [See MJH, Vol. 2, Part IIL, pp. 533-544].
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GRADE 8 - CHAPTER 12

SPATIAL PERCEPTION AND LOCUS

Background:

countered before -- points, lines, planes, angles, triangles,
cireles, spheres, etc.
Purpose:

The= chapter is designed

l. to review and summarize the student's previous knowledge about

geometric figures and the relativnships between them,

na

to extend his intuition and to help him formulate more precisely

his insights into the relationships between geometric figures,

3. to introduce locus problems.

Plan:

The niaterial lends itself most easlily to class discussion and
exploration. For this reason writing a chapter that looks interesting
on paper may not be easy. It may be that the best solution is to have
short introductory statements followed by sequences of leading ques-
tions. The important writing for the chapter would be the Teacher's
Commentary. This should contain suggestions for introducing the
questions by situations which would catech the student's attention,
suggestions for possible ways to guide the discussion, to provoke the
appropriate guestions, and to use the answers that come from the stu-

dents to develop the kind of understanding which is being aimed at.
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In the first section the aim is to encourage the student to specu-
late about possible relative positions of a fixed number of points, a
fixed number of lines, a fixed number of planes, a given number of
lines and planes, ete. In the second section the aim iz to let the
student establish for himself that there is a smallest number of
pointe which "determine” a line, a plane, 3-space and to find the re-
strictions which must be placed on them so that the statements hold;
similar questions f.r geometric figures such as triangle, angle,
cirele, ete. Finally in the third section the aim is to let the stu-
dent find the set of points which satisfy various geometric conditions.
The idea is to pull together and sum up the student's knowledge, ex-
perience and intuition about geometric figures in space and their re-
lationships with each other, aad to éxtend these to situations he has

not yet met.

12-1. Relationships between two or more given point sets:

1. Two point sets.

(a) Two points.
What is the shortest path between two points W and S on
the teacher’s desk? Is there a different path just as short?

What is the shortest path between New York and San Francisco?

Is there more than one pgth with this length?
How good a model of the surface of the earth is a plane?
A sphere?
(b) Two lines.
Do two lines always lie in a plane? How many planes?

Suppose two cars are traveling on straight roads, one leading
northeast and the other due north. Will there be a junection

where the cars can switech roads?

Do two lines always have a point in common? If they are in

the same plane?



If two lines have & polint in common, can they have more than
one?
(c¢) Two planes.
Do two planes always meel? ” they do meet how many points
do they have in common?
2. Three point sets.
(a) Three points.

Is there line containing all three points? More than one?

Is there a plane containing all three points? How many such

jul

planes?
(b) Three lines.

Given three lines, do they always have a point in common? Do
at least two of them have a point in common? More than one

point in common?

I SHAAL A

(¢) Three planes. (See Int. Math. pp- 433-35)
3., Points and lines.

4, Lines and planes.

l2-2. Using a point set to evolve another point set.

1. Points
How many points ecan you pick arbitrarily if they are to lie on a
line?
How many points can you pick arbitrarily 1f they are to lie in the
same plane?
How many points can you pick arbitrarily if they are to lie in

3-apace?
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Given three points, how many triangles can you form which have
these polints as vertices? Two of these points as vertices and the
other a point on the triangle not a vertex?, etc.

Given three points, can you find a circle which contains these
three points on its perimeter? Is there more than one such circle?
How many?

Given three points, can you find an ai1gle which conlains them?
How many such angles? If one point is the vertex of the angle, how

many angles contain the three points?

The preceding gquestions are designed to indicate the ideas which
are aimed at in this section. It is hoped that the authors will have
imagination and couch the guestions in more imaginative ways; e.g.,
will a three legged stool placed on a smooth floor rock? Why do four-

legged tables always seem to rock?

12-3. Sets of points meeting given conditions:

(The aim of this section is to introduce locus problems and to
sez that the problem is considered in one, two, and three dimensions

whenever feasible.)

A treasure is buried on a deserted island. The treasure map says
that the treasure chest will be found at the same distance from each of
two tall trees 500 yards from the beach. Where should we dig for the
treasure?

Concoct other problems which ask for the set of points:

(a) at a fixed distance from a circle.

(p) at a fixed distance from a line segment.
(¢) at a fixed distance from a line.

(d) equidistant from a circle.

(e) equidistant from the sides of an angle.

(f) equidistant from the vertices of a triangle, etc.



GRADE 8 - CHAPTER 12
SYSTEMS OF EQUATIONS IN TWO VARIABLES

(See Ch. 15 FCA; Ch. 22 PFCA-h; Ch. 7 Int. Math.)

Background:
Graphs of linear egquations.
Solution sets of equations and inequalities.
Graphical sclution of systems of equations.

Graphs of simple inequalities, involving strips and half planes.

Purpaose:

l. To extend the definition of solutions sets to systems of
equations and systems of inequalities.

2. To Tormulate the concept of equivalent systems and introduce
the method of linear combinations for arriving at algebraic
solutions.

3. To examine various cases of systems of equations and their
graphical interpretation =- inconsistent, consistent, dependent;

parallel, coinciding, and intersecting lines.

h, Extend work with systems of inequalities to general linear
inequalities and to regions bounded by several straight lines,
in preparation for finding convex regions in elementary linear

programming problems.

NOTE: We have left locus problems (intuitive geometric notions about
point sets in the plane and in 3-space) for a short Chapter 12.




13-1. Solution sets of systems of eguations and inegualities:

L. Review definition of wolution set of ar egquation or inequality.

2. Define solution set for systems of equations and inegualities.
Give examples in which the solution set contains no ordered
pairs, 1 ordered pair, infinitely many; e.g.,

2%ty =5, 2%ty =5, 2x +y = 5,
2x + y -2. 2x -y = 5, 6x + 3y = 15.

i

il

At this point the solution sefts are to be found by examining

the graphs.

13-2, Equivalent equations and equivalent systems of equations:

1. Two equations or two systems of eguations are equlvalent if they
have the same solution sets.

2. If an eguation in a system of equations is replaced by an equiva-
lent equatica the resulting system is equivalent to the original
system.

3. Linear combination of left members of two equations (when right
member is zero) used to construct simpler equivalent system of

equations.
(See Int. Math. Ch. 7, pp. 374-81; also FCA Ch. 15, pp. L4L68-L8L)

Example: (Pox -y -5 = 0,
ix—3y+5;0-

First replace 2x -y - 5 0 by a(2x =y - 5) +(x - 3y +5) =
a.

The appropriate one is a = =-3. The

for an appropriate

resulting equivalent system is

-5x + 20 = 0,

I

L x-3y+5=o0.

Now replace x - 3y +5 =0 by a(-5x + 20) + b(x - 3y +5) = 0.
One might choose a = L. and b = 1 or one might take a = 1

5
and b = 5.
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We eveniually get the eguivalent system!

= Uk,
33

A
24
[

,.__
o
1

for which the solution set is clearly {(L4,:)].

1. EReview of graphle solution.

2. Graphical interpretation of linear combinatior. and solution sets.
Family of lines through a point.
A look at the possible cases:

Ll and Lg the same line ¥+ y =2,
2x + 2y = L,
L1 and LE parallel; x+ y =2,
2x + 2y = -5.

L. and L intersect in a single points:
x +y =2,
Ke - y = LL -

13-4. Graphical Solution of Systems of Inequalities:
(See FCA pp. 485-492)

Many examples of increasing difficulty and complexity; e.g.,

1. 'y < x, 3. 2x + 3y <1, 5. 2x +y > 2,
x > 2. X - y =2, x +y <1,
X = 3.
2. [ly] <=, b fex + 3y <2, 6. x+y <5,
L[xl < 1. igx + 3y > 0. y < 3x +h,
y < -x+h.
-318-
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3-2. Applications:

1. Find several word problems which really need ti o variables o
state the conditions. There are some in Chapter 4 on Problem
Analysis (see Section 2.9, No. 15 and No. 26, alsc Section
3.5, No. 9). Devise a number of these which may best be solved
algebraically to show the usefulness and power of the methods
given egarlier in this chapter,

2. Perhaps this iz a good time to have a modest discussion of
mathematical models as the way in which mathematics is useful
in solving problems which arisze in the real world.

3. Then a1 modest introduction to linear programming by means of
several examples will use the techniques of Section 13-4 to
find the convex region over which we wish to maximize a certain
functivn of two variables.

(1) The exampl= given in Problem 7 of Appendix C of the Report
of the Modeling Committee 1z a good introduction.

(2) Diet problems, pruduction problems, etc., will illustrate
the usefulness of this idea in many different contemporary
business situations.

[Eor an exposition appropriate for Junior High and as a source of

problems at this level, see Chapter 7, pp. 212-222 of Some Lessons

in Mathemstics, Edited by T. J. Fletcher, Cambridge University Press,

1965. ]
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CONTENTS OF GRADE 9

Exponents, Logarithms, Slide Rule

Laws of exponents (integral exponents)

An exponential function, namely f : n - 2R

Graph of n — 20 for -l <n <5

Extend table and use for computation with numbers as
puwers of 2

Extend laws to include rational exponents

Computation Usir,z Powers of 10

Construct table of powers of 10, as in Cambridge Report
Computations with numbers as powers of 10

Introduction of Log Notation

Motivate as a siupler notation - re-do table in this form

> Computation practice

S5lide Rule Construction and Use

A simple slide rule for addition and subtraction
Construction of a slide rule for multiplications, using
logs

Use of a commercial slide rule

Exponential and Logasrithmic Functions

Compare y = ax and x = 1ogS

¢ and L : x = log .
X

Graphs of f : x =2

3 Applications of exponential functions

Transformations

Sretion

Rigid Motions and Reflections

Frojection

Composition of Transformation

Congruence as an Isometric Correspondence
Similarity as a Ratio-Preserving Correspondence

Further Work on Symmetries
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Chapter
- Systems of Gentences

[E=g m N

Chapter
Nothing available at this time

Chapter &  Measure Theory

Distance as a Functian

-
h
am

Section

Séction 2: Measure as 2 Funection

I
l_l
Iy
m
v}
[}
o+
g

2.2 Area
2.3 Volume
Section 3: Angle Measure as a Function
Section 4: Other Measures
b,1 Measurement of a circular arc by means of arc degrees
4.2 Area of a curved surface
Chapter é; Statlstics
Scetion 1
1.1 Organization of data - grouping, histograms
1.2 Continuous model of discrete situation
1.3 Computation - algorithms for mean, varliation, for
grouped data
Bection 2:
2.1 Estimstions of mean and vsriarce
2.2 Confidence intervals for mean
2.3 Chebyshevis Ineguality (WST)
Section 3:
3.1 Hypothesis testing: (Null hypothesis: quality control,

errors of first and second kind)
Section 4
4.1 Binomial Theorem
4.2 Normal distribution

4,3 Central, Limit Theorem
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Chapter T7: Deductive Reasoning

Section 1: Illustrations of Logical Relationship between Statements
1.1 Congruence and similarity for triangles
1.2 Similarity of triangles, congruence of two angles of each
1.3 bimilarity of triangles, congruence of one angle of each
1.4 In a triangle, unequal sides and unequal angles
1.5 For quadratic function, relation of positive discriminant

Section

Section

Chapter

and real zeros

1.6 Mcdians of trisngle, congruence, similarity
2 Suggestions for Geometry topics

2.1 Converse of Pythagorean Theorem

-2 Triangle inegquality

2.3 Standard results on quadrilateral

2.4 Cireles, chords, sccants

2.5 Areas of similar triangles proportional to squares of
lengths

3: TIllustrative Problems

3.1 The 30-60 right triangle, the isoscelecs right triangle

3.2 Bisector of angle and division of opposite side of
triangle

3.3 Failure of initial attempt at angle trisection

3.4 Geometric construction of harmonic mean

8: Vectors

Nothing available at this time

Chapter 9: Circular Functions
Section 1: Periodiec Motion
Z2: BSine and Cosine Functions
3: Domain and Range of Sine and Cosine Functions
4: The Tangent Function
5: Circular Bunctions and Angles
6: Radian Measure
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t: Functions of Angles
8: Results of the Definitions (in terms of positive and
negative)
9: Numerical Values of Functions in Any Quadrant
1C: Graphs of Functions
1l: Trigcnometry of the Right Triangle

12: An Alternative Suggestion

Chapter 10: Tangenc
Section 1: Circles #nd Linc Tangents

1.1 The tangent envelope of a circle

1.2 Lines tangent to a circle

1.3 Constructing tangents

1.4 Angles formed by tangents
Section 2: Tangent Lines and Planes in Two and Three Space
Seetion 3: Cirele and Line Tangencies Extended

3.1 The relationships of two circles

3.2 Common tangent to two circles

3.2 Three or more tangent circles
Section 4: Tangent Plane Curves and Tangent Curved Surfaces
Section 5: Tangent Envelcpes ’

5.1 The conics

5.2 Joining points on a circle

/ 5.3 Working in a coordinate system

5.4 Pursuit curves
Section 6: Line Tangents to Any Curve
Section 7: Line of Support

Chapter 11l: Measure

In progress - not complete at this time

Chapter 12: Complex Numbers
Nothing available at this time
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GRe ™. 9 - CHAPTER 1

EXPONENTS, LOGARITHMS, SLIDE RULE

Background Assumptions:

Properties and operations with resal numbers.
2. TFunction concept

3. Some knowledge of positive integral exponents and laws for multi-

plying and dividing powers of a given base.

Rationalie:

The laws of exponents for integral exponents will be developed,
and extended to ratiocnal exponents.

Computation ¥ » using exponents and with the slide rule will be
developed as a way of trading multiplication for addition. Develop-
ment of the idea of computing with powers of 2 will be followed by
the construction of & table for powers of 10 which approximate the
integers from 1 to 99, following the development in the Cambridge
report. Some experience in computation by powers of 10 will lead to
the introduction of logarithmic notation. 2% will be introduced as
the function F nAi=En, and the function concept will be used for
clarification wherever possible. The log function L : n-ﬁ-logg n will
be introduced and an intuitive feeling for the functions as inverses of
each other will be aimed at, but not formalized.

The table of powers of 10 (i.e., logs of the integers) will be
used to construct a "slide rule" on fﬁ -~ in. graph paper, from which
the manipulation of the slide rule to add and subtracct logs will be
explained. Having developed this understanding, the student should be

prepared to use a commercial slide rule effectively.
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Purpose:
1. To review and extend the meaning of exponeunts and operations with
exXxponents .

2. To introduce the logarithmic function by thinking of it intuitively

s the inverse of the exponential function.

3 To develop informaliy the laws of logarithms.

i, To develop a table of logarithms to base 10 flrst as powers of
10, and then as logarithms.

5, To provide experiences in computing, using addition of exponents

(i.e., logs) to replace multiplication of numbers, etc.

6. To develop understanding of the slide rule and how it operates.

Procedure:

Section 1. Laws of exponents (for integral exponents ) .

(See First Course in Alg=bra, Form-H, Chapter 1k)

Section 2. A1 exponential functiou, fg}rﬁ~¥*2n,

5.1 Construct a table of ordered pairs (n,2") for -4 <n <5, n

integral. Graph the points, and draw a smooth curve. Point out

n N (1! . - m
that for . =2 and ™27, n+n-=>2" -2 =2 s

2.2 Extend the table in both directions and use it to perform computa-

t1ions such as: 8 -128 = 23 .20 = 20 = 1004

(§%§(5lg) _ 2.9 2 2% L 16

=233 _ -6 _ 1
(2 7) = 2 = L

()7

2.3 Justify and develop 2" for n rational, and extend laws to
cover rational exponents. Find points such as 21/2 and 23/2

on the graph done in 2.1.
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)

.1

2/3 _ (91/3)2 = (22)1/3 as follows:

Justify and define Z =

ret  (21/3)2

Il
=3

Then A3 - (21/3)2 a(gl/3>2 ,(21/3)2
- 1(2Y/3)(2M3) (22311 (2Y/3) (21/3) (213
=22 =27 =)
Let (2213 _ g
Then B° = (22)1/3 (22)1/3 =(Eg)l/3
=27 =4
A3 i;§34~A =B
Hence we define 2273 = (2Y/3)2 - (z3)1/3,
Note that our law (2%)° = 22 nolds for x > 0;

2ction 3. Computation using powers of 10.

Construction of table of pov:rs of 10,

Point out that instead of powers of 2, as in 2.2, [ powers of 10
could be used for computation, which might be convenient since 10

iz the base of our number system. Construct a table of powers of

values as described 1

b

10, getting the preliminar;
report, Appendix B, pp. 73-T0.
E.c., 210 _ 1024
20 L 103
2 ~ 103/%0

(NOTE: In teacher's manual, explain a methcd of geitting corrected

values -- see Cambridge report).

Lr/s

- (Xr>l/s

in the Cambridge

It would probably be well to construct as class work powers of

10 corresponding to whole numbers from 1 to 20,

and

then

assign the rest of the whole numbers to 100 by groups, as home-

work.
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Use the table, just constructed, for simple computations, uslinx

scientific notation to get the "characteristic”.

Example 1: 160 x .07
160 = 16.0 x 10* = 1057299 . 10t
0.7 = 7 % 107t = lo,guq . 107t
160 x .07 = 102708k _ 1oh-08% ol 0y - 1ot - 110
Example 2: 262 = 1.4
o 262 ~ 26.0 x 10- = 107°¥3 x 10* = 102413
Lok o= 14,0 x 107 =10t s 107t = 100t
peo v 1.h o 102013, qo-lbd 2,269
_ lOla259 - 10%

~ 19 « 10 = 190

Example 3: (199)LL
129 ~ 13.0 X 1ot = 10%13 10t
(129)1* . lohﬁl@g . 101* _ lOBihf;Q
_ 1Q1_452 10!
~ 14 - 100 = 140,000,000

Section 4. Introduction of log notation:

.1 Since we are expressing positive numbers as approximate powers of
10, it would simplify matters if we had a shorter notation for
such a statement as, "The power of 10 which is about equal to

7 is .BLy".

Explain that there is! We can say "loglo 7 = 844"  or, more
briefly, "log 7 = .8L44".

Have the class rewrite the table made in 3.1 in thils more conven-

ient form, i.e.,
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n log n
1 .000
2 . 300
3 SHT5

cte.

4,2 Some practice in using this table.

Section 5. Slide Rule Construction and Use:

do addition and subtraction. This is trivial in itself, but leads
to question: '"Could a similar pair of numberlines, with logs of

numbers, be manipulated to add logs, thL multiplying the numbers?

5.2 Construct a siide rule, as follows:

(a) Using f; - inch graph paper and a table of lecrs, draw a line
as in A on the diagram. Line should be 10 irnches long,
with 10 inches as one unit. Below the line, assipn numbers
O, -1, .2, -.., L to the appropriate intervals. Above the

line, mark off log 1, log 1.1, log 1.2, cte., as shown.

(p) TUse ruler to transfer the points marked above line A tTo
line B, drop "lot" from label of each, and write both above
and below the line the numerals which indicate the numbers
whose logs corresponds to the coordinates of the points on the
numberline originally set up in A. This corresponds to the

C and D scales in a slide rule.

(¢) Line C could be marked as Linc A, in 6.1, except that 5"
would he the unit. This would give scales corresponding to

the A and B scales on the slide rule.

5.3 Use of commercial slide-rule -- show briefly the essentials --

skill will depend upon amount of practicing the student does.
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Section 6. Exzonentizl and logarithmic

Tunctions:

Discuss y = a and x = log ¥y
S
a
E D gy R N
5.2 Grzph f : 2 and

L+ x == log_ x oOn same axes.
[

Point out symmetry with respect t~

Functions, Chapter k)

Bacterial growth, pp. 146-147
Law of coding, p. 186
Healing oi wounds, p. 180

Radiocsctive decay, pp. 10L-10Z2
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GRADE 9@ - CHAPTER 2

TRANSFORMATIONS

Background:

There are many concepts already introduced which are summarized and

used in this chapter. Here is a list of the most important ones:
1. Translations, rotations and reflections
2. PBtretches and contractions
3. Vectors; composition of vectors
4, Coordinates in 2 and 3 space

. Parallel a' 4 perpendicular lines and planas
» Distance, length, congruence

Similarity

o~ o

Symmetries of polygons and polyhedra

This shows the great potential of this chapter to intesrate many

ideas from the past learnings of the students.

PurEose:

The purposes of this chapter are as follows:

M—J\

To combine previous ideas concerning specific transformations and
reach the generalization of a rigid motion.

nJ

To relate certain, speclal examples of transformations to their

form in analytic geometryv.

3. To discuss parallel and perpendicular projections of a line on a
line, and of a plane on a plane.

4, To consider the projection of a point onto a line or unto a plane

as a furnction; and to extend this to the projection of any geometric

figvre onto a line or onto a plane.




5. To »eronsider stretches and contracztions from the newer viewpoint

i

of tranasformations even though they were introduced earlier in
connection with similarity.

6. To present general definitions of both congruence and similarity
which will apply to any geometric figures.

7. To advance the ideas of symmetries of polygons along the road to-
ward the concept of groups of transformations.

8. To connect the static idea of svmmetry with the dynamic idea of
reflection and rotation.
Rationale:

The concept of transformation is basic in mathematics. But, as is

true with all such baslc ideas, it shoul’ e discussed only after stu-
dents have had much experience with special cases of transformations.
By the time Lils chapter is reached there scems to be enough of this
background to summarize and to generalize. So we begin to express the
beginning ideas of transformation in a slightly more abstract way .

Since there is a great deal in common in the ideas of transformation

and function, it is suggested that the writers try to capitalize on
these similarities as much as they can.

A sccond objective is to review and strengthen previous ideas as
well as to generalize. Such an obJective needs neither explanation nor
excuse.

Finally, the possible future extension of the ideas which appear
in this chapter is obvious if one considers the analytic definitions

of transformations in a plane and in space.

Section 9-1. Rigid motions and reflections:

1.1 Relate transformations to previous idea of vectors; connect trans-

lations with new idea of directed line segments.
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1.3

1.k

1.6

-
—

Discuss only the following analytic geometry representations of
translations;

(a) 1In l-space: f(x) = O-=f(x -h) =0
(b) 1In 2-space: f(x,y) = 0=f(x - h,y - k) =0
(¢) In 3-space: f(x,y,z) = O=+f(x - h,y - k,z - m) =0

Rotations in 2-space about a point; in analytic geometry discuss
only the following representations of such rotations:

(&) In polar coordinates: p = f(@)-#p = f(6 - )

(v) 1In Cartesian coordinates; Just rotations of QOD and its

multiples.
Rotations in 3-space about lines.

Reflections in a point; symmetric taken to mean that a figure is
its own reflection; in analytic geometry discuss only the follow-

ing:

0

In l-space: f(x) = Q< f(~x)

(a)
(b) 1In 2-space: f(x,y) = O=s=f(-x,-y) =0
(c) Qo f(-x,-y,-2) = 0

In 3-space: f£(x,y,z)

Reflections in a line; symmetric taken to mean that a figure is
its own reflection; in analytic geometry discuss only the follow-
ing:

(a) 1In 2-space: f(x,y) = O=mf(-x,y) = 0, etec.

0, etc.

(b) 1In 3-space: f(x,y,z) = O=awf(-x,-y,z)

Reflections in a plane; symmetric taken to mean that a figure is

its own reflection; in analytic geometry discuss the following:

(a) In 3-space: f(x,y,z) = O-ewf(-x,y,z) =0, etc.
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Typlcal Exercises:

1. Point P has coordinates (2,-3), find the coordinates of PQO?

Pl?oﬁ PETDj nggj which ari thé éeaultig regpect;vily, of rotating
P about the origin of 90, 180, 270, and 360 .

2. A translation moves P(3,4) to P'(5,2). Where does Q(-4,6) go
with the same translation?
3, The translation x' =x + 3 on a line moves P(5) to P' and
Q(7) "o @Q'. What are the coordinates of P' and Q'? Compute
PQ and P'Q' and compare them.
4}{;;:}{"’2
4, The translation .{ in 2-space moves P(igl) to P,
"yl =y -3
and Q(-3,4) to Q'. What are the coordinates of P' and Q'?

Compute PQ and P'Q' and compare.

5., How far is each point in space moved by the translation which

moves (3,5,6) to (L4,7,-2)7

6. In l-space, which of the following graphs are symmetric in the

origin?

(a) x+3 =0 (e) x <3

(b) x| =5 (£)  |x] <3

(c) x° =16 (8) [x-2]>3
(@) |x+ 3] =2

7. In 2-space, which of the following graphs are symmetric in the
origin? Which in the x-axis? Which in the y-axis?

(8) y =x° (¢) % +y° =1

(b) xy =12 () x+y=5

L , . 3 > 2 2 .
8. In 3-space, is the graph of x> + vy + 2" =16 symmetric in the

origin? In what lines and planes is it symmetric?
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ion 2. Projection:

| o

2.1 Parallel projections of spare; equivalent to translations and
vectors .

2,2 In 2-space, parallel projections from line to line; use both
parallel lines and intersecting lines,.

