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Preface

In the summer of 1966, a committee of mathematicians and mathematics
teachers met for four weeks to formulate preliminary recommendations for the
curricular experimentation which the SMSG plans to carry on during the next
few years.

During the academic year, 1966-67, a team of four writers used the Grade T
outline produced by the summer outlining committee as a gtarting point in writ-
ing & text for that level. The text that evolved showed that some of the out-
lines were adhered to without change, some of the outlines were revised, and
some replaced by newly constructed outlines.

A team of mathematicians and mathematics teachers met in a three-week
fore. The majority of the members in this 1967 committee had also participated
in the outlining sension in 1966. In carrying out the functions of formulating
and revising further recommendations for curricular experimentation, a review
was made of the Grade 7 text that had been written. Reports and reactions to
the various chapters in the text were discussed. From the discussions, comments,
‘and constructive criticisms of the Grade 7 text, came many suggestlons: (1) for
teachers trying out the text 1967-68, (2) for revision of the text, (3) for
moving some of the material to later years, and . (k) for revision of the out-

lines for Grades 8 and 9.

revision team was produced, but these documents are reproduced separately. One
section of this report shows the 1966 tentative chapter headings and the 1967

revised chapter headings side by side so that guick comparisons can be made.

The comnletion of the detailed outlines for Grades 8 and 9 was only part
of the task. At the same time, much work and thought were being given to the
possible seguences of courses for Crades 10-12 for the various types of college

capable students. One of the documents spells out many possible sequences.

There was considerable feeling in the group that careful attention must be

given to pedagogy in the writing. Another center of emphasis was in using
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Aruitoxt provided by Eic:

" Some

real Life =ituvations that reguire mathematics" as notivating factors.

documents i1llustrate these points.
The remainder of this report gives broad tentative outlineg of what might
included in the Grades 10-12 block. First come several suggestions for a

This is followed by three different suggestions

one-semester deduchtive block.
for two or three semesters of vector peometry, linear algebra, and elementary
funetions. Although there was not complete agreement that the senilor year

should be elementary fimetions and caleulus, that is the outline that was pro-

duced.

Three appendices complete this report. Appendix A is a collection of

geometry problems that hopefully will be sprinkled through the Grades 10-12
sequence. Appendix B keeps the idea of modeling before the ocutliners and
writers. Appendix C shows how a chapter on systems of linear equations and

inequalities might be introduced using a linear programming problem.
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Miscelleneous Items of Information

l. A separate document has been prepared for the use of teachers who

with this tryout.

2, A separate document has been prepared for the use of the team that
wlll be revising the Grade 7 materials, and other people directly concerned
with the revision.

3. The Grade 7 writing team produced a separate document called
"Suggestions on Where to go with Flow Charting in Grades 8-9" which is available

for the use of the writing teams.

[



Contents of Grade T

Chapter 1 - The Structure of Space
1. Intreduction

1-2. Points

1-3. Space

1-4, Lines

1-5, Planes

1-6. Intersections

1-7. Intersections of Lines and Planes
1-8. Segments

1-9. Separations

1-10. Angles

1-11. Triangles

1-12. Curves, Simple Closed Curve
1-13. Convexity

1-14. Orientation on a Line

1-15. Orientation in the Plane
1-16, Orientation in Space

1-17. Summary

Chapter 2 - Graphing

2-1. Iocating Points in a Plane
2-2, Coordinates on a Line
2-3. Coordinates in the Flane

2-4, Graphs in the Plane

Chapter 3 - Functions

3-1. Introduction

'3;9, Some Examples of Functions

3=3, Methods of Representing Functions
3-Lk, Interpretations from Grephs

3=5. The Identity Function

3-6. Step Functions

MYy




Chapter 4 - Informal Algorithms and Flow Charts

4-1., Informal Algorithms and Flow Charts
h-2, Algorithms, Flow Charts and Computers
4=3,  Assignment and Variables

4-4, Using a Variable as a Counter

4-5, Decision and Dranching

4-6, TFlow Charting and Division Algorithm
4=-7, Making the Division Algorithm Practical

Chapter 5 - Rational Numbers

5-=1., Negative Numbers

5=2, Opposite and Sigrnum Functions
5=3. Absolute Value Functions

5-4,  Maximum

5=5, Addition of Rational Numbers

5=T, Functions Using Addition

5=8, Products with One Negative Factor
5=9. Multiplying Negative Numbers

3-10. More Products of Negative Numbers
5=11, Multiplicative Inverce

5-12. BSubtracticon

5ﬁl3. Divieion

5-14, Computations Using Rational Numbers

Chapter 6 - Structure

€-1. The Rational Number System
6-2, Fields

6-3.- The Minus Sign

6-4, Order

6-5, Betweenness

Chapter 7 - Equations and Inequalities

T=1le Introduction
T=2. Equations as Models of Real Life Problems
7=3. A Systematic Method of Solution




Tl

T=5
-6,
7T

Streamlining Our Method of Solving
Simplifying
Inequalities and Lem-nade

Graphical Solution of Equations and Inequalities

Chapter 8 - Congruence

8-1.
8-2.
8-3.
8-k,
8-5.
8-6.
8-7.
8-8.
8-9.
8-10.
8-11.
8-12.
8-13.
8-1k4,
8-15.
8-16.
8-17.
8-18,
8-19.
8-20.
8-21.

A Road Building Problem

Congruent Segments and Congruent Angles
Copying Triangles

Congruent Triangles and Correspondence

Some Applications of Congruence

Congruent Figures and Motions

Translations in the Plane

Rotation

Reflection

Congruence of a Figure with Itself

Writing a Proof

Addition and Subtraction Properties for Segments
Addition and Subtraction Properties for Anglés
Bisectors and Perpendiculars

Construction of Rhonbuses

A Useful Property of the Rhombus

A Shortest Path Problem

Medians of a Triangle

Angle Bisectors of the Angles of a Triangle
Altitudes of a Triangle

Perpendicular Bisectors of the Sides of a Triangle

Chapter 9 - Number Theory

Qilc
S9-2,
9'3;
9“41
9-5.
955;
9'7;
9"8-

Pails of Water

Common Factors

Prime Factorization

The Euclidean Algorithm

Pails of Water ".ain _

A Representation of the Greatest Common Divisor
A Fundeamentsl Theorem

Summary



Chapter 10 - Measure

10-1. Measurement

l10-2, Standard Units of Length

10=-3. Approximation

10-4., Circle, Radius. Diameter

10-5. The Number, n

10-6. Applications .nvo.ving w«

10-T. Angle Measurement

10~8. Sum of Measures of Angles of Triangle

10-9, Applications

10-10., Measure of Central Angle of a Cirecle

10-11. ZEquivalence of Regions

10-12. Reglons Eguivalent to Regions Bounded by Regular Pelygons
10~13. Rectangular Region Equivalent to a Given Region
10-14. Equivalence of Regions in Space

10-15, Comparison of Measures of Set and Subset

Chapter 11 - Probability

11-1. Introduction

11-2, Uncertainty

11-3, TFair and Unfair Games

11-4. TFinding Probabilities

11-5. Counting Outcomes; Tree Diagrams
11-6. Estimating Probabilities

11=7. Probability of Union

11-8, Mutually Exclusive Events

11-9. Probability of Intersection

Chapter 12 - Parallelism

12-1, Parallel Lines in the Plane

12=-2, Rectangles

12-3, Transversals

12-h, Parallels and the Circumference of the Earth
12~5, Triangles '

12«6, Parallelograms

12-T7. More About Parallelograms

\)‘“ f ,,,EO




12-8,
12-3.
12-10.
lgall-
lgslgl

Chapter
13-1.
13-2,
13-3.
13-4,
13=5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.

Chapter

14-1.
14=-2,
14-3.
14-4,
1h4-5,
14-6,
14-7.
14-8,
14-9,
1k=-10,
14-11,

Families and Networks of Parallel Lines
Dividing Segmentc into Ceongruent Parts
Triangles and Families of Parallel Lines
Networks and Coordinates

Parallels in Space

13 - Similarity

Scale Drawings

Similar Triangles

Multiplying Geometrically

How a Photo Enlarger Works
Similaritiez in Right Triangles
Slope

Lines

Parallel and Perpendicular Lines
The Meaning of Percent

Using Percent in Solving Problems

Summa.xy

14 - Real Numbers

Distance

Pythagorean Property

Proof of Pythagorean Property

Back to Distance

Real Numbers

Square Roots and the Pythagorean Property
Operations with Real Numbers

Decimal Representations of Real Numbers
Decimal Representation for Rational Numbers
Periodic Decimals

Summe. vy
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1966 and Proposed 1967 Seguence of Chapter Headings
for Grades 7, 8, and 9

(1966)

The Structure of Space --

Grade 7

Nonmetrical Properties
Graphs, Functions, Variables
The Positive Rationals

The Set of Rationals
(Alternate Version)

The Set of Rationals, Solution
of Mathematical Sentences

(Altermate Version (continued))

Congruence (Replication of

Figures)

Measure

Ratio and Similarity
Combinatorics and Probability

Rational Numbers, Graphs of

Functions

Graphs of Linear Functions:
Variation (Alternate Version)

(To accompany "Alternate Versions"
of Chapters 3, 3%)

Solutions of Systems of Equations
and Inequalities

Decimals, Square Roots, Real
Number Line

Parsllellsnm

1.

9.
10,

12,

Grade 7 (1.967)

The Structure of Space
(suggested, 1-12 and 1-13 be
moved to Grade 8, Ch. 9, and
1-1k, 1-15, 1-16 be moved to
Grade 8, Ch, 4)

Graphing

Funetions

Informal Algorithms and Flow
Charts

Applications of Mathematice and
Mathematicsl Models

Rational Numbers

Structure

(Suggested, 61, 6-2 be moved
to Grade 9, Ch., 12; a lighter
treatment should be given here,)
Equations and Inequalitles
Congruence

(Suggested, 8-7, 8-8, 8-12,
8-13, 8-18, 8-19, 8-20, 8-21

be moved to Grade 8, Ch. 4)

Number Theory
Measure
Probability

Parasllelism
(Suggested, 12-4, 12-7 through
12-11 be moved to Grade 8, Ch. 9)



9.

10.

11.

13.

Grade 8 (1966)
Perpendicularity
Coordinate Systems - Distance

Displacements (Suggested,

move to Grade 9, Ch. 6)
Problem Analysis (Strategies)

Number Theory

(Moved to Grade 7, Ch. 9)
The Real Numbers Revisited -
Radicals

Truth Sets of Mathematical

Sentences

Quadratie Polynomials as Functions

Probability (No outline in 1966)

Parallels and Perpendiculars
Properties and Mensuration of
Gecmetric Figures

Spatial Pefeepﬁian and iocus
Systems of Equations in Two

Variables

13.

1k,

7.
8.
9.

10.

Grade 7 (1967)

Similarity
(Suggested, 13-3, 13-4 be
moved to Grade 8, Ch. L)

Real Numbers

(The material in 6-1 and 6-2 on
the Rational Number System and
Fields should be touched lightly
here, Te wait until Grade g,
Chapter 12 te talk about extend-
ing the number systems i= too

late,)

Crade 8 (1967)

Perpendicularity
Coordinate Systems - Distance
Problem Analysis

Congruence and Similarity
(Some of material to come from
Grade 7, Chapters 1, 8, 13 as
indicated under Grade 7 (1967))
The Real Numbers Revisited -
Radicals (A little on structure
of the system from Grade 7, Ch. 6,
6-1 and 6-2 might come in here,)
Truth Sets of Mathematical
Sentences

Quadratic Polynomials as Functions

Probability

- Parallels and Perpendiculars

(Include some of material in
Grade 7 (1967), Chapters 1, 12,)

Properties and Mensuration of

Geometric Figures



10.

1l.

Grade 9 (1966)
Exponents, Logarithms, Slide Rule
Transformationrs

Systems of Sentences

(No outline in 1566)

Systems of Swntences
(No outline in 1966)

Measure Theory

Statistics
(No outline in 1966)

Deductive Heasoning
Vectors

(No outline in 1966)
Circular Twuetions |
Tangency

Measure

Complex Numbers
(No outline in 1966)

Grade 8 (1967)
3patial Perception and Locus

Bystems of Sentences in Two

Variables
Grade 9 (1967)

Exponents, Logarithms, Slide
Rule (1966)
Deductive Reasoning - Logic

Systems of Sentences

Properties (1966)
Statisties
Displacements - Vectors
(Displacement Chapter from 1966
Grade 8, Ch. 3)

extension depending on the re-

This needs some

gquirements for the Chapter on
Vectors and Analytic Geometry or
whatever the next chapter involv-

ing vectors will be called)
Transformations (1966)

Circular Functions (1966)
Tangency (1966)

Measure (1966)

Complex Numbers

(This Chapter should include
some of the material in Grade T,
Ch. 6, Sect, 6-1 and 6-2, A -
lighter treatment of 6-1 and
6-2 should appear in Grade 7 and
Grade 8 before this Chapter on
complex numbers. The idea of
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Srade 9 (19€7)

extending the number system
should not be new to the
student at this point.)



Location of Topics in SMSG Intermediate Mathematics
in the New Outlineg

Crapter ard Topics Location in New Outline (1967)

Chapter 1 - Number Systems

1-1 to 1-T The Rationals Gr. 7, Che 5
1-8 Decimal Representation of Rationals Gr. 7, Ch. 5, 1L
1-9 Infinite Decimals and Real Numbers Gr. T, Ch. 1k

1-10 The Equation x* = a (Exponents,

Radicals) Gr. 8, Ch. 5; Gr. 9, Ch. 1
(¥) 1-11 Polynomials and Their Factors ¢r. 8, Ch. 7 (Quad. only)
* 1-12 Rational Expressions

Chapter 2 - Introduction to Coordinate Geometry

2-1 The Coordinate System (Review) Gr. 7, Ch. 2; Gr. 8, Ch. 2
2-2 Distance Betwees Two Point? Gr. 8, Ch. 2
2-3 Slope of a Line Gr. 8, Ch. 1
(#) 2-h4 Sketching Graphs of Equations (Some in Gr. 8, Ch. 6 -
and Inequalities Most omitted)
* 2-5 Analytic Proofs of Geometric Theorems

* 2-6 Sets Satisfying Geometric Conditions

Chepter 3 = The Function Concept and the Gr. 7, Ch. 2,5, 11 (Treat-
Linear Function ment not comparable, review

probably needed)

Chapter 4 - Quadratic Functions and Equaiians

h-1 to h-11 Gr. 8, Ch. T
* 4-12 Some Properties of Roots of
Quadratic Equations
4-13 Equations Transformable to
Quadratic Equations Gr. 8, Ch. 7

¥ Not yet covered in Qutlines for T7-9.




Chapter and Topics Location in New Owbline (1967)

Chapter 4 - Continued
# L-14 Quadratic Inegualities
* 4.15 Applications

Chapter 5 - Complex Number Systems

5-1 to 3-8 Gr. 9, Ch. 11
* 5-9 Polynomial Equatiocns
* 5-10 Miscellaneous Zxercises

5-11 Construction of the Complex Number
System

Chapter 6 - Equations of First and Second

Degree in Two Varialt _es

* 6-1 The Straight Line (Not in this form)

* 6-2 The General Linear Equation (Not in this form)
Ax + By + C =0 |

* 6-3 The Parabola

* 6-4 The General Definition of the Conic

* 6-5 The Circle and the Ellipse
* 6-6 The Hyperbola '

Chapter 7 ~ Systems of Two Equations in
Two Variables
(*) 7-1 Solution Sets of Systems of Partly in Gr.-8, Ch.
Equations and Inequalities 12

7-2 Equivalent Equations and Equiva-

lent Systems of Equations Gr. 9, Ch. 3
7-3  Systems of Linear Equations Gr. 9, Ch. 3
* 7-4 Systems of One Linear and One

Quadratic Equation
* 7-5 Other systems

* Not yet covered in Outlines for T7-9.

17



Chapter c.ad Topics Location in New Qutline (1967)

el

*Chapter 8 - Systems of First Degree Lguations

in Three Variables

Logarithms and Exponents Gr. 9, Ch. 1 (Not at all
comparable coverage)

*Chapter 9

Introduction to Trigonometry

Chapter 10
* 10-1 Arcs and Paths
* 10-2 Signed Angles
10-3 Radian Measure Gr. 9, Ch. 8
® 10-4 Other Angle Measures
10-5 Definition of Trigonometric
Functions Gr. 9, Ch. 8
* 10-6 Some Basic Properties of Sine
and Cosine
10-7 Trigonometric Functions of Special
Angles Gr. 9, Ch. 8
10-8 Tables of Trigonometric Fﬁncti@ns ‘ ‘
10-9 Graphs of Trigonometric Functions - Gr. 9, Ch. 8
* 10-10 Iaw of Cosines '
* 10=11 Iaw of Sines
* 10-12 Addition Formulas
* 10-13 Identities and Equations

Chapter 11 - The System of Vectors Gr. 9, Ch. 6~
11-1 Directed Line Segments - Gr. 9, Ch. 6
* 11-2 Applications to Geometry
11-3 Vectors and Scalars; Components Gr. 9, Ch. 6
* 11-4 Inner Product
* 11-5 Applications to Physics
* 11-6 Vectors as a Formal Mathemetical
System
* Not yet cofered in Outlines for T7-9.

13




1.

3.
L.

D

1l.

13.

Grade 8 - Listing of Chapters

Grade 8 (1966)

Perpendicularity

Coordinate Systems - Distance

Displacements

Problem Analysis (Strategies)

fumber Theory

The Real Numbers Revisited -
Radicals

Truth Sets of Mathematical

Sentences
Quadratic Polynomials as Functiags
Probability
Parsllels and Perpendiculars

Properties and Mensuration of

Geometric Figures
Spatial Perception and Locus

Systems of Equations in Two

Variables

19
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11.

12.

Grade 8 (1967)

Perpendicularity

Cocrdinate Systems - Distance
Problem Analysis

Congruence and Similarity

The Real Numbers Revisited

Radicals

Truth Sets of Mathematical
Sentences

Quadratic Polynomilals as
Functions

Probability

Parsllels and Perpendiculars

Properties and Mensuration of

Geometric Figures
Spatial Perception and Locus

Systems of Sentences in Two

Variables



Chapter and Topics Location in New Qutline (1967)

Chapter 12 - Polar Foim of Complex Numbers Gr. 9, Ch. 11 (?)
*Chapler 13 - Sequences and Serius Gr. 12, Ch. 1 (?)
¥Chapter Lh - Peimutations and Combinetions (Prob. Stat. Semester)

and the Binomial Theorem
*Chapter 15 - Algebraic Structures

* Not yet covered in Qutlines for 7-9.

15
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Notes for Grade 8 Writing Team

1. It has been suggested that Grade 8 (1966 Outlin=>), Chapter 3,
Displacemerts, be moved to Grade 9, Chapter 6., This seems to be a good nove,
but the article "Vectors in the 7-9 Outline" which follows these notes,

DPDe 17, raises some guestions that must be resolved by the writing tear

If the total amount of material to be taught in Grade 8 still allows some  me
for the Displacement Chapter then the group felt that at least an introwuction
should be given in Grade 8, In that case, Grade 9, Chapter 6, Displacements -
Vectors, could be extended somewhat to prepare for the treatment of vectors

and analytic geometry in the Grades 10-12 block,

2. In a separate document on Revision of the Grade 7 Text there is a
suggested revision of Chapter 8 - Congruence, Section 8-7, Translations in the
Plane, and this 1s one of the sections proposed for inelusion in CGrade 8,

Chapter Lg Congruence and Similarity. A check will have to be made with the

Similarity fit together properly with no gaps and a reasonable overlap.

3. Chapter 5, Number Theory in the 1966 Outline, was moved to Grade T,
Chapter 9.

. In this report the section "Polynomial Algebra". pp. 116, will

be of interest to the Grade 8 Writing Team.



Vectors in the 7-9 Outline

Or .winally 1in the 1966 outlining session we had concluded that vectors
were 3¢ important that the ldea should be introduced early and developed in
spiral fashion throughout the 7-12 currieuwlum, The statement that Junier High
School fSclence Teachers were in fact using vectors and would use them more if
studeni.s knew about them, also contributed to our efforte to introduce the ides
early. To that end we had included in the outline for Grade 8 (Chapter 3) a
treatment of vectors as displacements. This was to be followed in Grade 9 with
a chapter which treated operations on vectors, decomposition, connection with

analytic geometry, and the use of vectors in geometric prcofs.

Actunlly no detailed outline was prepared for Grade 9, and the Outline for
Grade 8, Chapter 3, was lifted from one prepared by Moredock and Sandmann, with
some modifications. The Moredock-Sandmann document had been prepa: 4 for the

junior high school level some time prior to the Summer 1966 outlining session.

used in the chapter on Transformations in Grade 9 (Chapter 2 in the 1966 out-
line).

The various changes proposed this summer (1967) for the 7-9 Outline still
retain the idea that vectors should be introduced as displacements and that the
chapter introducing them should precede the chapter on Transformations (Grade 9,
Chapter 7 in the 1967 outline)., However, this timing may be too late to
accomplish the objective of introducing the idea ersrly so that it might be used
in the Junior High Scilence Courses,

It also makes it seem unlikely that we will be able to spiral the idea in
T7-9 and introduce some more formal algebralc properties of vectors and establish
their connection with analytic geometry in the Grade 9 chapter.

This may not be serious, But it will mean that vectors probably should be
treated early in the 10th grade block and in a somewhat more systematic way,
emphasizing their algebrailc properties as well as the geometric idea of a vector
as a displacement,

The writers for the 8th grade this year may want to reconsider whether or

not the displacements chapter really should be removed from the 8th grade

17
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. bne as suggested 1in the changes proposed thils summer. If they find that

the original reasons for two chapters in successive years in 7-9 are not really
compelling, then the spirit and extent of the 9th grade chapter should be rather
carefully considered so as to feed in naturally to the 10-11 block which is %o
use vectors rather heavily in analytic geometry and linear algebra. This is a
rather important consideration and should be carefully considered and settled
one way or the other, rather than having the subseguent development handicapped

by a hasty and precipitous decision at this point.

18
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QUILINES OF GRADE 8 CHAPTERS

Grade 8 - Chapter 1

1966 Outline, pp. 184-191.

Grade 8 - Chapter 2

Coordinate Systems - Distance

1966 outline, pp. 192=-206,

Problem Analysis (Strategies)

1966 Outline, pp. 220-253.

The Use of Functions in Problem Sciving_

1966 Outline, pp. 254-267 Appendix

Grade 8 - Chapter k4

Congruence and Similarity

This chapter has been put in Grade 8 because of the belief in the spiral
development of mathematics, It is also felt that there may be.more geometry in

Grade 7 than can be comfortably completed there.

It is suggested that this chapter include the following material from
the Grade 7 text produced in 1966/67. The Grade 8 writing team should be
careful to build on the revised Tth grade text materials.

- The Structure of Space

Grade 7 Chapter 1

1-14, Orientation on a Line
1-15, Orientation in the Flane
1-16., Orientation in Space

19



E

O

RIC

Aruitoxt provided by Eic:

Lirade 7 Chapter 8 - Congruence

8-7. Translations in the Plane

8-8, PRotations

8-12, Addition and Subtraction Properties for Segments
8-13, Addition and Subtraction Properties for Angles
8-18. Medians of a Triangle

8-19, Angie Bisectors of the Angles of a Triangle

8-20. Altitudes of a Triangle

8-21. Perpendicular Bisectors of the Sides of a Triangle

Grade T Chapter 13 - Similarity

13-3. Multiplying Geometrically
13-k, How a Photo Enlarger Works (It is £ .ggested that the title of this

section be changed to: The Geometry of a Photo Enlarger)

Grade 9, Chapter 7, Transformations, calls for sections on congruence as
an isometric correspondence, and similarity as a ratio-preserving correspondence,
g0 it might be a good idea to introduce this concept here to help get the
students ready for the Transformations chapter, '

This chapter will inelude many "originals" involving congruences and
similarities., Overlapping triangles and other more complicated originals will
be included, One source of challenging problems that might be appropriate in
this chapter is Appendix A, Geometry Problems for the Grades 10-12 Block,
pPp. 215.

This alternate version for Grade 7, Chapter 8, Céngruenée (Seetion 8-7
Translations in the Plane) is an example of the style of writing and the type
of student activity that many of the group would like to see in the text.

Several comments nave been made repeatedly this summer relative to the
Grade 7 materials: "It is heavy-handed"; "It is not WST and DIG"; "It tells
the students(and often tells well) but there is a lack of involvement and
finding the ideas for themselves", '

The following sections are an attempt to explicitly display these rather
general criticisms, For demonstration purposes, a text sechtion was selected
where there was no disagreement with the mathematical content -- the aim of the

alternate presentation was to develop the same ideas but from a different approach.
20
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The section chosen was from Grade 7, Chapter U, on Congruence (Section 8-7
Translations in the Plane). The immediately preceding sectilon has developed
the three basic lsometry motions of the plane in terms of "slide", "turn", and
"flip". The student has worked with many different pairs of congruent figures
and pure word descriptions of using these motions to make the figures coineide,
The following three sections extend these ideas and give a number sense for

description through the use of the coordinate plene.

It is our feeling that the second version presents some exciting potential
for classroom use that is not found in +the other. It is alsoc our feeling that
the second version will develop some self-direction that will make the two
following sections develop more naturally. Our proposal is that both methods
be tried to see if there is any noticeable difference in student reaction and/or
understanding. This could easily be done within the present unit by a simple

page-for-page substitution -~ that is, it is mechaniecally feasible.

Note: For the alternate version, the teacher's commentary might contain the
celluloid overlay idea to be used as supplement and an idea for dis-
cussion ... it might be drawn for the students themselves. Also, the
commentary should contain a discussion of how we are using a finite
point set to lead to a closed figure to eventually arrive at a transla-
tion of the whole plane with the property of congruence preservation.,
It should be stressed that the pedagogically important idea here is to

have the students do the steps and verbalize the ideas ~- not just readt

8-7. Translations in the Plane (Present text version)

Motion may be described in many ways. For example, we can say that a man

~left San Francisco and drove 100 miles north on Route 1. Or we can say that an

elevator in an office building ascended from the first floor to the tenth floor.

Or we can indicate the motion of a flight in space by describing its orbit.

' If we have a wire triangle lying flat on a table,we can slide 1t on the
table in various directions. However, it is difficult to describe a particular
motion. In this section we will see how moticn may be conveniently described

by using a coordinate system.
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B (0,3)
¢ (3,2)

.
(‘Ll‘_:i)

Figure 8-4bL

Since a point is a definite location in space it makes no sense to talk
about moving a point. If we have a different locatlion we have a different
point. .

Suppose, however, that we have a'trgnsgarent celluloid overlay which we
can place on Figure 8-4L, Iet us locate points A, B, and ¢ by making pin-
holes through the cell:loid. Now, let us slide the celluloid nine units to the
right. Then, the pinhole corresponding to vertex A =7 AABC will be at
(-4 + 9,1) or (5,1) . We shall eall this new point A! ., Correspondingly,
vertex B! will be at (0 + 9,3) or (9,3) and vertex C* will be at
(3 +9,2) , or (12,2) . In fact, to every point in the plane there will
correspond another point determined by the slide of the celluloid nine units
to the right. This correspondence is a function. We can describe this function

as follows:

t : P »P', where P is any point in the plane, P! is the

corresponding point in the plane located %y sliding the celluloid

nine units to the rigki.
Or, we can <describe this t.i . - n more compactly, as follows:

t : (x,y) =(x +9,y) .
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We can think of the physlcal motion of the celluloid as & slide, We refer to

the correspondence cf points resulting from & slide as & translation.

B (0,3) B! (9,3)

/> C --'“'J“? s“—'x.:::é
— - O (12,2
= (3,2) ALl e (12,2)

(=h,1) o (5,1) , -

Figure 8-45

In Figure 8-15, AAYBIC' is shown by dash lines. If you draw an arrow
from A to A' and another arrcw from B +to B' +the two arrows will have
the same length and the same direction. In fact, the arrow drawn from any
point in the plane to its image in the plane determined by the function wlll
have the same length and the same direction as any other arrow.

How is LAAYBIC!' related to AABC 7 First, ve.ncte‘that AAYBIC® -is
different from AABC since the points of AA'B!C' are different from the
points of AABC , Second, we surmise that AA*BYC?! is congruent to AABC , IT
we cut out a copy of AABC and place it on AA*B!*C?! we will see that the copy

will fit exactly on AA*BICY and we will cornclude that our surmise is correct.

It has probaﬁly occurred to you thaf a correspondence may exist between
two congruent triangles in the coordinate plane such that one triangle is above
or below the other, You would expect that such a correspondence would involve
differences between the ordinates of points of the original triangle and the
ordinates of points of the new triangle. Let us test our expectation.

Consider AABC , A(-3,-1) , B(1,2) , C(7,-4) , and AA*B'C*' which is
seven units above AABC . Then the coordinates of the images of points A, B,
and C are ' : .

(=3,-1 +7) , or (-3,6) , for A ;
(1,2 +7) , or (1,9) , for B' ; and
(7,=4% +7) , or (7,3) , for CY' .

23
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A*éf-g,ﬁr '\\
('3;6) T~ — >~

Figure 8-L46

The correspondence between the points of AABC and the points of AAYBIGH

is a function. We can describe this function as follows:

u s (x,y) = (x5 +7)

o
o
I

We can verify the fact that AABC = AL'BFC' by cutting out AABC
fitting it on AA'BIC? .

8-7, Translations in the Plane (Suggested Revision)

The motions we have been discussing can be described precisel;

introduce one other factor: the coordinate plane. Follow the directions

carefully, step by step, but see when you can predict the motion.

o 24

ERIC -
29

Vad



Exploratory Exercises 8-Ta

1. Examine the cocrdinates of these two points: A(Ll, 8) , B(6, 8) .
(a) Do the coordinates name the same points? Why or why not?
(b) How do the coordinates of A and B compare?
(¢) Plot these points and tell how they are located with respect to each
other.
2, Draw a set of coordinates and plot
3. Draw the closed figure ABCD .
L, Determine new points from the given points by adding 5 *o each
X-coordinate:
Al2, 1) = AY(7, 1)
B(2, 6) »B'( , 6)
c(3, 3) »c¥(8, )
D(5, 3) =»D'( , )
54 Plct the points A' , B , C' , D' and draw the closed figure AYBICID?
Do the two figures appear to be congruent? What motion could be used to
make them coincide? How long is AA* 7 BB' 7 CC* ? DD? ? How could you deseribe,
in mathematical language, what was done in this problem? (See Figure 8-=4L)

P

B(2,6)

=

-

Bagmmmm
\

Figure 8-4L
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s point, P , and a funetion, t , i
t o (x, v) = (x+5,v),
can you describe the effect of €
nf t on the point, P 1
Fy T

.5

A has coordinates
e

on the coordinates?

What is the effect
(2, 1) , what is the image, A" , of A under t ?
A(E’ :L) e !‘\.”( E] ) -
. What are the images, B" , ¢" , D", of B, C , D, in Exercise 2
Irder t 0T
B(2, 6) »B"T , )
c(3, 3) -+, )
I\( 3 ) - D”( » ) -
We have applied t to four points, A , B , C ;, and D ., Is the function
t restricted to these Tour points? To how many points of the plane may t he
applied? Consider A(2, 1) -»A"(7, 1) and B(2, 6) -»B"(7, 6) . What
nappens to the point. telween A and B under t tT What happens to the
sm@eﬂ,?ﬁ? ‘
[
H H
B
A QAH
Tigure 8-=45
&, Suppose we have ancther function, u , defined as follows:
uz: (x, y) »>(x=-5,v) .
Is this function the same as t 2
tle slide that results from applying u .

If not, how deoes it differ?
6

Discuss
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We reler to the correspondence of points resulting from & sllde with no
viening as a branslstion of the planes. It maps each polnt of the plane to a
new point, and 1t maps a given figure to a congruent figure. Introducing this
Mmntion, we can now slide things precisely. But so far we can cnly translate

3 ~ht and left. What other transzletions can you suggest?

