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Preface

In the summer of 1966, a committee of mathematicians and mathematics

teachers met for four weeks to formulate preliminary recommendations for the

curricelar experimentation which the SMSG plans to carry on during the next

few years.

During the academlc year, 1966-67, a team of four writers used the Grade 7

outline produced by the summer outlining committee as a starting point in writ-

ing a text for that level. The text that evolved showed that some of the out-

lines were adhered to without change, some of the outlines were revised. and

some replaced by newly constructed outlines.

A team of mathematicians and mathematics teachers met in a three-week

session which began July 3, 1967, to continue the work startPd the summer be-

fore. The majority of the members in this 1967 committee had also participated

in the outlining seesion in 1966. In carrying out-the functions of formulating

and revising further recommendations for curricular experimentation, a.review

was made of the Grade 7 text that had been written. Reports and reactions to

the various chapters in the text were discussed- From the discussions, comments,

and constructive criticisms of the Grade 7 text, came many suggestions: (1) for

teachers trying out the text 1967-68, (2) for revision of the text, (3) for

moving some of the material to later years, and. - (4) for revision of the out-

lines for Grades 8 and 9.

This report contains suggestions where material moved from Grade 7 should

go and contains detailed outlines for the chapters in Grades 8 and 9. A docu-

ment of helpful hints for teachers trying out the text and a document for the

revision team was produced, but these documents are reproduced separately. One

section of this report shows the 1966 tentative :hapter headings and the 1967

revised chapter headings side by side so that quick comparisons can be made.

The completion of the detailed outlines for Grades 8 and 9 was only part

of the task. At the same tiie, much work and thought were being given to the

possible sequences of courses for Grades 10-12 for the various types of college

capable students. One of the documents spells out many possible sequences. ,

There was considerable feeling in the groep that careful attention must be

giv n to pedagogy in the writing. Another center of emphasis was in using



"-r.PF,1 !=jttlotion!; that 7equire mathematics" as n;.1tivating. factors. Some

cuments illustrate these points.

The remainder of this report gives broad tentative outlines of what might

included in the Grades 10-12 block. First come several suggestions for a

one-semester deductive block. This is followed by three different suggestions

for two or three semesters of vector geometry, linear algebra, and elementary

functions. Although there was net complete agreement that the senior year

should. be elementary flinctions and. calculus, that is the outline that was pro-

duced.

Three appendices complete this report. Appendix A is a collection of

geometry problems that hopefully will be sprinkled through the Grades 10-12

sequence. Appendix B keeps the idea of modeling before the outliners and

writers. Appendix C shows how a chalpter on systems of linear equations and

inequalities might be introduced using a linear programming problem.

4



List of Participants

Mrs. Pamela Ames University of Chicago

E. G. Begle - Director, School Mathematics Study Group

Max S. Bell - University of Chicago

Jean M. Calloway - Kalamazoo College

Clyde L. Corcoran - California High School, Whittier

Richard A. Dean - California Institute of Technology

W. Eugene Ferguson - Newton High School, Newtonville, Massachusetts

Herbert J. Green, ?,rg - University of Denver

Mario L. Juncosa - The Rand Corporation

William G. Lister - University of New York - Stony Brook

H. Stewart Moredock - Sacramento State College

Lowell J. Paige - University of California at Los Angeles

Donald E. Richmond - Williams College

William Wernick - City College of New York

Miss Martha Zelinka - Weston High School, Weston, Massachusetts

William G. Cninn - School Mathematics. Study Grour, attended the pIens-y sessions.



Miscellaneous Items of information

1. A separate document has been prepared for the use of teachers who

will be tl -ing out the Grade 7 materials, and other pecple directly concerned

with this tryout.

2. A separate document has been prepared for the use of the team that

will be revising the Grade 7 materials, and other people directly concerned

with the revision.

3. The Grade 7 writing team produced a separate document called

°Suggestions on Where to go with Flow Charting in Grades 8-9" which is available

for the use of the writing teams.
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C_-tents of Grade 7

Chapter 1 - The Structure of Space

1-1. Introduction

1-2. Points

1-3. Space

1-4. Lines

1-5. Planes

1-6. Intersections

1-7. Intersections of Lines and Planes

1-8. Segments

1-9. Separations

1-10. Angles

1-11. Triangles

1-12. Curve5, Simple Closed Curve

1-13. Convexity

1-14. Orientation on a Line

1-15. Orientation in the Plane

1-16. Orientation in Space

1-17. Summary

Chapter 2 - Graphing

2-1. Locating Points in a Plane

2-2. Coordinates on a Line

2-3. Coordinates in the Plane

2-4. Graphs in the Plane

Chapter 3 - Functions

3-1. Introduction

3-2. Some Examples of Functions

3-3. Methods of Representing Functions

3-4. Interpretations from Graphs

3-5. The Identity Function

3-6. Step Functions

2



Chapter 4 - Informal Algorithms and Flow Charts

4-1, Informal Algorithms and Flow Charts

4-2. Algorithms, Flow Charts and Computers

4-3. Assignment and Variables

4-4. Using a Variable as a Counter

4-5. Decision and Branching

4-6 Flow Charting and Division Algorithm

4-7. Making the Division Algorithm Practical

Chapter 5 - Rational Numbers

5-1. Negative Numbers

5-2. Opposite and Signum Functions

5-3. Absolute Value Functions

5-4. Maximum

5-5. Addition of Rational Numbers

5-6. Flow Chart for Addition

5-7. Functions Using Addition

5-8. Products with One Negative Factor

5-9. Multiplying Negative Numbers

3-10. More Products of Negative Numbers

5-11. Multiplicative Inverse

5-12. Subtraction

5-13. Division

5-14. Computations Using Rational Numbers

Chapter 6 - Structure

6-1. The Rational Number System

6-2. Fields

6-3. The Minus Sign

6-40 Order

6-50 Betweenness

Chapter 7 - Equatione and Inequalities

7-1.; IntrodUetion

7-2. Equations as Models of Real Life Problems

7-3. A Systematic Method of Solution

3



7L1. Streamlining Our Method of Solving

7-5. Simplifying

7-6. Inequalities and Lem-nade

Graphical Solution of Equations and Inequalities

Chapter 8 - Congruence

8-1. A Road Building Problem

8-2. Congruent Segments and Congruent Angles

8-3. Copying Triangles

8-4. Congruent Triangles and Correspondence

8-5. Some Applications of Congruence

6-6. Congruent Figures and Motions

8-7. Translations in the Plane

8-8. Rotation

8-9. Reflection

8-10. Congruence of a Figure with Itself

8-11. Writing a Proof

8-12. Addition and Subtraction Properties for Segments

8-13. Addition and Subtraction Properbies for Angles

8-14. Bisectors and Perpendiculars

8-15. Construction of Rhombuses

8-16. A Useful Property of the Rhombus

8-17. A Shortest Path Problem

8-18. Medians of a Triangle

8-19. Angle Bisectors of the Angles of a Triangle

8-20. Altitudes of a Triangle

8-21. Perpendicular Bisectors of the Sides of a Triangle

Chapter 9 - Number Theory

9-1. Pails of Water

9-2. Common Factors

9-3. Prime Factorization

9-4. The Euclidean Algorithm

9-5.. Pails of Water ain

9-6, A Representation of the Greatest Common Divisor

9-7, A Fundamental Theorem

9-84 Summary



Chapte - Measure

10-1. Measurement

10-2. Standard Units of Length

10-3. Approximation

10-4. Cjrcle, Radius. Diameter

10-5. The Number, J1

10-6. Applications .nvo_ving

10-7. Angle Measurement

10-8. Sum of Measures of Angles of Triangle

10-9. Applications

10-10. Measure of Central Angle of a Circle

10-11. Equivalence of Regions

10-12, Regions Equivalent to Regions Bounded by Regular Polygons

10-13. Rectangular Region Equivalent to a Given Region

10-14. Equivalence of Regions in Space

10-15. Comparison of Measures of Set and Subset

Chapter 11 - Probability

11-1. Introduction

11-2. Uncertainty

11-3. Fair and Unfair Ganes

11-4. Finding Probabilities

11-5. Counting Outcomes; Tree Diagrams

11-6. Estimating Probabilities

11-7. Probability of Union

11-8. Mutually Exclusive Events

11-9. Probability of Intersection

Chapter 12 Parallelism

12-1. Parallel Lines in the Plane

12-2. Rectangles

Transversals

12-4. Parallels and the Circumference of the Earth

12-5. Triangles

12-6. Parallelograms

12-7. More About Parallelograms



12-8. Families and Networks of Parallel Lines

12-9. Dividing Se into Congruent Part,

12-10. Triangles and Families of Parallel Lines

12-11. Networks and Coordinates

12-12. Parallels in Space

Chapter 13 Similarity

13-1. Scale Drawings

13-2. Similar Triangles

13-3. Multiplying Geometrically

13-4. How a Photo Enlarger Works

13-5. Similarities in Right Triangles

13-6. Slope

13-7. Lines

13-8. Parallel and Perpendicular Lines

13-9. The Meaning of Percent

13-10. Using Percent in Solving Problems

13-11. Summary

Chapter 14 - Real Numbers

14-1. Distance

14-2. Pythagorean Property

14-3. Proof of pythagorean Property

14-4. Back to Distance

14-5. Real Numbers

14-6. Square Roots and the Pythagorean Property

14-7. Operations with Real Numbers

14-8. Decimal Representations of Real Numbers

14-9. Decimal Representation for Rational Numbers

14-10. Periodic Decimals

l4-11. SummarY



1966 and Pro csed 1967 Sequence of Chapter Readings

for Grades 8, and 2

Grade 7 (_966)

1. The Structure of Space --

Nonmetrical Properties

2. Graphs, Functions, Variables

3. The Positive Rational6

3. The Set of Rationals

(Alternate Version)

The Set of Rationals, Solution

of Mathematical Sentences

(Alternate Version (continued))

4. Congruence (Replication of

Figures

Measure

6. Ratio and Similarity,

7. Combinatorics and Probability

8. Rational Numbers, Graphs of

Functions

Graphs of Linear Functions:

Variation (Alternate Version)

(To accompany "Alternate Versions"
1%

of Chapters 3 a-)
2

Solutions of Systems of Equations

and Inequalities

10, Decimals Square Roots, Real

Number Line

11. Parallelism

Grade 7 (1967)

1. The Structure of Space

(Suggested, 1-12 and 1-13 be

moved to Grade 8, Ch. 9, and

1-14, 1-15, 1-16 be moved to

Grade 8, Ch. 4)

2. Graphing

3. Functions

4. Informal Algorithms and Flow

5.

Charts

Applications of Mathematics and

Mathematical Models

Rational Numbers

6. StructUre

(Suggested) 6-1, 6-2 be moved

to Grade 9, Ch. 12; a lighter

treatment should be given here.

7. Equations and Inequalities

8. Congruence

(Suggested, 877, 8-8, 8-12,

8-13, 8-18, 8-19, 8-20, 8-21

be moved to Grade 8 Ch. 4)

9 Number Theory

10. Measure

11. Probability

12. Parallelism

(Suggested, 12-4, 12-7 through

12-11 be moved tp Grade 8, Ch. 9)



Grade 8 (1966)

1. Perpendicularity

2. Coordinate Systems Distance

Displacements (Suggested,

move to Grade 9, Ch. 6)

4, Problem Analysis Strategies

5. NUMber Theory

(Moved to Grade 7, Ch. 9)

The Real Numbers Revisited -

Radicals

7. Truth Sets of Mathematical

Sentences

8, Quadratic Polynomials as Functions

9. Probability (No outline in 1966)

10. Parallels and Perpendiculars

11. Properties and Mensuration of

Geometric Figures

12. Spatial Perception and Locus

13. Systems of Equations in Two

Variables

8

Grade 7 (1967)

13. Similarity

(Suggested, 13-3, 1344 be

moved to Grade 8, Ch. 4)

14, Real Numbers

(The material in 6-1 and 6-2 on

the Rational Number System and

Fields should be touched lightly

here. To wait until Grade 9,

Chapter 12 to talk about extend-

ing the number systems is too

late.)

Grade 8 ( 967)

1. Perpendicularity

2, Coordinate Systems Distance

3. Problem Analysis

4. Congruence and Similarity

(Some of material to come from

Grade 7, Chapters 1, 8, 13 as

indicated under Grade 7 (1967))

The Real Numbers Revisited -

Radicals (A little on structure

of the system from Grade 7, Ch. 6,

6-1 and 6-2 might come in here.)

6. Truth Sets of Mathematical

Sentences

7. QuadratiO PolynoMials as F -_ctions

Probability

9. Parallels and Perpendiculars.

(Include some of material in

Grade 7 (1967) Chapters 1, 12.)

10. Properties and Mensuration of

Geometric Figures



Grade. 2 (196)
1. Exponents, Logarithms, Slide Rule

2. Transformatiors

Systems of Sentences

(No outl-ine in 1966)

Systems of Si,ntences

(No outline !_n 1966)

5. Measure Theory

6. Statistics

(No outline in 1966)

Deductive Reasoning

Vectors

(No outline in 1966)

9. Circular ictions

10. Tangency

11. Measure

12. Complex Numbers

(No outline in 1966)

9

Grade 8 (1967)

11. Spatial Perception and Locus

12. Systems of Sentences in Two

Variables

Grade 2 (lay)

1. Exponents, Logarithms Slide

Rule (1966)

2. Deductive Reasoning - Logic

3. Systems of Sentences

4. Measure Functions and Their

Properties (1966)

5 Statistics

6. Displacements - Vectors

(Displacement Chapter from 1966

Grade 8, Ch. 3) This needs some

extension depending on the re-

quirements for the Chapter on

VectorS and Analytic Geometry or

whatever the next chapter in-rolv-

ing vectorS will be called)

7. Transformations (1966)

Circular Functions (1966)

Tangency (1966)

10. Measure (1966)

11. Complex Numbers

(This Chapter should include

some of the material in Grade 7,

Ch. 6, Sect. 6-1 and 6-2. A.

lighter treatment of 6-1 and

6r2 should appear in Grade 7 and

Grade 8 before thi,s Chapter on

complex numbers. The idea of



ade 9 19E7

extending the numbffr system

should not be new to the

student at this poin )

10



Location of Topics in MSG Intermediate Mathematics_
in the New Outlines

Chapter and Topics

Chapter 1 - Number Systems

Location in New Outline (1967)

1-1 to 1-7 The Rationale Gr. 7, Ch. 5

1-8 Decimal Representation of Rationals Gr. 7, Ch. 5, i4

1-9 Infinite Decimals and Real Numbers Gr. 7, Ch. 14

1-10 The Equation xn a Exponents,

Radicals)

1-11 Polynomials and Their Factors Gr. 8, Ch. 7 (Quad. only)

1-12 Rational Expressions

Gr. 8, Ch. 5; Gr. 9, Ch. 1

Chapter 2 - Introduction to Coordinate Geo etry

2-1 The Coordinate System (Review)

2-2 Distance Betweef Two Pointi;

2-3 Slope of a Line

2-4 Sketching Graphs of Equations

and Inequalities

2-5 Analytic Proofs of Geometric Theorems

2-6 Sets Satisfying Geometric Conditions

Chapter 3 - The Function Concept and the

Linear Function

Chapter 4 - Quadratic Functions and. Equations

4-1 to 4-11

4-12 Some Properties of Roots of

Quadratic Equations

4-13 Equations Transformable to

Quadratic Equations

Not yet covered in Outlines for 7-9.

11

Gr. 7, Ch. 2; Gr. Ch, 2

Gr. 8 Ch. 2

Gr. 8, Ch. 1

(Some in Gr. 8,.Ch. 6 -

most omitted)

Gr. 7, Ch.-2i 5, 11 Treat-

ment not comparable, review

probably needed)

Gr. Ch. 7

Gr. 3, Ch. 7



Chapter and Topics

Chapter 4 - Continued

* 4-14 Quadratic Inequalities

4-15 Applications

Chapter 5 - Complex Number Sys

5-1 to :5-8

5-9 Polynomial Equations

5-10 Miscellaneous Exercises

5-11 Construction of the Complex Number

System

Chapter 6 Equations of First and Second

Degree in Two Variat_es

Location in New Outline 1967)

6-1 The Straight Line

6-2 The General Linear Equation

Ax + By + C 0

6-3 The Parabola

6-4 The General Definition of the Conic

6-5 The Circle and the Ellipse

6-6 The Hyperbola

Chapter 7 Systems of Two Equations in

Two Variables

771 Solution Sets of Systems of

Equations and 'Inequalities

7-2 Equivalent Equations and Equiva-

lent Systems of Equations

7-3 Systems of Linear Equations

7-4 Systems of One Linear and One

Quadratic Equation

7-5 Other systems

* Not yet covered in Outlines for 7-9.

12

9 Ch. 11

(Not in this form)

(Not in this form)

Partly in Gr.-8, Ch.

12

Gr. 9, Ch.

Gr. 9, Ch. 3



*Chapter 8

ChaDter L.nd To ric

- Systems of First Degree Equations

in Three Variables

Lor.at n in New Ouli,nc. 1967)

*Chapter 9 - Logarithms and Exponents Gr. 9, Ch. 1 (Not at all

comparable coverage)

Chapter 10 - Intr auction to Trigonometry

10-1 Arcs and Paths

10-2 Signed Angles

10-3 Radian Measure Gr. 9. Ch. 8

10-4 Other Angle Measures

10-5 Definition of Trigonometric

Functions Gr. 9, Ch. 8

10-6 Some Basic Properties of Sine

and Cosine

10-7 Trigonometric FunctIons of Special

Angles Gr. 9, Ch. 8

10-8 Tables of Trigonometric Functions

10-9 Graphs of Trigonometric Functions Gr. 9, Ch. 8

10-10 Law of Cosines

10-11 Law of Sines

10-12 Addition Fozmulas

10-13 Identities and Equations

Chapter 11 - The System of Vectors Gr. 9, Ch.T 6-

11-1 Directed Line Segments Gr. 9, Ch. 6

11-2 Applications to Geometry

11-3 Vectors and Scalars; Components Gr. 9, Ch. 6

11-4 Inner Product

11-5 Applications to Physics

11-6 Vectors as a'Formal Mathematical

SysteM

Not yet covered in Outlines for 7-9.

13



1.

2.

3.

4.

5.

6.

7.

9.

10.

11.

12.

13.

Grade - Li -in_ of

1.

2.

3.

4.

5.

6

8.

9.

10.

11.

12.

Chap erp

Grade 8 (1966) Grade 8 (1967)

Perpendicularity

Coordinate Systems - Distance

Displacements

Problem Analysis (Strategies

Number Theory

The Real Numbers Revisited -

Radicals

Truth Sets of Mathematical

Sentences

Quadratic Polynomials as Functions

Probability

Parallels and Perpendiculars

Properties and Mensuration of

Geometric Figures

Spatial Perception and Locus

Systems of Equations in Two

Variables

Perpendicularity

Coordinate Systems - Distance

Problem Analysis

Congruence and Similarity

The Real Numbers Revisited

Radicals

Truth Pets of Mathematical

Sentences

Quadratic Polynomials as

Functions

Probability

Parallels and Perpendiculars

Properties and Mensuration of

Geometric Figures

Spatial Perception and Locus

Systems of Sentences in Two

Variables

114

Ii



Chapter and Topico Location in New Outline (1967)

Chapter 12 - Polar Form of Complex Numbers Gr. 9, Ch. 11 (

*Chapter 13 - Sequences and Ser

*Chapter 1).

Gr. 12, Ch. 1 (2)

Permutations and Combinations (Prob. Stat. Semester

and the Binomial Tbeoxwi

*Chapter 15 - Algebraic Structu

Not yet cov- ed. in Outlines foe 7-9.
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Notes for Grade 8 Writing Team

1. It has been suggested that Grade 8 (1966 Outlin-N , Chapter 3,

Displacements, be moved to Grade 9, Chapter 6. This seems to be a good move,

but the article "Vectors in the 7-9 Outline" which follows these notes,

pp. 17, raises some questions that must be resolved by the writing tea,

If the total amount of material to be taught in Grade 8 still allows some ine

for the Displacement Chapter then the group felt that at least an intro,action

should be given in Grade 8. In that case, Grade 9, Chapter 6, Displacement

Vectors, could be extended somewhat to prepare for the treatment of vectors

and analytic geanetry in the Grades 10-12 block.

0. In a separate document on Revision of the Grade 7 Text there is a

suggested revision of Chapter a - Congruence, Section 8-7, Translations in the

Plane, and this is one of the sections proposed for inclusion in Grade 8,

Chapter 4, Congruence and Similarity. A check will have to be made with the

7th grade revision to be sure the Grades 7 and 8 sequences on Congruence and

Similarity fit together properly with no gaps and a reasonable overlap.

3. Chapter 5 Number Theory in the 1966 Outline, was moved to Grade 7,

Chapter 9.

4. In this report the section "Polynomial Algebra" pp. 116, will

be of interest to the Grade 8 Writing Team.

16



Vectors in the 7-9 Outline

Or.tnally in the 1966 outlining session we had concluded that vectors

were sc important that the idea should be introduced early and developed in

spiral fashion throughout the 7-12 curriculum. The statement that Junior High

Schoo] Science Teachers were in fact using vectors and would use them more if

studenl:s knew about them, also contributed to our efforts to introduce the idea

early. To that end we had included in the outline for Grade 8 (Chapter 3) a

treatment of vectors as displacements. This was to he followed in Grade 9 with

a chapter which treated operations on vectors, decomposition, connection with

analytic -eometry, and the use of vectors in geometric prcofs.

Actually no detailed aqtline was prepared for Grade 9, and the Outline for

Grade 8, Chapter 3, was lifted from one prepared by Moredock and Sandmann, with

some modifications. The Moredock-Sandmann document had been prepal d for the

junior high school level some time prior to the Summer 1966 outlining session.

The 1966 outliners intended for the notion of vectors as displacements to be

used in the chapter on Transformations in Grade 9 (Chapter 2 in the 1966. out-

line).

The various changes proposed this summer (1967) for the 7-9 Outline still

retain the idea that vectors should be introduced as displacements and that the

chapter introducing them should precede the chapter on Transformations (Grade 9,

Chapter 7 in the 1967 outline). However, this timing may be too late to

accomplish the objective of introducing the idea early so that it might be used

in the Junior High Science Courses.

It also makes it seem unlikely that we will be able to spiral the idea in

7-9 and introduce some more formal algebraic properties of vectors and establish

their connection with analytic geometry in the Grade 9 chapter.

This may not be serious. But it will mean that vectors probably should be

treated early in the 10th grade block and in a somewhat more systematic way,

emphasizing their algebraic properties as well as the geometric idea of a vector

as a displacement.

The writers for the 8th grade this year may want to reconsider whether or

not the displacements chapter really should be removed from the 8th grade

17



the as sun-gested in the changes proposed this summer. If they find that

the original reasons for two chapters in successive years in 7-9 are not really

compelling, then the spirit and extent of the 9th grade chapter should be rather

carefully considered so as to feed in naturally to the 10°11 block which is to

use vectors rather heavily in analytic geometry and linear algebra. This is a

rather important consideration and should be carefully considered and settled

one way or the other, rather than having the subsequent development handicapped

by a hasty and precipitous decision at this point.

2
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OUTLINES OF GRADE 8 CHAPTERS

1966 Outline, pp. 184-191.

1966 Outline, pp. 192-2

Grade 8 - Chapter 1

endiarit

Grade 8 - Chapter 2

-rdinate Svatems - Distance

Grade 8 - Chapter

lem Anaiysis (Strategies

1966 Outline, pp. 220-253.

1966 Outline, pp. 254-267 Appendix - The Use of Functions in Problem Solving.

Graae 8 - Chapter 4

Congruence and Similarity

This chapter has been put in Grade 8 because of the belief in the spiral

development of mathematics. It is also felt that there may be-more geometry in

Grade 7 than can be comfortably completed there.

It is suggested that this chapter include the following material from

the Grade 7 text produced in 1966/67. The Grade 8 writing team should be

careful to build on the revised 7th grade text materiels.

Grade / Chapter 1 7 The Structure of Space

1-14. Orientation on a Line

1-15. Orientation in the Plane

1-16. Orientation in Space
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.f.ade Chapter Congruence

8-7. Translations in the Plane

8-8. Rotations

8-12. Addition and Subtraction Properties for Segments

8-13. Addition and Subtraction Properties for Angles

8-18. Medians of a Triangle

8-194 Angie Bisectors of the Angles of a Triangle

8-20. Altitudes of a Triangle

8-21. Perpendicular Bisectors of the Sides of a Triangle

Grade 7 Cha ter 13 Similarity

13-3. Multiplying Geometrically

13-4. How a Photo Enlarger Works (It is ttggested that the title of this

section be changed to: The Geometry of a Photo Enlarger)

Grade 9, Chapter 7, Transformations, calls for sections on congruence as

an isometric correspondence, and similarity as a ratio-preserving correspondence,

so it might be a good idea to introducethis concept here to help get the

students ready for the Transformations chapter.

This chapter will include many "originals" involving congruences and

similarities. Overlapping triangles and other more complicated originals will

be included. One source of challenging problems that might be appropriate in

this chapter is Appendix A, Geometir Problems for the Grades 10-12 Block,

pp. 215.

This alternate version for Grade 7, Chapter 8, Congruence (Section 8-7

Translations in the Plane) is an example of the style of writing and the type

of student activity that many of the group would like to see in the text.

Several comments have been made repeatedly this summer relative to the

Grade 7 materials: "It is heavy-handed"; "It is not WET and DIG"; "It tells

the students and often tells well but there is a lack of involvement and

finding the ideas for themselves".

The following sections are an attempt to eifilicitly display these rather

general criticisms. For demonstration purposes, a text sectiOn was selected

where there was no disagreement with the mathematical content -- the aim of the

alternate presentation was to develop the same ideas but fran a different approach.
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The section chosen was from Grade 7, Chapter on Congruence (Section 8-7

Translations in the Plane). The immediately preceding section has developed

the three basic isometry a Lions of the plane in terms of "slide", "turn", and
"flip". The student has worked -with many different pairs of congruent figures

and pure word descriptions of using these motions to make the figures coincide.

The folloWing three sections extend these ideas and give a number sense for

description through the use of the coordinate plane.

It is our feeling that the second version presents some exciting potential

for classroom use that is not found in the other. It is also our feeling that

the second version will develop some self-direction that will make the two

following sections develop more naturally. Our proposal is that both methods

be tried to see if there is any noticeable difference in student reaction and or

understanding. This could easily be done within the present unit by a simple

page-for-page substitution -- that is it is mechanically feasible.

Note: For the alternate version, the teacher's commentary might contain the

celluloid overlay idea to be used as supplement and an idea for dis-

cussion .. it might be drawn for the students themselves. Also, the

commentary should contain a discussion of how we are using a finite

point set to lead to a closed figure to eventually arrive at a transla-

tion of the whole plane with the property of congruence preservation.

It should be stressed that the pedagogically important idea here is to

have the students do the steps and verbalize the ideas -- not just read!

8-7. Translations in the Plane (Present text version)

Motion may be described in many ways. For example, we can say that a man

left San Francisco and drove 100 miles north on Route 1. Or we can say that an

elevator in an office building ascended from the first floor to the tenth floor.

Or we can indicate the motion of a flight in space by describing ita orbit.

If we have a wire triangle lying flat on a table,we can slide it on the

table in various directions. However, it is difficult to describe a particular

motion. In this section we will see how motion may be conveniently described

by using a coordinate system.
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Figure 8-44

Since a point is a definite location in space it makes no sense to talk

about moving a point. If we have a different location we have a different

point.

Suppose, however, that we have a trLznsparent celluloid overlay which we

can place on Figure 8-44. Let us locate points A , B , and C by making pin-

holes through the oethloid. Now, let us slide the celluloid nine units to the

right. Then, the pinhole corresponding to vertex A LAEC will be at

(-4 9,1) or (5,1) . We shall call this new point Al . Correspondingly,

vertex B1 will be at (0 + 9,3) or (9,3) and vertex C/ will be at

(3 + 9,2) or (12,2) . In fact, to every point in the plane there will

correspond another point determined by the slide of the celluloid nine units

to the right. This correspondence is a function. We can describe this function

as follows:

t : P ->P/ where P is any point in the plane, P/ is the

corresponding point in the plane located sliding the celluloid

nine units to the rig)..

Or, we can describe this n more compactly, as follows:

x,y) + 9,y) .

22



We can think of the physical motion of the celluloid as a slide. We refer to

the correspondence of points resulting from a slide as a translation.

Bi (9,3)

(12,2)

(5,1)

Figure 8-45

In Figure 8-45, shown by dash lines. If you draw an arrow

from A to At and another arrow from B to B2 the two arrows will have

the same length and the same direction. In fact, the arrow drawn from any

point in the plane to its image in the plane determined by the function wIll

have the same length and the same direction as any other arrow.

How is LAIBIC/ related to MEC ? First, we note that LAIB$C$ 'is

different from &ABC since the points of AtAtBtC1 are different from the

points of AA.BC . Second, we surmise that AMB,C2 is. congruent.to AABC . If

we cut out a copy of ,LAEC and place it on 6AIB'CI we will see that the copy

will fit exactly on 6AIBITI and we will conclude that our surmise is correct.

It has probably occurred to you that a correspondence may exist between

two congruent triangles in the coordinate plane such that one triangle is above

or below the other. You would expect that such a correspondence would involve

differences between the ordinates of points of the original triangle and the

ordinates of points of the new triangle. Let us test our expectation.

Consider AABC A(-3,-1) , B(1,2) C(7,-4) and dA9BICt which is

seven units above MBC Then the coordinates of the images of-points A

and C are

(-3,-1 A- 7) 0 or (-3,6) , for As ;

(1,2 7) , or 1,9) for' Bt ; and

(7,-4 + 7) or (7,3) for CI
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Ss.

B (1,2)

Figure 8-46

C' (7,3)

(7,-4)

The correspondence between the points of 6ABC and the points of ,ILAIBffei

is a function. We can describe this function as follows:

U (x,Y) + 7) ,

We can verify the fact that 6AEC .7.`13,C* by cutting out a9MC and

fit ing it on tnAtBIC*

8-7, Translations in the Plane (Suggested Revision)

The motions we have been discussing can be described precisely if we

introduce one other factor: the coordinate plane. Follow the directions

carefully, step by step, but see when you can predict the motion.
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Illc-22Y1A2EY Exercises .8-7a

Examine the coordinates of these two points: A(1, 8) , B(6, 8) .

a) Do the coordinates name the same points? Why or why not?

(b) How do the coordinates of A and B compare?

(c) Plot these points and tell how they are located with respe t to each

other.

2, Draw a set of coordinates and plot

A(2, 1) 9(2, 6) c(3, 3) , D(5

3. Draw the closed figure ABCD

4. Dete4Jiine new points from the given points by adding 5 to each

x-coordinate:

A(2, 1 ) A (7, 1)

9(2, 6) .)B,( 6)

C(3, 3) 0 c'(8)

D(5, 3) '1)1(

5. Plot the points At , B2 , C/ , DI and draw the closed figure A/B/C1D/

Do the two figures appear to be congruent? What motion oould be used to

make them coincide? How long is AA/ ? BB/ ? CC/ ? DD/.? How could you deseri

in mathematical language, what was done in this problem? (See Figure 8-44)

Figure 8-44



If (x,

,iefined as

are .2;_;c1 .inates n. point, P , and a function, t

t : (x, y)

can you d scribe the effect of t on the coordinates? What is the effect

of t on the point, P ?

Tf A has coordinates

A(2, 1) A"( ,

7. What are the imageu, B" C"

r_ler t ?

B(2, 6)
0(3, 3) -4(2"( )

D( )

what is the image, A" , of A under t

of B C , in Exercise 2

We have applied t to four points, A , B C , and D Is the function

t restricted to these fo:Ar points? To how many points of the plane may t be

applied? Consider A(2, 1) -)A"(7, 1) and B(2, 6) B"(7, 6) . What

uappens to the poir

segment, 7T3

ween A and B under t 2 What happens to the

'-iuure 8=45

8. Suppose we have another function, defined as follows:

u : y) y)

In this function the same as t ? If not, how does it differ? Discuss

tLe ;-liae that results ftom applying u
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We (:-1:e17 to the correspondence of points resulting from a slide with no

ac a translation of the plane. It maps each point of the plane to a

new point, and it maps a given figure to a congruent figure. Introducing this

.function, we can now slide things precisely. But so far we can only translate

ri-ht and left. What other translations can you suggest?

GIve a function that you think will slide the given figure 7 units

npward

:

Figure 8-46

Try using your answer on problem 2 and see if you get the expected resul s.

Now be inventive: give a function that will translate the given figure

10 units to tiat -,ight and 4 units downward. Try it only if you are uncertain.

W : (x, y)
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Grade 8 - Chapter 2

The Real Numbers Re ioited - Radicals

It is suggested that a light treatment of the structure of the various

number systems might be included here. In particular some of the material in

Grade 7, Chapter 6, SectiCins 6-1 and 6-2 may be appropriate.

The writing team has three documents to consider in writing this chapter.

(1) The 1966 Outline, pp. 274-279.

(2) Real Numbers, Measure, and Congruence for the Adolescent. This

document follows (3) be3ow on pp. 32.

(3) The following suggested revision of the 1966 Outline for this

Chapter was submitted, but was not liscussed by the group. It is

included here for the information of the writing team. The group

was much concerned about the presentation of the real numbers, and

they desired that the material in this suggested revision be

considered by the writing team.

Real Numbers

Suggested Revision of Outline

1. Points and Numbers

1-1. Coordinates on a line. (For .certain purposes a positive ray or

a segment are more to the point.) Review of as a location

specification, as in

or

ci
n 1

1 ci

0 a a 1 ci

0 1
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Relation of coordinates to congruent segments on a line (or on a

pair of lineo with congruent unit segme_te)

Significance of coordinates on lines with non-congruent unit

segments, via similarity. Sample problem: locate the point on

M with coordinate x .

1-2. Successive subdivisions_ of a segment.

Relation of point with coordinate x to that with coordinate [x]

to permit restriction to [0,1] . Decimal and dyadic subdivision

sequences.

This interval has the specifications: ELF or 101 .

The decimal and dyadic numerals for rationals.
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Interpr ation of say) .10 (dyadic) as an infinite set of

specifications for a point; i.e., ELRLBL--- The nested

interval axiom as a working principle.

Exhibition of specifications for irrationals.

Problem: specify an irrational between .01 and .001 ; between
100 101

(§) and (t)

Geometry of Number Operations

2-1. Displacements on a line and their coordinates

a +

Real number addition defined in terms of displacements; tle

negative reals and the real opp (opposite) function.

2-2. Products of real numbers.

[Note: Seve al approaches suggest themselve for example:

(i) triangle similarity as in

unit change as in

1

re t-ngular area measure. Each rectangle is assigned area

w .]
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The "betweenness continuity" property of multiplication, possibly

in the following form: 2 -4xz maps segments of length d onto

segments of length less than n d for a suitable integer nx

The ordered field propelLies.

[Option: computation problems with decimal or dyadic numerals.]

Squares and Square Roots

3-1. Real numbers as measures.

The rectangular ar'7,, foijmula. The congruence and partition

properties of area. Analysis of the figure

2

to ascertain the reasoning which leads to A(s) = 2 .

The Pythagorean theorem reviewed.

Location of 1/ , 1/5 , ifT5 etc.

The area of right triangles.

3-2. Square roots. The character of the image of the rationals under

the squaring function. Does every positive real number have a

square root? [This can be handled by a geometric construction, or

a betweenness-continuity argument which can be given algorithmically

as, for example:

Let = 1 z -

Let x2 - z_ = 2
-2

'Let x3 = z3

Now n [i, = v,

2
Compare (i) wlth 3

7 2Compare (t) with

Problems involving numbers generated by square roots over the

rationale; as for example:

11.121_1(i) Which is larger 2
or - or

1/5 or 15 ?
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Which of the following are 7ational and whic,, are

irrational; 1) , + 1)2
2

-

]ir72

(iii ) The points obtainable from a subdivision of the interval

from 0 to i/r,7? are those of the form ri/: where r is

rational. Which of these are rational points? Is
1among them? Is among them?
1/

The relation between arithmetic and geanetric means; area

and similarity interpretations of geometric mean.

[Note: Cube roots can easily be added to this chapter.]

The 1967 Outlining Group urges that the following criticisms and sug-

gestions be considered carefully in the revision of Grade 7. The writers of

Grade 8 are urged to note these suggestions and criticisms of the treatment of

real numbers, measure, and rongruence in Grade 7.

Real Numbers, Measure, and Con ruenee

for the Adolescent

A review of several chapters of the seventh grade manuscript leads me

to conclude that an adequate position has not been formulated and consistently

pursued in regard to the fundamental notions listed in the title. If it is

agreed that the treatment in Grade 7 should connect with the stage reached at

the end of SMSG Grade 6 and should anticipate the more mature formulations to

come, then the current work invites amendment.

Real Numbers. In the elementary school there are no real numbers. It

is implicitly suggested in several places that to each segment (or position)

on a coordinatized line there corresponds a measure (or coordinate), but there

is yet no evidence of incommensurability. The attitude of the seventh grade

text may be disputed, but for the most part it appears to suppose that the

real numbers are there -- as displacements or congruence classes of segments --

and that properties established for the rationals extend to the reals. Nothing

is said, however, to clarify and support this position. More important, the



questions relating to the reals are deceptively finessed.

For example, it appears to me that the significance of the Pythagorean

theorem Chapter 14) is blurred and the argznent for it contaminated. What

iz meant by the length of the hypotenuse? More to the point, what is its

squAre and what has that to do with the area of a square on the hypotenuse?

A very reasonable conclusion of the argument in its present setting is that

the hypotenuse has no length.

Earlier, in Chapter :0, there is an opaque reference to the circumference

of a circle as measured by its radius, summarizable as follows:

) it is a number;

(ii) it is not a rational number;

(iii) it is therefore expressible by an unending decimal;

(iv) it can be approximated to any degree by rationals.

It seems to me that a foundation sufficient to give meaning to any of

these statements has not been laid.

In Chapter 14, which professes to deal with real numbers, the treatment

is evasive; e.g., real numbers are not'clearly related to points of a line,

operations on real numbers are not defined (the field properties are ultimately

postulated ) and the significance of an infinite decimal is not discussed.

I urge that the rationale which led to this unsatisfactory climax and

uncertain foundation be reconsidered.

Measure_and Congruence. The attitude toward real numbers has implications

for the treatment of measures, as noted above. Congruence is the basic link

and the current treatment of these connections raises additional questions.

In elementary school congruence is taken directly from perception and

hence is basic. Rational measure values (length, angle, area) are specifiable

in terms of congruence. In Chapter 8, however, it is asserted initially

without amplification that congruent segments (angles) have the same measure.

Later the converse is used without c mment. The argument for the congruence

of vertical angles includes:

(i) Every angle has a measure and angle sum corresponds to number

(unstated);
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vertical angles have the same measure (by subtraction, this

is explicit);

iii) hence vertical angles are congruent.

This attack seems dubious in an,y 'Iltext but particularly in a chapter in

which measures can, and perhaps should, be avoided altogether.

Again in Chapter 10 (measure) angle measurement is introdu ed with:

"Having agreed on a unit of measure we may say that two

angles are congruent if they have the same measure."

The rationale for this essentially circular approach is sot clear particularly

in a pre-real number setting.

All this suggests more thought be given to:

(1) the transition from r tional to 'eel m asure values, and

i) the origin and development of the characteristic properties

of measures.

Grade 8 - Cha ter 6

Truth Sets of Mathematical Sentences

1966 Outline, pp. 280-281.

Grade 8 - Chapter 7

,Illadratic Polynomials as Functions

1966 Outline, pp. 282-286.

Grade 8 - Chapter 8

Probability

This chapter was not outlined in 1966. The following document, Probability

and Statistics for Grades 8 and 9, was produced this summer (1967) for the

guidance of the writing team, The writing team also has the Grade 7 material

that has been produced and must decide how to make the transition to Grade 8.

3)4



.L2Lre seemed in favor of ti'ie revised outline but there was no strong

cleuc directive.

ice -ent, Probabili y and Statistics for Grades 8 and 9, in a sense

suoercedes the next document, Probability and Statistics, Grades 7, 8, 9, 10 o:

The second docment is included here for the information of the writing

am; it contains good ideas that should not get lost.

ProbabiliLy and Statistic for Gr des 8 and 2

The authors of this document question the feasibility of the approach

towrd probability taken in the Outline and already implemented in Grade 7.

Oug- greatest fear is that the student will not see that a probability model

is constructed to reflect a physical situation. More important, the student

should understand that the assignment of probabilities, while arbitrary,

reflects the physical situation as deermined by experiment. Why, in a coin
1

tossing game, is the a priori probability for heads chosen to be T What
2

arguments could a 7th grader advance to refute the following argument: If

two coins are tossed there are 3 outcomes possible (2 heads, 2 tails,
1

cr 1 of each ) and that hence each should be assigned the probability ?
3

We believe it is more natural to approach Probability and Statistics

iUrcmi the standpoint of statistics and an elementary analysis of a collection

of data. The following outline suggests a possible treatment for Grades 8

and 9.

(We do not feel sufficiently competent to provide a detailed outline for

the high school course in Probability and Statistics.) Our arand goal for

Grade 9 i5 not so much a command of the calculus of -i:r.obabilities as it ts

feeling for the strengths and weaknesses of assertons

1. Toothpaste A is significantly more ye in preventing

tooth decay than toothpaste B .

2. Lung cancer can be statistically linked with cigarette smoking.

3. The likelihood of rain today is 60 percent.

The average 15 year old boy weighs 105 pounds and is 5210" tall.

5. Should I purchase a car battery for °20 which may last 18 months

or one for °30 which may last 30 months?
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6 Two radio signals are heard on the same frequency. One is code from

a Russian satel3ite, the other is noise from outer space. How can

we identify which is which?

7.

GRADE 8

A plastic toy manufacturer uses a machine which unfo= unately pro-

duces defective toys 10 percent of the time. He is considering

buying a new machine at the cost of 10,000 which will produce his

toy aad which is claimed to have a defective rate of only percent.

How should he decide if (a) the new machine has a defective rate

less than 10 percent, and (b) it is an economical replacement?

1. Frequency Distributions.

1-1. Data from observations where the entire population is known. Select

examples which can be developed by the students.

Heights of class members.

2) Distance class members can throw a ball.

;:.tanding broad jump.

".le! scores.

al, ;11days -- by the month.

.],lmber of children in families of class members.

(7) Age of students in months.

(8) Number of letters in last name. (Also first name. Compare )

(9) Vowel frequencies in newspapers. Compare English and foreign

language papers.

(10) Measurement. With a ruler marked in millimeters, let each

student measure a line segment of about a yard.

(11) Estimate midpoint of a line segment of about a foot by eye.

Then measure the estimates.

(12) Weight of apples (or orange ) in a box.

1-2. Graphs of data. Grouping of data (give rules of thumb). Continuous

model?
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i%elative frequency. Cumulative frequency,

liaise lots of questions about the properties of the distributions

discussed above.

1-4. Mean, Mode, and Median.

Develop as numbers which describe the total distribution; that is,

as examples of number valued functions of the set of distributions.

Give different distributions with the same mean.

Percentiles.

Rescaling: If, for example, in the ball throwing experiment, the

distances range from 60' to 150' , we could shift the origin so

that the range is -45 to 145 or we could rescale so that the

range of values is -1 to 1 . Compare a shift of the origin

with change of scale of the axis. Try out both on examples in

Section 1-1. Contrast scaled and unscaIed distributions of

Examples 2 and 3.

1-5. Variance and Standard Deviation.

Treat as further examples of numbers which describe the whole

distribution. Compute fo the various distributions in Section 1-1.

Ask for comments:

Change of scale effect on variance and standard deviation.

Look to Chebychev's inequality but don't emphasize.

1-6. Subpopulations (Samples).

For example, select out distributions for both boys and girls in the

examples in Section 1-1. Plot both distributions on the same graph,

Compare. Compare with whole. Compute means and standard deviation.