2.3 In 3-space, parallel projections from plane to plane; use both
parallel planes and intersecting planes.

2.4 Central projections of space; egquivalent to stretches and contrac-
tions.

2.5 1In 2-space, central projection from line %o line; use both parallel
lines and intersecting lines.

2.6 In 3-space, central projection from plane to plane; use both
parallel planes and intersecting planes.

2.7 In Z2-space, perpendicular projection of point on line as function;
the projection on a line of a point, a segment, a geometric figure.

2.8 1In 3-space, perpendicular v ojection of point on plane as function;
the projection on a plane of a point, a segment, a region, a geo-
metric figure,

The following diagrams will be helpful in connection with the foregoing

topilcs. Fach dilagram has the topic numbers heside it to which it

pertains.

W]
.
!

2.1

P
o
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Typical Exercises:

1. Consider the projection parallel
to the direction d. Copy the
figure and mark P' and Q', the
projections of P and @, respec-

tivelly, from line a +to line D.
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2.

3.
L,

a and b are intersecting lines.
Copy this figure and mark P' and

Q' the central projection (with

center 0) from a to b of P —
f

and Q.

Is the projection of a triangle onto a plane always a trdangle?

A segment has length 5", What can you say about the length of

its projection onto a given plane?

Section 3. Composition of transformations:

3.1
3.2

Composition of two translations.

Composition of two rotations about point in 2-space; or about
line in 3-space.

Composition of 2 reflections in 2-space in two parallel lines;
in 2-space in 2 intersecting lines; in 3-space in 2 parallel
planes; in 3-space in 2 intersecting planes.,

Rigid motions as composition of translations and rotations; com-
position of rigid moticus.

Composition of sitretches and contractions with rigid motions and

reflections.

Typlecal Exercises:

ld

Point P is first reflected 1n line a +o get P': then P?
is reflected in line b to get P'. Mark P' and P" for

eacn of these situations:

(v)




Consider the translation wsgssgsgf

2nd the rotation

about 0. P 1is carried to P!

by the translation, themn P' 1ds
carried to F" by the rotation.
Copy the figure and mark the posi-
tions of P' and P".

On the same diagram as 2 first carry P +to Q' by the rota-
tion, and then carry Q' to Q' by the translation. Is P"

the game as Q"7

Invent a combination of transformations that will carry triangle

ABC into triangle A'B'C' for each of the following casess

(5) CC) Bt

A > B o -
or Af
(b) (a)
B B
L
A ¢ B! A
G!
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Section k.

C

Rt

Congruence =s an isometric correspondence:

A

k.1 Show that congruence can be thought of as d .distance preserving

correspondence.

Typical Exercise:

1. We are given triangle ABC and

A'B!'C' with this correspondence

of points set up:

A
X £(X)
A A
B B!
c_ __¢
X £ AB X' £ ATB' so that A'X' = AX
X e BC X' & B'C' so that B'X' = BX
X & AC X' & A'C' s0 that C'X' = CX
Prove that AMABC = AM'B'C' by proving that if X and Y
points of AABC, then X'Y' = XY for all X and Y.
o - -3h1-
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Section 5. Similariuy as a ratic preserving correspondence:

Z-1 ©Show that similarity can bs thought of as a ratioc preserving

.2 Demonstrate similarity cof odd shaped 2-dimensional and 3I-dimen-

5.3 Discuse similarity as composition of congruences and stretches

and contractions.

o

[y
=

e
r—l
0]

H

\b_.l.
0:-+'
e

5.4 Discuss congruence as special case of similarity, or

as a generalization of congruence.
5.5 ©B&licing similar polygons intc similar triangles.

5.6 Similar tetrahedrons, pyramids and primes; all cubes are gimilar;

all regular tetrahedrons are similar.

5.7 Similar c¢ylinders, cones and spheres; all spheres are similar

Typical Exercises:

L. Find three ways of draving a figure similar to each of these, but

twice the size in esch linear dimension.

O
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We wish to slice a polygeon into triangles so that the vertices of
~he triangles are a subset of the vertices of the polygon. In
each of the following exercises one figure has beern out into such
triangles. Discover how many different ways the other, similar
figure can be cut into triangles so that they are respectively

similar to the triangles in the first figure.

(a) (e)

(b) (d)

regular pentagons

Section 6. Further work on symmetries:

6.1

6.3

Review symmetries of isosceles triangle, non-square rectangle,
equilateral triangle and square (See Grade 8, Chapter 10,

"Parallels and Perpendiculars", Section 5.4 through 5.7).

Make tables of compositions of transformstions of these figures
into themselves. Note that the order above is in the order of
increasing difficulty. Make clear whether rules allow flips to
the other side or not; first do without flips and then with them.
Consider properties common to the tables of 6.2 in order to dis-
cuss the properties of a group; relate to other groups: modular

number systems, operations with numbers.
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6.4 Transformations of a cube into itself, of a tetrahedron into
itself; probably n>t continued to the composition of the trans-

forme i 's.

Typical Exercise:

The usual approach to symmetries is by way of ggziqg§rireflec;
tions, spin: flips) which "leave the figure unchanged". It iz now
slightly more abstract method. We will remove the need for motion.
The following exercise shows what this means.

1. You have two objects: =a board with a hole in it, and a block of
wood which will fit into the hole. First let us consider that

both the hole and the block are equilatersl triangles:

B C

On both the block and around the hole are painted letters to
identify the vertices. The letters appear on both sides of the
block. In how many ways can the block be placed in the hole?
List these ways.

Note: The answer might begin like this:

Tdentification Next to vertex
of way A B C
T | A B c
e A C B
3 B A C etc.
-3kh -
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Then a composition of "substitu- 1 2 3”ﬂ47 5 76
tions" might . »ad to a table of 17 iir* 3 4 5 6
operations which could start 212
like this: 213

I !

515

616 etc.

The purpose of the exercise is to point in the direction of
permutation groups. It 1s interesting to students that all
permutations of ABC appear in this equilateral triangle

problem, but not all permutations of ABCD are used when we

do the corresponding problem for a square.



Condensed Cutline:

Measure theory (descriptive and semiformal).
Subdivisinility, additivity, invarlance under congruernce.

Application to length, angle, area, volume.

Chapter 5 serves as an interlude in the development of an apprecia-
tion for numbers as used in geometry. The student has been exposed to
virtually all the traditional formulas for mensuration of geometrical
figures, so many that he may have lost a perspective on the basic
prineciples. In general each of these formulas has been accorded a
Justification appropriate to the student's level when it was iatro-
duced. Now is an opportunity to pause and survey the accomplishments
spread over several years, examining from a considerably more mature
viewpoint the fundamental ldeas without paying attention to the multi-
tude of detailed consequences of the basic principles. Customarily a
chapter listing the "postulated' for this portion of geometry includes
a long list of derived results that may permit the student to feel
security in the details without grasping fully the principles; we have
selected toc build an entire chapter on cthe fundamentals so that their

importance will not be underestimated.

What to accomplish?

What are the fundamental properties of measure?
Sometimes we measure how far apart two figures are, sometimes how

big a figure is.

6
n
Y




(e)

In the first cauvegory, we talk about how far apart for two
points, two parallel lines, a line and a point, two parallel
planes, etc. All these are distances. Review that the hasic
icea is the distance between a pair of points, since the other
applications are obtained from i" together with the notion of
a minimum., What i1s distance? How is distance related to

other aspects of geometry?

In the second category, we use different words (length, aresa,
volume) in describing how big a figure is, depending on
whether the figure is one-dimensional, two-dimensional, or
three-dimensional. All of these can be collected under the
heading of "measure". In the one-dimernsional case we begin
oy discussing the length of a "straight" figure, a segment.
We extend tc figures that are not straight, but are composed
of straight pieces (perimeter of polygon, or length of poly-
gonal path) and later we extend to length of curve. In the
two-dimensional case we begin with the area of a very simple
figure, a rectangular region, a region with a simple type of
boundary. We extend to other regions whose boundaries are
composed of straight pieces and eventually are able to con-
sider regions enclosed by curves. An analogous discussion
applies in three dimensions. In any of these cases, with
what do we begin as fundamental? How do we do the exten-
sions? Just what is a meapuret How is it related to other
agpects of geometry? Is there a relation between measure and

distance?

A third category, not mentioned above, concerns angles. From
one viewpoint, the measure of an angle may be thought of as
telling how big the angular region is, and thus belongs to
category (b). But from another viewpoint the measure of an
argle may be thought of as telling how far apart the sides of

the angle are, how far apart in the sense of rotation, and
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thus belongs to category (a). So angle measurement has a
some “hat special role. Just what properties does 1t have

of one type, and what of the other type?

After posing the above questions, we try to agree on some answers.

Distance

—

First, distance 1s a function. Each (unordered) pair of points

in space belongs to the domain; the range is a set of nonnega-
tive numbers.
Second, the image of a pair of distinect points is a positive number.

(The image of each pair of coincident points is zero.)

Third, if A, 3, C are any points, then d(A,C) is equal to or
is less than d(A,B) + d(B,C) according as B is or is not a
point that is (collinear with and) between A and C.

Tne first two properties emphasize what distance is, while the

third relates distance to other aspects of geonetry.
Measure
(a) Length

First, measure is a function. Its range is a set of non-
negative numbers. Its domain consists of various one-dimen-
sional sets; among these are all segments, all polygons, all
circles, and (intuitively) various other sets that WST we

do not identify fully.

Second, the measure of a segment is the same number as the

Third, a set congruent to a measureable set is also measurable
and the measures are the same.

Fourth, the unian of finitely many measurable sets, no two of
which "overlap", is measurable and its measure is the sum of

the measures of the individual sets.
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(b)

4

Tread extremely lightly on the possibiliiy of a set without

|

measure, but leave the door open.

The first property emphasizes what length is. The second
identifies that the starting place for a development is

the measure of a segment and also ties together the notions
of measure and distance. The third property relates measure
to the congruence idea. Whereas the second property asso-
cilates distance with measure for segments, the fourth pro-
perty permits extension of this association by conéidering
the measure of a polygonal path (or polygon).

We mention a fifth property that helps us in describing the
concept of length of a curve. Thus far you have had only
one or two opportunities to apply this property, although
it will be used extensively in your later mathematics.

We shall not formulate it as carefully as we do the others

because we do not have enough mathematical background.

Fifth, if a measurable set 1s a good enough approximation
to another measurable set, then the measures are approximately

the same.

Our difficulty in -ormulating this property 1s the vagueness
stout an approximation being "good enough'.

Ares

First, area is a function. Its range is a set of nonnegative
numbers. Its domaln consists of various two-dimensional sets;
among these are all rectangular reglons (that is, two-dimen-
§ional intervals), all convex (bounded) polygonal regions, all
circular discs, and (intuitive) various other sets that ' WST
we do not identify fully.

Second, the measure of a rectangular region is the product of
the measures of segments forming two sides of its boundary

with a common endpoint.
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Third, a set congruent to a measurable set is also measurable

and the measures are the same.

Fourth, ths union of finitely many measurable sets, no two

of which "overlap', is measurable and its measure is the

F'ifth, if a measurable sect is a good enough approximation to
another measurable set, then the measures are approximately

the same.

The first property emphasizes what area is. The second iden-
tifies that the starting place for a development is the mea-
sure of an interval and also ties together the notions of
area with Length and hence with distance. The third, fourth,
fifth properties are copies of the corresponding ones for

length.
Volume

First, volume is a function. Its range is a set of nonnega-
tive numbers. Its domain consists of various three-dimen-
sional sets; among these are all rectangular parallelepipedal
regions (that is, three-dimensional intervals), all convex
(bounded) polyhedral regions, all sphzrical balls, and
(intuitively) various other sets that WST we do not

identify fully.

Second, the measure of an interval is the product of the
measures of segments forming three sides of its boundary with
a comron endpoint.

Third, a set congruent to a measurable set is also measurable
and the measures are the same.

Fourth, the union of finitely many measurable sets, no two

of which "overlap", is measurable and its measure is the sum

of the measures of the individual sets.
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Fifth, if a measurable set i1s a good enough approximation to
another measurable set, then the measures are approximately

the same.

The comments on these properties are the analogs of the re-
marks on area, The fact that most of the features of mea-
sure are the same for all dimensionalities should now be
clear.

3. Angle measure

First, measure is a function. Its domain is the set of all
angles. Its range consists of real numbers between O and c,
for some appropriately chosen positive number ¢. In degree mea-
sure c¢ = 180, while in other scheres ¢ may be another positive

number,
Second, two congruent angles have the same measure.

Third, if B 1lies in the interior of /ZAVC, then
m ZAVB + m £(BVC = m ZAVC.

4, Other measures

(a) An example of a derived measure is the measurement of a
circular arc by means of arc degrees, where this assign-
meut iz based on the measure of the central angle and the

issue of whether the arc is a major arc or a minor arc.

(b) Another measure is illustrated by the area of a curved
surface, a topic we prefer to throw open for theoretical

considerstion to the best students only.

The entire body of material in Rationale should be brought into
focus. Many applications of the ldeas have been used during the past
few years on the student's training on some sort of basis. The more
important of these should be reviewed in order to assist in formula-
ting the principles. (Examples include the area of a triangular re-
gion as half the area of the interior of a corresponding parallelogram,

b

b
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or the volume enclosed by a tetrahedron as one-sixth the volume of the
interior of a corresponding prism, or the length of a circle as being
approximated by the length of a polygon, or every regular hexagon with

side of a given length as the same area for the enclosed region.,)

After the principlez have been formulated and have been further
illustrated by known examples, further knowledge should be stimulated

about such guesticons as:

(a) the length of a curve such as the boundary of a normal
window,

(v) the shortest polygonal path that passes through specified
points,

(c) the perimeter of spherical triangle (of simple type),

(d) the area of the interior of an ellipse -- exploratory and
intuitivel,

(e) the volume of a doughnut -- exploratory and intuitive!

The long-range forward look is toward the measure ideas treated

in the calculus. Tie-in strongly with probability notions also!
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GRADE 9 - CHAPTER 7

DEDUCTIVE REASONING

This chapter in Grade 9 was formerly listed by the Geometry

Committee under the title "Triangles: Deductive Treatment' .

Purpose (in brief): To give an elementary approach to deduc-
tive reasoning, in preparation for the more serious level of

rigor at Grade 10.
Goals (in more detail):

(1) An introduction to the notions of axiom, definition,
theorem, proof.

(2) The nature of "if ..., then ...",

(3) Distinction between a conditional statement and its con-
verse.

(4) Practice with contrapositives (WST: engugh practice so
that the very top-notch student may discover for himself
that a contrapositive is logically equivalent to the
original).

(5) Proofs by elimination of all but one alternative (as one
type of "indirect" proof).

(6) - Proof by one example: often used to accomplish a disproof
by counterexample.

Subject matter (in summary): Select material from algebra and

from the synthetlc study of geometry, especially designed to

meet the above goals. Although part of the material may be
familiar to the student from an informal approach, a significant

portion should be new.

A few illustrations of the logical relaticnshibrbetween statements:

3583-



(2)

(3)

(1)

(5)

37

It two uriangles are congruent, then they are similar. Irf
two triangles are similar, then they are congruent. If two

triangles are not similar, then they are not congruent.

If two triangles are similar, then two angles of one tri-

angle are congruent respectively to two angles of the othar
triangle. If two angles of one triangls are congruent res-
pectively to two angles of another triangle, then there is a

similarity of the one triangle onto the other,

If two triangles are szimilar, then one angle of ‘gne triangle
and one angle of the other triangle are congruent to each
other., If one angle of one triangle and one angle of another

triangle are congruent, then the triangles are similar.

Accepting that "In a triangle the angle opposite the longer
of two sides has a greater measure than the angle opposite
the shorter side”, deduce that "In a triangle the side oppo-
site the larger of two angles is longer than the side oppo-
site the smaller angle".

If a guadratic function has a positive discriminant, then 'he
function has two (real) zeros. If a quadratic funetion has
two (real) zeros, then it has a positive discriminant. If a
function has two (real) zeros, then it is a guadratic function
with a positive discriminant.

Iwo medians of one triangle have lengths 20 and 12; two
medians of another triangle have lengths 16 and 10. Can
the two triangles be congruent? If so, how? Can they be

similar? If so, how? By more than one correspondence?
suggestions for geometry topics to be developed:
The converse of the Pythagofean theorem.

The triangle inequality (AB + BC > AC if A, B, C are
noncollinear). (Remark: Preparation for chapter on Vectors

later in Grade 9.)
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(3)

(%)

A treatment of standard results on quadrilaterals, extending

the student's knowledge attained in earlier grades.

A deductive chain of theorems concerning circles, their
chords and secants. (Remark: A later chapter in Grade 9

is entitled Tangency.)

Areas of similar triangles are proportional to the second
powers of the lengths of any two corresponding sides or any

two corresponding altitudes. (Remark: This is another steo
on the spiral to a more detailed study of areas and lengths

under similarity that is scheduled for a later chapter in

Grade 9.)

A few illustrative problems (perhaps illustrating the upper bound

on difficulty):

(1)

(3)

Concerning right triangles:
30-60-90 1if and only if hypotenuse is twice as long as one
leg; isosceles if and only if hypotenuse is V2 times as

long as one leg.

In a triangle the bisector of an angle separates the opposite
side into segments that are proportional to the adjacent

sides of the triangle.

Prove the failure of the initial attempt at angle trisection.

i N ] r1i
L N [/J - i

(4) Geometric construction of the harmonic mean (accompanied

by real world applications of the harmonic mean, not




GRADE 9 - CHAPTER 8

VECTORS

Outline Only

1. Abstract from displacement concept

2. Operations on vectors

3. Decomposition

4, Association (intuitive) of vectors with analytic geometry
5. Vector geometric proofs (simple)

>
6. Length of vectors




GRADE 9 -~ CHAPTER 9

CIRCULAR FUNCTICNS

Background Assumed:

1.

Basiec geometric concepts - angle, degree, properties of the right
triangle, relation of the measure of an arc to the measure of its
corresponding central angle, properties of the isoseeles right

triangle and the 30-60-90 degree triangle.

2. Coordinate systems in two dimensions.
3. Ability to work with radicals.
4, Ratio and proportion.
Purpose:
1. To introduce general definitions of the sine, aosine and tangent
funciions.,
2., To discuss some of the basic properties of these funections.
3. To introduce radian measure.
4, To derive numerical values of the above functions for the quad-
rantal angles and angles such as BDD, 135D} 300@, ete,
5. To define these functions for the coordinate free right triangle.
6. To solve simple verbal problems involving the right triangle.

Procedure:

l!

Periodic motion and its prevalence,

(a) succession of day and night
(b) change of seasons

(¢) passage of second hand on a watch over a specified point
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(d) spring

{e) +vibrating string
(£) cams (circular)
(g) pistons (ecircular)

Point out that all periodic motion has circular motion as a model,

of course, not necessarily uniform motion.

2. ©Sine and cosine functions.

Consgider the unit cirecle with circumference 2x. If we study the
motion of a point P as it moves along the circle in a counter-
clockwise direction, we can locate P exactly by knowing how far

it has traveled along the circle from the point (1,0).

X

e lav]

1,0)

The distance it has covered is the length of the arc from its
starting point to its stopping point. We shall regard motion in
a counter-clockwise direction as positive and motion in a clock-
wise direction as negative.

At every point in its progress, point P 1s associated with an
ordered pair of real numbers. We may say that the motion of P
defines a function f. With each arc length we associate an

ordered pair of real numbers (x’y)§ the coordinates of p, or

T : a#=(x,y)
where a 1is the distance traveled. Since i1t is inconvenient to
work with a function whose range is a set of ordered pairs and
since each coordinate is itself a function of a we define two

functions, as follows:
Cosine; a-s=x, where x 1s the ordinate of the point

determined by the distance.

-358-
ERIC - 353




the abscissza of the point

I

Sine: a -y, where y i
determined by the distance.
From the definition of the sine function it follows that this funec-
tion is periodic with a period of 2n. For every arc length of
2n  the correspondence of a and x is repeated.
A similar comment may be made with reference to the cosine func-

tion.

Domain and range of sine and cosine functions.

The sine function maps the arc length into the J
ordinate. The diagram shows this correspondence. ‘! 17
The domain of the function is the set of real il.l §HT}\
numbers since the arc length may represent any o
number of revolutions either in a positive or 7!—

a negative direction. The range of the func-
tion is -1 < sin & <1 since the ordinate

never exceeds 1, or falls below -1 (see

The cosine function maps the arc length into /ffff_

the abscissa. The diagram indicates thic

correspondence. The domain of the functic..

is the set of reml numbers since the arc

length may represent any number of revolu-
tions either in a positive or a negative
direction. The range of the function is
-1 € cos a <1 since the abscissa never
exceeds 1, or falls below -1 (see

diagram).

We now have the following results:
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cos O = corresponding to the

Y
/fffﬂ%‘\\ arc length O we have the
\\\ji (ljDfo absecissa 1,

cOs

WIE

- corresponding to the

e R T arc iength % we have the

K\\jiﬂ;g// abscizsa 0.

In a similar manner, we show diagrammaticelly that

cos ¥ = =1, cos %? =0, cos 2w =1

sin 0= 0, sin=z=1, sinx =0, sin

There is an alternative method of determining the domain and range

of the sine and cosine functions as follows:

y

For the arec length AP, or a,

sine a = PQ; cosine a = 0Q.
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In the right triangle OFQ,

)2 = ()2 + (pq)?

(op
1l = cosg a + sin =

An examination of this equation reveals that sin a < ]l] and

cos a < ]l

The tangent function.

Introduce the tangent function as follows:
tangent: aegsgj where x 1s the abscissa of the point
determined by the distance, a, and y is the ordinate
of the point determined by the distance, a.

As the diagram indicates, the tangent function is undefined when

, L T [ _—
the arc length is 5 or 5 - When v
the arc length is % or %? the ~]
ordinate is O. {ff

i Q/(ojl)

Circular functions and angles.

The circular functions are closely related to the funertions of
angles. In establishing degree measure, we can divide the eir-
cumference of the circle of unit radius into 360 equal arc
lengths and measure a central angle by the number of units of arc
length it includes. For example, if an angle includes % of the

circumference, or % units of length, we say that the measure of

= gin QQD =1, We

o=

the angle is % 4 36@6, or QODQ Thus sin
will soon define the sine, cosine, and tangent functions of

angles.
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Radian measure.

We introduce another unit for measuring angles, the radian.
In unequal cireles, arcs subtenc.ng equal angles Lave the same

ratio as the corresponding radii. In the figure below

S _O& _r . 8 _8'
S‘ﬂO—A—r;r r r!
1
If 8§ =r, +the ratio §,=:§¢:la
Ir r

If we select as a unit of measure of the central angle an arc
whose length is equal to the radius, we have & new unit of mea-
sure called the radian. This unit of angle measure is independent
of the length of the radius of the circle.
Since C = 2nr, an arc whose length is r ¢ n be laid off exactly
2n  times to complete one rotation. Thus, one complete rotation
requires 2m radians in radian measure, or 36@6 in degree mea-
sure. Hence,

o radians = 3607,
The following proportion may be used in converting from degrees to
radians, and vice versa:

number of degrees _ number of radians
360 - 2
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7. Functions of angle

An angle 1s said to be In standard position if, and only if, its

vertex is at the origin and its initial ray extends along the
positive x-axis. Every angle is
equivalent to one and only one

angle in standard position. 1f we
place an angle in standard position,
e.g., ZADOB, one of the angles
between the terminal ray and a ray

of the x-axis must be a positive — —

acute angle, or a right angle, or

zero. For any given angle 6 in

standard position and reference
angle is the smallest nonnegative
angle between the terminul ray of

& and either ray of the x-axis.

Consider any angle &, mnot an integral multiple of 900, placed
in standard position, with its terminal ray cutting the unit

cirecle at P.

gin 6 = ordinate of P
cos 6 = gbscissa of P
tan 8 = ordinate of P

gabscissa of P

If the angle 8, not an integral multiple of QQDE is placed in

standard position, and its terminal ray does not cut the unit
circle at P we define the functions as follows: P is any point
on the terminal ray.

ordinate of P

sin 0 = polar distance of P
cos 8 = abgclssa, D?,,P, -

polar distance of P
tan 6 = ogrdinate of P

abscissa of P
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That these two definitions are consistent may be seen from the

diagram belaw.

Since AOFQ ~ AOP'Q', the following ratios are egual.