9. Give a function that you think will slide the given figure 7 unlte

upward.
v i (%, v) —=( R ) .

N
I\
by
[IEAY
A
i
l \
I A
| P
] -~
! g
i -

-~
L -~

Figure 8-46

Try using your answer on problem 2 and see if you get the expected results.

Now be inventive: give a function that will translate the given figure

10 units to the -ight and 4 units downward, Try it only if you are uncertain.

W (x, y) = ( s ) .

ERIC
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Grade 8 - Chapter 5

The Real Numbers Revieited - Radiecals

It is suggested that a light trestment of the structure of the various

numbzr systems might be included here. In particular some of the material in
Grade 7, Chapter 6, Sectidns 6-1 and 6-2 may be appropriate.

The writing team hag three deciments to consilder in writing this chepter.

(1)
(2)

(3)

The 1966 Outline, pp. 274-279.

Real Numbers, Measure, and Congruence for the Adolescent. This
document followe (3) below on pp. 322.

The following suggested revision of the 1966 Outline for this
Chapter was submitted, but was not “iscussed by the group. It is
inzluded here for the information of the writing team. The group
was much concerned about the presentation of the real numbers, and
they desired that the material in this suggested revision be

considered by the wrlting team.

Real Numbers

(Suggested Revision of Outline)

1. Points and Numbers

l_li

ERIC
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Coordinates on a line, (For certain purposes a positive ray or
a segment are more to the point.) Review of % as a location
specification, as in ( '
m
0 n 1 m
. LY. - — —
- P
0 1 1
n
or
L m
8] n n 1 m
e — .
0 1 m n

28



Relation of coordinates toc congruent segments on a line (or on a

pair of lines with congruent unit segme .ts)

0O 1 b2 x

(?) (?)

P

C 1 ha

b

Significance of coordinates on lines with non-congruent unit
segments, via similarity. Sample problem: locate the point on

M with coordinate x .

1-2. Successive subdivisions of a segment.

Relation of point with coordinate x to that with coordinate [x]

to permit restriction to [O,l] . Decimal and dyadic subdivision

sequences,
x L 3
0 4 2 I
r S E— — S——
L R L R L R
L - —~ R - L —
_— L —

This interval has the specifications: RIR or 101 .

The decimal and dyadic numerals for rationsls.

2%
O
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(dyadic) as an infinite set of

Interpretation of (say) .10
i.2., RLRLRL-~-- ., The nested

gpecifications for = point:
interval axiom as a working principle.

Exhibition of specifications for irrationals.

Problem: specify an irrational bhetween
l,lOO i 101
(3) and (5) .

2. Geometry of Number Operations

Displacements on & line and their coordinates

g-li
x
8 a + X

Real number addition defined in terms of displacements; the

negative reals and the real. opp (opposite) function.

-2. Products of real numbers.

no

[Note: Several approaches suggesi themselves; for example:

(i) triangle similarity as in

(ii) wunit change as in

0 1 y
0 x 1

(iii) rectangular ares measure, Each rectangle is assigned

£+ w.]

ERIC 35
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The "betweenness=continuity'" property of multiplication, possibly
in the following form: =z — xz maps segments of length d onto
segments of length less than nxd for a sultable integer N, e
The ordered field properties.

[Option: computation problems with decimal or dyedic numerals. ]

3. Squares and Sguare Rcots

3-1. Real numbers as measures.
The rectangular ar - formula. The congruence and partition

properties of area. Analysis of the figure

to ascertain the reasoning which leads to A(s) =2 .
The Pythagorean theorem reviewed.

Location of v2 , V5 , Y10 , etc.

The area of right triangles.

3-2, Square roots. The character of the image of the rationals under
the squaring function. Does every positive real number have a
square root? [This can be handled by a geometric construction, or
a betweenness-continuity argument which can be glven algorithmically

as, for example:

2 -
Let x, =1, 2 =3 . Compare (2) with 3.
3 7,°
Let x, =% , 2, = 2, Compare (E) with 3 .
v = - 2 e e - = =
Let x3=£,23—2_ i,
Now \ [x,,2,1 = V3 .1

Problems involving numbers generated by square roots over the
rationals; as for example:

(i) Which is larger i3j§—£ or ﬁ ? /3 = /2 or % 2
J§ + /2 or JE ?

Q 31
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(i1i) Which of the following are —ational anl whic.. are

(/7 - _ P 7
irrational; 3 1 , (V3 + l)g , V12 - 7

2
(/3 - )3 v VE) 2

3

(iii) Tihe points cbtainable from a subdivision of the interval
from O to V2 are those of the form V2 where r is
rational. Which of these are rational points? Is ¥§
among them? Is L among them?

V2
The relation between arithmetic and gecometric means; area

[Note: Cube roots can easily be added to this chapter.]

The 1967 Outlining Group urges that the following criticisms and sug-
gestilons be considered carefully in the revision of Grade 7, The writers of
Grade 8 are urged to note these suggestions and criticisms of the treatment of

real numbers, measure, and congruence in Grade 7.

Real Numbers, Measure, and Congruence

for the Adolescent

A review of several chapters of the seventh grade ranuscript leads me
to conclude that an adequate position has not been formulated and consistently
pursued in regard to the fundamental notions listed in the title. If it is
agreed that the treatment in Grade 7 should connect with the stage reached at
the end of SMSC Grade 6 and should anticipate the more mature formulations to

come, then the current work invites amendment.

Real Numbers. In the elementary school there are no real numbers. It

on a coordinatized line there corresponds a measure (or coordinate), but there
iz yet no evidence of incommensurability. The attitude of the seventh grade
text may be dlsputed, but for the most part 1t appears to suppose that the
real numbers are there -- as displacements or congruence classes of segments ==
and that properties established for the raticnals extend to the reals. Nothing

is said, however, to clarify and support this position. More important, the
32
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questions relating to the reals are deceptively finessed.

For example, it appears to me that the significance of the Pythagorean
theorem (Chapter 14) is blurred and the argument for it contaminated. What
iz meant by the length of the hypotenuse? More to the point, what is its
square and what has that to do with the area of a square on the hypotenuse?
A very reasonable conclusion of the argument in its present setting is that
the hypotenuse has no length.

Earlier, in Chapter 20, there is an opagque reference to the circumference

of a circle as measured by its radius, sumarizable as follows:

(1) it is a number;
(ii) it is not a rational number;
(iii) it is therefore expressible by an unending decimal;
(iv) it can be approximatel to any degree by rationals.
It seems to me that a foundation sufficient to give wmeaning to any of
these statements has not been laid.
In Chapter 14, which professes to deal with real numbers, the treatment
is evasive; e.g., real numbers are not clearly related to points of a line,
operations on real numbers are not defined (the field properties are ultimately

postulated) and the significance of an infinite decimal is not discussed.
I urge that the rationale which led to this unsatisfactory climax and

Measure and Congruence. The attitude toward real numbers has implications

for the treatment of measures, as noted above. Congruence is the bhasic link

and the current treatment of these connections raises additional guestions.

In elementary school congruence is taken directly from perception and
hence is basic, Rational measure values (length, angle, area) are specifiable
in terms of congruence. In Chapter 8, however, it is asserted initialiy
without amplification that congruent segments (angles) have the same measure.
Later the converse is used without comment. The argument for the congruence

of vertical anglec includes:

(i) Every angle has a measure and angle sum corresponds to number

sum, (unstated);:



(ii) wvertical angles have the same measure (by subtraction, this
is explicit):
(iii) hence vertical angles are congruent.
This attack seems dubiocus in ang; ntext but particularly in a chapter in
which measures can, and perhaps should, be avoided altogether.
Again in Chapter 10 (measure) angle measurement is introduced with:
"Having agreed on a unit of measure we may say that two
angles are congruent if they have the same measure."
The raticonale for this essentially circular approach is not clear particularly
in a pre~real number setting.
All +this suggests more thought be given to:
(i) +the transition from rational to real measure values, and
(ii) +the origin and development of the characteristic properties

of measures.

Grade 8 - Chapter 6

Truth Sets of Mathemstical Sentences

1966 Outline, pp. 280-281,

Grade 8 - Chapter 7

Quadratic Polynomials as Functions
1966 Outline, pp. 282-286,

Grade 8 - Chapter &

Probability
This chapter was not outlined in 1966. The following document, Probability
was produced this summer (1967) for the

and Statistics for Grades 8 and 9,

guidance of the writing team. The
that has been produced and must decide how to make the transition te Grade 8.

Q 34
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The prouc seemed in rfavor of tne revised outline, but there was no strong

el dlrective.

Yhe docunent, Provability and Statistics for Grades 8 and 9, in a sense
upercedes the next document, Frobabllity and Statistics, Grades T, 8, 9, 10 o:

The second document is included here for the information of the writing
n

it contains good ideas that should not get lost.

Probability and Statistics for Grades 8 and 9

The suthors of this document gquestion the feasibility of the approach
toward probability taken in the Outline and already implemented in Grade 7.
Our greatest Tear 1s that the student will not see that a probability model
is constructed to reflect a physical situation. More important, the student
should understand that the assignment of probabilities, while arbitrary,
reflects the physical situation as delermined by experiment. Why, in a coin
tossing game, is the & priori probability for heads chosen to be % ? What
arguments could a Tth grader advance to refute the following argument: If
two coins are tossed there are 3 outéomes possible (2 heads, 2 tails,

or 1 of each) and that hence each should be assigned thé probability % ?

We belleve it is more natural to approach Probability and Statisties

Trom the standpoint of statistics and an elementary analysis of a collection

of data. The following outline suggests a possible treatment for Grades 8
and 9 e

(We do not feel sufficiently competent to provide & detailed ocutline for
the high school course in Probability and Statistics.) Our grand goal for
Grade 9 is not so much a command of the calculus of ;zuhebilities as it is
feeling for the strengths and weaknesses of assertiong Like:

l. Toothpaste A is significantly more efisctive in preventing

tooth decay than toothpaste B .

2, Iung cancer can be statistically linked with cigarette smoking.

3. The likelihood of rain today is 60 percent.
L, The average 15 year old boy weighs 105 pounds and is 5%10" tall.
5. Should I purchase a car battery for $20 which may last 18 months
Q or one for $3O which may last 30 months?
(&) 35
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[ Two radio signals are heard on the same frequency. One is code Trom
a Russian satellite, the other is neise from outer space. How can
we ldentify which is which?

T. A plastic toy manufacturer uses a machine which unfortunately pro-
duces defective toys 10 percent of the time. He is considering
buying a new machine at the cost of 10,000 which will produce his
toy and which is claimed to have a defective rate of only 5 percent.
How should he decide if (a) the new machine has a defective rate

less than 10 percent, and (b) it is an economical replacement?

GRADE 8.

1. Frequency Distributions.

1-1. Data from observations where the entire population is known, Select
examples which can be developed by the students,
(1) Heights of class members.
(2) Distance class members can throw a balil.,
(3. tanding broad jump.
{2! "= scores,
{*) @Di-“hdays =~ by the month.

L

Y lumber of children in families of class members.

LA

i

(7) Age of students in months.

(8) Number of letters in last name., (Also first name. Compare, )

(9) Vowel frequencies in newspapers, Compare English and foreign
language papers.

(10) Measurement. With a ruler marked in millimeters, let each
‘student measure a line segment of about a yard.

(11) Estimate midpoint of & line segment of about a foot by eye.

Then measure the estimates.
(12) Weight of apples (or oranges) in a box.

1-2, Graphs of data., Grouping of data (give rules or thumb). Continuous

model?

36
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1-5.

1

nelative frequency. Cumulative freguency.
Raise lots of questions about the properties of the distributions
discussed above.

Mean, Mode, and Median.

Develop as numbers which describe the total distribution; that is,

as examples of number valued functlons of the set of distributions.
Give different distributions with the same mean.

Percentiles.

Rescaling: If, for exemple, in the ball throwing experiment, the
distances range from 60% to 150" , we could shift the origin so
that the range is =-45 to U5 or we could rescale so that the
range of values ie =1 te 1 . Compare a shift of the origin
with change of scale of the axis., Try out both on examples in
Section 1-1. Contrast scaled and unscaled distributions of
Examples 2 and 3.

Variance and Standard Deviation.

Treat as further examples of numbers which describe the whole
distribution. Compute for the varicus distributions in Section 1-1,
Ask for commentsl?

Change of scale effect on variance and standard deviation.
Looit to Chebychevls inequality but don't emphasize.

Subpopulations (Samples).

For example, select out distributions for both boys and girls in the
examples in Section 1-1, Plot both distributions on the same graph.
Compare. Compare with whole, Compute means and standard deviation,
Repeat when, for example, the subpopulation consists of those with

first initial A - L and with first initial M -~ Z.

Samples.

Treat as similar "hunks'. Show how some of the examples in
Section 1-6 seem to reflect total distribution while others do not.
r-ngre means and standard deviation., Can these samrie statistics

be used in prediction?

37



1-8, Measurement -- Distribution of Errors

Approach from the point of view of comparing different groups of
measurements of the same object., Example: Have the class measure
with a ruler marked in millimeters & line segment about & yard long.
Now consider different subpopulatione of different size as though
they had determined the length of the segment. Compare. Do not
try to suggest that an under " ying distribution for the errors in

measurement might exist. Just treat it as, "This is what we got'.

GRADE 9.

-
.

2.

ERIC
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Examples from Bernoulli Trials.

Coin tossing, spinners, thumbtacks, (Pick up link with Grade 7.)
Perform say 100 “rials of coin teossing 20 times. Compute means and
standard deviation of these 20 experiments. Repeat the experiment
with different sample sizes than 100 . Compute the means and gtandard

deviations == relate to size of =zample.

Probability Models.

Take another look at Grade 7. Treat as modeling proﬁlem.
Construct Probability space - Even“ space.

Assignment of prcbabilities.

Elementary calculation of probabilities.

Give tables for the binomial distribution to avoid complications of

sophisticated counting.

Elementary Testing of Hypothesis.

The teacher presents statistics from the spins of an unknown spinner.

How is thé area of the spinner divided?

An ESP experiment with coin tossing: Is the subject doing
"significantly" better than he could by guessing? Develop notion of
maximm likelihood from the point of view of rejection-acceptance tests.
For example, with the spinner problem with a 90 percent confidence we
might reject the hypothesis that the distribution was l/h = 3/& and
accept that it was 1/2 = 1/2 « We might also accept a great many others

and reject a great many. Whic sesms most favorable?

38
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Co back and pick up examples Trom Section 1-6, If a student?s
performence 1s given can we decide whether the student is male or femsle?
Suppose, for example, we know the distance of the s! udents standing broad
Jump. Ome way of reducing the complicated distribution of distences to a
Bernoulll trials situation ie to make s pairing of the boys and girls,
For each palr, record a 1 1f the boy's score exceeds that of the girl,
and -1 otherwise. Refinements in the method of pairing can bring out
other interesting phenomena. For example, is height a key factor in the

standing broad jump? Match the pairs so that they have the same height.

Problems Requiring more Complex Computations of Probabilities.

Problems where there are more than two outcomes,
ESP experiments where the subject calls the cards from a deck of say
12  cards. When is a long run of successful guesses significant?'
Dice (or a suitable euphemism).
Independence of trials.
Selection without replacement.

(In this section we would continue the emphasis to a test of hypotlieses.

These experiments will leail to the next section where the counting tools
are developed.)

Combinatorics -- Systematic Counting.

Inclusion-exclusion principle.
Multinomial coefficients.

Tree diagrams.

Conditional Probabilities,

Independence of tests,

. Random Variables.

Return to Grade 8 type of examples and read off various functions of
the distributions. Use Bernoulli trials. Discuss the R. V. which is the
number of tosses before the first head.

Expected value, Expected value of a sum of R, V. is the sum of the
expected vaiues_ Use this as an aid in determining probabilities and in

the combinatorics of Section 2.



8. Correlations Between Different Rendom Variables.

Curve fitting -- Distinction between best fit and goodness of fit,

This document, in a sense, is superceded by the previous document,
Probability and Btatistics for Grades 8 and 9. I% is included here For the

information of the writing team; it contains good ideas that should not get

lost.

Probability and Statistics, Grades 7, 8, 9, 10 or 11

GRADE 7. (1966-67 Versicn)

1. Assigning Probabilities to Outcomes.

Bases for equally likely mssignment fair games.

=

=1,
l-2. FProbability assignments based on the equally likely case; spinners,

[

marbles in a Jjar, etc.

2, Pailrs of Trials.

2-1, fTree diagrams, c-unting outcomes,
2-2, Assigning probabilities, equally likely assumption.

2-3. Examples of extensions to '3 and 4 +trials,

3. Inferences from Relative Freguencies.

3~1. Spimner trials with sizes of sectors unknown.
3-2. T umb tack throws,
3-3. Da.a from treatments, production lines, etc.

L, Unions of Events.
4-1. Relation of P(A U B) , P(A) , P(B) , P(A4 n B) .

L-2, Mutually exclusive case.

5. Intersections ¢f Events.
5-1, Pairs of tiials with and without replacement,

5-2. Independent events.

GRADE 2.

le Frequency Distribqtiqﬁ;.
1-1. Data which can be regarded as the outcomes of an "experiment";

frequency, relative frequency and cumulative frequency distributions

Lo
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and their graphical presentation; examples such as: class absences
during the year by day of the week; distribution of birthdays by
month, number of children per family, age of pupils in months,

occurrences of each vowel in several lines of text.

1-2. Means and Percentiles.

The mean as representative of a distribution, significance of

s = nx; means in comparisons, are girls in class older than boys?
Computation of means by change in scale, Median, percentile points
in a distribution, standard arithmetic test scores, problem of

dividing class into 3 or U4 groups by height, ete.

2. Probability Distributions.

2-1. Probabilities as ''weights' associated with long run relative
frequencies. Outcome probabilities in selection from krown finite
populations (as in 1-1 above),

2-Z2., Means of sample distributions as estimates of population means,
problem of accuracy of estimates of population means.

2-3, Probabilities in coin or spinner types of situations: problem of
testing an hypothesis as, e.g., in pupil taking true-false test,
ESF experiment with cards or coin, Friday or Méﬂday absences from
school, etc.; testing hypothesis requires deriving probabilities
from certain assumed probabilities.

GRADE 9.
3. Frobabilities in Repeated Trials. i

3-1. Implications of independence of trials, the problem of counting the
number of k-element subsets of an n-element set.

3-2, BSelection without replacement; the problem of counting sequences.

4. Methods of Counting Possibilities.

k-1, Tree diagrams, the fundamental counting principle.

L-2, The number of k-sequences and distinct k-sequences from an n-element
set. The number of k-element subsets; relation to binomial theorem.

Se Testing Hynotheges.

5-1. Test hypothesis p = é in several specific examples, e.g., sex,
Hirths in March-September, using central intervals; apply similar

technique to a case with p # % ; have class devise tests, e.g., of

Ll
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independence of trials in births.

5-2, Conduct ESP test using order in shuffled deck of 10 or 12 r~ards.

6. Stendard Deviation.

6=1, Binomial distribution with p = % ; relativized forms and differences

in spread. Standard deviation (s.d.) as a natural unit in measuring
spread, standard deviation of a fraguency distribution.

The (binomial) law of large numbers.

A
M
L]

Design of experiments, e.g., distinguish between p = .5 or

p = .6 as appropriate probability assignment.

GRADE 10 or GRADE 1l.

Te Conditional Probability.

7-1. The Mendelian model; 3=spinner or urn simulation of genotypes;
prohlems in population genetics, e.g., all AA a.e wiped out or
AA  is lethal; Hardy's Theorem.
7-2. A problem in sex linked genetics, e.ge.; hemophilia, color blindness;
comparison with data.
8. Markov Chains. _
R-1, Cenotype change over generations; population uovements; random walk

representation; gambling problems; transition probability matrices,

8-2, Long run trends in Markov processes; matrix multiplication.

9. The Normal Distribution.

9-1. Normalized binomial distributions; conditions under which the normal
distribution (as a tabulated function) is a reasonable approximation.
Situations in which distributions are approximately normal.

9-2, Common uses of the normal distribution; standardizing test scores:
inferences from sample mean and s.d. (standard deviation), repeated

~selections from normally distributed population; testing randomness
of saﬁples; e.g., among 30 honor students 19 are girls (compare
with binomial computation), or the class as =& sample of all students

in the same grade with respect to a normal achievement test,

Q heo
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Grade 8 - Chapter 9

1966 outline, pp. 287-298.
In addition to the material suggested in the 1966 outline it is suggested
that the following material from Grade 7 be included. This iz suggested to

iighten the geometry load in Grade 7 and spread the geometry material over a

longer period of time.

Grade 7. Chapter 1 - Th~ Structure of Space.

1-12. Curves, Simple Zlosed Curve

1-13, Convexity

Grade 7. Chapter 12 - Parallelism,

12-Lk, Parallels and the Circumference of the EBarth
12-7. More About Parallelograms

12-8, TFamilies and Networks of Parallel Lines
12-9. Dividing Segments Into Congruent Parts
12-10, Triangles and Families of Paral_el Lines

12-11. Networks and Coordinates

In discussing the above proposed shifts of material from Grade 7 to Grade 8,
it was pointed out that Sections 1-12 and 1-13 were about the only things that
might be new in Chapter 1, so in the Revision of Grade 7 these two sections

might be retained. )

Tt was also pointed out that Section 12-l4 might well be retained in
Grade 7 because it is a nice applicetion of material that has just been taught.
Here again the writing team must build on the revised version of the Grade 7
text. Of course, the revised version will not be available for the first

writing of Grade 8, so an educaied guess will be required here,
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Grade 8 - Chapter 10

Properties and Mensuration of Geometric Figures

{Review and Summary)

1966 Outline, pp. 299-311.

There are three more drsuments that may be useful here . .d they will

follow in this order:

(1) A treatment of Area, Volume, Work and Falling Body Problems Without

Limit Pro . =sses. This treatment deoes not use function notation.

(2) A Accument with the same title as (1) but this treatment uses
function notation.

(3) A "Circular" Unit of Measure for Circular Areas.

A Treatment of Area, Volume, Work

and Falling Body Problems without Limit Processes

It is possible to set up double inequalities for areé, volume, falling
body and work bproblems and to solve them using only the simple algebra of
inequalities., This fact may prove useful in giving significant applications
»f algebra at an early level.

It is thought that some of this material may be suitable for use in the
treatment of measurement in Grades 8 and 9. In particular, it may be used in
Grade 8, Chapter 10, Properties and Mensuration of Geometric Figures; Grade 9,
Chapter 4, Measure Functions and Their Properties; and Grade 9, “hapter 10,

Measure.

This treatment does not involve function notation. Since function nctation
has been used from Grade 7 the writers may want to consider using some of the
material that is precisely the same except for the use of function notation.
This material follows immediately after the tréatment not using function

notation, pr. 52.
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1.

On Volumes and Areas

Pyramids, Cones and Spheres.

(a) Consider a myramid with altitude
equal to the side s ol the
square base and suppose that the
vertex is above one corner of
the base. By constructing two
copies of such a pyramid and
putting all three pyramids
together we can form a cube
of side s and voiume s~ .
The volume of the given

pyramid is therefore % S3 .

The volume of the pyramid above the plane at distance x

below the vertex is

) 1.3
V=5 % .
3
The volume above the plane at distance x' (x? > x) is
Ve é% :x?g .

Then the volume of the frustum between these two planes is

vV = e x'S -1 x3 .

o
v 3 3

This volume is greater than the smallest cross-~sectional area x
times the thickness x' = x and less than the largest cross-

sectional area x' times x' - x . That is,

() et -0 <3 ed 3 <

This is easy to verify algebraically since

1.43_1.3_1 2
= x!7 - = x = Z(x' - x){x + xx! + x? .
! L3 = 20 - ) )
It may be shown (see Section 2) thut if we require that

x?(x! = x) <Vl =V <’x’2(x’ - x)
X <z , tLare is no other possibility than V =< x

x‘3) .

for a1l ©

(and V' =

=l A

L5
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(b)

Now take a right circular cone _ _
[

with altitude 2 egual to the
radius of the base. That is

its volume?

== ==

A section at distance x

from the vertex has the area

2 . o ’
X while one at distance x?

has the area ﬂX'g . IFf V

is the volume of the s:aller

cone and V! +the volume of

the larger cone, the frustum has the volume V? -~ V ., Then we
require that

(=) ﬁxg(x' - %) 2V -V < nx’g(xi - x) .

What then is V 7 If we multiply (1) by = we obtain

(3) HXE(X' - x) < % x13 - % x5 < nx’g(x' - x) .

Comparing (2) and (3) we find

=)
% (and V? = % x

i

Hence the volume of the given cone is % a- ,

If more generally the radius of the base is ka , the radii of
the cross-sections at x and =x' are kx and kx' vrespectively.
I

Then (2) is replaced by

(L) ﬁkgxg(x‘ - X) <V =« V< ikgxig(x? - x) .

If we multiply (3) by K we find

- 2.3 .23
ﬁkgxg(x’ - x) < nk g - ﬁkgx < nkexig(x! - x)

‘ .23 2.3

and so v = ZEXL (yr o ZEXIZ
3 3

The cone has the volume

14 kaaB = 2 l;gag - < :ﬂrr'2 a

3 3 37
( % area of base X altitude) .
._.152
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(¢) We turn now to the volume of
a hemisphere of radius a .
If V is the volume above the

base and below a plane at

height =x and V' the volume
below tl.» plane at height =x' ,
the volume between the planes

is

Vs = V -
The cross-sectional areas at x and x' are respectively
2 2 , 2 2
w(a - ¥°) and =n(a” - x'°) . We therefore require that

(5) w(a® - x*2)(x* - x) <V - V< n(a” - x)(x' - %) .

From (3), reversing signs,

; 13 3 -
L )
—xtE(xt - x) < - ﬁé - ok 3%* < - (xt - %) .
Adding iag(x* - x) throughout
’ 2 S, 2 3
n(a” - ) (xt - %) < (mtwt - o) - Getx - )
= ﬁ(aé - xg)(x' - X) .
Comparing with {5) we see that
V = ﬁagx - 523
L = 3 -
2;{5,3 .
Substituting x = a gilves ’3 for the volume of the hemisphere
ﬂ83
and hence é, for the volume of the sphere.

Unigueness.

The method that we have used depends upon the double inequality
(6) S(x* = x) < V! = V<81 (x? - x)

where S and S' are the cross-sectional areas at x and x' and V
and V' +the volumes of the solids bounded by a base plane and the planes
at x and x' . (If the cross-sectional area decreases as x 1increases,

S and S!' must be interchanged,) We require that (6) hall hold for

Q L7
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all O = x =< x* From our knowledge of (1) we have been able to Tind

V and V! in some other cases using the simple algebra of inequalities.
The questlion arises: are lhe answers we have found the only possible
ones? The reply is "ves'" so long as the cross-sectional aress increase
(or decrease) steadily wiih x .

Froof:
Suppose that we slice our solid with equally-spaced planes per-

pendicular to the line along which x 1s 1 rasured. We assume for
defTiniteness that the cross=-sectional area S increases with x .
it Vi is the volume of the first slice

Sét < Vl < Slt

where SO is the value of 5 at x =0 and Sl the value »f S at

&
o

% t , where t 1s the thickness of the .. .ce,
For the second slice

Sit < Vé = Vi < Sgt‘

and finally

St <V -V

<3t .
n
Adding
a8 -, 4 _ ) _
(8g + 8] *aee #8 )t <V<(8 +8, +...8)t.
The difference between the upper and lower sums is
(sn - SO)t <8t =Mt
since Sn iz the maximum cross-sectional area M , V of course is Lhe
required volume. If there could be a second number v gatiefying the
double inequalities, we would have
(7) . |V - v| <Mt .
The thickness + of each slice is the distance, d , between the bases of
the solid, divided by the number of slices n . This means thay (7)
becomes

|7 - v| <X,
n

By choosing n large ehough we have an obvious contradiction. Therefore

there can be only one number V which could represent the volume.

48
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The geometrical meaning of (7) 1s the following. When the solid is
sliced into n pieces of equal thickness, the volume is determined
within an amount equal to the volume of the largest slice., Since this
largest slice can be made as thin as we please, the volume is precisely

nailed down.

3. Remarks on the Areas of Circles and Spheres,.

(a) 4ne double inequality method

leads to the area of a circle
if we are willing to start with
C = 2wx for the circumference
of a circle of radius x .
Let A be the area of

the ci.cle of radius x , and
A'  the area of the concentric
circle of radius x=?(x? > x) .
Then the annulus or ring shown
shaded has the area A' - A ,
Tt seems intuitively clear that

2rx(x? - x) < A - A < 2mxt(xt - x) .

Now

Y= 2 : )
(8) 2x(x? - x) < x?° - ¥ < 2x1(xt - x)
as we see algebraically since

xt2 = i = (x + xF)(x? - x)
and geometrically from the

following figure.

Multiplying (1) by =

2mx(x?! - x) < n}:‘g - :rﬁ{g < 2mx*(x! - x)

vhizh leads to A = nxg .

(b) The surface area of a sphere may be treated similarly. TIf S = *x®

is the area of a sphere of radius x and 8 =k x’g is the area
of a sphere of radius ! , we have for the volume V! - ¥V between

them
kxg(x’ -x) <V = V< kx’g(x' - %) .

[ERJ!:( . t*;l
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However, we know V and V! so that ve way write

kxg(x‘ - x) <-%§ x13 - %% % < kx'g(x’ -%) .

We need to find k .

Since from Section 1

5 3 3 5
(1) X (xt -~ x) < i%s - %; < x'g(x' -x),
.13 3 -
b (%1 - x) < Eﬁﬁ? s—%gx < b x*5(xt - x) .

Hence k = 4w and S = hﬁxg . The urface of a s;here of radius

a has the area hna® .
Calileo assumed that the speed v of a body dropped from rest is a
constant %k times the elapsed time x ,

v = kX .

What is the distance d fallen in time =x ? The distance covered between

the time x and the later time x* 1s surely
d!_idl

This is greater than the distance
that would have been covered had the d

speed remained equal to kx .

Throughout the time interval at
(x?* - x) and less than the
distance which would correspond

to the constant speed kx? .

Hence
(2) kx(x! - x) <dt - d < kx*(x* - x) .

The double inequality (2) would arise in finding the area A under the

graph ¥y = kx and above [o,x] . This area is % o X ¢« kx , Hence

kxg

d = -

Hooke proved that the force exerted by a spring is kx where x is the
extension from the unstretched position., If W is the work required to
stretch the spring the distance x , the work required to stretch it from

X Tt X is surely W! - W, Then we see immediately that
50
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ke(x?! - x) < W' - W< kx'(x' - x) .

The solution 1s W = 13;- . Same wathematical model for a different
physical situationl

6. A more interesting problem concerns the work (energy) requirved to 1lift a
rocket 4000 miles sbove the earth': surface, Use the earth!'s radius as
a unit of length. The force at tl.az
distance x from the center of the

=
x

weight of the rocket when x =1 .

earth is £ where k is the ﬁ

If W is the work to go from 1

to x(x > 1) we require that

—k’—é(z’ - X) < W =W f‘—ké-(}" - x) . *
x* x
; .
Bince —5 < L L

2 i
xt xxt x

fod

L

,hg(}:} - x) <§T(x‘ - x) <%(x* - x) .
x? x

Because of uniqueness we can set

.
Wt oo Xx-x) _k_k
X

xx? . j{i

L =

W

Il
W
1
"

When x =2 , W' =k - fz%i If k is in pounds and we wish the

o

answer in ft.-1bs. we should multiply by L4000 X 5280 .




come of the outiining group felt that since function notation is familiar,
treatment may be preferable over the previous treatment not involving

N

Comenion notation.