Repeat when, for example, the subpopulation consists of those with

first initial A - L and with first initial M - Z.

1-7. Samples.

Treat as similar "hunks". Show how some of the examples in

Section 1-6 seem to reflect total distribution while others ao not.

r--,lare means and standard deviation. Can these samp_e statistics

be used in prediction?



1-8. Measurement -- Distribution of Errors

Approach from the point of view of comparing different groups of

measurements of the same object. Example: Have the class measure

with a ruler marked in millimeters a line Segment about a yard long.

Now consider different subpopulations of different size as though

they had determined the length of the segment. Compare. Do not

try to suggest that an under'Ting distribution' for the errors in

measurement might exist. Just treat it as, "This is what we got".

GRADE 9.

1. Examples from Bernoulli Trials.

Coin tossing, spinners, thumbtacks. (Pick up link With Grade 7.)

Perform say 100 4rials of coin tossing 20 times. Compute means and

standard deviation of these 20 experiments. Repeat the experiment

with different sample sizes than 100 Compute the means and standard

deviations -- relate to size of sample.

2. Probability Models.

Take another look at Grade 7. Treat as modeling probleM.

Construct Probability space - Event. space.

Assignment of probabilities.

Elementary calculation of probabilities.

Give tables for the binomial distribution to avoid complications of

sophisticated counting.

Elementary Testing of H othesis.

The teacher presents statistics from the spins of an unknown spinner.

How is the area of the spinner divided?

An ESP experiment with coin tossing: Is the subject doing

"s gnificantly" better than he could by guessing? Develop notion of

maximum likelihood from the point of view of rejection-acceptance tests.

For example, with the spinner problem with a 90 percent confidence we

might reject the hypothesis that tWdistribution was 1/4 - 3/4 and

accept that it was 1/2 - 1/2 . We might also accept a great many others

and reject a great many. Whic ,eams most favorable?
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Co back and pick up examples from Section 1-b. If a studentls

performance is given can we decide whether the student is male or female?

Suppose, for example, we know the distance of the sudents standing broad

jump. One way of reducing the complicated distribution of distances to a

Bernoulli trials situation is to make a pairing of the boys and girls,

For each pair, record a 1 if the boy's score exceeds that of the girl,

and -1 otherwise. Refinements in the method of pairing can bring out

other interesting phenomena. For example, is height a key factor in the

standing broad jump? Match the pairs so that they have the same height.

4. Problems Requiring more Complex Computations of Probabilities.

Problems where there are more than two outcomes.

ESP experiments where the subject calls the cards from a deck of say

12 cards. When is a long run of successful guesses significant?

Dice (or a suitable euphemism).

Independt-nce of trials.

Selection wdthout 1-eplacement.

(In this section we would continue the emphasis to a. test of hypotheses.

These experiments will lend to the next section where the counting tools

are developed.)

Combinatorics Systematic Counting.

Inclusion-exclusion principle.

Multinomlal coefficients.

Tree diagrams.

6. Conditional Probabilities.

Independence of tests.

7. Random Variables.

2eturn to Grade 8 type of examples and read off various functions of

the distributions. Use Bernoulli trials. Discuss the R. V. which is the

number of tosses before the first head.

Expected value. Expected value of a sum of R. V. is the sum of the

expected values. Use this as an aid in determining probabilities and in

the combinatorics of Section 2.
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8. C rrelations Between Differ-et Random Variables.

Curve fitting -- Distinction between best fit and goodness of fit.

This document, in a sense, is superceded by the previous document,

Probability and Statistics for Grades 8 and 9. It is included here for the

information of the writing team; it contains good ideas that should not get

lost.

Probabllity and Statistics, Grades 7, 8, 2, 10 or 11

GRADE 7. (1966-67 Version)

1. Assigning Probabilities to Outcomes.

1-1. Bases for equally likely assignm et fair games.

1-2. Probability assignments based on the equally likely case; spinners,

marbles in a jar, etc.

2. Fairs of Trials.

2-1. Tree diagrams, clunting outc6mes.

2-2. Assigning probabilities, equally likely assumption.

Examples of extensions to '3 and 4 trials.

Inferences from Relative Frequencies.

3-1. Spinner trials with sines of sectors unknown.

3-2. TThmb tack throws.

3-3. pal from treatments, production lines, e c.

Unions of Events.

4-1. Relation of P(A U B) , P(A) , P(B) , P(A n B)
4-2. Mutually exclusive case.

Intersections_of EVents

5-1. Pairs of trials with and

5-2. Independent events.

ut replacement.

GRADE 9.

1. Frequency Distributions.

1-1. Data which can be regarded as the outcomes of an "experiment";

frequency, relative frequency' and cumulative frequency distributions
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and their graphical presentation; examples such as:

during the year by day of the week, distribution of

month, number of children per family, age of pupils

occurrences of each vowel in several lines of text.

1-2. Means and Percentiles.

class absences

birthdays by

in months,

The mean as representative of a distribution, significance of

s = nx; means in comparisons, are girls in class older than boys?

Computation of means by change in scale. Median, percentile points

in a distribution, standard arithmetic test scores, problem of

dividing class into 3 or 4 groups by height, etc.

2. fx2babllity_Distributions.

2-1. Probabilities as "weights" associated with long run relative

frequencies. Outcome probabilities in selection from known finite

populations (as in 1-1 above).

2-2. Means of sample distributions as estimates of population means,

problem of accuracy of estimates of population means.

Probabilities in coin or spinner types of situations; problem of

testing an hypothesis as, e.g., in pupil taking true-false test,

ESP experiment with cards or coin, Friday or Monday absences from

school, etc.; testing hypothesis requires deriving probabilities

from certain assumed probabilities.

_GRADE 9.

3. Probabilities in Re eated Trials.

3-1. Implications of independence of trials, the problem of counting the

number of k-element subsets of an n-element set.

3-2. Selection without replacement; the problem of counting sequences.

4. Methods of Counting Possibilities.

4-1. Tree diagrams, the fundamental counting principle.

4-2. The number of k-sequences and distinct k-sequences from an n-element

set. The number of k-element subsets; relation to binomial theorem.

Testing Hypotheses.
1

5-1. Test hypothesis p i7 n several specific examples, e.g., sex,

'hirths in March-September using central intervals; apply similar
/ 1

technique to a case with p ; have class devise tests, e.g. of



independence of trials in births

5-2. Conduct ESP test using order in shuffled deck of 10 or 12 cards.

6. Standard Deviation.
1

6-1. Binomial distribution with p = relativized forms and differences

in snread. Standard deviation (s.d.) us a natural unit in measuring

spread, standard deviation of a frequency distribution.

6-2. The (binomial) law of large numbers.

Design of experiments, e.g., distinguish between p = or

p .= .6 as appropriate probability assignment.

GRADEJO or GRADE 11.

7. Conditional l_robability.

7-1. The Mendelian model; 3-spinner or urn simulation of genotypes;

problems in population genetic e.g., all AA aie wiped out or

AA is lethal; Hardy's Theorem.

7-2. A problem in sex linked genetics, e.g., hemophilia, color blindness;

comparison with data.

8. Markov Chains.

8-1. Genotype change over generations; population movements; random walk

presentation; gambling problems; transition probability matrices.

8-2. Long run trends in Markov processes; matrix multiplication.

9. The Normal Distribution.

9-1. Normalized binomial distributions; conditions under which the normal

distribution (as a tabulated function ) is a reasonable approximation.

Situations in which distributions are approximately normal.

9-2. Common uses of the normal distribution; standardizing test scores;

inferences from sample mean and s.d. (standard deviation), repeated

selections from normally distributed population; testing randomness

of samples; e.g., among 30 honor students 19 are girls (compare

-with binomial computation), or the class as a sample of all students

in the same grade with respect to a normal achievement test.

42



Grade 8 - CDapter 2

Parallels and Perpendiculars

1966 Outline, pp. 287-298.

In addition to the material suggested in the 1966 outline it is suggested

that the following material from Grade 7 be included. This is suggested to

lighten the geometry load in Grade 7 and spread the geometr material over a

longer period of time.

Grade 7. Chapter 1 - Structure of Space.

1-12. Curves, Simple Closed Curve

1-13. Convexity

Grade 7. Cha ter 12 - Parallelism.

12-4. Parallels and the CircumferenCe of the Earth

12-7. More About Parallelograms

12-8. Families and Networks of Parallel Lines

12-9. Dividing Segments Into Congruent Parts

12-10. Triangles and Families of Paral_el Lines

12-11. Networks and Coordinates

In discussing the above proposed shifts of material from Grade 7 to Grade

it was pointed out that Sections 1-12 and 1-13 were about the only things that

might be new in Chapter 1, so in the Revision of Grade 7 these two sections

might be retained.

It was also pointed out that Section 12-4 might well be retained in

Grade 7 because it is a nice application of material that has just been taught.

Here again the writing team must build on the revised version of the Grade 7

text. Of course, the revised version will not be available for the first

writing of Grade 8 so an educaued guess will be required here.
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Grade 8 - Chapter 10

21.2Re_rties and Mensuration of Geometric LiEEma

(Review and Summary)

1966 Outline, pp., 299-311.

There are three more drurnents that may be useful here d they will

follow in this order:

A treatment ef Area, Volume, Work and Falling Body Problems Without

Limit Pro sses. This treatment does not use function notation.

(2) A aocument 7ith the same title as (1) hut this treatment uses

function notation.

A "Circular" Unit of Measure for Circular Areas.

A Treatment of Area, Volume, Work

and Falling Body Problems without Limit Processes

It iS possible to set up double inequalities for area, volume, falling

body and work'rroblems and to solve them using only the simple algebra of

inequalities. This fact may prove useful in giving significant applications

of algebra at an early level.

It is thought that some of this material may be suitable for use in the

treatment of measurement in Grades 8 and 9. In particular, it may be used in

Grade 8, Chapter 10, Properties and Mensuration of Geometric Figures; Grade 9, .

Chapter 4, Measure Functions and Their Properties; and Grade 9, Thapter 10,

Measure.

This treatment does not involve function notation. Since function netation

has been use-' from Grade 7 the writers may want to consider using some of the

material that is precisely the same except for the use of function notation.

This material follows Immediately after the treatment not using function

notation, pp. 52.



On Volumes and Areas

1. rramids, Cones and Spheres.

(a) Consider a ryramid with altitude

equal to the side s of the

square base and suppose that the

vertex is above one corner of

the base. By constructing two

copies of such a pyramid and

putting all three pyramids

together we

of side

The volume

pyramid is

can form a cube
,3and voiume

of the given
1

therefore
3

X'

The volume of the pyramid above the plane at distance

below the vertex is
1 _3V=

The vo3ume above the plane at distance xt (x-

Then the

This

is

1 3

3

volume of the frustum between these two planes is

1 3 3
vl - V = xt- x

3 3

volume is greater than

times the

sectional

2.)

This

It ma3i- be

thickness
_2

area xi- times

the smallest cross-sectinnal area x
2

x and less than the largest cross-

- x That is,

< xl
2

( x)x) 303 x
3 3

is easy to verify

3 - x3 =
3 3 3

algebraically since

x)(x
2

+ xxl + xl
2

)

shown (see Section 2) thdt if we require that

2
xl - x) < VI -

for all 0 x < x'

(and VI = 3) .
1

3

there

V < xl
2
(xl - x)

is no other possibility than V = 1
7
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(b) Now take a right circular cone

with altitude a equal to the

radius of the base. What is

its volume?

A section at distance x

from the vertex has the area

nx
2

while one at distance
2

has the area If V

is the volume of the s7ialler

cone and VI the volume of

the larger co e, the frustum

require that

,

(2)- nx
2
kx1 Vl - V <

What then is

2
(3) nx

has the volume Vt - V . Then we

V ? if we multiply (1) by n ye obtain

x) < - x3 < nxt2
3 3

Comparing (2) and (3) we find

V
3

x (and VI

Hence the volume of the given cone is Tr

3

If more generally the radius of the base is ka , the radii of

the cross-sections at x and xl are kx and kx1 respectively.

Then (2) is replaced by

(4) Ick2x2(xl x) < VI - V < nk2x:2

If we multiply (3) by k2 we find
a_ 3 2 3

nk
2 2

- x) Irk
2 2x

nk x

and so V - nk
2
x
3

3 3

The cone has the volume

n
k2a3 _ 2 2 1 2

a = - nr
_

3 3

1
area of base X altitude) .

3
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We turn now to the volume of

a hemisphere of radius a .

If V is the volume above the

base and below a plane at

height x and VI the volume

below th:f: plane at height xl

the volume between the planes

is

V' V .

The cross-sectional areas -t and XI are respectively

g(a` x and - x12) W- therefore require -ilat

(5) x12 (- x) < V' V < Tc(a x2)(x

From ( reversing signs,

-1tXt -t - DC) <
_t3 nx3 <
3 3

Adding ga (x' - x) throughout

,

11(a
2

- x
2
) (-/ - x) < ota

2
x

, 2<

Comparing with (5) we see that

V =
2 XX

3

Ira X -
3

Substituting x = a gives

and hence

2. UniTueness.

l[ga3

3

25-ra3

2
7tx

3
(Jta2x

for the volume of the hemisphere
3

for the volume of the sphe e,

The method that we have used depends upon the double inequality

(6) s(xl - x) < vt - V < S

where S and SI are the cross-sectional areas at x and x and V

and V' the volumes of the solids bounded by a base plane and the planes

at x and xl . (If the c oss-sectional area decreases as x increases,

S and SI must be interchanged.) We require that (6) hall hold for



all 0 < x < x2 From our knowledge of (1) we have been able to -.2ind

V and VI In some other cases using the simple algebra of inequalities.

The question arises: are the answers we have found the only possible

ones? The reply is "yes" so long as the cross-sectional areas increase

crease) steadily wi x

Proof:

Suppose that we slice our solid with equally-spaced planes per-

pendicular to the line along which x is i asured. We assume for

definiteness that the cross-sectional area S increases with x

If V
1

is the voluin e of the first slice

_ 'VSot
1
< S

-1
t

where_So is the value of S at x = 0 and S the value df S at

x = t , where t is the thickness of the L._ _ce.

For the serond slice

and finally

S_t < 'V2 'V_ < S

_t <V-V <St.
n-1 n

Adding

(S + S + S _)t < v < (s
0 1 n-1 1 S2

The difference between the upper and lower sums is

(S _ < St = Mtn
S)t

n

t

since S
n

is the maximum cross-sectional area M V of course is the

required volume. If there could be a second number V satisfying the

double Inequalities, we would have

(7) IV-VI < Mt .

The thickness t of each slice is the distance, d , between the bases of

the solid, divided by the number of slices n This means tha'k; (7)

becomes

IV - vi Md

By choosing n large enough we have an obvious cor,tradiction. Therefore

there can be only one number V which could represent the volume.
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The geometrical meaning of (7) is the following. When the solid is
sliced into n pieces of equal thickness, the volume is determined

within an amount equal to the volume of the largest slice. Since this

largest slice can be made as thin as we please, the volume is precisely

nailed down.

Remarks on the Areas of Circles and Spheres.= =

(a) 'lne double inequality method

leads to the area of a circle

if we are willing to start with

C = 2gx for the circumference

of a circle of radius x

Let A be the area of

the cicle of radiu x 5 and

A/ the area of the concentric

circle of radius x > x) .

Then the annulus or ring shown

shaded has the area A' - A .

It seems intuitively clear that

2Ax(xi < A' - A < 2700

Now

(8) 2x(x' - x) < = x
2

< 2x1
-2

e see algebraically since

XI
2

- x
2

= (x + xl)(x2

and geometrically from the

following figure.

Multiplying (1) by

2
2gx (x' - x) < gx gx

whi gxch leads to A =
2

.

x I

The surface area of a sphere may be treated similarly. If S =

is the area of a sphere of radius x and St = k x$2 s the area

of a sphere of radius , we have for the volume VI - V between
them

x) < V' - V < kx12(x



However, we know V and V' so that we may write

We need to find k .

Since from Section 1

43Tx2 (x' x)

x3
< x

Hence k = 11-Tr and S =
2

a has tt- area

The urface of a sl-here of radius

4. Galileo assumed that the speed v of a body dropped from rest is a

constant k times the elapsed time

v = kx .

What is the distance d fallen in time x ? The distance covered between

the time x and the later time x' is surely

This is greater than the distance

that would have been covered had the

speed remained equal to kx .

Throughout the time interval

(xt x) and less then the

distance which would correspond

to the constant speed Rxi

Hence

(2) kx(xl x) < d2 d < kx2(x2 - x)

The double inequality (2) would arise in fiading the area A under the

graph y kx and above [0,x) . This area is -1

a=

x kx Hence

Hooke proved that the force exerted by a spring is kx where x is the

extension from the unstretched position. If W is the work required to

stretch the spring the distance x , the work required to stretch it from

x tc x is surely WI - W Then we see Immediately that
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W' W < kx' (x' - x)

2
kx

The solution is w
2

Same mathematical model for a different

physical situation!

6. A more interesting problem concern& the work (energy) required to lift a

rocket Imo miles above the earthlo surface. Use the earth's radius as

a unit of length. The force at tLa

distance x from the center of the

earth is where k is the
x
2

weight of the rocket when x = 1 .

If W is the work to go from 1

to > 1) we require that

x) < WI - kk

x' x
2

1
Since

30- xx

k (_1 x) it k-
2

xI2 x

Because of uniqueness we can set

-
k x'

W W -
xx/ x x/ .

At x = W = 0 .

W = k -

k k
When x = 2 14/ = - = . If k is in pounds and we wish the

answer in ft.-lbs, we should multiply by 4000 X 5280 .



iae of the outirig group felt that since function notation is familiar,

treatment may be preferable over the previous treatment not involving

ion notRtion.

A Treatment of Area, Volume, Work

and rallin .lody Problems without Limit Processes

Using Function Notation

It d; 1)sible to set up double inequalities for area, volume, falling

ocrI obleao .7.Ma to solve them using only the simplc, algebra of

-:-1,-(La1jtios. This fact may prove useful in giving significant applications

ab an oar]y level. The following sketch shows the essential idea.

Let F(x) e the area under the

parabola y = x-
2

above the

inter-val [0,x1 and F(xI) the

arJ., above [0,x1) , xl > x

Then the area above -3]

F(x) F(x)

,vhiuh is clearly between the

areas of two rectangles with

base x x Then

(1) x2(xl x) < F

This double inequality holds for all 0 < x < x' .

The rectangle with base x and altitude x
2

has the area x

eaIly R(x)

1 3
Lc(x) =

10(

and

VC

X23

1 3is less than -x
2

It is not too hard to guess that

However, let us see what happens with F(x) x3 and

Since

- x x
2

xx' xl
2

5

2
3x2

x)3x2
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which differs from (1) by the presee of the 31s . Dividing we obtain

x/3 x3 .2,
x kx- - x) < < x. kx-

.
- x)

3 3

x3
so that F(x) = is a sution of (1) for all 0 < x < xi .

3

It li.ay be shown (proof on request) that this is the only solution of

(1) for which F(0) = 0 .

2. To find the volume of the square

pyramid shown, let F(x) be the

volume between the vcrtex and the

plane at distance x below it.

Then F(xi) F(x) is the volume

between the planes at x and xi .

This volume is greater than the

thickness (xi x) of the slab

times .;:he smallest cross-sectional

area x
2

and less than (x2 - x)

times the largesi, cross-sectional

area xi
2

Then

x2(xi - x) < F(xi) - F(

V

) < x22(xt - X)

This is the same as (1), so that

x3F(x) = The result can be
3

verified immediately since the
1pyramid above the x-plane is
3

of a cube of side x .

The volumes of cones and spheres are easily found similarly, assuming

gr
2

for the area of a circle.
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A "Circular" Unit of Measure for Circular Areas

Traditional measures of area are usually associated with square areal

olits which, with circular areas, usually bring in dat old debbil 7t .

::i_ctricians have sometimes used circular units:

1 circular mil = the area of a circle whose diameter is

1 mil , or .001 inches.

With this unit certain computations involving areas (and electrical

resistances) become easier; thus the area of a circle of diameter .004 is

simply 4
2
= 16 c.m and so on. A source of situations for modeling is also

easily available since the resistance varies inversely as the area .

Another useful unit of volume can come from the same source:

1 mil - foot = the volume of a cylinder of diameter .001 inch

and length 1 foot.

This volume unit would also rationalize many problems in volumes of

cylinders.

Perhaps the use of these units, since they lead from rational inputs to

rational outputs, would allow pupils to master the conceptual material more

readily, before they have to cope with the irrationalities of Tr and their

teachers.

Grade 8 - Chapter 11

Spatial Perception and Locus

1966 Outline, pp. 312-315.

Grade 8 - Chapter 12

Systems of Sentences in Two Variables

Since systems involving inequalities as well as equations will be studied,

it was felt that the title should be changed -- using the word Sentences

instead of the word Equations in the title.

See the 1966 Outline, pp. 316-319.
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The following is a revision of the 1966 Outline, using new material that

was written this summer. It will be seen that this new outline essentially

covers the 1966 Outline and a little more.

Revision of 1966 Outline

Background: Graph of Linear equations.

Solution sets of equat!L ns and inequalities.

Purpose:

1. To review the graphical representation of equations and inequalities

in one variable.

2. To develop the graphical representation of solution sets of systems

of first degree sentences in two variables.

3. To formulate the concept of equivalent systems and introduce the

method of linear combinations for arriving at algebraic solutions.

4. To examine various cases of systems of equations and their graphical

interpretation.-- inconsistent, consistent, dependent; parallel,

coinciding, and intersecting lines.

5. Extend work with systems of inequalities to general linear inequalities

and to regions bounded by several straight lines, in preparation for

finding convex regions in elementary linear programming problem:7,

Section 12-1: A Decision Problem. (Class Involvement)

(See Appendix C, Section 1)

"Suppose you are president of a division of a large corporation

called "General Engines'. Your division manufactures one make

of car and one make of truck. How many cars and trucks should

be scheduled for the next year's production to make as large a

profit as possible?"

(Almost all of the pertinent information should be contained in the T.C.

to be released by the teacher as the need arises in the discussion.

See Appendix C, Section 1.)
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Additional Information:

1. The profit on each truck is different than the profit on each car.

2. The supply of steel is limited.

3. It takes more steel to build a truck than a car.

4. The factory's capacity to produce units of cars and trucks is limited.

1.1 Class Exercises

1. What do you know about profit? On each car? On each truck?

2. How much steel is available?

3. How much steel does it take to make a car? a truck?

4. How many cars can you build? What's your total profit?

5. How many trucks can you build? What's your total profit?

6. What's your decision?

7. Is there any information that you haven't used yet?

8. If you make only cars, do you use all the steel?

9. If you make only trucks, do you use all the steel?

10. If you make only cars, can the factory make that many in year?

11. Can the production be only trucks, and keep the factory operating

at full capacity? Why, or why not?

Suppose we know that this year, 90,000 trucks and 410,000 cars were

made;

12. Discuss the total profit on the cars and the trucks, c adng

they were all sold.

13. Discuss the amount of steel used to do the above.

14. If 15,000 tons of steel will be left over from this y r's

production, how many tons will be surplus if you stic to this

year's production plan?

Copy and fill in the following table showing the information you

have collected.

Number

of Cars

,

Number

of Trucks

Unused

Steel

Unused

Capacity

Total

Profit

500,000

0

450,000
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Inspecting the table you see that decreasing the number of cars

produced from 500,000 to 410,000 (and producing trucks instead)

decreases the amount of unused steel and increases profits. However,

if you continue to decrease the number of cars, say to zero, then

profits decrease too. This suggests that somewhere in between

410,000 cars and zero cars there may be still room for improvement.

15. Try to find the best production plan where the profit is maximum

and the amount of steel left aver is minimum. Support your

plan with data.

Section 12-2: The Mathematical Model (Appendix C, Section 2)

2.1 General discussion of a mathematical model and translation process.

2.2 Develop the "Profit" equation (Appendix C, Section

different positions of this line segment in the first quadrant.

2.3 Develop the "steel restriction" inequality and graph the region

related to it. Be sure to include in the discussion the inequalities

C > 0 5
T > 0 .-

2.4 Develop the "plant capacity" nequality and graph the region related

to it.

2.5 Discuss the solution of the system

C 0 T 0

1.5C + 3T < 975,000

C + T < 500,000

for which

P = 300C + 400T is a maximum.

2.6 Emphasize need for studying "Systems of Sentences" apart from the

problem in order to develop efficient machineiy for analyses of such

decision problems.

Section 12-3: Solution sets of s stems of e uations and ine ualities

1. Review definition of solution set of an equation or inequality.

2. Define solution set for systems of equations and fnequalities.

Give examples in which the solution set contains no ordered pairs,

1 ordered pair, infinitely many; e.g., for equations,

(2x + y 5

). 2x + y = -2 .

( 2x + y = 5

1 2x - y = 5

f 2x + y = 5

1 6x + 3y = 15 .

At this point the solution sets may be found by examining the graphs!
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:lection 12-4: Equivalent equations and equivalent systems of equations

1. Two equations or two systems of equations are equivalent if they

have the same solution sets.

2 If an equation in a system of equations is replaced by an equivalent

equation the resulting system is equivalent to the original system.

3. Linear combination of left members of two equations (when right

member is zero) used to construct simpler equivalent system of

equations. (See Int. Math., Ch. 7, pp. 374-81; also FCA, Ch. 15,

pp. 468-484.)

Example: 2x - y - 5 = 0 ,

1 x - 3y + 5 = 0 .

kIrst place 2x - y - 5 = 0 by a(2x - y - 5 )+(X- 3Y + 5) = 0

for an appropriate a An appropriate one is a = -3 The

resulting equivalent system is

r5x + 20 = 0 ,

x - 3y + 5 = 0 .

Now replace x - 3y + 5 = 0 by a(-5x + 20) + b(x - 3y + 5) .

One might choose a = and b = 1 or one might take a = 1
5

and b = 5 .

We eventually get the equivalent system:

x = 4 ,

Y = 3 ;

for which the.solution set is clearly ((4,3))

Section 12-5: Systems of Linear Equations

1. Review of graphic solution.

2. Graphic interpretation of linear coMbination and solution sets.

Family of lines through a point.'

A look at the possible cases:

L
1

and 1i2 the same line

x + y = 2 ,

2x + 2y = 4 .
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L and L
2

parallel:
1

x + y 2

2x + 2y = -5

L
1

and L, intersect in a single point:

x + y = 2

) x - y 4 .

Section 12-6: Graphic Solution of Systems of Ine ualities

(See FCA, pp. 485-492.)

Many examples of increasing difficulty and complexity; e.g.,

1. ) y < x

) x > 2 .

2.
5
lI < 2

lxi < 1 .

3. 2x + 3y < 1 ,

x

4. 2x + 3y <2 ,

) 2x + 3y > 0 .

5. 2x + y > 2

x + y < 1 ,

6. x + y < 5 ,

y < 3x + 4 .,

y < -x + 4 .

7. In the intersection of three half-planes which will define a

triangular region emphasize geometric part.

8. Distinguish unbounded and bounded situations.

Section 12-7: Applications

1. State ;ome problem situations which really need two variables to

rplesent the conditions. Give the students an opportunity to

fomUlate systems of equations and use the methods developed earlier

in Vle chapter.

2. Disoassion of "The Mathematical Model." (Appendix C, Section 2)

Try to create a class situation so that the students will develop

for themselves some of the characteristics of the process of

"modeling".

We are now going to discuss the translation of a stated problem into

a mathematical one. First, we must replace the words we have used to

describe the situation in ordinary language by mathematical symbols and

relations. This will provide a mathematical model. It is only a model

of the real situation because (1) we can never list and include all the

facts; only those facts that we think are most impoL-tari:, and (2) we
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cannot know the exact relationships in the real situation, so our

mathematical relations will only be approximations to the real life

situation.

A great advantage of a mathematical model is that you can do

"experiments" with it just with pencil and paper or computer. You can

say, "What would happen if such and such were done?" Then, you can carry

out the mathematics and find out what the model predicts. You donut have

to build something in a laboratory and test it or wait until it happens

in the real world. Often a mathematical model is the only way to get such

information when no laboratory experiment is possible. For instance, when

you want to determine the route to be travelled to the moon by ,ae first

manned spaceships.

If our model is complete enough it will provide a good enough approxi-

mation to the real life situation so that we can rely on the answers it

gives us. Of course the best test we have is to compare the predictions

made by the model with the real situation and see how well they agree.

Eventually this must always be done. If the agreement is poor we ma7 have

to add more 2eatures to the model. You can see that many different models

can be made for the same real life situation just as an artist can depict

a scene in many different ways.

3. Develop some simple linear programming problems where the student can

use the techniques of Section 12-6 to find a convex region over which

we wish to maximize a certain function of two variables. (Don2t get

too complicated -- the ninth grade unit will develop this section.)

(a) Use simple production, transportation, and diet problems to

illustrate the usefulness of this idea in different contemporary

business situations.

(b) Concentrate on the geometric interpretation of the situations.

[For an exposition appropriate for Junior High and as a source of problems

at this level, see Chapter 7, pp. 212-222 of Some Lessons in Mathematics,

edited by T. J. Fletcher, Cambridge University Press, 1965.]
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Grade 2 - Listing of Chapters

Grade 2 (1966) Grade 2 (1Z.1)

1. Exponents, Logarithms, Slide Rule 1. Exponents, Logarithms, Slide Rule

2. Transformations 2. Deductive Reasoning - Logic

3. Systems of Sentences 3. Systems of Sentences and

4. Systems of Sentences
Optimization

4. Measure Functions and Their
7. Measure TheorY

Properties

6. Statistics
5. Statistics

7,, Deductive Reasoning
o. Displacements - Vectors

8. Vectors
7. Transfo7mations

9. Circular Functions
8, Circular Functions

10. Tangency
9. Tangency

11. Measure
10 L Measure

12. Complex Numbers
11. Complex Numbers



OUTLINES OF GRADE 2 CHAPTERS

Grade 2 - Chapter 1

Exponents, Logarithms, Slide Rule

1966 Outline, pp. 324-330.

Grade 2 - Chapter 2

Deductive .132Easain:6 - Logic

The 1966 outline contains the article, "The Role of Logic in Elementary

Mathematics," pp. 479-484.

The following outline replaces the 1966 outline, pp. 353-355.

Preamble:

It is recommended that the following chapter serve as a replacement for

the original chapter on Deductive Reasoning for Grade 9.

It should be observed, at the beginning of this discussion, that we are

not suggesting that a formal study of logic be introduced in the secondary

schools. However, logic is fundamentally the grammar of mathematics it pro-

vides a way of organizing mathematical ideas; and it provides a vay of clarifying

their meaning. In the learning of mathematics, the new ideas or techniques are

justified and related to the total scheme through logic. This process largely

determines the learning sequence of mathematical concepts, and it is important

that the student should become aware of how the ideas of mathematics are con-

nected and that they do not stand in isolation.

The mathematician has long since deve:.oped the thought patterns associated

with logical reasoning and uses such patterns in almost an infinite variety of

ways as he works. Novice students in mathematics are not naturally aware of

these patterns of thought, and are not adept in the use of such reasoning

patterns. We hope to identify those intuitive aspects of logic that occur in

most mathematical arguments and emphasize them as they repeatedly occur in

context.

6 2
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We approach logic at this level as a study in validity. We recommend an

operational treatment: "What does it take to know that a statement is true?"

Background:

1. Students have seen and been involved in a large number of logical

arguments in geometry, algebra, and number theory. Some of these

proofs have been quite informal while others have been highly

structured.

2. Students have had the opportunity to observe, and sometimes even

participate in, the process of extending mathematical concepts by

sequences of logical arguments.

3. Students have not had the opportunity to develop any definite ideas

about the structure or validity of such arguments.

Purpose:

1. To develop an understanding of how the meanings of mathematical

statements are determined.

2. To develop an understanding of how mathematical statements are used

in an argument.

3. To present an extraordinarily useful language for the formulation

and/or comprehension tics in its development as a logical

sequence of ideas

4. To develop a clear u_ ,anding of the notion of proud.,

7. To develop an understanding of the role of the single connectives,

"and" "or" and "not".

6. To develop an understanding uf the conditional and biconditional

statements in mathematics.

7. To develop a clear understanding of the role of Implication and

Equivalence, the rules of inference.

8. To develop an understanding of the nature of a valid argument.



Section 1. A Problem. (Class Discussion)

1-1. In a certain unmentionable community, politicians always lie, and

non-politicians always tell the truth. A stranger meets three

citizens, and asks the first of them if he is a politician The

first citizen answers the question. The second citizen then reports

that the first citizen denied being a politician. Then the third

c1:6izen asserts that the first citizen is really a politician.

1-2. Some questions: (Class Involvement)*

1. Do you think it is possible to arrive at any conclusions about

the occupations cf the citizens? If so, what?

2. What do you need to do to support your conclusion, if you could

find one?

3. How could you be convinced that your conclusion was valid?

4. What seems to be the source of your dlifficulty, if any, in

analyzing this confusing community situatiun?

*(To the writers, and for the T.C.: his problem, and its accompanying questions,

is a "simp1e-minded" attempt to motivate the need for some "machinery" to do

some logical thinking. Even more important, once a conclusion is reached, we

want the student to begin to realize that this conclusion c n be proved correct

if he can construct a valid argument whose premises are contained in the problem,

and whose conclusion is the answer to the prolem. Incidentally the question I

have in mind is, "How ma. of these three citizens are politicians?" Maybe

students will see more interesting questions, and the teacher should be

cautioned not to "shortstop" such variations at this time. It is hoped that

none of the students will be able to formulate a conclusion to the above

question and prove it, but the teaciler might help add to the confusion by

n urging" students to assume all three, or the first two, etc., are politicians,

and to test these assumptions informally in the problem. In any case, leave

the student with the feeling that he will eventually be able to clarify this

situation and justify his conclusion.)

Section 2. Statements and Connectives.

2-1. Logic, like most branches of mathematics, begins as a set of ideas

communicated through words, which when condensed to some symbolic
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form are capable of a systematic treatment of transformation,

simplification and equivalence.

2-2. "n is a positive integer" is an example of a sentence.

"n2 - n + 41 is a prime" is another example of a sentence.

STATEMENTS: Declarative sentences which are capable of being

considered "True" or "False". We are not directly concerned as to

how they are judged to be "True" or "False": frequently it is

through a common agreement as to the meaning of words and the context

of the statement; i.e., "Red is a color", or "The sum of two and

three is five", or "Three is more than ten": or it may be based on

a common background of experience; i.e., "The sun appears to rise

in the East", or "The Los Angeles County Fair is held in September".

The decisive quality is that it makes sense to say "This stateMent

is true" or "This statement is false".

Statements are usually represented symbolically by letters near

the middle of the alphabet --p,q,r,s, etc.

2-3. Generalizations using "and" and "or".

"For each n n is a positive integer AND n
2

n + 41 is a prime."

Another alternative is,

"For each n n is a positive integer OR n
2

- n + 41 is a prime."

(To the writers: I feel that at this point,, at least indicate the possibility

in the T.C., that it would be worthwhile to do some experimenting, hopefully

leading to the discovery that the generalization, "For each n , n2 - n + "

a prime", is false. Then, also hopefully, develop a classroom argument abu,,

whether the above two generalizations are true, when the generalization, "For

each n n is a positive integer" is true.)

CONNECTIVES:

AND: When two or more statements are compounded through the use

of the connective "and", the result is a new statement called

the CONJUNCTION of the original statements, and the connective

is represented symbolically by "A " . "p A q" may be read

as "the conjunction of p and q" , or more simply as "p and q" .
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OR: When two Dr more statemem. . coml :iu th_- re .se

of the connective "or" the result is a new statement called the

DISJUNCTION of the original statements.

In common usage, the word "or" has two distinct meanings,

depending on whether it is intended to include the possibility

of "both". When we say "I am planning on going to the beach

or to a show this weekend" we certainly intend to include the

possibility of doing both, which confo= to the usage in legal

documents of the connective "and/or". It is described as the

"inclusive or" and symbolized by. " V " . (This is the meaning

of "or" most used in mathematics.) On the other hand, when we

say "The lights are on or off" we certainly exclude the possibility

of "both" and are then using the "exclusive or", which is

occasionally needed and is symbolized by " V "

2-4. Negation.

NOT: Any statement combined with the phrase "It is no*, the case

that", or simply "not", is called the NEGATION or DElitAL of the

original statement, and the negation itself is symbolized by
t

" . Thus, if "q" represents the statement "Th,, .loon is made

of green cheese", then "q" represents the statement "It is not

the case that the moon is made of green cheese", or pre simply

"The moon is not made of green cheese".

When two or more statements are compounded by the use of any of the above

r!onnectives (or some others which we will meet later) the original statements

are crilled the "components" of the connective(s) in the compound.

2-5. Sample exercises.

(1) Form the denial of each of the following and then rephrase it

if necessary in good idiomatic English. Your final answer

should not use the phrase "It is not the case that" but should

have this meaning:

(a) He saw me coming. (c) Jones caught eight fish.

(b) The largest number (dp Jones caught more than eight

whose square is less fish.

than 4o is 5 .
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/e) Jones has a large (h) Jones caught the fish and Brown

family, caught a cold.

(f) Smith can outbid (i) All who succeed are virtuous,

every competitor.

(g) Everyone is entitled (j) Fame is sumetimes Tweet.

to an opinion.

(2) Phrase each of the following as conjunctions of the simplest

possible components:

(a) The Governors of both (d) Jones and Smith deserve support.

New York and Illinois

are Republicans.

(b) May and June are (e) Jones and Smith are helping

bright and gay, each other.

(c) King Henry IV, deposer

of his cousin Richard II,

was father of Henry V.

(3) Let p represent the statement

let q represent the statement

Give the verbal version of each

you can:

(a) -q

(b) p V q

(c) pV q

(d) p A

(e) -p A

Logical Counterparts:

"The night is young", and

"You are beautiful".

of the following as simply as

(f) P

(g) A q)

(h) -P V -q

(i) -(P V q)

(j) -(10 V

When any statement, simple or compound, is written in symbolic form

we call this the "symbolic counterpart " of the original statement. Note

that many statements may have the same symbolic counterpart if they have

the same structure. In this case, each such statement is called an

"instance" of the symbolic counterpart. Note also the parallel -here

between a "word-problem" and its model.

In each of the following, identify each simple statement by a

letter and then write the symbolic counterpart of the complete statement

V.4,,orz
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in terms of these letters:

Example 1: "John played golf, or Henry played tennis and Frank

did not go swimming." Let: p = "John played golf",

q = "Henry played tennis", r = "Frank went swimming".

Ans: p V (q A -r)

Exasple 2: "John played golf or Henry played tennis, and Frank

went swimming." (Using same letters)

Ans: (p V q) A r

(Not,e that in each case, the symbolic grouping reflects the punctua-

tion of the original compound statement as it would in algebra. Note

alz,o that the letters are normally chosen to represent positive

statements, using the denial where necessary.)

0-) a is a multiple of both 3 and 5

(5) b is divisible by neither 3 nor 5 . (careful!)

(6) c is an even number larger than 29

(7) c is an even number larger than 29 and less than 35 .

Section 3, Logical Values.

Our logic is two valued, which means we assume that a statement is either

true or false. We assume that there is a truth value function which assigns

to each statement the value "1" (truth) or "0" (falsity). Now, since the

logical value of a compound must depend solely on the logical value of its

components combined with the logical pattern associated with its cc

it should be possible to compute the logical value of any compound statement,

no matter how complex, entirely from these parts.

The following tables show the effect of each type of connective on the

logical values of its components. In each case we are assuming p and q

are statements.

Negation: 0 or, in word form: "The DENIAL of a state-

() 1 ment is a statement havin

exactly the opposite

logical value of its

component."



Conjunction: p A q 1 or: "The CONJUNCTICU of two state-

ments is a statement having the

logical value 'TRUE' just in case

the logical values of both compo-

nents are 'TRUE', and 'FALSE'

otherwise."

q
Disjunction: p V q 1 0 I or: "The (inclusive) DISjUNCTION of

1 1 1 two statements is a statement
P

0 1 0 having the logical value of

"FALSE" just in case the logical

values of both components

is "FALSE", and "TRUE" otherwise."

(We will have little or no use for the exclusive disjunction in mathematics.)

3-1, Sample exercises.

(1) Determine the logical value of each of the following compound

statements, where all numerals represent Natural Numbers:

(a) 2 + 2 = 4 and 3 + 4 = 12

(b) 2 2 = 4 or 3 3.= 6 .

(c) 2 + 2 = 4 or it is not the case that 3 3 = 6 .

(d) 2 2 = 4 and 3 3 / 6 .

(e) 2 + 2 = 4 and °

(f) 3 + 4 = 12 or 4 + 3 = 12

(2) Construct comtound statements as

answer -o (a) is p v q .)

(a) From p = "2 + 2 = 4" and

required

q = "3 + 4

(e.g., one true

= 12"

Twc (other) true statements:

Three false statements:

(b) From r = "2 + 2 = 4" and s = 11/2, 4 = 12" .

T.o true statements:

Tuo false statements:
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(Some help needed here for the student in how to do these

exercises.) Make up your own program and compute the logical

values of each of the following:

(a) -(p A q)

(b) V-q

(c) pA.q
(d) -(P V q)

(e) (P A q) V -r

(f) P V (-GI A r)

(g) -(2? A -q)

(h) A (-p V q)] V q

(i) (.-qp V q) A (P V -q)

( j) (-13 v -q) A (p V q)

(You will note that some pairs of the above come out with

exactly the same ordered sets of logical values. We will make

use of this later.)

Section 4. Conditionals and Biconditionals.

He -ing assimilated the basic connectives "and", "or", and "not", which

are so common in everyday thought (just stop and think how many times a day

you use these words!) we come to one which is more important mathematically

bilt which. unfortunately, is less well understood.

A great many mathematical statements take the form (expressed or implied)

of "If - - , then - - " or one of its variations, which indi'cates a relationship

between a "cause" and its "effect"; a "hypotheF;is" and its "conclusion"; an

"initial fa " and its "dependent fact". Statements of this kind lie at the

heart of all proof, not only in geometry but throughout mathematics.

In all of its usages there is a sense of "flow" from one fact to another,

so it is natural that it be symbolized by "=4" , and "if p , then q

becomes "p=4 q" . The compound formed by any two statements and ".4" is

called a CONDITIONAL and may be read descriptively as "p arrow q" , or its

meaning may be indicated by "if p , then q" , "p only if q" "q if p"

"q provided that p" "q in case p" "p is a sufficient condition for q"

"q is a necessary condition for p" Many of these are inconvenient as not

being left-to-right readings of the symbols and others seem to be obscure as

to their meaning. Probably we had better use "p arrow q" until we are

sure of its actual meaning and can use the other forms intelligently.

In determining the effect of the Conditional, it is obvious from its

usage that "p =>q" must have a logical value of "True" (or 1) if p is

"True" and q is "True" and a logical value of "False" (or 0) if p is "True"

and q is "False". But what if p is "False"? What should we say of a
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statement such as "If two angles are right angles, then they are equal" if

the problem on which we are vorking is not concerned with right angles? Our

first reaction would probably be to say that the statement is neither "True"

nor "False" under these conditions, or at least that it doesnyt matter which,

but these merely evade the question.

The position to be taken here is that if p is "False" (0), then it is

possible to infer either a "True" or a "False" statement. Hence we will say

that the Conditional must be considered "True" whenever the hypothesis is

"False" whether the conclusion is "True" or not, and the complete table for

the Conditional must be:

p 4 q 1 0 or in words: "The CONDITIONAL has a logical value

of 'False' just in case the hypothesis

is 'True and the conclusion 'False',

and of 'True' otherwise.

With these logical values in mind, the alternate readings of 'fp qtt
given

above should now take on meaning. Certain variations are also suggested:

"p if q" as "p1:-. q" , a Reversed Conditional

"q -413 , called the CONVERSE of "p 4q"

=o-q" , called the INVERSE of ttp (it!