PQ_EBQ
60 = Topr — sin @
oQ _ 0q' _
o° = o7 cos 8
FQ _ P'Q!
oq - oqr - tan 6
8. Results of Definition.
The results of the last section lead to the following conclu-
sions for functions of angles in the four quadrants
gin 8 - positive gin 8 - positive
cos @ - negatlve cos 8 - positive
tan 8 - negative tan @ = positive
gin @ - negative gin 8 - negative
cos @ - negative cos @ - positive
tan @ = positive tan 6 - negative
Exercises:
1. In whieh quadrants may the angle & terminate if
(a) tan & is negative.
(b) cos & 1is positive. _ ?P}
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In which quadrant does the angle @ terminate if
(a) sin ® 1is negative and cos @ is posi“ive.
(b) tan @ is positive and cos 8 is negative.

Find the values of cos €, and tan & 1if sin 8 = and @

R

is in guadrant IITI.

Numerical values of functions in any guadrant.

Review the properties of the 30-60-90 degree triangle and the
isosceles right triangle. Apply to such problems as the follow-
ing:

(a) Find the numerical value of cos 120°.

(b) Find the numerical value of tan (-1507).

(e) Solve the equaticn tan @ = 1, 6 in quadrant TII.

10. Graphs of functions.
The graph of y = sin 8 may be plotted from a table of wvalues.
ol it n| ojmlex|3n|5nf | Zn|5n|3n| 5ny 9n|ilx|
2 Gl | 31~ {3 T |8l " | B | |2 3|48~
Siﬂ e Q ‘65 !7 @9 1 59 57 QS O -a5 -ET -l -39 -il:(' §i5 C)
The periodicity of the curve may be observed when the curve is
extended for values of & greater than 21 and for negative
values of @.
y = cos X - Same treatment
y = tan x - Emphasize points of discontinuity
11. Trigonometry of the right triangle.

Definitions of the functions for 0° < 6 < 50° have been estab-
lished on the system of coordinates. Next, we redefine the func-
tions in terms of the sides of a right triangle (coordinate free)

emphasizing the consistency of the two definitions.
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Use these new definitions in the analysis and solution of a variety

of problems which can be found in any standard text.

NOTE.

It has been suggested that the above unit may not be fully
covered because of time limitations. Moreover, there is some
question as to whether so extensive a unit is necessary as part
of the background that all college-bound students should have at
this level. An alternative treatment, much shorter in scope and
in teaching time would start with the general definitions of the
functions restricted to quadrant I. The definitions can then be
applied to the fuuttions of acute angles of a coordinate free

right triangle.
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GRADE 9 - CHAPTER 10

TANGENCY

Purpose:

To develop and formalize the traditional line tangent to a

circle and circle tangent to a circle concepts.

To extend the intuitive concept of tangency for "straights”

and curves in both two and three space.
To develop a broader intuitive concept of lines tangent to a
curve through the use of tangent envelopes.

Background: yes

Rationale:
The rationale for much of the content in this chapter is

primarily explorative and thought provoking. It should present a

wide new range of extremely fertile ideas and provide some concrete
experience background for many of the ideas of analytic geometry,
differential calculus, and advanced geometries.

The ratdonale for placement of this chapter late in the 7-9
sequence is twofold: there 1s a relative maximum of mathematical
methods and background to be used and there will soon (10-12) be

further work of a more definitive nature with these ideas.

Section 1. Circles and line tangents.

1.1 The tangent envelope of a circle.

It is suggested that this idea be started with a paper folding

exercise in class:
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Exercise: Take a sheet of paper with a circle and its center
drawn. Fold the paper so that a point of the circle is on the
center. Repeat this process with many other polnts on the

circle.

Result: This will give some members of the tangent envelope of
the ~ircle that is concentric with the given circle and has a

radius that is one-half the given radius.

Center the written discussion on the idea that while no new
cirele is actually formed by this process (a polygon does evclve)g
there is a feeling for a circle. Perhaps have the students draw
that circle (with compasses). Discuss how the folds are related

to this new circle.

Exercises:

1. Give a circle with points indicated on the circle every

lOD@ Label the points 0O, 1, 2, ..., 35. Have the students

join the points by a mapping which is of the form:

n-sen + a (mod 36) where n 1s an integer,
0 <n <35 a is a parameter with
integral values.
Note: Students catch on to the modulus system quickly
through reference to the clock.

Example: n—+=n + 5




1.2

Could the students draw the determined cirele? Perhaps
several different examples might be given of this form.
Aside; n-=n + 6 (mod 36) gives the same result as

n-—en - 30 (mod 36). Would any student note this -- or
care?)

2. Give @ circle and a point exterior to the circle. Have the
student drawv many members of the family of lines through the
given point., Ask for some thought (and perhaps written dis-
cussion) about how these lines are related to the given
cirecle. Probably they can note: one line through the
center (hopefully not three points of intersection); .
many lines through two points of the circle but not the
center; two lines through exactly one point of the circle;

many lines that do not intersect the cilrcle.
Lines Tangent to a circle.
Define secant and line tangent to a circle.
Define point of tangency.

Property: A line tangent to a circle is perpendicular to the

radius drawn to the point of tangency.

1. How many lines tangent to a given cirgle can be drawn

through a given external point? Why?
2. .es through a given internal point? Why?
3. ... through a given point on the circle? Why?

4, TIf a line is perpendicular to a diameter at one of its end-
points, is the line tangent to the cirecle? Prove your
ansver.

Note: +they should be able to do this if the chapter on

deductive reasoning was successfull

5359_
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5. A point is & units from a circle of radius 5 units.
A line 1s drawn through the point tangent to the circle.
What i1g the distance from the given point to the point of

tangency?

6. A line tangent to a circle is drawn from a given point.
The distan~e between the given point and the point of
tangency is 8 and the radius of the circle is 5. What
is the distance of the given point from the center of the

cirecle? from the circle?

7. Draw a circle. Draw three lines that are tangent to the

circle such that no two of the lines are parallel. Describe

the resulting figure.

Note: +this problem mi_ 1t be repeated for 4, 5, ... lines.
8, Given: AB +tangent to circle O at B

H
AC tangent to cirele O at C

Prove: AB = AC
ﬁﬁﬁ bisects /BAC

e

9, Given: AB +tangent to circle at M

e B B

BC tangent to circle at N
]

0
0
AC tangent to cirecle O at P
AB =8, BC =7, AC =11

Find BM, BN, NC, CP, PA, AM
Note: This might be extended to a gquadrilateral ete.

10. Given- circle O with diameter AB

y AR at A m AB at B
L1 ;o om|

Prove: £ ||m




1.3 Constructing tangents.

Develop:

(1) construct a line tangent to a given circle at a point on
the cirecle.

(2) ... through a point external to the circle (note that
exactly Lwo are determined)

(3) Construct a circle inscribed in a given triangle.

(4) Construct the three excircles of a given triangle (the
excenter is the point of concurrency of the angle bi-
sectors of one interior angle and two exterior angles)

See Intro. to Geometry by Coxeter, Ipp. 1l-12.

(5) Construct some of the members of the family of circles

tangent to a given line at a given point on the line.

(6) Construct some of the members of the family of circles
tangent to a given line and through a given point not
on the line.
(7) Construct some of the members of the family of circles
tangent to each of the sides of a given angle.
Challenge Problem: The Nine Point Circle
See Coxeter pp. 18-19. 71
Note: +this is highly constructable but might it spoil . this
gold mine for later work?
1.4 Angles formed by tangents.

Should the measures of certain angles (tangent/chord, tangent/

secant, etc.) Dbe developed at this point?




Section 2. Tangent lines and planes in two and three space.

Short discussion of what is meant by "a line tangent to a curve”,
"a line tangent to a surface", and "a plane tangent to a surface".
Keep it light.

Exercises:

A set of highly intuitive, discussion provoking problems that re-

quire visualization and some verbalization. Might try such things as:

1. A line tangent to: a parabola; a sine curve; a tangent curve;

a given polynomial curve.

2. A line tangent to: a sphere; a conical surface; a cylindric
surface; a torus.

3. A plane tangent to: a sphere; a conical surface; a cylindric
surface; a torus.
Make these very open ended and provide help for the teacher in

the teachers manual as to method of handling and expectations.

Section 3. Circle and line tangencies extended:

3.1 The relationships of two circles.

Discussz all cases:

OO OO W © ©

Exercises: See SMSG Geometry Chapter 13.

3.2 Three on more tangent circles.
Develop relative to two different conditions: tangent by pairs

and all tangent at one point.




Exercises: ©See SMSG Geometry Chapter 13.
See also Coxeter Intro. to Geometry
Be sure to include families of tar -t cirecles and

conditions that lead to these.

Section 5; Tangent plane curves and tangent curved surfaces:

If this is handled WSTWSTWST, it might be guite interesting; e.g.,
two tangent sine curves. However, it might be too difficult to estab-
lish what is meant by "tangency" under such conditions. It should be
worth a try on a highly intuitive level -- just to assure that the

students have at least tried to think about such things.
Might consider such things as:
(a) two tangent parabolas at some point other than the vertices,

(b) a family of parabolas tangent at the vertices,

. ] . 2
(c) the family of curves of the form y = x n’ n Ejl
1 2 2
(a) y = i and x +y~ =1,

(e) +two tangent ellipses ... or families,
(f) +two tangent spheres ... or families,
(g) a cylinder tangent to a sphere (aha ... Mercator),

(h) a cone tangent to a sphere (aha ... Lambert).

Section 5. Tangent Envelopes:

Teaching note: do not have long discussions of these -- EXPLORE.,
Each sub-section (5.1,5.2,5.3) might easily be
done in one day. If the students get intrigued,
let them change the given conditions and see what

happens on their own.

5.1 The conics.
(a) Parabola: given a line and a point not on the line.
Fold the given point onto one point of the line.

Repeat for many other points of the line.




(b) Ellipse: Given a circle and a point interior to the circle.

Fold the given point onto one point of the cirecle.

Repeat for many other points of the circle.

(e¢) Hyperbola: Given a circle and a point exterior to the
circle. Fold the given point onto one point
of the circle. HRepeat for many other points of

the circle.
5.2 Joining points on a circle.
Several interesting "twists' can be put on Problem 1 of Section 1.1,

Example: n-e2n (mod 36)

- jﬂgiil"
2
,,,.1-3“"".

\ A }“é*..-&‘- “‘:” '..' 12
id.l“i!l!!’“iasié 1)

20 ~)
18
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Extension: n-s=an + b (mod 36)
Some students will really carry this a long way if
plenty of labeled circles are provided to help

minimize the ''busy work'.

5.3 Working in a co-ordinate system.

3
Problem: Consider the set of lines through (a ,%;) with slope
2
,5 a

Directions: Draw some of these lines using at least these values

- 3
» 25 eeey, 52 3.

PO

for a : -3, -

Teachers note: This gets the tangent envelope for the curve
whose equation is ¥y = x3 so it inecluded one
example of a line tangent to a curve at a point

of inflection. Don't let this be missed.
5.4 Pursuit Curves.

Note: Should these be included since the others have actually
been members of the tangent envelope to one curve under

consideration?

—
w
L

Dog who "re-zims" every 2 sec. is chasing a rabbit who runs
in a straight path.

" every second.

(b) Same rabbit but smarter dog -- he "re-aims
(¢) Rabbit who runs in a circle where the dog (who re-aims
every 2 sec.) is at the ceunter.

Section 6. Line tangents to any curve.

Work from the preceding tangent envelopes toward some understanding
of the tangent to a curve at a given point in terms of the limiting posi-
tion of the secants through the point. Give lots of curves and stress
looking for the point. Give lots of curves and stress looking for the
entire tangent envelope -- then pick out some "interesting" points on

the curve to look at epecific nembers. The student should be able to
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develop some feeling in terms of tangents relative to curvature, cusyp
as opposed to turning point and points of inflection. Take what the
student is sensing, and discuss in terms of the secants at each point.
Be sure the student develops some ability to verbalize relative to
these things. The brave of the bold or the fool-hardy might try a
discussion of the tangents to y = |x]|.

Note: +this section is very important. Section 5 "brings on the

cannon'' but Section 6 fires it!

Seetion 7. Line of supporg:

See some material on linear programming -- this is a somewhat

different sense of tangency but might be discussed at this point.

R



GERADE 9 - CHAPTER 11

MEASURE

Very brief outline:

1. Use, in parts, material found in Geometry, SMSG, Volume 2,
Chapters 12, 15 and 16. It can be exprected that not much of
this material will find its way into the 10th grade semester
course of geometry.

2. Measure was, in the following order, treated earlier:

Grzde 7 : Chapter 5
Grade 8 : Chapter 11
Grade 9 : Chapter 4  (measure theory).

Concentrate in this round of measure on developing further the
understanding of the concept of similarity by providing examples of
linear, quadratic and cubic measures.

Example: What are the changes in the perimeter, area, volume of an
object if a dimension is doubled, halved, etec.?

Try to aim at theorems, informally only, to show their power: we
don't have to compute the surfaces or volumes of two similar solids in

order to compare them.

Start possibly with: How many geometric objects can you name?

What formulas do you know?

Make a list (with some ordering principle):

Name | Diagram | Dimensions | Perimeter | Area | Surface | Volume
(well labelled) which ever applies.
-377-
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The purpose of this would be three-fold:

(L) Motivation: this may become more and more of a problem when
review does not contain some ingredients of preview, and
topics have appeared repeatedly.

(2) Review and summary.

(3) A ready list of reference to use in the subsequent discussion
-- the formula should be more than a recipe to get answers;
this can become an important link in bringing algebra and
geometry together.

Include the following questions:
(A) 1. Givenia. square region of side s; double the side. What is

the effect on p, on A? Make a dilagram.

Given a 30-60-90 triangle; multiply sides by 3. What

m

happens to the altitude and median upon the hypotenuse?
To the perimeter? To the area? Repeat for either values:

s by n. Make a

N
=

Multiply the sides by 5, by s bBY
disgram.

3. The radius of a circle is halved. What is the effect on ¢,
on A%? Can you tell from a diagram in this case as much as

you could in Exercise 1 and 27
Generalizes; Do we have to carry out the computation or can we draw con-
clusions? What will hold generally?
(B) Next change the questions to:

1. How must the edge of a cube be chénged if it is to be eight

times as large?' be twice as large in volume?

2. A circular region is to be divided into 3 equel parts by

concentric circles. How can this be done?

o



(C) Before turning .o volumes, contrast the relation of linear mea-
sures and areas of similar figures to questions of the type,
(emphasis on analysis of the algebraic formulas):

l. Given a triangle with base ¢ and height h. What is the
effect upon the area if the base iz multiplied by 3 and
the height halved? If the base and the helght are multi-
plied by 57

2. The radius of a circle is multiplied by 5. What happens
to the areat? +to the circumference?

3. What happens to the volume of a cylinder (r,h) if the
height is doubled? If the radius 1s doubled? If the
height 1s halved and the radius doubled? If the radius is
halved and the height doubled?

4. Which will make the volume of a cone larger, doubling the

radius oxr doubling the height?

Now discuss similar solids, produced by passing a plane parallel

to plane: of base.

By comparing:
(a) edges, altitudes, radii, ete.
(p) areas of cross sections, latesral faces, etc.
(e) volumes of similar solids,

develop now systematically the relation

PL _a A_l_(ig lg(i)f”
= ’ = ’ - -
. P Ay b A b



NOTE I: [t may seem wiser to complete the work on measure with the

"WST" development of surface and volume of the sphere now,

rather than present it in Grade 8, Cha_ter 11. This would

leave for Grade 8, The Earth as a representation of a sphere
and allow more time to discuss more fully:

great circles

small circles

location of a point on the earth

measurement along a meridian

time difference,

etc.

NOTE II: In the original outline appears: Pythagorean relationship
and trigonometry .
The g.c. feel that this should be omitted a:c this point.
However, the following suggestion is for inclusion when this topic
iz handled in its proper setting:
Given a right triangle and
(A) any two parts (sides), the third side can be computed by the
Pythagoream Theorem (no angles can beldetermined).

(B) any two parts (one side and one acute angle, or two sides), the
3 2
triangle can be determined completely by trigonemetric functions;

sides and angles can be computed.




Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Mo

SUMMARY OUTLINE, GRALES T7-9

Grade 7

lon-metric Geometry - The Structure of Space

oint, line, plane. Incidence. BSeparation. Convexity.
rientation on a line, in a plane.

Ly

Graphs, Functions, Variables

Coordinates. TFunction. Graphs of functions.

The Set of Rationals - Solution of Mathematical Sentences

Definition of rational number: Addition and subtraction of
rationals. Decimal names for rationals. Ordering the ra-
tionals. Per cent. BSolving equations and inequalities.

Congruence - Replication of Figures

Congruerice of segments, of angles. Addition property for
segments. Subtraction property for segments. Addition and
subtraction property for angles. Vertical angles. The
concept of congruence. Congruence of a figure with itself.
Congruence of triangles. 8358 congrue..ce property. SAS.
ABA. Motions by means of a coordinate system.

Measure

Linear units. Angular and arc measure. The Pythagorean
property and applications. Equivalence of polygonal re-~
gicns. "Greater than" for segments, angles, planar regions,
spatial regions.

Ratio and Similarity

Magnification and contraction. Concept of similarity. Ratio
and proportion. Defining similarity. Sufficiency properties
for triangles. Similarity mappings.

Probability

Fair and unfair games. Finding probabilities. Counting
nutcomes - Tree diagrams. Pascal's triangle. Estimating
probability by observation. Organization of data leading
to average and expectation. P(A u B). P(A N B).

Graphs of Linear Functions; Multiplication of Rationals

Review of negative rationals. Multiplication of positive by
negative. Graphs of multiplication by positive rationals.
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Chapter 9

Chapter 10

Chapter 11

Multiplication of positive by negative and Distribucive Law.
Multiplication by negztive rationsls. Addition and subtrac-
tion revisited. Opposite function; absolute valu~ function.
Applications. Graphing x —ax + b.

Solutions of Systems of Equations and Inegualities

Solving systems of equations. Systems which do not have
unique solutions. Graphs of inequalities. Systems of
inequalities.

Decimals, Sguare Roots, Real Number Line

Motivation. Numbers which sre not rational. Names of rational
numbers. Irrational numbers. Real number line. Properties
of real number system.

Parallelism

FParallel one-dimensional objects, two-dimensional objects.
Transversals. Transversals to three or more lines and planes.



Grade 8 (Sequence A)

Chapter 1 Perpendicularity

Perpendicularity of cne-dimensional objeets, of two-dimensional
objects.

o

Chapter 2 Coordinate Systems - Distance

One-dimensional coordinate system. Two=dimensional coordinate
system. Three -dimensional coordinate system. Polar coordi-
nate system.

Chapter 3  Displacements (Vectors)

Quantities. Vector gquantities. Vectors. Physical multipli-
cation of vectors by a number. Translation. Decomposition.
Applications. Extension to fectors in three-space.

Chapter 4  Problem Analysis

Translation of phrases. Translation of sentences. Problem
analysis and strategies.

Chapter 5 Number Theory

Even and odd integers. Informal discussion of statements and
proof. Fantors, divisibility, tests for divisibility and the
division algorithm. Prime numbers, the sieve of Eratosthenes,
prime factorization. The Euclidean algorithm and the GCD.

Chapter 6 The Real Numbers Revisited - Radicals

Motivation. Review of facts about the real number system.
Roots of numbers. Computation with radicals. Review of
properties of the real numbers and the real number line.

Chapter 7 Truth Sets of Mathematical Sentences

Review addition and multiplication properties of equality and
inequality. Apply to inequalities and to problems. "Permis-
sible Operations.” If a = b, then & = b2 and converse.
Fractional equations and restrictions on denominator. Squar-
ing both sides of equation and equivalent equations.

Chapter 8 Quadratic Polynomials as Functions

Graphing a quadratic function. Factoring polynomials. Solv-
ing quadratic equations. Going from ax2 + bx + ¢ to a(x-h)2+k.




Chapter

Chapter

Chapter

Chapler

Chapter

w3

10

11

12

13

Probability

Dependent and independent events. Conditlonal probability.
Bayes' Theorem. Expectation. Variation, standard deviation.
Normal distribution. Physical obs ations.

Parallels and Perpendiculars

Regions. Combining parallel and perpendicular relations.
Distance between parallel lines and parallel planes. The
quadrilateral properties. Symmetries. Angle sum proofs.

Properties and Mensuration of Geometric Figures

Motivation of numerical measure for areas. Arbitrary unit
versus standard unit. Assigning measure to segments and
regions. Properties of regular polygons. Models of solids.
The sphere.

Spatial Perception and Locus

Relationships between two or more point sets. Using a set
of points to evoelve another set of points. Sets of points
meeting given conditions.

Systems of Equations in Two Variables

Solution sets of systems of equations and inequalities.
Equivalent equations; equivalent systems. Systems of linear
equations. Graphical solutions of systems of inequalities.
Applications.
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Chapter

Chapter

Chapter
and

Chapter

Chapter

Chapter

Chapter !

11

Grade 9

Exponents, Logarithms, Slide Rule

Laws of exponents. An exponential function, f:n-— 200, Compu-
tation using powers of 10. Introduction of log notation.
5lide rule construction and use. Exponential and logarithmic
functions.

Transformations

Rigid motions and reflections. Projection. Composition of
transformations. Congruence as an isometric correspondence.
Similarity as a ratio prescrving correspondence. Further
work on symmetry.

Systems of Sentences

MeasurerThEQ?y

Distance. Measure. Angle measure. Other measures.

Statistics

Organization of data - Histrograms. Mean. Variance. Confi-
dence intervals for mean. Hypothesis testing. Binomial ftheo~
rem. Normal distribution. Central limit theorem.

Deductive Reasoning

Tllustrations of logical relationships between statements.
Suggestions for geometric examples. Illustrative problems.

Vectors

Circular Functions

Periodic motion. 8Sine, cosine, tangent functions. Domain
and range. Circular functions and angles. Radian measure.
Punections of angles. Numerical values of functions. Trigo-
nometry of the right triangle. Graphs of functions.

Tangency

Cirecles and line tangents. Tangent lines and planes in two-
and three-space. Tangent plane curves and tangent curved
surfaces. Tangent envelopes. Line tangents to any curve.
Line of support.

Measure

Complex Numbers




COMPARIEON OF THE NEW OUILINE AND THE ORIGINAL

Mathematics for Junior High School, Volume 1

Chapter and Topics

Chapter
Chapter
Chapter

Chapter

1

2
.2
3

[ AN =

Chapter 7

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

11

La

13

1k

What is Mathematics?
Numeration

The Decimal System
Expanded Numerals
(Other number bases)
Whole Numbers
Non-Metric Geometry
Factoring and Primes

The Rational Number System

Megsurement

Area, Volume, Veight, Time

Ratio, Percents, and
Decimals

Pargllel, Parallelograms,
Triangles, Right Prisms

Circles

Mathematical Systems

Statistics and Graphs

Mathematics at Work in
Science

Location in New Outline

No comparable chapter.
No chapter.

Gr. 7, Ch. 10

Gr. 7, Ch. 3

No mention.

No explicit treatment.
Gr.- 7, Ch. 1

Gr. 8, Ch. 5

Gr. 7, Ch. 3, 8

Gr. 7, Ch. 5

T
Gr. 8, Ch. 11
Gr. 9, Ch. 5 and 11

Gr. 8, Ch. 11

Gr. 7, Ch. 3, 6, 10

Gr. 7, Ch. 11
Gr. 8, Ch. 10

Gr. 7, Ch. 5

Gr. 8, Ch. 11
Gr. 9, Ch. 10,11
No chapter.

No comparable chapter.
Gr. 9, Ch. 6

No comparable chapter.
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Mathematics for Junior High School, Volume 2

Chapter and Topics Location in New OQutline
Chapter 1  Rational Numbers and Gr. 7, Ch. 3, 8
Coordinates Gr. 7, Ch. 2
Gr. 8, Ch. 2
Chapter 2 Equations Gr. 7, Ch. 3
Gr. 8, Ch. L
Chapter 3 Scientific Notation, Decimals, Gr. 9, Ch. 1
Metric System Gr. 8, Ch. 11
Chapter kL Constructions, Congruent Gr. 7, Ch. Lk, 5, 6
Triangles, Pythagorean
Property
Chapter 5 Relative Error No treatment.
Chapter 6  Real Numbers Gr. 7, Ch. 3, 10
Gr. £ Ch. 6

Chapter 7 Permutations and

Selections No treatment.
Chapter 8 Probability Gr. 7, Ch. 7T
Chapter 9  Similar Triangles and Gr. 7, Ch. 6, 8
Variation
Chapter 10 Non-Metric Geometry No comparable chapter.
Chapter 11 Volumes and Surface Areas Gr. 8, Ch. 11

Gr. 9, Ch. 11

Chapter 12 The Sphere Gr. 8, Ch. 11
Gr. 9, Ch. 11

Chapter 13 What Nobody Knows About
Mathematics No comparable chapter.