4 Treatment of Areas, Volume, Work

nd to scive them using only the simplc algebra of

crwnlities. This fact may prove useful in giving significant applications

slgebra at an sarly level., The following sketech shows the ezsential idea.

Let T(x) be the area under the

rarabola y = xg above the

interval [0,x] and F(x') the

arca above [0,x%] , %! > x ,

Then the area above [x,x?'] is
F(x') = F(x)

wuich is clearly between the

areas of two rectangles with

base x! = x . Then

(1) x5(x? - x) < F(x?) - Flx) < x%(x* - %) .

This double inequality holds for all 0 < x < x* ,

The rectangle with base x and altitude xg has the area x3 .

Clearly P(x) is less than %x3 . It is not too hard to guess that

=) = %33 . However, let us see what happens with F(x) = x3 and

#(xt) = x‘s . Since

x5 - S = (2 - x)(GE + xx! + x12)
< (%' - x) 3x1°
and
) 2
> (x? - x)3%x
we have

EXE(X‘ - x) < %13 - x5 < gxtg(xi - x)

52
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which differs from (1) by the presence of the 3's . Dividing we obtain

b
Xe(x’ - x) <~E§— - %— < X'e(x’ - x)

so that F(x) = %— is a szlution of (1) for all 0 < x < x! .
It uay be shown (proof on request) that this is the only solution of

(1) for which F(0) = 0 .

To find the volume of the sguare
pyramid shown, let F(x) be the
volume between ‘the vertex and the
plare at distance x below i1t.
Then F(x?) - F(x) is the volume
between the planes at x and x? .
This volume is greater than the
thickness (x! - x) of the slab
times ‘the smallest cross—sectional
area X2 and less than (x* - x)

times the largesi cross-sectional -

area x'2 « Then
2 2
x (x? - x) <P(x?) - F(x) < x?"(xt - x) .
This is the same as (1), so that
st
3 L]

verified immediately since the

F(x) = The result can be

pyramid above the x-plane is B

3

of a cube of side x <

The volumes of cones and spheres are easily found similarly, assuming

nre for the area of a circle.




A "Circular" Unit of Measure for Circular Areas

Traditional measures of area are usually associated with square areal
mits which, with circular areas, usually bring in dat old debbil x .

Mlectricians have sometimes used circular units:

1 circular mil = the area of a circle whose diameter is

1l mil , or ,001l inches.

With this unit certain computations involving areas (and electrical
resistances) become easier; thus the area of a circle of diameter .004 is
simply ME = 16 com. and so on, A source of situations for modeling is also

easlily available since the resistance varies inversely as the area . «
Another useful unit of volume can come from the same source:

1 mil - foot = the volume of a cylinder of diameter .,001L inch
and length 1 foot.

This volume unit would also rationalize many problems in volumes of

cylinders.

Perhaps the use of these units, since they lead from rational inputs to
rational outputs, would allow pupils to master the conceptual material more
readily, before they have to cope with the irrationalities of x and their

teachers.

Grade 8 - Chapter 11

Spatial Perception and Locus

1966 Outline, pp. 312-315.

Grade 8 - Chapter 12

Systems of Sentences in Two Variables

Since systems involving inequalities as well as equations will be studied,
it was felt that the title should be changed =-- using the word Sentences
instead of the word Equations in the title,

See the 1966 Outliné, pp. 316-319,
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The following is a revision of the 1966 Outline, using new material that

was written this summer, It will be seen that this new outline essentially

covers the 1966 Outline and a little more,

Revision of 1966 Outline

Background: Graph of Linear equations.
Solution cets of equati ns and inequalities,

Purpose:
1, 7o review the graphical representation of equations and inequalities

in one variable,

2, To develop the graphical respresentation of solution sets of systems

of first degree sentences in two variables,

3. To formulate the concept of equivalent systems and introduce the

method of linear combinations for arriving at algebraic solutions.

L, To examine various cases of systems of equations and their graphical
interpretation -~ inconsistent, consistent, dependent; parallel,

coinciding, and intersecting lines.

5. Extend work with systems of inequalities to genéral linear inequalities
and to regions bounded by several straight lines, in preparation for

finding convex regions in elementary linear programming problems,

Section 12-1: A Decision Problem, (Class Involvement)

(See Appendix C, Section 1)
""Suppose you are president of @ division of a large corporation
called *General Engines?. Your division manufactures one make
of car and one make of truck. How many cars and trucks should
be scheduled for the next year's production to make as large a

profit as possible?"

(Almost all of the pertinent informetion should be contained in the T.C.
to be released by the teacher as the need arises in the discussion,

See Appendix C, Section 1.)




Additional Information:

1. The protit on each truck is different than the profit on each car.
2 The supply of steel is limited.
3 It takes more steel to build a truck than a car.

b, The factory?®s capacity to produce units of cars and trucks is limited,

1.1 Class Exercises

1. What do you know about prolit? On each car? On each truck?

2. How much steel is available?

3. How much steel does it take to make a car? a truck?

L, How many cars can you build? What?s your total profit?

e How many trucks can you build? What!s your total profit?l

6. What!s your decision?

Te Is there any information that you haven®t used yet?

8. If you make only cars, do you use all the steel?

9. If you make only trucks, do you use all the steel?
10. If you make only cars, can the fadtory make that many in year?
11. Can the production be only trucks, and keep the factory operating

at full capacity? Why, or why not?

Suppcse we know that this year, 90,000 “rucks and 410,000 cars were

made ;

12, Discuss the total profit on the cars and the trucks, ¢ ming
they were 21l sold. _

13 Discuss ‘the amount df steel used to do the above,

14, If 15,000 tons of steel will be left over from this y r?s
production, how many tons will be surplus if you stic . to this

yearts productiocn plan?

Copy and fill in the following table showing the information you

have collectede.

Number Number ! Unused Unused Total
of Cars of Trucks Steel Capacity Profit
1 500, 000
2 0
3 450,000
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Inspecting the table you see that decreasing the number of cars
produzed from 500,000 to ul0,000 (and producing trucks instead)
decreases the amount of unused steel and increases profits. However,
if you continue to decrease the number of cars, say to zero, then
profits decrease too. This suggests that somewhere in between

410,000 cars and zero cars there may be still room for improvement.

15. Try to find the best production plan where the profit is maximum
and the amount of steel left over iz minimum. Support your

plan with data.

Section 12-2: The Mathematical Model (Appendix C, Section 2)

- General discussion of a mathematical model and translation process.

2.2 Develop the "Profit" equation (Appendix C, Section 2,, ... g:apn
different positions of this line segment in the first quadrant.

2.3 Develop the "steel restriction" inequality and graph the region
related to it. Be sure to include in the discussion the inequalities
C>0,T>0.

2.4 Develop the "plant capacity' inequality and graph the region related
to it. '

2.5 Discuss the solution of the system

C>0,T>0
1.5C + 3T < 975,000
Cc+ T < 500,000
for which
P = 300C + hOOT is a maximum. -
2.6 Emphasize need ior studying ''Systems of Sentences" apart from the
problem in order to develop efficieht machinery for analyses of such

decision problens,

Section 12-3: Solution sets of systems of equations and inequalities

l. Review definition of solution set of an equation or ineguality.
2. Define solution set for systems of equations and ifnequalities.
Give examples in which the solution set contains no ordered pairs,

1 ordered palr, infinitely many; e.g., for eguations,

{ 2x +y =5, f2x +y =5, - { 2x +y =5,
2x +y = =2 , 12x—y=5. 6:x+3y=15.
At this point the solution sets may be found by examining the graphs}
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Section 12-4:; Egquivalent equations and eguivalent systewms of equations

1. Two equations or twu systems of equations are equivalent if they
have the same solutlon sets.

2. If an equation in a system of equations is replaced by an equivalent
equation the resulting system is eguivalent to the original system.,

3 Linear combinaticn of left members of two equations (when right
member is zero) used to construct simpler equivalent system of
equations, (See Int. Math,, Ch. 7, pp. 374-81: also FCA, Ch. 15,
pp. L68-48ML,) '

Example: ; 2x - y-5=0,
x=-3y+5=0.

vivst .eplace 2x -y -5 =0 by al(2x -y -5) +(x-3y +5) =0
for an appropriate a . An appropriate one is a = -3 ., The

resulting equivalent system is

1l

-5%x + 20 = 0 ,
X-3y+5=0.

Now replace x - 3y +5 =0 by a(-5x +20) +b(x - 3y +5) =0,
One might choose & = % and b =1 or one might take a = 1
and b =5 . '

We eventually get the equivalent system:
L,

y=3:
for which the solution set is clearly {(L,3)} .

|

X

|

Section 12-5: Systems of Linear Equations

1. Review of graphic solution.

2, Graphic interpretation of linear combination and solution sets,
Family of lines through a point.
A look at the possible cases:

Ll and L2 the same line

I
n

X + Yy

H
=
L ]

2x + 2y
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L and L2 parallel:

1
i X+ y=2,
2X+2y=-5.
Ll and L2 intersect in a single point:

x+y=2,
X-y=)+¢

Section 12-6: Graphic Solution of Systems of Inequalitiés
( See FCA, Ppo )4'85"')4'92.

Maiy examples of increasing difficulty and comylexity; e.g.,

1. vy <X, 3. 5 2x + 3y <1 , 5e 2x +y >2 ,

x>2 . [ xX- y>2. x+y<1l,

X <3 .

2. lyl <2, L, 2x + 3y <2, 6. x+y<5,
%] <1. 2x + 3y >0 . y<3x + Lo

y<=x + 4,

Te Tn the intersection of three half-planes which will define a
triangular region emphasize geometric psrt,

8. Distinguish unbounded and bounded situations.

Section 12-7: Applicstions

1. 3tate some problem situations which really need two variables to
rvepresent the conditions. Give the students an opportunity to
vommuliate systems of equations and use the methods developed earlier
in the chapter. i

2. Discussion of "The Mathematical Model." (Appendix C, Section 2)

Try to create a class situation so that the students will develop
for themselves some of the characteristics of the process of

"modeling'".

We are now going to discuss the translation of a stated problem into
a mathematical one. First, we must replace the words we have used to
describe the situation in ordinary language by mathematical symbols and
relations. This will provide a mathematical model. It is only a model
of the real situation because (1) we can never list and include all the

facts, only those facts that we think are most impo:tar:, and (2) we
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cannct know the exact relationships in the real situation, so our
mathematical relations will only be aprroxXimations to the real life

situation.

A great advantage of a mathematical model is that you can do
"exveriments' with it Jjust with pencil and paper or computer. You can
say, "What would happen if such and such were done?" Then, you can carry
out the mathematics and find out what the model predicts, You don?t have
to build something in a laboratory and test it or wait until it happens
in the real world., Cften a mathematical model is the only way to get such
information when no laboratory experiment is possible. For instance, when
you want to determine the route to be travelled to the moon by .une first

manned spaceships.

If our model is complete enough it will provide a good enough approxi-
mation to the real life situation so that we can rely on the answers it
gives us. Of course the best test we have is to compare the predictions
made by the model with the real situation and see how well they agree,
Eventually this must always be done, If the agreement is poor we may have
to add more [eatures to the model, You can see that many different models
can be made for the same real life situation Just as an artist can depict

a scene in many different ways.

3. Develop some simple linear programming problems where the student can
use the techniques of Section 12-6 to find 2 convex region over which
we wish to maximize a certain function of two variables. (Don?t get

too complicated -- the ninth grade unit will develop this section.)

(a) Use simple production, transportation, and diet problems to
illustrate the usefulness of this ideé in different contemporary
business situations.

(b) Concentrate on the geometric interpretation of the situations.

[For an exposition appropriate for Junior High and as a source of problems

at this level, see Chapter 7, pp. 212-222 of Some Lessons in Mathematics,

edited by T. J. Fletcher, Cambridge University Press, 1965.]
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Grade 9 - Listing of

Grade 9 (1966)
Exponents, Logarithms, Slide Rule
Transformations
Systems of Sentences
Systems of Sentences
Measure Theory
Statistics
Deductive Reasoning
Vectors
Circular Functions
Tangency
Measure

Complex Numbers

.&1_
{

61

9.
10-

11,

o

Chapters
Grade 2 (1967)

Exponents, Logarithms, Slide Rule
Deductive Reasoning - Logic

Systems of Sentences and

Optimization

Measure Functions and Their

Properties
Statistics
Displacements - Vectors
Transformations
Circular Functions
Tangency
Measure

Complex Numbers



OUTLINES OF GRADE 9 CHAPTERS

Grade 9 ~ Chapter 1

Exponents, Logarithms, Slide Rule

1966 Outline. pp. 324-330C,

Crade 9 - Chapter 2

Deductive Reasoning -~ ILogic

The 1966 outline contains thke article, "Tre Role of Logic in Elementary

Mathematics,”" pp. 479-48k4,

The following outline replaces the 1966 cutline, pp. 353~-355.

Preamble:

It is recommended that the foilowing chapter serve as a replacement for

the original chapter on Deductive Reasoning for Grade 9.

It should be observed, at the beginning of this discussion, that we are
not suggesting that a formal study of logic be introduced in the secondary
schools, However, logﬁc is fundamentally the grammar of mathematics; it pro-
vides a way of organiz&ng mathematical ideas; and it provides a way o. clarifying
their meaning. In the learning of mathematics, the new ideas or technigues aﬁe
jusfified and related to the total scheme through “ogice. This process largely.
determines the learning sequence of mathematical concepts, and it is important
that the student should become aware of how the ideas of mathematics are con-

nected and that they do not stand in isolation.

The mathematician has long since devel.oped the thought patterns assccilated
with logical reasoning and uses such pattems in almost an infinite variety of
ways as he works. Novice students in mathematics are not naturally aware of
these patterns of thought, and are not adept in the use of such reasoning
patterns. We hope to identify those intuitive aspects of logié that occur in
most mathematical arguments and emphasize them as they repeatedly occur in

contexte
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We approach logic at this level as a study in validity. We recommend an

operational treatment: ''What dces it take to know that a statement is true?"
Background:
'. 1. Students have seen and been involved in a large number of logical

arguments in geowetry, algebra, and number theory. ©Some of these
proofs have been quite informal while others have been highly

structurede.

Students have had the opportunity to observe, and sometimes even
participate in, the process of extending mathematical concepts by

sequences of logical arguments.

Students have not had the opportunity to develop any definite ideas

about the structure or validity of such arguments.

To develop an understanding of how the meanings of mathematical

statements are determined.

To develop an understanding of how mathematical statements are used

in an argument.

To present an extraordinarily'useful language for the formulation
and/or comprehension - T tics in its development as & logical

sequence of ideas
To develop a clear w. .... .anding of the notion of proou..

To develop an understanding of the role of the single connectives,

" " n "

and", "or", and "not".

To develop an understanding of the conditional anud biconditional

statements in mathematics.

To develop a clear understanding of the role of Implication and

Egquivalence, the rules of inference.

To develop an understanding of the nature of a valid argument,
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Section 1. A Problem, (Class Discussion)

i~-1. In & certain unmentionable community, politicians always lie, and
non-politicians always tell the truth. A stranger meets three
citirzens, and asks the first of them if he is a politician. The
first citizen answers the question. The second citizen then reports
that the first citizen denied being a politician. Then the third

citizen asserts that the first citizen is really & politician.

1-2, Some questions: (Class Involvement )%
1. Do you think it is possible to arrive at any conclusions about
the occupations c¢f the citizens? If so, what?
2, What do you need to do to support your conclusion, if you could
find one? '
3. How could you be convinced that your conclusion was valid?
4, What seems to be the source of your cifficulty, if any, in
analyzing this confusing community situation?
#(To the writers, and for the T.C.: This problem, and its accompanying questions,
is a "simple-minded" attempt to motivate the need for some "machinery" ts do
some logical thinking. Even more important, once a conclusion is reacaed, we
want the student to begin to realize that this conclusion ¢ n be proved correct
if he can construct a vaiid argument whose premises are contained in the problem,
and whose conclusion is the answer to the provlem. Incidentally the guestion T
have in mind is, "How ma. of these three citizeuns are politicians?" Maybe
students will see more interesting questions, and the teacher should be

"shortstop" such variations at this time. It is hoped that

cautioned not to
none of the students will be able to formulate a conclusicn to the above
question and prove it, but the teacher might help add to the confusion by
"urging" students to assume all three, or the first two, etc., are politicians,
and to test these assumptions informally in the problem. In any case, leave
the student with the feeling that he will eventually be able to clarify this

situation and justify his conclusion. )

Section 2. Statements and Connectives.

2-1. TLogic, like most branches of mathematics, begins as a set of ideas

communicated through words, which when condensed to some symbolic
6l
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Co

form are capable of a systematic treatment of transformation,
simplification and equivaleance,

"n is a positive integer” 1is an example of a sentence.

2 . . .
"M - n + 41 is a prime" is another example of a sentence.

STATEMENTS: Declarative sentences which are capable of being

considered "True" or "False", We are not directly concerned as +to
how they are judged to be "True" or "False': frequently it is
through a common agreement as to the meaning of words and the context
of the statement; i.e., "Red is a color", or "The sum of two and
three is five", or "Three is more than ten': or it may be based on

a common background of experience; i.e., "The sun appeérs to rise

in the East'", or '""The Los Angeles County Fair is held in September'.
The decisive quality is that it makes sense to say "This statement

is true" or "This statement is false".

Statements are usually represented symbolically by letters near

the widdle of the alphabet --p , g , r , s , etc.

Generalizations using "and" and "or".

"For each n , n is a positive integer AND n” - n + 41 is a prime.”
Another alternative is, .

"For each n , n  is a positive integer OR ¥ - n+ Ll is a prime."

(To the writers: I feel that at this point, at least indicate the possibility
in the T.C., that it would be worthwhile to do some experimenting, hopefully
leading to the discovery that the generalization, “"For each n , n‘2 -n + I

a prime", is false. Then, aiso hopefully, develeop a classroom argument abu...
whether the above two generalizations are true, when the generalization, "For

each n , n 1is a positive integer" is true,)

CONNECTIVES :

AND: When two or more statements are compounded through the use
of the connective "and", the result is a new statement called
the CONJUNCTION of the original statements, and the connective
is represented symbolically by "A " . "p A g" may be read

as "the conjunction of p and q" or more simply as "p and q" .
qa A a
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OR: When twc »r more statemeni . .. . comp wew thi- e se
of the connective "or'', the result is a new statement called the

DISJUNCTION of the original statements,

In common usage, the word "or' has two distinct meanings,

depending on whether it is intended to include the possibility

of "both''. When we say "I am planning on going to the beach

or to a show this weekend" we certainly intend to include the
possibility of doing both, which conforms to the usage in legal
documents of the connective "and/or'". It is described as the
"inclusive or" and symbolized by "V " . (This is the meaning

of "or" most used in mathematics.) On the other hand, when we

say "The lights are on or off" we certainly exclude the possibility
of "both" and are then using the "exclusive or", which is

1t
v °

occasionally needed and is symbolized by "

2-l, Negation.

NOT: Any statement combined with the phrase "It is not the case

that', or simply 'not", is called the NEGATION or DELI.AL of the

original statement, and the negation itself is symbo. izeld by

"~ " . Thus, if "q" represents the statement "The .1oon is made
of green cheese', then "~q represents the statemeat "It is not
the case that the moon is made of green cheese", or »Hre simply

"The moon is not made of green cheese",

When two or more statements are compounded by the use of any of the above
ronnectives (or some others which we will meet later) the original statements

are czlled the "components" of the connective(s) in the compound.

2-5, Sample exercises,
(1) Form the denial of each of the following and then rephrase it
if necessary in good idiomatic English. Your final answver
should not use the phrase "It is not the case that" but should

have this meaning:

(a) He saw me coming. (¢) Jones caught eight fishe
(b) The largest number (d) Jones caught more than eight
whose square is less fish.

than 4O dis 5 .
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{e) Jones has a large (h) Jones caught the fish and Brown
familye. caught a cold.

(f) Smith can outbid (1) All who succeed are Virtuous.
every competitor.

(g) Everyone is entitled (j) Fame is sometimes sweet.

to an opinion.

(2) Phrase each of the following as conjunctions of the simplest

possible components:

(a) The Governors of both (d) Jones and Smith deserve support,
New York and Illinois
are Republicans.

(b) May and June are (e) Jones and Smith are helping
bright and gay. each other.

(¢) King Henry IV, deposer
of his cousin Richard 1T,

was father of Henry V.

3) Let p represent the statement "The night is young', and
)

let q represent the statement "You are beautiful'”.

Give the verbal version of each of the following as simply as

you can:

(a) ~q (f) ~~p
(b) PpVa (g) ~(pA q)
(¢) ~PV q (h) ~p VvV ~q
(&) PA~q (1) ~(p v a)
(e) ~p A ~a . (3) ~(p v ~aq)

Logical Counterparts:

When any statement, simple or compound, is written in symbolic form
we oall this the "symbolic counterpart" of the original statement., Note
that many statements may have the same symbolic counterpart if they have
the same structure. In this case, each such statement is called an
"instance' of the symbolic counterpart. Note also the parallel here
between a "word-problem’" and its model.

In each of the following, identify each simple statemeht by a

letter and then write the symbolic counterpart of the complete statement
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in terms of these letters:

Example 1: '"John played golf, or Henry played tennis and TFrank
did not go swimming." TLet: p = "John played golf',
g = "Henry played tennis', r = "Frank went swimming'.

Ans: p VvV (g A ~r) .

Example 2: ''John played golf or Henry played lemnis, and Frank

went swimming." (Using same letters)
Ans: (pVag) A .
(Note that in each case, the symbolic grouping reflects the punctua-—
tion of the original compound statement as it would in algebra. Note

alco that the letters are normally chosen to represent positive

statements, using the denial vhere necessary, )

(1)

(5) b is divisible by neither 3 nor 5 . (carefull)

]

is a multiple of both 3 and 5 .

(6) ¢ is an even number larger than 29 .

(7)

0

is an even number larger than 29 and less than 35 .

Section 3. Logical Values.

our logic is two valued, which means we assume that a statement is either
true or false, We assume that there is a truth value function which assigns
to each statement the value '"1" (truth) or "O" (falsity). Now, since the
logical value of a compound must depend solely on the logical wvalue of its
components combined with the logical pattern associated with its cc . N
it should be possible to compute the logical value of any compound statement,

no matter how complex, entirely from these parts.

The following tables show the effect of each type of connective on the
logical values of its components. In each case we are assuming p and g

are statements.

)

Negation: ~D I 1 ’ 0 l or, in word form: "The DENIAL of a state-
l 1 l ment is a statement haviiy

exactly the opposite

ilogical value of 1ts

component,"”
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Conjunction: PA q 1 0 or: "The CONJUNCTION of two state-

o 1 1L 1.0 ments is a statement having the
O 0 0 logical value 'TRUE' just in case
the logical values of both compo-
nents are 'TRUE', and 'FALSE'
otherwise."
Disjunction: P Vg 1 b 0 or: "The (inclusive) DISJUNCTION of
1 1 1 two statements is a statement
P (0] 1 (0] having the logical value of

"FALSE" just in case the logical
vglues of both components
is "FALSE", and "TRUE" otherwise."

(We will have little or no use for the exclusive disjunction in mathematics.)

3-1, Sample exercises.

(1) Determine the logical value of each of the following compound

statements, where all numerals represent Natural Numbers:

(a)
(o)
(c)
(a)
(e)
(£)

(2) Construct compound statements as required (e.g., one true

-+

4 and 3 + k=12 .

=4 or 3¢3=6.

= L4 or it is not the case that 3 « % =6 .
=4 and 33 #£6.

=4 ana 3«4 47

=12 or 4 + 3 =12 ,

-+

W N D P
L]
Rl AV T AV AV TR AV V]

answer °» (a) is PV q .)

(a) Frrm p="2+2=4" and q = "3 + 4 = 12"
Twce (other) true statements:

. Three false statements:

(b) From r="2+2 =L4" and s = "2 « 4 = 12"

T o true statements:

Two false statements:
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7

7} (Some help needed here for the student in how to do these
exercises,) Make up your own program and compute the logical

values of each of the following:

(a) ~(pA q) (£) » Vv (~»a A 1)

(b) ~p V~g (g) ~(» A ~q)

(e) ~p A ~g (n) ~[p A (~pVv a@)lVa
(a) ~(p v a) (i) (~pV a) A (p VvV ~a)
(e) (pA4a) VvV ~r (3) (~p V ~a) A (pV a)

(You will note that some pairs of the above come out with
exactly the same ordered sets of logical values. We will make

use of this later.)

Section 4. Conditionals and Biconditionals.

1 L} 1

He ing assimilated the basic connectives "and", "or", and "not", which
are so common in everyday thought ( just stop and think how many times a day
you use these wordsl) we come to one which is more important mathematically

bt which. unfortunately, is less well understood.

A great many mathematical statements take the form (expressed or implied)
of "If - - , then - - " or one of its variations, which indicates a relationship
between a "cause" and its "effect"; a "hypothesis" and its "conclusien'; an
"initial fa " and its "dependent faci'". Statements of this kind lie at the
heart of all proof, not only in geometry but thrdughout mathematicse.

In all of its usages there is a sense of '"flow" from one fact to another,

so it is natural that it be symbolized by "' , and "if p , then ¢
becomes "p=q" . The compound formed by any two statements and "=" is

called a CONDITIONAL and may be read descriptively as '"p arrow q" , or its

meaning may be indicated by "if p , then q" , "p only if q" , "q if p" ,

"q provided that p" , "q in case p' , "p is a sufficient condition for q" ,

"q is a necessary'conditién‘for p" . Many of these are inconvenient as not

being left~-to-right readings of the symbols and others seem to be obscure as

to their meaning. Probably we had better use 'p arrow Q" until we are

" sure of its actual meaning and can use the other forms intelligently.

In determining the effect of the Conditional, it is obvious from its
usage that "p = g" must have a logical value of "True" (or 1) if p is

"mrue'

and q is "True" and a logical value of "False" (or 0) if p is "True"
and q is "False". But what if p is "False"? What should we say of a
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statement such as "If two angles are right angles, then they are equal" if

the problem on which we are vorking is not concerned with right angles? Our
first reaction would probably be to say that the statement is neither "True"
nor "False" under these conditions, or at least that it doesn?t matter which,

but these wmerely evade the question.

The position to be taken here is that if p is "False" (0), then it is
possible to infer either a "True" or a "False" statement. Hence we will say
that the Conditional must be considered "True" whenever the hypothesis is
"False" whether the conclusion is "True'" or not, and the complete table for

the Conditional must be:

a
p=2afl 1] 0 or in words: '"The CONDITIONAL has a logical value
1 1|0 of 'False' Jjust in case the hypothesis
P
0 1|2 is 'True’ and the conclusion 'False',

and of 'True' otherwise.

With these logical values in mind, the alternate readings of '"p=>q" given

above should now take on meaning. Certain variations are also suggested:

"p if ¢" as "pe& g" , a Reversed Conditional
"g = p" , called the CONVERSE of 'p = q"

"~p = ~q" , called the INVERSE of 'p=q"

"wq = ~p" , called the CONTRAPOSITIVE of "p = q"

and the BICONDITIONAL, symbolized as "p¢2q" and meaning "(p =2a) A (p& )" .

The Biconditional is met so frequently in geometry in the form "If ~ -, then - -,

" f

and conversely', and in algebra in the form " - - if and only if - - and

plays such an important role logically in establishing equivalence that it

deserves a complete description as:

q
r&eal 1|0 or in words: ''The BICONDITIONAL has the logical
o 1 1|0 value "True" just in case the logical
-0 0 1 v values of the components are exactly

the same, and of "False" otherwise.

For the Teacher's Commentary:

An alternate "justification" for the standard truth table "A = B" could
be done as follows:
(1) When A and B are both true, then common sense suggests A= B

is true.

Tl
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(2) When A 1is true while B 1is false then common sense suggests

A= B is false.

Now most students will agree that "A = A" (i.e., (If A then A)
should always be true; regardless of the truth of A since we say “;ﬁ
A ..."). However, for A=>A to always have the value True, we require that

when A 1is false then A =A is true. Hence it seems plausible that
{3) When A is false and B 1is false, then A =B is true.
Finally, most students will agree that whenever

"If C then D" and "If D then BEB"
20ld, then

"If C ‘then BE"
holds. It would seem that transitivity is a basic tool of logic and that it
should hold regardless of the truth values of C , D, and E . DNow therefore
this will hold even if C= D is false; say when C is True while D 1is

YTalse. Thus when B is True we have

{(c =D) and "(p==E8)] = (c=1I)
False (immaterial) T: e True
—~ 7
False True
. : )

: Y
True

In other words, in general

(4) When A is false while B 1is true, then A=} 1s true.

4-1, Sample exercises. (Some Geom. examples needed)

{1) Determine the logical value of each of the following composite

statements. (All numerals represent Real Numbers):

(a) If 2 +2 =4 , then 3 +2 =0.
(b) If 2 +2 =4 , then 3 + 3 = 6 .
(¢) If 2+2 =5, then 3 +3 =7 .
() If 2+2=5 or 3 +3 =6, then 5 +5 = 11 .
(e) If 2+2 =5 and 3 +3 =6, then 5 + 5 # 11 .

(2) Calculate the complete table of logical values for each of the

foliowing:

T2
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(a) (p= a) =>~(ag=p) .

(b) (p=a)A (a=>r) .

(c) ~(pA a)=(~qV ~p) .

(4) (p e ~a)={(~pA q) &

(e) (pe a) e [(pA a) Vv (~p Ana)] &

(3) Make comp.ete eveluations of the patterns below. Der2ribe how

the two tables for each palr are related:

() 1. »p=(a=r) (4) 1. ~(pA q)
2. (pAha)==r 2, ~p V ~qg

(v) 1. Pp=« (e) 1. ~(p=aq)
2, ~q=~p 2. p A ~q

(¢) 1. ~p=gq (£) 1. veg
2., pV q 2, ~p==~q

Section 5. Basic Logical Equivalences.

{This section should be written so that the student and the teacher realize

that it is intended to be largely informational. There should be no attempt

to "drill and memorize'. At best it should.be considered as a reference
section, and as & sectlon which lightly tries to tle some things together and
point out some possible future activities. I do think it would be appropriate
to illustrate with exsmples the 'miscellaneous laws” of proof, drawing upon the

students! background in geometry, number theory, and algebra.)

slow are listed some of the more basic logical eqgulvalences together
with their descriptive titles, In these p , 4 , r represent statements
with variahle logical value as we have teen using them, while T represents

s statement with & constant vaiue of "True" and F the corresponding "False'

constant:

Tdentity Iaws:
PAT & P pVT &T (repT) & T
PATF & F pVF &p : (p&SF) & ~p

Cbmplementary T.aws :

D A ~péa F PV ~p&T (pep~p) & ~p

Tdempotent Laws:

PADED pVpPp&e p (pedp) =T
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DeMoxgan?s TLaws (Denial):

~(pA q) & ~p V ~a ~(pVva) & ~p A ~q ~(P=q) & p A ~q
~(p &= q) & (~p & q)

Commutative Laws:

PAa&E gA D PVdaeEs AV D (p=q)eX>» (q = p)
(pe= q)e= (a &= p)

Associative Laws:

p A (gA 1) & p vV{gVvV r) < p== (g2 rleX=(p=q) =71
(pAqg) A T (pVag VvV r p&e (gqe=1r) &
(pe q) &

Distributive Laws:

p A(aVv r)e pvigAr)e ((pVa)=rle
[(pA a) v (p A [(p Va) A(p v 1)) [(p=>a) A (ad=37)]
[(pA q)=r1r] &
[p= (qg=1)]

Miscellaneous Laws:

[(p=ad)A (g=1r)]= (p=7r) [Transitive Law of the Conditionall

(p=q) e (~q=~D) " [Indirect proof of a Conditionall(contraposi-
tive)

~pe= 9)e= (~pe= q) (p&&= ~q) [Disproof of a Biconditionall
(p(:b q) = (~p = ~q) [ITndirect proof of a Biconditionall]

If you were at all observant as you read through this list, it must have
occurred to you that almost all of the properties of the Real Number System
(except 'order") are present here and hence that there must exist an Algebra of
Logic which very closely parallels the Algebra of the Real Numbers. We are
very close to an Arithmetic of Logic, which is in fact exactly the basis of
electronic "decision making" circuits! We have no intention of taking time
for this now, but many of you will p. obably have an opportunity to develop

both the Arithmetic and the Algebia in some of your future courses.