"-q , called the CONTRAPOSITIVE of "p --4q"

and the BICONDITIONAL, symbolized as "p<==>q" and meaning "(p =c1) A q)" .

The Biconditional is met so frequently in geometry in the form "If -, then -

and con.yersely", and in algebra in the form " if and only if - - " and

plays such an important role logically in establishing equivalence that it

deserves a complete description as:

p 4=> 1 0 or in words: "The BICONDITIONAL has the logical

1 1 0 value "True" just in case the logical

0 0 1 values of the components are exactly

the same, and of "False" otherwise.

For the Teacher's Commentary:

An alternate "justification" for the standard truth table "A-.4 B" could

be done as foLlows:

(1) When A and B are both true, then common sense suggests A B

is true.
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(2) When A is true while B is false then common sense suggests

A B is false.

Now most students will agree that "A r4A" (i.e., (If A then A)

should always be true; re,gardless of the truth of A since we say "If

A ."). However, for A A to always have the value True, we require that

when A is false then AA is true. Hence it seems plausible that

(3) When A is false and B is false, then AB is true.

Finally, most students will agree that whenever

"If C then D" and "If D then E"

then

"If C then E"

holds. It would seem that transitivity is a basic tool of logic and that it

should hold regardless of the truth values of C , D , and E Now therefore

thi,, will hold even if C D is false; say when C is True while D is

raise. Thus when E is True we have

t(C 1D) and (D E)

False

In other words, in general

(immaterial) T: e True
-r

False True

True

(4) When A is false while B is true, then AB is true.

4-l. Sample exercises. (Some Geom. examples needed)

;1) Determine the logical value of each of the following composite

statements. (All numerals represent Real Numbers):

(a). If 2 + 2 4 , then 3 + 2 = 0 .

(b) If 2 + 2 = 4 , then 3 + 3 = 6 .

(c) If 2 + 2 = 5 , then 3 + 3 = 7 .

(d) If 2 + 2 = 5 or 3 + 3 = 6 , then 5 + 5 = 11 .

(e) If 2 + 2 - 5 and 3 + 3 = 6 , then 5 + 5 / 11 .

(2) Calculate the complete table of logical values for each of the

following:
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(a) (p= q)-(q.p)
(b) (pq) A (qr) .
(c) -(p A q)e> (-q V -p)

(d) (p -q) (-p A q)

(e) (p q) .(=> [(p A q) v (-p A .-..q))

(3) Make complete evaluations of the patterns below. Dercribe how

the two tables for each pair are related:

(a) 1. p (q r)

2. (p A q) r

(b) 1. p

2. -p

(c) 1. -p

2. p V q

(d) 1. ,s,(p A q)

2. V -q

(e) 1. q)

2. p A -q

(f) 1. p q

2. -p

Section ;2. Basic Logical Equivalences.

(This section should be written so that the student and the teacher realize

that it is intended to be largely informational. There should be no attempt

to "drill and memorize". At best it should.be considered as a reference

section, and as a section which lizhtly tries to tie some things together and

point out some possible future activities, I do think it would be appropriate

to illustrate with examples the "miscellaneous laws' of proof, drawing upon the

studentstbackground in geometry, number theory, and algebra.)

BzIlow are listed some of the more basic

with their descriptive titles. In these p

with variable logical value as,ve have been

a statement with a constant value of "True"

constant:

IdentIty Laws:

p A T p

p A F * F

ComplementaELLtlais:

p A -p 4 F

Idempotent Laws:

pAp4:=: p

pVT.#4+ T

pVFtt. p

p V -p <=t. T

p V p 4.,=> p
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, q , r represent statements

using them, while T represents

and F the corresponding "False"

(p4i, T) (.4.T

(1DIF)

(ID Cz> ~10)

(ID 41=4,1)) <=> T



DeMoigan's Laws (Denial):

-(P A q) (=> -p v -q

Commutative Laws:

pAqqAp

Associative Laws:

p A (q A r)

(p A q) A r

-(P V q) -p A -q -(p q) p A -q

-(P q) <= (-P <=> q)

pVq<=.)qVp (p (q

(Tht=P q)<==> (q <=> P)

p V (q V r) p ( q r) (P =4 q) r

(p V q) V r p (q r)

(p<=#. q) E=.> r

Distributive Laws:

p A (q V r) p " (q A r)4

f(p A q) y (p A r)] [(p V q) A (p v r)]

[ (p V q)

[(2) q) A (q

[ (p A q);:- r] <=>

[1D (qr)1

Miscellaneous Laws:

[(p. q) A r)]=. (p -=r) [Transitive Law of the COnditional]

(P q)<==> [Indirect proof of a Conditional](contraposi-
tive)

q)<=> (-1=> q)* (p -q) [Disproof of a Biconditional]

(13=> q)<=> (-p<=> [Indirect proof of a Biconditional]

If you were at all observant as you read through this list, it must have

occurred to you that almost all of the properties of the Real Number System

(except "order") are present here and hence that there must exist an Algebra of

Logic which very closely parallels the Algebra of the Real Numbers. We are

very close to an Arithmetic of Logic, which is in fact exactly the basis of

electronic "decision making" circuits! We have no intention of taking time

for this now, but many of you will p,obably have an opportunity to develop

both the Arithmetic and the Algebra in some of your future courses.

There is another Algeilra which is so closely connected to the Algebra of

Logic and so easily derived from it that we cannot afford to ignore it at this

ime. We have found the ideas and notation of Sets very useful and have no

doubt found many instances in which an answer might correctly be written in



several different forms (an "equivalence"), and thus have suspected that an

Algebra of Sets exists and could be put to good use. The Algebra of Sets is

sometimes called "Boolean Algebra" after George Boole (1815-1864) and is

essential to a complete understanding of the use of Sets.

In the "set-bnilder" notation we define a set in terns of some logical

statement those items for which the statement has a logical value of "True"

become elements of the set; those items for which the statement has a logical

value of "False" are not elements of the set and hence become elements of the

"complement" of the set. For instance: A = (x : 2x + 3 > 5) defines the

solution set of the inequality 2x + 3 > 5 within the domain of the inequality.

In other words: any value of x within the domain which makes the statement

"2x + 3 > 5" have a logical value of "True" becomes a member of the set

(x A) and any value of x which makes the statement have a logical value

of "False" lies outside the set (x A') The Union and Intersection of sets

are logically defined as:

A U B = (x : (x E A) V (X E B)) A n B = (x (x e A) A (x E B))

With U = (x x lies within the domain of our statement) , our constant T

in the preceding list becomes U ; our constant F becomes 0 ; V becomes

U ; and A becomes n There is no "set" counterpart for "=*" or
17 I/ , but we already have the full list of basic Set Equivalences which

forms the basis of Boolean Algebra:

Identity: AnU= A AUU= U
An 0= 0 AU0- A

Complements: A n A' = 0 A U Al = U

Idempotent: AnA= A AUA- A
DeMorgan: (A n B), = A2 U B2 (A U = A' n B'

Commutative: AnB=BnA AU B=BUA
Associative: A n (B n C) = (A n B) n C A U (B U C) = (AU B) U C

Distributive: A n (B U C) = (A n B) U (A n C) A U (B n C) = (A U B) n (A u C)

It is the strong similarities between the "structures" of Numerical

Algebra, Logic Algebra, and Boolean Algebra which make our study of "structure"

so vital and it is hard to say which you will find more useful in your mathemati-

cal future. Fortunately, we need not worry about it because once you have any

on_ of them properly understood, you have them all!
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This is one reason that "structure" has become so Important in the study

of mathematics at all levels from kindergarten through college and into

practical application, especially in an Age of Automation.

Section 6. A Rule of Inference.

Thus far we have studied only how we assign the truth values to statements

when we know the truth values of their parts. This does not tell us how we

prove things. That is, how we can infer that one statement, B , has the truth

value 1 from other statements. There is one major rule for doing this.

Suppose that we know that the conditional

(1) A B

and suppose we know that

( 2 )

has the truth value 1

A has the truth value 1 ;

then it follows from the truth table for the conditional that

(3) has the truth value 1 .

In this way we could establish that the truth value of B is 1 without

knowing ahead of time that this was so. Note that we must determine both the

truth value of A B and A to use this rule. It may seem a bit of a paradox

that we can detertine the trath value of A.,* B 7,71-thout first knowing the

truth value of B It is not a paradox because part of the truth table for

A = B gives the value 1 regardless of the truth value of B ; namely when

A has the truth value 0 Thus we have only to deal with the cases when A

has the truth value 1 ; that is, we can assume that A is true. Naturally,

this makes it easier. But to get new information about B we then must also

establish that A has the truth value 1 .

Example 1: Consider the sentence

If 3 divides 5,043 then 3 divides 10,086 .

Ifere, of course

A is "3 divides 5043" and

B is 1t3 divides 10086" .

Now the truth of A B is established by noting that

10086 = 2 5043 and so if 3 does indeed divide 5043 ,

say 5043 = 3 n , then it follows that 10086 = 2 3 n

or that 3 divides 10086 . Thus when A has the truth
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value 1 it follows that B has the truth value 1 Hence

the truth value of A=4 B is 1 But now to infer that B

has the truth value 1 (that is, that 3 does divide

10086) we must check to see that 3 divides 5043 . Upon

division we find that 5043 = 3 1681 and so we know that

3 does divide 10086 .

Example 2: If 3 divides 5086 then 3 divides 10172 .

We shall not repeat the whole of the argument above. It

should be clear that the demonstration we have given to show

that A --=>B has the truth valne 1 goes over here by just

replacing 5043 by 5086 and -q086 by 10172 Hoever,

we cannot demonstrate that d_ Tides 5086 and so wE cannot

infer that 3 divides 10:0=-_ As far as this argumen--7, shows,

it mc. or it may not. To decL-1 which we shall have tc do

more mathematics.

Section". Quantification.

7-1. "For all" and "There exists".

When we have a statement A(x) which depends upon a variable x

then "For all x , A(x)" is assigned the truth value 1 if indeed

A(t) is true for all possible t in the range of A Otherwise

it is assigned the value 0 . Similarly "There exists an x such

that A(x)" is assigned the truth value 1 .if for at least one

t in the range of A , A(t) is true; otherwise the sentence is

assigned the value 0 .

The notion of "range" as used here can be left rather vague and

tenuous -- just as we have left the notion of variable.

7-2. Negation: The negation of (For all x , A(x)) is trivially,

-(For all x , A(x))

which is equivalent to

There exists x such that -(A(x)) .

The negation of (There exists x such that A(x)) is equivalent to

For all x , -(A(x)) .

The assignment of truth values establishes these assertions. Formal
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verification is probably not as convincing as demonstrations with

specific examples.

7-3. (Sample exercises needed to amplify this notion.)

Section 8. Other Rules of Inference.

There are two other rules of . ference which are important.

8-1. If "For all x , A(x)" has the truth value 1 ,7e infer that

A(t) has the value 1 for each t in the dor Onve-sely,

if A(t) is true, independent of t (that is, pl: 3 no
Tt

role in the argument) then ve infer "For all x

8-2. If A(t) has the truth value 1 (for some spec_fl_ t the

domain of A ) then we infer "There exists x such iat x)" .

Section 2. Axioms and Theorems.

An axiom is a specific statement to which we arbitraril,- ign uae

truth value 1 .

Example: For all pairs of integers, a + b = b + a

A theorem is a statement whose truth value we have determined to be 1 .

(Thus we regard axioms as theorems.)

Section 10. Proof.

A proof of a statement is a logical argument we make to demonstrate that

the statement is a theorem, i.e., that it has the truth value 1 . Usually

the statement in question has the form A B and it will usually have

quantifiers as a part of the statement.

The strict logical definition of a proof of B from hypothesis

, Ah
(i.e., a proof of (A

1
and A2 and ... and An ) =>la )

requires a sequence of sentences each of which is either an axiom of a

previously proved result, or it follows from one of the rules of inference

applied to statements which appear earlier in the sequence. This notion is

closer to what should occur in the classroom since it is a reduction of a

complicated sentence to a collection of simpler and more obvious statements.

Example: For all integers n , if n is odd then n
2

is o0d.

(Form : For all n , B(n)) .
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Proof: For all integers n we must show that the truth value of

(n is odd).= (n
2

is odd) has the truth value 1 It will

then follow (Section 9) that the statement is a theorem. To
,

show (n is odd) kn
2

is odd) we assume "n is odd" is

true. Now:

* n is odd 4=> there exists an integer, k

such that n = 2k + 1 . (To shorten our example we shall -ppbse

that this is a previously proved theorem; we should of co,

verify tnat this regression will occur until the axioms on rich

the integers are based are amployed.)

,

If n = 2k + 1 then n
2
= (2k + 1)

2
= 4k

2
+ 4k + 1 =

2(2k
2

+ 2k) + 1 This holds, as you will recall, because et

the distributive laws. Thus n
2
= 2(2k

2
+ 2k) + 1 and by (*)

,it follows that n
2

is odd Hence (n odd)=- kn
2

odd) has

the truth value 1 .

For the T.C.: Here are a couple of philosophical remarks on proof which

we offer:

1. A typical attitude toward proof, especially among practicing mathe-

maticians is that "A proof is an argument that convinces the listener." This

is a very practical view for those who are sufficiently concerned to doubt

or care. As a philosophy it is totally unsuited to the high school classroom,

since students seldom really care and certainly never doubt the authority of

text or teacher.

2. An important part of a proof is to discover why a particUlar theorem

holds. In the proof we find

proving (n odd)=-* (n2 odd)

the same proof hold for (n

(n has the form 3k + 1)

n has the form 3k - 1) (

exactly what "makes it tick". For example, in

how much depends upon "odd"? Wbuld (essentially)
,

even) =)01
2

even) or for

n
2

has the form 3k + 1) or for

n
2

has the form 3k - 1) ?

3. Students need training in putting facts together to create new mathe-

matics. In this game the alteration of hypotheses plays a key role. Was each

hypothesis used? Can one hypothesis be dropped? If an hypothesis is added or

dropped or denied, what is the chanBe in the conclusion?



Finally we pofmt out that this concept of proof has little to do with a

strategy for proof. In trying to construct a proof we often make false starts,

collect bits and pieces of evidence bearing on the prooi:, or change the form

of the theorem to an equivalent form. In short, since we dont know at the

start just what the sequence of steps shall be, we may have t.) do quite a lot

of trLal and error work until a suitable sequence arises. Bu the ultimate

test a proof is whether this sec ence can be found.

Incidentally, mathematicians are satisfied (convinced) when it "becomes

cla rr that a proof sequence can be established. Seldom is a complete prcof

secnce written down.

Grade 9 - Chapter 3

Systems of Sentences and Optimization

Background:

1. Convex sets and intersections of convex sets.

Solution sets of systems of equations and inequalities, and their

graphs.

3. Linear functions and their graphs.

4 An intuitive development of the linear programming problem.

,

5. Quadratic functions f: x )a(x-h)
2 k , equation of circles and

parabolas.

6. Three dimensional coordinate system and algebraic description of

subsets of space.

Purpose:

1. To extend the development of linear programming and its applications.

2. To refine the mathematical ideas involved such as convexity, polygonal

convex set, and the extreme points of such a set.

To focus explicitly on the optimization problem of determining the

maximum or minimum of a linear function defined over a polygonal

convex set.

4. To review and extend the Grade 8 development of systems of linear

equations.
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5. To introdu nd treat very lig, -y systems of first degree equations

in three Y, 7iables, and systems of one linear and one quadratic

equation.

Faction 3-1. Introduction.

(1) Pose a linear programming problem in two variables which i slightly

more complicated and more succinctly stated than the one 1, sed in

Grade 8.

(2) Guide the formulation of the equation and inequalities from the

statement of the problem.

(3) Develop a graphical solution to the problem in the manner found in

Grade 8.

(4) Examine the solution process and highlight the aspects of the process

which will be studied further in this section, namely,

(a) the language of constraints in the form of inequalities,

(b) the formation of polygonal convex sets by systems of sentences

and noting extreme points,

(c) the relationship between the linear function and the constraints

provided by the inequalities,

(d) the solution being found at an extreme point.

Section 3-2. Constraints and Inequalities.

(1) Note that decisions are made within certain boundary conditions or

constraints. Give some everyday examples: Buying a dress or suit,

etc.

(2) Provide some conditions which are to be translated into inequalities.

(3) Review graphing of inequalities. Develop terminology of half-plane

and close0 half-plane for these solution sets. Review convexity of

half-planes.

(4) Discuss conjunctions of constraints and accompanying intersections of

solution sets of inequalities. Discuss convexity of intersections of

convex sets.



Section 3-3. Polygonal Convex Sets (Constraint Sets).

(1) Have students graph solution sets of systems of inequalities that

lead to polygonal convex sets.

(2) Analyze these polygonal convex sets as

(a) being the intersection of a finite number of closed half-planes

(spaces). Note that each of these closed half-planes contains

the set, and this leads to another definition Of convexity of

polygons.

(b) being bounded or unbounded. A polygonal convex set is unbounded

if it contains a ray.

(3) Do the reverse. Provide drawings of polygonal convex sets and have

students provide the systems of inequalities which have them as

solution sets.

(4) Provide problems such as follows (from Kemeny et al) minimum

nutritional requirements:

Phosphorus Calcium

Adults . 02 .01

Child . 03 .03

Infant .01 .02

Plot the convex set and state whether or not the following assertions

are true.

(a) If a child's needs are satisfied, so are an adult's.

(b) Both an adult's and an infant's needs are satisfied only if

a child's neeqs are.

Etc.

This ties in with previous chapter on logic.

(5) Provide a system of inequalities which contains a superfluous condi-

tion and have students find it.

Section 5. Extreme Points.

(1) Exhibit some extreme points of polygonal convex sets. Then have

students identify them. (Pointing exercises)
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(2) Give systems of inequalities and have students find coordinates of

extreme points,

(3) Give the coordinates of the extreme points of a bounded polygonal

convex set and have students provide the system of inequalities.

(4) Give some problems involving constraints and have students discuss

the extreme points of the problem.

Section 3-5. Optimization of Linear Functions.

(1) Refer to problem posed in Section 1 and identify the linear function

f : (x,y) -4ax + by and the linear inequalities in x and y

forming the polygonal convex set C .

(2) Discuss the intersection of the solution set for ax + by = P and

set C .

Discuss the effect of varying P and the solutiOn occurring at an

extreme point of C .

(3) Analyze similarly some sample situations.

At what point does the solution occur?

(4) Lead to the following statement:

A linear function defined over a polygonal convex set C

takes on its maximum and minimum value at an extreme point

of C .

An informal proof of this is given in Kemeny et al.

(5) Develop the general method of finding the maximum or minimum of a

linear functim defined over a polygonal convex set C (bounded).
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(a) Find the extreme points of C (there will be a finite number

of them).

(b) Substitute coordinates of each into the function.

(c) The largest of the values will be the maximum and the smallest

will be the minimum.

Section 3-6. Applications. (Appendix C, Section 3)

(1) Provide some linear programming problems.

Include both minimum and maximum problems.

Include cases where no solution exists,

where an infinite number of bounded solutions exist,

and at least one occurs at an extreme point

where the solution exists but is unbounded.

(2) Have students analyze how these cases arise.

Section 3-7. Systems of Linear muati2Es Revisited.

(1) Pose some problems leading to two linear equations in two variables.

Example: Consider the centigrade-Fahrenheit formula

C = 2 (F-32) and pose these questions:
9

At what temperature do the two thermcimeters have the same

reading?

At what temperature does the Fahrenheit thermmeter have a

reading 3 times that of the centigrade thermometer?

(2) Review graphical and algebraic procedures for finding solution.

Discuss equivalent equations and equivalent systems.

Review principle of linear combination.

(3) Consider cases of inconsistent and dependent systems and have

students develop a graphical and algebraic analysis of these cases.

Examine these cases in terms of applications.

Section 3-8. Systems of First De_gree Equations in Three Variables.

(1) Pose a problem leading to 3 first degree equations in 3 .riables.

Example: (Modify diet problem found in Dorn-Greenberg text.

84

. 89



(2) Develop a graphical analysis, showing that each is an equation for a

plane and problem is finding point of intersection of three planes.

Show graphically how other cases may arise,

(3) Develop algebraic process for finding solution as an extension of

process for two linear equations in the previous sectior,

(4) Since the process is repetitive, consider the possibility of develop-

ing a flow chart for the process, following Gaussls method. (See

Dorn-Greenberg.)

Section 3_72. Systems of One Linear and One Quadratic Equation or Inequality.

(Very lightly.)

(1) Consider pairs of equations, one for a line and one for a

parabola, very simple cases.

Develop algebraically and graphically.

Example: y = x
2

y = 2x + 3

Consider also y > x
2

y < 2x + 3

and consider intersections of

the family y = 2x + k .

(2) Carry out the same simple development for a circle and a line.

Example: x
2 + y2 = 5

x + 2y = 5

It is recowirended that the following material not be included, in the 7-9 sequence.

Systems of Sentences in Two or More Variables

Background:

1. In Grade 8 students will have studied systems of first degree sentences

in two variables with a slight introduction to linear programming.

(Chapter 12, 1967 sequence)
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2. In Grade 8 students will have studied the quadratic function
,

f : x - h)
2

+ k extensively and be familiar with the equation

of a circle. (Grade 7, Chapter 2, 1967 sequence)

3. They will not have any experience with equations of the hyperbola or

ellipse, and will not be familiar with the general second degree

sentence in two variables.

4. In Grade 9, Chapter 3, students will develop, hopefully, a higher

level of sophistication in working with first degree sentences in

wo variables as they develop the linear programming chapter.

I recommend that a study of systems of sentences like:

x + 2y - 3 = 0

x
2 - 3x + 5 = y

x
2

+ y
2 - 3=0

2x
2 - 3x + 4 - 5y

2
= 0 ,

2
i23e- - 3x + 4 + y < 0

x + 2y - 5 = 0 ,

along with their graphical representation be studied in conjunction with the

appropriate sections in the 10 - 12 sequence.

I also recommend that systems of sentences like:

{x + y 4. z - 3 = 0

2x - 5y + 7z + 1 = 0

5x - 2y - 3z + 10 = 0 ,

1

x + y + z + w-- 4 = 0

2x - 5y + z - 3w + 10 = 0

5x + lOy - 7z + w 2 = 0 . . .

x + y - z - w + 2 = 0 ,

be included at appropriate places in the 10 - 12 sequence.

Some reasons for the recommendations:

(1) Students will have matrices to handle systems of first degree equations

in two or more Variables in the 10 - 12 sequence.

(2) It seems more appropriate to study systems of second degree sentences

in two variables when a knowledge'of all of the conic sections, and

some knowledge of transformations in thr! plane are available to the

student.

(3) Study of systems of equations in the 10 - 12 sequence can arise

naturally in the spiral of the "stream!' of modeling and linear pro-

grauuaing.
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Grade .2 - Chapter 4

Measure Functions and Their Properties

1966 Outline, pp. 346-352.

In the outline for Grade 8, Chapter 10, Properties and Mensuration of Geometric

Figures, there may be some material that would fit nicely here, particularly the

sections using the function notation.

Grade .2 - Chapter

Statistics

The 1966 Outline, page 321, only listed some topics that might be included.

In the 1966 Outline also, on pp. 417 and 418, there is a statement concerning

probability and statistics for Grades 7-9.

The following document was produced to guide the Grades 8 and 9 writing

teams. Only the last part is specifically for Grade 9, but the complete

document is included here. Hopefully this will assist in getting a consistent

sequential treatment in Grades 8 and 9.

See under Grade 8 the document Probability and StatisticS, Grades 7, 8,

9, 10 or 11, pp. 40 . This document Was, in a sense, superceded by the

document Probability and Statistics for Grades 8 and 9, but it still has good

ideas in it that should not get lost.

Probability and Statistics for Grades 8 and 2

We question the feasibility of the approach toward probability taken in

the Outline and already implemented in Grade 7. Our greatest fear is that the

student will not see that a probability model is constructed to reflect a

physical situation. More important, the student should understand that the

assignment of probabilities, while arbitrary, reflects the physical situation

as determined by experiment. Wby, in a coin tossing game, is the priori
1

probability for heads chosen to be ? What arguments could a 7th grader

advance to refute the following argument: If two coins are tossed there are

3 outcomes possible (2 heads, 2 tails, or 1 of each) and that hence each

should be assigned the probability 1
?

3
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We believe it is more natural to approach Probability and Statistics

from the standpoint of statistics and an elementary analysis of a collection

of data. The following outline suggests a possible treatment for Grades 8

and 9.

(We do not feel sufficiently competent to provide a detailed outline for the

high school course in Probability and Statistics.) Our grand goal for Grade 9

is not so much a command for the calculus of probabilities as it is a feeling

for the strengths and weaknesses of assertions like:

1. Toothpaste A is significantly more effective in preventing tooth

decay than toothpaste B .

2. Lung cancer can be statistically linked with cigarette smoking.

3. The likelihood of rain today is 60 percent.

4. The average 15 year old boy weighs 105 pounds and is 5210" tall.

5. Should I purchase a car battery for 320 which may last 18 months

or one for °30 which may last 30 months?

6. Two radio signals are heard on the same frequency. One is code from

a Russian satellite) the other is noise from outer space. How can

we identify which is which?

7. A plastic toy manufacturer uses a machine which unfortunately pro-

duces defective toys 10 percent of the time. He is considering

buying a new machine at the cost of 10)000 which will produce his

toy and which is claimed to have a defective rate of only 5 percent.

How should he decide if (a) the new machine has a defective rate less

than 10 percent and (b) is it an economical replacement?

GRADE 8.

1. Frequency Distributions.

1-1. Data from observations where the entire population is known.

Select examples which can be developed by the students.

(1) Heights of class members.

(2) Distance class members can throw a ball.

(3) Standing broad jump.

()-i-) Test scores.

88

3



(5) Birthdays -- by the month.

(6) Number of children in families of class members.

(7) Age of students in months.

(8) Number of letters in last name. (Also first name. Compare.)

(9) Vowel frequencies in newspapers. Compare English and

foreign lanLaage papam.

(10) Measurement. With a ruler marked in millimeters, let each

student measure a line segment of about a yard.

(11) Estimate midpoint of a line sagment of about a foot by eye.

Then measure the estimates.

(12) Weight of apples (or oranges) in a box.

1-2. Graphs of data. Grouping of data (give rules of thumb). Continuous

model?

1-3. Relative frequency. Cumulative frequency.

Raise lots of questions about the properties of the distributions

discussed above.

1-4. Mean, Mode, and Median.

Develop as numbers which describe the total distribution; that is,

as examples of number valued functions of the set of distributions.

Give different distributions with the same mean.

Percentiles.

Resealing: If, for example, in the ball throwing experiment, the

distances range for 602 to 1502 , we could shift the origin so

that the range is -45 to 45 or we could rescale so that the

range of values is -1 to 1 . Compare a shift of the origin

with change of scale of the axis. Try out both on examples in

Section 1-1. Contrast scaled and unscaled distributions of

Examples 2 and 3 ,

1-5. Variance and Standard Deviation.

Treat as further examples of numbers which describe the whole dis-

tribution. Compute for the various distributions in Section 1-1.

Ask for comments:
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Change of scale effect on variance and standard deviation.

Look to Chebychev's inequality but don't emphasize.

1-6. Subpopulations (Samples).

For example, select out distributions for both boys and girls in the

examples in Section 1-1. Plot both distributions on the same graph.

Compare. Compare with whole. Compute means and standard deviation.

Repeat when, for example, the subpopulation consists of those with

first initial A - L and with first initial M Z.

1-7. Samples.

Treat as similar "hunks". Show how some of the examples in

Section 1-6 seem to reflect total distribution while others do not.

Compare means and standard deviation. Can these samp-:, statistics

be used in prediction?

1-8. Measurement -- Distribution of errors.

Approach from the point of view of oloparing differe :ups of

measurements of the same object. Example: Have the flTz._5.-7 measure

with a ruler marked in millimeters a line segment abc1- a yard longe

Now consider different subpopulations of different.siz, as though

they had determined the length of the segment. CompaIe. Do not

try to suggest that an underlying distribution for the errors in

measurement might exist. Just treat it as, "This is what we got".

GRADE 2.

1. Examples from Bernoulli trials.

Coin tossing, spinners, thumbtacks. (Pick up link with Grade 7.)

Perform say 100 trials of coin tossing 20 times. Compute means

and standard deviation of these 20 experiments. Repeat the experi-

ment with different sample sizes than 100 . Compute the means and

standard deviations -- relate to size of sample.

2. Probability Models.

Take another look at Grade 7. Treat as modeling problem.

Construct Probability space - Event space.

Assignment of probabilities.



Elementary calculation of probabilities.

Give tables for the Binomial distribution to avoid complications

of sophisticated counting.

3. Elementary testing of hypothesis.

The teacher presents statistics from the spins of an unknown spinner.

How is the area of the spinner divided?

An ESP experiment with coin tossing: Is the subject doing "signifi-

cantly" better than he could by guessing? Develop notion of maximum

likelihood from the point of view of rejection-acceptance tests.

For example, with the spinner problem with a 90 percent confidenco

we might reject the hypothesis that the distribution was 1/4 - 3/4

and accept that it was 1/2 - 1/2 . We might also accept a great

many others and reject a great many. Which seems most favorable?

C. back and pick up examples from Section 1-6. If a student's

performance is given can we decide whether the student is male or

female? Suppose, for example, we know the distance of the student's

standing broad jump. One way of reducing the complicated distribution

of distances to a Bernoulli trials situation is to make a pairing of

the boys and girls. For each pair, record a 1 if the boy's score

exceeds that of the girl and -1 otherwise. Refinements in the

method of pairing can bring cut other interesting phenomena. For

example, is height a key factor in the standing broad jump? Arrange

the matched pairs so that they have the same height.

4. Problems requiring more complex computations of probabilities.

Problems where there are more than two outcomes.

ESP experiments where the subject calls the cards from a deck of

say 12 cards. When is a long run of successful guesses significant?.

Dice (or a suitable euphemism).

Independence of trials.

Selection without replacement.

(In this section we would continue the emphasis to a test of hypotheses.

These experiments will lead to the next section where the counting

tools are developed.)
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5. Combinatorics -- Systematic counti,I.E.

Inclusion - exclusion principle.

Multinomial coefficients.

Tree diagrams.

6. Conditional Probabilities.

Inaependence of tests.

7. Random Variables.

Return to Grade 8 type of c amples and read off val-ious functions of

the distributions. Use Berzloulli trials. Discuss the R. V. which

is the number of tosses befpre the first head.

Expected value. Expected v:raue of a sum of R. V. Ls the sum of the

expected values. Use this an aid in eermiiii probabilities

and in the combinatorics c: Section 2.

8. Correlations between diffi:_l_ent random variables.

Curve fitting -- Distinction between best fit and goodness of fit.

Grade .2 - Chapter 6

Displacements - Vectors

It has been suggested that Grade 8, Chapter 3, Displacements, in the 1966

outline be moved here. In the notes for the Grade 8 writing team and the next

two pages there is a note of caution about making this move. What goes in this

chapter depends upon the final decision on what stays in Grade 8 and also the

treatment of vectors in the Grades 10-12 block.

The following documents from the 1966 outline are pertinent to this chapter.

(1) Outline fbr Grade 8, Chapter 3, Displacements, pp. 207-219.

(2) Outline Vectors, pp. 434-467.

(3) Vectors on a Line, pp. 424-433.
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Grade 2 - Chapter

Tra.asformations

1966 OutliLle, pp. 331-345.

Gra - Mapter 8

Circular Functions

1966 Outline, pp. 357-366.

Grade 2 - Chapter 2

Tangency

1966 Outline, pp. 367-376.

Grade - Chapter 10

Measure

1966 Outline, pp. 377-380.

In the outline for Grade 8, Chapter 10, pp. 20-33, there may be some material

that would fit nicely here. The material is a treatment of area) volume, work,

and falling body problems without limit processes. The treatment uses double

inequalities and has a version without function notation and one using function

notation.

Grade 2 - Chapter 11

Complex Numbers

1. Background assumed from prior Grades 7-9 experience.

(1) DefinitiOn of and ex erience in com utin with s uare roots and the

distance formula: Such material is included in Grade 7, Chapter 14,

Grade 8, Chapters 2 and 5. We asaume that in the definition of

square root it has been observed that it is necessary to specify

that the square root operation is applied only to nonnegative

numbers. Let us assume that this has been sufficiently emphasized

and that a question has been raised about possible square roots of
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a negative number and a passing reference made to the existence

D-7 complex numbers,

(2) A)solute values: let us ass-ame here that the geometric role of

.isolute value .ctior. with distance on the number line has

-een discussed,

.,ommutative, ass:ctive, distributive laws; identities and

_Inverses for addition and multiplication; discussion about

'structure" of varfohl numbers systems: Such material is now included

in Chapter 6, Graie 7. However, it is probably too fancy there for

that level anf. -Ialz been suggested that it be dropped at that level.

If it is dropped its present form it probably should be replaced

by a treatment WI-1i covers some of the sa:le ground, but with a

lighter touch b....here in the seventh or eighth grade, and re-

inforced at several points in the seventh and eighth grades. In the

process there will surely have been discussion of various extensions

of number systems i response to either mathematical needs (e.g., a

solution for x + 7 = 4 ) or for more adequate models for "real

world"phenomene, After the most, recent such extension (to the real

numbers) a question about whether this is the last.extension possible

or necessary will feed into complex numbers in an obvious way.

(4) Solution of quadratic equations; completing the square; possibly

the quadratic formula: Here one can avoid quadratic equations

without solutions in the real numbers only by being careful in the

choice of coefficients. We assume that this fact has been noted --

even emphasized -- and that the question has been raised.whether a

further extension of the number system would give solutions to such

equations. An affirmative answer should be given along with an

indication of what such numbers would be, for at least such an

equation as x
2

+ 1 = 0 . Probably this should be carried even

further and that complex numbers of the form a + bi as results in

completing the square or quadratic formula should be explicitly dealt

with; though one should probably not develop complex numbers as a

system with the field properties at this point. Since quadratic

equations are still in the set of materials intended for everybody,

as the present chapter probably is not, it would be in order to go

on with complex numbers at this point, to point out that --ley can be



representd

existen2e b:

to the use.

applicaticL.

(5) Vectors

of vectors

tion of corT___Ee

numbers by

vectors defl::77_.

times a vec:

such an ope7,

with comple::

more grand

-dered pairs (a,b) and hence can be given tangible

:esentation in Argand diagrams. A passing reference

1, of complex numbers in electrical circuit and other

ld be made, though not in great detail.

Lane; the set of ordered -.pairs as one interpretation

Iadition to setting up the Argand diagram representa-

m=bers we should also pave the way for complex

--ing that there is no "closed" multiplication of

- that is, there is no multiplication where a vector

Eves a vector. The observation that invention of

E for two dimensional vectors has something to do

7Eers then becomes part of the spiral leading to a

=lent of complex numbers.

If the thingE lfsted above do in fact appear in a reasonable way in

the material prior to this final chapter of the ninth grade book then we

have probably fulfilTed our responsibility to make "everyman" aware of the

need for, existence 1, and (lightly) usefulness of complex numbers. (For

our "everyman" the cis:-portunity should also be taken, in these references

to the existence of complex numbers, to include sote historical material

on how they were invented, their initial reception, and the later discovery

that complex numbers are useful in building mathematical models in a number

of applications.)

If this is so, then there is a genuine question as to whether there

is a need for a c±apter at this point before the student has the technical

equipment and mat__ ty to deal with the polar form of complex numbers,

de Moivres theorem_ and the various lovely uses to which complex numbers

in polar form can E.e put. It is the consensus of the summer 1967 outlining

group that such a chapter would nevertheless be useful and that it should

take the form of exploiting complex numbers as a way of reviewing and

pulling together a lot Of previous material about numbers and number systems.

With this specification in mind we are suggesting outlines for two versions

which cover essentially the same ground from slightly different viewpoints.

A brief descrin'l - these two versions is included here.
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2. Brief Description of the Complex Number Chapter.

Both versions would begin with some discussion of the ways in which

and the reasons for wbich mathematical systems are created and extended.

It would be observed that the motivation sometimes comes from the uses

of mathematics and sometimes from the mathematics itself -- the latter in

response to efforts to resolve paradoxes; fill in apparent gaps; build

neat logical systems; and so on. As an example of the former we would

have negativL numbers as descriptions of, for example, temperatures; as

examples of the latter, negative numbers to provide solutions to such

equations as x + 5 = 3 or names for points to the left of zero on the

number line. Both treatments would then have a few paragraphs reviewing

the various extensions of the whole numbers carrying along the possible

motivation for such extensions from the point of view of uses made of

numbers (the things for which the numbers provide models); the need to

have solutions for progressively more complicated equations; and the

partly geometric problem of naming points on the line. Both would probably

gloss over the problem of extending the rationals to the reals (do we

intend an honest trEatment of this anywhere?) relying at this point mostly

on the geometric motivation. Both would probably rely on the algebraic

motivation for raising a question about a further extension beyond the

reals, namely, are there solutions for all quadratic equations and in

particular for the equation x
2
+ 1 = 0 ? All this might be done by

questioning rather than telling, and would occupy only a few pages at

most. The two versions would diverge at this point.

(1) Version 1 of a chapter on complex numbers for the end of the ninth

grade.

This would follow the line set out in SMSG Intermediate Mathe-

matics, Chapter 5. Here the observation is made that in each extension

of the number system the new system contains the old system as a sub-

set (or is isomorphic to a subset) and this subset must behave in the

expected way. One usually demands also that the new system have at

least the properties that the old system harl. In the extension one

must specify what the elements are; one must define equality; one

must define addition and multiplication; and one must verify that the

newly defineei addition and multiplication have the expected properties

that is the properties of the previous system -- and new properties
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must be stated explicitly. The new set of elements would then be

defined as elements of the form a + bi where a and b are real,

with the i having the property that it is a solution for the equa-

tion x
2

+ 1 = 0 One then demands that this set of elements have

a multiplication and addition which satisfies certain properties --

the usual properties of the field -- plus the property that i
2

= -1 .

One then rigs the definitions of multiplication and division in such

a way that this will indeed be the case and verifies this. The

verifications involve one in a number of finger exercises. All the

algebra is done with elements of the form a + bi The details can

be checked in Chapter 5 of Intermediate Mathematics. Following this

it is observed that a + bi involves the two real numbers a and

b and that this suggests the possibility of representing complex

numbers as points in the plane. From this the geometry of complex

numbers is developed including the absolute value (or modulus);

geometric interpretation of the operations on complex numbers; the

line and conic sections represented as absolute value equations; and

so on. Of course, there is a great deal of manipulation and finger

exercises here. It would be nice to have a good siMple-minded

treatment of how complex number diagrams are usefur in electricity

for representing phase relationships and how the operations.on complex

numbers do nice things in these diagrams that serve very well as

models for electrical circuit situations.

Brief Outline of Version 1 of Grade .2 - Chapter 11

Complex Nutbers

Motivate by solution of x
2

+ 1 = 0 . Trace the development of

extensions of the number system from the counting numbers to the

reals:

Es there a solution in the set of

counting numbers to x + 5 = 5 ?

whole numbers to x + 5 - 3 ?

integers etc.

97

102



This was probably done before, so now more understanding and apprecia-

tion can be expected and the discussion can be on a higher level.

The overview is important.

The student must be reminded that each extension wac such that

the new number system contained the previous one as a subset, with

all properties preserved and new ones carefully examined.

At this point summarize the properties of the real number system

so that this next extension becomes clear and meaningful:

If there exists a solution to x
2

+ 1 = 0 ,

then x
2

must be -1 , since the additive

inverse is unique.

No real number will meet this condition. So the extension is

necessary; we need a number whose square is -1 .

At this point then, the new number system will contain all of

the reals and at least one more element: it is called i and

.2
defined such that = -1 . Any other elemants needed? Etc.

Since this is for gth graders, the treatment in Intermediate

Mathematics, Chapter 5, SMSG, is a bit hard in spots, but can be

adjusted.

.2
Objection was raised to calling i a new symbol, since is

a real number -- I tried to meet this objection above.

Also, if Chapter 5, SMSG Intermediate Mathematics is used,

change the sequence of the sections: 5-1, 5-2, 5-3, 5-4, or parts

thereof, followed by 5-7, 5-5, 5-6, etc. This will introduce the

graphic representation earlier.

(2) Version 2 of a chapter on complex numbers for the end of the ninth

F.,rade.

This version differs from the first version principally in the

way it handles the various extensions of the number systems. It

departs from the student's previous experience by doing each extension

(except from the rationals to the reels) by means of an algebra on

ordered pairs. This way of doing things is familiar to us and we see

it as rather neat; there is some question as to whether the ninth

98

103



grader would also see it as neat and worth the trouble. One wc,,Ild

begin not with Peano postulates and development of the properties of

natural nuMbers by induction but rather take as already known the

natural numbers, multiplication and addition of them, and the CAD

and identity properties. One then develops an algebra for integers

with pairs (a,b) -- where (a,b) is to be interPreted as a - b --

invents the kinds of operations that would work for the a - b

interpretation, defines eqnality and verifies that the usual proper-

ties hold and that in addition there is now closure for subtraction.

In the process one must deal already with equivalence classes whereas

in the conventional treatment this does not become necessary until

you have rational numbers. One then takes the set of integers as

known and develops the set of rationals as ordered pairs (a,b) --

where (a,b) is now interpreted as a/b -- and again defines

equality, invents the operations, and verifies that the usual

properties hold and that now we have closure for division. The

interesting thing here is that whereas for the integers multiplica-

tion was the complicated operation to define, here addition is the

more complicated. The extension of the rationals to the reals

cannot, of course, be done with ordered pairs; nor can we define an

operation that is implicitly an algorithm in the same way that we

can for the other sets of numbers. We do this presumably as honestly

here as We do anywhere -- the details are not quite clear. With

reals in hand the complex numbers are develoDed by ordered pairs of

real numbers (a,b) -- where (a,b) is now interPreted as

a + bi , with i as the number with the property i
2

-1 familiar

frum previous work -- and the operations invented and properties

verified in a way entirely parallel to the previous extensions.

Since complex numbers correspond to ordered pairs .the geometfic

representation is immediate and much the same work with this geometry

is carried out as is the case in the first version.

This may be far too fancy for the end of the ninth grade, but

some of us feel that this novel way of getting at the various exten-

sions would be fairly exciting to at least a certain number of high

school youngsters. I'L; has the further advantage of making the

complex numbers anothr extension of the number system much like a
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couple of previous ones, rather than making them the unnatural things

suggested by the words "imaginary" or "complex".

3. Suggestions for Develo-QInG Geometric Inter retations of Comiex Numbers.

These are applicable to either Version 1 or Version 2.

(1) Gra hic Re resentation 0ir Com lex Numbers.

Associate with a + lot the point (alb) in the plane.

Example: Give the coordinates of the points association with

(a) Z1 = 2 + 3i

z
2

= 4 + 6i

z
3

= -2 - 31

(b) Z1 = + 3i

Z
2

= 2 + i

Z, = 3 + 4i

(c) let

Z
2

= 3 -1- 4i

z
3
= -1 61

(d) let Z, = 6 Oi

z2 = 0 ± 5i

z
3

= 6 5i

100
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z
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z1.

0 -

Z
20



(e) Draw quadrilateral ABCD with A(-2,5) , B(3,2) , C(0,0) ,

D(-5,3) ; Zl is associated with D , Z2 with B ;

find Z, 4- Z2 .

Continue with similar examples and develop rule for addition.*

(2) Absolute Value of Complex Numbers.

How far are 3 , -3 , 5 , -5 , , and 47 from the origin?

Distance is measured by aonnegative numbel-s. The distance between

a real number n and the origin was defined as

What is the distance between Z1 2 3i and the origin?

Draw it. Develop result:

12.
1

1 = Va b

Example: Give the absolute value of the complex numbers of Example

(a) - (e).

Given 12,1
5 ; can you find Z ? 15 there only one complex number

whose absolute value is 5 ?

If not, give others.

If there are several, can y17,u descrf_be their Position?

More examples.