First Course in Algebra

Chepter and Topics Location in New Qutline
Chapter 1 Sets and the Number Line Gr. 7, Ch. 3
Chapter 2 Numeral and Variables No chapter.

Chapter 3  Senternices and Properties Gr. 8, Ch. 7, 13

of Operations Gr. 7, Ch. 9
Chapter 4  Open Sentences and English

Phrases Gr. 8, Ch. &
Chapter 5 The Real Numbers Gr. 7, Ch. 10

Gr. 8, Ch. 6

Chapter 6  Properties of Add.tion No specific chapter.
Chapter 7 Properties of Multiplication Gr. 7, Ch. 8

No comparable chapter.

Chapter 8  Properties of Order Gr. 7, Ch. 10
Gr. 8, Ch. 6

Chapter 9 Subtraction and Division

for Beal Numbers Gr. T, Ch. 10
Chapter 10 Factors and Exponents Gr. 8, Ch. 5
Gr. 9, Ch. 1
Chapter 11 Radicals Gr. 8, Ch. 6
Chapter 12 Polynomial and Rational No polynomials.
Expressions Quad. Gr. 8, Ch. 8
Chapter 13 Truth Sets of Open Sentences Gr. 7, Ch. 3

Gr. 8, Ch. 7

Chapter 14 Graphs of Open Sentences in

Two Variables Gr. 7, Ch. 2, &
Chapter 15 Systems of Equations and Gr. T, Ch. 9
Inequalities Gr. 8, Ch. 13
Chapter 16 Quadratic Polynomials Gr. 8, Ch. 8
Chapter 17 Functions Gr. 7, Ch. 2
Gr. 8, Ch. 8
Q -388-




ON APPLICATIONS

Clyde L. Corcoran

This "second round" planning group was given, as one of its tasks,
the problem of imparting to the student some understanding of the role of
applications of mathematics to the real world. This was supposed to be
done for the students in a meaningful way. I submit that we have not
really faced this problem squarely as yet, and there are some good rea-
sons why this is so.

1. It is easy to say, "Let's get the sequence of mathematical
topics organized, and then the writers can illustrate the use of the
ideas where appropriate.” This, I claim, will result in artificial
situations of little value.

2.  Real "practical' applications of mathematics do not tend to be
permanent entities. For example, while applied problems in peércent might
be valuable to t..= present suburban resident, they really could be termed
vital to a pioneer crossing the plains a hundred years ago. The mathe-
matics of the "honeycomb” was interesting to a very few twenty or thirty
years ago, but now this interests a whole spectrum of individuals con~
cerned with lightweight metal construction and fusion processes.

3. Most meaningful applications require extensive backgrounds in
subject areas other than mathematics. Most students do not have these
extensive backgrounds and hence understand neither the mathematics in-
volved nor the application. Usually the situstion which is desecribed in
a Tew sentences is so artificial or trivial that the student is not inter-
ested and is unable to see any use of it in the real world.

I submit that we really do not wish to teach "applications" as such
but that we really should try to expose the student to the techniques of
arplying mathematics. I'm speaking of the techniques and reasoning pro-
cesses which allow a professional mathematician to analyze and solve
problems in many diverse fields of study without really being expert in
those fields.

I also submit that we should make clear to the student that there

are at least two categories of impcrtant applications of mathematics.



One is the application of mathematics to itself (i.e., algebra to geometry)
to derive additional mathematics, and the other is the application of

mathematics to other fields of study. I feel that the "internal"” appli-
cation of mathematics was slightly exposed in the first round SMSG but
that it is important enough to be explicitly pointed out as it occurs in
this second round development.

If we accept the hypothesis that we should concentrate on teaching
the techniques of applying mathematics to "practical” situations rather
than trying to teach specifie technigques for handling certain practical
problems, then we should devise a program which will at least illuminate
these procedures.

A possibility for one such prcgram could be as follows: It might
be possible to crsate a series of units for each grade level which would
allow the teacher to select and present an "application problem" in
depth. The major purpose of this approach would be to expose the tech-
niques for applying mathematics rather than try to say that we are teach-
ing mathematics applied to biclogy; home economics, mechanics, economics,
chemistry, and so on.

It is hoped that problems within the ability of the students could
be devised so that the student would experience many of the same proce-
dures that mathematicians would use in tackling a problem. Also it is
hoped that many different parts of mathematics would enter naturally into
the analysis and solution of the problem (arithmetic, algebra, geometry,
probability linear algebra, etc.). I would hope that the student would
experience the necessity of having to clarify the problem (decic =
the basic questions are), plan methods of attack, search out and cul..ct
data, and organize that data to reveal information about the problem, as
well as develop models of the problem as needed.

Miny of the situations in the Mathematics Through Science series or
in Mathematics and Living Things might be redesigned to accomplish the
above objectives. BSome linear programing problems like the standard
"diet" problem also might have some possibilities for this kind eof expo-
siticvz. The seventh grade problems could be highly structured, but
eighth and ninth grade problems could leave more to the student's origi-
nality and creativity with some open-ended guestions included to forestall

the impression that all problems can be answered.
~390-
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To summarize, 1 think that we arec on firmer ground if we attempt to
teach basic technigques for applying mathematics rather than try to teach
specific applications of mathematics. Perhaps we would even satisfy
some of the eritics who say that these publications are too concerned

-ith formal mathematics rather than mathematics of the "real' world.
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SOME COMMENTS ON THE ROLE OF "FLOW CHARTING"
IN JUNIOR HIGH SCHOOL MATHEMATICS

S. Sharron

There is no need to list ihe ways in which the computer has
become an essential part of the everyday technological world.
Suffice it to szay that any student who attends high school today
should have the opportunity of exposure Lo a curriculum that in-
cludes some recognition of the role of computers in our technologi-
cal society.

Having made this premise, one is confronted with the problem of
the nature, degree, and location of this topic in the high school
curriculum. To understand the operational aspects of a computer is
a varied and complex undertaking that is not entirely in the pro-
vince of a mathematics course. At least an appreciation for the
mathematical activities associated with <omputer usze should be part
of the high school mathematics program. A student should be able to
think in terms of computer problem solving techniques (even if only
at basic or introductory levels) if he is to prepare for almost any

voecation in a world where there are seemingly, unlimited horizons

4,

of activity for the ever increasing use of the computer.

A method of communication between an individual and the computer

has heen accomplished by the development of procedural langusges which
have as their purpose the task of relating to the computer some "un-
ambiguous plan telling how to carry cut a process in a finite number
of steps." The algorithm (as the plan is called) requires a highly
sequential step by step method of computing a problem and an early
link in this line of communication is the "flow chart" (a first trans-
lation from English to diagram). Because of the careful, well dis-
ciplined procedure required in preparing a flow chart, a student

would of necessity need to have the mathematical algorithm well in

i} {'L L |
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mind if he is to complete a successful flow chart. A successful flow

chart is one which could be converted to the appropriale machine lan-

guage for a particular computer and which will enable that computer to
complete the problem successfully.

Almost immediately a high school mathematics teacher sees here a
real world related method of reinforcing computational skills. Not
only does t: » student become motivated by the idea of computer work,
but he must develop a working knowledge of the mathematics involved.

Some points seem worth m “Sioning at this time:

{1) One should bear in mind that the flow chart though less for-
mal than the machinc language, reguires the student to put down a
series of low order steps (with well disciplined care and forethought.)
for a simplerinded machine. This is the prime purpose of flow chart-
ing. It is not intended to be an end 1n itself, and unless 1t ulti-
mately ends up in a computer after having been translated to the
appropriate machine language with the results for the student to see,
the motivational factor for flow chartirn, becomes chaky.

(2) The knowledge of flow chart language notation required for
effective computer-oriented work reguires preparation and learning

time. The SMSG test, Algorithm Computation and Mathematics, concerns

most of its size with this objective. A brief presentation directed
at a lower level for Tth to 9th graders could be made, but practice
and reinforcement is still required if any usable degree of technique
is to be achieved.

(3) A flow chart is an early step in computer programming, and
the completed program is useful to the computer in that it can be
stored and reused whenever needed. Once a successful flow chart has
been constructed, “t becomes available for repeated use as written
communication structured in detail form to serve an assortment of
machine languages. For the student who constructs a flow .chart; the

experience of exploiting a mathematical slgorithm may be rewarding

-393-
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and often he gains insight, but the flow chart itself is not usually
a necessary part of the student's working eyuipme: ¢ in order for him
to function in mati=matics. In other words, the flow chart referred
to is often employed as a part of the chain of events leading to
effective use of a computer.

(L) Many (not all) assumed to be simple mathematical algorithms
when flow charted offer a method of primitive manipulation not suit-
able (though perhaps interesting) for the =.ills we hope to have the
students reinforce, e.g., see the New Orleans report, page 30, Long

Addition Algorithm (1) and (2).

It may appear that the points raised are sufficient reason to
drop the whole thing. On the contrary, these points are intended to
indicate difficulties to be overcome and pitfalls to avoid. The
original premise still stands, but it is not intended that the junior
high school mathematics program should become a course 1i. computer
programming if for no other reason than that flow charting is essentially
an application or exploitation of mathematics and is not usually mathe-

matics per se.

Often in trying to construct a flow chart, one finds a need for
more mathematics or a better understanding of the mathematics he
glready has available. This is desirable in the interest of teaching
mathematics and situations spread out through the 7th to 9th grade
will occur where some flow chart activity will be effective. For
example, the development of the flow chart for the Euclidean algorithm
(g.c.d.) as shown in SMSG test, Algorithms Computation and Mathematics,

chapter 3, section 2, pages 113-121 offers an excellent opportunity for
a student to gain depth in understanding this topic which is part of

the proposed 8th grade chapter on number theory. //

In 7th grade, the introduction of flow charting could begin With;/
computers (a discussion on what they are and how they are utiliﬁéd),;/

and the flow chart syubols and variables applied to simple Ercblemsf
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(See SMSG text Algorithms Computetion and Mathematice, chapter 2)

If during the course of the yesar the student is introduced to a
selected number of flow chart experiences (little more than one per
chapter starting with flow charting =2s one example ol mmaeling); he
should be ready to reap more of the benefits in 8th grade offered by
flow charting problems like the Buclidean algorithm, making decisions
(is A > B?, if so, what then, or if not, what then?), and looping
(to do iterative processes). Again in 8th grade the activity should
be a limited number of selected problems giving preference to those
appropriate for understanding the mathematics in the 8th grade pro-
gram over the technigues regquired for programming.

- It would appear that flow charting the long addition, subtraction,
multiplicetion ond division algorithms are too involved in computer
orientation to g.ve the best returns Tor mathematical benefit to the
student. Another caution to be exercised in the selection of flow
chart activities can be illustrated by the following example. Crade
7, chapter 10, (proposed) introduces a method of approximating 5
to a specified number of digits by an iteration method. The flow
chart for this process shown in chapter 5, section 1, pages 223-22%5
of the earlier referenced text, is an excellent opportunity for the

student to gasin a thorough understanding of the Newton method,

53395 -
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but the mathematics used in getting assignment box 3 is more advanced
than his grade level. If a 1 .ow chart activity is to be used at this
time, consideration would have to be given to the student's frame of

reference,.

Barly in the Tth grade the teacher should introduce the uses to
which computers have been put in industry, a brief histcry of how
computers have developed, and a look into the future. This is the
preface suggested to the introduction of flow charting. The SMSG

text, Algorithms, Computation and Mathematics hereafter referred to

gimply as the ACM text offers considerable data along these lines in
Chapter I, Section 1-1, 1-2; which could be reworded and made more
suitable for 7th grade.

An interesting activity based on an idea by Engelbart provides
a game atmosphere along with educational results that tends to dis-

sipate the mystery associated with computers.
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Four children are arranged in & line in front of the class from

left to right.

— ——
\ i
D C B A l

w Teacher (the primary
gignal source)

Audience

They are told that their right hand must be clearly ur or down in
doing what follows. The child, D, on the extreme left is told that
his signal comes only from the child, €, on D's 1mmediate left.
The signal is C dropping his hand from up to down. t such a signal
from C, D changes the position of his right hand. Child € gets
his signal only from child B on C's immediate left and the signal
is the same; that is, C accepts a signal only from B which takes
place when B drops his hand from up to down. Upon receiving such a
signal from B, C changes the position of his hand. Similarly B
gets his signal when A drops his right hand from up to down. HNotice
that raising a hand from down to up Is no signal Child A 1is the
only one who gets a signal from the teacher, by means of a hand clap
or a finger snap.

Practice may be necessary before the teacher begins to signsal.
The teacher begins the first signal after having each hand in the
down position. Notice that after 16 pulses (teacher signals) all

the *ands are in the down position again.

When the four element system seems to be functioning smoothly,
the children are given cards labelled 1, 2, 4 and 8 distributed
to A, B, C, and D respectively. The pulses begin again and is
interrupted occasionally to ask how many signals have been given.
Each time, the class will notice that the number of signals given is

equal to the sum of the numbers held up. If one is interested in



pursuing the binary system, the class may be given the opportunity to
figure out how specific numbers (which cards to be held up) should look.
Also, the limit of the counter can be Increased to 31 by adding an-~

other element (child).

One interesting activity that may be performed is to have the
teacher signal enough pulses to enter a number, say, % on the com-
puter. Having done that, he can add another r mber, say, 6 +to the
system. The result will be cards held up in which the numbers will
total 11, The last activity can be wvaried; but taking into considera-
tion the limitstions of the machine, the class can see from this demon-
stration that the teacher by his selection of pulses, actually pro-
grams the numbers to be added.

The idea of a flow chart to give expression to an algorithm is
irherent in this demonstration but it needs further discussion and
direction when the teacher transfers this experience to real compu-
ters, A follow-up activity could be something on the order of the
exercise shown below.

Complete the exercises using the sample as a guide.

Samplez

)

region

Connect

ERIC )
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(d)

(K%

O GO
©,

The previous exercises were intended to show that there is at least
cne order that could be associated with the regions of each problem.
The following exercise gives the student an opportunity to arrange a

sequence for a list of actions based on a given situation.
Exercise: Often we go into a supermarket without any idea of how we
ar oing to accumulate the items we wish to purchase and

the result is that we end wp walking back and forth, some-

Arrange a tour through the store

@
m

times unnecessarily so.
below, using arrows so that the shortest trip is made in

order to pick up the items on the list.

ERIC
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?rozer

mEat ff’

and p@u]*ry

dairy products

e T - o
! paper soft i dog house- |
gnods drinks . and hold ‘fresh
' | cat . and vege- |
foods &;Llnciryj tables!
ST U B Litems | ;
e P |
canned ! canned frozen fr@zenl ; i
meat fruit vege- desserts e |
and juices | tables | | and 1@@
fish and TV | ¢ cream ;fﬁf ]
o | X ) dlnners | . j 3 fresh
e TV | fraits
canned. canned | bread ; {E
fruits vege- and . candy |
" tables baked | | :
S g00ds | | |

An expression of how to do
by a flow chart; however, it 1s

as our desire to have this work

following form:

The action box is for action to be taken.

Howo=

WIH =

doz. eggs

cans of peas

T.V. dinners

lbs. fresh tomatoes
box face tissues
can opener

~oaf of bread

carton diet-cola

doz . muffins

expedient for pedagogic reascis as well
computer oriented, to adopt a suitable

The introduction of this notation could take the

We will use a rec-

tangle which contalns a statement describing the action to be taken,

eig!;

shOl-
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set the cloek divide ten by two

This could be followed by an exercise consisting of statements which
1mply action and some which do not. It would be the task of the
studcnt to select those statements which would be appropriate for
use in an action box (assignment box is the term we wish to use

eventually but i: would be too confusing to use at this time), e.g.,

Vhat time is it? (no)
Close the door (yes)
A brown house. (no)
Add seven to three, (yes)

Inasmuch as flow charting concerns itself with classes of prob-
lers and not a specific problem, it 1s questionable =s to whether or
not the following early examples should include constants, since they
really never azppear on a flow chart. However, the reason for em-
ploying a flow chart sequence of a problem using constants at this
stage is to try to relate specific problems with which the child is

already familiar to the idea of a class of problems.

The input box is reserved for information that must be given in

order to sclve a problem, €.Z.;

A car travels at an average rate of 65 mph for a period of

3 hours.

car rate: 65 mph

time: 3 hrs

-402-
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The left corner is cut to resemble the popular version of a

punched card. (Ref.: Algorithms, Computation and Mathematics,

SMSG, page 39)

The output box is represented by the form

N

which suggests a pilece of paper torn from a typewriter or line

B

printer.

Suppose in the example Jjust given you are to find the distance

traveled for the given time; then the output box would have in it

! 195 miles

which is the information resulting from the solution.

If we want to construct a flow chart for the same problem then

we can use the boxes and arrows together to get

/
( Start
\x

cwmomampd multiply 65 by 3 p=

The cirecular start and stop boxes suggest the round buttons commonly
ﬁseﬁ to start and stop pieces of machinery.

(a) Which is the output box?

(b) Which is the input box?

-403-
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{e) Whiech is the actlion box?

(@) Construct a flow chart for finding the distance a car

travels if it's average rate of speed 1is

the time in travel is 6 hours.
(e) How does this flow chart differ from the

(f) Using R +to represent the rate of speed

45 mph and

first one?

, 1 to repre-

sent the time in travel, and D to represent the distance

try to design a flow chart that could be used U0 express

an entire class of problems of the same kind.

(It is not likely that the student will produce the chart illustrated

here, since there are many ways of denoting what is to take place.

After proper recognition of any creactive result on the part of the

student, it is suggested that a discussion lead by the teacher and

inspired by the variety of attempts, be used to introduce the form

above. The purpose is simply to provide consistency in form and

notation, and to be expedient in our objective of

use flow charts as an expression of an algorithm.)

learning how to

which has some input data which will involve the constants necessary

to perform a specific problem, but the flow chart

being an expression

of an algorithm is not intended to be concerned with specific problems

and so variables rather than constants are used.

as used in qomputer language are:

Samples of variables



Ay, B, X, T, R, ¥ or such descriptive combinations of
letters as: DIST, AREA, LENGTH, FLRR. (For a more detailed
explanation of variables as used in computer language, see

ACM Sec. 2-4.)

Notice that the variables are limited to upper case Roman letters
which are the usual symbols aveilable to compuvers. Also, there

are not enough letters availsble for use as variables so combinations
of letters are employed. Sometimes a descriptive combination of let-
ters helps to remind us of how the variable is being used. We regard
an unbroken string of letters (no intervening punctuation, operation
symbols or Parentheses) as one variable or one symbol., That is to
say, an expression like XN 1is not considered to contaln either of
the variables X or N but rather to be a symbol in its own right.
When used for flow charting, no variable should be considered to
appear as part of another variable. BSamples of acceptable and un-

acceptable symbols for variables could take the form of an exercise,

e.g.,
(1) P (yes) 5 & (no)
(2) P X Q (no) (6) A +B (no)
(3) 125  (no) (7)  AB  (yes)
(4) VARIABLE (yes) (8) 6 (no)

"In any computing problem, there corresponds to each variable
used in that problem a location in the computer's storage. By assign-
ing a number to a variable we mean simply reading the numbsr (des-
tructiv§}y) into the storage location corresponding to that variable,
When evaluating arithmetic expressions a variable is to be treated as
a name for the number to be found in the correspending storage location.
The number in the corresponding storage location is referred to as the

value (or current value) of the variable. During the course of a com-

putation many different values (perhaps even millions) may be assigned

-Los5 -
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to a given variable. Thus 1t will not be meaningful to speak of thes
value of a variable without specifying the time or, more precisely,
the stage of the computing process. But once the stage of the process

is specified, the value of the variable is uniquely determined.

A storage location may be hard to visualize. If so, here is an
analogy which cannot lead to error, Consider that to each variable
there corresponds a wooden box. To make the correspondence clear we
engrave on the boxes the corresponding variables. (But remember that

the variable is a name not for the box but for the number inside.)

2| 2 =z

Thrserbp;esrVitﬁr;dentificati@n

Now 1if we want to assign 2.5 +to the variable X, we open the box
labeled X, dump out the contents and put in 2.5."
Assignment may be done in an input step as in the previous flow

chart example. When we come to the input box

we empty out the boxes labeled R and T and fill them respectively
with the values punched on an input card.
Another important way of making an assignment is by means of the

action box which hereafter will be referred to as an assignment box.

In cur previous flow chart example the assignment box looked like the

following:

-L06-
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roamme3s| D& R X T e s s

The product of R and T is assigned (indicated by a left-
pointing arrow) to variable D. At this time we empty out the box

labeled D and fill it with the product resulting from R X T.

Some examples of inadmissible and admissible assignment boxes

will help the student to understand their limitatlons.

_407_
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Assignment Box Admissible or notv Reason if not admissible

(a) 2 —1 + 1 (no) Assignments are made only
— —_— to variables, not to

constants.

(c) RXT «D (no) Rx D is not a variable.

(g) b «3 (no) Assignments are never
- made to constants.

(h) 2 x (L + W) «12 (no) 2% (L + W) is not a
— variable.

) [aes ] (yes)

Referring once more to the previous flow chart example,

-408-
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We have learned about three basic kinds of steps that occur in the

sequence of a flow chart called "input", "assignment", and "output".

Step 2 is the ___ box (assignment)
Step 3 is the box (output)
Step 1 1is the box (input)

Note: The problems shown below are based on some that appear in

the SMSC Mathematics For The Elementary School Grade §: Part II1. This

is a very elementary stage in Tlow charting and does lifttle more than
offer the student a plan by which he can visualize the procedural
sequence for a given problem from start to finish. It does, however,
provide exercise in the use of variables as developed in the earlier
flow chart discussion. Perhaps this stage of the development would

be most suitable with the proposed Grade 7, Chapter 5 on Measure.
Exercises.

In each of the following exercises your Job is to convert the

Instructoris problems into a flow chart similar to that of Figure 1.

1. Mike went bicycle riding every day after school for a week and
he kept a record of the distances he traveled. The distances
were A, B, C, D, and E miles. What was the average dis-
tance traveled per day?

2. Terri divided &Q quarts of ginger ale among F friends at her
birthday party. How many ounces did each guest get? (There are
32 ounces in a quart.)

3. How many =shoe boxes can be packed in a carton whose base is 2

sq., ft, if the carton is b ft. high? BHach shoe box is = ft.

2
a b
b = ft. b = ft.
Y3 Y3




Answers to Exercises.

1.

M &= figj,g’il}%E

[x]

If a flow chart is truly an expression for a class of problems
then the same flow chart should be an effective representation for
the solution of many specific problems of the same type. Consider
the car problem again, only this time there are many situations which
require a solution and the data for each of these is given in the table
shown .
CAR PROBLEM DATA TABLE
R{mpn)  T(brs)
L7.0 €.3
54,6 2.7
11.7 0
36.8 0,
6L .4 3

R

™

58.3
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If we have a stack of input punch cards each containing & differ-
ent single line of data for R and the corresponding T from the
table, then this stack could represent ihe entire table. The enly
change needed to be made to the flow chart in Figure 1 is that it be
repeated and simple repetition 1s easy to express in flow chart

language, by forming a loop as shown in Figure 2.

X
ol

Dée R x T

Figure 2

Now the flow chart tells us that after starting:

Step 1. Assign the data from the first punch card to the
variables R and T in the input box. One may
think of a messenger who takes the number L47.0
from the first punch card to the wooden box labeled
R, dumps out what may be in it, and puts the
47,0 into it instead. He also puts 6.3 in the
wooden box labeled T in the same manner. (This

is what is meant by destructive read-in.)

Step 2. The product of R and T is assigned to D.
This time our messenger empties the wooden box
labeled D and replaces the contents with the

number resulting from the product of R and T.

Step 3. This step merely calls for printing the current
value of D (just computed in Step 2) along with
the first punch card constants for R and T.
Instead of stopping the process after Step 3, the flow chart
tells us (by the arrow leaving the output box) to go back to the

input box, remove the first punch card from the stack, allowing the



" there 1e any) to become first, and repea® t. 2 process.

[~y

next c-rd (i

t arrow carries us into an input

&7

it is understoocd that if a flow cha

box and there aren't any punch cards left in the stack, then the com-
putation is to stop. Otherwise, Figure 2 would suggest an endless
loop with no way of stopping.

Since by this repetitive process there is likely to be many
printings (each to indicate a value of D), putting the variables
R and T along with D in the output box of the flow chart arranges
for the printing »f the contributing data with each value of D.
This enables & person to know just which specific problem the value
of D is a solution to. A sample of the print-out for the first

three punch cards is shown below.,

L7.0 6.3 006, 1
54,6 2.7 1474
11.7 0.1 1.