There is another Algebra which is so closely connected to the Algebra of
Logic and so easily derived from it that we cannot afford to ignore it at this
sime. We have found the idess and notation of Sets very useful and have no

doubt found many instances in which an answer might correctly be written in

h
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several different forms (an "‘equivalence"), snd thus have suspected that an
Algebra of Sets exists and could be put to good use, The Algebra of Sets is
sometimes called "Boolean Algebra'" after George Boole (1815-186L4) and is

essentlal to a complete understanding of the use of Sets.

In the "set-builder" notation we define & set in terms of some logical
statement -- those items for which the statement has a logical value of "True"
become elements of the set; those items for whicl the statement has a logical
value of '"False" are not elements of the set and hence become elements of the
"complement'" of the set. For instance: & = {x : 2x + 3 > 5} defines the
solution set of the inequality 2x + 3 > 5 within the domain of the inequality.
In other words: any value of x within the domain which makes the statement
"2x + 3 > 5" have a logical value of "True" becomes a member of the set
(x € A) and any value of x which makes the statement have a logical value
of "False" lies outside the set (x € A') ., The Union and Intersection of sets

are logically defined as:
AUB={x:(xeA)vV (x € B)} ANB={x: (xeAA (x e B}

With U = {x : ¥ 1lies within the domain of our statement} , our constant T

in the preceding list becomes U ; our constant F becomes ¢ 3 V becomes

" 1"

U 3 and A becomes N . There is no "set" counterpart for "=" or

e " s but we already have the full list of basic Set Equivalences which

forms the basils of Boolean Algebra:

Tdentity: ANTU=A AUU=T

Andg=2¢ AU O=A
Complements: AN A = ¢ Ay A* = T
Tdempotent: ANA=A AU A = A
DeMorgan: (AN B)! = Aty B! (AU ) = A' N B?
Commutative: AN B=BN A AU B=BUA
Associative: AN (BN ¢) = (AN B)N C AU (Bu ¢c) = (AU B)uUu C

i

Distributive: AN (BU<C) = (AN B)U (AN C) AUu(BNGC) =(AUB)N (AU C)

It is the strong similarities between the "structures" of Numerical
Algebra, Logic Algebra, and Boolean Algebra which make our study of "structure"
so vital and it is hard to say which you will find more useful in your mathemati-
cal future. Fortunately, we need not worry about it because once you have any

»n.. of them properly understood, you have them alll



This is one reason that '"structure' has become so important in the study
of mathematics at all levels from kindergarten through college and into

practical application, especially in an Age of Automation.

Section 6. A Rule of Inference.

Thus far we have studied only how we assign the truth values to statements
when we know the truth values of their parts., This does not tell us how we
prove things. That is, how we can infer that one statement, B , has the truth
value 1 from other statements. There is one major rule for doing this.
Suppose that we know that the conditional

(1) A=>B has the truth value 1 ,

and suppose we know that
(2) A has the truth value 1 ;

then it follows from the truth table for the conditional that
(3) B has the truth value 1 .

In this way we could establish that the truth value of B is 1 without
knowing ahead of time that this was so. DNote that we must determine both the
truth value of A= B and A to use this rule., It may seem a bit of & pafadox
that we can determine the truth value of A=r B without first knowing the

truth value of B . It is not a paradox because Ppart of the truth table for
A=B gives the value 1 regardless of the truth value of B ; namely when

A has the truth value O . Thus we have only to deal with the cases when A
has the truth value 1 ; that 1s, we can assﬁme that A 1is true, Naturally,
this makes it easier. But to get new information about B we then must also

establish that A has the truth value 1 .

Example 1: Consider “he sentence

If 3 divides 5,043 then 3 divides 10,086 .
Here, of course

A is '3 divides 5043" and

B is "3 divides 10086" .
Now the truth of A= B 1is established by noting that
10086 = 2 + 5043 and so if 3 does indeed divide 5043 ,
say 5043 = 3 ¢ n , then it follows that 10086 =2 ¢« 3 = n
or that 3 divides 10086 . Thus when A has the truth

6
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value 1 it follows that I has the truth value 1 . Hence
the truth value of A= B 1s 1 . But now to infer that B
has the truth value 1 (that is, that 3 does divide

10085) we must check to see that 3 divides 5043 . Upon
division we find that 5043 = 3 « 1681 and so we know that

3 does divide 10086 .

Example 2: If 3 divides 5086 +then 3 divides 10172 .

We shall not repeat the whole of the argument above. It
should be clear that the demonstration we have given to show
that A = B has the truth valve 1 goes over here by Just
replacing 5043 by 5086 anda ~02086 by 10172 ., Ho=ver,
we cannot demonstrate that i: rides 5086 and so we cannot
infer that 3 divides 10l(= , As far as this argumers shows,
it me - or it may not. To deci? which we shall have tc do

more rathematicse.

Section 7. Quantification.

7-1. "For all" and "There exists".

When we have & statement A(x) which depends upon a variable x
then "For all x , A(x)" is assigned the truth value 1 if inceed
A(t) 1is true for all possible t in the range of A . Otherwise
it is assigned the value O . Similarly "There exists an x such
that A(x)" is assigned the truth value 1 .if for at least one

t in the range of A , A(t) is true; otherwise the sentence is

assigned the value O .

The notion of "range" as used here can be left rather wvague and

tenuous -- Jjust as we have left the notion of variable,

T-2. Negatién: The negation of (For all x , A(x)) is trivially,
~(For all x , A(x)) R )
which is equivalent to -
There exists x such that ~(A(x)) .
The negation of (There exists x such that A(x)j is equivalent to
For all x , ~(A(x)) .

The assignment of truth values establishes these assertions. Formal

7




verification is probably not as convincing as demonstrations with

specific examples.

7-3. (Sample exercises needed to amplify this notion.)

Section 8. Other Rules of Inference.

There are two other rules of ..ference which are important.

8-1. If "For all x , A(x)" has the truth value . ~ we infer that
A(t) has the value 1 for each t in the dor ... ‘onve-sely,
i A(t) .is true, independent of t (that is, .7 =~ ®»lt 3 no
role in the argument) then we infer "For all x FASEI

8-2, 1If A(t) has the truth value 1 (for some spec 7.t I the
domain of A ) then we infer "There exists x such wat x)" .

Section 9. Axioms and Theorems.

An axiom is a specific statement to which we arbitraril - :-zign “ue

truth value 1 .
Example: For all pairs of integers, a + b =Db + a .

A theorem is a statement whose truth value we have determined to be 1 .

(Thus we regard axioms as theorems. )

Section 10. Proof.

A proof of a statement is a logical argument we make to demonstrate that
the statement is a theorem, i.e., that it has the truth value 1 . Usually
the statement in question has the form A= B and it will usually have

quantifiers as a part of the statement.

The strict logical definition of a proof of B from hypothesis
Al s eee s A (i.e., a proof of (Al and A, and ... and Ah) =B )

requires a sequence of sentences each of which is either an axiom of a
previously proved result, or it follows from one of the rules of inference
applied to statements which appear earlier in the sequence. This notion is
closer to what should occur in the classroom since it is a reduction of a

complicated sentence to a collection of simpler and more obvious statements,

Example: For all integers n , if n 1is odd then n2 is odd.
(Form : For all n , "i(n) = B(n)) .

—(8
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Proof: For all integers n we must show that the truth value of
(n is odd) = (n2 is odd) has the truth value 1 . It will
then follow (Section 9) that the statement is a theorem. To
show (n 1is odd):#(n2 is odd) we assume "n 1s odd" is

true. Now:
* n 1s odd & there exists an integer, k ,

such that n = ok + 1 . (To shorten our example we shall ppose
that this is a previously proved theorem; we should of co.. =
verify that this regression will occur until the axioms on s :iich

the integers are based are employed.)

If n =2k +1 then n2=(2k+1)2=uk2+l+k+1=

2(2k2 +2k) +1 . This holds, as you will recall, because cf
the distributive laws. Thus n- = 2(2%° + 2k) + 1 and by - (*)
it follows that n°  is odd . Hence (n odd) = (n2 0dd) has
the truth value 1 .

For the T.C.: Here are a couple of philosophical remarks on proof which

we offer:

1. A typical attitude toward proof, especially among practicing mathé—
maticians is that "A proof is an argument that convinces the listener." This
is a very practical view for those who are sufficiently concerned to doubt
or care. As a philosophy it i1s totally unsuited to the high school classroom,
since students seldom really care and certainly never doubt the authority of

text or teacher.

2, An important part of a proof is to discover why a particﬁlar theorem
holds. In the proof we find exactly what "makes it tick". For example, in
proving (n odd)=> (n2 0dd) how much depends upon "odd"? Would (essentially)
the same proof hold for (n even)==)(n2 even) or for
(n has the form 3k + l)=¢(n2 has the form 3k + 1) or for
(n has the form 3k - 1) = (n2 has the form 3k - 1) ¢

3. Students need training in putting facts together to create new mathe-
maticse ' In this game the alteration of hypotheses plays a key role. Was each
hypothesis used? Can one hypothesis be dropped? If an hypothesis is added or

dropped or denied, what is the change in the conclusion?
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Finally we point out that this concept of proof has little to do with a

strategy for proof. In trying to construct a proof we often make false starts,

collec* bits and pieces of evidence bearing on the proor, or change the form

of the “heorem to an eguivalent form. In short, since we don”t know at the

start Jjust what the sequence of steps shall be, we may have to do dquite a lot

of trisl and error work until a suitable sequence arises. Bu the ultimate

test .

s proof is whether this sec .ence can be found.

tneidentally, mathematiciars are satisfied (convinced) wiien it "becomes

cle:r' that a proof sequence car be established. Seldom is a complete prcof

sec.encee written down.

Grade 9 - Chapter 3

Systems of Sentences and Optimization

Background:
1. Convex sets and intersections of convex sels,
2. Solution sets of systems of eguations and inequalities, and their
graphs.
3 Linear functions and their graphs.
L, An intuitive development of the linear programming problem;
2
5 Quadratic functions f: x —a(x~h)” + k , equation of circles and
parabolas.
6. Three dimensional coordinate system and algebraic description of
subsets of space.
Purpose:
1. To extend the development of linear programming and its applications.
2. To refine the mathematical ideas involved such as convexity, polygonal
convex set, and the extreme points of such a set.’ ’
3e To focus explicitly on the optimization problem of determining the
maximum or minimum of a linear function defined over a polygonal
convex sete.
4, To review and extend the Grade 8 development of systems of linear

equationse.
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To introdu nd treat very lig. ..y systems of first degree equations
in three ve -iables, and systems of one linear and one quadratic

equation.

Section 3-1. Introduction.

(1)

(2)

(3)

(%)

Pose a linear programming problem in two variables which 1. slightly
more complicated and more isuccinctly stated than the one ¢ sed in

Grade 8 °

Guide the formulation of the equation and inequalitles from the

statement of the problem.

Develop a graphical solution to the problem in the manner found in

Grade 8.

Examine the solution process and highlight the aspects c¢f the process

which will be studied further in this section, namely,
(a) the language of constraints in the form of inegualities,

(b) the formation of polygonal convex sets by systems of sentences

and noting extreme points,

(¢c) +the relationship between the linear function and the constraints

provided by the inequalities,

(4) the solution being found at an extreme point.

Section 3-2, (onstraints and Inequalities.

(1)

(2)
(3)

()

Note that decisions are made within certain boundary conditions or
constraints. Give some everyday examples: Buying a dress or suit,

etc,
Provide some conditions which are to be translated into inegualities.

Review graphing of inequalities. Develop terminology of half-plane
and closed half-plane for these solution sets. Review convexity of

half-planese.

Discuss conjunctions of constraints and accompanying intersections of
solution sets of inequalities. Discuss convexity of intersections of

convex sets,
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Section 3-3. Polygonal Convex Sets (Constraint Sets).

(1)

(2)

(3)

(1)

(5)

Section -

Have students graph solution sets of systems of inequalities that

lead to polygonal convex sets.
Analyze these polygonal convex sets as

(a) being the intersection of a finite number of closed half-planes
(spaces). Note that each of these closed half-planes contains
the set, and this leads to another definition of convexity of

polygonse.

(b) %being bounded or unbounded. A polygonal convex set is unbounded

if it contains a ray.

Do the reverse. Provide drawings of polygonal convex sets and have
students provide the systems of inequalities which have them as

solution sets.

Provide problems such as follows (from Kemeny et al) minimum

nutritional requirements:

?hosphorus Calcium
Adults e .0l
Child - .03 .03
Infant -0l .02

Plot the convex set and state whether or not the following assertions

are true,.
(a) If a child?s needs are satisfied, so are an adults.

(b) Both an adult?s and an infant?s needs are satisfied only if

a child?'s needs are.
Fte,
This ties in with previous chapter on logic.

Provide a system of inequalities which contains a superfluous condi-

tion and have students find it.

"o Bxtreme Foints.

(1)

Exhibit some extreme points of polygonal convex sets. Then have

students identify them. (Pointing exercises)
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(2)

(3)

(4)

Give systems of inequalities and have students find coordinates of

extreme points.

Give the coordinates of the extreme points of a bounded polygonal

convex set and have students provide the system of inequalities.

Give some problems involving constraints and have students discuss

the extreme points of the problem.

Section 3-5. QOptimization of Linear Functions.

(1)

(2)

(3)

()

(5)

O
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Refer to problem posed in Section 1 and identify the linear function
£ : (x,y) »ax + by and the linear inequalities in =x and y
forming the polygonal convex set C ,

Discuss the intersection of the solution set for ax + by = P and

set c .

Discuss the effect of varying P and the solution occurring at an

extreme point of C .

Analyze similarly some sample situations.

At what point does the solution occur?
Lead to the following statement:

A linear function defined over s polygonal convex set c
takes on its maximum and minimum value at an extreme point
of C .

“An informal proof of this is given in Kemeny et al.

Deﬁelop the gsneral method of finding the maximum or minimum of a

linear functisn defined over & polygonal convex set C (bounded).
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(a) Find the extreme points of C (there will be a finite number
of them).

(b) Substitute coordinates of each into the function.
(c) The largest of the values will be the maximum and the smallest

will be the minimum.

Section 3-6. Applications. (Appendix C, Section 3)

(1) Provide some linear programming problewms.,
Tnelude both minimum and maximum problewms.

Tnclude cases where no solution exists,
where an infinite number of bounded solutions exist,
and at least one occurs at an extreme point

where the solution exists but is unbounded.

(2) Have students analyze how these cases arice.

Section 3-7. Systems of ILinear fguations Revisited.

(1) Pose some problems leading to two linear equations in two variables.

Example: Consider the centigrade-Fahrenhelt formula
c = g (F-32) and pose these questions:

At what temperature do the two thermometers have the same

reading?

At what temperature does ‘the Fahrenheit thermometer have a

reading 3 ‘times that of the centigrade thermometer?
(2) Review graphical and algebraic procedures for finding sclwution.
Discuss equivalent equations and equivalent systems.
Review principle of linear combination.

(3) Consider cases of inconsistent and dependent systems and have

students develop a graphical and algebraic analysis of these cases,

Fxamine these cases in terms of applications,

Section 3-8, Systems of First Degree Equations in Three Variables.

(1) Pose a problem leading to 3 first degree equations in 3 riables.

Example: (Modify diet problem found in Dorn-Greenberg text.)

8k
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{(2) Develop a graphical analysis, showing that each is an eguation for a

plane and problem is finding point of intersection of three planes.
Show graphically how other cases may arise.

{3) Develop algebraic process for finding solution as an extension of

process for two linear eguations in the previous sectionr,

(4) Since the process is repetitive, consider the possibility of develop-
ing a flow chart for the process, following Gauss?s method., (See

Dorn-Greenberg., )

Section 3-9. Systems of One Linear and One Quadratic Equation or Inegquality.

(Very lightly.)

(1) Consider pairs of equations, one for a line and one for a
>

parabola, very simple cases.
Develop algebraically and graphically.
Example: = x2
y =2x + 3
. 2
Consider also y > x
y £2x + 3
and consider intersections of .
the family y =2x + k . //

(2) Carry out the same simple development for a circle and a line.

Example: x2 + y2 5

X +2y =5

Tt is recommended that the following material not be included in the 7-9 sequence.

Systems of Sentences in Two or More Variables

Background:

1, In Grade 8 students will have studied systems of first degree sentences
in two variables with a slight introduction to linear programminge.
(Chapter 12, 1967 sequence)

35



2 Tn Grade 8 students 7ill have studied the quadratic function
2
£ :x 2a(x - h)° + k& extensively and be familiax with the equation

of a circle. (Grade 7, Chapter 2, 1967 sequence)

3. They will not have any experience with equations of the hyperbola or
ellipse, and will not be familiar with the general second degree

sentence in two variables.

4. In Grade 9, Chapter 3, students will develop, hopefully, a higher
level of sophistication in working with first degree sentences in

“wo variables as they develop the linear programming chapter.

T recommend that a study of systems of sentences like:

2
{x+2y—3=0 :Ex‘—3x+u+ygo
x2—3X+5=y, x +2y -5 =0,
X2+y2-3=0 .
2x2-3x+u-5y2=o, .

along with their graphlcal representation be studied in conjunction with the

appropriate sections in the 10 - 12 sequence,

T also recommend that systems of sentences like:

x +y+2z-~3=0 x+y+z+w-L4k=0
2x - 5y + 72 + 1 =0 2x - 5y + 2 = 3w + 10 = O
5x—2y-3z+10=0, 5X+10y-7Z+W—2=O e o o

X+y-z2=-w+z=0,
be included at appropriate places in the 10 - 12 sequence.
Some reasons for the recommendations:

(1) Students will have matrices to handle systems of first degree equations

in ftwo or more variables in the 10 - 12 sequence.

(2) Tt seems more appropriate to study systems of second degree sentences
in two variables when a knowledge of all of the conic sections, and
some knowledge of transformations in the plane are available to the'

student,
(3) Study of systems of equations in the 10 - 12 sequence can arise
naturally in the spiral of the '"stream" of modeling and linear pro-

gramming.
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Grade 9 - Chapter 4

- Measure Functions and Thelr Properties

1966 Outline, pp. 346-352.

In the outline for Grade 8, Chapter 10, Properties and Mensuration of Geometric
Figures, there may be some material that would fit nicely here, particularly the

sections using the function notation,

Grade 9 - Chavter 5

Statistics

The 1966 Outline, page 321, only listed some topics that might be included.
In the 1966 Outline also, on pp. 417 and 418, there is a statement concerning
probability and statistics for Grades T-9.

The following document was produced to guide the Grades 8 and 9 writing
teams. Only the last part is specifically for Grade 9, but the complete
document is included here. Hopefully this will assist in getting a consistent

sequential treatment in Grades 8 and 9.

See under Grade 8 the document Probability and Statistics, Grades T, 8,.
9, 10 or 11, pr. Lo o This document was, in a sense, superceded by the
document Probabllity and Statistics for Grades 8 and 9, but it still has good
ideas in it that should not get loste.

Probability and Statistics for Grades 8 and 9

We gquestion the feasibility of the approach toward probabllity taken in
the Qutline and already implemented in Grade 7., Our greatest fear is that the
student will not see that a probabllity model is constructed to reflect a
physical situation. More important, the student should understand that the
assignment cf probabilities, while arbitrary, reflects the physical situation
as determined by experiment. Why, in a coin tossing game, is the & priori
probability for heads chosen to be % ? What arguments could a Tth grader
advance to refute the following argument: If two coins are tossed there are
3 outcomes possible (2 heads, 2 +tails, or 1 of each) and that hence each

should be assigned the probability % ?
87
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We believe it is more natural to approach Probability and Statistics
from the standpoint of statistics and an elementary analysis of a collection
of data. The following outline suggests a possible treatment for Grades 8

and 9.

(We do not feel sufficilently ccmpetent to provide a detailed outline for the
high school course in Probability and Statistics.) Our grand goa. for Grade 9
is not so much a command for the calculus of probabilitiec as 1t is a feeling

for the strengths and weaknesses of assertions like:

1. Toothpaste A 1s significantly more effective in preventing tooth

decay than toothpaste B .
2. Lung cancer can be statistically linked with cigarette smoking.
3. The likelihood of rain today is 60 percent.
L, The average 15 year old boy weighs 105 pounds and is 5110" tall.

5. Should I purchase a car battery for $20 which may last 18 months

or one for 30 which may last 30 months?

Oe Two radio signals are heard on the same frequency. One is code from
a Russian satellite, the other is noise from outer space, How can

we identify which is which?

Te A plastic toy manufacturer uses a machine which unfortunateiy pro-
duces defective toys 10 percent of the time. He is considering
buying a new machine at the cost of 10,000 which will produce his
toy and which is claimed to have a defective rate of only 5 DPpercent,
How should he decide if (a) the new machine has a defective rate less

than 10 percent and (b) is it an economical replacement?

GRADE 8.

1. Freguency Distributions.

1-1. Data from observations where the entire population is knowm.

Select examples which can be developed by the students.
(1) Heights of class members.

(2) Distance class members can throw a ball,

(3) Standing broad jump.

(4) Test scores.
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(5) Birthdays -- by the month.

(6) Number of children in families of class members.

(7) Age of students in months.

(8) Number of letters in last name. (Also fivst name. Compare. )

(9) Vowel frequencies in newspapers., Compare English and
foreign lantamge pape s,

(10) Measurement. With a ruler marked in millimeters, let each

student measure a line segment of about a yard.

(11) Estimate midpoint of a line segment of about a foot by eye.

Then measure the estimates,
(12) Weight of apples (or oranges) in a box.

1-2. Graphs of data. Grouping of data (give rules of thumb). Continucus

model?

1-3. Relative frequency. Cumulative frequency.
Raise lots of gquestions about the properties of the distributions

discussed above.
1-4, Mean, Mode, and Median,

Develop as numbers which describe the total distribution; that is,
as examples of number valued functions of the set of distributions,

Cive different distributions with the same mean.
Percentiles.

Rescaling: If, for example, in the ball throwing experiment, the
distances range for 60! +to 150?% , we could shift the origin so
that the range is =45 to U5 or we could rescale so that the
range of values is ~1 to 1 ., Compare a shift of the crigin
with chahge of scale of the axis, Try out both on examples in
Section 1~1l. Contrast scaled and unscaled distributions of

Examples 2 and 3 .
1-5. Variance and Standard Deviation.

Treat as further examples of numbers which describe the whole dis-
tribution. Compute for the various distributions in Section 1-1.

Ask for commentsi




1-6,

1-70

1-8.

GRADE 9.

Change of scale effect on variance and standard deviation.

Look to Chebychev?s inequality but don?t emphasize.
Subpopulations (Samples).

For example, select out distributions for both boys and girls in the
examples in Section 1-1. Plot both distributions on the same graph.
Compare. Cowpare with whole. Compute means and standard deviatione
Repeat when, for example, the subpopulation consists of those with

first initial A - L and with first initial M - Z.
Samples.

Treat as similar "hunks". Show how some of the examples in
Section 1-6 seem to reflect total distribution while others do not.
Compare means and standard deviation. Can these samp” = :tatistics

be used in prediction?

Measurement -~ Distribution of errors.
Approach from the point of view of cowparing differer . . ups of
measurements of the same object. Example: Have the ~"..:: measure

with a ruler marked in millimeters a line segment abc i~ 2 yard long.
Now consider different subpopulations of different.siz: as though
they had determined the length of the segment. Compare. Do not
try to suggest that an uﬁderlying distribution for the errors in

measurement might exist. Just treat it as, "This is what we got'.

Exasmples from Bernoulli trials.

Coin tossing, spinners, thumbtacks, (Pick up link with Grade Ta)
Perform say 100 trials of coin tossing 20 times. Compute means
and standard deviation of these 20 experiments. Repeat the experi-
ment with different sample sizes than 100 . Compute the means and

standard deviations -- relate to size of sample.

Probablility Models.

Take another look at Grade 7. Treat as modeling problem.

Construct Probability space - Event space.

Assignment of probabilities.
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Elementary calculation of probabilities,

Give tables for the Binomial distribution to avoid complications

of sophisticated countinge.

Elementary testing of hypothesis.

The teacher presents statistics from the spins of an unknown spinner.

How is the area of the splnner divided?

An ESP experiment with coin tossing: Is the subject doing'"signifi-
cantly" better than he could by guessing? Develop rnotion of maximum
likelihood from the point of view of rejection-acceptance tests,

For example, with the spinner problem with a 90 percent confidenco
we might reject the hypothesis that the distribution was 1/L - 3/k
and accept that it was 1/2 - 1/2 « We might also accept a great

many others and reject a great many, Which seems most favorable?

C. back and pick up examples from Section 1-6., If a student?s
pzrformance is given can we decide whether the student 1s male or
fzmale? Suppose, for example, we know the distance of the student’s
standing broad Jjump. One way of reducing the complicated dic<tribution
of distances to a Bernoulli triéls situation is to make a pairing of
the boys and girls. For each pair, record a 1 if the boy*s score
exceeds that of the girl and A-l otherwise., Refinements in the
method of pairing can bring cut other interesting phenomena, For
example, is height a key factor in the standing broad jump? Arrange

the matched pairs so that they have the same height.

Problems requiring more complex computations of probabilities.

Problems where there are more than two outcomes.

ESP experiments where the subject calls the cards from a deck of

say 12 cards. When is a long run of successful guesses significant?
Dice (of a suitable euphemism).

Independence of trials.

Selection without replacement.

(In this section we would continue the emphasis to a test of hypotheses,
These experiments will lead to the next section where the counting

tools are developed.)
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Se Combinatorics -~ Systematic countiige

Inclusion - exclusion principle.
Multinomial coefficientse
Tree diagramns,

6, Conditional Probabilities.

Irjependence of testse.

Te Random Variables,

Return to Grade 8 type of ¢ amples and read off vaiious functious of
the distributions., Use Beruoulli trials. Discuss the R. V. which

is the number of tosses bef>re the first head.

Expected value. Expected v=lue of a sum of Re V, 3 the sum of the
expected values. Use this .3 an aid in dsZermini-. - probabilities

and in the combinatorics < Section 2,

8. Correlations between diff:_ent random variables,

Curve fitting -- Distinction between best fit and goodness of fit.

Grade 9 - Chapter 6

Displacements - Vectors

It has been suggested that Grade 8, Chapter 3, Displacements, in the 1966
outline be moved here. In the notes for the Grade 8 writing team and the nexs
two pages there is a note of caution about making this move. What goes in this
chapter depends upon the fingl decision on what stays in Grade 8 and also the

treatment of vectors in the Grades 10-12 block.
The following documents from the 1966 outline are pertinent to this chapter.
(1) Outline for Grade 8, Chapter 3, Displacements, pp. 207-219.,
(2) oOutline ~ Vectors, pp. 434-467.

(3) Vectors on a Line, pp. 424-433,
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Grade 9 - Chapter 7

Trasformations

1966 Outlias, Pp. 331-345,

Grac: 9 - Zhapter 8

Circular Functions

1966 Out ine, pp. 357-366.

Grade 9 ~ Chapter 9

Tangency
1966 Outline, pp. 367-376.

1966 Qutline, pp. 377-380.

In the outline for Grade 8, Chapter 10, pp. 20-33, there may be some material
that would fit nicely here, The material is a treatment of area, volume, work,
and falling body problems without limit Processes., The treatment uses double
inequalities and has a version without function notation and one using function

notation,

Grade 9 - Chapter 11

. Complex Numbers

1. Background assumed from prior Grades 7-9 experience,

(1) Definition of and experience in computing with sguare roots and the

distance formula: Such material is included in Grade 7, Chapter 1k,

Grade 8, Chapters 2 and 5. We assume that in the definition of
square root it has been observed that it is necessary to specify
that the square root operation is applied only to nonnegative
numbers. Let us assume that This has been sufficiently emphasized

and that & question has been raised about possible square roots of
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(2)

(&)

2 negative number .. and a passing reference made to the existence

>7 complex numbers.,

Losolute values: _=t us asc-me here that the geometric role of

solute value .- ~ .otior. with distance on the number line has

~en discussed.

(@]
)

_ommutative. zssccizvive, distributive laws; identities and

.nverses Tor addition and multiplication; discussion about

1

structure" of vericu' numbers systems: Such material is now included

in Chapter 6, Grels 7. However, it is probably too fancy there for

+that level an’ T a7 been suggested that it be dropped at that level.
Tf it is dropped - its present form it probably should be replaced
bty a treatment wii 1 covers some of the same ground, but with a
lighter touch s..=vhere in the seventh or eighth grade, and re-

inforced at several points in the seventh and eighth gfades. In the
process there will surely have been discussion of various extensions
of number systems in response to either mathematical needs (e.g., a
solution for x +7 = 4 ) or for more adequate models for "real
world" phenomens. After the most recent such extension (to the real
numbers) a gquestion about whether this is the last . extension possible

or necessary will feed into complex numbers in an obvious way.

Solution of quadratic equations; completing the square; possibly

the quadratic formula: Here one can avoid quadratic equations

without solutions in the real numbers only by being careful in the
choice of coefficients. We assume‘that this fact has been noted --
even emphasized =-- and that the question has been raised.whether a
further extension of the number system would give solutions to such
equations. An affirmative answer should be given along with an
indication of what such numbers would be, for at least such an
equation as x2 +1 =0, Probably this should be carried even
further and that complex numbers of the form a + bi as results in
completing the square or quadratic formula should be explicitly dealt
with; though one should probably not develop complex numbers as &
system with the field properties at this point., Since guadratic
equations are still in the set of materials intended for everybody,
as the present chapter probably is not, 1t would be in order to go

on with complex numbers at this point, to point out that ..ey can be
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representzl -Jered pairs (a,b) and hence can be given tangible

existence T ~2sentation in Argand diagrams., A passing reference
to the us=r. : of complex numbers in electrical circult and other
applicaticz: 1d be made, though not in great detail.

(5) Vectors ix © _ ._ane; the set of ordered pairs as one interpretation
of vectors 3dition to setting up the Argand diagram representa-
tion of com._: =z—umbers we should also pave the way for complex
numbers by -: = -—ing that there is no "closed” multiplication of
vectors def::=. - that 1s, there is no multiplication where a vector
times a vec” ~ves a vector. The observation that invention of
such an ope:” - for two dimensional vectors has something to do
with complex —.cers then becomes part of the spiral leading to a
more grand <. -ment of complex numbers.

If the things 1listed above do in fact appear in a reasonable way>in
the material prior to this final chapter of the ninth grade book then we
have probably fulfilled our responsibility to make "everyman" aware of the
need for, existence I, and (1ightly) usefulness of complex numbers. (For
our "everyman" the c .portunity should also be taken, in these references
to the existence of complex numbers,lto include some historical material
on how they were invented, their initisl reception, and'the later discovery
that complex numbers are useful in‘building mathematical models in a number

of applications.)

If this 1s so. Then there is a genuine question as to whether there
is a need for a c=pter at this point before the student has the technical
equipment and mat . <y to deal with the polar form of complex numbers,
de Moivre's theorer. aﬁd the various lovely uses to which compiex numbers
in polar form car ¢ put. It is the consensus of the summer 1967 outlining
group that such a chapter would nevertheless be useful and that it should
take the form of exploiting complex numbers as a way of reviewing and
pulling together a lot of previous material about numbers and number systems.
With this specification in mind we are_suggesting outlines for two versions
which cover esserntially the same ground from slightly different viewpoints,

A brief descrivn‘i “ these two versions is included here.
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Brief Description of the Complex Number Chapter.