(3) p2LuLtiplIcation as Effecting a Rotation.

Draw, in the complex plane (1,0) , (0,1) , (-1 0 ) , and (0,-1) .

1 4- Oi = 1

0 ± ii = i

( ) Oi = -1

0

1 4- Oi = 1

NVerbalize -- compare with vector addition.

If vectors were studied before, of course, addition should or can be

done "vectorially".
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(b) Multiply

(1 + 0i)i = ?

(0 + li)i = ?

(-1 + oi)i =

(o li)i =

(c) Zl = 2 4- 3i -->(2,3)

Z2 = Zi i = (2 3i)i

= -3 2i ---.)(-3,2)

Draw the graph

Any relation to (b) above?

Z
3
= (-3 + 2i)i

= -2 - 3i

graphically, what does

multiplying by i an?

does the same observation hold?

If A(a,b) and B(-b,e,) , what is the relation between 0A and OB ?

Between a + bi and -b + ai ?

Multiply a + bi by any real number, c .

(a + bi)c = ac + bci ; what does this mean graphically?

Ezarr.11e: Choose 3 complex numbers, multiply each by 2 , -1 ,

in turn. What do yoll observe?

Can we now multiply, graphically, two complex numbers?

(a) Let Z
1

= 2 + 31 and 2
2

= -1 + 21 , using the distributive

property,

Z
1 2

.,-- (2 + 31)(-1 + 2i)

-,.-
(2 + 3i)(-1) + (2 + 3i)(2i)

-(2 + 3i) + 2(2 + 3i)i

-Z + 2i 21

3

From the preceding exercises we know how we can represent graphically

(a) -21 ,

(b) 2i21 ,

(c) -2
1

+ 2i2
I

hence Z
1
Z
2 °
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Pssoc ato with point A Z2 With point B ,

-Z
1

with point A2 2iZ1 with point C Then the

c'ordirats of the points A , 8 , A' , and C are respectively

(2,3) , (-1,2) (-2,-3) ,

with E

and (-6,4) . Now let Z
1
Z
2

be associated

Z
1
Z
2

= -Z
1

+ 2iZ1

E has coordinates (-8,1) therefore

Z1Z2 = -8 + i .

Now compare &)AD and L\,OEB .

(4) Construction of Z
C

Using similar

OD = 1

AD = /To

OA = VT7

OB = = 1 V5

EB = 1/53 = 113 1/5

Triangles.

3

Z
1

= 2 + 31

2
= 3 +

Multiply graphically, using

the distributive property:

i) . (2 + 3i)3 + (2

= (2 + 3i)3 = 3Z1

(2 + 3i)i = Zl i

Z1Z2 = 3Z iZ
1

first

+3i)i



LOAB C,CCD

OA = 1 OC = -/T3 .-.,- /TO

AB = VT3 CD = 10 = -

OB = 1/T. OD = - ITO

z
1
-4(2

1
3)

3Z
1

-4 (6,9)

iZ
1

--4(-3,2)

3Z
1
+ iZ

1
-4(3,11)

After one or two examples, can the similar triangles '134 constructed

without using any algebra?

Good chance to apply (and review) geometry.

Example: Are 0.42A OBF OGIC

ODC p ODE similar? Using the graph

is (1 + 2i)(4- +.3i) = -2 + 111 ?

is (1 + 21)(-3 = 5 + loi ?

Write other products and examine.

Can you draw any conclusion?

c(5 lo)

(a) Add complex numbers "vectorially".

(b) Triangle inequality.

la + bl < lal + Ibl

10)4
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(6) Multiplication.

(a) !alp! = iallb!

(b) DeMoivre2s Theorem

(7) Exercises.

Find all points z such that

(a) lz - a < r (Disk)

(b) lz - a! = iz b! (Line)

(c) lz - a! < lz - bl (Half-plane)

(d) lz - a! + lz - b! < 2r (Elliptical region)

(e) lz - a! + lz b! > 2r (Exterior of ellipse)

(f) Gaussian Integers, G = (a + bi : a , b integers)

Find the units: 1 i

Show that there is a euclidean algorithm:

For every pair of nonzero Gaussian integers w, z there

exist Gaussian integers x y such that z = wx + y with

Interpret geometrically:

Since Iz/w - x! = ly/w1 < 1 the assertion is equivalent to

raying that wit'ain a circle of radius 1 from any point (z/w)

there is a complex number x = a + bi with integral a and b

Show that any two Gaussian integers have a greatest common

divisor.

(8) Transformations of the Complex Plane.

Consider functions of complex numbers into the complex nurbers of

the forM

(a) f(z) = z + a (Front cases with a real, and complex)

(b) f(z) = az

(c) f(z) = z2

(d) f(z) =
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(e) f(z) z - i
1 r 1

2 2iLz-i z+ i
z + 1

example explo.:_.e geometrical questions.

How does each function transfora a line, a circle, a square, an

angle?

Be sure to treat the cases where the line "goes through" the

constants in the definition of the function.

Perhaps the most interesting case to study is f(z) = 1 Here
z

points inside the unit circle go outside and conversely. Lines

go into circles, and conversely.

3_06
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The 1171121,1iLy. of the Grades 10-12 Outlining

The 7-9 sequence a,E1 designed to develop wide-range mathematical content

for the generally educated po3:alation. Within the 10-12 sequence, there is

less certainty about what content will be of specific value or is even

essential in developing mathematical maturity. In fact, it is recognized that

several quite different sequences might easily be of equal value in maintaining

interest and in developing mathematical maturity. There may well be several

"royal roads" depending upon the particular group of students. It is the

thought of the outlining group that flexibility of content after the 7-9

sequence is essential for keeping the largest possible number of students

enrolled in mathematics and doing mathematics successfully.

Any 10-12 curriculum should allow for many diverse student groups:

(1) the mathematically oriented, college-bound students who need the potential

of completing a substantial amount of calculus while still in high chool;

(2) the mathematically capable and interested students who may progress some-

what more slowly but can develop a significant mathematical background if they

are not forced along too quickly; (3) the mathematically capable students who

are not mathematically oriented but will probably need a breadth of mathematical

ideas to help within their areas of interest; (4) the non-directed, semi-

successful students who need further time, involvement and exposure until they

find an area of interest and/or ability. Each of these groups can probably

benefit from further work in mathematics if it is of mathematical worth, if it

interests them, if it is developed at a pace they can handle, and if it is

within their intellectual grasp.

A lot of talk and thought has been given by the outlining group to the

possibilities of several quite different sequences for 10-12, depending )on

the studentst (and teachers2) bctckground, ability, interests, and future plans.

It is still the thought of most of the group members that the outlining sug-

gestions contain this potential. Specifically, the attached possible sequences

are envisioned.
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The courses used within the sequences are described in other documents.

Briefly, they are:

1. *Axiomatic/Deductive Block (1 semester)

2. Vector-Analytic Geometry and Functions (1 semester)

3. Vectors and Linear Algebra (1 semester)

4 Elementary Functions and Calculus (2 semesters)

(minimal for AP level 1)

5. Advanced Placement Calculus (3 semesters)

(AP level 2, including one semester of Advanced Elementary Functions)

6. Probability and Statistics (1 semester)

(1) With calculus

(2) Without calculus

7. Computational Mathematics (1 semester)

(Elementary, non-calculus computer-oriented)

Note: The course marked with an asterisk is open to several selections

of particular content; see Grades 10-12, Deductive Block,

pp. 121.

The boundary conditions used in making these sequences are:

(1) The background for these sequences is completion of the 7-9

curriculum.

(2) The maximum time available is 6 semesters. There may be fever

semesters available (for those who take a longer time to complete

the 7-9 sequence) but probably uot more.

(3) The suggested time allotments are minimal. It may be necessary

to stretch any given course or courses over a longer time span;

e.g., Vector-Analytic Geometry and Functions) and Vectors and

Linear Algebra may be done in 2 or 3 semesters. The emphasis

should be completion of a content block rather than completion

of a standard block of time.
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The following pages conta:tn two versions of the various possible sequences:

one is a two-page diagram that gives a concise overview and the other is a five-

page description with titles and possible time allotments. The suggested

sequences are the same. The "flexibility factor" should be considered from

two different aspects.

First, there is a flexibility of scheduling. It is not contemplated that

any one school will offer all of these sequences (or even half of them). Upon

selection of one or two of these sequences, it will be noLed that the basic

courses may be scheduled in an order and with sufficient frequency to el7..nw

for student cross-over and section cross-over. That is, the basic modul:.,

nay often be fitted within several somewhat diffel-ent sequences.

Actually there are essentially only two fundamental Ifiree-year sequences --

one leads up to a full year of advanced placement calculus; the o-Fl-er to a year

of elementary function and calculus (1/2 year advanced placement ,alculus). A

given school system may decide that it can offer both of the fundamental

sequences or only one. The other sequences listed in the blocks in the first

row are obtained by changing the time at which the Deductive .Block is given'

and the time at which Probability and Statistics is given. Once these two

decisions are made, the shorter sequences are generally obtained by omitting

some of the courses in the fundamental sequence -- usually ones at the end of

the sequence. In addition, some of the shortened sequences are completed with

a course in Computational Mathematics.

Second, there is a flexibility for the individual student's programs.

Through the use of different blocks, it is quite possible to establish final

goals different from the calculus. On these sequences, there is an additional

three-way time factor flexibility: (1) the student may be beginning the 10-12

sequence later than the 10th grade to allow for completion of the 7-9 material;

(2) the fewer number of content blocks may be extended in time to allow for

slower moving students; (3) the student may not elect to continue mathmatics

for a full three more years.

It is hoped that several different orderings of courses and student pro-

grams will be tried in different schools and some evaluation made to support

or discount the envisioned flexibility and mathematical worth.

Two courses, Probability and Statistics (one Semester) and Computational

Mathematics (one semester) have both been included in this document. The group
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has not outlined the content of either of these two courses. There are a

number of schools that offer such one semester courses right now, using

presently available texts. It is felt that the content of these two courses

should be somewhat different when they are fitted into the new sequence of

courses presently being outlined and written.
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Polynomial Algebra

Preamble:

Since the first Summer Outlining group "neatly" sidestepped the problem

of how to deal with polynomials, we are faced with this decision as to how

to proceed this summer. My recommendation is as follows:

1. A "simple-minded" approach to the whole business.

2. Rather than trying to select one approach, (i.e., polynomials con-

sidered as functions, or "forms" or as "expressions" ab illustrated

on pp. 60-67 of the New Orleans Report), I feel that we should use

whatever interpretation seems to be appropriate for the task at hand,

explain the differences in interpretation, where possible, without

becoming "heavy-handed", and let the student develop the same kind

of freedom that mathematicians exhibit. (See pp. 65-66 of the New

Orleans Report.)

polynomial Algebra:

A group of "finger exercises, skills, and concepts" to be preseLed in a

block and/or scattered appropriate throughout the tenth grade.

Baokground

In Grades 7-9 (or the first three su1d4.visions of the Outline), the

student has been exposed (rather informally in some cases) to the follow-

ing kinds of polynomials, and operations with these polynomials: ax

ax + l , ax + bx , ax
2

+ bx + c . Operaticxis such as simplification,

factorIng, the solution of equations (completing the square, factoring,

and formula) for quadratic polynomials, and graphs of functions related

to these polynomials have also been introduced.

purpose:

The purposes of this section are as follows:

1. To define polynomials and rational expressions.

2. To review, briefly, operations with first and second degree polynomials

in one variable.
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To develop "mechanical" s:111 in operations with polynomials and

rational expressions.

4. To develop gaphically tLe representation of polynomial functions

and rational functions.

5. To develop the Remainder, Factor, Location theorems and Descartes's

rule of signs for polynomial functions.

6. To develop some skill in working with families of curves aril

metric equations.

Rationale:

At this point, the sbudents have been exposed to a considerable amount of

what is contairled in the present First Course in Algebra. However, the

student has only had experience with first degree Polynomials in one and

t.lo variables, and second degree polynomials of the form ax
2

bx ± c ,

2
b
2 2

+ 2ab + b
2

a - a A reasonable amount of review and extension of

ideas and skill in operations with these and other polynomials seems to be

needed in order to facilitate the development of analytic geometry and-

linear algebra. It is felt at this time that factoring polynbmials over

different domains, including complex numbers, long division, and the like

can be included with the necessary "finger" exercises to provide the skiJ1

level needed at this point. In addition it is recommended that the grapLi-

cal representations of polynomials be extended beyond the previously

graphed polynomials y = ax + b and y = ax
2

+ bx + This would

include the development of the Remainder, Factor, and Location theorems

and a discussion of parametric equations and families of curves. 12 11

rationale here being that such an organization woulu tend to give the

treatment of polynomial and rational functions a good reason for existing

and, it is hoped, provide a natural bridge to the subsequent spiral treat-

ment of some of these concepts in Analytic Geometry and Linear Algebra

sections.

11(
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Section 1. Definitions.

1-1. Polynomials are expressions like

2x + 3y

32
2y - 5z9

v5 x3 4. 4
5

3x5 x4 - 5x3 7x2 - 3x + 9

-5

We can form polynomials by combining the elements of two sets using onlz

the follawing operations of addition, subtraction and multiplic

The two sets we can use are the slyt of Beal Numbers, or one of its subsets,

and a set of variables. We can combine these elements with only a finite

number of the operations listed above.

Exercises and Examples: Should involve simple recognition exercises about

expressions that are or are not polynomials. Also some exercises where the

students are given somc elements, and then allowed to construct some poly-

nomials. Develop degree of polynomial.

If the set of numbers used to form the polynomial is the set of integers,

then we say that the expression is a polynomial over the integers.

Examples: . .

Similarly we can have:

(1) polynomials over the rational numbers. (Examples)

(2) polynomials over the real numbers. (Examples)

(3) Exercises.

1-2. Functions like f: x -)ax + b g: x -4ax
2

+ bx + c ,

h: (x, -)2x2 - 3y2 + 9 , etc.

which are defined by polynomials are important,and in particular,

polynomials in one variable define functions which are models of

many situations in ehginaering, the natural and social sciences, arid
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in. mathmatics

(E::ercises and examples developing recognition of polynomial

functions, their degree and evaluation of polynomial functions.)

1-3. Because of the role of polynomials of one variable in mathematics,

it becomes necessary to find the sum, product, and analyze the

characteristics of such polynomials. (Review briefly what has been

done for f: x + b g: x -)ax
2

+ bx + c and thEm extend

examples and eventually define f: x -)a nxn x
n-1

+ a
n-1 /- 0

+ al x + ao )

Section 2. Qperations with Polznomials.

2-1. Review briefly pol..inomials and factoring over domains -- extend

pre5ent F.C.A Chapter 12 to include xn + yn

TR-2. Review brfefly addition, subtraction of polynomials.

2-3. Dcvelop algorithm for polynomials.

Section Algebra of Rational Expressions. (F.A. Chapter 12)

3-1. Review and develop some skills with expressions involving exponents,

(

-3

5)( Y

3-2. Multiplication, Addition, Subtraction, Simplification of Rational

Expressions.

Section 4. Graphs of Polynomial Functions.

4,1. Review briefly graphs of f: x -->ax + b f: x -)ax
2

+ bx + c .

4-2. Grapo of f: x ->xn , , (n even, n odd) .

(Introduction of families of cul.ves, parametric e ations.)

Section 2. Remainder and Factor Theorem.

Section 6. Zeros of Polynomial Functions.

DecartOs Pule of signs.

Section 7. Graphs of Rational Functions.
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Section 8. I think we also rieel to be sure that students have Some expe:rienoe

in finding solution sets of sentences like:

+ 2 = 7

3.2S-7.L2 5 - 10
x-2 x-3

etc.i

and perhaps some skills in operations with algebraic expressions

1 2 5

,/
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Grades 10-12 Deductive Block

The group felt strongly that such a block belonged in the sequence 10-12

somewhere, It soon became clear that there is some flexibility about where it

should appear in the sequence. It was not so clear as to the precise content

of this block.

One version went through at least three revisions and that will be given

first, followed by a connent supported by some of the members of the group.

This version is called "The One Unit A-iomatic/Deductive Block".

The other verson is entitled "(Synthetic) Geometry of the Plane", and

much of it appears in various forms in other papers. This version is followed

by several comments supported by some of the members of the group.

The following is the first version and a comment on it.

Part 1:

The One Unit Axiomatic/Deductive Block

The outlining committee felt that this is an area where some highly varied

expertmentation is in order. That is, several significantly different

approaches should be developed and tested. Even the placement of this

block within the curriculum might vary either immediately following the

7-9 curriculum or following the Analytic/Vector Geometry, Linear Algebra

unit. The intended goal of the experimentation should not be the eventual

selection of only one of these possibilities but could lead to the adoption

of several (tested and proven) blocks depending upon:

(I)

and

student population -- the different approaches will vary in sophistica-

tion, abstraction, and/or maturity requirements;

(2) teacher preference -- it cpgnized that the teacher will do the

best job with an approaci, n which he feels some security and interest.
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Part 2:

Part

The outlining committee was in agreement that each approach should fit

within these general guidelines:

(1) There is a need for one concentrated unit (covering at most one

semester) on material of a primarily deductive nature which will

provide the student with the opportunity to develop a knowledge and

appreciation of "proof".

(2) The unit should contain at least one explicitly stated axiomatic

system as well as a deductive development.

(3) This unit is to be essentially free of coordinates ana real number

axiomatics.

(4) The approach should develop enough power to allow tne student to cope

with "originals" at some time in the unit.

The outlining committee makes he following suggestions for quite different

approaches to this block but does not intend to rule out other possibilities

that meet the above stated guidulines. In fact, it is honed that other

suggestions will be made.

Tyne A - A Geometry Block

Rationale: A number of significant reasons support such a course:

(1) It is a part of the worldls cultural and intellectual history. Its

words and spirit have permeated our language: diametrically opposed,

tangentially related, going off on a tangent, an obtuse mind, an

acute observation, parallel aevelopment, Q.E.D.

(2) It is an interesting course. Its "originals" have intrigued good

students for centuries, and have frequently been a recognizable

first point in the development of mathematicians of the past Afi

present.

(3) It is psychologically satisfying. It has a great number of attainable

goals. "I solved it." There is a clear sense of "closure" .., you

know when you have a solution or you don't.
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()) it is esthetically gratifying. "There is a beautiful proof for tli

"Euclid alone has looked on beauty bere."

It is perhaps the best example of an extensive

with many non-trivial proofs and conclusions.

such deductive systems. (Spinozats Ethics)

deductive sys

It is a model lor

Its content is more familiar to teachers who would therefore feel

more willing and competent to teach the course.

One recommended freedom in constructing a course in the spirit of the

above-stated guidelines Ls in using various sorts of technical machinery:

(1) Some version of the Birkhoff axiom scheme such as is used in the

present SMSG Geometry.

(2) A synthetic approach using Euclidean tr sfo ations.

) An approach through affine geometry and then a specialization to

Euclidean. (As per Levi, Elements of Geometry and Trigonometry)

(4) And so on

A second recommended freedom within the spirit of the guidelines could be

based on various choices of content, both for emphasis and coverage:

(1) Focus on axiom systems and deduction per se, with the geometric

content as a vehicle. One would probably not deal with such technical

matters as completeness, independence, or categoricity in detail but

might deal vith the consequences of alternative choices of key axioms;

e.g., the various parallel postulates. One would not be concerned

with "coverage" of any large amount of content.

lead to some study of various geometries.

This approach could

(2) Focus on organizing the somewhat random and intuitive experience in

geometry contained in the previous three years1 work. Here a strong

enough set of axioms might be selected and presented so that the work

would be largely a matter of fitting quite a lot of content into a

sequential structure.

Focus on a rather small portion of Euclidean geometry with some care

and in some detail. For example, one might develop the topic of

circles after presenting an adequate set of axioms and basic theorems.

This particular choice could entail work with congruence, similarity,
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parallelism, aro length, angle measure, and notions of tangency,

Other such po.cLions of geometry are also rich in possibilities,

(4) And so on ...

YYTe B A Non-geometry Block

Rationale: The suggestions under Type B frankly tee the point of view

that (1) sufficient geometrical content has been included in 7-9 to pro-

vide a sound basis for future mathematics, and (2) the course in

analytic vector geometry, linear algebra i- a natural successor to the
7-9 sequence. What then remains is to deepen each student:s mathematical

maturity and furLher nurture his mathematical creativity, insight, inven-

tiveness, and power. At this stage the student already has a greater

measure of these attributes than he would have had at Grade 10. It is

time to extend them in an area central and fmmediately applicable to the

main stream of college mathematics. Several suggestions for the content

of such a course are:

(1 ) Point Set Topolog.Y.-

A course in the elementary

lar emphasis on plane sets

notions of point set topology with particu-

of points. Use the Euclidean metric to

define an open set and then proceed with a development of topological

notions.

graders:

This sort of a course has been written for Belgian eleventh

Papy, Math4illatique Modern 8 (Arlon 8)
Premieres lecons dlanalyse Math6matiques

3

The conduct of the course is intended to be highly constructive and

to be motivated by many examples. The elementary theorems do not

require sophisticated arguments nor esoteric counterexamples for

understanding.

Topics: Distance function; properties of a me'6ric.

Open and closed sets; neighborhoods.

Notion of a topology; base.

Adherent points; closure; interior; frontier.

Connectivity; subspaces induced topology.

Product spaces.

Homeomorphism; function.

C. ntinuitY.
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Graph Theory.

Note: Many of these topics are discussed in Chinn und SteenroCL,

First Conce_ts of To2212a, New Mathematical Lihr-

,ourse in "Systems". (Working with several representative systems.

Boolean Algebras.

1-1. Algebra of subsets of a set, algebra of propositions,

algebra of circuits.

1-2. Boolean algebra; partially ordered sets, search for

additional Boolean algebras; subalgebras, do the properties

characterize set algebras? Representations of finite

algebras.

Gro.222.

2-1. The group of plane isemetries, the translation and rotation

subgroups, the orthogonal subgroup; patterns with transla-

tion symmetry, possible pattern- of lines of symmetry;

determining symmetry groups of regular polygons and

polyhedra.

Permutations groups; substitution ciphers, decoding, code

of a code; orbits cycles, even and odd permutations,

finding symmetric polynomials.

2-3. Groups; subgroups, index 0 subgroups; search for new
_±

groups, finding I ; cyclic groups, groups of orders

2 _ ; isomorphism, representation as permutation grolps;

do subgroups form a Boolean algebra?

Geometric Systems.

3-1. The parallel postulate in Euclidean ueometry, consequences

and equivalent properties; properties of spherical pro-

jection (as hemispherical) geometries. (See example 4-1

below for continuation.)

4. Further Investigations.

4-1. (a) Each city is on at least one county route.

(b) Every pair of cities is connected by exactly one

county route.
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Every county route has exactly 3 cities on it.

What does this imply about the configuration of

routes and cities?

What properties do length, area volume have in commo

What do these propertie Imply? Where else do these

properties turn up?

4-3. The squaring function S has the property

(x + y) - s(x) S(y) = 2:- Are there any other

functions with this property? If yes, try to character

S with additional properties.

4-4. Similar to above with L(x + y) = 1,(x) + L(y) and

F(x + y) F(x) + F(y)

And so on ...

Number Theory_.

At Grade 11 we should be able to offer a substantial one-semester

course in elementary number theory. This course could proceed along

the lines of SMSG, Essays La Number Theory. This course would not

list axioms for the integers, but rather would discuss and assume the

crucial properties of division, Arohimedean orCering, definition of

prime number, and unique factorization. The course would stress the

nature of proof rather than axiomatics. We concede that number

theoretic proofs a-e much closer to "trIcks" than to general methods.

This places a greater premium on the student's inventiveness than

his ability to make minor alterations in a general method of proof.

From Grade 7 we have the notion of g.c.d. and the Euclidean algorithm.

But we do not have much practice with linear Diophantine equations.

Topics: Tests for primes and divisibility.

Infinitude of primes and of primes of the form 4k 1 .

Conjectures on primes.

Congruences; Chinese remainder theorem.

Fermat's little theorem; Wilson's theorem.

Ring properties of the integers modulo a .

Pythagorean triples.

Farey Series.

Fibonacci Series.
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Ai

Gaussian integers, aniq _ ctorization theor_
1

diverges.

Four squares theorem.

so on

Comment on The One Unit Axi --tic Deductive Block

The preceding document is a revised summary of the group discussions of a

possible one-semester course in "Synthetic Deductive Block". Of the possibilities

1.isted some would prefer in order:

(1) Type A - A Geometry Block (Leading to some "geometric power")

(2) Type B (2), 3 Geometric Systems.

3) Type B (2), 2-3 - Groups; subgroups, .

Some expressed the feeling that the other choices seemed too specialized, and

not sufficiently rich in "real life" problem situations.

Here is the other version, followed by some comments. (This is a first draft,

of an overly inclusive listing of topics and comments.)

(Synthetic) Geometry of the Plane

("Synthetic" is not a good word here

1. Int oduction.

(1) Purposes of the course:

(a) Classical -- It is part of the world's intellectual history.

(b) Interesting -- Many of our presert mathematicians first became

fascinated with the "originals" in the traditional geometry

courses.

) Psychologically satisfying "I solved it. There is a clear

sense of "closure" -- you know when you have a solution or you

have not.

Esthetically gratifying. "There is a beautiful proof for that."

"Euclid alone has looked on beauty bare."

It is perhaps the best example of an extensive deductive system

with many non-trivial proofs and conclusions. It is a model

for such deductive systems.
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The Ground Rules.

) Clearly stated:

(a) Axioms intuitively acceptable; (. sholad we include axioms

on order and separation?) no emphasis on minimal set; use with

postulated" theorems, definitions etc.,

Equivalent a iom sets. (categoricity?)

Euclid V and Playfair.

in deductive schemata.

Alternate axioms lead to alternate geometries. History of

beginning of non-euclidean geometry; finite (miniature)

geometries.

(d) Allowable construction tools: compasses, unmarked straightedge.

Possible constructions depend on allowable tools. (relation

to "constructable" numbers?)

Restricted construction tools: compasses alone: Mascheroni;

ruler alone: incidence geometry, projective; ruler and one

circle.

(f) Nature of proof. Indirect proof, contrapositive, converse.

Straight Line Figures.

(1) Incidence, Congruence:

(a) Line, Segment, ray, etc. (order, separation.

What is 1.14-Ill? Measures of length.

Angle, measure classification (interior?) (sensed?)

Pairs of angles, sum, difference, vertical, adjacent, comple-

mentary, supplementary.

(d ) Parallel and perpendicular pairs of lines, "distance" from

point to line; transversals, and related angle pairs.

Triangles. Classify by sides, angles; sum of angles --, 180 .

Congruence; Datum: when is a triangle determined.

Constructability: construct (a) triangle given.

(Through the whole course the matters of a datum, and con-truct-

ability, will often appear. These are sources of many non-

trivial problems, e.g., the construction of a figure with

constraints; e.g., construct an equilateral triangle on three
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(f)

(g)

given parallel lines; describe a square in a given triangle.

(degrees of freedom?)

Quadrilaterale, general then special, parallelogram family tree.

Polygons. mex? crossed?) Angle sums regular, (star

4. Circles.

(1) Terminology:

(a) "Length of a c circumference." What is it?

(b) Two measures of arc; length, turning.

ifiability?)

Circles and lines diameter, radius, chord, tangent secant,

angle. (tangency?)

(d) Measures of related angles and arcs.

(e) Construct a circle under given constraints: e.g., with triangle;

inscribed, circumscribed, escribed; problems of Appolonius.

Ratios and l'ronortionalitL.

(1) Commensurability?

(I think it would be good to develop the non-numerical aspects of

these ideas.)

(a) Similar a _othetic) figu re.

(b) Pythagorean theorem and application.

( ) "Product" theorems for segments: intersecting chords; tangent;

secant; Theorems of Ptolemy, Ceva, Menelaus.

(d) Constructions- e.g., fourth proportional with compasses only.

6. Area.

(1) What is it? How is it measured? (Whicn geometric figures have area

) Find the area: square, rectangle, parallelogram, tri ngle,

polygon.

(b) Circular regions; and combinations with others.

( ) Compare the areas: rectangles with equal bases; triangles with

equal bases.

(d) Compare the areas of similar figures.
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7

Constructions: e.g., square equivalent to rectangle, triangle,
etc. (Impossible: square equivalent to circle); triangle

equivalent to sum of two triangles, etc0

cellaneou

nce the outline is too long already, it might as well be way too
long.)

(1

(a)

(b)

Topology: order and separation, partitions, connectedness.

Convexity, boundedness.

Continuity (nested intervals, regions).

(d) Locus problems (perhaps in earlier section .

(e) A much more extensive treatment of geometric inequalities than

has been traditional on this level.

(f) More dynamism in the geometry of this level; a changing rather

than a static relationship. (What happens to the area of
M-111:C if we keep the lengths of AB and AC fixed but
increase LA 0

Comment on (Synthetic) Geometry of the Plane

In the early discussions, the group considered a one-semester course
in synthetic geometry, built on the rather extensive geometric background

already covered through Grade 9. This outline was intended to be a-basis for
more specific discussions of such a course. Much of it now appears in various
forms in other papers, but here are a few points which don't:

1. There probably should be more inequalities than have usually been treated
in synthetic geometry.

We may need a more dynamic approach (what happens if we increase this
angle, segment,a little. ) rather than the traditional static one.

Some think construction problems should be much more extensively used.
(Constraining conditions, special tools, proofs of possibility and
impossibility, multiple solutions, and so on.)

4. There should be a free flow between two-and three-dimensional situations
with specific efforts to develop good spatial imagination:
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Some solid geometry problems are really plane geometry problems in

different planes.

Some solid geometry problems are natural extensions from plane

geometry.

The emphasis should not be on teaching a lot of geometry, but on

how to do geometry. Rather than "Prove this theorem", use "If, in

this situation we know . . , then what else can we figure out?"

Try to discover first, then prove.
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Outline for Year of Vector Geometry, Linear Algebra,

and Lletnentr Functions, Level 10

Comments

Vectors will be used wnenever helpful and appropriate in the study of
functions and their graphs. Sometimes the function to be studied may be
introduced by considering motion along a given path

velocity along a line leads to the linear function.

naturally to the study of general vector functions.

i.e., motion with constant

Such considerations lead

Vector functions may be
mappings of points on the real lime or portions thereof onto points on another
real line or points in the plane or even onto points in three-space.

we may want to map points in the plane into other points in the plane
3-space.

Similarly

or into
The study of analytic geometry arises naturally in being specific

about locating images of points under such mappings and specifying the set of
points constituting the range of such functions. In order to reinforce and

extend the kind of manipulative facility which students need, translation from
the parametric equations which come out of consideration of vector functions
into the corresponding rectangular equations should be continually stressed.

If we are to use vectors and vector functions in this way, in the initial

chapter the transition from vectors as displacements to vectors associated with

the displacement of the origin to a point should be made as in Paigels Chapter 1,

Section 1-2.

The first half of the course then will do much analytic geometry and ele-

mentary functions and their graphs using vectors and ideas of motion whenever
helpful and appropriate.

The second half will use vectors in the setting of linear algebra. The
study of geometric properties of vectors (parallel and perpendicular vectors
the dot product) will be used to derive the equations for planes and for
in space. (Proof of gecimetric theorems by vector methods should come in
where.) Matrices will be introduced as a convenient way of displaying 1

lines

some-

'orma-

tion and then it will be shown that they can also be used to denote vectors and
transformations (reflections, rotations, contractions, stretching, etc.). Just
enough matrix algebra will be introduced to talk about transformations and to

use elementary row operations on matrices to solve systems of equations. Linear
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dependence may be discussed in c nnection with the nature of the solution of

systems of equations. Rotations may be used to simplify quadratic forms

(conics

OUTLINE FOR YEAR OF VECTOR GEOMETRY, LINEAR ALGEBRA,

AND ELEMENTARY FUNCTIONS, LEVEL 10

Part 1

Functions and Their Graphs

Chapter 1. Vectors. (See Paige, Sample Chapter 1)

1-1. Introduction.

1-2. Addition of Vectors.

1-3. Scalar Multiplication.

1-4. Space Coordinates.

Cha ter 2. Straight Lines and Linear Functions.

2-1. M tion along a Straight Line.

r(t) = + t .

2-2. Ways of specifying position of point which moves along a straight

line with constant velocity.

r(t) = [x(t), y(t)1 = [al + tb1 tb ]
2 -2-

Pull out parametric equations for path of point. Examine what

happens when B = [1,0] ; ° [0,]1 ; a/titrary

2-3. Slope

m = b get
- a

1 Y a2
b_
-1

b
2

Look at special cases for A = [a,0] and A = ro,b]

2-4. Do the same for path along line in 3-space

F(t ) = [x(t), y(t), (t)] = [al tbl, a2 + tb2,

Get parametric equations f-r line in space.
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Chapter 3. General Vector Functions.

3-1. Vector functions as mappings.

Maps of one line onto another; interval onto point set in the plane;

one plane onto another; etc.

3-2. Coordinate functions.

Look at a sequence of increasingly difficult maps; e.g.,

P(t) [t,t] ; P(t ) [t,t2] ; D(t) It,t3]

P(t) [t,t,t] ; P(t) [t,t,t ] ; etc.

Parametric and rectangular equations for curves.

Pull out explicit sets of parametric equations x t , y t ;

x =t,y= u x t y t3 ; and their rectangular countei

x =y;y=x ;y= x etc. and draw their graphs.

3-4. Parameters having geometric or physical significance.

Hypocycloid, Ellipse, Circle, etc. Get parametric equations, find

corresponding rectangular equations and discuss advantages of each.

Cha 4. Polynomials and Rational Functions.

h-1. Parabolic paths of moving bodies (co e-s, bullets, etc.).

4-2. Get quadratic equations from converting parametric equations to

rectangular forn.

4-3. Other problems which lead to the consideration of quadratic equations

and their roots.

Relations between roots and coefficients.

4-5. Quadratic inequalities and their graphs.

4-6. Generalize to polynomials of higher degree. (Find problems which

lead to cubics and quartics -- volumes of boxes and cylinders with

minimal surface area for fixed volume etc.)

4-7. Theorems necessary to find roots of polynomials and other information

helpful in drawing a rough graph.

Factor Theorem; Remainder Theorem; Location Theorem; Rational Roots

Theorem.

4-8. Approximating real roots; flow chart for linear approximation.
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Charter 5 Tronometric Functjons.

5-1. Simple harmo motion.

Define Cosine and Sine as coordinate functions of vector function

which describe the path of a point which moves with constant

velocity counterclockwise) around the unit circle. Connect with

previous version of trigonometry. Review radian measure and connect

with parameter describing the original vector function.

-2, Describe tangent function as coordinate function of point which moves

along vertical line tangent to unit circle;

t = [1 tan t] maps ( - y onto the line x = 1 .

Use definition of functions to obtain 1.elations between functions of

general angles and functions of acute angles.

5-4. Fundamental identities and addition formula.

5-5.

5- .

5-7.

Derive law of cosines.

Solve some trigonometric equations.

Solution of so e triangles (simple computations not with logs).

Chapter 6, Polar Coordinates and Rectangular Coordinates.

6-1. PolaL: coordinates and rectangular coor inates.

6-2. Polar coordinates and vectors.

6-3. General conic in polar coordinate's.

6-4. The circle and. the ellipse.

6-5. The hyperbola.

6-6. Rectangular equations of conics.

Chapter /. Vectors and Complex Numbers.

7-1. Points in the plane.

Point out the relation between rectangular coordInates of a point in

the plane, polar coordinates of a point in the plane, components of

vector censidered as the displacement of the origin to the point in

the plane. Then explain the representation of complex numbers as

points in the complex plane. Point out the connections between polar

coordinates of the point, polar form of complex number, rectangular
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coordinates of the point and the a bi form of the complex number.

7-2. Proble s with addition nl multiplication of complex nrmbers.

7-3. Multiplication of complex numbers in polar form.

7-4, DeMoivre Theorem and nth roots of complex numbers.

Chapter 8. Exponents aod Log ithms.

8-1. Review of properties of exponents and logarithms. (Finger ex lcises

8-2. Rough Eraphs of these functions.

9-3, Use of the exponential function to describe growth and decay.

8-4. Computations with logarithms.

8- Use of logarithms to solve triangles.

Part 2

Vectors and Linear Algebra

Chapter 2. Vector Ai_ts2IDLra.

9-1, Review of propeities of addition and scalar multiplication.

9-2. Inner product.

9-3. Conditions that vectors be parallel or perpendicular.

9-4, Vector proofs of geometric theoreMs.

Chapter 10. Lines and Planes in Space.

10-1. Review of coordinates and vectors in 3-space.

10-2, Vector equati n of a plane.

10-3. Rectangular equations for plane.

10-)4. Vector equation for line in space.

10-5. Parametric equations for lila in space.

10-6. Intersections of lines and planes.

10-7. Other geometric problems with lines and planes.
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Chapter 1.1. Matrices.

11-1. Introduction.

Matrices as w ys of systematically recording data. Motivation.

(oee introduction to Matrix Algebra, SMSG)

11-2. Order of a matrix; addition of matrices.

11-3. Multiplication of a matrix by a scalar,

11-4. Multiplication of matrices.

11-5. Some properties of matrix multiplication.

_gli_ul2z 12. Matrices and Vectors.

12-1. Representation of vectors as column or row matrices.

12-2. Geometric interpretation o_ multiplication of column matrix

by scalar; sum of two column matrices (vectors).

1 Vector spaces and subspaces.

Line as sub-pace of the plane; plane as subspa-- of 3-space.

12-4. Transformations of the plane expressed in matrix notation.

(See Chapter 5, Introduction to Matrix Algebra, SMSC)

12-5. Linear transformations.

12-6. Characteristic Vectors Invariants under linear transfonnations

12-7. Rotations and Reflections.

12-8. Rotations to simplify equations of conies.

Chapter 11. Matrices and Solutions of Systems of Equations.

13-1. Representing systems of equations by matrices.

13-2. Equivalent syst ms of equations and elementary row ope -tions on

matrices.

1 -3. Diagonalization meth d for solving systems of equations.

13-4. Inverse of a matrix.

13-5. Linear dependence and qi_ngu1ar matrices.

13-6. Analysis of solutions of systems of equations.

13-7. Application to linear programming problems.
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A Tenth Level Course in Analytic Geometry and Algebra

The outlining group for Grades 7 8, and 9 of 1966 precede their discussion

of the 9th Grade material with the remark, "We felt that the students' prepara-

tion was now adequate for the presentation of substantial mathematical ideas.

Hence, our outline became brief, and the arrangement was tentative with

considerable freedom left to the writers." The proliferation of possible

altenatives for the mathematics of Grade 10 obviously indicates that many of

us believe the student will be sufficiently prepared after Grades 7, 8, and 9

to follow a consistent mathematical development. It -4ould be regrettable if

we did not pursue this possieility.

propose that an integrated course in "Analytic Geometry. and Linear

Algebra" be devised which presents to the student a modest introduction to

present day emphasis in mathematics at the college level. It would be appropriate

for me to state briefly what I feel a substantial poltien of this emphasis to

be:

"Coordinate free" formulation of definitions whenever possible in

algebra and generalization wherever reasonable in analysis. Thus,

we find that determinants are now multilinear functions from ordered

sets of n vectors to a field F rather than a notation for solving

linear equations with an attendant exercise in line drawing for the

special cases n = 2 n = 3 . Similarly, Green's Theorem no longer

appears in an advanced calculus text as a detailed exercise in

evaluating the line integral

ir (pdx Qdy

but as a special ease of exterior algebra and differential forms.

(2) In following the trends of (1), a coesiderable,portion of material

centers around a set of operators, (often:some algebraic system),

and a space upon which these operators act. Questions which often

arise are:

( ) Given the set of operators, what are "invariants" in the space

which in some way characterize the operators? Or, from another
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point of view, what are "invariants" of the spaees which might

ceacterize spaces that may be mapped upon eaoh other 'V an

:.i]ecatf?

I sTJ convi.:c d that we should begin, a-ly. study of analysis in the 10th

level, to lay tne experimental foundations for these future possibilities.

Certainly, the Incepts of vector spaces, groups and invariants will arise and

I see no reaso:J -hy a iiiodest beginning cannot be made through a course in

"Analytic Geom: y and Linear Algebra".

I proposc :a integrated course in "Analytic Geometry and Linear Algebra"

in which the 1,:-lowing themes are to be guidelines for tho writers;

( ) I we:ad hope that an analysis of the Euclidean group of mr)tons

acting upon a plane and in space would be a unifying concept through-

out the early part of the text with alternative interpretations.

This analysis woul71 begin with translations (call them displacements,

or whatever you may wish) and proceed to reflections and rotations

with dilations interspersed to provide the geometrical background for
a vector space. Later the affine transformations would give ample

opportunity for vector and matrix applications. I do not believe

that the projective group could be introduced to give a "geometric

invariant" introduction to conics. It might be nice to try.

A continuing deVelorm3nt of the fUnetion concept with a corresponding

development of the algebra of functions to give illustrations of

vector spaces, algebra of polynomials, etc. I see that both line_

and non-linear situations will arise with ample opportunity to

motivate and use matrix notation without emphasis on matrix notation

as a bookkeeping device.

A conscious effor to motivate and present "coordinate free"

definitions should be done when possible. Then formulate the same

concept in coordinate systems. This will illustrate that an explicit

coordinate formulation will depend upon the coordinate system chosen.

Many opportunities will arise to apply matrix notation to "changes of

coordinates" and the interpretation of these changes as operators

acting en the plane and in space. I would certainly prefer that

parabolas be defined as the locus of points equidistant from a point
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and a line rather than the set of all points satisfying

2 2
Ax Bxy 4- Cy Dx Ey A= F = 0 ,

B2 4AC = 0 . (1 must admit that it would be di ficult to

justify enoagh projective geometry to motivate conics as projective

invariants.)

The use of coordinate systems to investigate geometric concepts will

force one to play "coordinate free" interpretations against "co-

ordinate system" formulations whenever possible.

(4) Vector notation should be used extensively, even where it is little

more than a bookkeeping device.

(5) Motion along lines and curves could easily be used as a motivating

device or as an application of the mathematics developed. I see

no reason to stress the former alternative or the latter.

A first approximation to the course outline proceeds as follows and I

repeat for emphasis (louder, if possible) that I do not believe that there

should be any sharp distinction between analytic ge metry, linear algebra

(viewed as vectors and matrices) in the sequence.

Chapter 1. Vectors,

1-1. Introduction.

(Vectors as representation of translations.)

1-2. Addition of vectors.

1-3. Dilations.

Geometric viewpoint as operator acting on space. Motion along line.

Geometric Applications of Vectors.

1-5. Space Coordinates.

Chapter 2. Inner Product,

2-1. Vector projections and definition of inner product as

IA(IBI cos L (A,B) . (Note that this i "coordinate free".)

Now look at coordinate interpretation of inner product.
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2-2. Vector components in te-s of and k ).

2-3. Review slope, equations of lines in analytic and vector fo

2-4. Projection of lin ar constant motion along coordinate axes.

2-5. Constant motion on circle.

2-6. Simple Harmonic Motion.

2-7. Law of Cosines.

2-8, Review of trigonometry including, if advisable, triangle solutions.

Cha ter2. Rotations in the Plane.

3-1. Geometric View.

(Heuristic Invariants)

3-2. Coordinate Representation of Rotations.

(Here matrix multiplication arises naturally)

3-3. Rotations as operations on points.

(Again an operator viewpoint. One could also look at the rotation,

as operating on vectors as a first glimpse at linear transformations.

3-4. Use of matrix notation to obtain trigonometric formulas for

sin (a+p) , cos (a+01) -- by considering composition of rotations

from matrix-geometric viewpoint.

3-5. Isometries of the plane.

(Here combine rotations, translations, reflections and consider

coordinate interpretations.)

Chapter U. Geometa of Space.

4-1. Translations again.

(Heuristic Invariants)

4-2. Constant motion along line.

(Vector valued view. Description by various coordinate syste

under translation.

4-3, Motion along curves in space.