When a person attempts to solve a problem one technique in
organizing his thoughts is to make a list of the things to be done
which includes vhe order to be followed. There are times, however,
when one approaches a fork in the road and what follows is a direct
consequence of the decision made at the fork. For example,

1

get up in the morning

(:EEFZ;:; a school day? = » Stay home Pmap

yes
k )y

go to school

v

[
(]




Which way to go after Step 2 depends on the answer to the guestion in

Sten 2. 1If the answer is yes +the next step is 4.

This new addition to our flow chart language is called a decision
box or a condition box and will appear oval in shape.

.

A
7 e i - _ssgg;figiq;
x“gﬁg’"’f _
ves

With this new flow chart tool we hasten to improve our car prob-

lem flow chart to that of Figure 3.

any more L ' ' ,
cards to be )===3» R, T =3 D& RXT =¥ R,T,D
_read

Figure 3

At this stage of our flow chart development we have accumulated some

basic essentlals adequate for expressing many mathematical algorithms.

_413!
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Suggested for the
prop.sed Grade T,
Chapter 8, either as
an exercise for the
student or an activity
for the entire class
to do at the blackboard.

ax + b =

more card na
tG be read

b

"No Solution"

"All Real
Numbers"
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The prime factorization of whole number A,

The flow cha-t that follows is a suggestion that takes liberties
with the more formal notation zctually used in computer work. It is
done in the interest of providing a clear picture of the mathematical
algorithm involved with loss of the intricacies of a more complex
flow chart. For example, it is assumed in the chart below that a
list of primes 1s available. This is certainly a possibility and
there are flow chart procedures for calling on these rather than

saying ""assign the next prime to P"' in Step k4.

A likely place for this activity appears to be the proposed

Chapter 5, Grade 8, on number theory.

4. an integer \ I oy TP mext
p T AT MRt dgjgm-___ - prime




Note:

For box 3, the teacher may prefer to check for

of A by using the greatest integer function

A

P

~416-
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FROBABILITY AND STATISTICS

Richard Dear and Martha Zelinka

Put suceinetly, the goal for the probability and statistics material
in grades seven through nine is the capability of understanding, for ex-
ample, the report of the Surgeon-Gener~l on smoking and cancer. The gen-
eral attack is to present in grades seven and eight the material on prob-
ability written by SMSG, INTRODUCTION TO FROBABILITY, which is now being
revised. The material for grade nine on statistics does not appear to
have been written, and we give lLere only the briefest of outlines for it.
Undoubtedly we are trying scmething new here, but we have in our new
syllabus for seven through nine more power and a considerably more so-
phisticated student. Remember too that the slower student is expected
to take longer to do all this material. The grade placement of all the
material should be judged only for the college-capable student. No one
has yet challenged the utility of statistics nor the social responsibility
of mathematics to present it. What remains is the real challenge of writ-

ing it so that it becomes feasible for students at this level.

A number of "tie-ins" exist to connect probability and statistics
with the envisaged seven-nine syllabus. In grade seven computation of
probabilities gives rise to computation with positive rationals and in-
equalities between positive rationals. Computation of the probabilities
of the form P(Ay B) and P(ANB) even use a little set theory! The
use of tree diagrams is a crude flow chart; perhaps a real flow chart
could be drawn to solve a whole class of probability problems. Of course
the entire subject is an open invitation to modeling, but basically the
most often used tool is combinatorial counting. Please note that this
is done in seven-nine without a tedious development of the calculus of
permutations and combinations. Such a development is particularly true
of' the use of Pascal's triangle, which i1s done WST¥ as the attached

sample shows.

*WST = "With Simple Tenderness", an instruction to the pianist from
Mcoowel, "To a Waterfowl".



in grade eight, varisnce and standa:d deviation call for squares and
square roots; a relocation of the origin to coincide with the mean uses
translation of cowidinates, change of scale, negative numbers, and abso-
luce value. Also probability provides an oﬁp@rtunity to have another set

function and to point out still one more "measure.”

Nondiscrete probabilities can be finessed on a problem such as
“What is the probability that when a stick is broken at two places, the
three resulting parts form & triangle.” This problem uses two-dimensional

inequalities and further accentuates probability as area.

The notion of expected value arises with the measurement of any

physical quantity and the inherent expe: im-ntal errors.

General remarks: INTRODUCTION TO PROBABILITY was written without
presuming the notion of "function." In rewriting, it will probsbly be
expeditious to use this concept to obtain a cimplified exposition. The

same 1s true of absclute value, introduced in Chapter 10.

Special topics in Volume 2--<Bsrnoullil trials, Bertrand's ballot

problem, and Markov chains--can be reserved for grades ten through

3

twelve, A similar remark holds for permutations, combinations, ni,

and Sterling's formula.



Topies in Probability

Grades 7, &, and 9

Introduction to Probability

Parts I and II, Student Text, SMSG, 1966

This text is programed, and therefore the number of pages used for

any topic might be misleading. It is important alsoc to check with re-

vised version (currently being done).

Grade
Chap.
Chap.
Chap.

T:
1

[\»]

Ll

Chap. 4

Chap. 5

Grade 8:
Chap. 7
Chap. 8

Chap. 10

Grade 9:

Chap. 1

Chapters 1-6, approximately three weeks

Fair and Unfair Games

Finding Probabilities

Counting Outcomes: Tree diagrams

Pascal’s triangle without binomial theorem

Estimating Probabilities by Observation:

organization of dats lesding to notion of average and
expectation
P(A. U B) )(WST)

P(An By )

Part I, Chapter T, arproximately three weeks
Part IT, Chapters 8 znd 10

Dependent and Independent Events

(Review P(A UB) , P(ANB).)

Conditional Probability

Bayes' Theorem

Expectation

Variation, Standard Deviation

Normal Distribution ) (WoT! 1)

Physical Observations

Organization of data--grouping, histograms
Continuous model of discrete situation
Computation--algorithms' for mean, variation, for grouped data

~419-
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Chap.

Chap.

(continued)
FBestimation of mean znd variance
Confidence intervals for mean

Chebyshev’s Inequality (WST)

Hypothesis Testing (Null hypothesis:

of first and second kind)
Pinomial Theorem

Normal Distribution
Central Limit Theorem (WST)

Quality Control Errors

-



Pascal’s Triangle

Introduce it as in Part I of Probability, Chapter 3, page 23. Do
a little more than in Part I, Chapter 3.

List outcomes of tossing 1, 2, 3, and 4 coins. Make tree diagram,
and list result in form of table. Contipue as in Part 2, Chapter 9-3,

page 207.

First Second
_Coin _Coin_
H H
H T
T H
T T

As the number of outcomes increaces, keeping track of the possible
outcomes 1is more difficult. One useful way of listing them is by means

of a "tree" disgram, as pictured below:
First Coin  Second Coin

H
H-::::ii:j::jjzr Possible outcomes are

HH, HT, TH, TT. There

T
!
Ttgiiiiii:jji:T are four.

If a third coin is added, the number of possibilities is doubled

again, as is seen in this diagram:

First Coin Second Coin Third Coin

<T<

=T

are eight.

3

Possible outcomes are

fa e

-h21-
4736




First Three Coing Fourth Coin

—=T
jédéiéﬁgiéigiiarﬂ
HHT e -
3?;E§ES??¥H
HI—==—— =T Possible outcomes are
efsséf’sé_§H HHH, HHHT, HHTH, HHTT,
HIT- - etc. 'There are sixteen

outcomes.

e

I}

T
H
TTH 7
H

P

H

Now list the results in form of a table. How many times do L,

3, 2, 1, O heads appear?

. . 1 head 0O heads
1l coin

1 time 1l time

2 heads 1 head O hesds
e coins 1 time 2 times 1 time

3 heads 2 hesads 1l head O heads
3 colns 1 time 3 times 3 times 1 time

4 heads 3 heads 2 heads 1 head 0O heads
4 coins N . . . .

1 time b times 6 times 4 times 1 time

Next write
1 1
1 2 1

and Pascal is born.

ERIC 427
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At this point, frequency distributions can be introduced aiming at
recording properly data obtained in experiments.

Look at Part II, Chapter 10-2, leading up to Expectation.

- -he3-
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VECTORS ON A LINE

Hassler Whitney

Background:

Positive rationals; integers under addition; SMSG Grade 6.
Purpose:

(a) To show the theory of directed measurement, i.e., one

dimensional vector space.

(b) The rational numbers operate; the operation on the

rationals comes out as a corollary, in a natural manner.
Remarks:

This is an outline, showing a general method; hence some of
it is rather sketchy, but should be easily filled in. Here are
three principle examples:

Ixample 1. An actual line, or line with origin; elements
pictured as vectors (arrows). We tip the line, to hinder any con-
cept of "the natural direction".

Example 2. Directed interval of time.

Example 3. The rationals, or reals.

The exposition is thouglt of as carried out for all these
examples, at each point. Of course other examples may be brought
in. We hope to end with some remarks on areas, for further under-

standing of both the general principles and applications.

-hok -
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1. Vectcrs.

We think of a line, and vectors,

pictured by arrows, which may slide ‘%gg‘&:::EE

along the line. As a picture, each sﬁ%ﬁxﬁgzztzisgs

arrow has a start and an end. = =
Two vectors are added as follows: a%::::::EE:::EE

Usual way. iﬁ?‘v

~

As§p;iative law trivial. Commuta-

tive law: Interchange the two arrows,

If one of them has the opposite direction,
swing around a parallelogram for the
plcture.

By turning an arrow arcund, we form the opposite. Clearly

OPp CPp V = V;

v + opp V

oppv + v = 0.

(We note that we now have a gr@up,)

Ex. For real numbers, opp 3 = 3; opp 3 = 3.

Ex. Time: If u 1is the time interval t. =t (say 10 min.)

= 2 1
and v 1is the time interval tS - tE (say -13 mina), then u + v is
the time interval t3 -ty (say -3 min.).

Exercise. If Ann was 3 when Beth was born, and Beth was 2
when Carol was born, how old was Ann when Carol was born? (Ans:

5 or 6.)

2. Rationals as operators.
First define
Ov=0, 1lv=v, 2v=v +v, etc.
Just as the positive number line was extended, we now extend the abbve.

This obviously gives:

-hos -
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-lv = opp v, =2v - opp Vv + opp v, etc.
Note that
oppv + opp v = opp(v + V).
More generally,
Opp u + Opp v = oppu + V);
the above may now be written:

nv = n(opp v) .

i

Also, turning the picture around (opp opp v = v),

“n(opp v) = nv.

How did one picture 1/3 on the number line? Go one third
the way from O to 1. Do this with O and v, giving (1/3)v.

Thus if this is V',
vt o+ v+ vt =v, v o= (1/3)v.

We now picture (2/3)v: this is 2((1/3)v):
=];V+ vV =
3

[ m —
w|m

V.

We now find (m/n)v. Just as for positive rationals,
rv + sv = (r + s)v, ©positive rationals r, s,

Again (picturing v as going from O to 1), the fact that

r = opp r makes clear that
rv + sv = (r + s)v, all rationals r, s.
From the picture, it is clear that
-(2/3)v = opp((2/3)v) = (2/3)(opp V). \
It is equally clear that &%saggggsL‘%ﬁL
(2/3)v = opp(~(2/3)v) = "(2/3)(opp v),

which is the above with 2/3 replaced by
“(2/3). Thus we have:

-426-
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(opp r)v = opp(rv) = r(opp v), any rational r.
Apply this to opp v:
(opp r)(opp v) = rv.

Now (perhaps not before) apply this to the rationals:

(opp r)s = opp(rs) = r(opp s),]

o all rationals 1r, s.
(opp r)(opp 8) = rs,

Give various numerical examples! Go through some proofs again, with

numeers on number line in place of vectors in general.
It is also clear on a picture that
r(u + v) = ru + rv.

Next we note an obvious fact from picture: If nu = nv, then

u = v, Converse clear. Hence also, obtain:
If ru =rv, r rational, r # O, then u = v.

We still need the associative law. Take any v, and rational

s, We have:

303 e)v) = (58)v + (Fe)v + (5 s)v
- Lo+ Lloyy =
= (3 s + 5 s + 3 s)v = sv,
1 = Ligv) & Ligy) & = - - (24 1L \
SEB(EV)] = 5(sv) + 3(SV) + 3(SV) =sv=(3+3+ 3)(SV)
= SV;
hence
Ls)v = %(SV);
more generally,
(% s)v = =(sv)
Also, we have
=4 27-
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(Eav+ (Eslvt (Bslv=(Essissza)y
1 1 1. ,
= [(g + o + g)S]V = (% s}v,
%(sv) + %(sv) + %(Sv) = (E + %—* %)(SV) = %(Sv)é

using what was proved above gives, replacing 3 by mn,
(rs)v = r(sv),

where at the moment r must be a positive rational. But if r 1is

negative, then opp r 1s positive, and we have X writing r' = opp T,

(rs)v = ((opp r')s)v = (opp(xr's))v = opp((r's)v) = opp(r'(sv))
ete. Hence the above holds for all rational r and s,
Applying this to the number line gives the associative law for
multiplication.
Note that we have proved that our vector line is a vector space;
or at least when we have proved that the real numbers form a field.

For this, we must still show that multiplication is commutative.

As a little earlier, we find that

- 1 1 N
n(% s) = L 8 + ... + L g =(=+ ... +L)s =1s = g,
n n n n n
n(s éir =5 @% + ... t 8 Lo S(# * oaee F %) =g-~1 = 83
' n n n n n
hence
1 1
= 8 =58 = o
n n
Continuing,
w(ig) =Ms mseLl) -g B
a B =n® n’ = n’
hence
rs = sr,

at the moment if r is positive. For r negative, apply opposites

1428
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as before. The required properties of our vector space and raticnal

number system are proved.

3. Subtraction, multiplication, division.

We study these operations in the rational number system.
How do we solve
3+ 7 =72
By examination, we see that U4 1is the answer. Here is another way:

From 3, we wish to get to 7. dJust go back to 0O, then go to 7;

3+ (3+7) =T;

our new answer is 3+ 7.

This seems foolish, for three reasons: It is complicated; it
takes us through a much longer journey (is this really the same as
42), aud it requires using negative numbers, not needed in the answer.
However, our symbols are supposed to be simply names for things;

"3 + 7 1is another name for L, and just our picture of it looks
like a journey.

The new method is helpful when we wlsx t- tell a person how to

get from one number to another, i.e., solve
r +x =5,

in some fashion: the answer can be written as

X = 0pp r + 8.
Suppose we give two definitions of the minus sign:
-r = Opp T; s -r=2s8+ (-r),
These do not conflict, and the second reduces to ordinary subtraction;

for a - b =¢ if and only if a = ¢ + b,




Various common properties are immediately verified. Thus,

-0 = 03 -(-r)

il
=

{r+s8) =-r+(-8) = -r - s5;

-(r -8) = -r + s

, =s - r;
(x +2) - (y +2) =x-y;
(x ~z) - (y -2) =x -y,

(The last two will be compared with formulas for multliplication

and division.)

We know already that

(-x)y = x(-y)
(-x)(-~y)

=XY

]
»
&

Two more easy formulas:

x(y - E} = Xy = XZ, (=x>(y = z) = X(z - y) = X% = X

P
<

Others now follow.

Theorem. In a vector space, rv = O if and only if r =0

or v = 0.

We know that Ov = 0 (two senses of "0"); r0 = 0, at once
from definition. If v # O and r # O, the definition of rv shows
that rv # 0 (use (1/n)v, then (m/n)v.) For the rationals, the

usual theorem on xy = 0.

For ease in studying division, we wish something like "opposite"
which works for multiplication in place of addition. What replaces

0? Its property for addition is: x + 0 =0 + x all x. For

1]
"
.

miltiplication, 1 has this property: le.x =x-1, = x, all x.
Now in place of "opposite" we have "reciprocal”:

Theorem. If x # 0, there is a unique number y such that

xy = 1.

-430-




= n/m; proof immediate, as in Grade 6.
32/%; a third of
For negatives, say

use y =
X =

If x = rn/nj
In fact, see the diagram for a special case:
is 5/5 = 1.

x is 1/5, and five thirds of x is
-3/5, use y = -5/3.
Now find the unique solution of

=b (where a £ 0):
x = (rec a)

X =

ax
from a, go back to 1, +then to b: Use *b:

a-+((rec a) +b) =(a-+(reca))-b=1-b = b.
Just as we introduced the minus sign, now introduce fractions:
1/ = rec x, and y/x = y(rec x).

For x # O,

Now
x - (1/x) = (1/x) -x = 1,
1/x =y if and only if xy = 1.

Ag for a formula for subtraction, we have

I

L
Xy

r

A

e,

% L]
X

Two formulas for subtraction give, for division

_ L X _ X
x? zy y°

%nmlw
I

The following are very easily proved:
0 — . a N e
~=0(b£0); o #0 if a0 (b £0).

55; _E

Flo

be (,,a £0).

Now
ad
bd

o)
o
|

= = if and only if ad -be (b,d £ 0).

oo

-431-
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Two formulas we specifically mentioned for subtraction give, (same

method) for division,

a , - 8¢ b,

b u  bd’ (b,a # 0,
a,c_a, d_ad b,c,d
57da~b ¢ be (bye,d £ 0).

The rules for addition are easily proved:

a b a+b a c ad + be
-_—t = = - - =+ = = ———,
c c C b d bd

As using opposites, using reciprocals correspondingly give

3

. -8
.b L]

Now we find at once

- ad - bc

bd

Qo

a
b
Note that in all these, the symbols mey represent any rational num-

bers. (Look at particular cases, integral and non-integral.)

A1l the usual working with fractions follows with ease from the

above.,

4. Directed measurement.

n

We suppose we have a set of "quantities", which form in a

natural way a vector space.
Example 1. Directed line segmenis, parallel to a given line.
Lsample 2. Directed time intervals.
Example 3. Possible changes in quantity of water in a reservoir.

We know then how to add quantities, and multiply them by rational

(or real) numbers.



Here is a particular guestion: 1In the given vector space, suppose
we choose a f'ixed non-zero vector, say V, and wish to compare gquanti-
ties (vectors) with this one. How do we do this?

For any vector v, we may write v = aV for some number a.

This gives a correspondence

F, @ v —2a; thus Fv(v) = a,

associating with the vector v +the number a. If we call V the
"unit", then we may say v "has a units"; this means merely that
v = aV.
We can choose various "unit" vectors V; each gives an isomor-
phism of the vector space onto the vector space of real numbers.
Suppose we had the unit V, and now choose another, W. Then

write

o+

W=¢V, V=dWw: d=

Now for any vector v, if
v =aV, v = bW,
then

v = a(dW) = (ad)W; b = ad;
b(cV) = (be)V; a :

i

]
o
I

i

However, it is much simpler to work directly in the vector space, and

not in the number system, since the isomorphism depends on the choice
of unit.
Example. With directed distances, ft and 'in ‘are vectors,

a
and 1 ft = 12 inches. This is a real equality. Length.?ﬂ is

3 ft for instance.

438



OUTLINE -- VECTORS

H. 3. Moredock
W. H. Sandmann

Part I -~ Developing a Mathematical System
I. BScalars

Many of the quentities which we encounter can be described by a number

( or measure ) and a unit of measure.

Examples:
ILength of an object - 5 dinches
Outside temperature ' - 6h degrees
Mass of an object . - 315 grams
Volume of a tank = 11 cubic feet
Speed of an airplane - 530 miles per hour
Time to eat lunch - 35 minutes
Distance between two cities - 118 miles

etec. (Ex. from physics - mass, energy, change - metric units )
In each case the measurement cs.. be represented by a distance ( interval )
on an appropriate scale. These are numbers obtained from scale readings.
For these reasons we call these numbers scalars.
Operations with scalars - ( real numbers )
Problems thai call for adding, subtraction, multiplication, division.
- ( Review properties of an ordered field. )
Have students actually combine volumes, masses, etc. to fix operational
properties of scalars.
II. Vector Quantities
There are quantities that cannot be adequately described by a measurement
on a scale alone.

A. Describing trips.

If we wish to know the distance between two cities, we do not care
to know particularly if the dilstance is measured from city A to city

B or from clty B to city A. We are interested only in a scalar, 115 miles.




Fowever, 1f we are making a trip, it would make a diffe.cnce to o

ez or to o from ity b Lo c¢lity A. We use arrows

From A to B, T'rom B to A

Trips of two miles east along a road:

At various places: ,

Notice that these arrows convey two pieces of information.
Treli: length repregents the distance traveled, znd the peints ci their
arrows indicate direction. Each arrow has a starting point and an
ending point.

B. Developlng Meaning of a Vector.

1t would be impossible to represent all the trips of 2 miles east.
We would like to generalize all 2-mile trips east by a singe representation.
In other words, we would like to form a mathematical model of all physical
trips which are 2 miles east. |

Place a piece of acetate over the arrows.

On the acetate, mark the starting point of each arrow.

Select one arrow. Slide the acetate ( without rotating )
50 that the mark for the starting point of this arrow moves to the ending point.

Look at the other arrows. Are the marks on the acetate for their
starting points now at the ending points? :

Then the movement of the acetate, using one of the arrows as a guilde,
provides a representation for the various 2-mile east trips shown.

Start over again. This time mark some other possible starting points

on your paper for Z-mile east trips.



£ Ax

Place the acetate in the same veginning position as before, Msrk on
it the additional starting points you just made.

Using one of the arrows as a guide move the acetate without rotating
50 that the mark for the starting point now coincides with the ending point
of the arrow.

Lobk at the position of the new marks. They show the ending points
for the new arrows. ( might make indentations for these ending points through
the acetate onto the paper so that the new arrows can be drawn. )

This shows the generality of the representaticon. This on movement of
the acetate, using a single arrow as a gulde, reprecents all the 2-mile east

trips by showing the ending point for any given starting point.

Go on to other examples, This time on paper show only one arrow

representing a trip, and some scattered starting point for trips of the same type.

Place acetate on arrow and points, and mark the starting points on
acetate, Move acetate as indicated by the one arrow. The marks on the acetate
now show the ending points. From a few of the starting points draw arrows to
show that these are trips of the same type -- l.e., same distance and direction.

Do enough of these to show that only one arrow is needed to provide
the instructions for moving the acetate.

This gives an enlarged meaning for an arrow, from that of represent-
ing a single trip. As a "programmer" for moving the acetate, this arrow
becomes a representative of a type of trip. '

With this broader meaning, the arrow can ndw represent ouf idea of

a vector.




At this time, the phrase "type of trip" can be replaced by the term

"displacement."

Use the new terminology to develop familiarity.

IIT. Displacements

ot
"

Displacement a

Given displacement a as defined. Apply this displacement to points
A, B, C, C.

Lay on the acetate and mark the starting point of the arrow = i the
points. Move the acetate according to the arrow representing the displacement.
Mark the ending points cn paper and label them Ay, By, Cq, and D) respectively.
Al is the result of applying displacement a to A, ete.

Do the inverse also. Given the application of a displacement to some
points. Find the displacement.
Given: the application of a displacement to point A results in Ay

Find and represent the displacement.

L]
Disgplacement

Lay on acetate and mark point A and starting point where arrow
representation is to be made, Slide acetate to where mark coincides with A.
Mark ending point for arrow. Then draw the arrow representing the displace-

ment.

Might consider extending displacement to objects and give representations.

Have student move an object ( block) on the blackboard or a chair in the room

and have students represent the displacement on paper by a vector.
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Keeping separste ti:e representation of a displacement and the
representation of its applications helps to keep chese two ideas separate

for the youngsters.

Develop definition for eguality.

Suppose displacement a, when applied to A results 1in Al’ and suppose

when displacement b is applied to A, Al is also the result.

Combining two displacements.

/
/

7

Displacement z Displacement b

Given displacement s and displacement b as represented above. What
ig the effect of combining these two displacements on point A below? By
"Combining" we mesn applying one displecement and then the other. Observe
the effect of applying to point A displacement a followed by b. We shall

call this combining, a + b, and represent it as shown.

Displacement a +

b
(displacement a followed by displacement b

Flace zecetate on srrow.far a and point A. Move acetate according
to arrow for a. Mark point A, on paper. Now place acetate on arrow for b
and point A;. Move acetate according to arrow for b. Mark A, on paper.
The location of various points should be spotted on acetate. Point Ay is

the result of applying di5plscemeﬁt ggfélléwei by b to point A.
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What would be the displscement that results in Ag directly when
epplied to A? TIet us call it c.

Displacement ¢

Since displacement a+b and displacement ¢ have the same result when

gpplied to point A, we write: atb = ¢. This is summarized in the vector diagram

ath=c

(note: might introduce "resultant' here. If this is done it should

remain with the physical model.)

Give many problems of this type:

Given: Displacement c+d, & combination of two displacements. Find
a single displacement e which gives the same result. Relate these representations

to displacements of objects. Now go on to this type of problem.

Given: displacement c. Find two displacements & and b which when
combined give the same result as displacement c. (note: relate this to want-
ing to displace an object to a certain point but there are obstacles in teh

way. TFind a combination of displacements.)
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Students will find that there are many correct answers for this

problem.