Both versions would begin with some discussion of the ways in which
and the reasons for which mathematical systewms are created and extended.
Tt would be observed that the motivation sometimes comes from the uses
of mathematics and sometimes from the mathematics itself -- the latter in
response to efforts to resolve paradoxes; fill in apparent gaps; build
neat logical systems; and sO One. As an example of the former we would
have negative numbers as descriptions of, for example, temperatures; as
examples of the latter, negative numbers to provide solutions to such
equations as x + 5 = 3 or names for points to the left of zero on the
number line. Both treatments would then have a few paragraphs reviewing
the various extensions of the whole numbers carrying along the possible
motivation for such extensions from thevpoint of view of uses made of
numbers (the things for which the numbers provide models); the need to
have solutions for progressively more complicated equations; and the
partly geometric problem of naming points on the line. Both would provably
gloss over the provlem of extending the rationals to the reals {(do we
intend an honest treatment of this anywhere?) relying at this point mostly
on the geometric motivation. Both would probably rely on the algebraic
motivation for raising a guestion about a further extension beyond the
reals, namely, are there solutions for all quadratic equations and in
particular for the equation x2 + 1 =0 7 All this might be done by
questioning rather than telling, and would occupy only a few pages at

most. The two versions would diverge at this point.

(1) Version 1 of & chapter on complex numbers for the end of the ninth

grade,

This would follow the line set out in SMSG Intermedlate Mathe-
matics, Chapter 5. Here the observation is made that in each extension
of the number system the new systeﬁ contains the old system as a sub-
set (or is isomorphic to a subset) and this subset must behave in the
expected way. One usually demands also that the new system have at
least the properties that the old system had. In the extension one
must specify what the elements are; one must define equality; cne
must define addition and multiplication; and one must verify that the
newly defineﬁ addition and multiplication have the expected properties

-« that 1s the properties of the Pprevious system -- and new properties
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must be stated explicitly. The new set of elements would then be
defined as elements of the form a + bi where a and b are real,
with the 1 having the property that it is a solution for the equa-
tion x2 +1 =0, One then demands that this set of elements have
a multciplication and addition which satisfies certain properties --
the usual properties of the field -- plus the property that i2 = =1 ,
One then rigs the definitions of multiplication and division in such
a way that this will indeed be the case and verifies this. The
verifications involve one in a number of finger exercises., All the
algebra is done with elements of the form & + bi . The details can
be checked in Chapter 5 of Intermediate Mathematics. Following this
it is observed that a + bi involves the two real numbers &a and

b and that this suggests the possibility of representing complex
numbers as pcints in the plane, From this the geometry of complex
numbers ig developed including the absolute value {or modulus);
geometric interpretation of the operations on complex numbers; the
line and conic sections represented as absolute value equations; and
so on. Of course, there is a great deal of manipulation and finger
exercises here. It would be nicé to have a good simple-minded
treatment of how complex number diagrams are useful in electricity
for representing phase relationships and how the operations-on complex
numbers do nice things in these diagrams that serve very well as

models for electrical circuit situations.

Brief Outline of Version 1 of Grade 9 - Chapter 11

Complex Numbers

Motivate by solution of x2 +1=0. Trace the development of
extensions of the number system from the counting numbers to the

reals:

Is there a solution in the set of

counting numbers to x + 5

I
U
-

whole numbers to x +5 =13 7%

integers, -etc.
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This was probably done before, so now more understanding and apprecia-
tion can be expected and the discussion can be on a higher level,

The overview is important.

The student must be reminded that each extension wasz such that
the new number system contained the previous ore as a subset, with

all properties preserved and new ones carefully examined.

At this point summarize the properties of the real number system

so that this next extension becomes clear and meaningful:

IT there exists a solution to x2 + 1 =0,
then X2 must be -1 , since the additive

inverse is unique,

No real number will meet this condition. So the extension is

necessary; we need a number whose square is -1 .

At this point then, the new number system will contain all of
the reals and at least one more element: it is called 1 and

defined such that i2 = -1 ., Any other elements needed? ZEtc.

Since this is for 9th graders, the treatment in Intermediate
Mathematics, Chapter 5, SMSG, is a bit hard in spots, but can be
adjusted.

2
Objection was raised to calling 1 a new symbol, since 1 is

s real number -- I tried to meet this objection above.

Also, if Chapter 5, SMSG Intermediate Mathematics is used,
change the sequence of the sections: 5-1, 5-2, 5-3, 5-L, or parts
thereof, followed by 5-T, 5-5, 5-6, etc. This will introduce the

graphic representation earlier,

(2) Version 2 of a chapter on complex rumbers for the end of the ninth

5rade.

This version differs from the first version principally in the
way it handles the various extensions of the number systems. It
departs from the students previous experience by doing each extension
(except from the rationals to the reals) by means of an algebra on
ordered pairs. This way of doing things is familiar to us and we see

it as rather neat; there is some question as to whether the ninth
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grader would also see it as neat and worth the trouble, One wchnld
begin not with Peano postulates and development of the properties of
natural numbers by induction but rather take as alTeady known the
natural numbers, multiplication and addition of theém, and the CAD
and identity properties. One then develops an algebra for integers
with pairs (a,b) -- where (a,b) 1is to be interpreted as a -~ b --
invents the kinds of operations that would work for the a - b
interpretation, defines equality and veriflies that the usual proper-
ties hold and that in addition there is now closure for subtraction,
In the process one must deal already with equivalence classes whereas
in the conventional treatment this does not become necessary until
you have rational numbers. One then takes the set of integers as
known and develops the set of rationals as ordered pairs (a,b) --
where (a,b) is now interpreted as a/b -- and again defines
equality, invents the operations, and verifies that the usual
properties hold and that now we have closure for division. The
interesting thing here is that whereas for the integers multiplica-
tion was the complicated operation to define, here addition is the
more complicated. The extension of the rationals %to the reals
cannot, of course, be done with ordered pairs; no¥ can Ve define an
operation that is implicitly an algorithm in the same way that we

can for the other sets of numbers. We do this presumably as honestly
here as we do anywhere -- the details are not guite clear. With
reals in hand the complex numbers are developed by ordered pairs of
real numbers (a,b) -~ where (a,b) is now interpreted as

a + bi , with 1 as the number with the property i2 = -1 familiar
from previous work -- and the operations invented and properties
verified in a way entirely parallel to the previous extensions.

Since complex numbers correspond to ordered pairs the geometiric
representation is immediate and much the same work with this geometry

is carried out as is the case in the first version.

Tnis may be far too fancy for the end of the nhinth grade, but
some of us feel that this novel way of getting at the various exten-
sions would be fairly exciting to at least a certain number of high
school youngsters. IT¢ has the further advantage of making the

complex numbers anoticr extension of the number system wmuch like =z



couplé of previous ones, rather than making them the ununatural things

suggested by the words "imaginary" or "complex".

3. Suggestions for Developing Geometric Interpretations of Complex Numbers.

These are applicable to either Version 1 or Version 2.

(1) Graphic Representation of Complex Numbers.

Associate with a + bl +the point (a,b) in the plane.

Exampie: Give the coordinates of the points association with

(a) Z,=2+31 graph and cbserve
Z, = k4 + 61
Z, = -2 - 3i
(v) Z, =1+ 3i graph and observe
Z2 =2 + 1 de
Z,.,=3+l|-i 7
3 o =
(c) 1let zl=-h+21 21
Z, = 3 + Yi e _
Z, = -1 + 61
3

(a) let 2z, =6+ 01 ] % e 23
Z, = 0+ 5i
7. = 6 + 5i
3 5
2y
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(e) Draw quadrilateral ABCD with A(-2,5) , B(3,2) , ¢(o,0) ,

D(-5,3) : z, 1is associated with D , Z, with B ;

.
find Zl + 22 .

Continue with similar examples and develop rule for addition.x

(2) Absolute Value of Complex Numbers.

How far are 3 , =3 , 5, =5, 4t , and ~/T from the origin?

Distance is measured by nonnegative numbers. The distance between

a real number n and the origin was defined as |n| .
what is the distance between 2, = 2 + 31 , and the origin?

Draw it. Develop result:

Example: Give the absolute value of the complex numbers of Example

(a) - (e).

Given |Z| =5 ; can you find 2 ? 1Is there only one compleX number

whose absolute value is 5 7
If not, give others,
If there are several, can you describe thelr Position?

More examples,

(3) Multiplication as Effecting a Rotation.
Draw, in the complex plane (1,0) , (0,1) , (-1,0) , and (0,-1) .
(1 + 01 =1
O+ 1i = 1
(a)ﬁ -1+ 01 = -1
O~ 1i = -1
L1 +0i=1
xVerbalize -- compare with vector addition.

IT vecbors were stulied hefore, of course, addition should or can be

done “vectorially'.
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(p) Multiply

(1L + 0i)1 =

LS

graphically, what does
(0 + 1i)i = ? multiplying by i = =an?
(-1 +0i)i = ¢

(0~ 1)1 = 2

(e) 7y = 2+ 31 —(2,3)

Zop =7y = 1= (2 + 31)1
= -3 + 21 = (-3,2)
Draw the graph

Any relation to (b) 2bove?

il

23

(-3 + 21)i does the same observation hold?
:—2-—3:1_

1f A(a,b) and B(—b,a) , what 1s the relation between TA and OB 2

Between a + bi and ~-b +al ?

Multiply a + bi by any real number, c .

(a + bi)c = ac + bei ; what does this mean graphically?

Example: Choose 3 complex numbers, multiply each by 2 , -1, 3,

in turn. What do you observe?
Can we now multiply, graphically, two couplex numbers ?
(a) Let 2z, =2+ 31 and 7, = -1 +2i , using the distributive

property,

N
N
i

(2 + 31)(-1 + 21i)
(2 +31)(-1) + (2 + 31)(21)
-(2 + 31) +2(2 + 31i)i

-Zl + 21 - Zl

i

i

i

From the preceding exercises we know how we can represent graphically
(a) —Zl >
(b) 2iz. ,

(e) ~Z, * 217z, hence le2 o
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fssoc ate ., with point A, 22 ‘with point B,

% with point A% , EiZl with point C . Then the
chordiratss of the points A , B, A' , and C are respectively
(2,3) , (-1,2) , (-2,-3) , and (-6,4) . Wow let 2,Z, be associated
with E ,

2122 = —Zl + 2121
E has coordinates (-8,1) , therefore
2122 =-8+1i,

Now compare AQOAD and AQOEB .

ob =1
AD = V10
oA = ¥iZ
<
~. Az B=+V5=1°+45
EB = V50 = /10 « V5
OE = V65 = /13 « /5
(4) Construction of ZlZ2 Using Similar Triangles.
- —
(leg) Z. =2 + 31 °
1" 31
[ ]
Multiply graphically, using first
"the distributilve property:
(2 +31)(3 + i) = (2 + 3i)3 + (2 +31)i
= (2 + 31)3 = 32,
(Z.)
1 (2 +31)1 =2, + 1
o(z,) Z,%, = 32 + iZ
2
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(5)

Addition,

AOAB ~ AOCD

oA =1 o =410 =1 * Y10
AB = V10 ¢D = 10 = 410 * Y10
OB = V13 oD = ¥/130 = V13 * V10

After one or two

without using any algebra?

Good chance to apply (and review) geometry.

Are A\ OA*A , OBF , OCI!C ,
Using the graph

Example:
obC , ODE

(1 +2i)(% + 31) = -2 + 111 ?
(1 +21)(-3 + ki) =5 + 101 ?

similar?
is
is
Write other products and examine.

Can you draw any conclusion?

e}

—

3z, —(6,9)

iz, - (-3,2)

+ 17, - (3,11)

32y 1

examples, can the similar triangles Te constructed

F(-2,11)

c(5,10)

(a) Add complex numbers

E (-11,-2)

vectorially".

(b) Triangle inequality.
la + | < [a| + |b]

la - b| > l|a| e
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(6) Multiplication.

(a) |ab| = |al|v]
(b) DeMoivre?s Theorem
(7) Exercises.

Find all points =z such that

(a) |z ~=a|l <r (Disk)

(b) |z - al = {2z - D] (Line)

(¢) |z - al <z - bl (Half-plane)

() |z -al +lz-1v| <2r (Elliptical region)
(e) |z -a] +lz-1b] >2r (Exterior of ellipse)

(f) Gaussian Integers, G = {a + bi : a , b integers]
Find the units: * 1 , ¥ 1
Show that there is a euclidean algorithm:
For every pair of nonzero Gaussian integers w, 2z there
exist Caussian integers x , ¥ such that z = wx + ¥ with
Iyl < 1wl

Interpret geometrically:

Since \Z/w - x| = \y/w\ < 1 the assertion is equivalent to
raying that within a circle of radius 1 from any point (z/w)

there is a complex number X = a + bi with integral a and b .

Show that any two Gaussian integers have a greatest common

divisor.

(8) Transformations of the Complex Plane.

Consider functions of complex numbers into the complex nurbers of

the form
(a) f(z)
(v) £(=)
(e) f(z)
(a) £(=2)

I
N
+
o

(Front cases with a real, and complex)

Il
o
N

it

I
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il

(e) £(z)

\ 1 _._]:_. —\]:--—___.l_.
(£) £(z) 5 =zl 753!
z + 1

It

 exampLe expio.e geometrical gquestions.

How does each function transform a line, a circle, a square, an

angle?

Be sure to treat the cases where the line ''goes through” the

constants in the definition of the function.
Perhaps the most interesting case to study is f(z) = % . Here
points inside the unit circle go outside and conversely., Lines

go into circles, and conversely.
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The T .. ibility of the Grades 10-12 Quilining

The 7-9 sequence -z designed to develop wide-range mathematical content
for the generally educated poyulation. Within the 10-12 sequence, there is
less certainty about what contert will be of specific value or is even
essential in developing mathematical maturity. In fact, it is recognized that
several quite different sequences might easily be of equal value in maintaining
interest and in developing mathematical maturity. There may well be several
"royal roads" depending upon the particular group of students. It is the
thought of the outlining group that flexibility of content after the T7-9
sequence is essentlal for keeping the largest possible number of students

enrolled in mathematics and doing mathematics successfully.

Any 10-12 curriculum should allow for many diverse student groups:
(1) the mathematically oriented, college-bound students who need the potential
of completing a substantial amount of calculus while still in high school;
(2) the mathematically capable and interested students who may progress some-
what more slowly but can develop a significant wmathematical background if they
are not forced along too quickly; (3) the mathematically capable students who
are not mathematically oriented but will probably need a breadth of mathematical
ideas to help within their areas of interest; (4) the non-directed, semi-
successful students who need further time, involvement and exposure until Llhey
find an area of interest and/or ability. Each of these groups can probably
benefit from further work in mathematics if it is of mathematical worth, if it
interests them, if it is developed at a pace they can handle, and if it is

within their intellectual grasp.

A lot of talk and thought has been given by the outlining group to the
possibilities of several quite different sequences for 10-12, depending - >on
the students?! (and teachers?) rackground, ability, interests, and future plans.
It is still the thought of most of the group members that the outlining sug-
gestions contain this potemtial., Specifically, the attached possible sequences

are envisioned,
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The courses used within the sequences are described in other documents,

Briefly, they are:

1.

2.

*Axiomatic/Deductive Block (1 semester)

Vector-Analytic Geometry and Functions (1 semester)

Vectors and Linear Algebra (1 semester)

Elementary Functions and Calculus (2 semesters)

(minimal for AP level 1)

Advanced Placement Calculus (3 semesters)

(AP level 2, including one semester of Advanced Elementary Functions)

Probability and Statistics (1 semester)

(1)
(2)

With calculus
Without calculus

Computational Mathematics (1 semester)

(Elementary, non-calculus, computer-oriented)

Note:

The course marked with an ésterisk is open to several selections
of particular content; see Grades 10~-12, Deductive Block,

pp. 121.

The boundary conditions used in making these sequences are:

(1)

(2)

(3)

The background for these sequences is completion of the T7-9

curriculum,

The maximum time available is 6 semesters. There may be fewer
semesters available (for those who take a longer time to complete

the 7-9 sequence) but probably wnot more.

The suggested time allotments are minimal., It may be necessary
to stretch any given course or courses over a longer time span,
e.g., Vector-Analytic Geometry and Functions, and Vectors and
Linear Algebra may be done in 2 or 3 semesters, The emphasis

should be compietion of a content block rather than completion

of a standard block of time.
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The following pages contain two versions of the various possible sequences:
one is a two-page diagram that gives a concise overview and the other is a five-
page description with titles and possible time allotments. The suggested
sequences are the same. The "flexibility factor" should be considered from

two different aspects.

First, there is a flexibility of scheduling. It is not contemplated that
any one school will offer all of these sequences (or even half of them)., Upon
selection of one or two of these sequences, it will be nokted that the basic
courses may be scheduled in an order and with sufficient frequency to ellaw
for student cross-over and section cross-over, That is, the basic modulc:

12y often be fithed within several somewhat different seguences,

Actually there are essentially only two fundamental 1'iree~year sequences --
one leads up to & full year of advanced placement calculus; the otrer to a year
of elementary function and calculus (1/2 year advanced placement calculus)., A
given school system may decide that it can offer both of the fundamental
seduences or only one. The other sequences listed in the blocks in the first
row are obtained by changing the time at which the Deductive Block is given’
and the time at which Probability and Statistics is given. Once these two
decisions are made, the shorter sequences are generally obtained by omitting
som& of the courses in the fundamental sequence -- usually ones at the end of
the sequence, In addition, some of the shortened sequences are completed with

a course in Computational Mathematics.

Second, there is a flexivpility for the individual student's programs.
Through the use of different blocks, it is quite possible to establish final
goals different from the calculus. On these sequences, there is an additional
three-way time factor flexibility: (1) the student may be beginning the 10-12
sequence later than the 10th grade to allow for completion of the 7-9 material;
(2) the fewer number of conlent blocks may be extended in time to allow for -
sloWer moving students; (3) the student may not elect to continue mathematics

for a full three more years,

It is hoped that several different orderings of courses and student pro-
grams will be tried in different schools and some evaluation made to support

or discount the envisicned flexibility and mathematical worth.

Two courses, Probability and Statistics (one semester) and Computational

Mathematics (one semester) have both been included in this document. The group
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has not outlined the content of either of these two courses. There are a
number of schools that offer such one semester courses right now, using
presently available texts., It is felt that the content of these two Courses
should be somewhat different when they are fitted into the new sequence of

courses presently being outlined and written.
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Polynomial Algebra

Preamble:

Since the first Summer Outlining group "neatly’ sidestepped the problem
cf how to deal with polynomials, we are faced with this decision as to how

to proceed this summer. My recommendation is as Tollows:
1. A "simple-minded" approach to the whole business,

2, Rather than trying to select one approach, (i.e., polynomials con-
sidered as functions, or "forms" or as "expressions' as illustrated
on pp. 60-67 of the New Orleans Report), I feel that we should use
whatever interpretation seems to be appropriate for the task at hand,
explain the differences in interpretation, iwhere possible, without
becoming "heavy-haried", and let the student develop the same kind
of freedom that mathematicians exhibit. (See pp. 55-66 of the New
Orleans Reportu)

Polynomial Algebra:

A group of "finger exercises, skills, and concepts'" to be presented in a

block and/or scattered appropriate throvghout the tenth grade.

Background.
In Grades 7-9 (or the first three subdivisions of the Outline), the
student has been exposed (rather informaliy in some cases) to the follow-
ing kinds of polynomials, and operations with these polynomials: ax ,
ax + b , ax + bx , ax2 + bx + ¢, Operatious such as simpilification,
factoring, the solution of equations (completing the square, factoring,
and formula) for gquadratic polynomials, and graphs of functions related

wo these polynomials have also been introduced.

Purpose:

The purposes of this section are as follows:
1. To define polynomlals and rational expressions.

2, To review, briefly, operations with first and second degree polynomials

in one variable.
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3 To develop '"mechanical"” s :i11 in operations with polynomials and

rational expressions.

L, To develop g raphically tire representation of polynomial fwictions

and rational funections,

Se To develop the Remainder, Factor, Location theorems and Degcartes's

rule of signs for polyncmial functions.

6. To develop some skill in working with families of curves anil pa.a-

metric eguations,

Rationale:

At this point, the students have Leen exposed to a considerable amount of
what is contained in the present First Course in Algebra. However, the
student has only had experience with first degree polynomials in one and
t7o variables, and second degree polynomials of the form axg + bx + c ,
a2 - b2 R a2 + 2ab + b2 . A reasonable amount of review and extension of
ideas and skill in operations with these and other polynowials seems to be
needed in order to facilitate the development of analytic geometry and-
linear algebra. It is felt at this time that factoring polynomials over
different domains, including complex numbers, long division, and the like
can be included with the necessary "'finger" exercises to provide the ski!l
level needed at this point. In addition it is recommended that the gragpl.di-
cal representations of polynomials be extended beyond the previousiy
graphed polynomials y = ax + b and y = ax2 + bx + o . This would
include the development of the Remainder, Factor, and Location thenrsms
and a discussion of parametric equations and families of curves, Tha
rationale here being that such an organization woulu tend to give the
treatment of polynomial and rational functions a good reason for existing
and, it is hobed, provide a natural bridge to the subsequent spiral treat-
ment of some of thése concevts in Analytic Ceometry and Linear Algebra

sections.
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Section 1. Definitions.
1-1. Polynomials are expressions like
2x + 3y

3x2 + 2y - 529

5o+ £
3x5 + % xu - 5x3 - 7x2 - 3x + 9
=5

We can form polynomials by combining the elements of two sets using only

the following operations of addition, subtraction and multiplic. M.

The two sets we can use are the set of Real Numbers, or one of its subsets,
and a set of variables. We can combine these elements with only a finite

number of the operations listed above.

Exercises and Examples: Should involve simple recognition exercises about

expressions that are or are not Polynomials, Also some exercises where the
students are given som2 elements, and then allowed to construct some poly-

nomials. Develop degree of polynomial,

If the set of numbers used to form the polynomial is the set of integers,

then we say that the expression is a polynomial over the integers.

Examples: . . .

Similarly we can have:

(1) polynomials over the rational numbers., (Examples)
(2) polynomials over the real numbers. (Examples)

(3) Exercises.

, 1-2, Functions like f: x —ax + b , g: x —aax2 + bx + ¢ ,

h: (x, —>2x2 - 3y2 + 9 , etc.
which are defined by polynomials are important, and in particular,
polynomials in one variable define functions which are models of

many situations in engineering, the natural and social sciences, and
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Section _2_.

2"1.

Section i.

3-1.

Section 4.
)+ ‘l.

)+"2.

Section z.

Section 6.

Section T.

in mathematics “tself,

(E:xrercises and examples developing recognition of polynomial

functions, their degree and evaluation of polynomial functions. )

Because of the role of polynomials of one variable in mathematics,
it becomes necessary to find the sum, product, and analyze the

characteristics of such polynomials. (Review briefly what has been

e

2
done for f: x —max + b , g: x —»ax + bx + ¢ and thaen extend
- on -
examples and eventually definsz f: x —a, X + 8, ¥ 1. ces

+a x+al )

Operations with Polynomials.

Review briefly pol;nomials and factoring over domains -- extend

precent F.C.A, Chapter 12 to include x" + yn o
Review briefly addition, subtraction of polynomials.

Develop divisicn algerithm for polynomials.

Algebra of Rational Expressions. {F.C.A. Chapter 12)

Review and develop some skills with expressions involving exponents,

(25 )
_2 2 ’ o o e
5x ¥

Multiplication, Addition, Subtraction, Simplification of Rational

Expressions,

Graphs of Polynomial Functions.

[~

2
Review briefly graphs of f: x —ax + b , I': x »ax + bx + C .

Grapu of f: x - % , «++, (n even, n odd) .

(Introduction of families of cuives, parametric e ations,)

Remainder and Factor Theorem.

Zeros of Polynomial Functions.

Decart:s's Rule of signs.

Graphs of Rational Functions.
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Section 8. I think we also need to be sure that students have some experience

in finding solution Sets o sentences like:

1/_2"'}{-’-2 =7 9
3+ 2, 2

X=2 x- ?
e’tC.,

and perhaps some gkills in operations with algebraic expressions

like:

21

+ 1
P) + 2

2
~ 1 Jy-T Jy-2

b} ¢veoe

21

120




Grades 10-12 Deductive Block

The group Felt strongly that such a block belonged in the sequence 10-12
somevhcre. Tt soon became clear that there is some fiexibility about where it
should appear in the sequence. It was not so clear as to the precise coutent

of this block.

One version went through at least three revisions and that will te given
first, followed by a comment supported by some of the members of the group.

This version is called "The One Unit A iomatic/Deductive Block'.

The other vers .n is entitled "(Synthetic) CGeometry of the Plane", and
much of it appears in verious forms in other papers. This version is followed

by several comments supported by some of the members of the group.

The following is the Tirst version and a comment on it,

The One Unit Axiomatic/Deductive Block

Part 1:

The outlining committee felt that this is an area where some highly varied
experimentation is in order. That is, several significantly different
approaches should bhe developed and tested. Even the placement of this
block within the curriculum might vary -- either immediately following the
7-9 curriculum or following the Aralytic/Vector Geometry, Li.ear Algebra
unit. The intended goal of the experimentation should not be the eventual
selection of only one of these possibilities but could lead to the adoption

of several (tested and proven) blocks depending upon:

1) student population -- the different approaches will vary in sophistica-
1% pp

tion, abstraction, and/or maturity requirements;

and
(2) teacher preference -- it ~ognized that the teacher will dc¢ the
best job with an approaci. . which he feels some security and intereste.
121
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Part 2:

The outlining committee was in agreement that each approach should Fit

within these general guidelines:

(1) There is & need for one concentrated unit (covering at most one
semester) on material of a primarily deductive nature which will
provide the studen®t with the opportunity to develop a knowledge and

1!

appreciation of "proof'".

(2) The unit should contain at least one explicitly stated axiomatic

system as well as a deductive development.

(3) This unit is to be essentially free of coordinates and real number

axiomatics.

(4) The approach should develop enough power to allow tne student to cope

with "originals" at some time in the unit.

Part 3:

The outlining committee makes the foliowing suggestions for quite different
approaches to this block but does not intend to rule out other possibilities
that meet the above stated guidelines. 1In fact, it is hoped that other

suggestions will be made,

Type A - A Geometry Block

Rationale: A number of significant reasons support such a course:

(1) It is a part of the world?s cultural and intellectual history. Its
words and spirit haQe rermeated our language: diametrically opposed,
tangentially related, going off on a tangent, an obtuse mind, an

acute observation, parallel development, Q.E.D.

is an interesting course, s originals ave intrigue oo

(2) It i int ti Its "originals" h intri d good
students for centuries, and have frequently been a recognizable
first point in the development of mathematicians of the past .ad

present,

(3) It is psychologically satisfying. It has a great number of attainable
goals. "I solved it." There is a clear sense of "closure" ... you

know when you have a solution or you dontt.
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Tt is esthetically gratifying. "There is a heautiful proof for that.’

"Euclid alone has looked on besuty beve,'

It is perhaps the best example of an extensive deductive systenm,
with many non=trivial proofs and econelusions, 1t is & model ror

such deductive systems., (Spinozatls Ithics)
Tts content is more familiar to teachers who would therefore feel

=

more willing and competent to teach the course,

One recommended freedom in constructing 2 course in the spirit of the

above-stated guidelines s in using various sorts of technical wachinery:

(

-
I

)

(2)

(L)

Some version of the Birkhoff axiom scheme such as is used in the

present SMSG Geometr,

A synthetic approach using Euclidean transformations.

An approach through affine geometry and then a specialization to

Fuclidean., (As per Levi, Elements of Ceometry and Trigonometry)

And SO ON eee

L]

A second recommended freedom within the spirit of the guidelines could be

based on various cholces of content, both for emphasis and coverage:

(2)

(3)

Focus on axiom systems and deduction per se;, with the gecmetric
content as a vehicle. One would probably not deal with such technical
matters as completeness, independence, or categoricity in detall but
might deal with the consequences of alternative choices of key axioms;
e.g., the various parallel postulates. One would not be concerned
with "coverage" of any large amount of content. This approach could

lead to some study of various geomeiries,

Focus on organizing the somewhat random and intuitive experience in

geometry contained in the previous three years? work. Here a surong
enough set of axioms might be selected and presented so that the work
would be largely a matter of fitting quite a lot of content into a
sequential structure. ‘

Focus on a rather small portion of Euclidean geometry with some care
and in some detail. TFor example, one might develop the topic of
circles after presenting an adequate set of axioms and basic theorems.

This particular choice could entail work with congruence, similarity,
123
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parallelism, arc length, angle measure, and notions of tangency,

Other such portions of geometry are also rich in possibilities.

(4) And so on ...

- A Non-geometry Block

Rationale: The suggestions under Type B frankly take the point of view
that (1) sufficient geometrical content has been included in 7-9 to pro-
vide a2 sound basgsis for future mathematics, and (2) the course in
analytic/vect@r geometry, linear algebra is a natural successor to the
7~9 sequence, What then remains is +to deepen each student®s mathematical
maturity and further nurture his mathematical creativity, insight, inven-
tiveness, and power. At this stage the student already has a greater
measure of these attributes than he would have had at Grade 10. It is
time to extend them in an area central and immediately applicable 4o the
main stream of college mathematics, Several suggestions for the content

of such a course are:

(1) Point Set Topology.

A course in the elementary notions of point set topology wiﬁh particu~-
lar emphasis on plane sets of points. Use the Euclidean metric to
define an open set and then proceed with a development of topological
notions, This sort of a course has been written for Belgian eleventh
graders: ‘

Papy, Mathématique Modern 8 (Arlon 8)
Premieres leccns d’analyse Mathématiques

The conduct of the course is intended to be highly constructive and
to be motivated by many examples, The elementary theorems do not
require sophisticated arguments nor esoteric counterexamples for
understanding.,
Topics:  Distance function; properiies of a meiric.

Open and closed sets; neighborhoods,

Notion of a topology; base. _

Adherent points; closure; interior:; frontier.

Connectivity; subspaces, induced topology.

Produect spaces.

Homeomorphism; function.

L ntinuity.




Graph Theory.

lote: Many of theze topics are discussed in Chinn and Steenrod,

First Concepts of Topoelogy, New Mathematical Library.

(2) A Course in "Systems". (Working with several representative svstems.)

1. Boolean Algebras.
1-1. Algebra of subsets of a set, algebra of propositions,

algebra of circuits.

1-2. Boolean algebra; partially ordered sets, search for
additional Boolean algebras; subalgebras, do the properties
charscterize set algebracs? Representations of finite

algebraz,

2-1. The group of plane isometries, the translation and rotation
subgroups, the orthogonal subgroup:; patterns with transla-
tion symmetry, possible patterns of lines of syvmmetry;
determining symmetry gfeups of regular polygons and
polyhedra. 7

2-2, Permutations groups; substitution ciphers, decoding, code
of a code; orbits, cycles, even and odd permutations,
finding symmetric polynomials.

2=3. Groups; subgroups, index 2 subgroups; search for new
groups, finding I+ ; cyclic groups, groups of orders
2 -6 ; isomorphism, representation as permutation groups;

do subgroups form a Boolean algebra?

3. Geometric Systems.

3-1. The parallel postulate in Euclidean peometry, consequences
and eguivalent properties; properties of spherical pro-
Jection (as hemispherical) geometries, (See example k-1

below for continuation,)

4,  Further Investigations.
L-1, (a) Each city is on at least one county route.

(b) Every pair of cities is connected by exactly one

county route.
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(3)

s L

(¢) Tvery county route has exactly 3 cities on it
What does this imply about the configuration of
routes and cities?

-2, Vhat properties do length, area, volume have in comuon?
What do these properties imply? Where else do these
rroperties turn up?

L-3. The squaring function S has the property
S(x + y) - 8(x) - 8(y) = 2xy . Are there any other
functions with this property? If ves, try to characterize
5 with additional properties,

k-4, Similar to above with L(x + y) = L(x) + L{y) and
F(x +y) = P(x) + F(y) .