4-4. Rotations in space.

(View as operator on poin s. Also as operator on vectors.



At this point I would break the treatment and look at polynomials with the

motivation starting from motion along curves in space arising in Chapter 4.

Chapter 2. Polynomials.

(See polynomials introduced as functions but note the slight emphasis on

vector _sPace of 'polynomials) algebra of polynomials, isomorphism.)

Chapter 6, Rational Funct1 ns.

Chapter /. Return to Geometry with a Look at Affine Transforma

Chanter 8. Affine Invariants,

Chapter 2. Matrix Applications.

The following is an illustration of how vectors could be introduced.

(Vectors as reprsenting translations.)

Sample Chapter 1

Vectors

Sec ion 1-1. Introduction.

We have observed many times that a coordinate system on a line, in a plane

or in space permits us to describe quite accurately physical situations or

mathematical operations. For example, the number line permits us to describe

quite geometrically the addition of integers -- by means of directed distances

along e line

-2 0 1 2

Geometrical description of 2 .
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Similarly, we could picture the state ents x 3 for all integers x by

etc.

-5 -4 -2 2 3

Geometrically, we are mapping the points of the number line corresponding to

the integers onto the points of the number line. We associate with a point

corresponding to x the point corresponding to x 3 . Looked at from a

slightly different point of view, we have a function of the integers

f x -)x 3 .

[At this stage, one could pursue some more function concepts, "time to points

on a line" for a moving object a la Lister if one wishes to. I feel that this

is somewhat a matter of taste and I would go on.]

question: Are there any geometrical invariants under this mapping of the

line? (Student participation.)

What is the geometrical interpretation of the function f: x -4 x along

a line? (A change of coordinates question?)

[This line might be deadly.]

The questions we have asked about the mapping f: x 3 for points

on.a line certainly raise similar questions about the mappings of points in the

plane.

Let us begin with the simplest case. We establish a coordinate system

in a plane g
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and consider a mapping of Tr which maps a point A upon a point B three

units east and one unit north.

We can plot the images of many points

and, in terms of coordinates, we can write for any point

y) + 3 y 1) .

It should be clear that similar to the line, one vector from a point to

its image represents what happens to.all points; namely 3 east, 1 north.

What geometrical properties do not change under this mapping?

(a) Distance?

(b) Angles between lines?

(c) Do triangles map into triangles?

(d) Etc. (Student participatione)

Now let us note that if we had chosen another parallel coordinate system

we would have described the mapping by

new coordinates

old coordinates



A goes into a point 3 east, 1 north and the mapping would give rise to tie

function

f: (x' ) (xt 4. 3 , y +

Again one vector from a point to its image represents the "movement" of all

points.

Section 1-2. Addition of Vectors.

Any mapping of the plane given by a function of the form

f: (x,y) (x + a y + b)

can be represented by a vector indicating the image of the point (0,0) .

Thus with each point in the plane (a,b) we may associate a vector from

( 0, 0)

and this vector can be used to describe the translation this should have

entered earlier

f: (x,y) x + a, y + b)
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L t us assume that we have two translations f and g which are

represented by the vectors to the points (a,b) and (c,d)

Thus

f: xy) x + a, y b)

g: (x,y) + a, y + d)

What happens to a point A if we first apply f then g ? (Student
participation.)

[We are now led naturally to composition of functions and addition of vectors.

[We are primarily interested in the students developing a feeling for addition
of Vectors with various interpretations: Force Diagrams; etc.]

Section 1-3.

Now develop a geometrical background and feeling for the mappings of the
plane given by

f: (x,y) (tx y)

leading to a natural definition of scalar multiplication of vectors.

We can now give a description of motion along a line (any line) in the

plane with scalar multiplication and addition of vectors at hand. (Use only

constant velocity along line.)

14.6
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Section 1-4. Geometric 1,pplications of Vectors.

(Linear independence leading to review of solaions of equations.

_Section 17_ Space Coordinates.

Here we set up a coordinate system in space and indicate that the question

of translations in space lead naturally to the definition of vectors in space

and we can ask questions similar to those of the preceding sections as to

invariance of various geometrical concepts and the definition of vectors in

space with addition and scalar multiplication defined.

,z:ain constant motion along line could be investigated.

[1 believe this section should be an introduction and that we should

explain that in general we shall stick to the plane.]

Sample Chapter .2

Polynomials

_Section 1.

Many problems in mathematics require the addition of functions. For

example if you are asked to compute the area of the following figure

you can first compute the area of the square and then add the a ea of the

semicircle:

Total Area = 4r2 ir2
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like

A graph for the

100

90

8o

70

60

5 0

40

30

20

10

We could graph the

area of the square

4c-r +

2

for pc, iv values of r would look

2 ,7 4r kgraph for area
of square

1 2 3

area of the semicircle

2

2 (graph for area
of semicircle)

4 5 6

on the same axes. Now, in order

r-axis

to graph the total area of the figure, we would merely need to add together

the heights of the graphs for each point r

A similar situation would prevail if we were asked to compute the total

area of the figure

Here, the total area is given by

A
Total Area =

2
4r

2
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and our graphical description would be

80

70

6o

50

40

30

20

10

2
Ar

+ 4r0

kr

6
The pointwise addition of oUr graphs suggests a useful definition of the

sum of two functions. Hence4 let

f: x f(x)

g: X -4 g(x)

be two functions from the rationals to the rationals and define

f g x -)f(x) g(x) .

Note No._ 1.

At this stage, there should be no reservation in considering many examples

using

f: x - 1

g: x x +

where polynomials) of any degree are used.

Note_No. 2.

After considerable plotting of addition the function af: x -)af(x)

should be motivated and examples given.

It should then be pointed out that our addition and scalar multiplication

of functions satisfy the same properties as vectors; i.e., -we have a "vector

space" of functions.
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Section 2. Multiplication of Functions.

You have used the pointwi,,e addition of functions as we have described

them for sometime! Look at the addition of integers. For example, if you

add

7,831

and _347 ,

isn't this precisely

7 x10

7 x10

B x 10
2

3 x 10 + 1

X 10
2

4 x 10 + 7

8+3) x 102 3 4) x 10 + (1+7)

and this is merely the pointwise addition of the functions

..,f: x + ox
2
+ 3x + 1

and

g:

at the point x ° 10 .

x
2

4x + 7

Is it possible that multiplica,ion cf integers has a similar interpretation

in terms of functions?

When we multiply

346

2 4

we may think of this as

(3X102 + 4X10 + 6) . (2x10 + 4)

and this is the product of the functions

2
f: x x- + 4x 6

and g: x -) 23 4. 4

at the point x ° 10 .

Graphically, there are times when we might wish the product of two

functions at man,v points and not just the point x = 10 . For example, let
us look at the following problem: What is the volume of the following

figure?



The base of area

+

and to obtain the volume we compute

/ 2,
Volume = kgr ikr I- 1) .

Again, we may graph the area of the base

100-

90

Bo -

70

60

50

40

30-

20-

10- heiht

1 2 3 4

We can obtain the volume for any value of _

two graphs at each_point.

-

Note No._3.

Do many examples using

(Paynomials)

6

by multiplyin the heights of the

f: x x x 1

g: x x
2 + 7
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The pointwise multiplication of our graphs suggests a useful definition

for the product of two functl ns. Hence, let

f: x -f(x)

g: x

be two functions from the ationale to the rationals and define

fg f(x)g(x)

Note No. 4.

At this stage, there should be many examples where we use polynomials)

f: x

g: x

Note No. 5.

It should be mentioned that we have taken "vector space" of functions and

defined a "multIplication" of vectors. It might be appropriate to point out

that both distributive laws hold, etc., but this risks the emphasis of toc muCh

axiomatics.

Section Polynomial Functions.

We have seen that the equations of straight lines lead us to consider

functions (linear) of the form

f: x ax + b

The motion of a falling body leads to a function of the form

g x ax
2

+ bx + c .

Moreover, the multiplication and addition of integers are instances of the

multiplication and addition of functions of the form

f: x -> a nxn + a xn-1 + +ax+ao

wherexisusuallychosentobei0andthea.are nonnegative
less than 10 .
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Note No. 6.

Other examples of polynomial functions should be given of "degree > 2 ".

Volume problems will provide many of degree 3 .

A function of the form

-
f: x xn + a x

n1
+ + a_x + a where

n- n-l- 1 o

a
n

a
1 I

a a are rational ( n an integer > 0 ) from

R
a

rationais) to R
a

(nationals) will be called a polynomial function and

occasionally, for the sake of brevity, we shall refer to the expression

anxn + a x
n-1

+ a
n-1

+
lx

+ ao

a polynomial in x

Example: When we consider notion along a line, we usually express distance

as some function
7-

d: t 3t- + t

where the letters used have been chosen to suggest distance and time. It

should be observed, however, that we are still thinking of a mapping of the

rationals to the rationals and

d: t -3t
2

+ t

is a Polynomial functi-- but we would refer to + t as a polynomial in t .

Note No._ L.

There should now be numerous examples of polynomial functions with

expressions in manr letters so that the student would be willing to consider

polynomials in any letter.

We may add and multiply polynomial functions since these operations ha e

been defined for any two functions. Thus, if
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f: x -> a

f: x

g: x -> a3x

2
x + a x + ao

-1-

2
b
2
x- + b x + bo

(a2+b2)x2 +

and f + g is another polynomial function.

Note No. 8.

a +b
o o-

-----------

Now the multiplication of two polynomial unctions will get a little

stie1 because we must be careful to multiply the functional values to show

that we are doing it for an arbitrary x and again we get a polynomial function.

Only detailed writing will produce the correct motivation and wording.

The polynomial functions are closed under mUltiPI,ication and addition.

Moreover, it would be nice to see what kind of functions can be generated by

using some rather simple funct ons to begin with.

f: x x

ff: x

x x
6

f: x

n times

Now if we include addition of functions we see that ail polynomial functions

can be generated by using one rather simple function and multiplication of

functions by the constant ftinctions

E: x -> c

Note No. 9 (Perhaps this should be a new section.)

At this stage, I would shift the emphasis to point out hoW we add and

multiply the polynomials to get the a dition and multiplication of polynomial:

15 I.
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functions (that is, I Would sneak in their first peek at an isomorphism!

Specifically,

R [ x] R
a a

Section ,2. gaIll_p:IE Polynomial Functions.

(The purpose here is to give practice in graphing and lead up to

of polynomials.)

Section 6. Zeros of Polynomial Functions and Factoring Polynomials.

zeros

Section 7.

Is the function x >sin x a polynomial function?

(Here we would do a little approximating and possibly some computing.)
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A General Topical Sequence and Coordinates Vectors,

Functions: A Level 10 Course

Linear Functions and Coordinate change.

1-1. Line-like properties; time, temp, pressure, Three.

1-2. Coordinates on a line; origin) displacements as translations;

coordinatiming displacements.

1-3. Coordinate conversion functions; scale factor and shift term.

Arrow diagrams 7122 . Inverses._11211-
1-4. Relations between properties; e.g., time-position as in motion on

a line; temp-press; force-displ. of spring. How does coordinate

form of such functions change if coordinates are changed? Can

simple coordinate form be achieved? Composites.

1-5. Graphs of linear functions; slopes translation of origin, change

of unit.

2. Quadratic Functions and Gravitational Nbtion.

2-1. Scale changes in gravitational motion on a line; arrow diag am

and graph interpretation.

2-2. Maximum height and completing the square; simple coordinate form

of time-position function under shift change and under unit change

of coordinates.

2-3. Graphs of quadratic functions; coordinate version of symmetry.

Interpretation of a , b in a(x b)
2

c

2-4. The inverse problem; role of I-- (square root), pal ial inverses

of arbitrary quadratic functions; time at which object is at given

position. Problems from other quadratic relations.

2-5. The velocity problem; behavior of average displacement vectors;

velocity vectors and the velocity function; velocity functions

for arbitrary linear and quadratic position functions.
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3. Motion in a Plane.

3-1. Specification of motion by time-position function; coordinate

functions.

3-2. Constant velocity motion; displacement vectors, average displace-

ment, velocity vector, algebra of displacements and velocities;

relation of coordinate and parametric descriptions of lines.

3-3. Gravitational motion in a plane; coordinate functions, coordinate

description of path.

3-4. Simple harmonic motion; uniform circular motion in unit circle,

coordinate functions and their properties including addition

formulas; question of the velocity function.

4 Trigonometry - Angle and Length Problems.

Problems from geodesy and astronomy leading to derivation and use

of law of cosines and law of sines. The problem of computing

sin (x) .

5. Linear Functions of Several Variables.

5-1. Source examples; mixtures, costs, production, etc.

5-2. The inverse image problem, ax + by = c , graph.

5-3. Constraints leading to ax + by < c , graph.

5-4. Pairs of linear equations or inequalities.

5-5. Triples.

6. Affine Coordinate Systems.

6-1. Verification of non-metric plane geometric properties with linear

coordinate systems.

7. Coordinates in Space.

7-1. Coordinate planes; coordinate lines.

7-2. Distance in space; spheres.

7-3. Graphs of linear functions of 2 variables; planes.
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7-4. G ph of (x,y) -0/7=77 and (x/y) y
2 2

7-5. Ilane sections of surfaces; coordinate sections, coordinate plane

projections, level sets of planes, cones, spheres.

7-6. Motion in space.

Linear Systems.

8-1. Intersections of planes, other situations lea ing to linear systems

in 3 variables.

8-2. Vector formulation; structure of solution set.

8-3. Matrix of system; algorithm for solution.

8-4. Translational and rotational coordinate c nversion in the plane,

[in space].

8-5. Matrix of coordinate conversion functions.

2
8-6. [Non-linear maps of R i

2
nto R polar coordinate

9. Non-linear Relations_hlyn_.

9-1. Cubing functions; source examples, analysis of

x -) x-
3

x -) x- -a x (x-a)3 for monotonicity, convexity.

9-2. General cubic; change of sign and roots, factor and remainder

theorem, roots and coefficients, intervals of increase and

decrease.

9-3. Computation of roots; algorithm for approximation.

1 1
9-4. Reciprocal functions; x

/
x -

/
source examples, e.g.)

x 2
x-

radiation intensity, pressure-volume, rate-time.

9-5. Analysis of reciprocal functions for translated forms, monotonicity,

convexity, asymptotic behavior, inequalities.

9-6. Polynomials; the division algorithm.

9-7. Rational functions; partial fractions.
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10. Polynomials in Two Variables.

10-1. Sample sections of cones with vertex at origin.

10-2. Curves consisting of points satisfying certain distance condi-

tions; parabolas, ellipses hyperbolas.

10-3. Translational and rotational coordinate conversion.

10-4. Motion on a conic.

10-5. Curves defined by other distance conditions.

11. Geometric Transf rmations

11-1. Motions of a plane in spa e; isometries.

11-2. Orthogonal transformations and their matrices.

11-3. Images of sets; orthogonal transformations -ith certain image

specifications.

11-4. [Classification of orthogonal transformations and isometries.]

11-5. Inverses and c_ posites; finding images and inverse images of

specified sets; e.g. conics and graphs of functions.

11-6. Symmetries of a set; structure of certain groups of symmetries.

11-7. [Similarities; relation to isometries, matrices, determination

of images.]

11-8. [Projections in plane and space.]

Displacements, Velocities, Vectors

Several introductory developments of vectors are no doubt feasible.

One treatment seems to me particularly suitable in the context of motion and

readily adapted to other settings. Since it is not standard a brief sketch

May be in order.

Displacements are relative changes of position. Thus B is 4 miles

northeast of A defines the displacement 4 miles _northeast. In general
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displacements can be specified with arrows. D is the displacemen4- which

A A'

carries A into B . The same displacement carries AI into B2 In

coordinate terms the displacement from (0,0) to (2,1) is the same rs that

which carries (4)3) to (6,4) .

If a displacement D and u point P are given let D(P) denote the

effect of D on F.

If P and Q are points there is a unique dis, cement D for which

D(P)=Q. Call this Fq

It is convenient to denote D(P) by P-+ D or D + P . It may also

be convenient to denote PQ by Q - P In any case we define

D
1
+ D

2
P -)Di

These conventions yield:

(P)) (or D2 (D1(P)) )

At or (B A) + = C A

B + BC = C or B + ( B) = C
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If a coordinate frame is given, any displacement Is a unique sum of an

horizontal and a vertical displacement: D = DH + Dv Either of the uses

of "+" described above translates to componentwise addition of number pairs.

Turning this around: 3,3 + (2,-1) = (5,2) interprets either as

Furthermore, (5,2) -

interpretation of
IT

with either the point or displacement

Now it is natural to say that constant velocity means displacement

proportional to time, e.g., F(t) F(0) = t[F(1) FM] Assuming a previous

treatment of motion on a line (using displacements in the same way), and

noting the relation above implies constant velocity motion of both the hori-

zontal and vertical projections, we infer that this amounts to requiring these

projections to be constant velocity motions.

In any event we get

F(t) = (a,b) + t (cd)

which we proceed to analyze and interpret in problems. The velocity vector

associated with this motion is of course the average displacement vector

c,d)

remains to postulate and make plausible the additivity of velocities,

which guarantees that velocities behave like displacements. Any property with

these characteristics is generally called a vector yroperty (or, more usually,

7uanti:ty).
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S1mpl e Harmonic Motion in General Topical Sequence

The suggested treatment is straightforward. Define cos and sin as

coordinate functions associated with a standard c.c. (counter-clockwise)

constant speed motion around central unit circle. Note relation with any

earlier definition. Note arc length interpretation and make this basic in

deriving properLies. Derive position function for arbitrary uniform circular

motion.

Read off elementary properties. Use constant speed and distance formula
to get addition formula. Use addition formulas to compute some less obvious

values.

Observe that unit length displacements are co

develop vector formula for line:

L(t) = ( ,b) t(cos(x)

Define the cosine of an unoriented) angle with radian measure x as
cos(x) and derive the law of cosines from

( ) sin(x)) and

It remains to treat oriented angles and the law of sines.
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A Sampling of Problems or Sections laa

of General Topical _Sequence

1. Linear Functions.

(1) What are some properties which can be coordinatized as a line?

as a /ay?

If an objeci: moving on a line has a position F(t) in miles at

time t in hours, what function G gives its position G(t) in

feet at time t in minutes?

(3) Fill in the temperature coordinate conversion functions:

(4) Find the function Which converts atmospheric pressure from lbs per

sq. in. to atmospheres above 1 atmosphere.

(5) An object moving on a line has its position function converted from

t - 5 to t -i.3t by a change of position scale. Wbat is the

change?

(6) In () change the position time scale so that the Coordinate form

of the position function is t -)t .

(7) If in a certain process pressure in some scale is proportional to

absolute temperature, how is pressure related to temperature in

centigrade scale?

(8' Given a coordinate conversion function, x --3ax b how can you

tell whether

(a) the positive direction is reversed?

.(3) the unit size is preserved?
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the origin is .ved?

Find formulas which convert C to CT and C to C coordinn.tes.

2 1

-2 -1 0 1

(10) If the unit-time displacement and initial position of an object

moving with constant velocity are as shown, what is the Iposilo

function?

2. 9uadratic Functions.

An object is thrown vertically up from the top of a 100 ft. tower

with initial velocity 60 ft. per second. Find the coordinate fo-m

of its position function in case (a) time is given in seconds afLec

the object is thrown and position is given in feet below the top of

the tower; (b) same as (a) except position is given in feet above

ground level; (c) time is given in seconds ,fter the time of malimu

height and displacement is in feet below the maximum height.

In each of the cases in (1) what should be computed in order

find the time the object strikes the ground?

A curve P is the graph of x 3x
2

- 5x 4- 4 . Of what is P th,c'

graph if the origin is shifted 2 units to the right and 3 up?

What displaceme t of the coordinate system converts x -ix2

into x
2

5 Is x -43x
2

6x 4. 5 of the form a b)

(6) What quadratic functions are of the form f(g(x)2) where f and

g are linear?
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(7) The graph of a quadratic function has its vertex at (3,2) . What

can be inferred about its formula? What can be inferred from the

fact that the line of symmetry of such a graph contains (-1,0)

In the situation of (1) find a formula for the time at whi h the

object is at a given position during its descent.

At what points does the graph of x -43x
2

- 5x + 4 intersect the

horizontal line through

a) (0,3) ,

(h) (0,1)

(10 ) In the situation of (1) show that for each velocity vector v

there is a unique position g(v) at which the object has velocity

v by finding a formula for g/ `,\ g(?)

{: t Lae --arS position

'velocity

Motion in a Plane.

(1) A ship moves with constant velocity (4,3) in certain time and

position units and is at (2,-1) at time 1 Find its pobition

function. Find a coordinate description of its path.

(2

(3)

(4)

A ship moving with constant velocity is at (0,2) at ttne 1 and

(5,0) at time 3 . Find its position func ion.

Find the place where the paths of the ships in (1) and (2) cross.

Do the ships collide? If not, find the minimum distance betWeen

them.

If F(t) = (alb) + t(e,d) is a position function, under what

conditions does the object move

(a) due east?

(b) due northeast?

(c) 300 south of east?

(d) with speed 1 ?

An instrUment on a moving plane measures the wind velocity as

500 Mph from 300 to the left of the plane's heading. Predict
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(7

the wind gauge reading of the plane makes a 180° tuln without

altering engine power.

Paint A is made by mixing 2 parts red with 3 parts blue.

Paint B consists of ,1 part red for every 4 parts blue. Give

directions for using A and B to make paint C which has the

formula

a) 1 part red to 2 parts blue,

(b) equal propo/Lions of red and blue.

What paints can be mixed from A and 13 ? Interpret geometrically.

Standard projectile motion proble

tion of trajectory; e.g., if F(t

think:
F
1 - 2

Also find coordinate descrip-
F10 + 20t -1ot2 + -oOt + 20)

10 + 20t m- t -16t lOOt + 20

to get explicit description of trajectory.

Find the position function for an object which moves uniformly

clockwise around a circle of radius 3 at 2 revolutions every

7c time-units and which is at (-1,0) at time 0 .

(9) From the earth the angle between Venus and Mars is 20° at a certain

time. Venus is x and Mars y million miles from the earth. What

is the distance between Mars and Venus?

Coordinate- Vectors, Functions: A Level 10 Course

The attached pages give a course outline of the first three chapters

supplemented with some detail on the intended mathematical skeleton. This

is a very slight revision of the early sections of the course sketched under

the heading General Topical Sequence. This amplification is a response to

expressed uncertainties as to the implementation of the original uutline. A

glimpse of the situations which can be discussed and the equipment to be

developed to handle them may s117gest a sequel.

Some of the themes whin ought to play significant roles are:

1. Sources of functional correspondences.
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2. The role of coordinate systems and measures in converting corres-

pondences to number functions.

The change and lack of change in functions effected by co rdinate

change.

1[ Clometric pictures and diagrams of functions and the way various

properties of functions reflect in them.

The use of coordinates to reduce mappings into R
2

or to pairs

or triples of number-valued mappings.

6. The various ways in which functions are used to describe say) plane

sets; as graphs, as ranges (parametrically), and as inverse images

(level sets).

The general meaning of linear func-L. ns and their amenability to a

complete, uniform analysis.

8. The new questions and difficulties which arise with non-linear

functions.

The useful possibilities in extending number operations: to

functions; the ubiquity of the composition of functions,

10. The properties which a given function does or does not preserve.

The search for functions with given properties, in particular

Euclidean transformations.

11. The value of coordinates in translating geometric descri,ptions to

number relationb and in illt4-preting number relations geometrically.

12. Various ways in which problems may be translated into equivalent

problems and the reasons therefor.
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OUTLINE OF A LEVEL JO COURSE
_ _

Cha-ter 1 -

000rdillates, Vectors, Functions

1. Linear Functions.

1-1. Real numbers as coordinates for points on a line, points o:

states of temperature, and other properties. Linear firnc,

coordinate conversion functions.

1-2. Effect of coordinate 2= -rsion on functions relatinp:

properties as e.g., a function giving the po ition of .,11

on a line in terms of time. Scale factor (a) and shift rn
in linear function x -)ax ± b .

1-3. Line to line diagrams and graphs of linear functi-ns.

and composites.

1-4. Displacements on a line, scalar multiplication, add

nates for displacements and addition of real numb.

1-5. Deterination of isometries of the line, the ocr

similarities.

LA. Schema for Linear Functions.

Recall real numbers as line coordinates and reviev

of _perations. ioie that coordinate system involves af.1Lrar;,

origin and unit poInt. In fact, a coordinate system is a func -ion

C : points numbers.

C(P) = 2 means that C assigns 2 to P . (There are reasi7A-1::.

coordinate system might better be defined as the number to p:-=

Since each such. C is one-one, two coordinate :3yst. fts C
1

a number to number function F which converts C to C.
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ci

- 2

2*

Now F is linear and if F(x) = ax b then lal reflects the relation

of units, sgn(a) the relation of the orientations of C1 and C
2

and

b exhibits the relation of origins in terms of the C2 system. Call a

the scale factor and b the shift term.

Linear functions arise also as relations between different properties

which admit real number coordinates. The motion of an object on a line is

specified by its position function, which assigns to each time the position

of the object at that time. Each choice of time and line coordinates

determines a coordinate form f of the position function.

time position

----f(t)

Different choices of C or Cr induce different coordinate forms f of

the time-position function. If f(t) 30t in hours and miles then the

coordinate form g corresponding to seconds and feet is given by

g(t) 5280 f(-tco

.-Diagrams like this exhibit the four functions determined by a pair of coordinate

systems for each property
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If one coordinate form is linear then all are. For any given fu ction

relating one pro,erty to another it is always possible to choose coordinates

so that the coordinate form is x -)xl These considerations involve a

discussion of composites and inverses. Each of these notions is best

visualized in terms of line to line diagrams even if th-: function originates

from consideration of a single line (i.e., property).

If the graph of a function f is ((x,y)ly f(x) ) (often identified

with f ) , then every number to number function and every choice of plane

coordinates determine a set of points ;Ilich may bc rgarded as a picture

of f Linear functions have lines as pictures, and nonvertical lines have

coordin te descriptions which are graphs of linear functions. The effect

on the coordinate description of a given line of a plane coordinate change

induced by horizontal or vertical coordinate changes can be computed.

-1
The picture of f can be described in terms of the picture of f

Displacements on a line are mappings of the line to itself which in

any coordinate system have the form x -)x + a for suitable a In a

given system the number a serves to identify the displacement serving, if

you like, as its coordinate. This idea extends readily to the plane where

it is important to observe that composition of displacements corresponds to

coordinatewise addition.

The isometries of a line can be described (in a series of exercises?)

in terms of displacements and opp Suitable coordinates give the standard

forms x --x and x -x + a .

2. quadratic Functions.

2-1. Falling objects, gravitational motion on a line. Sample time-

position data, discussion of time-velocity function (as vector
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valued) and relation to position function, r4raphs and line to

line diagrams.

2-2. Effects of coordinate changes on position and velocity functions,

completing the square, simplification of descriptions of quadratic

graph curves; e.g., y = 3x
2

- 12x + 13 to y = 3x
2

, problems

relating to objects projected vertically.

2-3. Finding the time at -which an object moving vertically and gra i a-

tionally is at a givLi height. Resolution of the two-to-one

property of quadratic functions by completing the square and

resort to square roots. Solution of quadratic equati-ms in terns

of x -)); . The computation problem, approximation of 1/7c

21. Schema for Quadratic Functions.

One way to hanCle vertical gravitatio al motion is to offer sample

time-position data and look for patteins winding up with the conclusion that

displacement from time t to t + a is linear. Then v(t) is defined as

the average displacement in any time interval t - to t + a The effect

of initial conditions is analyzed by changing the time origin. This leads to

the general relation between a position function and its associated velocity

function.

Selecting coordinates in falling body problems and interpreting the

resulting position function leads to the question of describing, say, the

picture of x -3x2 - 12x + 13 in simpler and more informative terms by

selecting a plane coordinate system related to the curve. Selection of origin
2

at the vertex yields the description x -*3x This in turn shows that the

pictures of x -3x and x -)3x
2

12x + 13 in a single coordinate system

are congruent. (We observe that plane displacements are isometries.)

The problem of inferring time from position calls attention to the

two-to-one character of squaring. The line to line diagram of x ->x
2

suggest3 creation of the partial inverse
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Previous work on completion of the square shows that this function is
sufficient to describe inverse images under any quadratic function, i.e.,
to solve any quadratic equation.

Some discussion of the question: "does every positive number have a
square root?" is in order, as is some treatment of the difference between

) 1./- is the unique positive number x with x
2

= 2 .

(_) 1.414 < < 1.415 .

Motion in a Plane.

3-1. Planar motion situationr; ship sailifig on a (pre-Columbian) sea,

projectiles, moon, t!'e notion of a time-position function whose
values are points. Specification of point valued functions by
coordinate functions: f(t) = (f1(t) f (t))

and

3-2. Displacements and their coordinate description. Coordinate
versions of addition and scalar multiplications of displacements.

511e standard correspondence between points and displacements.

3-3. Displacements derived from successive positions of a moving
object. Constant velocity position functions and their coordinate
form t -*(a,b) + t(c,d) , the associated velocity vector. The
position function as a parametric description of the path (or
track) of the object, the point and vector interpretations of
A + tB Conversion from parametric to ((x,5)113(x,Y)) descrip-
tions.

3-4. Planar gravitational motion, component mtions and velocities,

derivationofthepositionfunctionf(t)
fl(

,--t) f
2(0) where
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gives constant velocity motion and f2 Gravitational motion
fl
on a line. Derivation of usual cscr1ption of path and posing of

questions about time, position and velocity,

3-5. Uniform circular motion. Analysis of examples of position ful

tions. Standard form3 of coordinate functions for uniform circular

motion: W(t) = (cos(t) , sin(t)) . Elementary properties of cos

and sin add .tion formulas, all derived from winding function W

What is the velocity function for u.c m like (as a plane point

to plane vector mapping)?

3A. Schema for Motion in a Plane.

To specify motion in a plane is to associate with each poInt in time

the point in the plane representing the position of the object at that time.

Thus the time-position function has a line to plane diagram.

Coordinatizing line and plane produces a coordinate form

f(t) = (f1(t) , f2( )) thus reducing the description to a pair of number to

number functions.

Each pair of positions determines a displacement which, as on the line,

can be identified by coordinate differences. These displacement coordinates

are unaffP-ted by a change of origin. From the decomposition of a displace-

ment into horizontal and vertical components the coordinate form of displace-

ment composition (i.e., "addition') follows. (For any real t tD can be

defined by a betweenness stipulation.)
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The map 0 =>D(0) ptrrnits the ident,ification uf vectors with points,

hence of sets of vectors with sets of points. The natural meaning of constant

velocity is "position displacements proportir 1 to time displacements". Thus
F(ti)F(t ) = (to t1)V which leads to the

, rdinate form

f(t) = P + tV = (xl,x2) + t(v1,v2)

and the identification of V as the velocity vector associated with f

For later purposes it should be observed that motions of the coordinate axis

projections of a constant velocity motion have velocities which sum to the
constant velocity.

The set of all positions (call it pilth) of an object with position
function f is (PIP = f(t) for some t3 = S . A description of this type
is called a parametric description of S . It amounts to specifying a func-

tion whose range is S A position function describes the path parametrically.
For constant velocity motions this can be converted to the usual description

by observing that

1
))) f (t)

Thus if f (t) = (2t 6t 5) then

6t 5 6[47(2t ,-. 3)

or f2( t) . 3f1 _(t) + 4 .

So ((2t - 3 6t - 5))

= ((x,Y)IY = 3x 4) .

3
5

Experiments which show the independence of horizontal and vertical

projections of a gravitational motion can be cited and their significance for

the position function examined. From these considerations the conclusion

that f- is constant velocity and f
2 gravitational follows. The fact1

that f
1

is linear permits the straightforward derivation of the usual

description of the path.

It should be noted that the addition formulas for cos and sin are

consequences of the assumption that equal time intervals are mapped onto

,.congruent arcs.
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Sample of An Unorthodox Analysis Semester

1. Decimal Expansions.

1-1. Infinite decimals as point specifications; the nested interval

principle, decimals as limits.

1-2. Partial sum sequence of a sequence, the monotonicity in iple;

binary numerals; computation with truncated decimals.

1-3. Geometric series, partial sums and remainder, nolyno lel

1
approximation to .

1-x

nponential Processes.

2-1. Geometric series and area un r x 2-x from 0 to n and

0 to a
2-2. Interest compounding, the limiting case (1

2-3. Rate of change in exponential proce_ es:

expil (x) = expl (0) exp-a(x) .

2-4. Relation of rates to linear approximation, tangents.

1 .

2-5, Log' via reflection of exp ; area under in terms of

rectangular approximation; pinching principle, error term;

log x as x -4 a , harmonic series.

3. Local Approximation.

3-1. Linear interpolation approximation (log,

convexity and its implications for error.

3-2. Local linear approximation using derivative; attempt to

compute ex using successive approx.;
-x

e
x

x + 1 _41 e
t
dt (ti) dt) ;

approx. to --- via partial fractions;
1-x

approx. to log(x) via integral;
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problem of points of convergence;

derivatives of polynomials, local approx. as derivative matching.

Global Approximation; polynomial interpolation, Simpsonls rule;

interpolation formula, curve fitting.

An alternative to the above is to deal with motion in the plane via

vector-valued fUnctions and their derivatives, analyzing gravitational and

circular motion and studying fizzt and second order linear differential

equations.
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S'stems of Sentences in Two or More Variables for Grades 10-12

It is recommended that the following material not be included in the 7-9

sequence.

Background:

1. In Grade 8 students will have studied systems of first degree sentences

in two variables with a slight introduction to linear programming.

(Chapter 12, 1967 sequence.)

2. In Grade 8 students will have studied the quadra lc function

f x a(x h)2 + k extensively and be familiar with the equation

of a circle. (Grade 7, Chapter 2, 1967 sequence.)

They will not have apy experience with equations of the hyperbola

ellipse, and will not be familiar with.the general second degree senten e

in two variables.

4. In Gr..de 9, Chapter 3, students will develop, hopefully, a higher level

of sophistication in working with first degree sentences in two variables

as they develop the linear programming chapter.

I recommend that a study of systems of sentences like:

XP

2x
2
- 3x + 4 y 0

t x + 2y - 5 = 0

aleing with their graphical representation be studied in conjunction with the

appropriate sections in the 10-12 sequence.
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I also recommend that systems of se-t nces like

ix + y + z - 3 = 0

2x - 5y + 7z + 1 -- 0

5x - 2y -3z + 10 = 0

x + y + z + w - 4 . 0

2x - 3y + z + 10 0

5x + lOy - 7z + w - 2 = 0

x + y z w + 2 = 0

be included at appropriate places in the 10-12 sequence.

Some reasons for the recommendations:

1. Students will have matrices to handle syStems of first degree equations

in two or more variables in the 10-12 sequence.

2. It seems more appropriate to study systems of second degree sentences

in two variables when a knowlLdge of all of the conic sections, and

some knowledge of transformations in the plane are available to the

student.

Study of systems of equations in the 10-12 sequence can arise naturally

in the spiral of the "stream" of modeling and linear programming.

178

18



Outline of Elementary Functions and Calculus Course

O. Introduction.

1. Sequences, Series Mathema ical Induo ion.

Examples of sequences.

Inventing general term.

Definition (functions on positive integers

Graph3 of sequences.

Questions about behavior.

Bounded or unbounded.

Maximum and minimum values.

Increasing, decreasing, constant, oscillating.

Limiting value.

Defition of limit.
1

Proof t_

Use of theorems (without proof) about limits of sum, product, e c.,

to evaluate limits of sequence.

Informal induction to fihd

1 + 2 + + n
n(n+1)
2

2 _2 2 n n+1 2n+1

3
2 k2
(h+1)

1 + n
4

Infinite series.

Telescoping series.

Mathematical induction.

Arithmetic and geometric series.

Convergence and divergence for geometric series.

Functions on Reals.

Definitions of functions with examples.

Graphs of functions.

Algebraic combinations of functions.
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Linear and quadratic functions.

Polynomial and rational functions.

L2.2....:02.21 Functions.

Review of synthetic substitution.

Graphs, relative extrema, roots.

Slope of tangent and derivatives.

Continuity and differentiability.

Derivatives of sums, products and powers (by induction from products).

Rolle's Theorem: Df(x) = 0 f(x) c .

Mean Value Theorem.

Applications of Derivatives.

Tangent and normal lines.

Extreme values.

Maximum and Minimum problems.

Concavity Points of inflexion.

Higher derivatives.

Newtonts method for roots.

Rates of change, velocity, acceleration.

Differentials and approximation.

Area and Volume.

A7'ea properties.

Ar(a under parabola.

Upper and lower sums.'

Limits of upper and lower sums.

Definite integral.

Additivity of areas.

Antiderivatives and Fundamental Theorem.

Area betwc.n curves.

Vblume problems.

Motion problems,

Work problems.

Average values.
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Theory of Limits.

Rational Frnctions

Curve -racing.

Derivatives (quotient rule).

Negative integral powers.

Extrema.

Vertical and horizontal asymptotes.

Simple areas (shaw haw easily we get s uck).

8. Composite Functions.

Composite functions using thee parallel lines

Chain rule using derivatives as local multipliers.

Inverse functions.

Derivatives of inverse functions.

Root functions and their derivatives.

Review of fractional exponents.

Differentiation of implicit functions.

9. Exponentiai and LoE Func ions.

1
Ln x as area under y =

3 See the Derivative
as Local Multi lier,
PP. 197.

Graph of in x .

Proof that in ax = hi a + in x and ner logarithmic propertie5.

Polynomial approximation.

1
- 1 u + u

1 + u

in

u4

1 + u
2

u3 u4u

( < E <
5

Computation of a few Logs.

Exponential as inverse of log.

Property e
a+b

e eb
a

kx
Derivatives of eX and e-

Polynomial approximation to

Computation of values of ex
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Growth and Decay.

Applications of Dy ky

Other bases.

10 Circular Functions.

Definition (functions of arc length).

Periodicity.

Graphs of sin x , cos x

Angle and angle measure.

Vectors and rotation.

Addition formulas.

Identities.

Derivatives of sin x , cos x , sin kx , cos kx , tan Xx

Antiderivatives.

Inverse circular functions.
, 2

Simple harmonic motion OD
2
y k-y

Polynomial approximations to sin x , cos x , arc tan x

Computation of ir .

Two 2-Llesis:
1. Is it desirable at some stage to prove theorems for limit of sum, product,

quotient? If so, how rigorously?

Ts it desirable to have a final charter or set of exercises which st e s

overall comprehension?
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A Sketch of an Tntroductory Chapter to

Elementary Functions and Calculus

Chapter 0: Introduction

What is calculus about? We can give some idea by discussing two iyical

problems.

Problem 1. To find the area

under the curve y x
2

an_L

above the interval [0,1] .

In geometry, we learn how to find the

area of a rectangle, of a triangle and, more

generally, the area of any polygon. Here we

meet a new kind_ of problem because the upper

boundary is curved.

It is natural to approximate the figure

by putting together rectangles as shown. By

adding the areas of these rectangle we obtain

a result (called a lower sum) which is too

small.

In a similar way we may add the areas

of rectangles to obtain an upper sum,

that is, a sum which is too large.

Y

0 1
For a given subdirision of the base, the required area must be between

the corresponding upper and lower sums.

If we use a very, fine subdivision of the base -- into 1000 equal parts,

say -- it seems clear that the upper and lower sums will be very close together.

We can now ask whether as we choose finer and finer subdivisions the upper and
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lower sums approach a common value. If so, this value will represent the

required area exactly.

To investigate this possibility, we need to know how to add a tremendous

list of numbers. To begin -with let us divide [0,1] into tenths. The upper

sum is

that

or

0001 + .004 + .00 + + .100 ;

.001 (1 4 + 9 100)

2

10j
+10-

If the interval is divided into hundredths, the sum is

1 2 2
I- + 2 + 4. 100

2
)_

100-

If we go on to thousandths, ten thousandths and so on, the arithmetic

becomes truly .frightening.

what we need is a general result for any number n of rectangl s that,

-Por the upper sum
2 2

1 n
2

2
n

+
n3

or
[12 22 32 2+ n ]

n

If we had such a result, we could substitute n = 10 , 100 , 1000 and

so on. We might even be able to see what the limiting value of the upper sum

is as we increase n beyond all bounds.

Later we shall obtain such a result and Shall find that

so that

_2
1- + 2-

2
+ 3

2
+

Sn
n+1) (2n+1)

6n3

n2 n(n+1(2n+1)

1What happens to S
n

as n becomes very large? 1 - will be

extrernelyclosetland2"venrcloseto2-Thensnl.aaa be
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1vel-yr-learlyequalt07-.A.ctuallyS.will be as close to 7,- as we

please for sufficiently large values of n Since a similar result is

obtained by studying 1o7-2r sums we conclude that the required area is

The limit process described is typical of the calculus and may be used

to find not only the areas of figures wit17 curved boundarins, but the

volumes of space figures with curved boundaries, the energy required to

lift a rocket to a heiojat of 4000 miles and the solution to many similar

problems. The idea of limit is the central one. A study of this concept

leads us to astonishingly simple solutions of many important problems. It

will be found for example that the problem just discussed can be solved in

a few lines, after we have reached a eel-Lain stage in our understanding.

Problem 2. Another problem which can be solved by the ue of limits

is that of finding the speed cf a body dropped from rent. In physics

we learn that the distance d feet fallen in t seconds is given

by the formula

(1) d = 16t
2

.

(Actually this is an approximation. A better approximation is given

by the formula d = 16.11t'd .)

Ls everyone knows, the body goes faster as it continues to fall.

Suppose that we wish to know exactly how fast it is going when t = 2 .

It is easy enougn to find the average speed over an interval beginning

at t = 2 , for example the interval between t = 2 and t = 3

In fact at t = 2 , d = 16 X 4 - 64 ,

and at t = 3 d = 16 9 - 144 .

The body has txmvellcd 144 - 64 = 8o ft. in one second. Therefore its

average speed during this seCond is 8o ft sec.

If we consider a shorter time interval, say that between t = 2 and

t 2.1 we obtain a result which is closer to what we desire. As before,

when t = 2 , d = 64

-when t = 2.1 , d = 16 X (2.1)2 = 70.56 .

1
In of a second, the body has fallen 6 6 feet. Over this interval,

10

the average speed is
656

- 65.6 ft. sec.
.1
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What would happen if ye aveiged over .01 of a second? .001 of a

second?

As in the case of area, we need a general result to rescue us from the

arithmetic.

Let us consider the time interval fram t = 2

cor esponding distances are

64

and.

1-_ 16 (4 + 1
n

n2

64 16

n2

64 16
is -- +

n
n2

*
The distance covered in he Lilo interval

Dividing
16= 64 +

t = 2 -I- . The
n

gives the average speed between t = 2 and t = 2 4-

This average speed is

(64 + 1) ft. ec.

The limiting value is 64 ft./sec.

This is what we take to be the actual speed at t = 2 .

Again we have used a limit process to obtain the required result.

Chapter 6: Theory of Limits

The following indicates how the theory of limits might be handled in

the course outlined for Elementary Functions and Calculus.

The theorems about sum, product and quotient sequences would be stated

and used in Chapter 1, where only a very informal justification will be given.

These theoremm would be used again to find the slopes of tangents in

Chapter 3, and also.in Chapter ) on Areas.
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At some point, these theorems shod be :rove(L We sugest that

Chapter 6 is an appropriate place. We have :rIcluded here!

1. A discussion of the limit of a sequence suitable for Chapter 1.

2. Slopes of Tangents via Sequences. (See also Chapt r O.)

3- Proofs of Limit Theorems for Sequences uitabl ic r (:napLer 6.

Section 3-1 on 7011 Sequences has been written Section 3-2 has been

left in outline form.

The Derivative as Local Multiplier. Referred to in the uutline under

Chapter 8.)

The Limit of a Sequence.

4 I
Consider the sequence Y whose general term is I +

n

1
We say that 1 + approaches 1 as a limit and write

n

1 1
This means that the difference between 1 + - and 1 (Which is is

ultimately as small as we please. By "ultimately" we mean "for all values

of n which are large enough".