Show analogy with numbers. Given a number, 17, there ure several
pairs of numbers which have 17 as sum; 5, 12; 8, 9; ete. But for any pair

of numbers there is a unique sum. Is this true of vectors?

Discuss: closure property for vector sddition. This helps in

physics. BStudent needs closure in later work where closure mathematically

has correspondance to physical world.

Compnutative Principle.

Investigate another property. Given: two displacements a and b,

combined in different order.

b

Displacement a + b Displacement b + a

Apply these two displacements to a point, A. ( Use acetate in

usual fashion.) A

,%%% f
b+a "~

Do you get the same result?

Have students try come examples on their own before any

generalizations are made.

Lho

445




Since displacement at+b and displacement b+a have the same result

when applied to point 4, we write,

|
+
s
1

1o

+ &
This 1s a commutative property for vector addition. This is
summarized in the vector diagram

b where displacement ¢ is the

single displacement which
has the same result as either

combination of displacements

a and E

b

e

=§+P_z£+§

Give serveral other exercises of this type.

C. Associative Principle

Combining three displacements. Given: +three displacements

b

g gnd ¢ . Fine the combination, a + b + ¢ . Since displacements

are combined in pairs, there are two ways of finding the combination,

2 2

keeping the same left-to-right order of a +b + ¢ .
I. Find a + b, then find ( a +Db ) + ¢
II. Find ( b + ¢ ) then find a = ( b + ¢ )
Let us look at the vector diagram for each way.

b

(a+b)+e a+ (b+e,
Note that 4 is found és the Note that e is found as the
single displacement for a+b single displacement for b+c,
tren p is the single dis- g0 ¢ i1s the single dis-
plecement for d+c or ( & +b ) + ¢ placement for at+e or a + ( b + ¢ )
4y
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Now, apply displacements of p and q to point A. ( use acetate

and the arrows for p and g .uove.)

A e~
Do you get the same result?
Then ( 2 +b ) +ec=2a+(b+c)

This is the associative property for vector addition. Have students

go through this development with other vector triples.

Relate to numbers: (5 +7 ) =6, 5 +.( T+ 6 )

The commutative and associative properties together give a great deal of

flexibility for vector sddition.

Have students provide twelve expressions for adding three
displacements a, b, ¢

(a+c)=b, (b+c)+. +(b+a), ete.

j o
L™
jo

Have them draw a vector diagram for each expression and observe
if the final single displacement in each case is the same.

This should give them a feeling that the commutative and associative
properties yield a rather significant result.

Compare with addition of numbers having the same flexibility. Relate

this flexibility to displacement of objects

Special Displacements, Zerc and Opposite.

Think of the displacement which leaves a point in its original
position.

We call this the zero displacement and use the symbol @ to name it.

Consider the displacement a + @ and apply it to point A. (make
drawing ) Do you get the same result as if you had applied only

displacement a ? Then a + = a&a. Likewise @ + a = a .



Displacement (& is the identity displacement for vector addition.

Compare with the number O .

Another special displacement:

>

Think of a digplacement &a which displaces point A to 1 as shown.

7 . Al

jro
\

A g~
Now think of the displacement which displaces Al back to A. We call

this displacement the opposite of displacement a , and name 1t displacement -a

Consider displacement a + ( -a ) and apply it to point A. ( make
drawing. ) Does it leave the point in its original position as would zero

displacement?

Then a + ( -a = © ; also ( ~a ) + a = ©

Have students find snd show opposites of given displacements. Also
find oppoites of opposites, etc.
Relate to returning objects to original positions. ( Reciprocating

motion, pendulums, clock balance wheels )

Find displacement - ( a + b ) !
b ' EigiAg
= AL -

el
-~
-
-~

a+ b -
- = ~
A e
Apply displacement a+b to point A resulting in Ap. Then find the
displacement that displaces A, to A. This is called the opposite of a + b

or - ( a+b ) and is shown below.




Have students do some of these problems.

Now find displacement -8 + ( -1D )

\
9

L

a + h -7

Again, apply displacement a + b to point A as shown above. The

displacement -a + ( -b ) is represented below at left.

Apply it to point A, as shown below.

AT

Displacement -a + ( -b ) displaces A, to A es did displacement - ( a +b ).

Then - (a+b) = -a +(-b)
S - h -0

Notice that displacement -b + ( -a ) when applied to point Ap

displaces Ap to A through Aq, reversing the displacement a + b.

Relate this "back-tracking" or reversing of original dis-

placement of objects.

o Lyl
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Ea

summary snd Review of Properties of Addition.

For any displacements a, b, and c

» a2+ Db 1s a displacement
a+b =b+a
3. (a+b)+c =8 + (b+ec)

4. There is a displacement @ » called the zero displacement,
such that
a + @ = © + a = a

5 For each displacement a there is a displacement -8, called the
opposite of displacement a, such that

a + (-2a) =(-2a)+a = @

Relate these properties to those for the addition of numbers. Point
out that these properties make the addition of displacements structurally the

seme as the addition of numbers ( integers, rationals or -eals. )

(Note: This may be the first time that students have encountered a

mathematical system for something other than numbers. Make the most of it. )

Subtraction

(Note: The main reason for introducing subtraction at this point is
to continue the structural similarity with numbers and show that subtraction
is related to addition for vectors in the same way as for numbers. The rhysica’
interpretations for vector subtraction is quite limited at this level. To
introduce relative displacement and relative veloeity for Jjunior high students
seems questionable, Use of vector subtraction to determine change in velocity
may be discussed in connection with acceleration later. In the meantime this
limits applications of vector subtraction to displacements: and. velocities that
are "in line.")

The following example show how addition and subtraction are related

What numbher is 8 - 5 ? Tt is that number which when added to 5 equals 8.

Then it is the number 3. ( In formal terms, a-b = n if and only if n+b = a. )

- s
450



We define subtraction for displacements in the . -me way.

Displacement a - b is that displacement which when added to

displacement b has the same result as displacement a.

This can be shown by the following vector diagram.

Given: displacements a and b as show.

Find: displacement a - b

The dotted arrow represents displacement a-b because it shows

that the addition of asb to b results in a .

Now find b - & . b -a

e e ——

The dotted arrow represents displacement b - a because it shows

that the addition of E_.- g to a resulte in b.

Have students do this type of exercise with given pairs of dis-
placements. Emphasize connection with addition. Also have students find
displacement a + b along with displacement a - b. Note that subtraction

is not commutative.

The physical counterpart of this would be as follows: two objects
start from some point; object A 1s given displacement a; object B is given
displacement b. & = b 1is the relative displacement of object A ith respect

to object B in the process. b - a is the relative displacement of A with

respect to A.

This would probably be a difficult idea to get across to Junior
high youngsters, even with "in line" displacements. There 1s some work

on this later with velocities.

s
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It might be possible to find applications from economics and 1inear

programming that would be helpful here..

Problem: Spacesbip docking is accomplished by ground telling spaceship
where it is with respect to the trailer. It is hard to find
things in space just by looking. Ground launches trailer and

keeps track; also it knows the location of the spaceship. It

tells the spaceship where to look for the trailer.

Showing subtraction another way:

Since each displacement has an opposite, subtraction can be shown
another way.

Have students show displacement a - b / see drawing below ) in the way
they have just learned. Then have them represent displacement

a + ( -b ) as shown in the following drawing.

Do the displacements g - b and

that 1s, the same direction and magnitude

Then a -b = a+ ( -b).
Give exercises asking students to show subtraction in these two ways.

Show analogy to numbers 5 -8 = 5 + ( -8 ).

Show that a - a = -

b7

Eoen
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IV. Multiplication of Vectors by Scalars

A. Developing meaning

Multiplication by scalars can be introduced through repeated addition.

Have students represent the
repeated addition of a dis-

placement such as atatats

| &2
+
| oo
—Pf'
mw
+
I

After having them do a few,
including some that require ex-
tensive repeated additions that
may run off the paper, suggest
that these laborious repeated

additions can be replaced by a

single displacement having the

same result.

Note displacement 4& above which describes the same displacement as
a+a+8a+a. Note that I is a scalar and & is the vector, and that they

are combined in this special way shich i1s called multiplication of a vector

by a scalar.
Give exercises having students represent, for example,

b+b+b+b+Db+Db and éb. Have them describe but not draw displacement 137b.~

Develop meaning for 1 a2, as shown

2
gﬁ£§g le;t, an: for % a, .7Ta, 2 % a,
P sfif‘ 1.0 a, etc.
a & Include O a and 1 a.

Develop meaning for multiplication
' by negative scalar as show for
(-2) a.

gé" (4233

|
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Note the following distinction:

( -2 ) a : multiplication of & by negative 2

- { 2a ) : the opposite of displacemtn 2 a

Thes

o]
]

displacements have the same result, ( -2 )a =-(2a ) .

Then we can think of displacement -2a either way.

Have students make representations of several displacements of

this type, including - % a, =-3.2a, etec.

Develop idea through the activity below that for any scalar k and

. . . ~
displacement & there is a displacement ka . P
-
-
-~
-
-~ S
/ A""I
g -7
Fd
=
-
-~
P
-~
=

Given displacement a and point A. Have students mark points

showing various displacements of A suchas 3 a, - 11a, g a, - 5-a, ete.
2 — =] g =
Lead them to sketching the line where all these displacements of A will be,

and that for every scalar k there is a point on this line for displacement ka

applied to point A.

Now turn this around. Choose an arbitrary point on this line for a
displacement of A. Is there a scalar k such that k & is the dis-

placement applied to A ¢

We assert that there is, although in finding k, we often have to

resort to an approximation.

This develops the idea of a one - to - correspondence between the

points on this line and scalars.




Have students work this kind of exercise:

£
// 2 Given displacement b and pcint A.
// Find displacement kb which displaces
/ A to Ay . Also find displacement kb
/// Ail : which digplaces A to AE‘
/
b / Students find k approximately.
j/
‘A 1/
,,l ‘l'

With this kind of activity, students will soon realize that this 1is

similar to measurement, using b as a unit.

To make these activities easier for students, it might be well to
consider scaling the vector representations of the displacements so that they

will have & =zcale available.

At left shows the vector representation of

displacement ¢ scaled in tenths. Also

the use of the rulings on ruled paper might

be considered.

( Tt might be worthwhile to develop a telescoping vector.

ruling _
!‘x _ -

————

AL B B
sliding tube or board —" '
Felt could let it stick to paper or acetate. A blackboard vector

would be handy. )

B. gome Properties of Multiplication By Scalars.

I IT
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The first drawing shown on bottom of preceding page, shows the
construction of displacement £ ( a + b ). The second shows the construction
of 2 a+ 2b. Comparison of these two representations shows that they have
the same direction and magnitude.

then, 2 (a+b ) = 2a+2b.

Have students make similar constructions. Try 3 ( a + b ) and

w__l

3a +3b , 1 (a=5b) and a + b
2

2

VTS

Tead to general pattern: k (a+b) = ka+kb . Note that

that + s8ign is for vector addition.

Next have students make a representation of displacements ( 2 + 3 ) a

and of 2 a + 3 2, end compare. Does ( 2+ 3 ) a equal 2a +3a?

More investigations of this type should lead to the genera result:

for scalars k and m . and displacement =&

(k+m)a = k

o

+ma

Note the use of + gign for addition of scalars and for addition

of vectors.
Have students study these two expressions to determine what they mean:

(2X3)a 2(3a)

steges, and compare results.

Does (2% 3) equal 2 ( 3a) ?

\nm



Note the multiplication of two scalars ( k X m ) and the multiplication

of & vector by a scalar { ( kXm ) a )

Summarize these properties by discussing different ways of construeting

and naming a dispiaaemsnti

For exsmple, have students describe the construction of :

12 a 5 (a+b)
(hx3)a also 5a+5hb
b (3a)
(4+8)a
ha+8a

ete.

Developing a System for Describing Displacements

A, Describing a Displacement in Texrms of Two Given Displacements.

After seeing that a displacement may be described in different ways,
the students should be ready to discuss the important idea of describing a
displacement in teims of other displacements.

(Note that the ideas discussed here are those of lirear dependence

and independence, and a vector basis, but are not labeled as such.)
Shown at left is a case in which one
displacement, b , can be expressed In

terms of another displacement, a, as

T

follows: b = o a

Whenever this occurs for two displacements & and b such that

b = k a, they are said to be parallel.

k52
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Suppc ;e a and b are two non-zero
non-parallel disgp..cements (one cannot
be expressed in terms of the other),

and ¢ is another displacement. Ex-

press ¢ 1n terms of a and b.

Draw displacement c¢. Then sketch lightly

a line for a and one for b to find
where they meet. Draw k a and m b as
shown. Then find what the scalars k

and m are.

This shows another way of drawing k a

and m b and finding the same result

for scalars Lk and n.

Present other displacements to be ex-
pressed in terms of displacements a and b.

Help the students get started on the

constructions.

¢ = 1b'+ B8a’

Include a case in which the scalars k and m ave approximated. Also include

cases where X or m 1is negative.

Provide enough experience so that students see that there is a genersl result:

For any displacement, say c¢ , there are sclars k and m such that

c = ka + m

1=

Start with another pair of non-zero, non-parallel displacements and lead to the same
general result: any other displacement can be expressed in terms of these two

displacements.




B. A Convenient Way of Naming Displacements

The idea that any displacement ( in 2 dimensions ) can be expressed
in terms of two non-zero, non-parallel displacements, can be used to set

up a convenilent way of disignating displ- ments.
Ask students to provide suggestions. Keep raising question of
convenience. Give hints when needed.

bl

Show two orthogonal unit displacements.
4 Why at a right angle? Vhy both unit

31 i displacements? What are the advantages?

|

A unit suggests a scale, Develop one.

Why can we go in negative direction also?

Students begin to gee the familiar co-

-2 -1 b e L
ordinate system.
-1l
e =31+2] Now, discuss expressing another displace-
-2 =e) + 3 ment, say c¢ as shown, in term of the
3+ two unit displacements, 1 and j .

Have students develoy the two expressions shown, and show how they

are obtained: ¢ = 31 + 2 J

Then provide other displacements to be expressed similarly.

Next, provide a variety of expressions, such as a =51+ ( -4 ) J

and have students provide the drawings related to each.




Glven displacement a

2= b

)=

+5 3
Note that the displacement could
be described by just naming the

gcalars in an agreed upon order.

a: (4,5)

Give students experience in using this notation.

Given displacement a, (4,2). Apply

a | this displacement to point 4.

A

1. Use this new notation and go back to consider addition of

vectors, and multiplication by scalars.

2. Position vectors.

3. Dot preduct.
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Fart 11 -- Enlarging the Physical Development

T. Scalars

A. Have students look at physical guantities which are completely
gpecified by a "number" and a unit ( volume, mass, time, temperature, period,
etc. ). The discussion of physical scalars should not be general or abstract.
The point to emphasize is that there is more to a volume than is indicated by
considering porous materials like sponges or coke. In this case there are two
volumes of possible interest: the air volume and the solid volume. In each
sclar considered the student should see and hadle examples of the materisl
being discussed. It would be helpful if the discussion included how one would
assign a value to the quantity being discussed. It would be very desirable

to discuss the whole idea of measurement.

B. The physical guantities selected above are used tu introduce
the algebra of scalars, Since the algebra of units is a very confusing ares
the whole problem may be sidestepped by introducing the mathematical model. IFf
each set of scalars is always reduced to the same unit basis then the mathematical
model becomes the "number" associated with the physical gcalar. The mathematical
model is then a set of numbers. The idea of forming a mathematical representation
of a physical quantity or system helps a great deal later in the development of
vectors. Multiplication of a vector by the scalar produces another physical
quantity. The mathematical model will have different meaning. As an example,
Newton's second law (F = ma). Force and acceleration are physically different
‘but the mathematical model in some cases will be the same. Introducing the

mathematical model at this time should pave the way for its use at these later times.

If some physical quantities are listed which are not scalars it can
be established or made reasonable that a description of the " real world" may need

different or entended mathematical ideas.
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Displacement in the form of ( chess or checkex woves ) can be introduced as
an z2xample and can be tied in with the following vector development. There
are probably better examples than the board moves in checkers but they should
be something the student can actually do. The examples should not be thought

experiments s.e. hypothetical trips etc.

IT. Vectors

There is a class of physical quantities which need for their de-
scription & number and a direction ( also units ), This section will define
a vector and develop the algebra of vectors. Since displacement is an idea
which is easily grasped the difinition will be formulated in these terms. 'The
formulation of a mathematical model from experience in the "real world" should

be carried throughout.

A, The definition of a vector follows from "physical" experience.
The use of a frosted acetate overlay allows the student to develop for himself
the basic properties he associates with vectors. The formal definition and

representation — ———o = 35 8 directed movement of a plane should be

qulte logical and real. This may be a good place to have the student
tentatively identify other physical quantities with vectors -- velocity,
acceleration, force. The question is raised how do we determine whether or not
any of these quantities can be represented by vectors. To do this we uust

establish the algebraic properties of vectors.

B. Return to the acetate and establish the rules for vector operations
of addition, multiplication by a scalar ( number ), ete. Introduce additive
inverse, zero element, maybe unit vector, Follow these with the CAD laws.

A1l of this should he done with acetsate by the student -- operations are

to bhe made reasonable.




There should be no formal mathematical proofs. It should be emphasized that
the displaced zcetate is the physical world and can be represented by

mathematical systems of vectors.

C. Using experiments have the student discover and test other
physical quantities as to the feasibility of using a vector model to represent
them. In this section there should be come exampl:s which do not lend them-
selves to vector representation. Pressure might be a reasonable example,
electric current another. As an example of vect@is, velocity seems to be
quite straightforward. Acceleration whould be considered. Concurrent forces
could also be introduced. If forces and acceleration can be introduced than
sealar ( physical ) multiplication .an be considered in an operational sense,

s.e. mass multiplying acceleration 1s equal to force.

D. Since multiplication by a scalar is introduced in the sectlon on
displacement the extension of this in physics could be very helpful. In dis-
placement the multiplication by scalars is essentially a change in scale. No
new physical quantity is generated by this multiplication. There are some
cases in which multiplication by a scalar generates a new physical quantity.
Momentum, for example, is formed by the scalar multiplication of mass and
velocity. Force is related to acceleration multiplied by mass. This approach
could lead a long way to establishing the operational ideas in science. Cause
( force ) and effect ( acceleration ) can be established at this time. It 1s
here that the idea of a mathematical model helps considerably. The force
diagram and acceleration diagram are different in the real world but to the

mathematical model they are equivalent. Note: If Newton's second law is the

resultant force which is the cause of the acceleration, physicelly it is hard

to find the resultant force.
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Represen’ing the forces by a vector model we can quite easily find the sum or
resultent vector. This vector referred to the physical situation can give the
magnitude and direction of the acceleration.. Another utilitarian aspect of the
mathematical model comes when we ignore rotation. The model does not have to
correspond directly to the physical case. If rotation is to be ignored, the
mathematical model will have all vectors meeting at a point. This model will
describe the motion of the bodies center of mass. Sometimes this is enough foz
the physical situation and makes life much simpler. Forces should be considered

only after the student is fairly familiar with vectors.

E. The possibility of introducing dot products should be investigated.
This is not easy. The mathematical concepts are hard and experiments involving

energy are difficult to make work. They are possible, however.

Also the feasilility of rotations must be considered. This means not
only rigid body sort of rotations but also point rotations. PSCC does not discuss

rigid body rotations or torques.

F. Added note to outline.

Introduce the idea of constructing a mathematical model from kinematicg
( displacement, velocity, acceleration ). Kinematics does not clutter up the
situation with physical constructs like force, momentum, and energy. This allows
a student to study physical systems without considering the cause of the systems
behavior. Wher algebra of vectors and development of models is fairly well es-

tablished then introduce physical constructs ( force ete. ) and cause and effect
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A possible "flow" dlagram mlight aid in establishing the procedure.

Physical Mathematical

Model Model
Physical Model ‘ Results of
based on | Operations on
Mathematical h Mathematieal
Model Model

III. Velocity as a Vector
Investigate the falling sphere case:
/f~5cale ' Sphere 1 (:) fast
Sphere 2 (I) slow
Drop each sphere by itself and
(syrup?) observe its motion. The student

can be told or demonstrate for him-

self that each sphere falls at a

'TWIIYI‘I’I‘II\IIYIIIIu

constant rate or vel~~ity. There
are a number of methods by which one can describe the motion of the ¢ .. A set of
ordered pairs can be obtained by observing the distance covered by the sphere from
some origin during various time intervals. A graph of these ordered pairs can be
used to describe the motion of the sphere. If, instead of the sphere falling, a
bubble is introduced st the bottom and allowed to rise we have a different situation.
Again measurements can be made and a graphical model developed to describe the motion.
Another possible way which conveys as much informstion is to state the rate at which
the ball moves. Since the ohJect may move either up or down a direction should be

asglgned to the rate. This discussion leads one to suspect a vector representation

may be possible.
oy be p 1460
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al any position along the tube the sphere Talls at a constant rate ( speed ) and

is moving either up or down. Therefore let us make a mathematical representation
of this motion by using a vector of a length proportional to the rate and pointing
in the direction of the motion. This does not establish that a vector representation
is possible for velc~ity but we can test. it. Do velocities opbey the algebra of
vectors? Let us describe the motion of two balls in the column of liquid. Let (:)
represent a fast ball and (1) represent s ball which moves at a slower rate

than C:). Release the (I) and time its fell over a known distance on the
scale. From this data the velocity of the ball corresponds to a vector with a
suitable magnidude and pointing downward. TNow rerform the experiment with two
balls. Releaszse the (I) first and let it drift downward to a prescribed mark on
the secale. As it moves past the mark release the C:} and staort the timer. Wlen
the two balls pass one another the fast ball has traveled a distance relative to
slow ball equal to their initial separation. Dividing this distance by the time
gives i1l.z relative velocity of the two balls. This relative veloeity can hopefully
also be represented by a vector. Our two experiments have provided the velocity of
one object referred to the scale and velocity of a second object with respect to the
first object. Our vector representation of these velocities says that the addition
of' the (I) velocity and the relative velocity should give the velocity of (:)
referred to the scale. Perform the sum of the two velocities and check by a third

experimeni: Dropping (:) by itself and computing its velocity.



The introduction of subtraction can be accomplished by inserting a straw in
the dropping tube and blowing a bubble. An alternative way to produce a rising
sphere would be to seat a light ball on the end or the straw and push 1t to the
bottom. The rising sphere is considered to have a negative velocity. Measu:ement
f/ procedures similar to those de-
~Atravw scribed in the previous section
yield the necessary velocities.

// By using three balls it can be

(1*:l¢ball demonstrated that the CAT laws
hold. The motion of a sphere in
in a viscous medium is used only as one of may possible means of introducing students
to vector ideas. Other possible schemes that seem possible are:
1. Longitudinal pulses propagating down springs. A
very weak spring under low tension will have a

reasonable velocity of propagation.
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2. A moving endless belt with a ball rolling on it.

7 ball
ball
P belt
Q) ) — 7 (j __5} T Two pulleys

f)Il sanie

Ramp can be formea .y bending a plastic ruler. It is
attached to the system and allows smooth injection of
the ball onto the belt. The ramp should permit various
velocities to be reproduced. Tapes cemented to the flor
and belt make distance measurements easy and from

corresponding time measurements the velocitieg can he

caleulated.

When the student has convinced himself that velocities can be rep-
resented by vectors he should proceed to develop the mathematical

model of the physical situation has has been observing.

Vo 1is relative to v, | Operation Vg
C? of addition B
Va Vp 1is relative to scale [ l to find v ———
v Y with respect back to
- . to scale o physical
S) — —> v model
Vo
Physical Model Mathematical Model
Lée3




The result of the vector addition is referred to the physical situation.
For the case of the rising ball the
operation . of svbtractions and fol-

lows the above sequence of operations.

The mathematical model is not tied
® to any reference plane since there
has been no discussion of bound vec-
Py, % * ! tors. The operstion ( s ) to be applied

to the mathematicel model are inferred from the physicel situation. It is in fle
physical world that we asscecliate velocities with scales and reference Irgmes, It
is also possible in the mathematical model to have reference frames, but at this
stage a reference to axes would probably just confuse the issue. It should be
mentioned also that we are working in velocity space. Distances should not

appear on the physical model.

The previcus discussion has been concerned with in line velocities. It may
be worth while to extend the treatment of velocities to obligue motions. A simple
method may be through the use of clear lucite tubes on aluminum vee rails with

marbles. These systems should be fairly friction free and the velocities constant.