And so on ...

Number Theory.

At Crade 11 we should be able to offer a substantial one-semester
course in elementary number theory. This course could proceed along
the lines of SMSG, Essays in Number Theory. This course would not

list axioms for the integers, but rather would discuss and assume the

erucial properties of division, Archimedean orlering, definition of
Prime number, and unique factorization. The course would stress the
nature of proof rather than axiomatics, We concede that number
theoretic proofs ere much closer to "tricks" than to general methods.
This places a greater premium on the student!s inventiveness than on

his ability to make minor alterations in a general method of proof.

From Grade 7 we have the notion of g.c.d. and the Euclidean algorithm.
But we do not have much practice with linear Diophantine equations.
Topics: Tests for primes and divisibility.

Infinitude of primes and of primes of the form Lk - 1 .

Conjectures on primes,

Congruences; Chinese remainder theorem,

Fermat?s little theorem; Wilson?’s theorem.

Ring properties of the integers module n .

Pythagorean triples,

Farey Series,

Fibonacel Series.
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Gaussian integers; unique factorization theorem,

Z = diverges.

Four squares theoren,

(h) ANnd 80 0N ees

Comment on The One Unit Axiomstic/Deductive Block

The preceding document is a revised swmiary of the group discussions of a
possible one-cemester course in "Synthetic/Deductive Block", Of the possibilities
_isted zome would prefer in order:

(1) Type A - A Geometry Block (Leading to some 'geometric power").

(2) Type B (2), 3 - Geometric Systems.

(3) Type B (2), 2=3 = Groups; subgroups, ...

Some expressed the feeling that the other choices seemed too specialized, and

not sufficiently rich in "real 1life" problem situations,

Here is the other version, followed by some comments, (This is a first draft,

of an overly inclusive listing of topies and comments,)

(Syrnthetic) Gecmetry of the Plane

("Synthetic" is not a good word here)

1, Introduction.

(1) Purposes of the course:

(a) Classical =-- It is part of the werldls intelleetual history.

(b) Interesting -- Many of our preser= nmathematicians first became
fascinated with the "originals" in the traditional geometry
courses,

(c) FPsychologically satisfying -- "I solved it.  There is a clear
sense of "eclosure" -= you know when you have a solution or you

!
(d) Esthetically gratifying., "There is a beautiful proof for that."

have not.

"¥uelid alone has looked on beauty bare,"

(e) It is perhaps the best example of an extensive deductive system
with many non-trivial proofs and conclusions. It is a model
for such deductive systems.
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2.  The Ground Rules.
(1) Clearly stated:

(a) Axioms =- intuitively acceptable; (? should we include axioms
on order and separation?) no emphasis on minimal set; use with
"postulated” theorems, definitions, etc., in deductive schemata.

(b) FEquivalent axiom sets. (categoricity?)

Euclid V and Playfair,

(¢) Alterate axioms lead to alternate geometries, History of
beginning of non-euclidean geometry; finite (miniature)
geometries.

(d) Allowable construction tools: compasses, wmarked straightedge.
Possible constructions depend on allowable tools, (relation
to "constructable" mmbers?

(e) Restricted construction tools: compasses alone: Mascheroni;
ruler alone: incidence geometry, projective; ruler and one
cirele,

(f) Nature of proof. Indirect proof, contrap@sitifeg converse,

3. Straight Line Figures.

(1) Incidence, Congruence:
(a) Line, Segment, ray, etc. (order separation?)
2 3 2
What is length? Measures of length.

(b) Angle, measure, classification (interior?) (sensed?)

(c) Pairs of angles, sum, difference, vertical, adjacent, comple-
mentary, supplementary.

(d) Parallel and perpendicular pairs of lines, "distance" from
point to line; transversals, and related angle rairs.

(e) Triangles. Claessify by sides, angles; sum of angles = 180 .,
Congruence; Datum: when is a triangle determined.
Constructability: construct (a) triangle given.

(Through the whole course the matters of s datum, and construct-
ability, will often appear. These are sources of many non-

trivial problems, e.g., the construction of a figure with

constraints; e.g., construct an equilateral triangle on three P
b
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given parallel lines; describe a square in a given triangle.)
(degrees of freedom?)
(f) Quadrilaterals, ésneral then special, parallelogram fanily treec,
(g) Polygons. (convex? crossed?) Angle sums, regular, (star?)
L, Circles.

(1) Terminology:
(a) "Length of arc, circumference." What is it? (rectifiability?)

(b) Two measures of arc; length, turning.

(c) Circles and lines: diameter, radius, chord, tangent, secant,
angle, (tangency?)

(d) Measures of related angles and arcs.

(e) Construct a circle under given constraints: e.g., with triangle;

inscribed, circumscribed, escribed; problems of Appolconius.

5a Ratios and Proportionality.

(1) Commensurability?
(I think it would be good to develop the non-numerical aspects of
these ideas,)
(a) Similar (homothetic) figures.
(b) Pythagorean theorem and application.

(e) "Product" theorems for segments: intersecting chords; tangent;

secant; Theorems of Ptolemy, Ceva, Menelaus.
(da) Constructions, e.g., fourth proportional with compasses only.
6.  Area.
(1) What is it? How is it measured? (Which geometric figures have area?)
(a) Find the area: square, rectangle, parallelogram, triangle,
polygona
(b) Circular regions; and combinations with others.

(c) Compare the areas: rectangles with equal bases; triangles with

equal bases,

(d) Compare the areas of similar figures.




(e) Constructions: €.8., Square equivalent to rectangle, triangle,
etc. (Impossible: square eguivalent to circle); triangle
equlvalent to sum of two triangles, etc,

Miscellaneous,

(1) (Since the outline is too long already, it might as well be way too

long, )

(a) Topology: order and separation, partitions, connectedness,
{(b) Convexity, boundedness.

(e) Continuity (nested intervals, regions),

(d) Locus problems (perhaps in earlier sections).

(e)

(£)

A much more extensive treatment of geometric inequalities than
has been traditional on this level,

More dynamism in the geonetry of this level; a changing rather
than a static relationship. (What happens to the area of

OABC  if we keep the lengths of AB and AC fixed, but

increase (A ?)

Comment on (Synthetic) Geometry of the Plane

In the early discussions, the group considered a one-semester course

in synthetic geometry, built on the rather extensive geomelric background

alfeady covered through Grade 9. This outline was intended to be & basis for

more specific discussions of such a course. Much of it now appesrs in various

forms in other papers, but here are a few points which don?t:

1.

There probably should be more inequalities than have usually been treated

in synthetic geometry,

We may need a more dynamic approach (what happens if we increase this

angle, segment,a little?) rather than the traditional static one.

Some think construction problems should be much more extensively used,

(Gonstraining conditions, special tools, proofs of possibility and

Impossibility, multiple solutions, and so on,)

Thefé should be a free flow between two -and three -dimensional situations

with specifie efforts to develop good cpatial imagination:
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(1) =Some solid geometry problems are really plane geometry problems in

different planes.

(2) Some solid geometry problems are natural extensions from plane

geometry.

S The emphasis should not be on teaching a lot of geometry, but on
now to do geometry., Rather than "Prove this theorem”, use "If, in
this situation we know . . . , then what else can we figure out?"

Try to discover first, then prove.
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E

Qutline for Year of Vector Geometry, Linear Algebra,

and Elementery Functlone, TLevel 10
S e, Z el 2 LA

Comment.s :

Vectors will bhe used whenever helpful and appropriate in the study of
fuictions and their graphs. Sometimes the function to be studied may be
introduced by considering motion along a given path; il.e., motion with constant
velocity along a line leads to the linear function. Such considerations lead
naturally to the study of general vector [unections. Vector functions may be
mappings of polints on the real line or prortions thereof onto points on another
real line or points in the plane or even onto points in three-space. Similarly
we may want to map points in the plane into other points in the rlane or into
3-space. The study of analytic geometry arises naturally in being specific
about locating images of points under such mappings and specifying the set of
points constituting the range of such functions. In order to reinforce and
extend the kind of manipulative facility which students need, translation from
the parametric equations which come out of consideration of vector functions'

into the corresponding rectangular equations should be continually stressed.

If we are to use vectors and vector functions in this way, in the initial
chapter the transition from vectors as displacements to vectors associated with
the displacement of the origin to a point should be made as in Paige?s Chapter 1,
Section 1-2,

The first half of the course then will do much analytic geometfy and ele-
mentary functions and their graphs using vectors and ideas of motion whenever

helpful and appropriate.

The second half will use vectors in the setting of linear algebra., The
study of geometric properties of vectors (parallel and perpendicular vectors -
the dot product) will be used to derive the equations for planes and for lines
in space, (Proof of geometric theorems by vector methods should come i~ some=
where,) Matrices will be introduced as a convenient way of displaying informa-
tion and then it will be shown +hat they can also be used to denote vectors and
transformations (refiections, rotations, contractions, stretching, etc.). Just
enough matrix algebra will be introduced to talk about transformations and to

use elementary row operations on matrices to solve systems of egquations, Linear

[
%)
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dependence may be discussed in connection with the nature of the solution of

sysftems of eguations. Rotations may be used tao simplify quadratic forms

(conics).

QUILINE FOR YEAR OF VECTOR GEOMETRY, LINEAR ALGEBRA,
AND ELEMENTARY FUNCTIONS, LEVEL, 10

Part 1

Functions and Their Graphs

Vectors. (See Paige, Sample Chapter 1)

1-1. Introduction.
1-2, Addition of Vectors.
1-3, Scalar Multiplication.

1-4., BSpace Coordinates.

Chapter 2. Straight Lines and Linear Functions.

2-1. Motion along a Straight Line.
ﬁ(t)‘—‘j"‘tg-

2-2, Ways of specifying position of point which moves along a straight
line with constant wvelocity.

F(t) = [x(t), y(t)] = [a; + tby, &, + tb,] .

Pull out parametric equations for path of point. Examine what
- [0,1] ; arbitrary B = [v),0,] .

happens when B = [1,0] ; B

2- Slope

i
L]
L]

/ X = a Yy - a
m=b,/b, ; get = -
2/ 71 7 ] -
1 bl bi:£

Look at special cases for A = [a,0] and A = [0,b] .
2-L, Do the same for path along line in 3-space

F(t) = [x(t), y(t), z(t)] = (o) + thy, ay + thy, ay tb,] .

Get parametric equations for line in space.
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Chapter 3. General Vector Functions.

3=1, Vector functions as mappings.
Maps of one line onto another; interval onto point set in the plane;

one plane onto another; etc.

3-2. Coordinate functions.

Look at a seguence of increasingly difficult maps; e.g.,

B(t) = [t,8] 5 B(t) = [,6°] ; B(6) = [t,87] ;
F(t) = [6,5,8] 5 F(6) = [6,4,57] 5 ete.

3~3. Parametric and rectangular equations for curves.

Full out explicit sets of parametric eguations x =t , y =1t ;

X=t,y= tg ;X =t ,y¥y = t3 ; and their rectangular counterparts
2

X=y 33y =%X ;¥ = x3 ; ete., and draw thelr graphs,

k, Parameters having geometric or physical significarnce.

3
Hypoecyeloid, Ellipse, Circle, etc. CGet parametric equations, Tind

corresponding rectangular equations and discuss advantages of each.

Chapter 4. Polynomials and Rational Functions.

L-1, Parabolic paths of moving bodies (comets, bullets, etec.).

4=2, Get guadratic equations from converting parametric equations to
rectangular form.

~ h-3, Other problems which lead to the consideration of guadratic equations
and their roots. ’

4=k, Relations between roots and coefficients.

h=5, Quadratic inequalities and their graphs.

4-6, Generalize to polynomials of higher degree., (Find problems which
lead to cubics and guartics =- volumes of boxes and cylinders with
minimal surface area for fixed volume, etc,).

47, Theorems necessary to find roots of polynomials and other information
helpful in drawing a rough graph.

Factor Theorem; Remainder Theorem; Location Theorem: Rational Roots

Theorem.

N

8. Approximating real roots; flow chart for linear approximation,
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Trigonometric Functions.

Chapter 7.
7"‘1-

Sinmple harmo. ¢ motion.

Define Cosine and Sine as coordinate functions of vector function
which describe the path of a point which moves with constant
velocity (counterclockwise) around the unit circle. Connect with
previous version of trigonometry. Review radian measure and connect
with parameter describing the original vector function.

Describe tangent function as cocrdinate functien of point which moves
along vertical line tangent to uuit cirecle;

P ) onto the line x = 1 .

TE

nols

T(t) = [1 , tan t] maps ( -
Use definition of funections to obtain ielations between functions of

general angles and functions of acute angles.

Fundamental identities and addition formula.

Derive law of cosines.

Solve some trigonometric equations.

Solution of some triangles (simple computations not with logs).

Polar Coordinates and Rectangular Coordinates.

Pola. coordinates and rectangular coordinates.
Folar coordinates and vectors.

General conic in polar coordinates.

The circle and the ellipse.

The hyperbola.

Rectangular equations of conics.

Vectors and Complex Numbers.

Points in the plane.

Point out the relation between rectangular coordinates of a point in
the plane, polar coordinates of a point in the plane, components of
vector considered as the displacement of the origin to the point in
the plane. Then explain the representation of complex niumbers as

points in the complex plane. Point out the connections hetween polar
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coordinates of the point and the a + bi Form of the complex number,

7-2, Problems with additicn ~nd multiplication of complex numbers.
7-3, Multiplication <f complex numbers in polar form.

7-4. DeMoivre!s Theorem and nth roots of complex numbers,

Chapter 8. Exponents and Logarithms.

B8-1. Review of properties of exponents and logarithms. (Finger exercises)

8-2, Rough graphs of these functions.

R-3, Use of the exponential function to describe growth and decay,

8-4, Computations with logarithms,

8-5, Use of logarithms to solve triangles.

d

Part 2

Vectors and Linear Algebra

Chepter 9. Vector Algebra.

9-1, Review of properties of addition and scalar multiplication,
9-2, Inner product.
9-3., Conditions that vectors he parallel or perpendicular,

9=k, Veotor proofs of geometric thecreus.

Chapter 10. Lines and Flanes in Space.

10-1. Review of coordinates and vectors in 3-space.
10-2, Vector equation of a plane,

10-3. Rectangular equations for plane,

10-4. Vector equation for line in space,

10-5, Parametric egquations for lire in space,

10-6, Intersections of lines and planes.

10-7. Other geometric problems with lines and planes.
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Chapter 13.

13-1.

13-2.

13-3.
13-k,
13-5,
13-6.

13_7 -

f e
=1 p

Introduction.

Matrices as ways of sygtematically recording data. Motivatiorn.

Order of a matrix; addition of matrices.
Multiplication of a matrix by a scalar.
Multiplication of matrices,.

Some properties of matrix multiplication.

Matrices and Vectors.

Representation of vectors as column or row matrices.

Geometric interpretation of multiplicaticn of column matrix (vector)
by scalar; sum of two colum matrices (vectors).

Vector spaces and subspaces.

Line as subspace of the plane; plane as subspace of 3-space.
Transformations of the plane expressed in matrix notation.

(See Chapter 5, Introduction to Matrix Algebra, SMSG)

Linear transformations.
Characteristic Vectors - Invariants under linear transformations.

Rotations and Reflections.

Matrices and Solutions of Systems of Eguations.

Representing systems of equations by matrices,

Equivalent systems of eguations and elementary row operations on
matrices.

Diagonalization method for solving systems of eguations.

Inverse of a matrix.

Linear dgpeﬂdgncs and singular matrices,

Analvsis of solutions of systems of eguations.

Application to linear programming problems.
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A Tenth Level Course in Analytic Geometry and Algebra

The outlining group for Grades T, 85 and 9 of 1966 prezcede their discussion
of the 9th Grade material with the remark, "We felt that the students?! prepara-
tion was now adequate for the presentation of substantial mathematical ideas,
considerable freedom left to the writers." The proliferation of possible
alternatives for the mathematics of Grade 10 obviously indicates that many of
us believe the student wili be sufficiently prepared after Grades 7, 8, and 9
to follow a consistent mathematical development. It vould be regrettable if

we did not pursue this possibility.

I propose that an integrated course in "Analytic Geometrv and Linear
Algebra" be devised which presents to the student a modest introduction to
present day emphasis in mathematics at the college level. It would be appropriate
for me to state briefly what I feel a substantial portion of this emphasis to
bhe:

(1) "Coordinate free" formulation of definitions whenever possible in

algebra and generalization wherever reasonable in analysis. Thus,

we find that determinants are now multilinear functions from ordered
sets of n vectors to a field F rather than a notation for solving
linear equations with an attendant exercise in line drawing for the
speclal cases n =2 , n=3 . B8Similarly, Green's Theorem no longer
appears in an advanced calculus text as a detailed exercise in

evaluating the line integral
j( (Pax + Qdy) ,
[&d

but as a cpecial case of exterior algebra and differentia]l forms.

(2) 1In following the trends of (1), a considerable portion of material
centers around a set of operators, (often some algebraic system),
and a space upon which these operators act. Questions which often
arise are:

(a) Given the set of operators, what are "invariants" in the space

which in some way characterize the operators? Or, from another
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peint of view, what are "invariants" of the spaces which might
Cwracterize spaces that may be mapped upon each cther by oan

cpevator?

I au convi.c:d that we should begin, 11 any study of analysis In the 10th

level, to lay t:: experimental foundatiocns for these future possibilities,

Certainly, the :ncepts of vector spaces, groups and invariants will arvise and

I see no reaso) - hy a wodest beginning cannot be made through s course in

"Analytic Geom: ..y and Linear Algebra'.

I propose -1 integrated course in "Analytic Geometry and Linear Algebra"

in which the 1. lowing themes are to be guidelines for tne vriters:

(1)

(2)

(3)

I wi:id hope that an analysis of the Euclidean group of motions
acting upon a plane and in space would be a unifying concepl through-
out the early part of the text with alternative interpretations.

This analysis woull begin with translations (call them displacements,
or whalever you may wish) and proceed to reflections, and rotations
with dilations interspersed to provide the geometrical background for
8 vector space, Later the affine transformations would give ample
opportunity for vector and matrix applications. I do not believe
that the projective group could be introduced to give a "geometric

invariant” introduction to conice. It might be nice to try.

A continuing developm:nt of the function concept with a corresponding
development of the algebra of functiocns to give 1llustrations of
vecter spaces, algebra of polynomials, etc, I see that both linesr
and non-linear situations will arise with ample opportunity to

motivate and use matrix notation without emphasis on matrix notation

a8 a bookkeeping device.

A conscious effort to motivate and present "coordinate free"
definitions should be done when possible., Then formulate the same
concept in coordinate systems. This will illustrate that an explicit
coordinate formuwlation will depend upon the coordinate system chosen.
Many opportunities will arise to apply matrix notation to "changes of
coordinates” and the interpretation of these changes as operators
acting cn the plane and in space, I would certainly prefer that

parabolas be defined as the locus of points equidistant from a point
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(1)

(5)

egnd & line rather than the set of all points satisfying
Axg+Bxy+Cy§+Dx+Ey+Fso,

where B - HAC = 0 . (I must admit that it would be difficult to

Justify enough projective geometry to motivete conies as projective

invariants, )

The use of coordinate systems to investigate geometric concepts will

force one to play "coordinate free" interpretations against "co-
ordinate system' formulations whenever possible.

Vector notation should be used extensively, even where it is little
more than a bookkeeping device.

Motion along lines and curves could eagily be used as s motivatiﬁg
device or as an application of the mathematics developed. I see

no reason to stress the former alternative or the latter.

A Tirst approximation to the course outline proceeds as follows and I

repeat for emphasis (louder, if possible) that I do not believe that there

should be

any sharp distinction between analytic geometry, linear(algebra

(viewed as vectors and matrices) in the‘sequence.

Gﬁ}}%g‘bﬁéﬁl“ ég
l-li

lel""!

1‘5-

Chapter 2.

Vegto:;;

Introduction.
(Vectors as representation of translations.)

Addition of vectors.

Dilations.
Gecmetric viewpoint as operator acting on space. Motion along line.

Geometric Applications of Vectors.

Space Coordinates,

Inner Product,

S"l.

Vector projections and definition of inner product as

2B = |a||B| cos £ (A,B) . (Note that this is "coordinate free".)

Now look at coordinate interpretation of inner product.,

iko

145



2-2. Vector components in temus of 1 , j (and k ).

2-3., Review slope, equations of lines in analytic and vector form.
2=k, Projection of linear constant motion along coordinate axes,
2-5. Cfonstant motion on circle,

2-6. Simple Harmoniec Motion.

2-7. Law of Cosines,

2-8., Review of trigonometry including, if advisable, triangle solutions.

Chapter 3. Rotations in the Flane.

3-1. CGeometric View,
(Heuristic Invariants)
3-2. Coordinate Representation of Rotations.
(Here matrix multiplication arises naturally)
3-3. Rotations as operations on points.
(Again an operator viewpoint. One could slso look at the rotation.
as operating on vectors as a first glimpse at linear transformations.)
3-4, Use of matrix notation to obtain trigonometric formulas for
sin (a+B) , cos (@) -- by considering composition of rotations --
from matrix-geometric viewpoint. !
3*5. ITsometries of the plane,
(Here combine rotations, translations, reflections and consider

coordinate interpretations,)

Chapter 4. Geometry of Space.

4-1, Translations again.

(Heuristic Invariants)

k-2, Constant motion along line.

(Vector valued view. Description by various coordinate systems

under translation.)
4~3, Motion along curves in space.

k-4, TRotations in space.

(View as operator on points. Also as operator on vectors,)
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At this point I would break the treatment and look at polynomials with the

motivation starting from motion along curves in space arising in Chapter L,

Chapter 5. Polynomials,
(See polynomials introduced sg functions but note the slight emphasis on

vector space of polynomials, algebra of polynomials, ;scmozghigm.)

Chapter 6. Rational Funct?! ns,

Chapter 7. Retumn to Geometry with & Iook at Affine Transformations.

Chepter 8, Affine Inveriants.

Chapter 9., Matrix Applications.

The following is an illustration of how vectors could be introduced,

(Vectors as repr.senting translations.)

Sample Chapter 1

Vectors

Section 1-1. Introduction.

We have observed many times that a coordinate system on a line, in a plane
or in space permits us to describe guite accurately physical situations or
mathematical operations. For example, the number line rermits us to describe
quite geometrically the addition of integers -- by means of directed distances

along a line

-3 -2 -1 0 1 2 3 b

Geometrical deacription of 3I=5=2,



Similarly, we could picture the statements x + 3 for all integers x by

¢ ete,
-5 -4 -3 -2 -1 0 1 2 3

Geometrically, we are mapping the points of the number line corresponding to
the jntegers onto the points of the number line. We assoclate with a point
corresponding to x the point corresponding to x + 3 . Looked at from a

slightly different point of view, we have a function of the integers
f:rx—-x+3.

[At this stage, one could pursue some more function concepts, "time to points

on & line" for a moving object a la Lister if one wishes to. I feel that this

is somewhat a matter of taste and I would go on.]

Question: Are there any geometrical invariants under this mapping of the

line? (Student participation.)
What is the geometrical interpretation of the function f: x —3x along

a line? (A change of coordinates question?)

[This line might be deadly.]

The questions we have asked about the mapping f: x = x + 3 for points
on & line certainly raise similar questions about the mappings of points in the
plane,

Let us begin with the simplest case. We establish a coordinate system

in a plane =« 3

S Ay

R ]

143
148



and conslder a wmapplng of =n which maps a point A wupon a point B three

wnits east and one unit north.

We can plot the images of many points

3]
gss!r. 1
A =T
'/2' .F/‘E
] éﬁrw-ﬁ ;3 ;2 -1 'i” 2 3 4 5 6 o
I
s B'

and, in terms of coordinates, we can write for any point
(x,9) »(x+3, y +1) .

It should be clear that similar to the line, one vector from a point to
its image represents what happens to all points; namely 3 east, 1 north.

What geometrical properties do not change under this mapping?

(a) Distance?

(b) Angles between lines?

. (e) Do triangles map into triangles?
(d) Etc. (Student participation,)
Now let us note that if we had chosen ancther parallel coordinate system

we would have described the mapping by

rd — ]

sssgffggr new coordinstes

old ccar&instes

4L
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A goes into a point 3 east; 1 north and the mapping would give rise to the
function

£r (x?,y?) »(xt +3, ¥yt +1) .
Again one vector from & point to its ilmage represents the "movement" of all

PQintE .

Section 1-2. Addition of Vectors.

Any meapping of the plane given by a function of the form
f: (x,y) = (x +a, y + D)

can be represented by a vector indicating the image of the point (0,0) .
Thus with each point in the plane (a,b) we may associate a vector from

(0,0)

(0, 0)

and this vector can be used to describe the translation (this should have

entered earlier)

f: (x,y) »(x+a, y +b) .
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Let us assume that we have two translations f and g which are

represented by the vectors to the points (a,b) and (c,d) .

L]

o (c, a)

Thus
f: (x,y) »(x +a, y +b)

g: (x,y) »(x+¢c, y+4d).

What happens to a point A if we first apply f +then g ? (Student
participation, )

[We are now led naturally to composition of functions and addition of vectors.]
[We are primarily interested in the students developing a feeling for addition

of vectors with various interpretations: TForce Diagrams; etc,]

Section 1-:

Now develop a geometrical background and feeling for the mappings of the
plane given by
| £: (x,y) - (tx, ty)
leading to a natural definition of scalar multiplication of vectors.
We can now give a description of motion along a line (any line) in the
plane with scalar multiplication and addition of vectors at hand. (Use only

~ constant velocity along line.)
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Section 1-4. Geometric Applications of Vectors.

(Linear independence leading to review of solutions of equations.)

Section 1-5. Space Coordinates.

Here we set up a coordinate system in space and indicate that the question
of translations in space lead naturally to the definition of vectors in space
and we can ask gquestions similar to those of the preceding sections as to
invariance of various geometrical concepts and the definition of vectors in

space with addition and scalar multiplication defined.
»gain constant motion along line could be investigated.

[I velieve this section should be an introduction and that we should

explain that in general we shall stick to the plane.]

Sample Chapter 5

Polynomials

Section 1.
Many problems in mathematics require the addition of functions. For

example, if you are asked to compute the area of the following figure

o —

you can first compute the area of the square and then add the area of the

semicirecle:

, 2 T 2
+ = .

Lr 5T .

Total Area
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A graph for the area of the square for positive values of r would loock

1like 100 7

(graph for area
of square)

(graph for area
of semicircle)

0 = —— ' A — r-axis
1 2 3 l 5 6
We could graph the area of the semicirecle on the same axes, Now, in order

to graph the total area of the figure, we would merely need to add together
the heights of the graphs for each point r . '
A simllar situation would prevail i* we were asked to compute the total

area of the figure

Here, the total area is given by

Total Area = grg + 4r ,
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and our graphical descripticn would be 7/
3 /
80 ,
—_ | /
ro ﬂfgrr /
60 1 /
2
501 / <L
4o g

3071 .7

10+ -

0

2 3 & 5 8

"y

sum of two functions. Hence, let

f:x - f(x) :
g: x - g(x)

be two functions from the rationals to the rationals and define

f+g:}§;}f(}f)+g(}:)'

Note No. 1.
At this stage, there should be no reservation in considering many examples
using

f« x —axB + x =1

g: X héxﬁ =X+ 3,

where (polynomials) of any degree are used.

After considerable plotting of addition, the function af: x — af(x)

should be motivated and examples given.

It should then be pointed out that our addition and scalar multiplication

of functions satisfy the same properties as vectors; i.e., we have a "vector

space of functions.




them for sometime! Look at the addition of integers. For example, if you
add
7,831
B;rla. §§£l 2

isn't this precisely

7 X 103 + 8 x ,.102 + 3 X100+ 1
L 3‘3710% + Ak Xl0+7

7 %X 10° + (843) x 1F + (3+4) X 10 + (1+7)
and this is merely the pointwise addition of the functions

f1ox =a7x3 + SXE + 3x + 1

and )
£ X~ BXE + hx + 7
at the point x =10 .
Is it possible that multiplication cf integers hzos a similar interpretéti@n
in terms of functions?
When we multiply
346
2k ,

we may think of this as
(33007 + hx10 + 6) = (2x10 + 4)
and this is the product of the functions |
f: x —9322 + bx + 6
and g: x —2x + 4
at the point x = 10 .

Graphically, there are times when we might wish the product of two
10 . Faf'exampleg let

functions at many points and not just the point x
us look at the following problem: What is the volume of the following

figure?
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; , 2 4 ,
The base is of area wr and to obtain the volume we coumpute

Volume = (ﬁfg)(f + 1),

Again, we may graph the area of the base
1007

height

1 2 3 L 5 6
We can obtain the volume for any value of r by multiplying the heights of the

two graphs at each .point.
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The pointwise multiplication of our graphs suggests a useful definition
for the product of two funetions., Hence, let )

f: x = f(x)

g: x - g(x
be two functions from the —atlonals to the rationals and define

fg: x - f(x)g(x) .

Note No, L.

At this stage, there should be many examples where we use (polynomials)

Note No,

It should be mentioned that we have taken "vector space" of functlons and
defined a "multiplication" of vectors. It might be appropriate to point out
that both distributive laws hold, etec., but this risks the emphasis of toc much
axiomatics,

Section 3. Polynomisl Functions.

We have seen that the equations of straight lines lead us to consider
funetions (linear) of the form
f: x =8x+b,
The motion of & falling body leads to a function of the form
. E
g: x 2ax +bx +c.
Moreover, the multiplication and addition of integers are instances of the

multiplication and addition of functions of the form

- j4] ]
f: ¥ =2a x +a8 _x% + .. + & + &
n n-1 ** 1 ?

where X 1s usually chosen to be 10 and the a, are nonnegative inteus:

less than 10 .
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Not% 7NQ- 7§;

Other examples of polynomial functions should be given of '"degree >2 ",

Volume problems will provide many of degree 3 .

A function of the form

n n=1 L
f: x 28 x +a_ .X + 4. + 8,X +8_ , where
n n=1 1 o

e , 8 , &  are rational ( n an integer > 0 ) , from

R (rationals) to R, (rationals) will be called a polynomial function and

., &
e 0 I
occasionally, for the sake of brevity, we shall refer to the expression

n n-1 )
8 X +a .X + .ee +a. X+ a
n n-1 1 o

Example: When we consider rotion along a line, we usually express distance
as some function )
d: t -3t ++t,

where the letters used have been chosen to suggest distance and time. It
should be observed, however, that we are still thinking of = mapping of the

rationals to the rationals and

d: t ;33t2 + %

is a polynomial function but we would refer to Stg + 1t as a g

Note NQ-, ?,&

There should now be numerous examples of polynomial functions with
expressions in many letters so that the student would be willing to consider

polynomials in any letter.

We may add and multiply polynomisl functions since these operations have

been defined for any two functions. Thus, if

153

. 138




o'

f: x = box + byx + bo

"o ogr X Saxo 4 (ag+bg)xg + (a1+bl)x + (aa+bé)

3

and f + g is another polynomial function.

Note NO} 89
Now the multiplication of two polynomial unctions will get a 1little
sticky because we must be careful to multiply the functional values to show
that we are doing 1t for an arbitrary x and again we get a polynomial funetion.

Only detailed writing will produce the correct motivation and wording.

The polynomial functions are closed under multiplication and addition.

Moreover, it would be nice to see what kind of functions can be generated by
using some rather simple funct ons to begin with.
f: x—»x

fof: x 2%

fifci- f: X _;xn .
— —
n times

Now if we include addition of functions we see that sll polynomial functions

can be generated by using one rather simple function and multiplication of

functions by the constant functions

g: X ¢ .,

Note No. 9. (Perhaps this should be a new section.)
At this stage, I would shift the emphasis to point out how we add and

multiply the polynomials to get the addition and multiplication of polynomial
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functions (that is, I would sneak in their first peek at an isomorphism!).