1 1
For example if we wish t

!
o have - - it js sufficient to choose

n 1000

n > 1000 It is useful to have a letter to represent a number as =all as

we please. The Greek letter e is the customary one. In the example,
1 It is also helpful to have a letter to tell us how large a value

IZZo

of n we must choose to guarantee the degree of closeness c We use N

for this purpose. In the example, N = 1000 since

1 1
n 1 if ii > 1000 (=N)

In general we Write

1- < E if n > N

1
If we desire that shall be less than

1

n. 1,000,000

prised to find that we must go further out. In fact

1 1
n
<

1,000,000
if n > 1,000,000

so that in this case N is 1,000,000 .
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It is easy to see that more generally, for any positive

IL 1
if n

so that N = tells us in each case how far out we must go to be sure that

all terms are indeed "as small as we please".

Suppose that we have any sequence

-1 2
6 Xy ewe

n

which has a limit, say a . In the language that we have just learned

fact may be expressed as follows:

For any positive liumber e , however small, there is a corresponding

whole number N so that

(1) lx
n

- al K E if n > N .

lx
n
- 1 is the distance from xn to the limit a We use the absolute value

sign which was unnecessary in our example) to take care of cases in which some

or all values x
n

are less than a

For example, in the sequence

0 ,
8

9
1

666 , 1 y v

1all terms are less than the li 1 The distance of x = 1 - -T

from 1 is (1-
1
-7) not (1- le - 1 But

Ix
n
- = 10-- 4 ii = 1 -

1 1

n n
2

So in this example, (I ) becomes

(2)
1

< E if n > N .

We must show that for any given positive number , we can find N so that

1
< e is guaranteed to be correct for n > N It is easy to do this.
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If 2

st be true that
0

n E

and therefore

1 < n

We can write t 's more conveniently as

Fi_ ally

1
n2 >

must be the case that

n >
1

Going backwarb.;3, if n

1 is surely less than

indeed greater than -1
17

as required. The expression
1

tells us

1
what N is. If --- should be a whole numbe-

take N to be the whole number part of ---

- , otherwise we can

For example, if we reciuire that the distance between x
n

and 1 be

1
less than .0001 (that iu if we set E -

10,000

N is
1

10,

That is, for all n > 100 , xn will be within

- 100 .
1
100

1
E 100,000

1 1
- 100 ids-5 Z 316.2

100 "To

.0001 of the limit 1

Hence N = 316 .

-9

Thi6 means that in our sequence xn
is closer to 1 than .00001 for a17

terms beyond the 316th one .
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let

Then

and

Slopes of Tangents via Sequences.

To study y = x
2 near x = 2 , y 4

1= 2 -I-

4

n2
'

4 1

n n
mn

x n-2

is the slope of the secant line joining (20)4)

This slope mh ->4 as n becOmes infinite.

1
Similarly with x 2

n
= -

Generalizing,

let x
n

= 2 -I- z
n

where
n

is an arbitra null sequence with no 0

member.

Then y
n

= 4 + 4z
n

+ z
2

As x
n

y
n

This eXpresses "continuity" at x = 2 .

hz +z
2

Yn
-4

m = . 4--A - + z 4
znn x n-2

the slope of the tangent at x = 2 .

It is easy to generalize to an arbitrary point On the curve

and to treat other curves J.n an analogous fashion.

We shall say that f() ob z1; ->a if for an arbitrary sequence

cx ) of x
n
ts which are different from a and lie within the lomain of

the earrespondir. sequence (y
n

= (f(x
n
)) converges to b The theorem

* be proved for limlts of sequences then become theorems about limits of
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functions on the reals.

Proofs. of Limit Theorems for Se uences.

3-1. Null Sequence Theorems.

A particularly simple kind of sequence is one whose limit is 0 .

Such a sequence is called a null sequence because "null" is a name

for zero.

117

- 1

1
2

1

1

1

'

3

,

1
3

1

1

'

1

1
2

."

00 .11

O..

+

2

n

1

/

0.0

, 0..
,472-

are all examples of null sequences.

1 1
We express this fact by writing ,

1
> 0 and

n

We shall use z
n

for the nth term of 4 null sequence because

the letter z suggests zero.

If we are discussing two different null sequences we shall use

zri. and v to represent their nth terms.

We know that 1 -4 0 and

1

n2

Can we conclude that

0 ? The sequence whose general term is

that is

191
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Suppose that we choose
1= ---- and wish to show that

1000

( )
<1 1 1

n
2 1000 for

This will surely be the ease if

(2) 2000

and

1 , 1
(3)

n
2 2000

large enough.

is true if n > 2000 and

is true if n
2

> 2000 , that is, if

n > 125(-56

If we choose N = 20100 , the larger ,f the numbers 2000 and 41+ ,

and (3) are both true and hence (1) is 3atisfied.

This example illustrates an important theorem.

Theorem 1. If 0 and wn ) 0

then z 1- Ns/

n 0

Proof: We must show that given any E > 0 , there is a positive integer N

so that

Since

(4)

+ w n1 < if n > N

iz-" 1 < lz 1n n

it is sufficient tp show that Izn1 and

when n is sufficiently large.

New since zn * 0

1z 1 < 1n

and sInce wn ) 0 ,

if n > N2

n > N" .
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If we take el and Eu = and if N is the larger of the two

numbers TO a U" we have from (4)

wn
E = E if
2 2

This completes the proof.

and

Consider the following sequences

1 I
1 y goo

-1

IT

If z 1 and x . -2 what can we say about the sequence whose
n n n

general term is x z
n n

? It is not hard to guess that xnzr -)0 Let us

prove that this is true.

We see that

so that

Now

Since

we can make lxnzn

-2 < x
n
< 0

n n Ix.n1 I < 2Iz I

2
lx

2
I x z < -
n n n

2 2
< E by choosing - < E which means that n >

This is an example of a second impolLant theorem.

Theorem 2. If zn 0 and lx < C (C > 0) then x zn 0 .

In the example, zr -311. = -2 4- and C = 2 .
1

Proof: We must show that given any E > 0 an N may be chosen so that

Ix
n
z
n

< if > N .

We know that

Ilcz I = L 1 lz 1 < cn n n n

Since z
n

)(7o we know that for every

for Which

if n > N .

E 1
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Then Ix z 1 < el if n N
n n

If we choose

then

C

Ix z
n n

This c mple es the proof.

n +n 11

if n N

Theorem 2 has two corollaries.

1 10.uince 7 -40 and 74; < 1 the theorem applies.

Cor. A. If z and. wn -) 0 then znwn -) 0 .

Proof: Since w approaches a limit it is bounded see Chapter 1). That
n

lw
n

1 < C for some positive C The theorem then applies.

Exam lea:

1 1 1 i
1. Since .= and

n
3.7 -> 0 - -> 0

n n

1
that is, 7 -40 .

n.

2. Since and

that is, 2" -) 0 .

Cor. B. If z
n

or zero,

->0 where k is any constant, positive, negative

Proof: Consider the constant sequence

kk k , k 5 Wee

with = k Theorem 2 applies with C iki so long as k / 0 .

However if k = kz
n
= 0 and we have the sequence

0 0 . 0 y

which is surely a n11_11 sequence,

1914
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.Ff.xarrTie:

(1)

Hence

1Since -) 0

n2

4
o

etc.

More General Limit Theorons.

Definition- x a meansn - a 0

--> , yn -4 b xn + yn a + b .

Proof:

xn a -

Proof:

- a

xn - a +

(xn + y n) (a+b)

x + y + bn n

- a -> 0

k (xn-a) -4 0

kxn ka

}can -4 ka

xn -3 a 1 yn b xnyn. ab

Proof:

But

and

- a -4 0

b -4 0Yr)

Xnyn ayn bxn ± ab 0

x - a y bxnn n n

bxn ab y

ay abn

xnyn ab
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[Def.]

[1]

[Del.

[Cor.(B)]

[Def.]

[Def.]

[Def. ]

[Cor.(A )]

[Def. ]

[2]

[2]

[1]



Proof: x 1 0 [Def.]

For n sufficiently large, say

1
Ix
n
-11

2

Then a

7 xn

In particular,

x >
n 2

1

l
and 2 .

x
n

Now since x
n

- 1 -40

and 2
x__

we apply Theorem 2 to obtain

yn -->b b / 0

Proof:

0 1

1 iv,

1 -
1

xn

- 1

1
xn

-4

-4

-4

0

0

1 .

[Cer.(B)]

[Def.]

b
Yn



yn b

Proo x -*a

xn

yn

a

b

4. The Derivative as Local Multiplier.
_

Consider a function -f: x --)f( )

as a mapping fram a lawer line

L to a parallel upper line

U.

Then fl(x) the derivative at

IiI11_=_the lim ILal
xl x

xl-m

[5]

[3]

may be interp__ ed as a local mul_ipli _ or multiplier at

Example 1. f: x -,ax + b

f(x2 ) - f(x) = a(x-

In ing from L to U the step xl-x is multiplied hy,the constant a .

Enpie 2.
2

f: x -c

f(10) f(x) = xf2 (xf+x ) (xf-x)

xi-xf is the multiplier. With x fixed we let xf

multiplier or multiplier at x is 2x .

9

The limiting

This interpretation makes the chain rule very easy to under nd.

If g: x -)g(x)

and f: u --*f(u)

x f(g(x)) defines

the composi e fun tion fg
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As we go from L to U , the multiplier at x From

U to V the multiplier is

multiplications is

(u) , P(g(x))

g'(x)

The result of these two

Polynomial Approximations for e , slnx cos x

Since De
x

e
x

> 0

e
x

increases. Hence on the

interval 0 < x < 1

1 < e
x
< e .

The area above [0,x] is eX 1 .

With x - 1 we obtain e - 1 which

is less than the area of the
2 x

trapezoid
,

e > 0)

Then

whence

So we write

, 1+e
e - < --

2
e < 3

1 < ex < 3 on '-

Integrating from 0 to x
x

< e - 1 < 3x .

Repeating

Adding 1 + x +

x x2
e- -1 -x < 3 -

2

x3
e
X

-1 -x

2
x-
2

2 3
1 + x + + < e

x
< 1 + x

x x

throughout

Better approximations are easily obtained.

Similarly from

0 < cos x <

198



we obtain by repeated integration

< sin

x
2

o < 1-cos
x

o
3

x_
< x-sin x

x
2

x
< cos x 1 <

fram which it follows that

3
x < sin x < x

3!

x
2

1 - < cos x < 1
xI

2 4
x x

Better approximations are easily found.
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22:2T2,-d. Elementary Functions Calculus Chanter

To agitate but also stimulate; to uncover a deficiency of mathenatical

power; to prent a global view of a particular area of matematics; to

allude to tn-: vaideJLying unities of this area of mathemL,s; to estahli--

a set of goalposts for the yearrs work; NOT to arrio at any particular

numerical. solutions; NOT to develop any vocabulary of the calculus.

Move from a short opening statement to a free-wheeling 5et of problem/cluery

situations where the emphasis is entirely on "how could we get at ..."

and "what are the mathematical processes needed in ..." wdthout trying

to soplete the solution.

niSE-

This material is meant to be nonstructured and very. open-ended. Thro

out your conventional exrectations of competence and achievement or

full understanding and even et-ery student getting somewhat to the same

point of understanding,,

6-cuaenus eyt Chapter 0

)0u are aske,i in tia chapter to break out of your traditional thinking

anc . a.pproaches in what might appear to be many different directions. To te

,anid, there is an implicit nnified hod of ideas but do not aetive:I:v

let the "big picture" sneak up on you. What w121 be Wciolicit

stries of wide-rangir. sltuations-with-a-query. Each will be folThwed by

some directive discussion or questions to help you wrestle with all of the

aspects of the situation.

Pat play the game straight: first restrict yourself to the original.

statement alone and try to gain a real depth of understanding of the, inherent

problems as well as some ideas of how one might go about solution. Seek a
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mathematical formulation, an awareness of potential pitfalls, and methods

of attack -- not answers. (The actual power to handle these situations and

arrive at a numerical answer may or mey not clvo over the year but that

is singularly unimportant at this point.)

After an honest initial attempt and some discussion with other studente

read on and see how complete your thinking was. You may find that you under-

stood more than was hope for or you may find some factors that you missed.

One of the vital aspects of this chapter is the verbalization of the

ideas. Self-understanding of the situations is not sufficient: you must

gain the ability to discuss the ideas in a manner that will reach others --

and this is often far more difficult than you might guess!

Think freely -- think alone -- think together -- think!!

Problem 1.

Eighth graders frequently become enamored with patterns and long strings

of numbers. One child presented this "number" to his teacher!

111111
1 3 5 7 11

He wanted to know, "Is it a number? If so, wh t number?"

His teacher wasn't much help but did comment cryptically that decimals

might be a help and multiplying it by 4 might help him recognize an

old friend.

STOP/
Some Suggested Directions of Thinking for Problem 1.

(1) What does "... do to this situation? Is the sum bounded or unbounded?

Explain carefully wby you feel this without reference to ir lertial sums

or any "cutting Off" of the "string".

(2) Take some partial sums and form a table

201
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1 1
) Start with the first term and work out s2-wly

sham the --ithmetic burden and don't be overzealous in terms of quan

Explain what is happening. Do decimals help?

Did you consider plotting n against 0
n

to get a graphical representa-

tion of the partial sums? What is the physical term associated with this

type of behavior?

If a computer gave you (the sun of the first fifty terms), could

you make any productions nbout is size? Or about ttie size of

(5) If a computer presented you with S
72

, could you quickly give an ex-

pression of Or, in ge_eral terms, given can you produce

S ?
n+1

(6) Can you make any cogent argument that answers the child7s first question

affirmatively? If so, does your argument say vhat kind of a number it

(i.e., positiv negative, integral, rational, irrational,???)

What does multiplyinR it by 4 do Do the results of multiplying

by 4 actually cire the nature of the number at all?

(8) Do you have any unwell. for the child's second question -- wild guess or

supportable? (ils question is the least important aspect of this problem

if you refer to tne opening remarks of this chapter!)

Problem 2.

Every eighth grader see Problem 1) has a friend, so .

1 1 1 1 1
+ +

. 1 2 3 4 5
7 , 400

Again, the child asked, "Is it a number? If o, what numbe

However, this time the teacher suggesued 72ar more caution.
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Some fuggelted Directions for Thinking in Problem 2.

(1) Forming partial sums again is an obvious approach. Don't over-labor the

arithmetic but the note of caution argues for going rather far out "the

string". Share the work and you might find thaL (1ecima1s are easier to

work with for approximation.

(2) What does a graphical representation show this time?

(3) Take a few moments out to consider a "number" formed by adding one,

1 1 1 1 1
one 7 , two 71s , four -g'S , eight T7's , sixteen 7's and so on

1 1 1 1 1 1 1 1 1 1

By considering the grouped terms, one can make an interesting conclusion

about the size of this "number".

(4) Make a convincing argument that the "number" in 3 is more than three.

More than five and one-half. More than ten. More than any given positive

integer.

(5) Make c term-wise comparison of the "number" in 3 and the given problem.

That is, consider the order relation (who's bigger) of the concesponding

terms (e.g., compare the two fifth terms or compare the two tenth terms

or compare the ninety-ninths).

(6) What order relation does this iv..ply about the two "numbers"? What does

this tmply about the child's question?

(7) Try to make a convincing argument that the given "number" is greater

than three.

integer?

(8) What .change would alternating the signs make? That is, glance briefly

at

Can you generalize your argument for any given positive

1 1 1
+ - + ..
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Note:

,onsider

32

in the framework of the preceding problems.

The data r Problem 4 may not be realis lc gi en a drag strip

magazine, it could be corrected.

_Problem 4.

Using a high ,peed camera with a synchronized timing device, the

officiols at the local drag strip produced the following table of

time elapsed relative to nearest distance post for the winning ear.

time (s.-c 0 1 2 3 4 5

distan.:!e 0 10 20 50 90 140
post (f'eet)

6 7 8

200 280. 370

9 10 11 12 13 14

470 80 700 840 990 1150 1320

It follows immediately that this driver did the quarter mile in

sec. so his average speed was 88 ft sec. or 1 mile/min. or

)0 mile hour. But the interesting ques ion is his actual speed

when 4e crossed the finish line. Having accelerated from a standing

start (0 mph) what final speed enabled him to' average 60 mph ?

For example, his average speed on the last half of the quarter mi1z,

was . . .

/
STOP
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Some Suggested Directior of Thinking for Prol?lem 4.

(i) One approach to this situation is through considering the average speed

for the last 10 9 , 8 seconds of travel. Say S S

so on. If you have not worked with these, it may get you staited. Form

a table to refer to. (Working jointly will share the labor and minimize

the arithmetic errors.)

and

(2)IfSnis the average rate of speed for the n seconds preceding the

finish line, what is the domain of n 'with the given data? What is

the S
n

that you are looking for?

For any two Sn's , say S
a

and Sb where a > b , what is the order

relation? (That is can you be 'ertain which is bigger?)

(4) For any three S Is , say S 5b , S where > b > c how Is

S
b

related to S and S ? Can you be sure of which one S is
a c

closest to?

(5) The word "nearest" in the original statement of the problem has what

effect on the data?

(6) Suppose the officials added the information that at '14 4- seconds

the nearest distance post was the 1220 , What does this seem to imply?

Problem 2.

Consider a certain virulent bacteria that manages to reproduce by

mitosis ell division) once a minute. That is, staiting with one

bacterium after one minute there will be two, after two minutes there

will be four, after three minutes there will be eight, and so on. Given

a zero mortality factor, what is the rate of change of the number of gsrms

after 10 minutes?
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_Lme

The average rate of change ca-, be expressed as

SO

N-n
r s/sec.

T-t

for the fi'rst 10 seconds

210

n = 2°

10
-2

0

10-0

T = 10

t = 0

1024-1
10 = 102.3 germs/sec.

or an average rate of change of about 102 germs per second.

But for the next 10 seconds

SO

N = 2
0

n =
10

T = 20 , t ° 1

20 10 10
2 -2- 2 (1

20-10 10
10 _

= 2 (102.3) germs ec.

or an average rate of change of about 12,600 gei'ms per second.

Stop and consider these ideas befo e reading on and see if it opens a

new approach.

(2"beresultsfoundin(1)IllightbethoughtofasC10 -(average--

rate of change for preceding 10 sec.) and C10 ra(avege rate of

change for succeeding 10 sec.). Give some thought to C
n

-where n

(3)

is an integer > - 10 but < 10 . Can n = 0 ?

Form a table of all C
n

where 1:11 < 10 and n is an integer.

Work together to get the computation out of the way quickly and then

consider the results carefully.

(4 ) Consider your C
n
/s . Form a careful argument why

averageofC_and C
1

or of C
-2

and C etc.
2

(5) Will be- closer to C
-1

or 0+1 ? Why?

is not the

(6) How does this whole vein of thought compare to the Problem 4? Reread
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the suggested lines of thought for Problem 4 and see if they can be

used on your work in this problem.

Problem 6.

Infinite patterned (but non-repeating

interesting results. Consider this problem:

L: can be added to get some

.1 3 5 7 9 1 1 1 3 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9 3 1 -

4 6 8 1 0 1 2 I Li- 1 6 i 8 2 0 2 2 2 4 2 6 2 8 3 0 3

STOP

Some Suggested Directions for 21?i,lainE in Problem 6.

(1) What kind of numbers are these? That is, are they rational or irrational?

Do you expect the sum to be rational or irrational?

(2) With infinite decimals, the actual summing can be done from left to right

with the "carry" handled afterward:

Example: .2 9 2 9 2 9 2 9 2 9 -

3 4 5 6 3 4 .5 6 3 4 -

.5(13 ) 7(15) 5(13) 7(15 ) 5 (13)-

which can be rew itten as

.6 3 8 5 6 3 8 5 6 3 - or 5

This should help you add the given numbers correctly:

Is your answer a repeating decimal? Can it be written with an indicated

repeating block?

(4) If the suspected repetition ever breaks down, where might it first

happen? Is it enough that.if the repetition continues for 48 places

or 96 places it will continue forever?

(5 ) One tric17 spot occurs when the "numbers" in the
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digit numbers. 'Specifically, consider this segment of the given

problem:

8 9 9 1 9 3 9 5 9 7 9 9 1 1 1 3105 107
8909 2 949698100102104-1061-

(6) Discuss this statement relative to this problem: "If a pattern continues

for n steps, it continues forever."

Broblem 7.

Below is a careful field map dra ing of a high cliff and the known

position of a sniper in a cave

He is pinned down from above and cannot lean out without being shot.

Your problem, as leader of the troops, is to delineate his field of

fire and avoid it.

(Note: there is no absolute need for numbers in this problem -- do

not coordinatize; just use the picture.)

Some Snggestad Directions for Thinking in Proble-_ I.

(1) Did you think of his fire field as a set of rays? Geometrically, what

covered by this set? That is, is his fire field the interior of an

angle, the exterior of an angle or a half-plane?

(2 ) To you and your troops, which is more important, the interior of the

fire field or the boundaries of his fire field?



The boundary of his fire field is related to the cliff in a special

manner. Discuss thi and. evolve a name for this situation -- rct
your pre-ent vocabula Are the boundaries "constructible"?

(4) How is lie boun4ary of the sniper's fire field influenced by tuc cli r

or by his position on cliff? That is, how would your 501 LLiLOi1

if he was moved_ 50 yards west or 25 yards north?

(5) If the sniper hau complete freedom of choice for his position on. Uhe

are some positions more advantageous for his purposes? less advantageous?

Theoretically, how close could you approach his p sition without being

fired upon?

Problem 8.

The Park Police have a permanent watchman's poet at the point x There

are numerous dense wocJs, boulde-s and buildings in the vicinity as shown.

Determine the watchman's field of vision so you can enjoy the park without

detection.

(Note: again use the picture without introducing numbers.

/ \
STOP
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Some aufae2Id Directions for Thinking in Problem 8.

(1) Again, the field of vision is essentially a set of rays but some of them

are now line segments. Did you try to show geometrically wnat his field

of vision is? Can you construct the boundaries?

(3)

Can you geometrically describe the "safe areas"?

How are the boundaries of the field of vision related to the obstacles?

Discuss this using an acceptable amount of matheraatical words.

(4) What is the essential difference between this problem and problem 7?

Does it remind you of "at a point on a ..." and ''from a point to a

(5) Could the watchman choose J. better position for his post? That is, how

does changing his position affect the "safe areas"?

Aside.

Another interesting twist:

The Indians are positionk. at the indicated points on a Mountain pass.

Is it possible to sneak through without being under dangerous fire

power?

Other problems with ike potential that haven't been written up yet:

9. A summation of finite moments leading to infinite summation such as

work or pressure.

10. An,extremum problem such as a maximum area with one free wall -- must it'

be completely restricted to rectangles? quadrilaterals? polygons?.
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11, An area problem by successively smaller seuents -- perhaps a k1dr,7!y-

shaped swilTeling pool.

12. A volume problem by successively thinner slices -- perhaps a vase or a

headlight.

Final Comments.

Probably a maximum of 10 .g2(721 problems should be used. The ordering

of them should be reconsidered since the present ordering is how they

popped out in installments.

A carefully developed teacher's commentary might be necessary. It might

point out, for the teacher only, the underlying intents of each problem.

Also ft might indicate some methods of generating and maintaining the

discussion and involvement. Parenthetically and pessimistically, if

the teacher needs this commentary, tLo chapter will probably be a bust

anyway.

The chapter should probably entail a maximum of two weeks work and the

teacher should be encouraged to cut it off short rather than have it die

on the vine. Under-development of the ideas is far less risky than the

"all orifices" approach -- it requires some sensitive and sensible

pedagogical judgment as well as some mathematical competence .

a bad pair of qualities to rely On99999
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A Naive Theory of Integration

How do you count the change in your pocket? Do you draw out each coin

in turn and add the amount of each new coin to the preceding total:

5 1 10 1 10 ± 25 ± 1 ± 5 10 1 10 ± 1

Or do you dump all the coins out on the table and find that you have 1

quarter, 4 dimes, 2 nickels and 6 pennies and thus that you have

25 .1- 40 10 6 81 cents?

The latter method is certainly efficient and it is in fact the one used in

many problems and techniques from probability.

Much the same issue arises in defining the area under a curve. Supoose

t- t a function s given from the interval Ca,b1 into the interval [c,c1j

Traditionally (Riemann integral) we always subdivide the x-axis into intervals

of width, say (b-a)in , and thus add up, sequentially from left to right, a

series of rectang1e-3 of ".his fixed h and of varying heights, f(s) .
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Instead, why not subdivide the y-axis into intorvals of length

c /n ?

Then we should add up a set of rectangles of fixed height t but with varying

widths. We can think of this as one "rectangle" of height t whose base is

the measure of the set (x: If(x) < 1 n)

This second approach is that traditionally taken in the development of the

Lebesgue integral. Could such an approach.to integration be taken in high

school? It would seem that it is at least as intuitive as the classical

Riemann integral. It does have the advantage of following naturally from

procedures used in probability and statistics. It puts the technical diffi-

culties into assigning measures (length) to subsets of the real line, rather

than into measure (area ) in the plane.

A serious attempt to develop this approach might show that it has fewer

difficulties than the classical one. The power of the Lebesgue integral is

well known -- as well as its computational weakness. While I would doubt if

all the subtleties would be apparent at Grade 12, the methods might. I do

actually believe that we will see the day when the pleas from the physicists

and engineers for the Lebesgue treatment of Fourier series and integral

transforms will place such a development early in the college curriculum.

If I am close to being correc+ then this "Lebesgue" method would build

important readiness for college.

Here are some of the group's reaction to keep in mind:

I. The Lebesgue integral deals most naturally with a definite integral of a
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bounded fun-tion. It may be less natural as an indefinite integral.

(This could be a blessing, since it would force us t- -rite

instead of

a

2. To evaluate
Ji f

you need an anti-derivative. Woul you thus need

the Riemann integral too?

3. Lebesgue integral is natural for problems like mo-ent of inertia

problems.

4. One member of the group adds a plea for both treatments. He endorses

the Lebesgue integral for the reasons above, putting most weight on the

mathematical power. He notes that the Riemann integral is most natural

for problems involving growth. As a mathematical ap lication of a growth

problem he cites the Cauchy Integral Test. Also
2

is easier for

R-integral since an even subdivision of the y-axis is analogous to

integrating 117c in the R-integral case.



ATTEND1X A

Geometry Problems for the Grades 10-12 Block

These problems are, of course, available for any appropriate position

in the Grades 7-12 sequence. However, they were developed with the Synthetic

Geometry Block for possibly Grade 10 in mind.

It has been suggested several times that students should develop the

ability to analyze a "real life" problem situation, from a mathematical model

(see various papers on modeling) and come to a reasonable understanding,

appreciation, and solution throuF:th the relationships between the situation

and the model. It was felt that both writers and teachers should have avail-

able a collection or "kit" of such problem situations which are not always

easily invented. This set of problems give a good many such suggestions in

more less detail, and are often open-ended. A point of view that should not

be neglected is puzzles and problems, "just for fun". A few of these are

included in this appendix.

Coordinate-free 22m211...y,

1. (After: isosceles triangles and angle sum in a triangle)

Given MiC with AC = BC

(1) If m L1 = 70 , find m of the other angles,

(2) If mL3 = 160, find m of the other angles.
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3 If m Z5 I find m of the o her angles.

(4) If in /1 x express in of the other angles i.t.o. x

(5) For what m /1 wiil m /3 m Z5

For what m Z1 will m Z3 < m Z5 ?

What are the domains of m Z1 m L2 m Z3

(8) As m Zl increases, describe the corresponding changes in m /2

m Z3 , m Z5 .

A.

(Given the measure of any one of the eight numbered angles the measures

of the others can be determined.

(1) If m Z1 4o find the measure of the others.

o.t..(2) If m /6 = x , express the m of the others i x

(3) If m L3 = 2 m Z1 find m of the others.

(4) If m /5 < m L4 , relate the m of each pair of the others. (28 such)

(5) if HB rotates counterclockwise about H

Describe the changes in all the numbered angles.

(b) Describe the changes in the segments DE EH EI HI .

(c) Describe the changes in the ratios:

DE DE DE EI EI El
DH EH 2 HI 2 EH. 2 HI DE *
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Construction Problems.

Students should be able to discuss the possibility or impossibility of

these constructions.

(I)

(2)

AA

(a) Construct CM to bisect

LACB , making it perpendicular

to X17

(b) If M is the midpoint of AB I

draw CM to bisect LACB .

) If M is the midpoint of AB

draw CM perpendicular to

AB .

Connect A and C to

bisect Br .

If E is the midpoint of

AC draw line DEB .

4. Elementary ("famlliar") Qonstruction Problems with Constraints.

(1) Given AB 455 with inaccessible

intersection 0

(a) Bisect LAOC

(b) If P is an interior

point of /AOC ,

construct 174

through Cr.

(2) Given segment AB

) Construct a perpendicular

to AB at B without

extending AB .

(b) Given. point 'P "beyond"

AB ) construct. PR.per-

pendicular to 'A7 without

extending AB .
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Given point Q off AB , construct Q7 perpendicular to AB
--

without using any point of AB as center of a circle.

Constructions with Constraints.

(Compasses only, Mascheroni constructions)

(1)

2)

3)

(4)

(5)

(6)

(7)

(8)

(9)

Given "segment" AB , double it; triple it.

Find any number of points on A4B

Bisect AB .

Given "triangle" A construct CP AB .

In "triangle" AEC construct CQ
,

AB .

Construct BR
,

AB .

Find the intersection of AB CS .

Find the fourth proportional to AB CS .

Construct square ABXY .

6. Cos-trtiQn wit1 Constraints.

(Euclidean compasses, "snap compasses". "A circle can be drawn with a

given center and given radius." This is not a justification for

"On .0 mark P , Q , so PQ given segment". Euclidean compasses

can be used to draw a circle with given center and radius, but cannot

"move" that radius. As soon as you lift the compasses they snap

closed and you lose the setting.)

(1) Double (triple) a given segment AB .

(2) Bisect a given segment, a given angle.

(3) Construct a perpendicular to a given line (2 cases

(4) Add (subtract) two given. segments.

(5) 'Through a given point construct a line parallel to a given line

(6) Construct a fourth proportional to three given segments.
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Three- oint Constructions.

A triangle is determined by its three vertices, A , given in

position; then also we can find, e.g., the midpoint of its sides, Ma ,

Mb , M
c

If we now remove all but points A , B , leaving them

in position, we can still find the unique original triangle ABC . In

these problems we are given three points in position and are asked to

find the original ABIC

(1) A B M_ (Redundant)

(2) A B Mb

( 3 ) A M M

(.4) A Mb Mc

(5) ma Mb Mc

(6) A B 0 circnmcenter (Not de ermined why?)

(7) A B I (incenter)

8) A 0 M
a

(9) A 0 Mb 1\Teeds discussion

(10) 0 Ma no

(There are many more difficult and inte e tI;Ig igimblems here.

8. Construction Problems Axeas).

Construct isosceles LAM g &ABC , with AD =7 .

Construct isosceles tABE &IBC with AB -4 AE .

Construct right LuV;r 4 ALEC with right angle at B

(4) Construct right 6ABG 6A3C with right angle.at G .

(5) Construct isosceles right LABH &ABC (*Impossible?
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Construct equilateral AART Z A64IC (*Impcssible?)

Construe+ an isosceles righE A AABC (Compare with (5)).

Construct an equilateral A m AABC (Compa e with (6)

Construct APO AABC

Construct right APQS Z AAIC , with right angle at Q ( tudents

should see that this is a combination of (9) and (3).)

(11) Construct an isosceles APQT AABC , with base PQ . (Students

should see that this is a combination of (9) and (1).)

(12) Construct rectangle ABKZ .

(13) Construct rectangle PQXY m AMC . (S udents should see that this

is a combination of 12) and (9).)

(14) Construct a square a given rectangle.

(15) Construct a square m bAle (Combine (12), 14)).

(16) Construct AAIBICI AABC and ---: ALMN

(17) Construct a single A m the sum of the areas of AAEC and ALMN

(la) Construct a single z the difference of the areas of AAR, and

ALMN . (Students should be able to extend (17), (18) to find a

triangle whose area is a linear combination of the areas of AAEC

and ALVIN e- g-_ 3(LABC) -2(ALMN) )

(19) Construct a square Z the sUm of the areas of WIC and- ATMN

(Students should see that this is a combination of (17) and (14).)

(20) ConstrAct LAIB'CI AMC and MIN (as in (16)). Then ,onstruct

W13"0- AAEC and 21 the sum of the areas of MEC and ALVIN .

(Students should be led to apply the Pythagorean theorem hero.)

(21) Construct a r-etangle en a given base, a given rectangle.

(22) Construct a rectangle m the sum of the areas of two given rectangles.

(23) Construct a triangle Z a given polygon.

Students should eventuallY be able to construct a square m to any

polygon or combination'of polygons, by combining certain kel on-

structions in the collection above -- a natural place for chart

analysiS.
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9. Problems.

Just a few miscellaneous ones -- for fun (

) R is any point on al i ude

CD , and -o on.

P ve: LPDC 74 LUC

R is any point on altitude

CD , and so on.

Prove: If LAQB 74 LAPB

then they are right angles.

(The butterfly problem

CD and EF are two

chords through the mid-

point, M of AB and

so on.

Prove: PM

(4) Given m LCAB = m LCBA = 80

m LEAB = 50 , m LDBA - 60

Prove:

or

m LEDE = 30

Find: m LEDB

If three circles intersect, their pairwise common chords are

concurrent.
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Problems Situations Leading to Geometric Models

There seems to be a good deal of ag aement among the g:-oup here with the

principle that students should uevelop the ability to find a mathematical

model with which to analyze a situation in the physical world. The phrase

"the world of reality" may be an unfortunate one, because it seems to indicate

that our mathematical model exists in some other world, which we can reach

only by leaving reality. The phrase may be useful with teachers but should

not be used with students.

It is excellent pedagogy to have students find or construct these models

and then to recall or devise the appropriate mathematical techniques to deal

with them. Even if solutions are not found ' 'ere is value in the search,

which can frequently be used to motivate a later and deeper analysis. The

detail and rigor should be suitable to the -problem and the student -- don't

use a micrometer to determine the size of your shoe.

Puzzles and games are flan, but we should be careful not tO over-

emphasize them and leave the idea that they are a significant part of the

body of mathematics.

easurernents in situations with some inaccessibility.

(1) In the chapter on Congruence

we measured AB by finding

a point C from which

A and B are both

visible. Suppose there

is no such point?

Find he height of a flagpole

on an inaccessible island.

n top of a building.)
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The dis ance from the earth to the sun is 93,000,000 miles.

How was that determined?

(4) Find the size (length) of an egg in a bottle.

5) How many square inches of skin do you have?

2. Industrial problems.

(i) What is the percent of waste if a tnaxltnum circle is cut frm a

square? (a square from a circle?)

Circular discs are to be punched frmm a strip of metal of

constant width.

(a) For discs of diameter x what is most economical width?

(b) What lay-out for strip width y will be least,wasteful in

production of discs vs. waste, and what is the percentage

of waste?

If the raw stock costs a cents per pound (square inch

of uniform thickness), the discs sell at b cents per

pound, and the scrap metal at cents per pound, find

the net return for various lay-outs and discuss the effects

of small changes in a , b , and c separately and together.

These questions can be related to corresponding problems in

three-space (packing problems).

(3) Paper stock comes from the mill in certain standard-size sheets.

(20"x30", etc.) It is to be cut into smaller rectangles of

specified dimensions with least waste. (Many related problems

here: e.g., we may want two different sizes of smaller rectangles

in given ration, e.g., 8 (b0:5) for every 5 (8xI2).)

(4)

(5)

Assume that 2X4 lumber comes in uniform 12, foot lengths and is

to be cut with least waste into y j z , length in given ratio,

e.g., 6 (5 ft.) for every 4 (8 ft.) for every 3 (9.ft.) for every

8 (3 ft.

Assume that plastic Strips are shipped in 6 foot lengths and are

to be cut.into x , y , z , lengths in given ratio (as in (4) above)

but that the scrap can be sold at half the cost price. Find best (?)

.produgtion,schedule.
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Les_s traditional eometi settings.

(1) A triangle is a rigid figure because it is uniquely determined

(equivalence class) by MS

angles and so on. A

quadrilateral is not a

rigid figure because it

is not determined by

SSS . Suppose that

ABCD is a quadrilateral

whose sides are given.

ie , given MS we can find the

(a) If ye join AC by a rigid link does that fix the figure?

Discuss.

--_-

(b) As above, with P, Q, respectively any points on AB

BC ? Discuss.

(c) As above, with F, R, any points on a pair of opposite sides?

Discuss.

(d) Discuss maxtnum and minkmum size for each angle of the original

quadrilateral.

(2) A pentagon with given sides is not determined. Discuss the

ways in which we can make

the figure rigid. How

many new links are

sufficient? Generalize

the discussion to polygons.

Show,how, diagonal bracing

is used to make a box or

scaffolding structure

rigid. Apply to problem of st engthening a piece of furniture.

(3) Many solid geometry problems are really plane geometry problems

in diffeieat planes. Students should develop the ability to "see"

these planes and apply the proper plane-geometry techniques.:

Find radius of the small circle trace of a sphere of
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radius r which cuts a plane at distance h from its

center.

(b) Given the face angles of a trihedral angle, find each of the

dihedral angles.

Eratosthenea, mea ure of the earth altitude and latitude

(d) Shortest path across faces of a box (spider and fly).

(e) Shaw that the lines joining the mid-point of the sides of

a skew quadrilateral form a parallelogram.

(f) Find the edge of the smallest cube that will contain two

unit spheres.

(g) Find altitude of regular tetrahedron of unit edge.

(4) Puzzles. Problems with DOMINOES, TETTiOMINCES, POLYOMINOES.

Unicursal curves; (Chromatic) graphs.

Problem Situations (which lead to geometric models)

1. How could you find the inside diameter of a bottle?

Before a ship is launched the water line is painted on it.. How do they

know where to paint it? The topic of floating bodies is excellent for

investigation both mathematically and physically. Certainly the "Eureka"

story should be told, and studente urged to find Archimedes solution

by themselves. Why does a homogeneous wooden prism (cylinder) float

horizontally, rather than vertically? Discuss specific gravity as much

as needed, and the effects of immersion in fresh water, salt water, air,

and so on. It is an interesting experiment to bring in some reasonably

regular wooden objects and try to determine (mathematically) where the

water line wauld be, then to test by actual immersion. It is particularly

interesting to use several different but similar objects. (If a 6 inch

sphere sinks 3 inches will an 8 inch sphere sink 4 inches?)

(Puzzle): A rope ladder hanging over the side of a ship has 20 rungs

foot apart. At low tide rUng number 4 is at water level. At high

tide the water rises 6 feet. Which rung is now at water level?
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The center of gravity of a figure (polygon) made of a thin homogeneous

sheet can frequently be found by mathematical, then physical methods.

Show how CG of triangles

can lead to C3 of a general

quadrilateral. (If P is

CG of WIC , and Q is

CG of AAEC , then FQ will

support A_BCD and must con-

tain its CG . Analogously

R is CG of LAM and S

is CG of 6CED then R-7.5

must contain the CG of ABCD , which therefore must be at the inter,

section of PQ and )

4. What is the longest ladder we can get horizontally into a om? (What

is the shape of the room and where are its doors?) This i_ related to

a familiar calculus problem (what is the longest ladder that can turn

a corner between perpendicular corridors of Widths' a and b which .

can be extensively generalized.

4-l. above) ... the ceilings are c feet high, and we may tilt

the ladders (line segments, rectangles).

4-2. there is immovable fulniture with given positions and dimen op.

4-3. ... w-e want to get through a maze (orthogonal, general).

4-4. ... the corridors meet obliquely, at angle a .

4-5. .. we want to follow a path th ough a forest of trees with

given diameters and positions.

4-6. Will a given log float all the way down a curving stream?

Will a given ship go through a given curved canal?

4-8. What shape barge of maximum area will go through a given curved

canal?

Paper folding pan lead to a good collection of problem situations involving

lengths, areas, volumes, and spatial imagination. They lend themselves

readily to mathematical models that lead to predictions which can be

tested by measurements.
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-1 Measure a dollar bill, then compute, without further measurement

the length of the crea e obtained by folding together a pir of

diagonally opposite corners. (The bill is about 2 X 6

but we may use 3 )< 6 and then generalize.)

5-2. Find the length of the crease if a (unit) square is folded to

make one vertex come to the midpoint of an opposite side.

A (unit) square is folded in half to make a rectangle, whic:i is

then folded to make a pair of its opposite corners coincide. If

the square is then unfolded, compute the lengths of each segment

of the folds and edges, then check by measurement.

5-4. In book-binding a large sheet is usually printed so that after

folding and cutting, the pages appear in proper position.

5-4 I Suppose that an original horizontal rectangle is to be

folded LR , BT , LR , to produce a 16 page section.

Determine, before the folding, the proper numbering and

orientation of the final pages.

5-4.2 As above, but fold BT LR LR. (other folds)

5-4.3 As above, but produce a 32 page section by an additional

fold (various orders of folding).

5-4.4 Pfter various folds, punch a hole near one corner, then

ITedict the hole positions on each page (after unfolding).

5-4.5 Predict the effects of various cuts of the folded page on

the unfolded sheet. (Betsy Ross story: find I cut of a

folded paper tci make a regular star pentagram.)

5-5. Prepare plan (cuts, and folds) to form various polyhedra: regular,

given irregular (crystal), star.

And still more problem situations

1. If we consider the earth as a sphere, we can devise Some significant problems

for which there are good mathematical models.

1-1. Find difference in latitude 1 ngitude between given points

B . (20N , 305 ; 160E , 150W ).
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1-2. Find arc length (miles, nautical miles ) along given meridia

(parallel).

1-3. Finu arc length joining any two given points.

1-4. Discuss: bearing, azimuth; zenith, nadir; altitude, colatitude,

declinat on, right ascension.

1-5. Discuss: hour-angle, time zones, the date-line, analemma?)

chronometer, Greenwich mean time.

1-6. Discuss and construct a sun-dial. (hori _n al base, vertical

base, any base)

1-7. The earth is less a sphere than it is an oblate spheroid. (Explain

oblate, prolate. ) How was that determined?

1-8. Are vertical lines sometime , always, or never parallel? (horizon-

tal planes?)

1-9. (Chestnut) If the equator idealized is circled by a steel band

which is then cut, opened, and an extra 6 foot length added --

how far will it be raised off the,surface?

1-10. What direction is Moscow from here?

(INTO the earth!)

1-11. (Chestnut) I leave my tent, walk 10 miles south, shoot a bear

walk 10 miles east, then 10 miles north to the tent. What

color vas the bear? (Many solutions (7))

1-12. Explain: A straight tube without ends can contain any given

quantity of water. A "bucket" to contain any given quantity of

water can be made from a plane Without any cutting or bending.

1-13. If you awakened in an enclosed room after an undetermined period

of unconsciousness, could you tell if you were in the northern or

in the southern hemisphere?

1-14. How can you determine direction on the surface of the earth? What

is meant by "shooting the sun"? What observations are needed to

determine position? Bring in some history of navigation and of

search for accurate chronometer. (Why so important?) What is

meant by "NORTH"? (Magnetic, Geographic, .) Suppose that you
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stand at the North Pole and drop a snowball (along the axis of

the earth )- Does the ball travel north or south?

1-15. Some celestial "geometry". Plane of the ecliptic, signs of the

zodiac, orbital plane, syzygy (transit, occultation eclips

parallax, precession, abhelion, perihelion, a parsec.

1-16. Many problems in cartography, large and small.

1-16.1 Various ways of representing (mapping) spherical surface

on a plane: mercator, Lambert conical, polar, etc.;

advantages, disadvantages.

1-16.2 Ordinary road maps can be used in a classroom in a number

of ways. cordinates; scale representation distance,

area); direction; (vertical) surface features.