—~——— taid 'on a*
horizontal -
surface

Even if friction is a problem a small piece of tape at one end of the tube

or rail should establish & uniform velocity. The analysis should follow that

discussed above or in the section on displacement.
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IV. Acecelerstion

If acceleration is introduced through in line motion some conceptual
difficulties can be avoided. 1In more general motions acceleration occurs both
from a change in length of ' : velocity vector and also from a change in direction.
There is much to be said for following the pattern used in physics of discussing
accelerations where analytic length of the velocity vector changes and then follow-
ing with changes only in direction. Consideration of motion where both changes
occur is left to the last. The standar ballistic problem of shooting a projectile
in a horizontal direction also presents unnecessary complications. It combines
both a constant horizontal motion with a vertical linesr scceleration. The
complication in this situation comes from resolving the vectors into orthogonal
components -- vertical and horizontal. At this stage the vectors should be

left free.

The question arises as to how far to carry the investigation of
acceleration. A change in length of the velocity vector will establish in the
students' minds that acceleration can be represented by a vector. In a physical
sense the change in direction is imporﬁant but st the early stages not completely
necessary. If' straight line motion becomes the common thread throughout the

book, changes in direction should not be attempted.

There exists a great problem in measuring acceleraticn. At present
we do not have simple accelerstion measuring instruments. The standard and
maybe the best treatment probably lies along using a tape which is marked by a
spark at equal time intervals. BSuccessive differences in distance and the time
interval gives the acceleration. An attwood's machine or inclined plane will
give low accelerations and meke measurement quite easy. Also they operate with

constant acerleration and hence average accelerations do not enter.
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Hop fully there are more imaginative ways of iriroducing accelerations. The
major criterion for an experiment should be that the measurements should be
simple and obvious and the accelerations easily calculated. The vector charac-
terigiic ia the iImportant item, not the experiment or the physics. Finally,

the analysis can be carried out in a manner similar to displacement snd velocity.

V. Torces

In this experiment the student is limited to a discussicn of concurrent
forces. Omit for the present the observation of forces exerted on extended
bodies -- distributed forces. A force table is an easy piece of eguipment to
work with and involves only concurrent forces. In describing the operation
of a force table the student should understand what is meant by strings. A
string can uvransmit a force only zlong its length; s.e. it 1s incapable of

gustairing any shear forces.

I. Forceg in general.

Forces are associated with dynamics and for the first time we are
considering pnysical quantities which cause something to happen. This is
different from merely describing the motion or behavior of a system. 1In de-
scribing physical phenomena we introduce new quantities which are considered
to be the cause of something happening. TForce is such a quantity. If a system
ig at rest or in uniform motion and this state is observed to change a net forece
is acting on the system. Iater we can consider gquantitatively the effect of new

force on the motion of a body.

Forces are subtle physical quantities and the development of
mathematical models corresponding to general situations is quite difficult. By
this we mean a generalization or inference from a specific exampls 1s liable to

lead to guite erroneous conclusions.



IT. Eguilibriv on a force table.

iff*ring

o .

_/ I

n

If we consider ti.. casgse where the two strings exert equal and opposite
forces on Liic ring trere is no motion. Before the strings were attached there
was no motion and no net force on the ring. There gtill is no motion and the
state of the system remains the same, hence there is no net force acting con the
system. The problem is now to describe the pnysical system by a mathematical
model. If we remove F, the ring slides to the left. Removing 7 allows the ring
to move to the right. If we change either Ty or F, one at a time similar changes
in the state of the ring occur. Since Yoth direction and magnitude are involved
we can try as & possiblity & vector model. Let Fl and F2 correspond to two
vecters which add to give the null vector., If vector F, is shorten=d, then the
sum does not result in the null vector and we have a new vector to the right
wiich gives the correct direction to the motion in the physical case. Shortening
Fs also yields a correct result. If one of the forces is replaced by two vec-

tors, the various algebraic rules can be established.

This analysis does not show that forces can alwsys be represented by a
vector model of this type. Forces cannot in general be moved arbitrarily.
The physical situation determines where forces are applied and the points of
application must be considered in discussion of the detailed motion. The forece
table has no problems along these lines since the foreces always act at a point.

-inally, the analysis should be extended to forces acting at various angles.
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RESTRICTING AND FREEING THE INTUITION

H. 0. Pollak

A comment in the "Suggestions to SMSG on the Secondary School Mathe-
matics Program" is that algebraic topology is the applied mathematics of
the future. I am not sure of the immediacy of this threat; at the pres-
ent I know of the applications to physics, like the many-body problem and
general relativity, the mahy diverse applicatliouws of graph theory, uses
of fixed point theorems in engineering and economies, applications of
cohomology theory to the analysis of structures, as well gs attempts to
use topology in understanding large electrical networks. However, the
guestion of building up some intuition on topological notions somewhere
in the secondary school is, it czems to me, wié open, regardless of the
imminence of a flood of applications. There are a lot of interesting con-
cepts: dimension, deformagtion, orientation, fixed points, triangulation,
homotopy, cutting and pasting, connectedness and multiple connectedness,
open, closed, compact, curves--open and closed and arcs--surfaces, knots,
geodesic, and so forth. How important is it that everyone have a feel-
ing for some of these things?

Just in case we don't feel like solving this problem, let's general-
ize it. We had quite a discussion about automatically restricting a stu-
dent's intuition by always using rectangular coordinste systems. How
much more do we restrict the intuition by always using the invariants of
Buclidean geometry:! Anyway, how do you tell when an implied restriction
of the intuition is a good thing and when it is a bad one? The first non-
rational numbers the student sees are 42 and T , but we are careful to
keep open from the very beginning that there are more. From the begin-
ning of SMSG 9 we drew a positive number line with an extra stub to the
left. We make sure that our first examples of functions as functions are
not all given by simple formulas or are even all continuous. But when
we introduce complex numbers, I don't recall that we do anything at all
to keep the intuition opsn for quaternions. The beginnings of plane
trigonometry ignore spherical, and I am not sure that there are any dis-

covery exercises for non-euclidean geometry in SMSG 10. Most of these
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choices seem immediately intuitively correct to me. Why? How do I tell
a restriction on the intuition I like from one I dont like? Future
importance of the generalization, ease of keeping the possibilities open,
applicability of ths more general concept all have something to do with
it but don’t seem to be the whole story-

The question of the long uninterrupted stretech of rectangular coor~
dinates, incidlentally, raires the questior of loecal coordinates. In
fact, every appiication of coordinates I can think of has the feature
that the coordinate system is only locally valid. "Two aisles up and
three aisles over” in the supermarket is not suprosed to take you through
the wall into the laundromat next door. The numi:ring system on EL
Camino Real begins over again in each community, to my original confusion.
Tn Michigan there is a global numbering system on major roads which is
interrupted by a local numbering system in ilncorporated units and resumed
when you get out into the farms again. When we count tree rings, the
very deformation of the polar system glves us significant information.

I think maybe a case can be made Tfor some intuition-building for local
coordinate systemsf When iz 1t legal to think of the earth as flat?
When is noon a£ the North Pole?

In SMSG 6 last year, my son had a certain amount of trouble with
onie particular aspect of graphing: How do you pick the origin and the
scale on the 1little piece of graph paper you get for doing the homework
so that the problems all fit and don‘t run over into other problems and
are not so small that you can't see what you are doing? With ths usual
introspection, T find that in my own work I always make a gquick judgment
on this point before I start plotting. We never teach the kids, as far
as 1 can remember, how to make such a Judgment. This is both another
example of the local coordinate guestion and also an application of

approximations.

O
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ON THE INTRODUCTION OF MATHEMATICAL CONCEPTS
Hassler Whitney

We shall illustrate some cof the wc in which = gunstion may be
posed or a system may be set up for study, which will lead in a natural
manner to the elucidation of concepts. The important thing is first to
understand the workings of a simple situation, then to pull out some
underlying notions. The notions thus will bs understood befors being
formulated.

Just as in mathemstical research, some qu:. .Lions may lead to a
variety of concepts and topics. Each of these is often worthy of study.
Then throse topics may be compared and their relations studied. Thus a
much fuller understanding of the general situation becomes possible.

Over a month, term, or year, one wishes to cover cextain topics.

If one is led to study and comprehend various notions and their rela-
tions without at first demanding that they occur in a certain order, it
is then easy to summarize the principal facts and thus present the final
material in an orderly fashion which will be understood rather than

memorized.

I. Some Topies From Number Theory

1. Divisibility. Let us lock at a multiplication tgble and ask some

natural questions. TFor instance,

what numbers appear in this table? L2 3 & 2 6 1 8
A1l (natural) numbers, clearly. 2 l b 6 8 10 l? 16
Bot this is because of the first 3 5 9 12 15 18 E; 2k

L 8 1l2 1u 20 24 28 32

row and column. Suppose we dis-
card these. Then we can fird

numbers not appearing; for instance
1, 2, 3, 5, T, 11, . . .

Some numbers appear several times in the table. What does this mean?
They are answers to different multiplication problems: 12 =2 « 6 =

3 - b=k 3 ete.



O
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This suggests =z definition: The number n 1s composite if there exists
numbers a and b, both smaller than n, such that n = ab.

Theorem 1. 7 1s not composite, Tor trying 2, 3, L, 5, 5, none of
these works.

9 is composite, for 3 1is less than 9, 3 1is less

I

Theorem
than 9, and 3 - 3 = 9.

Femark: There are two numbers a,b"” nceds comment. The commonly
used "two' is not meant in the strict sense.

Remark: After a few such examples, one may point out the use of
"there existe” and "for all.” In testing 9, we find 3; in testing 12,
we find 2, 3, 4, 6; in testing 7, we find nothing. In the latter case
all test numbers fail. Negations of quantifiers are already understcod
in a basic manner.

Remark: Is 1 ''prime'? The fact that mathematicians choose mean-
ings of symbols (in particular, of words) becomes apparent. We consider
several choices and Tinally pick one that szems mest useful. Contrast
with everyday arguments, which in reality depend on word usage.

Why bother zbout composite versus prime numbers? Seversal answers
may be suggested. A composite number may be "simplified": 63 =T . 9,
while 61 must stay as is. We can simplify 63 further: €3 =7 - 3 -
3. We are running into the fundamental theorem of arithmetic.

Multiplication is zasy, writing numbesrs in factored form. Add
exponents. Note that addition is difficult. How do we square? What
numbers ares squares?

Remark: Later, in considering /2 , what sort of properties are
being used? Divisibility? Let us consider the relation to the funda-
mental theorem. That was easy! How about other roots? Students may
i.nd genersl theorems.

What numbers are divisible by 27 by 4? Let us look at the pattern:

12 3 4 5
2 2,4

7 8 9 10
' 2,k o

V] [eaY

We see a fact that may be expressed in several ways.

a. AT L numbers divisible by U4 are divisible by 2.

b. Those numbers divisiblc by 4 form a subset of those divisible
by 2.
b7l



c. If n is divided by &4, it is divisible by 2.

In ¢ we may increase clarity by inserting "for all n ,..."

Another interpretation for c¢: Suppose we ar2 told that n 1is scue
specific natural number. We wonder if it is divisible by L. We think

of ¢ to help us. Since n 1is given (though we do not know which number

P: n is divisible by L , Q: n is divisible by 2

are statements; i.e., each has a definite truth value. Then c may be
shortened to "If P, then Q." This we assert. How may we make use of
this? If we learn that P 1s true, we may at once assert Q.

Suppose we learn that n  is not divisible by hLj di.e., P is false.
What happens to c¢? It certainly does not help us decide about Q. But
we still believe in c¢; it simply gives us znc information.

With still further examples, it will gradually become c¢lear that the
way to be sure that a coupound statement gives no information is to sse
that it is certainly true (without further nowledge). This will turn
out to be the reason that "If P, then Q" is called true if P is false.

Remark: It is useful to ask for proofs of such things as: If 1 = 2,
then 1 = 1. For instance, 1 = 2; hence 2 = 1. Adding: 3 = 3; dividing
by 3: 1

makes definitions of logical relations seem artitrary. Using statements

1. However, using statements whose truth value is obvious

with unknowns (i.e., quantifiers) like ¢ forces us to consider the dif-
ferent possibililities and make usual logic natural.

It is not hard to see how further work will bring us to simple under-
standing of the various logical connectives. Afterwarxds thelr meanings
may be codified and clarified.

2. Modular Arithmetic. We start with a pattern. Let a circle be

divided into n = 20 spaces. OStarting at 0, let us take steps of length
a = 6. Mark heavy dots at each spot reacusd. The first five are shown

in the figure. What will the pattern of dots look like finally? Here
each even number has a dot. Will the dots be evenly spaced like this,

in all casesf What will the final spaces between dots be like? One can
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ask different class members to cxperi- ;b/*”
4
ment with different n and a , and try

for conclusions. 4

Presenting the conclusions so far,
the ged of n and a appears. Apart
from this, various ways of proving
facts occuring here may be suggested.

For instance, a more or less geometric 5

proof that the final spacing is even 5 1=first step
may be worked out. This is certainly 2=second sten
a good topic for discussion in class. Later a more algcbraic proof may
be given. Now the two proofs may be compared. The fact that if there

is a short space between two dots, all other spaces will be equally
short has its analogue in equations. The two »Hroofs may be written side
by side, showing tiaeir final identity.

Baving marked the "4" dot, how may we show that we have already yone
once around the circle?Y Different ways may be suggested. In particular,
the pattern may be shown along a line with multiples of 20 marked. Herec
residues mod 20 appear. In the first segment cf length 20, the leact
residues appear. BEgquivalence (mod 20) and partitions come in naturally
(if enough time is spent on the topic). The complete pattern showus the
ideal generated by n and a ; the expression of (n, a) in terms of
n and a is found. The usefulness of negative numbers is also appar-
ent. Finally, if n 1is prime, we obtain divisibility propcorties concern-
ing primes. From here the proof of the fundamental theorem is rapid.

Comparison with a former proof is in order.

IT. Mulitiplication of Negative Numbers

Having experimented with addition and subtraction of positive and
negative integers, let us try multiplication. Here is one type of experi-
ment that should be carried out: First, mark values of x . y in a plune
with the usual coordinates. Start with non-negative x and y ; use

Just integers. Now look for
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12 -9 6 -3 0 3 6 9 1l2 15
8 6 4L -2 0o 2 Lk 6 8 10
O 1 2 3 p)
0O 0 0 © 0

-3

-6

some other values. The pattern certainly suggests negative results. Why
should we choose, for instance, the top row shown? From 9, subtracting
3 gives 6; subtracting 3 now gives 3; next, O; next, -3; ete.
This makes a simple pattern. It now has the property: TFrom -6, adding
3 gives =-3; adding 3 gives O; adding 3 gives 3; etc. Let us

state this in formulas: Adding 3 to 3k gives 3k + l), or
3(k +1) =3k + 3.

How about bigger steps to the right? Soon the distributive law
appears. Thus desiring the simple pattern is equivalent to desiring the
distributive law. DNote that a simple pattern appears first, use of a law
later.

Now how about filling in the lower left-hand part? Clearly we desire
positive numbers to keep the symmetry. We have found the product of
negatives.

Since many feel that negative times negative should be negative,
let us try this pattern also. Keep both patterns handy, and compare the
two while working in various ways with integers (or real numbers). More-
over, a model with product equal height with both definitions (two

models) is useful. One has sharp edges in the second model and has lost

nice symmetry.

ITI. Directed Lengths

Suppose we have a line with a starting point and a direction along
it. We have also a kit giving or manufacturing arrows or "vectors"
which may be laid on the line, each in its given direction, from the

starting point O or from certain other points. We shall study the
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resulting system. The application to measurement along a line (without
a starting point) will be clear enough; we do not consider this here.

With any vector in our kit, named u for instance, laid with its
"start" at 0, mark its "end" with the symbol u . This gives a picture
of a vector from the kit.

Let us assume we can add:

a. Given u and v from the kit, we can manufacture u + v ;
v may be laid after u , giving the same mark as u + v laid from the

start.

;/G\ ‘ " N

0 v u u+v

The construction makes clear that we have (or require):

b. Given u, v, v from the kit, we have (u +v) +w=u + (v + w).

Assume the kit contains a knife point with handle:

C. There is a vector O such that u +0 =0 +u for all wu.

Assume a vector can be turned around; rather, it can be copied back-
wards:

d. Given wu, there is a vector ~-u such that u + -u =-u +u = 0.

Finally, assume commutativity:

e. For all u, v we have u + Vv =7V + U.

We can of course mention "group,”

etc.

Let us now assume order on the line or between the points marked on
the line. (With the assumption about the points marked we need not
worry about the order being Archimedian. )

f. The marks are simply ordered: 1if u >0, then u + v > v for
all v .

Now we ask, "What is the system like? What is the set of all possi-

ble marks on the line like?" One soon sees that there are two cases?

Case 1. There is a smallest positive vector. In this case 1t is

easy to see (class experimentation) that if we call this vector a , for

instance, that

BIVoE
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a, ata, a-+at+a, ., -8, -a + a,

ig the set of all vectors in our kit and gives all the marks on the line.

Let us devise a special notation.

(a = a, ("")a =2 + a, (*"J)a=a+a +a,
etec. Also some similar notation for negative vectors. We now have

(" Ja+(")a=at+ta+a+a+a=("""")a,
which suggests defining, among our new symbols,

(1) e () = (),
We then have the distributive law:
na + ma = (n +ma, all n, m,

in fact, as is easily seen by using u in place of a -

Note that we have discovered the group of integers and have found
how this group operates on our kit of vectors.

Remark: We may prove the commutative law in this case.

Case 2. There is no smallest positive vector.

In this case it is interesting first to consiuer what we can do ith
Just two vectors. We permit ourselves to construct others from these op
Tt may happen that we may form ma + nb , obtaining O (with none of )
b, m, n, zero). This brings us back to an earlier topic; also it me
be used to introduce rational numbers as operators on our kit. If t! -e
is no such relation, the class may experiment with what may be done - .th
the two vectors. We discover that we may manufacture arbitrarily small
ones and are thus necessarily in Case 2.

Consider Case 2. We see that the marks on the line are dense. This
suggests assuming completeness. For instance, assume mechanically that
we may lay any number of vectors from O together and push a block down
from the right till it can go no further and then mark the point reached.

Through our mechanical model, corsider now our possible operations.
Choose those vectors u which (with some fixed a ) have the property
u+u+uda. Lay all these from O, and push the block against them,

giving v. It is quite easy to see that v +v +v = a. Thus we may
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"divide" a vector by ('''). Now all rational numbers operate on our
kit. By completion, all real numbers operate. We have now constructed
the real number system and its operation on our kit.

Summing up, the theory of directed lengths on a line 1s the theory
of a simply ordered set allowing the real numbers as operators, or the
theory of a one-dimensional vector space. We have acccmplished several
things: We understand better the operations of measurement in one dimen-
sion; we see how the real numbers come in of necessity to measurement.

Note that if we choose a Tixed vector a £ O and express all vectors
as multiples of a, we obtain an isomorphism of the real numbers with
the system of vectos. In particular, any vector equals x incheas ~nd

also equals y Teet. A true equation is

1 ft. =12 in.

For some peculiar reason, many present-day texts fear 1o use lengths as
mathematical objects and are thus forced to say 1 foot "measures" the
same as 12 inches. Worse, one 1s supposed to write equations in numbers
only, making difficult the keeping track of actual vectors involved

(especially when changing "units').

IV. Logarithms

1t

Having worked with a "slide rule for addition," let us try a "slide
rule for multiplication." First, choose it long encugh to include 0.1,
1, 1C, 100, 1000, say. Now try marking 2. From this we find 20. Also
mark 4, 8, 16. We already have a test for our choice of 2: Does 16
seem to be at a nice point between 10 and 20? If not, move 2 a

little. Now try some other numbers and resulting {actors.

| . N }

o 1 10 100 10?0
!

15

I 2 a4 8

We noon note a nice property of the decimal system: When we mark

2, we may at once mark 0.2, 20, 200. Why do all these separately?

7=



Recalling our study of points on a circle, let us construct a circular
slide rule. Here 0.1, i, 10, etc., will all be at the same pecint. With
a carefully made cardboard rotating circle and a good manner of marking
and erasing, a group of people can soon construct a rather accurate rule.
Plzy ng with these rules, properties o0f logarithms have an immediate
clarity, and the shape of the logarithm function (transferred to a graph)

has a strong reality.



ON THE ROLE OF LOGIC IN ELEMENTARY MATHEMATICS

Hassler Whitney

We shall consider here the question of what logic 1s neeced in the
study of elementary mathematics, say, through algebra and what and how
such logic may best be taught. To get at the heart of the matter, sup-
pose the following complaint is made during a class:

"I den't resily understand what is going on."

Somewhere there has been a breakdown in communication so that the student
cannot follow the reasoning process. The real issue is that of the reason-

ing process and, more generally, of the communication of the ideas. We

shall use the term logic to cover this. For instance, in studying solu-

tions of quadratic equations, the use of "variables,"

the question of
whether a given "equation” is something you are supposed to solve or is
an identity or defines a function, and what is being proved versus what
is being discussed will be puzzling to the student. All such matters
must be considered in studying the logical structure of an exposition.
Since carrying on mathematics consists essentially in carrying on
precise reasoning, there is no question that logic must be considered in
the teaching of mathematics. Cne extreme position is to hold that the
student intuitively comes to understand what is going on and learns the
underlying reasoning process through actual use. This is the classical
position, which certainly has had a large degree of success. However,
one must also realize that it can also fail to a large extent (see the
quote above). At the other extreme, one can give a course in logic
perhaps especially for mathematics students, say, in a formal axiomatic
manner. The result is apt to be simply a new mathematics subject with
little actual relation to other math courses. (One recent text omits the
existential quantifier as being too complicated for a first course.)
In between, a text may contain a chapter on logic; it most likely studies
propositions through truth tables with unreal applications to real life
and has some discussion of guantifiers. Uses of symbols (a :ta:t towards
good communication) may appe r. Again the chapter is usually largely

forgetten in the rest of the sook.
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So far, no good solution is in sight. So to start, let us look at
a few statements occuring in the grades and see what formal logical ele-
ments are invelved.

Qe You can subtract b from a, provided that b < a. If ...,
then 3 ,

b. If L4 will go into n, so will 2 (vn). If P, then Q.
(Actually, existential quantifiers are alsc involved if one used the
definition of devisibility.)

C. If 2 isg divisible by n and 3 is divisible by n, then
6 is divisible by n. (vn) P& Q=R .

d. None of 2, 3, 4, 5, 6 go into 7. Hence T is prime.

Not 3 ..., hence .

There is certainly no difficulty in the student's grasping the intui-
tive meaning, in fact the precise meaning, of the above statements. Thus
the elements of logic in the restricted sense are well within the student's
power. When the logical elements get more complex, 1t becomes worthwhile
to analyze the logical structure. To this end the structure should have
been examined to some extent earlier, and the general problems of com-
munication should come commonly to the fore.

We suggest now a program for the "teaching" of logical concepts
during the generalzmathematical studies. The division into grades is

rather arbitrary, given for the sake of some kind of outline.

mwon 1

Farly grades. The notions "true,” "false," will srise; also "for

all," "there exist." Certainly one will distinguish between all, some,
none. Just how many is being more specific yet. Implication in its

general sense appears; see a above, for instance.

Grade 7. Here is a good time to give some actual number theory;
some examples of statements are given above. One can examine to some
extent the logical notions involved without introducing logical notations
other than for momentary shorthand notations. Students can give alter-
native formulations of statements. Those may be written out and com-
pared. Thus one has a real start toward equivalence of logical expres-

sions. This may be continued in grade nine.



Grade 1l0. So far we suppose that symbols have been used in the very
concrets sense as names of numbers (or other things)u For example, one
may have done some elementary work in solving equations.

Suppose we have been given a number, which we may call x. We are
told that 5x ~ 2 = 2x + 13. Can we find this number? From the meaning
of the equal sign, we know that we may add the same number, say, 2, to
hoth sides. Thus 5% - 2x = 13 + 2, and 3x = 15. The only answer to
this multiplication problem is 5 . Thus x 1must be 5. (We may now
check to see 1if 5 1s really such a number.)

Note that there has been no use of "variables"; symbols are used in
their normal manner. Through further such examples one may compare the
meaning of equivalences and impilcations.

In the further study of solutions of equations, "solution sets' arise.
If we write dcwn a series of eguations, as would be done in solving an
equatior as above, one may ask a separate question. Consider each equa-
tion separately without being told that x was some definite number.
Then each equation is not a statement but a pattern with which we asso-
ciate a solution set. What is the relation bstween “he equations? The
answer 1s obtained mathematically by almost the same procedurz as in the
example above, but the meaning is now logically much more involved. The
difference between these meanings siioould be carefully considered.

Students should be given some help in reading and understanding the
texts. In particular, they will begin to realize that there are both
assertions, witi: strict mathematical meaning, and discussion, w:ich may be
more vague in character. For example, "the equation" may have several

meanings, and one need not look for it precisely. Rather, they should

=wpull out the mathematical content of what is said.