Specifically,

Section 5. Graphing Polynomial Functions.

(The purpose here is to give practice in graphing and lead up to zeros

of polynomials.)

Section 6. Zeros of Polynomial Functions and Factoring Polynomials.

Section 7.

Is the function x —sin % a polynomial function?

(Here we would do a little approximating and possibly some computing. )
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A General Topical Seguence and Coordinates, Vectors,

Functions: A Level 10 Course

! Linear Functions and Coordinate change.

1-1. Line-like properties; time, temp, pressure, force.

1-2. Coordinates on a line; origin, displacements as translations;

coordinatizing displacements.

1-3. Coordinate conversion functions; scale factor and shift term.

Arrow diagrams ,ggf;éif,j’ﬂ . Inverses.

1-4. Relations between properties; e.g., time-position as in motion on

& line; temp-press; force-displ. of spring. How does coordinate
form of such functions change if coordinates are changed? Can
simple coordinate form be achieved? Composites.

1-5. Graphs of linear functions; slopes: translation of'crigin, change

of unit,

2. Quadratic Functions and Gravitational Motion.

2-1. BScale changes in gravitational motion on a line; arrow diagram

and graph interpretation.

2-2, Maximum height and completing the square; simple eoordinéte form

of coordinates.
2=-3. Graphs of quadratic functions; coordinate version of symmetry.
. . 2
Interpretation of a , b, ¢ in a(x - b)° + ¢ .
2-4, The inverse problem; role of v (square root), partial inverses
of arbitrary quadratic functions; time at which object is at given

position. Problems from other quadratic relations.

2-5. The velocity problem; behavior of average displacement vectors;
velocity vectors and the veloecity function; veloeity functions

for arbitrary linear and quadratic position functions.
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S

Motion in a Plane.

3-1., Specification of motion by time-position function; coordinate
functions.
3-2. (onstant velocity motion; displacement vectors, average displace-

ment, velocity vector, algebra of displacements and velocities;

relation of coordinate and rarametric descriptions of lines.

3-3. Gravitational motion in a plane; coordinate functions, coordinate

description of path.

3-4, Simple harmonic motion; uniform circular motion in unit circle,
coordinate functions and their properties including addition

formulas; guestion of the velocity function,

Trigonometry ~ Angle and Length Problems.

Problems from geodesy and astronomy leading to derivation and use
of law of cosines and law of sines., The problem of computing

sin (x) .

Linear Functions of Several Varisbles.

5-1, Source examples; mixtures, costs, production, etc.
5-2. The inverse image problem, ax + by = c , graph.
5-3. Constraints leading to ax + by < ¢ , graph.

5-4., Pairs of linear equations or inequalities,

5-5, Triples.

Affine Coordinate Systems.

6-1., Verification of non-metric plane geometric properties with linear

coordinate systems.

Coordinates in Space.

7-1. Coordinate planes; coordinate lines.
T7-2. Distance in space; spheres,

7-3. Graphs of linear functions of 2 variables; planes.
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7=k

7-%i

TEéi

) ~ =] .
Gmﬁuﬁ‘(xg)=ﬁ&g+y* and (Ly)éxg+yg,

ilane sections of surfaces; coordinate sections, coordinate plane

projections, level sets of planes, cones, spheres,

Motion in space.

Linear Systems.

8-1.

8-2.
8-3.
8-L.

8-5.
8-6.

Intersections of planes, other situations leading to linear systems
in 3 wvariables,

Vector formulation; structure of solution set.

Matrix of system; aslgorithm for solution.

Translational and rotational coordinate conversion in the plane,
[in space].

Matrix of coordinate conversion functions.

2

, , L2 . _ .
[Non-linear maps of R into R, polar coordinate, ]

Non-linear Relationships.

G-1.

9-2.

Cubing functions; source examples, analysis of

x - x3 , X - x3-a , X —%(x—a)B for monotonicity, convexity.
General cubic; change of sign and roots, factor and remainder
theorem, roots and coefficients, intervals of increase and
decrease.

Computation of roots; algorithm for approximation.

: L. 1 1 o
Reciprocal functions; x -3 X = —5 ; source examples, e.g.,
<
radiation intensity, pressure-volume, rate-time,
Analysis of reciproecal funetions for translated forms, wmonotonicity,
convexity, asymptotic behavior, inequalities.

Polynomials; the division algorithm.



10. Polynomials in Two Variables.

10-1. Sample sections of cones with vertex at origin,

10-2, Curves consisting of points satisfying certain distance condi-

tions; parabolas, ellipses, hyperbolas.
10-3. Translational and rotational coordinate conversion.
10-4, Motion on a conic.

10-5, Curves defined by other distance conditions,

11. Ceometric Transformations.

11-1., Motions of a plane in space; isometries.
11-2. Orthogonal transformations and their watrices.

11-3., Images of sets; orthogonal transformations with certain image
gpecifications,
11-k. [Classification of orthogonal transformations and isometries. ]

11-5., Inverses and composites; finding images and inverse images of

specified sets; e.g., conies and graphs of functions.
11-6, Symuetries of a set; structure of certain groups of symmetries.
11-7. [Similarities; relation to isometries, matrices, determination
of images.)

11-8, [Projections in plane and space.]

Displacements, Velocities, Vectors

Several intrcductory developments of vectors are no doubt feasible.
One treatment seems to me particularly suitable in the context of motion and
readily adapted to other settings. Since it is not standard a brief sketch
‘may be in order.

Displacements are relative changes of position. Thus B is 4 miles

northeast of A defines the displacement % miles northeast. In general
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displecements can be specified with arrows. D 1is the displacement which

fﬁf B B!

A AT

carries A into B . The same displacement carries A' into BY . 1In
coordinate terms the displacement from (0,0) to (2,1) is the same rs that
which carries (4,3) to (6,4%) .

Tf & displacement D and & point P are given let D(P) dencte the
effect of D on P .

If P and Q are points there is a unique dis "acement D for which
D(P) = Q . Call this P4 .

Q

i)

D(c)

It is convenient to denote D(P) by P+ D or D+ P ., It may also

be convenient to dencte ?@ by @ - P . In any case we define

(P)) (or De(Dl(P)) )

D, + Dy : P E%Dl(,

o

These conventions yield:

IB+B =A0 or (B-4)+(C-B)=¢C-~-A
B+BC =C or B+ (C=-=3B)=_C
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If a coordinate frame is given, any displacement is a unique sum of an

horizontal and a vertical displacement: D = DH + Dv . Either of the uses

of "+" described above translates to componentwise addition of number pairs.

Turning this around: (3,3) + (2,-1) = (5,2) interprets either as

Furthermore, (5,2) - (3,3) = (2,-1) with either the point or displacement

w_n

interpretation of .
Now it is natural to say that constant velocity means @iéplgcgmenp
oroportional to time, e.g., F(t) - F(0) = £[F(1) - F(0)] . Assuming a previous

treatment of motion on a line (using displacements in the same way), and

noting the relation above implies constant velocity motion of both the hori-

projections to be constant velocity motions.

In any event we get

F(t) = (a,b) + t(e,d)

which we proceed to analyze and interpret in problems, The velocity vector
associated with this motion is of course the average displacement vector
(c,d)

I. remains to postulate and make plausible the additivity of velocities,
which guarantees that velocities behave like displacements. Any property with
these characteristics is generally called a vector property (or, more usually,
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Simple Harmonic Motion in General Topical Sequence

The suggested treatment is straightfarward. Define cos and sin as
coordinate functions assoclated with a standard c.c. (caunter—clgékwise)
constant speed motion around central unit circle, Note relation with any
earlier definition. Note arc length interpretation and make this basic in
deriving properties. Derive position function Ffor arbitrary uniform cirecular
motion.

Read off elementary properties, Use constant speed and distance formuls
to get addition formula. Use addition formulas to compute some less obvious
values.

Observe that unit length displacements are (cos(x) , sin(x)) and
develop vector formula for line:

L(t) = (a,b) + t(cos(x) , sin(x)) .

Define the cosine of an (unoriented) angle with radian measure x as

cos(x) and derive the law of cosines from

P

(a cos(x), a sin(x) ) oa_

It remains to treat oriented angles and the law of sines,
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A Sampling of Problems for Sections 1-3

of General Topical Sequence

Linear Functions.

(1) What are some properties which can be coordinatized as a line?

as a ray?

(2) 1If an object moving on & line has a position F(t) in miles at
time t 1in hours, what function G gives its position G(t) in

feet at time + in minutes?

(3) Fill in the temperature coordinate conversion functions:

e
T =95 T+ 32 -

(4) Pind the function which converts atmospheric pressure from lbs. per
sq. in. to atmospheres above 1 atmosphere,

(5) An object moving on a line has its position function converted from
t -6t -5 tot =3t by a change of position scale. What is the

change?

(6) In (5) change the position (time) scale so that the coordinate form
of the position function 1is t =t .

(7) 1If in a certain process pressure in some scale is proportional to

' absolute temperature, how is pressure related to temperature in
centigrade scale?

(8) Given a coordinate conversion function, X —ax + b how can you
tell whether
(2) the positive direction is reversed?

(b) the unit size is preserved?
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(¢) +the origin is moved?

(9) Find formulas which convert € to C!' and Cf +o ¢ coordinates.

3 1
2 2 1 2 0 !
— - T b e J et o
-0 -1 0 1 2

(10) If the unit-time displacement and initial position of an object

moving with constant velocity are as shown, what is the poszi! ion

function?
-2 -1 0 1 2 3
-~ — - P,

2. Quadratic Functions.

(1) An object is thrown vertieali& up from the top of a 100 ft. tower
with initial velocity 60 ft. per second, Find the coordinste form
of its position function in case (a) time is given in seconds after
the object is thrown and position is given in feet below the top of
the tower; (b) same as (a) except position is given in feet above
ground level; (c) time is given in seconds :fter the time of maximus
height and displacement is in feet below the maximum height.

(2) 1In each of the cases in (l) what should be computed in order io
find the time the object strikes the ground?

(3) A curve P is the graph of x —3x° - 5x + 4 . Of what is P tae
graph if the origin is shifted 2 wunits to the right and 3 up?

o

(L) What displacement of the coordinate system converts x — 3x + Ox +
. L2 .
intoe x —3x ¢
P ) 2 ) . _ Y=
(5) Is x —=3x +6x +5 of the form x — (ax + b)™ ¢
(6) What quadratic functions are of the form f(g(x)g) where f and
g are linear?

164

ERIC 169




3.

(7)

(8)

(9)

(10)

The graph of a quadratic function has its vertex at (3,2) . What
can be inferred about itz formula? What can be inferred from the

fact that the line of symmetry of such a graph contains (—l,@) ?

Tn the situation of (1) find a formule for the time at which the

object is at a given position during 1ts descent.

At what points does the graph of x =%3xg - 5x + 4 intersect the
horlzental line through

(a) (0;3) ’

(v) (o0,1) 7

Tn the situation of (1) show that for each velocity vector v
there is a unique position g(v) at which the object has veloclty

v by finding a formula for & .

!
;vél@city
Y
LY

N, e(?)
Y

Ay
A

.\ _ )

Motion in a Plane.

(1)

(2)

(3)

(1)

(5)

A ship moves with constant velocity (MQB) in certain time and
position units and is at (2,-1) at time 1 . Find its position
function., Find a coordinate description of its path.

A ship woving with constant velocity is at (0,2) at time 1 and
(5,0) &t time 3 . Find its position function.

Find the place where the paths of the ships in (1) and (2) cross.
Do the ships collide? If not, find the minimum distance between
them, ‘ |

1f F(t) = (a,b) + t(c,d) 1is a position function, under what
conditions does the object move

(a) due east?

(b) due northeast?

(c) 396 ‘south of east?

(d) with speed 1 ¢

An instrument on a moving plane measures the wind velocity as

500 mph from 30° to the left of the plane's heading. Predict



the wind gauge reading of the plane makes a 180° +turn without

altering engine power.

~
0,
st

Paint A is made by mixing 2 parts red with 3 parts blue,
Paint B consists of |1 part red for every U parts blue. Give
directions for using A and B +o make paint C which has the
formula

(a) 1 part red to 2 parts blue,

(b) equal proportions of red and blue.

What paints can be mixed from A and B ? Interpret geometrically

(7) Standard projectile motion problems. Also find coordinate descrip-
, , o .
tion of trajectory; e.g., if F(t) = (10 + 20t , =16t + .o0h + 20)

think: -1
P F, )
10 + 20t ———» t ————% -16t° + 100t + 20

to get explicit description of trajectory.

(8) Find the position function for an.object which moves uniformly
clockwise around a cirvle of radius 3 at 2 revolutions every
7 time.units and which is at (-1,0) at time O .

(9) From the earth the angle between Venus and Mars is 20° at

&
~th

time. Venus is x and Mars y million miles from the ear:=h. What

is the distance between Mars and Venus?

Coordinates, Vectors, Functions: A Level 10 Course

The attached pages give a course outline of the first three chapters
supplemented with some detail on the intended mathematical skeleton. This
is a very slight revision of the early sections of the course sketched under

the heading General Topical Sequence. This amplification is & response to

expressed uncertainties as to the implementation of the original wutline. A

developed to handle them may suzgest a sequel.
Some of the themes which ought to play significant roles are:

I Sources of functional correspondences.
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2.

9.

1ll.

The role of coordinate systems and measures in converting corres-
pondences to number functions.

The change and lack of change in functions effected by coordinate
change.

properties of funections reflect in them,

.3

The use of coordinates to reduce wmappings into R2 or R to pairs

or triples of number-valued mappings.

The various ways in which functions are used to describe (say) plane
sets; as graphs, as ranges (parametrically), and as inverse images
(level sets),

The general meaning of linear funct..uns and their amenability to a
complete, uniform analysis.

The new questions and difficulties which arise with non-linear
functions.

The useful possibilities in extending number operations. to
functions; the ubiquity of the composition of functions.

The properties which a given function does or does noi preserve.

The search for functions with given properties, in particular
Euclidean transformations.

The value of coordinates in translating geometric descriptions to
number relations and in inverpreting number relations geometrically.
Various ways in which problems may be translated into eguivalent

problems and the reasons therefor.
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ERIC

Aruitoxt provided by Eic:

Coordinates, Vectors, Functions

1. Linear Functions.

1-1i.

Real numbers as coordinates for points on & line, points ol Line,
states of temperature, and other properties. TLinear Tunciiors ap

coordinate conversion functions.

Effect of coordinate zonv:rsion on functions relating Jit #opnt

Propertles as, e.g., a function giving the position of un

on a line in terms of time. Secale factor (a) and shit: &

in linear function x —ax + b .

Line to line diagrams and graphs of linear functiors. inve

and composites.

Displacements on a line, scalar multiplication, addiiicn,

nates for displacements and addition of real numbe;:.

Determination of isometries of the line, the oun fonei van,

similariti

1A. Schems for Linear Functions,

Recall real numbers as line coordinates and review

of operations., Noue that coordinate system invelves arpitrar, cioili:o or

origin and unit point. In fact, a coordinate system iz a function

C : p@iﬂts — numbers,

¢(P) = 2 means that C assigns 2 to P, (There are reason: v o

coordinate system might bLelter be defined as the number to point. wap.
Since each such C 1s one-one, two coordinate

4 number tc number function F which converus
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N — 3 5 - " - - 3 —
— = e = e

i@ 2 3

o)
>

[

Now F is linear and if F(K) =ax + b then |a| reflects the relation
of units, sgn(a) the relation of the orientations of Cl and Cg , and

b exhibits the relation of origins in terms of the Cg system, Call a
the scale factor and b the shift term.

Iinear functions arise also as relations between different properties
which admit real number coordinates. The motion of an object on & line is
specified by its position function, which assigns to each time the position
of the object at that time, Each choice of time and line coordinates

determines a coordinate form f of the position function.

———= Toaltion

Different choices of C or C!' induce different coordinate forms f of
the time-position function. If fF(t) = 30t in hours and miles then the

coordinate form g corresponding to seconds and feet is given by

g(t) = 5280 f0§§%5) .

.Diagrams like this exhlbit the four funetions determined'by a pair of coordinate

systems for each property
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If one coordinate fovm is linear then all are., For any given function

so that the coordinate form is x — x! ., These considerations involve a
discussion of compecaites and inverses. Fach of these notions is best
visualized in terms of line to line diagrams even if th=s function originates

from consideration of a single line (i.e., property).

If the graph of a function f is {(x,y)|y = £(x)} (often identified
with f ) , then every number to number function and every choice of plane
coordinates determine a set of points whieﬁ may be rzgarded as a picture
of T . Linear functions have lines as pictures, and ncnverﬁical lines have
coordinate descriptions which are graphs of linear functions. The effect
on the coordinate description of & given line of a plane coordinate change

induced by horirontal or vertical coordinate changes can be computed.
The picture of fil can be descrited in terms of the picture of £ .

Displacements on a 1ihe are wappings of the line to itself which in
any coordinate system have the form x = x + a for suitable a . In a
given system the number a serves to identify the displacement serving, if
you like, as its coordinate. This idea extends readily to the plane where
it is important to observe that composition of displacements corresponds to
coordinatewise addition.

The isometries of a line can be described (in a series of exercises?)

in terms of displacements and opp . Suitable coordinates give the standard

forms x ==X and X =X + a ,

2

« Quadratic Functions.
2-~1, TFalling objects, gravitational motion on a lina. Sample time-

position data; discussion of time-veloecity function (as vector
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valued) and relation to position function, graphs and line to
line diagrams.
2.2, EREffects of coordinate changes on positlon and velocity functions,
completing the square, simplification of descriptions of quadratic
5 : ] s
graph curves; e.g., ¥y = 3Xx - 12x + 13 to y = 332 ; problems

relating to objects projected vertlcally.

2-3, Tinding the time at which an object moving vertically and gravita-
tionally is at a give.a height. Resolution of the two-to-one
property of quadratic functions by completing the square and
resort to square roots. Solution of quadratic equati-ns in terms

of x =»V/x . The computation problem, approximation of vx .

2A. Schema for Quadratic Functions.

One way to handle vertical gravitational motion is to offer sample
time-position data and look for patterns, winding up with the conclusion that
displacement from time t to t + a 1s linear. Then v(t) is defined as
the average displacement in any time interval t - - té t +a . The effect
of initial conditions is analyzed by changing the time origin. This leads to
the general relation between a position function and its associated velocity

function.

Selecting coordinates in falling body problems and interpreting the
resulting position function leads to the question of describing, say, the
picture of x =%332 - 12x + 13 in simpler and more informative terms by
selecting a plane coordinate system related to the curve. Selection of origin
at the vertex yields the description X =§33? . This in turn shows that the
pictures of X =%3xg and X —%Bxg = 12x + 13 in a single coordinate system

are congruent. (We observe that plane displacements are isometries.)
The problem of inferring time from position calls attention to the
two-to-one character of squaring. The line to line diagram of x —%xg

suggesls creation of the partial inverse X =Vx .
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g Square

.

=]
=

-1 - vz

Previous work on completion of the square shows that this function is
sufficient to describe inverse images under any quadratic function, i,e,,

to solve any quadratic equation.

Some discussion of the question: "does every positive number have a
square root?" is in order, as 1s some treatment of the difference between

(1) V2 1is the unique positive number x with x= = 2.
a

and

(2) L.kik <2 < 1.h415 .

3. Motion in a Plane,
3=1. Planar wotion situatione; ship saililrig on a (pre-Columbian) sea,
projectiles, moon, the notion of a time-position function whose
values are points. Specification of Point valued functions by

coordinate functions: f£(t) = (fl(t) s fg(t)) .

2, Displacements and their coordinate description. COQrainate

versions of addition and sealar multiplications of displacements.

3

The standard correspondence between points and displacements.

3-3. Displacements derived from successive positions of a moving
object. Constant velocity position functions and their coordinate
form t —(a,b) + t(c,d) , the associated velocity vector. The
position function as a parametric description of the path (or
track) of the object, the point and vector interpretations of
A + tB . Conversion from parametric to ((x%,5)|p(x,y)} descrip-

tions.

3-4k. Planar gravitational motion, component motions and velocities,

derivation of the position function f(%) = (fl(t) , fg(t)) where
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fl gives constant velocity motion and fg gravitational wmotion
on & line, Derivation of usual ¢eseription of path and posing of

gquestions about time, position and velocity.

5, Uniform circular motion. Analysis of examples of position func=-

3

tions. GStandard forms of coordinate functions for uniform eircular

-

motion: W(t) = (cos(t) , sin{t)) . Elementary properties of cos

e

and sin , add tion formulas, all derived from winding function W .

What is the velocity function for w.C.m. 1ike (as a plane point

to plane vector mapping)?

3A. Schema for Motion in a FPlane.

To specify motion in a plane iz to associate with each point in time
the point in the plane representing the position of the object at that time.

Thus the time-position function has a line to plane diagram.

Coordinatizing line and plane produces a coordinate form

£f(t) = (fl(t) s fg(t)) thus reducing the description to a pair of number to

number functions,

Each pair of positions determines a displacement which, as on the line,

. cén be identifiei by coordinate differences. These displacementAcogrdinates

‘are unafferted by a change of origin. From the decomposition of a displace-

ment into horizontal and vertical components the coordinate form of displace~
ment composition (i.e., "addition") follows. (For any real t , tD can be

defined by a betweenness stipulation.)
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The wap O —D(0) permits the identification of vectors with points,
hence of sets of vectors with sets of points. The natural meaning of constant
velocity is "position displacements proportic “1 to time displacements”". Thus

f(fijfZ£q) = (t, - tl)V' which leads to the . rdinate form
f(t) =P + tV = (Xl;xg) + t(vl’ve?)

and the identificetion of V as the veloelty vector associated with f .
For later purposes it should be observed that motions of the coordinate axis
projections of a constant velocity motion have velocities which sum te the

constant velocity.

The set of all positions (call 1t path) of an object with position
funetion f is {P‘P = £(t) for some t} =8 . A description of this type
is called a p rametric desceription of S . It amounts to specifying a func~-
tion whose range is S . A position function describes the path parametrically.

For constant velocity motions this can be converted to the usual description

by observing that

£ (27 (£1(8))) = £,(t). .
Thus if f£(t) = (2t = 3, 6t ~ 5) then
6t - 5 = 6l3(at - 3) + 2 -5

or fg(t) = 3fl(t) + 4,
So S ={(at -~ 3, 6t - 5))
= ((x,y)]y = 3x + 4} .

Experiments which show the independence of horizontal and vertical
projections of & gravitational motion can be cited and their significance for
the position function examined., From these considerations the conclusion
tﬁat”“fi is canstapt velocity and f, egravitational follows. The fact
that fl' is linear permits the straightforward derivation of the usual
description of the path,

It‘shculd be noted that the addition formulas for cos and sin are
eaﬁsegﬁences of the assumption that equal time intervals are mapped onto

congruent arcs.
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Sample of An Unorthodox Analysis Semester

1. Decimal Expansions.

1-1., Infinite decimals as point specifications; the uested interval
principle, decimals as limits,

1=2, Partial sum sequence of & sequence, the monotonicity principle;
binary numerals; computation with truncated decimals.

1-3., Geometric serles, partial sums and remminder, polynomial

approximation to

1-x

2. Exponential Processes.

2.1, QGeometric series and area undsr X 2% from 0 to n and
0 to a .

LY

2.2, TInterest, compounding, the limiting case (1 + >
2-3, Rate of change in exponential processes:

=Y, 1 ) = 3 L ] - = [ < -

exp! (x) = exp} (0) exp, (x)
2-4, Relation of rates to linear approximation, tangents.

2-5, TLog! via reflection of exp ; area under i in terms of
rectangular approximation; pinching principle, error term;

log x > « a8 x = « , harmonic series. St

3. Local Approximation.

3-1, ILinear interpolation approximation (log, exp, sin, 7Y

convexity and its implications for error.

3-2, Tocal linear approximation using derivative; attempt to

compute e® using successive approx.;
x Xy X
(e">x +1 —ajf e dt :][ (t+1) at) ;
. 1 1 ,
approx. to i%; via partial fractions;

approx. to log(x) via integral;
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problem of points of convergence;

derivatives of polynomials, local approx. as derivative matching.

3-3, Global Approximation; polynomial interpolation, Simpson?s rule;
interpolation formulas, curve fitting.

An alternative to the sbove is to deal with motion in the plane via
vector-valued functions and their derivatives, analyzing gravitational and
eircular motion and studying fi: 3t and second order linear differential

egquations.
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Systems of Sentences in Two or More Variables for Grades 10-12

It is recommended that the following material not be included in the 7-9

seguence.,

Vﬁgckground:

1.

3.

In Grade 8 students will have studied systems of first degree sentences
in two variables with a slight introduction to linear programming.
(Chapter 12, 1967 seguence. )

Tn CGrade 8 students will have studied the guadratic function

£ x—oalx - h)2 + k extensively and be familiar with the equation

of a cirele. (Grade 7, Chapter 2, 1967 seguence.)

They will not have any experience with equations of the hyperbola or
ellipse, and will not be familiar with the general second degree sentence
in two variables. '

In Grade 9, Chapter 3, students will develop, hopefully, a higher level
of sophistication in working with first degree sentences in two variables

as they develop the linear programming chapter.

I recommend that a study of systems of sentences like:

|

4

{

XxX+2y =3 =20 Exg = 3x + L +y =0
2 .

x = 3x+5=y, L x +2y=-5=0,
N .

px" - 3x + 4 - 5y2 =0, .

=
[ol

aléng with their graphical representation be studied in conjunction with the

appropriate sections in the 10-12 seguence.

7T
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T also recommend that systems of sentences like

*x+y+z~3=0 x+y+z+w-L=0

2x = By + =z - 2w+ 10 =0

1
o

2x - 5y + 7z + 1

5% - 2y =3z + 10 = 5x + 10y = 7z + w = 2 = 0

1l
O
-

x+y-ezg-w+a=20,

be included at appropriate places in the 10-12 sequence,

Some reasons for the recommendations:

1.

Students will have matrices to handle systems of first degree equations
in two or more variables in the 10-12 sequence.

It seems more appropriate to study systems of second degree sentences
in two variables when a knowlcdge of all of the conic sections, and
some knowledge of tranaformations in the plane are available to the
student.

Study of systems of equations in the 10-12 sequence‘can arise naturally -

in the spiral of the "stream" of modeling and linear programming.
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Outline of Elementary Functions and Calculus Course

Igtrgduction.

Sequences, Series, Mathematical Induction.

Examples of sequences.

Inventing general teru.

Definition (functions on positive integers).

Graphs of sequences.

Questions about behavior.
Bounded or unbounded.
Maximum and minimum values.
Tncereasing, decreasing, constant, oscillating.
Limiting value.

Defition of limit,
Proof t. :t % =0 .

Use of theorems (without proof) about limits of sum, product,
to evaluate limits of sequence.

Informal induction to find

124 2% 4 e

1323+ ...+
Infinite series.
Telescoping series.
Mathematical induction. '
Arithmetic and geometric series.

Convergence and divergence for geometric series.

Functions on Reals.

Definitions of functions with examples.
Graphs of functions.

Algebraic combinations of functions.
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Linear and quadratic functions,

Polynomial and rational functions.

3.  FPulynomial Functions.

Review of synthetic substitution.

Graphs, relative extrema, roots.

Slope of tangent and derivatives.

Continuity and differentiasbility.

Derivatives of sums, products and powers (by induction from products),
Rolle's Theorem: Df(x) = 0= f(x) = ¢ .

Mean Value Theoren.

4,  Applications of Derivatives.

Tangent and normal lines.

Extreme values.

Maximum and Minimum problems.

Concavity Points of Inflexion.

Higher derivatives.

Newton's method for roots. _
Rates of change, velocity, acceleration.

Differentials and approximation.

5. Area and Volume.

Area properties,
Ar.a under parabola.

Upper and lower sums.
Limits of upper and lower sums.
Definite integral.

Additivity of areas.

Antiderivatives and Fundamental Theorem.
Area between curves,

Volume problems.

Motion problems,

Work problems.

Average wvalues,
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Theory of Limits.

Rational Functions.

Curve “raclng.

Derivatives (quotient rule).
Negative integral povwers.

Fxtrema.

Vertical and horizontal asymptotas.

Simple areas (show how easily we get stuck).

Composite Functions.

Cowposite Tunctions (using th:ee parallel lines). }

}

Chain rule using derivatives as local multipliers. )

Inverse funections.

Derivatives of inverse functions.

Root furctions and thelr derivatives.
Review of fractional exponents.

Differentiation of implicit functions.

Exponential and Log Functions.

In x as area under y =

X

Graph of 4n x .

See the Derivative
as Local Multiplier,

Proof that £n ax = 4n a + £n x and olher logarithmic properties.

Polynomial approximation.

T i 5 = 1l =u+ ug = u3 + lui =
z 3 L
in (L +u) =u - %? + %§ - %%ﬁ+ E
)
(D<g<%).
Computation of a few logs.
Exponential as inverse of log.
Property ea+b = e . eb .
Derivatives of e and ekx .
Polynomial approximation to e® .
Computation of values of e® .
181



Growth and Decay.
Applications of Dy = ky .

Other bacses.

10 Circular Functions.

Definition (functions of arc length)e

Periocdicity.

Graphs of 8in x , cog X .

Angle and angle measure.

Vectors and rotation.

Addition formulas.

Tdentities,

Derivatives of sin x , cos x , sin kx , cos kx , tan kx .
Antiderivatives.

Tnverse circular functions.

Simple harmonic motion (Dgy + kay = 0) .

Polynomial approximations to sin x , cos x , arc tan x .

Computation of =« .

Two Questions:

1. Ts it desirable at some stage to prove theorems for limit of sum, product,
quotient? If so, how rigorously?

2. Ts it desirable to have a final chapter or set of exercises which stress

overall comprehension?
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A Sketch of an Introductory Chapter to

Elementary Functions and Caleulus

Chapter 0: Introduction

What is calculus about? We can give some idea by discussing two Lypleal

problems.

Problem 1. To find the area
under the curve y = XE an.

above the interval [0,1] .

In geometry, we learn how to find the
area of a rectangle, of a triangle and, more
generally, the area of any polygon. Here we
meet a new kind of problem because the upper

boundary is curved,

It is natural to approximate the figure
by putting together rectangles as shown. By
adding the areas of these rectangle we obtain
a result (ecalled a lower sum) which is too
small.

In a similar way we may add the areas
of rectangles to obtain an upper sum,

that is, a sum which is too large.

0

1

For a given subdirision of the base, the required area must be between

the corresponding upper and lower sums.

If we use a very fine subdivision of the base == into 1000 equal parts,

say =-- it seems clear that the upper and lower sums will be very close together.

We can now ask whether as we choose finer and finer subdivisions the upper and
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lower sums approach & common value, If so, this value will represent the
required area exactly.

To investigate this possibility, we need to know how tec add & tremendous
list of numbers. To begin with let us divide [0,1] into tenths. The upper
sum 1is .

.001L + .00k + 00" + ... + L1000 ;
that is,

L0001 (1L +h + 9+ ... 4+ 100)
or

T 2 I

@

10°

If the interval is divided into hundredths, the sum is

—lﬂg (17 +2° + ... + 100°) .
100°

If we go on to thousandths, ten thousandths and so on, the arithmetic
becomes truly frightening.

What we need is a general result for any number n of rectangles; that

is, for the upper sum

2 2 . 2
s E%,F%+%+.‘.+_H—E
n n- n 1 n
or
S =& [12 + 28 4 32 + oeee F n2] .
n n3

If we had such a result, we could substitute n = 10, 100 ; 1000 and
80 on. We might even be able to see what the limiting value of the upper sum

is as we increase n beyond all bounds.

Iater we shall obtain such a result and shall find that

12425 + 3% 4 .., 40 = nin*l%(gn+l) .
so that .y )
: Cn(n+1)(2n¥l) 1 4., Lyvs. 1
S, Sl S (1+ =)(2+ 2) .