1-16.3 Contour maps, level lines. Determine vertical profile

of a line across a contour map. Determine road route

with minimum changes of elevation between given points.

The situations involving balances, levers, first manents, and so on lead

to simple mathematical models, some involving easy linear equations and

SOMe involving more or less difficult puzzle situations.

2-1. On a single line the weights w
1 ,

w
2 3

.. t distances

d
'

. are balanced by a given single weight W at what2
distance (D)? and so on.

2-2. A vertical cartesian plane with a set of weights w w
1 ' 2 '

at points P
1 /

P is placed in neutral equilibrium by
2

what weiet (w) at a given point P ?

(As in 2-1) Find the center of gravity of a given weight-position

distribution (on the line; in the plane(?)

2-4. (Puzzles, old and new.)

2-4.1 A set of 9 coins contains one (light) counterfeit coin

of identical appearance with the others. Determine in two

balancings, which is the light one. (Good for flow-chart

analysis.)
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2-4 2 A set of 13 coths contains one counterfeit coin of identical

appearance with the others. (7 lighter, Ilea-crier?) Determine

in three balancings which is the counterfeit. (Excellent

for flow-charts,)

2-4.3 Twent7 sacks each contain 25 gold coins supposed to weigh

exactly one pound each. One sack contains only counterfeit

coins, each one ounce underweight. What is the least number

of weighings to determine which is the sad sack:

2-4.4 Slippery Sam, the storekeeper, had various devices to chea

his customers: How?

2-4.41 IRON POTATO. A small misshapen "potato" made of iron.

2-4.42 IMPALARCE. A "balance" scale set slightly off-c

2-4.43 LIGHT-WEIGHTS (heavy-weights). A set of brass weights

plainly stamp '1 "1 lb., 2 lbs., 5 lbs., 10 lbs.",

but actually underweight (overweight) by 1 oz., 2 oz.,

5 oz., 10 oz.

2-4.44 SHORT SliCK (long stick). A ruler plainly marked

"1 yard, 36 inches", but actually only 35 inches

long.

* Dapper Dan is measured for a custom-made suit ith

a tape-measure marked "1 yard - 36 inches" but

actually shrunk down to 35 inches. 1/il1 his suit

be too Small or too large? (That depends -- on what?)

3. Pendulums, can lead to a number of interesting problem situations and

mathematical models involving various levels of difficulty.

3-1. Foncau1t pendulum (rotation of the earth).

3-2. Simple harmonic motion (small oscillation).

3-3. Length-time relationship. Determination of Simple clocks;

horology and chronometry.

3-4. A pair of pandl,,_ .ts in parallel planes) to show beats, etc.

3-5. figures compositions of harmonic motions.
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Combinations of pendulums: different lengths -n s.A.me harioni

axis; different positions on the same vertical axis.

3-7. Isochrone, Brachistochrone, Tautochrone, (cycloid).

Linkages.

4-1. Peaucellier: Rhombus APBP'

and equal links OA , OB .

Show (1) O., P PI are

collinear; (2) OP OP'
, 2 _ 2

= a constant kr- = OA- -

Because of this second property

the points P and PI are

inverse points with respect to

the circle with center 0 and radius and this linkage is some-

times called Peaucellier's inversor. If 0 is fixed, and P traces

any curve S , then P2 will trace the inverse curve SI In

particular, if P traces an arc of a circle which passes through 0 ,

then P' will trace a segment of a straight line.

4-2. Hart: Crossed quadrilateral

ABCD , with AB = CD and

AD = BC ; also AP = CP' .

Show: (1) there is a fixed

point 0 on AB such that

0 P PI are collinear;

(2) OP OP' = a constant

(r2 = (OB 4- BP') (AP - AO))

(See comment: 4-1)

4-3. These linkages can be varied and combined:

4-3.1 In Peaucellier linkage connect the equal arms from 0 to

symmetric points on AP j BP and investigate OF . Or' .

4-3,2 A second Peaucellier linkage 0*A'B' R R' j with 02,R

on P,PI '(other superpositions).
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5. Topological problems.

These involve only incidence, c paiat ion, betweenness, can nectedness,

separation, and so on, but not any measure of length or area. They usually

require more ingenuity than formal mathematics.

5-1. (Puzzle) Three houses are to be individually connected by n

intersecting lines to three wells.

5-2. (Puzzle) Unicursal curves; Konigsberg bridges; Hami.lton pathF

5-3. Knots: classification, invariants.

5-4. Given an incidence matrix construct (the) graph (equivalents):

5-4.1 In the rectangular area bounded by North and Scath Drives

and'East and West Roads there are five lanes that start

at South Drive: Red, Yellow, Blue, Black and White; and

five alleys that start at West Road: Gold, Silver, Lead,

Tin and Copper. A lane intersects only alleys, and vice-

versa. (Show that there can be no triple intersections.)

5-4.11 Draw a map if each lane intersects just one alley.

(Possible?)

5-4.12 . . . . each lane intersects just two alleys.

(Possible?) (just three? four? all five?)

5-4.13 If every lane intersected every alley there would

De 25 intersections. If all lanes and alleys went

Northeast there would be 0 intersections. Draw a

map in which there are exactly n (0 < n < 25) Inter-

sections. (Possible for all these n ?)

5-4.14 Given any specific incidence pattern, draw a map

(Possible?), e.g., Red, blue; gold; yellow, black;

silver; blue, white: lead; black, red: tin;

white, yellow; copper.

5-4.15 Vary ad libidum: more lanes, alleys; non-rectangular

boundary.

6. Orizinale (-11St rev .An).

6-1. If P is inside square ABCD so that m LPCD = m

that AABID is equilateral.
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6-2. Construct a cyclic quadrilateral, given the four sides. (Possible?)

If possible find 3 solutions with same lengLhs in various order.

6-3. Of all quadrilaterals with four given sides the cy-lic quadrilateral

has the greatest area.

6-4. If equilateral 4A1C is in ibed In a circle, and P is any point

on AD ; then PA + PC = PB .

6-5. If regular hexagon ABCDE is inscribed in a circle and P is any

point on Ef , then PA + PC + PE = PB + PD

6-6. What is the least cube that will just contain two unit spheres.

two spheres: one of radius 1 , the other of radius 2

three unit spheres?

(other combinations of spheres)

6-7. What i s the least sphere that will enclose two cubes: a one inch

and a two inch cube?

other combinations.)

6-8. What is the height of the pyramid formed when a unit sphere rests

on a base formed by three tangent spheres with respectilie radii

2 , 3 , 4 ? What iS the least cube (sphere) that will enclose this

pyramid?
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APPENDIX B

M221211116 - Grades 7712

Contents

1, Teachers Manual for Supplemen ary Section 4m (Modeling) for Grade 7,

titled "Applications of Mathematics and Mathematical Models".

Preface to Materials From the Modeling Group: Suggestions for

Attacking e Problem of Making the Uses of Mathematics a Viable

Part of the 7-12 Curriculum.

3. Suggestion for Carrying the Free Fall Example Begun,in Grade 7,

Chapter 3, on through Grades 8-9. This has been lifted fram

"Suggestions on Where to go with Flow Charting in Grades 8-9".

4. A Scaling Problem.

5. Hints for Teachers and Writers. Includes references.

Questions and Comments Raised by A Proposed Chapter on lhysical

Models for 7-879 Grade Level. This document is a concerted attempt

to keep modeling in its proper place in the 7-12 sequence.
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1. Teachers Manual for Sunnlementary Section 4m Modeling) for

titled "Applications of Mathematics and Mathematical Models".

ThiS section has been printed separately frem this report so that it can

be tested in the classroom 1967/68.

2. Preface to Materials From the Modeling Group: Suggestions for Attacking

the Problem of Making the Uses of Mathematics a Niable Part of the 7-12

Curriculum.

As everyone knows, it is very difficult to change school curricula and

practices. Nowhere is this better illustrated than in the recommendations

that the uses of mathematics be made to play a more prominent part in school

mathematics instruction. Such recom andations have been a prominent

feature of every major reform suggestion since 1900 (ef. E. H. Moore ) with

few visible results. From this we can either conclude that the problem is

not solvable and simply throw up our hands, or we can hypothesize that we

have simply not given sufficient attention to the problem in a sustained and

consistent way.

It seems possible to subdivide the problem of how to make the uses of

mathematics a genuine part of mathematics instruction into several distinct,

and to some extent separable, parts, then see if each of these can be attacked.

It should be apparent by now that any less systematic procedure will probably

not succeed. Az a start, let us try the following division of the problem,

with each subdivision seen as further from solution than the previous one:

(1) Good problem material dealing with genuine "real" situations must exist.

Furthermore, it must exist in sufficient variety to be usable for youngsters

at any specified level in the curriculum. However, it is possible to

believe that this is the least troublesome aspect of our problem.

Once such material exists- it_must be adapted _and worked into the

curriculum in sensible and fruitful ways. Existence is certainly no

guarantee of effective use. For one thing, adaptation for specific
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(3)

curriculam levels and pu,Lpose,, i8 nearly always necessary, For another,

it is difficult to work in applications in natural ways"that contribute

to a spiral program, rather than appearing as isolated events.

Even if od material on the uses of mathatIcs exists and ked

into the curriculum effectively there still remains the problem of

L'tether7 -whenan" wanwhat-tlsnvolvedina-T];-UE
mathematics_shoVAhe_discussed_explicitly. This problem has not yet

engaged very many people, and among those who have tried to cope with

it (e.g., the present ontlining group) there are strongly divergent

opinions. Even given such cogent descriptions of the processes as

Burrington's and Juncosa's, it is not clear how much explicitno- in

these matters is called for in order to make the processes a natural

part of tudentst awareness and functioning without becoming a memorized

relatively useless catechism (such as "The Scientific Method or The

Steps in Problem Solving")

(4 ) Given the solution to all the above -oblemz in the material for

students teachers of mathematics ma still find it difficult to use

the materials in effective ways. The training of most mathematics

teachers has not had much to do with either specific uses of mathematics

or the proCesses through which mathematics is applied. Also, it may be

that some of the new materials on applications will depend for effective-

ness on modes of teaching that are quite unfamiliar to most teachers.

How do we avoid such distortions of th s as h ened in the

first round with respect to "sets"? That is, if we do aim for in-2rcsed

attention to the uses of mathematics and if we do try to make the processes

involved explicit by, for example, adopting the rhetoric of "mathematical

models" that is currently fashionable among actual users of mathematics

then there is certainly potential both for actual overemphasis and for

journalistic distortion. There appears to be considerable (largely un-

expressed) fear among the outlining group that this is likely to happen.

If we consider these questions more or less independently, as I think we

must, then perhaps we can sort out what we have in hand and what still needs
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doing. A preliminary attempt at this exe cise is included below:

(1) Existence of problem material.

As far as mere existence goes, we are not nearly so impoverished as is

sometimes supposed. The real problem is in the next category -- adapta-

tion of existing suggestions and materials for our specific purposes.

There is a need, of course, to collect more such applications material

and groups should be convened to do precisely that, but not in a random

way. At this stage, any groups convened to write problems or suggst

applications should be given fairly specific assignments -- a problem is

needed that motivates or applies a specific topic; a certain point about

applications or building mathematical models needs to be made; an interest-

ing context for certain finger exercises is needed; and so on.

Sources of raw material for the applications-mathematical models-will

include at least the following

(a) The New Orleans report has a long list of suggestions, many with

specific references, on pages 3-14. It also has an,annotated

bibliography of several dozens of articles that deal with applica-

tions using only school mathematics and, in addition, the annotations

specify what mathematics is used and the grade level difficulty of

the articles.

(b ) SMEG Studies in Mathematics, Volume XNT,contains reprints of 24

articles, including many of those annotated in the New,Orleans report

and some others.

Many suggestions are contained in the July 1966 Tentative Outlines pf

a Mathematics Curriculum for Grades 7.8, and 9. Other'suggestions

produced by the 1967 outlining group are contained in the present

document.

(d) Such magazines as S ience, Scientific American, and the American

Scholar, as well as journals of mathematics organizations, operations

research, The If-'7Va. Business Review, and so on, frequently contain

expository articles with material adaptable to our purposes -- or

even usable directly. The annotations in the New Orleans report do

not begin to exhaust the possibilities.

237'



(e) The SMSG Mathematics Tr 'ough Science and Mathematics and_LivirIE

Things contain among them about twenty suggestions of simple expert

ments with rudimentary apparatus, the majority leading to graphing

and curve fitting exercises.

g

Circa 1953 and 194 William L Schaaf published in the Mathematics

Teacher a series of bibliographies covering v.ricus asuects of

mathematics and itE uses (e.g., "Map Projections and CartraDhy"

M 7. (October 1953) br:440-443). These contain references to a

large amount of raw material -- the problem of selection and

adaptation still remains. Similarly, P. S. Jones of the University

of Michigan has compiled a number of such bibliographies and

examples which he would no doubt share with anyone who wanted

to take the trouble to go through his files.

AlicationsofElementa-MaematicsAComendiumPrered for
The Mathematics Association, London, G. Bell and Sons, Ltd., 1964,

contains brief reference to a large number of applications. (In the

SMfG library, No. c1256.)

(h) Textbooks of recent origin have many examples, especially in such

fields as linear programming. See, for example, Dorn and Greenberg,

and books on operations research, etc.

Paperback bookB for popular consumption .g., some of the Sawyer

books; William G. Vergara, Mathematics in Everyday Things, Signet

T2098; and many others) have large numbers of simple minded applica-

tions perhaps suitable especially for the lower grades of our

sequence. Again, the main problem is selection and adaptation to

our specific use. It would be a tedious, but perhaps very useful,

exercise.to simply extract same of these on 5x8 cards, sort and

classify them, and get them into the wri ing mill.

In other words, I think we already have more raw material on applications

than we are likely to make effective use of. Any attempt to generate new material

should probably be directed to quite specific topics and purposes.
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The Problem of

the Curriculum.

ting the Raw Mater App112AtIos and 1ork1n it into

This seems to me to be obviously the crux of the matter and I think it is

safe to say that no school text at to now has done it well. We might

try to make visible at least the following specific types of materials:

(f)

) Applications tied in -with specific toDiOz of' our text. Mo,'t can

be used either for motivation of a new topic or for application

afterward to demonstrate its usefulnes - with the main: line

development independent of the application in either case. I prefer

use as motivation, bat one or the other should probably 1.e: a feature

of most topics we present. Example: Argand diagrams of complex

numbers in connection with electrical circuit phase relationships.

Applications used to carry the main burden of development of a given

topic. Example: Linear programming as -tT--e reason for doing systemn

of equations (see appended mate .ials).

Applications that usc only cloment,ary means to get at interesti

or surprising results. Examples: Appended material on scaling laws

via a new statue of J. T. Cornpone; Polya on the minimum popular vote

to elect a president.

Problem material arranged to make specific points about the process

of applying mathematics. Example: Dual linear programming problems

in appended material.

Specific single topics carried over several grade levels in a sPiral

fashion. Example: Sequence on falling body laws as follows: [1]

uegin about as in Grade r, Chapter j, with Gaiiieols experiment;

[2] continue as in Item No. 3 in this Appendix; [3] consider the

behavior of material falling not in a vacuum (perhaps with parachute

jumper lead in) via "The Falling Sphere" experiment in SMSG

Mathematics Through Science, Part III, pp. 59+.

A fairly global topic worked in over the whole 7-12 sequence.

Example: Greenhood, David, 12122Ring, University of Chicago Press

1964 (Paper). This is a beautiful book with material that could

be worked in over the whole 7-12 sequence, from coordinates to con-

toars and level curves to a rich variety of projections. The mileage
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g

viaone could get eti of such material in conside- rr- aui i:ntion s

building models seems Lo YL normou. as

with many mathematical topics in our sequence,.

App14,-ations kits where a problem is descr

but the pert nent data, means of solution, otc

to the youn

the teacher. This would allow considerable varic

instruction to the ability of the kids -- a

I! 3

1

be judicious in how much information to give out to

ers

711 y to

fittin

keep tqe

problem going. Collection of data and lengthy computation, as well

as mathematics beyond the power of a given youngster, could be short°

cutted by prefabricated data an,,, results to be dispenseil jud7lcio1i7ly

by the "consultant" (teacher). (One of the 1967- O iicitoi :z: of
eighth grade material has advocated this approach arid inten

produce some such "kits" or "blocks" of maLor-1,

(3) The_Problem _of How andyben to be Explicit About the Proc_eo. 3 Involved in

Applying Mathematics.

This is a problem on which only prejudices e2,ist at the moment. S me feel

that a graded set of explicit treatments should begin fairly

"simple" things such as arithmetic as a vehicle; others feel

processes ought to be left very much implicit until a fairly

early with

that the

grand example

is at hand -- one that has at least two possible mathematical models, for

example. Let us try both appropaches and see what happens. My own pre-

judice is that even simple arithmetic, geometry, and uses of "formulas"

give sufficiently rich scope for discussion of some paits of the p- Os

to be worth exploiting. What is needed for this is a consistent graded

equence to try out.

It does seem to me that in our materials for students the word "modelin "

should never be used as a verb, however useful it may seem to us in our

discussions. Rather, one should always use a specific ph_uase: "We are

looking for a mathematical model", "These things go into building a

model", etc. To say, ever, that we are "modeling" is so unspecific as

to practically guarantee distortion.
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The last two roblems listed n tbe beginning of this note are remote

from present concerns, since we are very far from haeing solved the first

three, The problem of teacher re-education for i approaches and a new

emphasis is, of course likely to be very sticky indeed. Perhaps we will

have a better idea how to attack it as we make more progress on really

good materials for students and think about the teaeherst role in pre-

senting such materials.

The appended materials do not eepresent a consensus, but are merely a

series of indivddual contributions as a few people thought about the

problems of getting uses of mathematics into school materials. Some of

the appended materials arc referred to above, others are not.

"uggestions for Carrying the Free Fall Example Begun in Grade
7
Chapter 3,_

on Through Grades 87-9,,

This has been lifted from "Suggestions on Where to go with Flow

Chalting in Grades 8-9".

Note on Modeling

Mathematics cannot deal directly with physical objects. Mathematics can

only talk about idealized objects such as points, lines, numbers, and functions.

These objects are abstract creations of the mind and have no existence in the

real world. In order to use mathematics to solve problems about real life

objects, we must first create a "Mathematical Model" in which the real life

ohjecte are represented as math -atical objects.

In different types of problems, the same physical objects may be repre-

sented mathematically in different ways. For example, when we draw geometric

figures on a sheet of paper,'we think of the sheet of paper as representing a

plane. However, when we have a problem involving the volume of a book, we

think of the sheet of paper as a box shaped solid with one dimension very small

compared with the other two. We would say that we have chosen different mathe-

matical models appropriate to the different types of problem.

Letts consider some problems concerning gravitational at"-action. We have

already considered the problem of falling objects and Galileots experiment. Now
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we want to take a aol. ac the modeling

In thinking of G_Iileo2;s exferimenb, ve Lnk u he

point-,-,. More accurately, we think of Lhe locations oP,.e ts

points. We regard the surface the earth as a plane and we think of the

aths of the objects 9S being parallel 119e h ernendien1;-ic t6 tbe

of the earth .

We will disregard air resistance. This amounts to assuminb

objects are falling in a vaeuum. We will assume that the distance vnJc
by a falling body in a given time does ao depenn the height from which

object is dropped.

We finally assume that the dAstp,.ce

by the formula:

d ,-- 16

where t is the time in seconds and d

ohjec 17 gli,er

distunce in feet.

A rather strange picture of the world! The ear-lh is a plane with nothing

but vacuum above it and a falling object is :squeezed down into a single point.

In fact, every one of our assumptions is wrong. We know that the earth

is roughly spherical in shape and that falling objects will fall toward the

center of the earth and their paths will noi be parallel.

FurUhermore, the distance travelled by a

not independent of the height of

falling

the starting point.

body in one second is

Even if we neglect the

effect of air resistance, an object falling from a mile high will fall less

far in a second than an object dropped near the earth's surface. The amount

less would be about one part in 2000 .
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Air resistance is certainly not always negligib)e. It is because of air

resistance that a piece of paper falls more slowly than a penny. They would

fall at the same speed in a vacuum. (See SMGG Mathematics Through Science,

Part III, np. 70+, for an experiment showing that velocity becomes constant

or fall in a resisting medium.)

All of these remarks must have weakened your confidence in our model.

That was what they were supposed to do. Now we are going to restore your

confidence again.

Although the earth is a sphere, it is such a big sphere that a small

portion of its surface is very nearly a plane. If two objects fall to the eal h

so that they land no more than 100 feet apart, then their paths miss being
1

parallel by about
3700

of one degree, which is practically negligible.

The effect of the height of the starting point only produced a difference

of one part in 2000 for objects dropped from a mile high. The effect will be

even more negligible if we consider only objects dropped from within a few

hundred feet of the earth's surface.

The effect of air resistance is very complicated. It depends on the

weight, shape, and the speed of the falling body. For objects which are

nearly spherical in shape and about as dense as a rock falling for no more

than two or three seconds (so as not to build up too much speed) we can regard

air resistance as negligible.

So our model for the motion of falling bodies is not so bad.after all.

In fact this model is used for very accurate scientific calculations involving

"in the small" or "local" problems. In such work, however, the more precise

formula d = 16.1 t2 is used instead of d = 16 t2 .

Another type of gravitational problem concerns a satellite travelling in

an orbit around the earth. Just as the falling body falls due to the earth's

gravitational attraction, so the satellite is held in its orbit by the earth's

gravitational attraction.

It would be ridiculous in such problems to represent the earth as a plane.

Instead, we would rePresent the earth as a sphere and the satellite as a point

moving around the sphere in a circular path.
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It is interesting that a simple model gives the same results in many cases.

In this simpler model, the earth is represented by a point and the path of the

satellite by a circle with center at this point.

This amounts to considering alI the mass of the eas h to be compressed in

single point at its center.

To get more accurate results, more "sophisticated" models are required

(i.e., results agreeing more closely with observed behavior) Near the end of

the 17th century, Maar- Newton devised a wonderful mode] for deseribira the
motion of objects. The was so eood that for 200 years no phenomena

were observed which did not agree with this model. Scientists began to forget

that they were dealing with a model. They thought that they were actuall,

talking about the real world. They felt that all motion had to be governed Dy
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"Newtonian mechanics", i.e., by the functions used in Newtonls model. But

around the end of the 39th century a number of experiments seemed to indicate

that some phenomena did not agree with the Newton model. For a period, msny

scientists made vain attempts to explain these phenomena in terms of Newtonian

mechanics. Finally, Albert Einstein devised a new model which explained the

mysterious phenomena. Calculations involving this model led to some predicted

behavior which seemed wildly improbable. For the first forty years of the

present century experiments were devised to determine whether the predicted

behavior actually occurred in fact. These experiments confirmed the predictions

of the Einstein model. Among the consequences was nuclear energy. Today, all

sophisticated work involving high speed particles is done in telms of the

Einstein model. In sore calculations, however, the added sophistication of

the Einstein model is not needed and the old Newtonian model is used. The

physicist must know which model is appropriate to his problem.

Our process in finding a mathematical solution to a physical or real life

problem can now be described. First, we select a model appropriate to the

problem. Then we make exact calculations relative to this model. All of our

answers are relative to our model. We do not concern ourselves with the

question of how closely our results agree with the real life situation. That

is not to say that the answers to such questions are of no interest to us.

But the answers to these questions lie in the realm of physics, not mathematics.

To see how this modeling process works, consider this problem.

Problem: Tt,ro towers are 114) feet apart. One is 70 feet high and

the other is 52 feet high. A stone is dropped off the higher tower

and one second later a stone is dropped from tho shorter tower.' How

apart will the stones be one second after the second stone is d pped?

NoW we will discuss the solution to this problem. No mention has been

made of a model but it is tacitly understood that the falling body model

discussed earlier in this section is to be used. We draw this sketch.
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The horizontal line lies in the surface of the earth. The vertical

represent the paths of the two stones. If we knew where the two stn!,-

at the desired time, we might be able to find the distance between

We use the function

S t )16t2

to get the distance fallen by each stone. The first stone cl oriled for two

seconds and travelled 64 fee' the second stone fell fo nd ao.,1

trn,7Lled 16 feet.
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We see that the first stone is 6 feet bove the ground and the second stone

is 36 feet above the ground at the time in queL 'on. If we draw a horizonta)_

line at height 6 feet above the ground we see that the required distance is

40'

the hypotenuse of a right triangle whose legs have length 30 feet and 40

feet. This distance is easily computed from the Pythagorean theorem to be

d = 402 402

i900 4. 1600 = 1/2500 = 50 .

The correct answer to the problem is 50 feet. It is the only correct solution

in our model. If you went out and performed the experiment, and measured the

distance, and came out with 52.3 feet, that answer would not be considered to

be the correct answer. You are supposed to be working in the falling boay

model. We are not supposed to accept the answers that came from the model,

regardless of how closely they agree with reality.

4. A Scaling Problem.

Problem for class discussion on similarity and its tmplications involving

scaling laws, modeling (in an explicit sense) and approximating assumptions.

(Language is expected to be adjusted to level expected of students.)

Consider the followinEproblem:

The municipality of Dogpatch (begging Al Cappls permission) wishes to

erect a new and perhaps different cast brc-cle equestrian statue of its famous
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Civil Jar hero, Gen'l. Jubilation T. Cornpono, the 1)iLd3 one hb,

appeared into the last batch of Kickapoo Joy Juice made y that inveterae

moonshining pair, Lonesome Polecat and Hairless Joe. The "statchoo" committee,

headed by none other than, you guessed it, Mammy Yokum, is a little concerned

about the cost and would like to at least try to estimate the cost of the

material. Now, it just so hanpened that one citizen, a nephew of Sen. Jaol,, S.

Phogbound (who else?), did actually get as far as completing the n=onth glade

in school and he was appointed a suboommitte- of one to estimate the cost.

How may he go about doing it?

During his data gathering stage he gleaned the following info otior:

The statue was to be twelve feet tall from the tip of the Gene rits

upraised sword to the bottom of the hooves of his steed.

e The unit price of bronze is 1.00 per pound.

Bronze statues are nollow shells with nearly unifona thickness and

for bronze statues of approximately the intended size and shape the averlage

thickness of the shell is one inch.

The artistIs clay model of the statue was two feet high when measured

in the same way.

Since the information gathered about thP statue is essentially dimer-;1,-

whereas the cost information is in the form of price of bronze by the pound, he

realized he needed some information connecting weight and volume for bronze.

Thus he also sought and found that

A cubic foot of brass weighs 400 lbs. (The weight per unit of

volLzme of a substance is called its density.)

Now, he knew that if he could only determine the volume of the intended

monument in cubic feet simply multiplying the unit price by the density and

this product by the volume Would give him the total material cost of the

statue.

Lowering the scale model in an irregularly shaped vat he was able to

commandeer, he filled the vat to the brim and then drew out the model, taking

care not to lose much water in th7: process. By carefully measuring the water

added to fill the vat again to the brim he was thus able to get the volume
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of the ai_istts clay model of the desired monument to "Jube". It was 4 cubic

feet. But, how did he get from this volume of a solid figure to the volume of

a relatively thin approximately uniformly thick shell whose external shape is

similar? Noting that, since the shell is thin and essentially unifo/a in its

thickness, the interior volume contained by the shell must also be essentially

similar to the clay model, he reasoned that the volume of the shell could be

obtained simply as the difference between this interior volume and the total

volume enclosed by the outside surface of the statue.

Now, how did he obtain these volumes from his previously obtained informa-

tion? By use of certain "scaling laws" for similar volumes. Let us see what

these "scaling laws are.

Recall various surface ar a and volt e formulas from past, e.g.,

4

4
"Tr volume of sphere of radius

3

surTace area of sphere of radius

By calculation, obseT that doubling radius, quadruples area and multiplies
3volume by 2- ; tripling radius multiplies area by 3 , volume by 3

Lead to fact that multiplying radius by p , multiplies area hy p
2

and

volume by p3

2 2
Consider cylinder A = 21*.h + 27Tr , V = Ar h

Double radius and height (i.e., preserve similarity) and-note again

quadrupling of area and "octupling" volume and multiplying radius

and height by same factor p leads to area multiplied by p and

volume by p

Consider a few more examples, e.g., cones and lead heuristically to

conclusion that if any three dimensional figure is scaled by a

factor 2 (i.e., any linear measurements taken on it are multiplied
2

by a factor p ) then its area is m tiplied by a factor k and its
3volume by -e_ or stated as ratios

where 2.. and

2 3A, 21 V1 .81

and
222 -2

_

are any two corresponding lengths In the two
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figures and A2 V1 and V2 are the respective areas and

Retu ing to the problem given the Honorable Senator's nephoo's

problem, the chronicles :have it that, in possession of these facts he

o,-mputed the volume V
o

to be encased by the outer surface of the irrLnJe

monument from

giving [164 cubic feet. Similarly, kJiA, with more arithmetic

imterlorvolumeV.encssed by the shell from

0
o
.H 10

(11 (12
u] I 12

4 3
_ 177 - 3 X 144a)

2ce

he obtained

1 1X 12 x --73

cubic feet (4- means approximately squal ) and

finally the approximate volume of the statue as

864 - 828.5 = 35.5 cu. ft.

Thus, the approximate cost of the bronze vas determined to be 14,200

(I hope the arithmetic is correct.)

Simple follow.on problems for the student:

1. Suppose that the surface area of the model of General Cornpc

statue was 15 square feet and as an afterthought it was wondered what it

would cost to gild the statue with
200 inch thick gold foil which costs

50 per ounce and whose density is three times that of bronze. What would

the cost of material be?

2. Approximately how much longer would it take for one man to paint the

exterior :f two essentially similar buildings with essentially equal ease of

accesility of its surfaces when the heights are in the ratio 3:2 .

3. Which is worse: tO be slugged during a riot by a crude blackjack

made of a sock containing 4 steel ball bearings each 1/2 inch in diameter
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er by one n ntaining one bearing with t diameter of 2 inches?

4 Joe lives 1 mile from the main street where the t olley cars run

every 10 minutes. Their average speed, because of stops, traffic, passengers

fumbling for cht_ge, etc., is 10 miles per hour. To go to school he must

travel 4 miles on the trolley car, besides his walk which he can do in

15 minutes.

For the summer he has taken a job at the beach. This requires him to

take the railroad from a station which is 2 miles from his house arid 8

miles from work. The train _ speed however, averages 20 miles per hour.

Joe decides to jog the 2 miles from his house to the station in fifteen

minutes to save time.

What should the time between trains be for his average total travel time

to the beach. Is it the same as to school? What !Issumntion did you make about

Joels departure, to arrive at this answer? What other assumptions could you

make? What effect would they have on your answer?

5. A meteor crashing into the earth's atmosphere takes on a quantity of

heat per unit time which is proportional to its surface area. This quantity

of heat per unit time, in turn, is proportional to the volume of the meteor and

to its temperature rise per unit time.

Suppose another meteor of similar shape and same material but of twice the

volume of the first were to crash into the atmosphere also at the same speed.

What effect would its size have on its temperature rise per unit time? what is

the ratio of the two temperature rises?

Hints for Tea hers and Write

If it is our task to teach students mathematics, if it is our _goal to

prepare students to handle situations which will confront him later and if it

is our desire to show him the way toward such a goal in an effective yet

enjoyable and exciting manner, as he moves along from Grade 7, we must plan

his activities carefully. There must be student involvement, class discussions,

an atmosphere in which questions may be raised by students or teacher and

answers developed as a result of this give and take.
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To this end, throughout toe course modeill2L as treat the -10athae

July 1966", see pages 16-30), should be used in a natural way. The

prch em-nolution" secuence must be replaced by creating a prohlf-m

whore the student takeo over or at least pariir7ipates in analvzin

tion, formulating the h-oblem and finding a solution, Re -nue Trt.

qation between the problem and mathematics. Starting with simpae 1-!73 tions

and without Taking him aware of modeing at first, this approach sOps-

oped ard beenme an r 1 in his thiakihg. Then, when Lk tri
ITT,entcry allows, there mut be made a conscious effurt, in eystematio

to show him the imnortant role of models in various situations: rratbematical,

phy=,ical, life.

) Exampl

(a) At a prn; ce of

At the rate

in n hours is

doflaro, the cost n of n rirt±ces is

e

miles per our, the distance ravelled

= na

If the number of ,,tudents per class is a , the r-imber N of

textbooks needed in n classrooms is

N = na

All three of these p2oblems are models of linear eq

This phase of teaching needs no special emphasis of the fact that there

is a model involved.

(2) When in Chapter 3 the function concept is introduced and a problem leads

to mapping x..-)ax + b , as before, we graph y = ax + b The graph is

a.description, a model, of the linear equation, which allows for a

meaningful discussion of input-output, effect of the factor a on graph,

etc. Again this is still the phase where little emphasis on model:Ing

per se is made. But we, as teachers, must be aware of it and a casual

** This, of course, holds only if .Jection 4m vas omitted. The teacher sn uid
definitely study this chapter.
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'eiark might be made d there.

Now consl.der the problems in Grade 7, Chapter 3, Congruene, pages 1

and 24. Lead the student to recognize (and the solution ohould not be

in the text) that he can sight both towns from a point. How do we go

about the solution? You need a geometric modpi, in this case s triangle,

the proper questions the student should be led. to this stage. After

drawing the tliangle the next step is to find a nothod for the solution.

The ways in which the stud; locate the point from which the towns

"can" be sighted should lea to dir'ferent triangio. Soutions by actual

measurements usjng congruent rlangles, similaT triangles and ssale

drawings should be eucouraged; dirferent results should be compared dor

interpreted.

Use the .'ame approach for Example 1, Section 8-7.

-- again the text should contain no more than the first 5 lines and the

diagram (OMIT the solution from student text).

(4) Nex' let the students create some situation for which a similar model

caa be constructeC. Divide the students in groups A , B , C , etc.

and let group A find a solution for a situation developed by group

etc. Possibly the students will think up problem for whicn they can

devise a model but then they are not ready, mathematically, to go OD --

they are not prepared to solve the equations, constructions, etc.,

involved. Do not reject such a situation but capitalize on it, motiyatinc

further study in mathematics.

Now it is time in a next round of modeling, to expose the students to

a problem situa ion whieh is more involved (read pp. 15-19 of Outlines,

July 1966) but within their reacu.

Example 1. (Grade 7, Chapter 7)

There are 63 students cf whom 41 take algebra, 24 biology and

music. If 14 students take both algebra and biology, 11 algebra flei

music a:-(1 7 biology al sic, h 'ny ore assigned to one, two) or

all 3 subjects?
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flIAELL21 Solution. (For teacner only ): **Let the number of sturientz taking

a11 three subjento be x

A BiplogY

41 + 19 -=

60 x = 63

x 3 .

There are students in all three subjects. Now go back to-the Venn

diagram:

** See problems 2 and 3 in Chaptei 14, Part 11.
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From the point of view of modeling let us trace the var (pus transitions

from model to model, concrete as well as conceptual.

concrete (stud its)

(b ) concept_ (numbers)

concrete Venn diagram)

(d ) conceptual (equation and solution)

(e) concrete (interpretation of result as numbers of studen

Compare the aid to thinking by step (c) , using the Venn diagram with

the solution, possibly suggested by students, going from step (a ) to

step (b) to step (d) : Let the number of students studying algebra

alone be studying biology alone be b stu ing music alone be

c , studying all three subjects be x .

Then:

1

a + b + c + 11 + 14 + 7 - 2x 63

+ + 14 - x = 41

+ 14 + 7 - x = 24

c + + 7 - x = 27

This system is obviously beyond the student at this stage -- 4 equations

in 4 variables.

On the one hand.emphasize the importance of creativeness, the power of

a good idea, the clarity an1 brevity of the solution offered by using a

Venn diagram. On the other hand the system of 4 equations can be

solved by the children at this stage -- with a little imagination. They

learned the properties

if

then

and

p q and r = s and x =

p +r+x=q+s+
m + n + p = (m + n) p

Y

Applied to the system of 4 equations (by adding the last three equations:

;you get the system

+ b + c) - 2x = 31

+ b + - 3x = 28
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Now let the number (a + b + c) be

then = 31

- ox - 28

which in turn is equivalent to

In ----, 2x

a 3x

SO 3x + 28 = x + 31

x

It is important, whenever possible, to show that ore right t7-1(" rl way to

handle a "difficult situation" but also, since ths, system is a very

special Jne (the coefficients are very cooperative) this system can well

be usec: as a motivation for solution of systems of equat ens=

Example 2. (Reflection example, Grade 7, Chapter 8)

Race. Run from A to touching the wall, in as short a time as

possible.

S lution. For teacher only, not for student text

(a) Compute the sum of the distances from A to P to B for various

cases. The shortest distance will require the least time. Let

the students measure the distances and tabulate for various cases.

(Call the numbers P,
2 '

etc )
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Compare the sums

decreasing

increasing

wall

Observe the SU= get 'smaller, then again larger. Is there a point on the

wall for which the distance is less than for any other point?

(b) Conclude fonjecture:

There exists an optimal point C (it must be between P and Q. ).
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Conclude also conjecture that

ZACT) - /PCE at optimal choice of

Show how use of mathematics can pr ve the gnrral thecem by

using reflec ion, vertical angles, shortest distance between

two points A , B') AB' is a straight 1J and B' the

reflection of B in line DE .

Note how mathematics saves computation although the model suggests

the theorem.

See Appendix A -- Problem Situations Le-ding to Geometric Models, pp.

S4aested Grade and Chapter Level:

1. Grade 7, Chapter 8 (a) - (e ); (b) m re diff-icnit!

2. Grade 7, Measurement Chapter, and (b); Grade 8 LInear Pro

3, Grade 7, Chapter 8, (d); b) Any level of Geometry.

Also:

See Anpendix A Problem Sit- ions (vhich lead to geometric models)

PPR

Re erenees:

1, Richmond, Prof. Donald E.; Mathematical_Models_of Growth_and Decay, Twen

Eighth Yearbook, National Council of Teachers of Mathematics, 1963.

Magee, John E Guides to Inyento Polio I_Functions and Lot _Size

(particularly, ,.7,1!.mi/m Lot Size, pp, 56-60), Harvard Business Review,

Vol. 34, No. 1, Jan.-Feb. 1956, pp.. 49-60.
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estions and Comments Raised by A Proposed Chapter on Physical Models

.for 1_7:2 Grade Level.

It is assumed that such a chapter would come after a reasonable amount

of mathematical vocabulary, discussion of numbers, points, graphing, functions,

r_ suration, elements of geometry, and exhibition of some mathematical symbol

manipulation 'as been put to the students. Nevertheless some problems remain.

Manipulative skills and sophistication could still be at a very elementary

_Level; after all, the student has come out of arithmetic only the year before.

Thus the examples must be s_imple. However, if t_ are too simple the spirit

of modeling is not grasped. It is essential that neither the teacher nor the

student become palLial to the idea that modeling is just a new name for pro-

cedures for specific problem solving. It is imporLant that they realize that

it is a tool, or oven more, a methodology, for facilitating thinking about a

Problem or classes of problems, which problems or classes thereof need not

have a basis in the physical or non-mathemati2a1 world. (In fact, the use of

an artificial physical world model is most common in clarifying probabilistic

and combinational questions particularly through examples involving drawings

from urns or, in other cases, random walks. k:milarly) the u e of Venn diagrams

in problems having some set-theoretic content is another case of a physical

model for a mathematically structured problem.)

A feasible area ripe with opportunities for model making is mathematical

programming, particularly linear programming. Models in economics, industrial

planning, network routing, operations analysis, etc., having mathematical

programming formulations abound. However, if in the earlier chapter on linear

algebra, specializing in linear equations and inequalities,also briefly intro-

duces linear prog-amming, then o re-visit may tend to give the teacher and

student the idea that modeling is solely the solution of certain large scale

problems by mathematical programming. Thus caveats that these examples are

only one kind of modeling, or in this case, equivalently, problem formulation,

what goes on should be frequently emphasized.

Another question raised concerns the level of notational sophistication

achieved by the student before his exposure to linear programming. For problems

involving several variables double sUbScripted coefficients are likely to occor

and the student should have berq previously exposed to them -- likewise for
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notationh such as
This 7,11_r_.1T

,n the ! of manipulative d fficulties while attermctip

arrive at iie ort. of understanding.

Another area where mathematical iauc.e1s of physJcal situationh abound
probahllity. t it the pbvsi crl onten of prohah1lit ':hat makes

fr-r its existence aL=,- discpline, vhereas, mathematically probalAlly is
aximatically just a s-,-)ecial ca-us of theory with falr amcw-it of

maniPulative machinery from olher hranohes of analysis. Again the studoar,

needs some faimiy and scphistinction in Tmbol manipulL n if the

examples of mou liaE, here are not to =-- too sLmple. i'roblems which 6raaala7:,

immediatly into maiheuai ical odelo an(L their concomitant formu]Ah no not

corvev the spirit of modeling layona a very shallow level,

Plane Euclidean geometry has provideR the oriLiet examnl cf

scale mathematical modeling activity and one would expect thet it would pro-
vide _L:t continuing source of examples of modeling. Nevertheless, it does not

seem comfortably feasible to develop an entire chapter at an early Ptage

devoted to exposing the spirit, goals, and methodology of model making. It

is possible, however, that certain items for class discussion (something les

than a chapter) can be developed. An example is the statue problem for class

discussion on similarity and its implications for scaling laws, etc. Here
modeling, ,Tith explicit stating of simplifying assumptions, (1) enables tne

student to think about an unfamiliar situation, bringing the problem down to
a level of hope that it is soluble; (2) identifies the facts that need to be
known or determined; (3) suggests the requirement of-scalingqaws subsequently

heuristically deri-jed; and finally (4) actually enables an adequate solution to
the problem.

Similarly at an early level going to simple ph:ycal kinematic problems
for examples of modeling results in too quick a transition from the physical

situation to formulas to iiAre the right depth. It is essential that the tea her
and the student do not look upon the activity in much oe same light as they

may the problems at the ends of chapters.

These remarks are intended to suggest that although under tandable remarks

and digressions on models and modeling and their various aspects should be

liberally but not plofusely nor oppressively (like sets were) sprinkled through-
ut tLe mathetr'ical education process, a chapter on mathematical models of
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real world situations should be deferred until the 10-11-12 grade leve)s.

This is to enable tne student to get a 2easonable intuition for model making

(i) ensuring that the student has some reasonable mathematical

vocabulary and familiarity with thinp:s such as subscripts,

single and double, functional vali ,! notation, e.g., f(x,y,

composition of functions f(g(x))

(2) allowing the students to have more extra-mathematical knowledu,

e.g., in natural and physical sciences, economics, business,

albeit of a very rudimentary sort to permit the formulation

problems which are reasonably plausible to the student;

allowing the -tldent to have command of some primitive matae-

matical skills with a little variety so that, if possible, T:mo

different m Lhematical moclelings of the same problem leadiag to

similar answers can be made, or even, if extrapolated far enough

the two models could lead to substantially and possibly quali-

tatively different answers giving impressions of the strengths

as well as limitations inherent in practically all mathematical

modeling. (cne sees this in the closeness of results obtained

with plane and spherictl trigonometry used on problems in 'olving

points relatively close on the earth's surface as contrasted with

tIle absurdities obtainable from the use of plane trigonometry nn

widely separated earthpoints.) (A reasonable bag of prerequisites

may include knowledge of how to solve systems of linear equations

sum arithmetic and geometric series, evaluate some polynomials,

graph functions, compose functions of functions, solve quadratics,

poss'bly SOM2 knowledge of elementary combinatorics and probability,

no fear of summation symbols or of seeing, say, max(xi) for the

first tine.)