The meaning of a statement as presenting information arises. For

example, we are told first that x 1s a number and that

(1) X +x -6 =0.
What do we know about x ? From (l) we derive

~

(2) X =2 0or X = -3,
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Now we learn that
(3) x> 0 .

Tt follows that # = 2. The information contaired in (3) is larger
than that in (2).

Note that after having learned (2), ve may say
(&) If x >0, then x = 2.

This seems extraordinary. Yrim the small amount of information x > 0O,
we obtain the precise information x = 2. This 1s so, since we are
assuming all the time that (1) holds. Thuas the meaning of a statement
depends on what has been said berore.

Consider now the statement

(5) If x # 0, then % = 1.
This is obvious; if we know that x 1s not O, then we may form %
and get the answer 1. The general interprstation of "if ..., then..."

is needed; the definition from truth tables will not do.

Tt is apparent that one is getting deeper into logical concepts.
However, at all times what 1s actually happening should be thoroughly
understood. Discussions of the logic merely confirm the understanding.

Higher grades. It may be useful to work with mathematical state-

ments expressed in logical form to some extent to see the picture clearly
and to help understand the workings of logic. For instance, suppose we
guess that every number divisible by both 6 and 21 is also divisible
by 126. Later we think this is not ~o. How do we express this? There
is a number divisible by 6 and 21 but not by 126. We find such a
uumber, in fact. say, 4o, TLogically, we have seen the equivalence be-

tween the staLements

not -(vn)(6 div n and 21 div n=>126 div n),
(2n)(6 divn and 21 div n and not 126 div n).

Tn particular, we note the mamner of negating the implication, provided

that both parts of the implicaticn are statements in advance (unlike in

(5)).




As in all parts of mathematics, one introduces a notion best when it
is needed. Implication, for instance, should not be introduced through a
definition with examples like: If 1 =2, then 3 = 3. There is no point
in defining this. In "if x > 5, then x2 > 25" there is some real point
in a definition. (Moreover, the best definition is: This tells us nothing
if x is not » 5; and this definition has general applicatlon, which the
truth tables do not.) Is there ever any need to introduce truth tables?

The following may give some reason fcr this.

Suppose we have learned that
If &b =0 and a £ O, then b =0 .

We would like to prove

If x2 = 0, then x = O.

Of course the best proof is to nove that if =x 1s not zero, we know
that x~ is not O . But nevertheless, let us use the former state-

ment. Setting a and b equal to x (say x is a given number),

we have
2
If x =0 and x # 0, then x = 0.
We seem to need an extra hypother is not O; but certainly
we cannot believe this. We can appose  x  were not O, ‘“c.

But this is strange enough that it calls for a very clear discussion of
truth values. The truth tables may help here.

We do not suggest going into a formal treatment at any point, ex-
cept in a separate course for those inter.sted. TFor instance, consider
the fcllowing:

We see that if 6 div n, then 2 div n. Also, if 6 div n, then
3 div n. We may state this as follows: If 6 div n, then 2 div n and
3 div n. If there is any possible question, let us test this: Suppose
6 div n; we wish to show that 2 div n and 3 div n. We know that if
6 div k, then 2 div k for all k. Hence using this for our number n,
2 div n. BSimilarly, 3 div n.

Now let us see what a formal proof requires. The required formula
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(yn)(6 div n==2 div n) & (vn)(6 dgiv n=>3 div n)
= (yn)(6 div n=>2 div n & 3 div n) .

A formzl proof in almost any system is sure to be long and complex, cer-
tainly hiding the inherent extreme simplicity of the result.

We make one final remark to iliustrate the meaning of a statement.
We wish to show that /2 is not rational. If it were, we could write
ag = 2b2 , for some smallest pair of integers a, b. DSince a2 is even,
we conclude that a 1is even: a = 2c. Now we have b2 = 2c2, in con-
tradiction to the choice of a and b . Hence -JET is not rational.
We note two things: In working with a and b, since we have actual
integers before us, we know how to use them. In the end we found that

in reality there were no such animals. How explain that we worked with

them? All our statements had meaning and were true under the hypothesis

that /2 was rational, not separately from this. Note also that in the
proof our statements were both true and false, a contradiction we became

aware of later.
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THE USE AND IMPORTANCE OF DEFINITIONS IN MATHEMATICS

H. 0. Pollak

One of the criticisms of curriculum reform in mathematics which
is commonly heard is that the material has become too formal. It is
claimed that the use of simple intuition has been replaced by refer-
ence to definitions and strict deductions from these definitiong and
that this is not in the spirit of good mathematics pedagogy. I don't
want to deal with the question of the validity of this criticism, but

to make a comment on the mathematical point which it involves.

The fact is that definitions mean many different things to wmathe-
maticians at different times, =nd that definitions are used in very

different ways. I can best illustrate my point by some examples.

A. Consider the problem of defining inverse trigonometric func-
tions. A mathematically satisfying attack on defining arc sin X 1is
to list all the properties that you would like this function to have.
You find that it is impossible to have all these properties simul-
taneously; that 1s, they are internally inconsistent. You therefore
have to give something up, and you finally choose the definition
which appears to be most consistent with the calculus. Once you have
made this definition, you rigorously stick to it and rarely go back
to the intuition on which the definition is based. The reason for
this is that the intuition is unsafe. The only way you will compute
correctly with inverse trigonometric functions is to work very care-

fully with the branch that is consistent with the calculus.

B. An example at the opposite end of the scale is the definition
of an ordered pair from the notion of an unordered pair. This Is an
exercise of mathematical showmanship to prove that you are clever
enough to use the set notion in order to define an ordered pair. You
will certainly never make use of this definition in working with

ordered pairs.
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C. Most examples, I am sure, fall somewhere vLetween these two
ends of the spectrum; that is, we will sometimes use the formal defi-
nition and sometimes the intuitive background to the formal definition.
The formal definition of a function falls into this category. We first
build up an intuition for the notion of a function from considering dif-
ferent ways to define it. Thus, we may use a picture, or a graph, or a
verbal description, or a table or a formula, or a machine (where you
imagine putting a number in at one end and another comes out at the
other). From such examples and many more; you build up an intuition for
the notion of a function and finally make a formal definition as a col-
lection of ordered pairs. Later on, when you work with functions,; you
sometimes use the definition and sometimes return to one or more of the
intuitive pictures which are behind the definition. Thue, if you want
to be careful in distinguishing between a relation and a funciion, you
may very well find considerable pedagogical value in the formal definition.
On the other hand, if you want to discuss the notion of a f w:fion, you
will probably find the intuitive machine picture easier tha =ny other
way. You Jjust think of the output of one machine as the irpu: of the

next.

We must not make the mistake in our curriculum materi: . of
assuming that definitions will be used in only one way. If a definition
always supplants the intuition which leads to it, thig may result in
excessively dry materials. If a definition never supplants the intui-
tion which leads to it, it is pretty useless. We must be honest wi® .
the students and let the mathematical abstractions take over in any of

the variety of ways which might be most natural to the particular problem.
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UNINVITED COMMENTS CON THE DEFINITICN OF FUNCTION

G.5. Young

Thig is a footnote to Henry Pollaw's wise remarks about defini-
tion, but addressed to the definition of function as a collection of

sensed psirs.,

In our book, Hocking and I give the definition the full treat-
ment: A function f : A - B 1is a triple (A,B,G), where A and
B are sets and G is a collection of crdered pairs (a,b) such
that the first element of eaéh pair is in A, the second element of
each pair is in B, and each element of A is the first element of

one and only one pair of G.

One could comment, and 1 would not argue on logical grounds, that
A  is not necessary; it could be defined by taking the union of the
first elements of pairs of G. But this is unimportant. In topology,
(and in some other places) there is real reason for signalling out
the set B. With A fixed, and with the same collection of sensed
pairs, changing B may really change ﬁroperties of a function. Take
for example A = {(x,y)lx2 + y2 =1}, B = BE, B! = B - {0,0), and
let G Dbe the collection of pairs ((x,y),(x,y)). That is, each
point of A 1is paired with itself. Let f : A —»B, g : A —B' be

defined by this collection. Then, f 1is deformable to a point (in

»B), and g 1is not deformable to a point (in B'). We say f &and g

are different functions because of the very practical reason that they
have different properties. Here the full notation and defirition

f : A ->B is really useful. You need the fine distinction.

In mathematics through calculus, the set A, the domain, needs
t0 be carefully specified (even though it can be reconstructed from
G), but B is not terribly important, so long as it is big enough to

contain all of the second elements of pairs in G. One can make up
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properties of elementary functions that change when oOne changes B,
but they are not .aes that cause confusion. To take one example,
let f Dbe the function that assigns to each real number x the
number XZ, One set that I could use for B 1is the set of real
numbers. With this B, it is true that B contains an open set
that is entirely contained in the image of A; for example, the
non-negative reals. Another set I could use for B 1is the set of
all complex numbers. Then, with this B 1t is not true that B
contains an open set entirely contained in the image of A. If you
feel you want to emphasize this sort of point, then you can make a
fuss about f ¢ A —» B, in an early course. Otherwise, I now pre-
fer to say, "A function f a set A into a set B 1s a collection

of ordered pairs, etc.", playing down A and B, and always calling
b b

it £ above.

T do want to keep the ordered pairs, not for logical reasons, but
for pedagogical reasons. (1) I believe the definition emphasizes the
single-valuedness better than any _ther. (2) It emphasizes the fact
that you really do not want a formula. You can explain how much free-
dom you have in defining a function easiest by considering an element
a and pointing out that it is Just for that one a that you have to
decide on the second element of the pair (a, ). (3) It seems the
easiest way to get across that A and B need not be sets of num
bers, that in particular, in real life A need not be a set of num-
bers., (4) There are certain points of precision that come across
best in this framework. Consider the following: Given the relation
-- if you want the term -- x2 + y2 = 1. How many functions on
[—l,l] are defined by it? It is a very bright freshman who ever
says anything other than two for the answer. The point is, of

course, that for each x you have the choice of pairing with it

~
either +vY1 - x2 or ~vY1 - XL, and clearly can get uncountably

many different functions. Continuous functions? That's a differ-
ent functions. Continuous functions? That’s a different thing.

One has the same thing on the inverse of y = xa,
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It is for reasons like these that I like ordered pairs. It is
only when I want to emphasize such points that I stick with the de-
finition of ordered pairs. Otherwise, I see no harm in saying, "Let
f be defined by f£(x) = x°  for all real numbers x", or even, "Let

fx) = xg”°

I agree thoroughly with Pollak's desire to use all sorts of ideas
for functions. The Begle meatgrinders (in his Calculus) are wonderful

for composition of functions, for example.

There are all sorts of mistakes that sensed pairs do not help

2
you avoid. The minimum of y = x /3 is at x = 0. No amount of
. -1
sensed pairs will keep some freshmen from saying y' = 2/3x /3, and
setting y' = 0 and concluding there is no minimum. Here the func-

tion as a graph is the best approach. Incidentally, was anyone
bothered by "y = XE/SH?




ON THE SETTING AND FUNCTION OF SETS AND FUNCTIONS

Leonard Gillman

Mathematicians tend not to care what an object is but only what

its properties are.

(1) A cardinal pumber is an object (thing, entity, set, element,

gizmo) associated with a set in such a way that two sets have the

same cardinal number if and only if they are equipotent.
One can now construct the theory of cardinals.

(2) An ordered pair (a,b) is an object (thing, entity, set,

element, gizmo) characterized by the following definition of equality:
(a,b) = (a’,b") if and only if a = a® and b = b’ (the meanings of

the last two equalities being already known).
One can now proceed to work with ordered pairs.

{3) We did not say what a cardinal number is nor what an ordered
pair is but only what their characteristic properties are. Those who-
work in logic and “cundations may supply definitions in terms of prior

notions. For exauple, in terms of sets,; we have:
Definition. (a,b) = {{al, {a;,b}}.
Theorem. {a,b) = (a',b?) if and only if a =a' and b =Db',

The first thing we do is prove the theorem and then we never

again have to refer to the definition.

(4) The proof of this theorem is a good example of some set
theory just beyond the level of triviality of the popular school-
math set theory. For this reason 1 urge anyone who may not happen
to be familiar with it to sit down right now and work it out. The
prior information needed is the definition of equality for sets
("axiom of extensionality”): two sets are equal if and only if they
have the same elemsnts. In the proof, one can argue by counting

elements, but I comsider that inelegant and urge its avoidance.
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I conjecture that a lot oi new-math authors left out the defini-
tion of ordered pair simply because they (fortunately) did not know

of it.

(5) Before deciding on a definition of function, first consider
seriously whether i1t ought to be defined at all. If so, consider care-
fully the uses to which it will be put and then choose the definition
most naturally suited to them rather than whatever yields the gquickest
derivations of formal properties. I have little doubt that the defini-

tion as a set of ordered pairs is the worst one.

(6) First, another example to suggest that a function from A
to R means more than just a subset of A Xx B (of a particular kind).
Recall that XY stands for the et of all mappings (functions) from
Y into X. The following paragraph appears on page 140 of my book

with Jerison:

Let g be a given mapping from a set A 1into

set B, For each mapping g from B into
a set E, the composition g+ ¢@ carries A
into E. Thus, @ induces a mapping

g‘ : EB ~>EA; explicitly,

p'e=¢g-p.
There is a duality between the properties one-one
and onto (provided that E has:more than one
element): @' 1is one-one if and only if g is
onto, and ' 1s onto if and only if ¢ is
one-one, The verification of these facts is left

to the reader.
Evidently, if we augment the range of @, we alter the domain
of ¢'.
The second half of the quotation is included as another candi-
date for the boruerline of sophistication. Once more, everyone 1s

invited to assess the level. The parenthetical proviso is needed in

Just one of the four parts.
-hol-
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{7) 1In seeking a definition of function, I do not worry about
how many functions are defined by x2 + y2 = 1. I consider the
problem unimportant. It is not used, needed, or referred to in any
high school or college course -- mathematics or other. I'mm for the

chap who says the answer is two.

(8) I suspect that the best way to think of a function is as an
association, i1.e., as the process of associating, i.e., as the passage
from a given element to its associated element. The emphasis is on
the act of associating rather than on the totality of pairs of

associates. Note the suggestiveness of the notation: a — b.

{(9) There are many important situations where this view is
natural. ’‘Maybe it always is.) For example, when Peano tells me
that every natural number has a successor, I do not picture a great
bilg set,

{((1,2) ,(2,3), ...1,
but rather the passage
+
n-—on.

It is possible that I think in terms of (shudder!) variables.

(10) I wonder whether anyone really does think of sets of
ordered pairs other than when picturing graphs. When you think of

sin analytically, do you say things tc yourself like
(n,0) E sin?
I talk about solving the equation
sin X = cos X.
Ts there anyone who thinks instead of specifying the set
DT (sin ry cos)?

(11) The "set theory" discussed in school mathematics is
bringing increasing discredit to mathematics and mathematicians and

should be discarded. Right now is a good time.




Here is another test problem: prove that the real line is the
unicn of the intervals [—l,l], [-2,2], <, [-n,nd , -
Sets should be postponed until they can be introduced with

significant content and applications ~- for example, somewhere near

the level of the theorems mentioned above.

(12) Back to functions. Let R be a set -- e.g., the set of

real numbers. Consider the following renditions.

[A] There exists a function f : RX R—=R (thus, f is
a subset, of (R X R) X R) such that, for all a, b, c, u,

v, X, ¥ R

if (({a,b), u) & £,
((bye), v)E £,
((u,e), x)g £,
and ((a,v), y)E T,
then x = y.

(Before continuing, try to figure out what the hell that

means. )

[B] There exists a function f : R X R R such that,

for all a, b, c R,
f(f(a,b), c¢) = £.a,f(b,c)).
(Stop here too to dwell. Eetter than [A], eh?)

[C] There exists a binary operation * defined on R

such that, for all a, b, cg R,

(a+b) *c=a - (b-ec).

References. ©MSG working papers:

H. 0. Pollak, The Use and Importance of Definitions in

Mathematics, 29 Junc 1966,

G. S. Young, Uninvited Comments on the Definition of Function,

30 June 1966,
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ON "ON THE SETTING AND FUNCTIOK OF SEIS AND FUNCTIONS"

Gail Young

In a well-known series of school texts occurs a chapter on
rational numbers, one p-2e of which starts off with a section on
multiplication. On the page is an example: (3,1) - (5,2) = (17,11).

I have derived a great deal of innocent pleasure showing this to pro-
fessional mathematicians and asking them what is going on, and not
one has ever realized that this is 3 2 = 6, or, perhaps more fairly,

(#3) -« (#2) = +6.

It turns cut that in (3,1), the 3" and the "1" are really
equivalence classes of orde: 1 pairs of whole numbers; and (3;1)
really is an eguivalence loss of ordered pairs of these ordered

pairs.

To me, there is exactly one reason for ever going through anything
like this. Suppose that I have written down a set of axioms for some
mathematical system. I want to know that the axioms are consistent,
that I will never end up proving two contradictory theorems. I know
from Godel’s work that I can never hope to prere from the axioms them-
selves that I will have no contradiction. Also I cannot hope to prove
all possible theorems and show no two are contradictory. What can I
do¥ I can fina some things whose existence I believe in already, and
show that with proper definitions these satisfy the axioms. If the
axioms were contradictory, the same contradiction would exist in the
things I believe exist, and surely I can’t believe in contradictory
things, can I?% (A1l this is discussed in the first chapter of R. L.

Wilder's Foundations.)

If I believe in the whole numbers, I can construct a model of the
integers (in some such way as this 8th-grade text, which really does
it rather well), then o, the rationals, then of the reals. Given the
reals, I can construct the set of ordered pairs of reals, define
"line" in terms of these, etc., and set a model of Euclidean geometry.

From that model I can get a model of non-Euclidean geometry, etc., etc.
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Every professional mathematician should see an example of such a
treatment once in his training. Conceivably, the 8th grade may be the

place? I don't believe it is, myself.

By this time the reuder and T are both wondering what my point
was in saying all this. The point, I think; is this. A teacher
should be just as rigorous, as full of sensed pairs, sets, etc., as
the situation needs. The discussion of the rationals, short of this
one guestion of consistency, does not need all this apparatus. In
fact, it hides the real situation, which to my mind is that the
rationals form part of applied mathematics. That is, they are the
first complicated structure set up to handle physical problems - sub-
dividing pies, piles of wheat, etc. To gec that across, and to get a
clear understanding of why they behave the way they do is, to my mind,
far better than any amount of equivalence classes or sensed pairs of

equivalence classes.

One incidental remark. If anyone can show that kids taught
rationals that way do betier in mathematical subjects than kids who
have spent the same time doing something else, I will withdraw all my
objections. The test of curriculum development is irrational: what

happened in the classroom, and in the next course.

But I was making a further point. What I think Pollak, Gillman,
and I are all concerned with is the sort of question raised by the
example. Here is some perfectly good, valuable mathems*ics. When

does cne teach it in the full form?

To go back to the rational numbers for a moment, that rational
numbers can be described by ordered pairs of integers, and that the
operations can be defined that way is an important concept to get
some gresp of . It is what lets one realize that the rationals can
also be looked at as part of pure mathematics. I would not regard it
as gt all a bad thing to put in a couple of days in the 11lth or 12th

grade explaining this.

55
560



Set theory. I wish Gillman had sald a little more about set
theory in schcol mathematics. I suspect we are in agreement. To my
mind, the only place in school mathematics where set theory should
occur in any formal sense -- that is, with operations of ¢, n, &,

¢ fully used -- is in probability. And here I am actually only

saying that this is the way I first understood what was going on and
how I finally got to where I could work complicated problems involv-
ing combinations and permutations. I could go back to an underlying

set-theoretic situation and think things out.

There are a number of places, however, where the terms of set
theory, to my mind, provide a natural language for mathematical dis-
cussien. I don't know what Gillman wants to do about cardinal arith-
metic, but to my mind, 2 + 4 = 6 because if you take a set of 2
things and another set of It things and combine them you get a set
of 6 +things. Kids should understand this. (Incidentally, this is,
of enurse, another example of applied mathematics.) The moment you
attempt the least formalization, you run into the question of whether
the sets are disjoint. 7You can put in the effort to discuss A~ B,

Ay B, ¢, etc. Should you? Again, the answer is what happens in

the classroom. Kids should understand that if you have U4 women and

5 Indians in a room you may have anywhere between 5 and 9 people.
I don't know when I learned this, but certainly not formally in school.
Would my mathematical education have progressed better if this had been

made fully conscious at any early stage?

In geometry, a line is a set of points. Why =ay "A line is made
up of points” or any other 19th century language when you can say it
in a clear standard terminology? An angle is (1) "the figure
determined by twc straight-line rays with a common end point"; (2) "the
union of two straight-line rays with a common end point". Either de-
finition is fine, for telling you what an angle is. Each is simple.

The first one (or modifications) seems vague to me in some ways.
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For example, do you mean the area between the rays? 1t is not as pre-
cise as the second. The second teaches Something about a mathemati-
cian‘s use of language that the first does not. But "Let A and B
be two straight-line rays and let A/ B = {x}, x a common end point
of A and B. The angle AB is A ¢ B ". That's just bad writing.
Nothing whatever was gained by the letters and symbols.

Back to functions. 1In (5), Lennie asks whether a function
ought to be defined at all. I think this is an important thing to
decide, and something that has not received enor h discussion in
school mathematics. One certainly wants a ¢ - ... ry type of defini-
tion, tl's sort of thing that gives you an ic. of vshat the concapt is,
but whe ier you want a r-al mathematical defin_t: -a, T am by no means
sure. The trouble with .athematical definitiouz _s that you are apt
to believe that the definition tells you what th: thing really is.
A rational number darned well is not an egquivalence class of ordered
pairs of integers -- though that is one aspect of rational anumbers.,
If I want to prove with complete rigor everything about rational num-
bers, I might start with this definition because I can use it in my
proofs. Do I want to prove the sort of things about functions that
need a rigorous definition? In school mathematics? Certainly in
much of advanced mathematics, one needs the full definition of my
last paper, or something equivalent. TIf Lennie proposed a defini-
tion of func . ion different from mine, but that would take care of
his example in (6) as well as my definition, I am sure each of us
could work with either one, and the advantages of one would likely

be a matter of personal preference.

Perhaps one should not define "function", but give enough aspecis
of function so that every reasonable definition of functicn will occur
implicitly. My own pedagogical manner would lead me to give the pair
Gefinition -- after motivation -- and doing all the others in terms
of it. I have great difficulty in being deliberately vague in the
classroom. If there is a clear way to say something precisely that
the audience can understand at some level, T usually have to say it

precisely.
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For functions, I buy completely Lennie's (8), (9), (10) with the
comment that I never think analytically of sin, but emotionally, and
that what I say to myself is things like "Ooh, boy, look at that!" T'd

never think of (x,0) as sin.
That leaves (7).

Statement 1. Consider the expression x2 = yzo How many £ 1c-
tions does that determine? Even if we restrict ourselves to con. ~a-
ous functir 1s the answer is h, YV =X,y =-X,Y¥ = ‘x‘, y = -\x]
Only two are differentiable. The chap who says the answer is 2
my problem will say the answer is 2 in this case. 3But the answe: <
his real, physical problem may be y = lxl; consider reflections, fc

example.

. 2 . . . . .
Consider y = 1. That determines two continuous functions. =~

electrical engineer may, however, be interested in a square-wave f.nc-
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tion, like this. These things can

really happen, in real problems.

think it important that the student's 3 X

intuition be freed, sometime, for such

things.

Statement 2. What I really want is for the student to be slapped
down by a counter-example every lLime he leaves out a vital word in a
hypothesis. I would like him to be scared silly every time he sees
the word "function" with nothing in front of it like "continuous”,
"differentiable", "analytic". I rather like my example as & start
on this traumatization. But I don't really care how many functions

x2 + y2 =1 determines. I'11l bet I could cook up a "practical”

problem where the answer is y = Yl - x2, x>0; y=-/1L - x2,
x < 0, though.

Statement 3. One thing that R. L. Moore makes conscious in his
students is the tremendous importance of negative information in

mathematics. "You need compactness in the hypothesis, because here's



a counter-example’. As a group, Moore students all spend much more
time giving such examples than most people. I can't give a defini-
tion in class without giving quickly some examples of Just what sort

of pathology has sneaked in with the definition.

No one understands commutativity until they see examples of non-
commutative structures, one thing that makes me wonder about the wvalue

of all the name dropping in K-6.

To summarize. If you are going to give a rigorous definition of
function, really give it and really use it. What definition should be
decided only after seeing what the results of trying to write up each
approach look like. If not, the fact that functions can be defined
by sensed pairs should be brought out and used.

1

Shakespeare’s summary: ''Function is smothered in surmise.'
Macbeth, Act 1, Sc, 2. [verbal communication from Warren Stenberg.]
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