Furthermore, whenever or wherever a chapter or less, say a class discussion,

. models or model making (thinking primarily of the case of u matheratical

!2c.)del of real world situation) the guidelines made in the Report_of-the Modeling

ommittee, pp. 12-30, of the MEG Tentative Outlines of a Mathematics Currionn

- GraUes L L, 2, July 1966, are worthwhile adhering to.
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A chaPter on nnthematical models shou]d have a variety of examples ov,

more appropriately, something resembling case histories. Possible

can include one or two linear programming problems, a slmple dynamic pro-

gramming problem (good for iteration and flow charting as well), a queuing

problem or two, some deterministic and probabilistic growth and decay situa-

tion,3. (Problems in biological, economics, and gambling or

rancom walks exhibiting isomorphic structure are desirable. A strategic proMJ.

cr r_,wo formulable as game theoretic problems. Possibly even a markeu situaion

may be conceived of here.) (Note different criteria, maxtmi-ing expeeLaLion:,,

minimizing maximum possible loss, etc., frequently lead to different model::

and diffe-rent conclusions )
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Contents

1. Introduction.

2. The Mathematical Model.

3. Related Problems.

Outline for Mathematics Sections of Chapter on Systems of Linear Equations

and Inequalities.

5. Suggestions for the Development of the Topic, Systems of Linear Equations

and Inequalities in Grades 7 8; 9, and 10,

6. Some Thoughts on the "Student's Manual" to Accompany the Teacheres Text

for Model-Motivated Mathematics (3M).

7. Two Pairs of Physically Stated Dual Linear Programming Problems.
-

Background Assumptions.

Same as p. 149, July 1966 Outline Book.

Content.

Introduction to systems of lixLear eaUations and ineaualities with optimlzation.

.Purpose.

To teach the mathematical cotItent through immediate problem involvement and

modeling.
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The introductory section is designed through a decision problem to motivate

and provide sufficient familiarity (using only arithmetic and logical reasoning)

to permit the development of a mathematical model of the problem.

introduction.

Often in life we must make a decision. Sometimes the doisions involve

things that are not important or are easy to make, like -what time to get up

or what to have for dinner. Sometimes they are very important and very

difficult to make, like what job to take or where to live. Think of the

decisions you already made today and think of the kind of decisions the

President of the Unitod States will have to make today.

When you go about making a decision you try to find out as much about

the situation as you can. Then you see what choices of action you have.

You may 'in your mind try to imagine the consequences of each possible choice

of action. Comparing the consequences you try to arrive at a decision as to

what choice suits your purpose best.

In the case of getting up in the morning, you know that you need time for

getting ready, eating breakfast and getting to work. You know that if you are

late you will need an excuse and have to go to the office.. On the other han,

if you were up late the night before you might want some extra sleep. You

consider the situation and try to decide.

In simple or unimportant decisions it doesn't pay to spend too much time

thinking about it. However, in the kind of decisions that have to be made by

scientists, engineers, business men, judges, doctors, political leaders,

military men and others, it pays to spend as much time as necessary or as much

time as you can.

It may come as no surprise to you to learn that scientific thinking and

especially mathematics can be of great assistance in making decisions-. How-

ever, it has only been since giant electronic computers became available that

it became practical to look for a systematic mathematical way to arrive at

decisions. In many important decision problemm there are hundreds or thousands

or even millions of separate things to be decided to reach he final answer.

The number oP possible choices is teo large to look at each possible one

individually, even with a computer. The number of choices may even be infinite.
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What mathematicians an,:L mathematics c:) is first, replace the real situa-

tion by a "mathematical model". We will find out more about such models later.

For now you may tbdnk of it as a description of the real situation using

mathematics in which details you think are unimportant have been left out.

Second, the decision to be made is stated as a special kind of mathematics

problem Third, mathematics then provides special methnds for solving the

problem in a reasonabi: -Gmount of time even though there may be an infinite

number of possible choices.

Let us look at the kind of a decision problem faced by business men.

Suppose you are president of a division of a large corporation called "General

Engines". How many cars and how many trucks should be scheduled for the next

year's production to make as large a profit as possible? Profit is the money

left from the sale of the cars and trucks after all the costs in making them

have been paid for.

There is of course a lot of information you will need to have, but as a

sta./. er suppose that you know that this year's profit on each truck when sold

is $400 and each car when sold gives a profit of *300 . You might think

that it would be most profitable to build only trucks since each truck brings

*100 more profit than each car. But it is not that simple. For one thing

each truck uses more steel and if the total supply of steel is limited, you

may be able to build many fewer units of trucks than cars and so your total

profit.may be not as great if you decide to make only trucks.

A little more inquiring turns up the information that each car uses

approximately 1-
1 tons of steel and each truck approximately 3 tons. Also
2

you learn that the total amount of steel available to your division next year

will be approximately 9752000 tons. Can you reach a decision? Let's see.

If you use all the steel for cars, you can make 975,000/1.5 units or

650,000 cars. At a profit of *300 each, you get a total profit of

*195,000,000. On the other hand if you make only trucks, the steel would be

enough for 975,000/3 units or 325,000. trucks. At a profit of *400 each,

the total profit would be $130,000,000. It looks as if your decision should

be to manufacture only cars next year. In fact you wonder why your division of

General Engines made any trucks last year at all. However, since the previous

president is a pretty smart fellow (in fact he is your boss) you suspect there

must be more information that you need to have.
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A call to the manager of production asking if he could turn out

650,000 cars next year turns up the fact that the factories have a limited

capacity and that at most a half a million units of cars or trucks or both

can be turned out in a year.

This changes the situation. Letts see what results if all of the units

are cars. This gives a total profit of 500,000 x 13300 or '1150,000,000.

But since there is going to be enough steel to make 650,000 cars, a lot of

steel, in fact 150,000 X 1.5 or 225,000 tons is going to be unused (remember

the factories can only turn out 5005000 units). On the other hand all the

500,000 units cannot be trucks since there is only enough steel on hand for

325,000 trucks.

You, as president, have identified two seemingly possible choices. Use

all the steel to make 325,000 trucks at a total profit of $130,000,000

(this does not use the total capacity of the factories to produce). Or use

the total capacity of the factories, to produce 500,000 cars at a total

profit of $150,000,000 (this does not use all the steel). It would seem

that the second choice is the one to follow.

At this point you call up the manager of manufacturing and ask him what

the production plan for the current year is. You find out that 90 000 trucks

and 410 000 cars are being made and the factories are in full production. A

little calculation shows the

90,000 X $400 or $36,000,

or $123,000,000 . The tota

the cars and trucks are sold

following. The profit on

000 The profit on the ca_

1 profit this year will be

. This is 9,000,000 mc than if you just made

. trucks is

G 410,000 X $300

159,000,000 if all

cars. Should you go ahead with the decision to make t a same nuMber of trucks

and cars again next year as this year? After all, the plant is being used to

capacity. But haw about steel? The amount of steel used would be

90,000 X 3 = 270,000 tons on the trucks and 410,000 X 1.5 = 615,000 tons

on the cars. This totals 885,000 tons which is within the limit of

975,000 tons that will be available next year. Of course 90,000 tons

of steel will be unused. However, if only cars were made, you recall that

225,000 tons of steel would be unused. Therefore, the present production

plan is certainly to be preferred from the point of view of steel used, as

well as profit.
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Before going ahead, however, you decide to see what the situation was

like when the decision was made a year ago for the current year's production.

Getting the old figures out of a file you find that last year the amount of

available steel for the current year was estinated at 900,000 tons. The

present plans call for using all but 15,000 tons, However, next year there

will be an extra 75,000 'tons available and so the surplus if you stick to

this yearls production plan will be 90,000 tons. Shouldn't you be able to

make use of this extra steel?

At this point you decide to make a list or table showing the choices GO

far and the profit resulting from each.

Table

CHOICE NUMBERS NO. OF CARS NO. OF 'IRUCKE UNUSED ST2EL
(tons)

UNUShll CAPACITY
(units)

TOTAL
PROFIT
(millions

1

2

3

500,000

0

410,000

0

325,000

90,000

225,000

0

90,000

0

175,000

0

150

130

159

Inspecting the table you see that decreasing the number of cars produced from

500,000 to 410,000 (and producing trucks instead) decreases the amount of

unused steel and increases profits. However, if you continue to decrease the

number of cars, say to zero, then profits decrease too. This suggests that

somewhere in between 410,000 cars and zero cars there may Le still room for

improvement.

SUGGESTION: HAVE A CONTEST IN YOUR CLASS TO SEE WHO CAN FIND THE BEST PRODUCTION

PLAN.

You decide to test this idea by trying a production schedule calling for

400,000 cars and 100,000 trucks. A little arithmetic shows that 900,000

tons of steel will be required with a total profit of 160,000,000. This

increases profits bY 1,000,000 and would leave only 75,000 tons of steel

:t year's end. You are delighted at being able to improve on the current year's
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record. But you still feel troubled about not using 75,000 tons of steel.

So you call the Director of Research to get some expert help on the problem

and tell him that you need an answer as soon as possible. To your surprise e

he sends a mathematician to your office.

The mathematician listens while you explain the situation and looks

closely at your table and your latest plan which will make a profit of

1.60,000,000. "You have done very well", he says. "In fact, the most profit

you can make is *165,000,000." You are more surprised than you admit and

ask him what decision leads to this result. The answer he gives you is to

manufacture 350,000 cars and 1)0,000 trucks. When you check the arithmetic

you find that not only will the factories work to capacity, but.all of the

be used-

Before calling your boss and telling him this decision you ask the

mathematician if he is sure that you can't do better, He assures you that

you can't and explains as follows. You will be manufacturing 500,000 units,

the total allowed and so you cannot make any more units. Therefore if you

make one more car you must make one less truck. If you do, you will lose
1

*100 profit and have 1 tons of steel left over. On the other hand to

make one more truck would require steel you don't have.

This satisfies you for the momnt but you want to know how he was able to

decide so quickly on the best production schedule. His answer contains A lot

of mathematics you never knew before. We will cover this in the rest of. the

chapter. But perhaps you would first like to know some of the other things

he had to say about your decision making problem.

First of all the mathematician explained that this kind of decision

problem comes up, in many different situations so often that people have given

this kind of problem a special name. It is called a linear programming problem.

In this one you had two quantities to determine, the number of cars and the

number of trucks. In other situations there may be thousands of quantities

to determine and a computer would be necessary to solve the problem.

While 350,000 cars and 150,000 trucks furnished the best anewer to

. the prOblem, the mathematician cautioned that the information being used might

still not be complete enough- or example, if "General Engines" would be

willing to build a new factory for your division GO as to increase the number
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of units that can be produced it might be possible to increase profits still

further. Remember that 650,000 cars would use no more steel than available

and would increase the profits to 195,000,000. Of course the cost of the

new factory and additional salaries would have to be taken into account and

this would reduce the profit on the additional cars built so that it might not

be profitable. Also you have not taken into account that materials other than

steel might be limited in supply, which could affect your production plans.

Many other complications could be taken into account in trying to arrive at a

decision. Some might be important, others have only a minor effect.

SUGGESTION: HAVE THE CLASS MAKE A LIST OF OTHER FACTS THAT MIGHT BE TAKEN INTO

ACCOUNT IN DECIDING HOW MANY MUCKS AND CARS TO BUILD. INDICATE

BY THE DIUMIERS 100 , 10 , 1 HOW IMPORTANT EACH FACT IS THOUGHT

TO BE. (100 -- VERY IMPORTANT; 10 -- S(MEWHAT IMPORTANT;

1 -- NOT IMPORTANT)

Notes on Section 2

This is the second section of a chapter on linear equations and inequalities.

Here a mathematical model involving equations, inequalities and geometry is

provided for the production problem previously presented in verbal and simple

arithmetic form. The production problem is reduced to maximizing a linear

function subject to linear inequality constraints and the solution is found

through examination of the geometric model. The result is that in_one specific

situation, the student encounters and deals with a variety of mathematical

problems related to linear systems. The stage is then set for a return to

these problems on their own ground divorced of a specific context to state

the problems in more general terms and gain technique in their solution.

The treatment in this section is especially sketchy toward the end. It

needs more thought, writing and time.

2. The Mathematical Model.

We are now going to translate our production problem into a mathematical

one. First, we must replace the words we have used to describe the situation

in ordinEiy language by mathematical symbo:ls E ad relations. This will provide
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a mathematical model, It is only a model of the real situation because

(1) we can never list and include all the facts, only those facts that we

think are most important, and (2) we cannot know the exact relationships in

the real situation, so our mathematical relations will only be approximations

to the real life situation,

A great advantage of a mathematical model is that you can do "experiments"

with it just with pencil and paper or computer. You can say, "What would

happen if such and such were done?" Then, you can carry out the math,matics

and find out what the model predicts. You don7t have to build something in

a laboratory and test it, or wait until it happens in the real world. Often a

mathematical model is the only way to get such informatThn when no laboratory

experiment is possible. For instance, when you want to determine the route

to be travelled to the moon by the first manned spaceships.

If our model is complete enough it will provide a good enough approxima-

tion to the real life situation so that we can rely on the answers it gives us.

Of course the best test we have is to compare the predictions made by the model

with the real situation and see how well they agree. Eventually this must alway:-

be done. If the agreement is poor we may have-to add more features to the model_

You can see that many different models can be made for the same real life situa-

tion just as an artist can depict a scene in many different ways.

We first introduce symbols for the quantities we need to find in the

production problem. To begin with, let C = number of cars to be produced

and. T = number of trucks to be produced. The first fact we can express is

that the profit made by producing C cars is 300 C dollars The-profit

made by selling T trucks is 400 T dollars. The total profit then if we

produce C cars and T trucks is 300 c + 400 T Let us use the symbol

P to stand for the total profit in dollars. .Then

300 C + 400 T = P . (1)

This we will call the profit equation. It is a part of our mathematical model.

It is often useful and particularly in decision problems to think of our

model geometrically. If we interpret C and T as rectangular coordinates

in a graph and take for P a particular value, say P = 150;000,000 , then

equation (1) represents a straight line.
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QUESTION: WHAT IS THE SLOPE OF THIS LINE?

The model of the profit relation then becomes the straight line segment

a al in Figure 1. The segment is all of the line (1) we are interested in

since both C and T cannot be negative; tha'c, is, in our real situation we

can have the number of cars and trucks positive or zero but not negative.

This means that our whole geometrical model must lie in the first quadrant.

Looking at the points on the profit line a al we see that the point

C = 500,000 , T = 0 lies on it. This corresponds to the fact that these

values lead to a profit of 150,000,000. As we have previously seen, this

is a possible production choice. Our model tells us something new, however:

every point (C,T) on a at satisfies the equation

300 C + 400 T = 150,000,000

and so gives a profit of 150,000,000 . For example the point (300,000 ,

150,000) shown in Figure 1.

QUESTION: Is C = 3C0,000 , T = 150,000 a possible production plan?

Each time we find or choose a value for the total profit P we will

get a new position of the profit 1,Uie. For example if P = 130,000,000 ,

we get the segment b bl in Figure 2, corresponding to points on the

line

300 C + 400 T = 130,0002000 .

CoMpare b bl and a al as shown in Figure 2. The geometrical.mdel suggests

that they are parallel. This implies that changing the total profit P moves

the profit line parallel to itself. If P decreases, the line moves in toward

the origin 0 If P increases, the line moves out away fromthe origin 0 .

That the lines obtained by varying p are all.paralle1 is confirmed from the

mathematical model expressed by equation (1) . The slope of this line ( - 4/3 )

is fixed by the coefficients 300 and 400 and is not affected by the value

of P .

We notice that the point b in Figure 2 corresponds to the production

-plan where we manufacture only trucks, for C = 0 and T = 325,000 at that

point. The interesving fact we learn from our model is that all the other

points on b lot also yield the same profit of 130,000,000 . For example

C = 300,000 T = 100,000 .



500,000 -

250,000

(300,000, 150,000)

Ot500,00

250,000 500,000

Figure 1. 300C + 400T = 150,000,000

250,000

Figure 2.
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QUESTION: Is C = 300,000 T = 100,000 a possible production plan?

QUESTION: Are there any points on b bt which do not correspond to possible

production plans?

Our geometrical model has suggested an important way of looking at the

production decision problem. Each production plan gives a number pair

(C , T) . Each such pair corresponds to a point in the first quadrant.

(c , T) in the first

quadrant. But we know from other conditions in the real problem and

production plans such as C = 500,000 , T= 0_that not every point, in the

first quadrant is an allowable production plan. That means our model is

incomplete. We must try to put the missing conditions into our model.

Let us see what can be done to incorporate the fact that the amount of
1

steel used cannot exceed 975,000 tons. Since each oar requires 1 7 tons

of steel, if we produce C cars, the amount of steel used is 1.5C in tons.

Each truck requires 3 tons of steel and if T trucks are produced, the

amount of steel used is 3T tons. The total amount of .steel used is just

1.5C + 3T in tons. This amount must be less than or at most equal to

215.22120. In symbols we have the relation

1.5C + 3T < 975,000 . (2)

This relation we steel restriction; it is an inequality. It

states a restric ie number pair (C T) . . solution set or solu-

tions of (2) gives us the set of all pairs (C , T) which do- not use up

more than the allotted amount of steel.

QUESTION: Which of the fr- owing pairs are solutions of (2) ?

(00,000 o) (o , 5co,000) , (4co,000 , lco,000) ,

(350,000 , 15o,00O) .

What is the geometrical meaning of (2) ? Or, in other words, what is

the graphical model of (2) ? Craphing an inequality is not uuch different

from graphing an equation. For example, C = 0 in Figure 1 is the line

representing the T-axis. The solutions of C > 0 are all points (C , T)

in the plane with C > 0 These are the points lying to the ri0ht of the

T-axis. The solutions of C > 0 are the points lying to the right of or

on the T-axis. Similarly,-the solutions of C < 0 are the points lying to

the left of the T-axis.
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-00,00

250,000

1.50 ± 3T = 975,000

250,000 500,000

Figure 3. Solutions of 1.5C + 3T < 975,000

250,000 500,000 St

Figure 4. Solutions cf 1.50 + 3T < 975,000
which also satisfy C > d and.

T > 0 (Production restriction
due to limit on steel)
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To take a few more simple examples, the solutions C < 2 are all

points (C , T) lying to the left of and on the line C = 2 The solutions

of T < 2 are the points (C , T) lying below and on the line T = 2 .

If the lines are not paralael to the C- or T-axis the situation is

the same. The inequality leads us to the set of points lying on one bide of

the line. We shall study this carefully later in this chapter. For now,

however, let us just accept this as being reasonable. In Figure 3 we have

drawn the line given by the equatlon

1.5C + 3T = 975,000 . (3)

The points (C , T) which are solutions of the inequality (2) all lie

on the same side of this line. Which side? We already know some points that

are solutions of the inequality, such as (500,000 , 0) , (400,000 , 100,000) .

These lie "below" the line. In Figure 3 we show the graph of the solutions

of (2) ; these are the points in the shaded region (which is infinite).

Sinc.c?, we are only interested in positive values of C and T , we

have the restrictions C > 0 and T > 0 to include in our model. The

solutions of C > 0 are the points to the right of and on the T-aXis. The

solutions of T > 0 are the points above and on the C-axis. The points

common to these two sets (their intersection) are the points of the first

quadrant. Combining this restriction with the restriction imposed by the

inequality (2) we must drop all shaded points in Figure 3 except those in

the-first quadrant. This gives us the set of points contained in the triangle

OSS2 in Figure 4 including its boundary.

To summarize what we have just found: the set of ,L

fying the inequalities

1. C 4. 3 T < 975,000

C > 0

T > 0

, .e) satis-

Consists of the triangle 0SS2 and its boundary (shaded in Figure )i). This is

a mathematical model of the following statement:

The amount of steel used in the production of C cars and

T trucks ca aot exceed 975,000 tons.

However, our:model is not yet complete. We have not taken into account
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C -F T = 500,000

250000

ri._,tre 5.

S1utions of ; + T < 50,000

Ft

250,000 500,000

Figure 6.
Production Restriction Due to Factory Limitation.

(C T < 500,000, C > 0, T > 0)



the restriction on plant capacity. For example there are points in OSS'

for which the total number of vehicles would exceed 500,000 , the capacity

of the factories.

QUESTION: Which of the following points in OSS' correspond to production

plans whch would exceed plant capacity?

(250,000 , 150,000) (500,000 , 0) , (525,000 , 10,000)

The restriction on plant capacity states that the total nudber of cars

and trucks cannot exceed 500,000 . The mathematical model of this statement

cast as an inequality is given by

C + T < 500,000 .

To find the geometrical model we first graph the lino

C + T = 500,000 .

(4)

(see Figure 5)

The inequality (4) admits as solutions all points to one side Of this line.

These are the points shown shaded in Figure 5.

ASSIGNMENT. Locate the points (250,000 ) 200,000) , (100,000 , 500,000) ,

(400,000 , 100,000) (600,000 , 300,000) , (200,000 , 300,000) ,

(4c0,o0o 1 50,000) . Which of these points are solutions of

(4) ?

If to (4) we add the restrictions C > 0 and T > 0 1 the solution set

is reduced to the shaded triangle OFF' in Figure 6.

We can now interpret the totality of possible production plans in terms

of our model. The allowable plans for the production of cars and trucks are

given by the number pairs (C T) satisfying the following restricttons:

C 0 T > 0

1.50 + 3T < 975,000

C + T < 500,000 .

Geometrically this solution set is the intersection of the solution sets

shown shaded in Figures 4 and 6; that is, the set of points satisfying C > 0 5

T > 0 which satisfy both of the other inequalities. The intersection of these

sets is shown cross-hatched in Figure 7. It consists of the points contained
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500,000

250,000

0 + T - 600,000

T
0 -÷

1.50 + 3T = 975,000

250,000 500,000
F' S'

1Tgure 7.
Intersection of Solution Sets of 1.5.0 + 3T < 975,000, C > 0, T > 0

And C + T < 500,000, C > 0, T > 0 Representing all Permissible- Production Plans

500,000

250,000

1

250,000

Figure 8.
The Set of all Permissible Production Plans (C, T)

500,000
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in the four sided figure (quadrilateral) OSUI and its boundary.

The point Q which locates the intersection of the line segments no

(the factory restriction boundary) and SS1 (the steel restriction boundary)

is of particular importance as we shall see. What are the coordinates of this

point? The number pair (0, , T) at Q can be found from the equations of

the lines,

1.5C + 3T = 975,000

C + T = 500,000

on which Q lies by simple algebra. We shall explain these useful techniques

later in this chapter. Foi now, however, we observe from. Figure 7 that the

intersection appears to be at the point (350,000 , 150,000) . We can check

that this is correct by replacing C = 350,000 , T = 150,000 in the above

equations and seeing that the statements are true.

Our mathematical model has led us to the region OSQF2 in Figure 8.

This set of points corresponds to all production plans which satisfy the

restriction on plant capacity and the restriction on steel. But which pro-

duction plan is best? Which plan gives the most profit? Can we ask this

question in mathematical terms? What is the mathematics problem which ex-

wesses the production roblem and whose solution is the solution of the

roduction problem?

To state the problem, we return to equation (1), v111-'1 tells us what the

profit P is for any r'hni'r' -f C ar, fl_7 J1ces -production

plahs are rel..re6e116ed by une number pairs or points (C T) in the set shown

in Figure 8. Which of these points gives the largest value t 1.1e profit P ?

That is, what number pair (C , T) in or on the quadrilateral OBQFI makes P

a nax-L7-Lum (as large as possible)?

This is very nearly the.precise mathematical statement of tl-Te problem.

1-r, wholly mathematical language, we want the number pair (C T, satisfying

qhe conditions

whi.:a the G.:,ant.ty

is a maximum.

C 0 , T 0

1.5C + 3T < 975,000

C + T < 500,000

P = 300C + 400T
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What is the solution to this new mathematical problem? You will recall

that the mathematician in the previous section chdbe the point Q with

coordinates (350,000 , 150,000) as the point for which P is a maximum.

How does our mathematical model lead to this solution?

To answer this let us study

set and also by dashed. lines the

different profits: 60,000,000

abbreviated by the letter M in

this section the lines given by

parallel to each other.

Figure 9. Here we have shown the solution

lines given by (1) corresponding to three

120,000,000 , and 180,000,000 ("million" is

the figure). As we saw at the beginning of

(1) with different values of P are all

The line for P = 60M intersects the solution set in the line segment

shown closest to the origin in Figure 9. All points along that segment lie

in theguadrilateral 0S01 apd so represent possible production plans which

lead to the profit of *60,000,000 . If we ask for a larger profit, say

4'120,000,000 , we plot the line given by the equation

3000 + 400T = 120,000,000 .

This gives the dashed line segment midway between the others. 'All points

along this segment also lie in the solution set of permissible production

plans. Therefore, all the points on this segment are permissible production

plans yielding a total profit of 4120,000,000 .

However, if we ask for a total profit of *180,000,000 our model tells

us this is not possible. Plotting the line

300C + 400T = 180,000,000

we get the top dashed line in Figure 9. This does not intersect the

quadrilateral OSUI anywhere. Therefore, there is no production plan which

will give this large a profit.

The model suggests the following. The profit line should be moved "as

far out as possible", since moving it out corresponds to increasing profit.

It can be moved no further when it will just be tangent to the solution set.

This situation is shown in Figure 10. Here the profit line just touches the

'solution set at Q . Since at q , c - 350,000 and T = 150,000 , the value
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of P from (1) is 1.65,000,000 . Any further increase in P means that

the line (1) moves further out from the origin (remaining parallel to the

line shown) and so cannot intersect the solution set.

The method of solution corresponds to moving the profit line as far

as possible until it is just tangent to the solution set corresponding to the

conditions of the problem. The pont of tangency gives the solution -- that

is, the values of C and T . It can happen in problems of this kind that

instead of a single point of tangency, the line will coincide witb a, seTrent

of the bondary of the solution set. In this case more than one possible

solution to the problem exists. However, if the solution set is a (convex)
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plane figure bounded by straight edges, the maximum can always be ,found at

one of the verticeL,

This means that in seeking a nrol.uction plan we need only chock th.7, Du,

at each vertex of the grapti of the solution set. Since there are only a

(and in our case small) nuaber of vortices this is a rapid metho,a (Y7 findil:

the best plan. In the study of these problems (linear programming problems

is the name given by mathematicians) there is a method of solution called

the "simplex method" in which the vertices only are used.

In Flaure 11 are shown some examples illustrating the mathematical model

in geometrical terms corresponding to several decision problems, The closed

figure represents the set of possible solutions. The dashed line ocTresronds

to one position of the profit line (or whatever quantity it is desired to

maximize).

Increasing profit corresponds to moving the profit line in the direction

shown by the arrow. Tell in each case what point (or points) of the solution

set maximize the profit. In cases (e) and (f) there are additional

restrictions which account for the additional sides in the plane figure.

Notes on Section

In this section are cited some of the most common situations reducible to

linear programming problems. It is intended to broaden the perspective of

student and teacher with regard to the applicability of the mathematics con-

tained in this chapter. Having concentrated on the car-truck manufacturing

problem, it is important to break the tie, to emphasize that the power of

mathematics lies in its generality.:.

Following this section will come the mathematical treatment of simple

linear systems of equations and inequalities. The end of the chapter can then

draw on some of the situations sketched in the present section for problem

material,

Related Problems.

In the preceding section,' 7.-e have spenL a good deal of time analyzing one

particu1ar problem: how much to produce of two products with limited resources
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so as to maximize the profit. We have said that this is one kind of linear

..programming problem. Such problems arise in many situations which cau seeming-

ly be very different. It is the great power of mathematics that once these

seemingly different problems have been analyzed by means of a mathematical

model, they are all found -to reduce to the same or very similar mathematics

problems. Once we learn how to solve these kinds of mathematics problems

we are equipped to handle many situations which at first seem completely

different.

In the following sections of this chapter we will learn how to solve

same of the kinds of mathematics problems which are common.to all the different

situations. Before doing this, however, we will now describe some of the

different situations which lead to linear programming problemr and therefore

to similar mathematical questions.

a. The Diet Problem.

A diet for losing or controlling 1,eight is to be planned using a

number of different foods. Each food contains certain amounts of different

nutriments (such as proteins, vitamin C, calcium, etc.) per ounce. Each

food also contains a certain number of calories per ounce. The diet

requires certain minimum amounts of each nutrient per day. The problem

is to find the amount of each .friod to be included in the diet which will

give at least the minimum amount of nutrition but will make the total

number of calories as small as possible.

b. Transportation Problems.

A company maintains a warehouse in each of a number of cities. Each

warehouse holds a certain nuMber of units of a given commodity (such as

refrigerators). Orders come in from dealers in surrounding places. We

are given the number of units required by each dealer, the distances from

the dealers to the warehouses and the cost of shipping from each warehouse

to each dealer. The problem is to decide how to fill the orders: how many

units to ship to each dealer fram each warehouse in order that the cost of

shipping to meet all the orders be a minimum (as small as possible).

A variation of this problem (in wording alone) occurs in military

operations planning. A nation maintains a number of naval bases. Fach

base is the hame of a certain number of aircraft carriers, destroyers,
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etc. At a certain time it is necessary to assemble a task forcp at

of several locations for maneuvers. The number of ships of each type to

rendezvous at these spots is assigned. The distance from each base to

each rendezvous location is given. The problem is to decide on the ordrs

for the ships: which destination for the ships from each base in orde:-:r

to have the total travel time for all the ships a minimum. Notice that

in this example and the warehouse problem, minimizing time is the same

minimizing distance. Since fuel consumption (for trucks or ships) is

proportional to distance travelled, this is also the same as minimizing

cost.

An interesting variation is the following: if the task forces have

to be assembled as fast as possible (say if there is an international

emergency), then the problem is no longer the same. We would not be

interested in adding the travel times of all the ships, but in the longest

time taken by any ship to reach its destihation. This leads to a dif-Zerent

type of mathematical problem-

c. Blending Problems.

An oil company through its refining of crude oil produces a- certain

number of barrels daily .of each of several different 'chemical component:-;

of the oil. These components can be blended to make different marketab

products such as grades of automotive gasolines and aviation gasolines.

These products sell for different prices. Tie are given the number of

barrels of each component produced daily,_the blending rules and the

sale prices of the final products. The problem is how much of each p77oduct

to produce daily to yield the maximum income.

A, variation of this problem involves mixtures.. As an example, suppose

that two mixtures of nuts are to be offered for sale: a regular mix and a

party mix. The proportions of the different kinds of nuts used for aach

mix are prescribed. Also given are the costs per pound of each kind c.)1'

nUt, the total supply of each kind of nut evailable and the selling price

per pound of the two mixes. The problem is to decide how many pounds of

each mix to produce out of the given supply so as to maximize the profit
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d. Network Problems.

These are problems involving a network of some kind such as the tele-

phone lines interconnecting cities, roads and highway systems, connections

in an electronic circuit and so forth. As an example suppose that special

communications cablea (say for TV) have to be laid to join a number of

distant cities. It is not necessary to lay a cable directly between

each two cities as long as some route nan be found between them. For

example a cable need not join Chicago and Los Angeles directly if there is

one from Chicago to San Francisco and one from San Francisco to Los Angelc

since these can be joined at switching sttion in R Francisco. Given

the distances betwen ea_ of cities -UT:, problem is to determine

which citis to join by le i order that any city _n the network can

com7nnicate with any other 7i- and so that the total amount of cable to

be _aid is a minimum. Thic I a.11ed the shortest co7inecting network

and 7he same problem fre(luent arises in the telephone business. If

there are n points in the network to be connected there are n
n-2

posSible networks. This number increases very rapidly as n increases

and it becanes impossible simply to measure all possible networks, As

a linear programming problem the solution is easily found.

In Figure 1 is shown the location of a number of points to be

joined by the shortest connecting network and in Figure 2 is shown the

solution.

A related problem concerns the maximum flow in a network._ Suppose

the various cities in a network are joined by telephone "trunk lines",

and that each trunk line can handle a certain number of calls. If a

7,runk is fully used, alternate routes can be found to place a call,

asing_trunks to other intermediate cities. Given the locations of all

the trunks and the maximum number of calls each can handle, what is the

maximum number of calls which can be made at one time from one city to

another, say from New York to Los Angeles?

The Assignbent Problem.

Suppose there are a number of jobs to be filled and a certain number

of people available to carry out these assignments. Each person could be

assigned, to any one of the jobs, but he is better at some jobs than others.
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Suppose we are given a rating for each

10 if he is very good at it, dawn to

problem is to assign the people to the

ratings of the People in the jobs they

f. The Trim Problem.

person for each of the jobs (say

1 if he is very poor). The

jobs so that the sum of all the

are assigned is a maximum.

Paper mills produce paper in large rolls in certair tandard widths

only. Customer orders come in specifying any intermediate widths they

desire and the number of rolls of each. These widths are .htained by

cutting or trimming the rolls. Figure 3 shows the locaticn of cuts along

a roll which might occur.

A single roll might be cut in many ways to fill different orders.

The problem is, given the widths of the standard rolls and given the

customers' orders, how should the rolls be cut so that the amount of paper

wasted (unused ends of rolls) is a minimum?

cut

289

cut



4. Outline for Mathematics Sections of Chapter on astems. of :1.,inear

Equations and Inequalities.

The preceding thl'ee sections of this Appendix are SectionE; 1, and

of a chapter on syste7as of linear equations and inequalities. The objeQt of tbe

succeeding sections o_- the chapter is to develop the mathemati(1 ideas and

skills which underlie the formulation and solution of the partular problem

already considered in detail. No attempt hae been made to do tlais in detail

since there is no need for a new approach or for much, if any, dovetailing'

with the previous material. The presentation can be quite straightforward.

The motivation and the experience are already present. The need now is first

to cover the mathematics with dispatch and at a level of explanation in keeping

with the students intuition and experience; second, to provide drill and third,

to provide good problem material at the end, roughly equivalent in difficulty

to the original problem which began it all (See Section 3 of this Appendix for

source material).

Section 4, Linear Esaa-1121s...

4-1. Graphing a line.

- - stress solution set description of points (x,y),

- - relate slope to coefficients, perhaps informally.

- - when are two lines parallel?

4-2. Graphing System of Two Equations.

- - solution set possibilities.

-- approximate solution.

473. Algebraic Solution of System of Two Equations.

-- substitution.

- - elimination.,

- - flow chart of-algorithm.
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Sectio- -7. Linear Inequalities.

5-1. Graphing an Inequality.

--x>a,x<a, x>a, x<a.
y >b,y<b,y>b,y<b (a,b nuxr1 rs).

- - stress solution set description.

--x+y=1,x+y>1,x+y< 1 , etc.

-- linear inequality as half-p1ane.

5-2. Graphing System of Two or More Inequalities.

-- intersection of half planes x > a , y > b (boundarfes alel

to axes).

- - intersection of two half planes of any orientation (emphas_ze

geometry, not algebra).

- - intersection of three half planes to define triangle (emph.sLze

geometry, not algebra).

-- distinguish unbounded and bounded situations.

Section 6. .atimization.

6-1. Linear Functions Defined on Plane Domain.

f: (x,y) -4ax + by

-- intersection of solution set for ax + by = P (a, b; P given

numbers) with solution set corresponding to system of inequalities.

-- effect of varying P on intersection.

-- maximum or minimum of P at extreme points of set (imformal).

Exercises: A set of exercises at close of chapter to explore applications

such as considered at the beginning of the chapter. Types of

problems are included in Section 3. Consult many existing sources

for actual numerical problems (The Mathematics Teacher articles;

Kemeny, Snell, Thompson; Richardson; Dorn and Greenberg; etc.).

Emphasis on finding solution sets corresponding to various linear

restrictions and combinations of restrictions; secondarily on

optimization (to be returned to in a higher grade).
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Suggestions For the Iltlif121Eart of the Topic "Systems of Linez

and Inequalities In Grades 7, 8, 9 and 10. ,

The written material in the first 4 sections of this Appendix (ca.2:--tr-Ac

production model through accompanying mathematics) was intended for incluj,

in the 7th grade syllabus. This was based on the suggested c (Sumier

It goes far beyond what was included in the 7th grade material -tten during

the year. However, new proposals indicate changes in the 7th grad syllabus

making it likely that the materiol will be more appropriate for the 8.Gin grade.

If this is the case, it is recommended that the material outlined on pp, 316,

317, 318 (July 1966 outline) together with the material in the first L. sections

of this Appendix be used as a basis for the 8th grade chapter.

This would leave the 7th grade still not settled-in this topical area.

It would seem reasonable to cover single equations and inequalities emphrsizing

solution sets, graphical understanding and problem situations. The 8th grade

material might be anticipated without going into details of technique.

There are several objections to the present Chapter 7, in Grade 7. First,

the problems are almost classic examples of the kind we want to avOid. They

are unreal and uninteresting. They also come last instead...of first. Second,

the method of solution of equations based on "boxes" does not seem a good on:e

to introduce although it is clever. It will not be followed up in later work,

It eata up a lot of space and time. It also is apt to be confused with flow

charting sinco it involves boxes and arrows. Finally, it does not seem as if

enough ground is covered. One, could, for example, consider the maximum and

minimum ofalinear function on-an interval, that is, f:x-*ax +bi c<x

to find Max f and Min f These occur at the ends of the interval (extreme

points) which leads well into the optimization problems to be encountered in

8th and 9th grades. Also some work with systems ought to occur.

Assuming that the 8th grade is based on the kind of material in this

Appendix and in the outline on.pp. 316-318, we can proceed to a 9th grade

syllabus in thia topic. It is suggested that a natural topic is convexity and

.particularly polyhedral convex sets as defined by the intersections of half-

planes. The problem. bf Maximizing or minimizing linear functions defined on

such sets should be the focal point of the treatment and it should. 'be bz-

that these occur at extreme points of the set.
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This topic would be a good bridge to the vectors and linear algebra of

the 10th grade and is of considerable interest both mathematically and for

'applications.

Linear programming examples ought to form the bulk of the problem material

involving applications. However, one should not go beyond two variables and so

there is no need to present the simplex method. However, this would be a good

topic for the 10th grade together with more variables and a general algorithm

for solving systems of linear equations (Gaussian elimination). Flow charting

should be used in the 10th grade to specify the algorithms and here is an

excellent point to emphasize numerical analysis and introduce computer pro-

gramming (see Dorn-Greenberg, Chapters 1 and 2).

6. Some Thoughts on the "Student's Manual" to Accompany tb-- Teacher's Text

for Model-Motivated Mathematics (2).

There seems to be some basis for the claim that students in Grades 7-12

(and beyond) do not read, or read only the minimum required to do their

assignments. It also seems that a 3M presentation is largely in the hands

of the teacher and it is for her or him that the text will be written.

Accordingly, what is it that is to be produced in print for the student?

As a start, here is a list of same possible purposes of the material

printed for the student, assuming that what goes on in the classroom

thoroughly involves the student as an active participant:

1. To consolidate the gains in the classroom and summarize content

for clarification and review.

2. Provide additional practice with more and varied problem material.

3. Provide special material for more talented students.

One can (probably perilously) jump to the conclusion that no expository

text material of, the usual kind is needed. This does not-mean that a list of .

problems of the usual kind is what is needed either.

An acceptable and perhaps even ideal solution for our purposes is suggested

0. the Learning Mathematics books. (Shropshire Mathematics Experiment - Penguin

Looks; see SMSG library).1THere we apparently find no exposition, only exercises.
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However, on closer inspection we find that the exercises in each section

tain all the instructional material. These are so arranged and graded that

in working through them the effect is cumulative instruction combined with

problem solving. Because the exercises constantly involve new ideas ard

techniques they are challenging and. can be expected to develop the student's

ability to reason mathematically.

One of the impressive features of these books is their casual (one mi

say, cool) and concise way of introducing new material. This is almost forced

by the format. As a result there is genuine and visible progress from exercise

to exercise, page to page.

Clearly, to devise an exercise book of this kind is a most difficult thing

to do. The reason is that we usually write a chapter of a-text first and then

supply, the exercises. At this point and only at this point, however, do we

know what the chapter contains. If we want to produce student material for a

3M type of course perhaps we ought then to throw away the text (or maybe give

it to the teachers) and redo the exercises to incorporate what is essential in

the text. This would be doing for the student in a conscious way what he

instinctively tries to do for himself.

It might be worthwhile to produce a sample of this kind of student material,

perhaps to accompany the 3M kind of text material (mainly for teachers) that

is in this Appendix on linear systems. This kind of material in the students'

hands for homework would seem to be an ideal complement to the classroom situa-

tion in a 31 style course. A test of student use, acceptance, and learning

from such material would be interesting.

7. Two Pairs of Physically Stated Dual Linear ProgramminE Problems.

Two items worth doing or considering, among the others suggested in

Grade 9, Chapter 3, Systems of Sentences and Optimization, is (1) to pick some

problems which are really isomorphisms of each other, e.g., the single commodity

transportation problem (steel), the naval task force problem (Section 3 of this

Appendix), and the personnel assignment problem and (2) to pick some problem

pairs which are dual problems, While it is not recommended that algebra of

duality be gone into, a remark about duality being a no+ion appearing frequently

in various places in more advanced mathematics is probably j Drder. The fact;
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FILMED FROM BEST AVAILABLE COPY

1.. Eter Oh-fldren 4r. Each Book of

.T'rc)a.-,ammed Ma7.hematics C=iculam5 Snown cy Weeks

Ari1 Apri1 April A'Qril May May May May May 29- June Ju-.e

10-1 17-21 22-28 1-5 8-12 15-19 22-26 June 2 5-9 9-1

6c 1

,

2 2 _L

1 2 2 24, 1 1 1

06 2

_L

9B -L.

1.2A
, 2 2 4 1 1

14B 1 1 r. 3

15A S 1 1

153 4 .1_ 1 1

16 , i. 7 0 5_L- - 5 2 1

17A

17B

6 `,-
,,, 1 -

, 20 ,
,.., 5 20 2

.,

1

4

3

L.

--,s

4

18A 8 11 ,-(,*N 2 2 2 3 2 1

18C 12 5 ., 5 1 1 2

18B 8 14 6 7 3 5 2 2

19A L. 8 4 4 3 3

19B 8 i.
., 4 , 3 1

20A i 4 6 13 7
, 3 4

20B 1 ., 9 6 5 7 8

21A

21B

1 2

i.,-.,

1

5

1

5

1

1

1

1

22A 2 6 6

22B 4 4 9

22C 2 1

23A 1 2

23B 4 1

24A
, 4.i_

24B 2

25A

25B 2

* Two children enrolled, started in Book 8.
** One daild enrolled, started in Book 18A,
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In a well planned overall operation the inequalities are actually equalities.

The total production of the furnaces is also the total of input capacities of

..the foundriesc We will assume these conditions. Thus

(6)

(7)

and

Dual.

x.. = a
i '"

x = b

ai=Z b. .

Entrepreneur enters the scene again. Because of a certain tightness in

the market a grey market in steel has arisen. The entrepreneur, however, knows

of cert in alternative sources of supply at the foundry sites and of certain

customers demanding steel at the cities where the furnaces are located. Thus

he offers to take the steel off General Steells hands at the furnace sites at

a pri_e of p
i

per ton and supply "grey market" steel at the foundry sites j

atapriceof qj .per ton. Clearly no deal results unless

(8) - pi + q < c ;
j ij

where pi and qi are non-negative0'obvioutly. The entrepreneur must aupply

b tons at foundry j and buy a
i

tons at furnace site i Thus his

J
enterprising venture with General Steel brings him a salet return of

(9)

which he wishes to maximize.

(-ai)pi + biqJ

We note once again that the coefficients in (5) become the right-hand sides

of the inequalities (8) and, writing (6) as

(61) - Z = -a.xij

e see that the right hand sides of (69 and (7) becoMe,the coefficients

of the objective function (9) .: Also the matrix associated with the system

(6t) 7 (7) has as its transpose the matrix associeted With (8) . ThUs again
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we get a physically stated dual problem.

The model making aspects of these problems should be made explicit. The

assumption of negligence of certain characteristics to make the mathematical

solutions feasible should not escape mntion. For example in both pairs of

problems the commonly occurring situation of lower unit prices for large

quantities (either bought or shipped) is assumed not to happen. (Actually

with more sophistication this can be dealt with also.) Another assumption

in the steel shipment problem was that only one grade of Steel vas shipped.

Usually there are different kinds, making a multi-commodity problem or,

instead, possibly several separate problems.
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