What happens to Sn as n becomes very large? 1 +-% will be
extremely close to 1 and 2 += very close to 2 . Then S, will be
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- whe

1
=

bmdt

as we

Wi

very nearly =guval to . Actually Sr1 will be as close teo
r

please for sufficlently large values of n . Since a similar ?esult is
ortained by studying iovar sums we conclude that the required area is % o
The 1imit process described is typical of the calculus and may be used
to find not only the areas of figures with curved bounderiss, but the
volumes of space figures with curved bounderies, the energy required to
1ift & rocket to a height of LOOO miles and the solution to many similar
problems, The idea of limit is the central one, A study of “his concept
1eads us to astonishingly simple solutions of many important problems. It
will be found for example that the problem just discussed can be solved in

a few lines, azfter we have reached a certain stage in our understanding.

Problem 2. Ancther problem which can be solved by ‘the use of limits

peed of = body dropped from rest. In physics

is that of finding the

L&)

we learn that the distance d feet fallen in t seconds is given

by the formula
(1) d = 1€t2 .

(Actually this is an approximation. A better approximatién is given

by the formula d = 16,11t .)

s everyone knows, the body goes faster as it continues to fall.

Suppose that we wish to know exactly how fast it is going when t = 2 .

Tt is easy enougn to find the average speed over an interval beginning
at t =2 , for example the interval between t =2 and t =13 . °
In fact at t =2 ,d =16 x4k = 64,
and at t=3,4d 16 x 9 = 14 .

The body has travelled 1k - €L = 80 ft. 1in one second. Therefore its

average speed during this second is 80 ft./sec!

il

ny
m
]
m

If we consider a shorter time interval, say that between 1t -

t = 2,1 we obtain a result which is closer to what we desire. As before,
when t =2 , @ = 64
t

_ 2.1, 4 =16 x (2.1)° = 70.56 .

fu]

L of s second, the body has fallen 6.56 feet. Over this interval,

10
the average speed is §%%§ = 65.6 ft./sec,

In
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What would happen if we averaged over .0l of & second? 001 of s
second?
As in the case of area, we need & general result to rescue us from the
arithmetic.
1

T,et us consgider the time interval from t =2 +o t =2 + = . The

corresponding distances are

6l
and
- 1.2 4 1
24 = = + = =
16 (2 n) 16 (4 = 5
= BL +9_lf+.]:_.,
n 2
n
The distance covered in " lLe Lime Iinterval % iz %# + ig .
n2
)
6k, 16
o 1 16
Dividing =E!_]=:=£= = 6L +?1;
n

B

gives the average speed between t =2 and t =2 +
This average speed is
(64 + ) rt, /sec,

The limiting value is 64 ft./sec.
This is what we take to be the actual speed at t =2 .

Again we have used a limit process to cbtain the reguired result.

Chapter 6: Theory of Limits

The following indicates how the theory of limits might be handled in

the eourse outlined for Elementary Functions and Calculus.

The theorems about sum, product and gquotient seguences would be stated

~and used in Chapter 1, where only a very informal justification will be given.

O

These theorems would be used again to find the slopes of tangents in

Chapter 3, and also in Chapter 5 on Areas.
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At some point, these theorems showld be mroved. We suggest that

Chapter 6 iz an appropriate place. We have included here:

1. A discus=ion of the limit of a sequence suitable for Chapter 1.
2. Slopes of Tangents via Sequences, (See also Chapter O.)

3. Proofs Limit Theorems for Seguences uitable [or Vhaplber O,

of
Section 3-1 on Mull Seguences has been written. Section 3-2 has been
o

left in outline form.
The Derivative as Local Multiplier, (Referred to in *tlie wuti.ne under

Chapter 8.)

[ The Limit of a Seguence.

- . 3 L . , :
Consider the sequence 1 , & , = , «.. Whose general term is 1 + % .
— A i
We say that 1 + % approaches 1 as a 1limit eand write
1=,
n

This means that the differerce between 1 + % and 1 (which is % ) is

ultimately as small as we please. By "ultimately" we mean "for all values

of n which are large enough".

For example if we wish to have % < T%EE , 1t dis sufficient to choose

n>1000 . It is useful to have o Tetter to represent a number as small as
we please. The Greek letter e 1is the customary one. 1In the example,

= = T%EE . It is also helpful to have & letter to tell us how largé a value

of n we must choose to guarantee the degree of closeness € . We use N

£

for this purpose. In the example, N = 1000 since

1 1, N . . .
= < 7555 (=€) ;3 n > 1000 (=N) .

In general we write

1 . )
n < e if n >N .

If we desire that % shall be less than 1,000, 000 we are not sur-
prised to find that we must go further out, In faect
1 1

=<

n m if n > 1,000,000

so that in this case N 1is 1,000,000 .
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It iz easy to see that more generslly, for any positive ¢

1
= < g if n‘::ri
n €
so that N = ? tells us 1n each case how far out we must go to be sure that

all terms are indeed "as small as we please",
Suppose that we have any sequence

%

:{2 3 X3 i) LI I ] an 1 eue

¥
which has a 1imift, say a . In the language that we have Jjust learned this
fact may be expressed as Follows:

ror any positive uumber € , however sumall, there is a corresponding

whole number N so0 that
(1) |lx -al <e 4if n > W.
]xn—a| iz the distance from X to the 1limit a . We use the absolute value
sign (which was wnnecessary in our example) to take care of cases in which some

or all values xn are less than a .

For example, in the sequence

o;%,g,%,n.gls%,...
n

all terms are less than the limit 1 . The distance of Xn =1 = 35
’ n

from 1 is 1 - (1= %) not (1~ %) - 1. But
n

| L 1
|x -1l = |(2- ;—2) -1 =1 (- &

So in this example, (1) becomes
(2) L <e 1t n>w.
n
We must show that for any given positive number ¢ , we can find N so that

ég < &' 1s guaranteed to be correct for n >N . It is easy to do this.
n ) -
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. 1
It 5 < €
n
it must be true thatr

1

SF‘O

M

and therefore

We ecan write th's more convenlently as

Going backwarus, if n is indsed greater than L s

Voo

lg is surely less than ¢ as required. The expression l; tells us

n~ €
7

what ¥ iz. If should be a whole number, N = :%f 3 otherwise we can
Ve

€
take N to be the whole number part of =%%;.
€

For example, if we reguire that the distance between X and 1 he
, T S

less than .0001 (that is, if we set e = 15,000 )

= — = 100 .

100

N is

That is, for all n > 100 , X, will be within ,0001 of the limit 1 ,

if € = —_—
. € =17150,000
;2 = :%v—* = 100 v10 = 316.2 . Hence N = 316,
Ve ——
100 410

This means that in our sequence x, is closer to 1 +than .00001 for all
terms beyond the 316th one.
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2. Elopes of Tangents via Seguences.

To study vy = X near x =2 , y = 4

1
. - + &
let xn 2 0
| L 1
Yn T B+ ntT T
n
Then : x —2
n
and yn L4,
) Yy o1
ynmlL s + ;2 1
mo =R B0ty 1
n xnmE n

is the slope of the secant line Jjoining (2,4) +to (xn, yn) .

This slope m = L4 as n becomes infinite,

Similarly with x =2 - L -
n n
Generalizing,
let x = 2 + z, where 2, is an arbitrary null sequence with no O
member,
2

Then vy =L + bz + gz .

n n n
As x =2 y -k, i

n - Yn

This expresses ''continuity” at x =2 .

yn-h h2n+z; .
m = ———= = = L0 L +=z -4 2
n X =2 Z -n
1 n

the slope of the tangent at x = 2 .

It is easy to generalize to an arbitrary point (a, ag) on the curve

~and to treat other curves in an analogous fashion.

O
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We shall say that f(«) =b as  —a 1if for an arbitrary seqguence

Xﬁ} of xn*s which are different from a and lie within the lomain of 5
the correspondir sequence {yn] = {f(xn)] converges toc b . The theorems

+ 'be proved for limits of sequences then become theorems about limits of

150
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funections on the reals.

3-

3"‘11

Froofs of Limit Theorems for Seguences.

Null Segquence Theorems.

A particularly simple kind of seguence is one whose limit is O .

Such a sequence is called a null seguence because "null" is a name

for zeroc.

L,

o=
e

H

~a

=i

Yol

Ol Wil

I
l,_l
!
Fi=
I
Ll

-
-
[
PO
-
-

3 Te® 3

1/?31/351— 3 3y =

-

=
m
3
H
[17]
o
|4}
ct
oy
e
]
iy
o
(e}
d‘
g
)
H
oo
ct
s
jal
xR
3
{
o]
-
AN H =
J
o]
-

o] 1
ol
!
(o]

n

We shall use Vzﬂ for the nth term of a null seguence because
+he letter =z suggests zero.

If we are discussing two different null sequences we shall use

z_ and v to represent their nth <terms.

-0 and ;E -0 . Can we conclude that

n

=l [

We know that

% + ;% — 0 ? The sequence whose general term is % + ;E begins
. n- n
1 .
1+1,_;+%,%;+%,.,.
that i=
: L
23%-’??""
3
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and wish to show that

1
1000

n

€
large encugh.

for

L
g{f

Suppose that we choose
1 1
n " 1060

{1
l<

)
This will surely be the case if
1
n 2000

(2)
and
= -1- ~ l
ri
(2) is true if n > 2000 and
ng > 2000 , that is, if
2000

V2000 = 4h.T72 .

If we choose N
(2) and (3) are both true and hence (1) is satisfied.
This example illustrates an important theorem.

W

{(3) is true if
n
2000 , the larger .f the numbers

Theorem l. ITf 2, = 0 and wn =0
then z_ +w_ =0 .
n n

lz_ + wﬁ] <e if n>N.
and |wn|

so that

' n

2 4w | <z ) o v
EX

Since

(4)
it is sufficient to show that
when n is sufficiently large.

»
3

=0
if n > N?

Now since =z
n
|zg| < gt

and since w_ — 0,
}vhl <e" if n >N" .

Proof: We must show that given any € > O , there is a positive integer

and Lh ,

are each less than
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Theorem 2. If 2z =0

and 1f N 1s the larger of the two

o | 1

=
11T we take €Y = § and g’ =

numbers N! and 7" we have from (4)
' €, € ,‘
z tw | <z t+ts =€ If n>=>1I .,
n n 2 2 ’

This completes the proofl.

Consider the following seguences

and
If z, = % and x_ = -2 + = what can we say about the sequence whose

general term is X2, ? It is not hard to guess that X 2 =0, Let us

prove that this is true.

We see that =2 < X, < 0
so that lx | <2
n
Now lxz | =|x| |z ]| <2lz | = 2,
'"n"n n' '“n n' " n°

o

Since lx Z l < =
'"n"n

o
s

we can make lxnznl < € by choosing = < € which means that n > % .

This is an example of a second important theorem.

and |x | <C (C>0) then xz -0,
n = nn

s X = =2 + % and C =2,

]

In the example, z, =

Proof: We must show that given any € > 0, an N may be chosen so that

|xz | <e if n>N.
nn
We know that
EXRENEAREN T AENIS

Since z_ — 0 we know that for every €' > 0 , there is a corresponding N

|En| <e' if n>N.
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Then |x z | <Ce' if n>N.
n“n

2

If we choose €? =
then

lxnznl <e if n>0N,

This completes the proof,

1 1 . 1

1 . 1
Example: éi”” === ﬁ; . Since 5 = (0 and Tin < 1 , the theorem applies.

3 2

n +n n n
Theorem 2 has two corollaries.
Core A. If z_—0 and w_—0, then zw —0.
e n n ’ nn

Proof: ©Since Wﬁ approaches a limit it is bounded (see Chapter 1). That

is, |Wﬁl < ¢ for some positive C . The theorem then applies,

Examples:
1 -
1. Since = >0 and =50, %+%50,
n n n
that is, &5 — 0 .
n
2, Since £ -0 and L -0,% 30
ot n ’ 2 ? 2 3
n n
. 1
that is, =<5 =0 .,
n3 -

Proof: Consider the constant sequence
k;k;k;!!l’kgiiﬁ

with x, = k . Theorem 2 applies with C = |k] , 50 long as k % 0.

However if k =0, kz =0 ~and we have the sequence
0, 0,0, eou 5 0, sas

which is surely a null sequenéeﬂ
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(2)

(3)

Hence

More General Limit Theorems,

Definition, X —a meens X - & = 0.

X =—=a F —=bh = x + —a + Db .
n > Yy n | Yn

Proof: x -a =0,y =1b=0

- a + - T )
X, " a*ty, P =0
(x +vy,) - (a+b) =0

. + vy =a + b
x, ty, a
¥ —=a= kx —ka
n 7

Proof: %2 =-a =0
—— n

k(}:nﬁa)%o
kx = ka —»0
n
kx = ka
n
x -a , yn—>b = xnyﬁ—aab

Proof: x - a =0
e n

Y, - b-0

Xy, - &, " bxn +ab -0

Xy, = ay - bzn = =ab .
But , b};n.——'! ab ,
and ay, —ab ,

195

[Def.]

[Cor.(B)]

[Def.]

[Def.]
[ Def. ]
[Cor.(4a)]

[pef.]

- [e]
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Proof: x =1 -0 [Der. ]

For n sufficlently large, say n > Nl 5

[ o1
l}fn—ll <35 .

Then —%{Xnglié 7
= — D 1
1 3 S — -
5 < }Cn < 5 . i 3;@1;‘ §
In particular,
' 1
*n 72
and L <2,
'
Ii
Now since X - 1 -0
and —1— < 2
n .
we apply Theorem 2 to obtain
, B 7
Xﬂ(xn—l) -0
n .
1 -2 =0
X
n
1 " ,
prai 1l -0 [Cor.(B)]
n
1. [Def.]
X
n .
- , ST
(5) y, =v(b#0) = v %
v,
Proof: %2 -1 [2]
2 o) [4]
L -1 [2)
v, P
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&,

X
(6) :{n -8 , ynz}b (b ?! Q):@ ;; -}i .

Proof: X —~a

1 1
el [5]

sa et (3]

4.  The Derivative as Local Multiplier.

Consider a function -f: x — f(x) *&'(}C'j
as a mapping from & lower line
I to a parallel upper line
v e - - - I.L
% G4t

Then f£?(x) , the derivative at x ,

£x?) ~ £(x)

x' - x

the lim
XX

k4
way be interpreted as a local multiplier or multiplier at x .

Example 1. f: x =ax + b
f(x?) = £(x) = a(x?-x)
In going from L to U the step x'-x is multiplied by the constant a .
Example 2. f:r x —=x .

£(xt) ~ £(x) = x1° - ¥ = (x14x) (x*-%)

x+x?* 1s the multiplier, With x fixed we let x' = x , The limiting
mltiplier or multiplier at x is 2x .
This interpretation makes the chain rule very easy to understand.

If g x - glx) :}Q‘ﬁ) = fﬁégéjbd)'}?,, —_—\

and f: u - f£(u)

x = f(g({x)) defines |
ey

the composite function fg .




As we go from L to U , the multiplier at x is g'(x) . From
U to V the multiplier is f£'(u) = £'(g{x)) . The result of these two

multiplications is f£'(g(x)) - g'(x)

. . . X ;
Polynomial Approximations for e , ein x , cos x

Since De® = &* > 0
2" increases. ﬁenee on the
interval 0 <x <1

1 <e® < e
The ares sbove [O,x] is e" - 1
With x =1 we obtain e - 1 which
iz less than the srea of the
trapezoid (Dge}E >0) .

Then
) - l+e
e—l{?——=—2
whence e <3,

So we write

Integrating from 0 to x

M
A
L&y
Y
[
M
L
»

Repeating

x3 b “ , xg xB oot
73 <€ -l-x-5<3 773
.o o= s - xg - .
Adding 1 + x + 5 throughout o
. xg 33 x xg %3
1 f X+ o+ 37 <e <1+ x+ a7+ 3 §7

Better approximations are easily obtained.
Similarly from

O<cosex<1 (Oc‘:x{g.)
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we obtain by repeated

integration

0 <sinx<x,

2

0 < l=cos % <-%? R

xB
0 < x-8in x <37 ,
<2 IL,L
—_— 4 - T
O*ig cos X l{l??
from which it follows that
3
xs%}%{sinx-{x
xg 3? x
l—%icosxili§+,
Better approximations are easily found.
199

N

b

=



Elementary Functions/Calewlus Chapter o

stimulate; to uicover a deficiency of nathematical

global view of a particular area of matliematics; to

f: underiying unities of this area of mathensti

3 T estunii-

2 get of

for the year's work; NOT to arrive al any particular

numerical solutions; NOT to develop any voeahulary of the -~aleuius.

blonale.

Move Trom a sho

r—é
o+
s

‘*d
m

ning statement to a free-wheeling set of problem/query

situaticons whers the emphasis is entirely on 'how could we get at ..."
and 'what are the mathematical processes needed in ..." without tryiug
co counlete the solution.
rning.
) This material is meant to be nonstructured and very open-ended. Thro

out your conventional expectations of competence and achievement ol
full understanding and even every student getting somewhat to the scme

point of understanding.

Students Teat -~ Chapter O

10U are asked in chnpter Lo break out of your traditional thinking

and upproaches in what might 2ar to be many different directions. To be

cgudla, there is an implicit unilied body of ideas but dc not aetively

theil == Llet the "blg pilcture" sneak up on you, What will be e;'licii sl

series of wide-rarnging situationz-with-a~query. BHach will be foliowad oy

sonz directive discussion or questions to help you wrestle with ail of the
sspects of the situation.

Tut play the game straight: first restrict yourself to the original
statement alone and try to gain a real depth of understanding of itiue inherent
problems as well as some ideas of how one might go about soluticn. &eek a
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mathematical formulation, an awareness of potential pitfalls, and methods
»f attack -- not answers. (The actual power to handle these situations and
arrive st a numerical answer may or may not ¢ rolve over the year but thaz
is singularly unimportant at this point, )

After an honest initial attempt and some discussion with other students,
read on and see how complete your thinking was. You may find that you under-

stood more than was hope for or you may find some factors that you missed.

One of the vital aszpects of this chapter is the verbalization of the
ideas., Self-understanding of the situations is not sufficient: you must
gain the ability to discuss the ideas in a manner that will reach others --

and this is often far more difficult than you might guessi

Think freely -- think alone -- think together -- think!}

Problem 1.

Eighth graders frequently become enamored with patterns and long strings

of numbers. One child presented this "number" to his teacher:

11,1 _1,.1_ 1
173 s 7oAt e

He wanted to know, "Is it & number? If so, what number?”

His teacher wasn?t much help but did comment cryptically that decimals
- might be & heip and multiplying it by L4 might help him recognize an

old friend.

Some Suggested Directions of Thinking for Problem 1.

(1)  What does "..." do to this situation? Is the sum bounded or unbounded?

or any "cutting off" of the "string".
(2) Take some partial sums and form & table (Sl sy Sp s 83 s ese 5 BuBey
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SB = ; - % + % ). Start with the first term and work out sl-wly --

share the arithmetic burden and don't be overzealous in terms of quantity
op accurscy. Explain what is heppening. Do decimals help?

(3) Did you consider plotting n against Sn to get a graphical representa-
tion of the partial sums? What is the physical term associated with this
type of behavior?

(L) If a computer gave you S50 (the sum of the first fifty terms), could

you make any productions sbout is size? Or abont the size of Si' ?

(5) If a computer presented you with 372 , could ycu duickly give an ex-

pression of S,., ? Or, in general terms, given Sn , can you produce

73
: 2
Sn+l ?
(6) Can you make any cogent argument that answers the child's first question
affirmatively? If so, does your argument say what kind of a number it
is? (i.e., positivs negative, integral, rational, irrational,???)
(7) What does multiplying it by 4 do? Do the results of multiplying
by U wsetuslly chavge the nature of the number at all?
(8) Do you have any arswer For the child's second guestion == wild guess or
supportable? (Th' s guestion is the least iuportant aspect of this vproblem

if you refer to tne opening remarks of this chaptér!)

Problem 2.

Every eighth grader (see Problem 1) has a friend, so « + .

101 .01 .1 1.1.,1 1
= 4= = 4 =A== = .
Tret3titstgrytygt

Again, the child asked, "Is it a number? If =0, what number?"

However, this time the teacher suggested lar more caution.
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Some Suggested Directions for Thinking in Problem 2.

(1) Forming partial sums again is an >bvious approsch. Don't over-labor the
arithmetic but the note of caution argues for going rather far out "the

string”. Share the work and you might find thal Aecimals are easier to

work with for approximsat lon.
(2) What does a graphical representation show this time?

3) Take & few moments out to consider a "number" formed by adding one
3

one % s two %’s , four %'s , eight f%’s , sixteen é%’s and so on.
1 1 1,1 1 .1 ,.1.,1 .1 1
Tzt tetetEetE gt gt e

e NI~
By considering the grouped terms, one can make an interesting conclusion

about the size of this "number".

(4) Make a convincing argument that the "number" in 3 is more than three.
More than five and one-half. More than ten. More than any given positive
integer.

(5) Make ¢ term-wise comparison of the "number" in 3 and the given problem.
That is, consider the order relation (who!s bigger) of the corvesponding
terms (e.g., compare the two fifth terms or compare the two tenth terms

or compare the ninety-ninths).

(6) What order relation does this iuply about the two "numbers"? What does

this imply about the childt!'s question? S

(7) Try to make a convincing argument that the given "number" is greater
than three. Can you generalize your argument for any given positive
integer? '

(8) Whaf.change would alternating the signs wake? That is, glance briefly

at '

-%+...

11 1
T-32%*3-%*

Wi
il

203

208




Consider
1 1 1 1 1
= ¢ty 7 — + = + 'R}
B L Tg Iz EF

in the framework of the preceding problems.

Note:

et
ot
3}
(-]
el

The data v Problem 4 may not be realistic -- given a drag st

magazine, it could be corrected.

Problem k.
Using a high speed camera with a synchronized timing device, the
officizle at the local drag strip produced the following table of

time eispsed relalive to nearest distance post for the winning car.

time {sec l 0 1 o 3 T 6 7 8

distarce l 0 10 20 50 90 1ko 200 280 - 370
post { “=et)

| 9 10 11 12 13 1k 15

l ko 580 700 84O 990 1150  132C

It folilows immediately that this driver did the quarter mile in

1% sec, so his average speed was 88 ft./secg or 1 mile/ﬁin_ or
£0 mile/hguf_ But the interesting question is his aectual speed
when he crossed the finish line. Having accelerated from a standing
start (O mph) , what final speed enabled him to average 60 mph ?

For example, his average speed on the last half of the quarter mils

WEB o o =
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Some Suggested Directior of Thinking for Problem k.

(1)

(3)

(1)

One approach to this situatlon is through consldering the average speed
for the 1ast 10 , 9 , 8, ... seconds of travel. &ay 810 2 B9 » and
so on. If you have not worked with these, it way get you started. Form
s table to refer to. (Working jointly will share the labor and minimize
the arithmetic errors.)

If Sn is the average rate of speed for the n seconds preceding the
finish line, what is the domain of n with the given data? What 1s
the Sn that you are looking for?

For any two Sn's , say Sg and Sb where a > b , what is the order

relation? (That is, can you be certain which 1s bigger?)

For any three Sn’s s Bay Sa R Sb , Sc where a >b >c , how is
S.b related to Sa and Sc ? Can you be sure of which cne Sb is
closest to?

The word "nearest" in the original statement of thé problem has what
effect on the data? A
Suppose the officials added the information that at 1k % seconds

the nearest distance post was the 1220 . What does this seem to imply %

Problem 3.

Consider a certaln virulent bacteria that manages to reproduce by

mitosis (:ell division) once a minute. That is, starting with one
bacterium after one minute there will be two, after two minutes there

will be four, after three minutes there will be eight, and so on. Given

a zero mortality factor, what is the rate of change of the number of germs

after 10 minutes?
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one Suggested Dlraet on obf fhingdnoe zor o0 e .

oA

(3)

(%)

(5)
(6)

The average rate of change cua~ be expressed as

N"'rl I 1
',f:% germns; sec.
2.£,, for the f'rst 10 seconds
n=29 |, 1=10
n = ED , T =20
o e T )
c To-0 0 = . germs/sec,

or an average rate of change of about 102 germs per second.

But for the next 10 seconds

. _
N=29, n=20 1-20,t=10

so 220210 = gl?(lgg3) = 210 (102.3) erms/sec

3 20-10 10 : € =G

or an average rate of change of about 12,600 germs per second.

Stop and conslder these ideas before reading on and see if it opens a
new approach,

The results found in (1) might be thought of as Cqo (average
rate of change for preceding 10 sec.) and 'C+1D (average rate of
change for succeeding 10 sec.). Give some thought to c, Wwhere n
is an integer > - 10 but <+ 10 . Can n =0 %

Form & table of all Cn‘s where |n| <10 and n is an integer.
Work tcgethei to get the computation ocut of the way quickly and then
congider the results carefully.

Consider your C 's . Fomm a careful argument why "CD" is not the

average of C—l and C, or of C, and C, , etc.

wrany Me g e 4 .o 2 T ?
Will CO be closer t; Csl or C+1 T Why?
How does this whole vein of thought compare to the Problem 42 Reread

¥
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the suggested lines of thought for Problem L and see if they can be

used on your work in this probleu.

Problem 6,
Infinite patterned (buﬁ n@nsrepe&ting) decimal: can be added to get some
interesting results. Conslder this problem:

135791113151719212325272931--~
+.246810121416182022242628303 -~ -

Some Suggested Directions for Thinking in Problem 6.

(1) What kind of numbers are these? That is, are they rational or irrational?
Do you expect the sum to be ratiomal or irrational?
(2) With infinite decimals, the actual summing can be done from left tc right

with the "carry" handled afterward:

Example: L2 9 2 g 2 9 2 9 28 9-=-=--
+.3 45 6345 63 h---
.5(13) 7(15) 5(23) 7(15) 5(13)- - -

which can be rewritten as
.6385638563=--- or .6385
This should help you add the given numbers correctlyl
(3) Is your answer a repeating decimal? Can it be written with an 1nd1cateu
rePeating block?
(4) TIf the suspected repetition ever breaks down, where might it first

happen? Is it enough that if the repetition continues for’ 48 places

or 96 places it will continue forever?

(5) One tricky spot occurs when the "wunbers" in the pattern become three
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digit numbers, Specifically, consider this segment of the given

problem:

- =-=-899193959799101103105 107 ~- -
+=—=890929496981@Ol02l0h17061-ae=

(6) Discuss this statement relative to this problem: "If & pattern continues

for n steps, it continues forever."

Proplem 7.

Below iz a careful field map drawing of a high 21iff and the known

position of & sniper in a cave (x) .

He is pinned down from above and cannot lean out without being shot,.
Your problem, as leader of the troops, is to delineate his field of
fire and avoid it.

(Note: there is no absolute need for numbers in this problem -~ do

not coordinatize: just use the picture.)

Some Suggested Directions for Thinking in Problem 7.

(1) Did you think of his fire field as a set of rays? GCeometrically, what
is covered by this set? That 1s, is his fire field the interior of an

angle, the exterior of an angle or a half-plane?

(2) To you and your troops, which is more important, the interior of the
fire field or the boundariez of his fire field?
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(W)

(5)

(6)

Mhe boundary of his fire field is related to the cliff in a special

marnner, Discnzs this and evolve a name far this situation == el a0

your present voeabulary. fLre the houndaries "eonstructible”?
How iz ‘e boundary of the sniper?s fire field influenced by the olif?

P

or by hisz position on Lie cliff? That is how would your solution chor
ot 2 U
t

if he was wmoved 50 yards west or 25 yards north?
- J - '

Tf the sniper hau complete freedom of cholce for his position on the «lifl,

7

are some posltions meore advantageous for his purpcses? less advantageol

Thecretically, how close could you approach his position without being

fired upon?

Problem 8.

O

ERIC

Aruitoxt provided by Eic:

The Park Police have a permanent watchman!s post at the point x . There
are numerous dense wocils, boulders and buildings in the vicinity as shovn.
Determine the watchmanls field of vision so you can enjoy the park without

detection.

(Ngﬁﬁf again use the picture without introducing numbers;)




Some Suggested Directicons for Thinking in Problem 8.

(1) Again, the field of vision is ezsentially & set of rays but some of them
are now line segments, Did you try to show geometrically what his field

of vislon is? Can you construct the boundaries?

(2) Can you geometrically describe the "safe areas"?
(3) How are the boundaries of the field of vision related to the obstacles?

Discuss this using ean acceptable amount of mathenatical words.

(4) What is the essential difference between this problem and problew 7%

1"

" and “from a polint to & ... ¢

Does it remind you of "at a point on a ...

(5) Could the watchman choose a better position for his pest? That 1is, how

does changing his position affect the "safe areas"?

Aside.
Another interesting twist:

The Indians are positione . at the indicated points on & mountain pass.
Is it possible to sneak through without being under dangerous Tire

power?

Other problems with ike potential that haven't been written up yet:

9. A summation of finite moments leading to infinite summation -~ such as
work or pressure. ' '

10. An extremum problem such as a maximm area with one free wall -- must it’
be completely restricted to rectangles? quadrilaterals? polygons?
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11

12

An area problem by successively smaller segments -- perhaps a kidnsy-
shaped swimming pcol.
A volume problsm by successively thinner slices -= perhaps a vasse or a

headlight.

Final Comments.

1

Mo

Probably a maximum of 10 good problems should be used. The ordering
of them should be reconsidered since the present ordering is how they
popped out in installments,

A carefully developed teacher’s commentary might be neceszary. It might

point out, for the teacher only, the underlying intents of each problem,

Also it might indicate some methods of generating and maintaining the
discussion and involvement, Parenthetically and Pessimistically, if
the teacher needs this commentary, the chapter will probably be a'bust
anyway.

The chapter should probably entail a maximum of two weeks work and the
teacher should be encouraged to cut it off short rather than have it dié
on the vine, Under-development of the ideas is far less risky than the
"211 orifices” approach -= it requires some sensitive and sensible
pedagogical judgment as well as some mathematical competence . . .

a bad pair of qualities to rely on?2?7°?
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A Naive Theory of Integration

How do you count the change in your pocket? Do you draw out each coin

in turn and add the amount of each new coin to the preceding total:

541 +10+1+ 1L +10+25+1+5+ 10+ 1+ 10+ 1 %
Or do you dump all the coins out on the table and find that you have 1
quarter, 4 dimes, 2 nickels, and 6 pennies and thus that you have

25 + b0 + 10 + 6 = 81 cents?
The latter method is certainly efficient and it is in fact the one uzed in
many problems and technigques from probabllitly.

Much the same issue arises in defining the area under a curve. Suppose

that a function 's given from the interval [a,b] into the interval [e,d] .

Traditionally (Riemann integral) we always subdivide the x-axis into intervals
of width, say (b‘a)/ﬁ , and thus add up, sequentially from left to right, a

series of rectangles of this fixed . a and of varying heights, f(s) .
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Instead, why not subdivide the y-axis into intervals of length

Ivfi—-C)/‘i’J ?

Then we should add up a set of rectangles of fixed height t but with varying
widthse. We can think of this as one "rectangle” of height t whose base is

the measure of the set (x: |f(x) - t| <1/n} .

This second approach is that traditionally taken in the development of the
Lebesgue integral, Could such an approach to integration be taken in high
school? It would seem that it is at least as intuitive as the classieal
Riemann integral. It does have the advantage of following naturally from
procedures used in probability and statisties. It puts the techniecal 4diffi-
culties into assigning measures (length) to subsets of the real line, rather

than into measure (area) in the plane. .

A serious attempt to develop this approach might show that it has fewer
difficulties than the classical one. The power of the Lebesgue integral is
well known -- as well as its computational weakness, While I would doubt if
all the subtleties would be apparent at Grade lé, the methods might. I do
actually belleve that we will see the day when the pleas from the physicists
and engineers for the Lebesgue treatment of Fourier series and integral
transforms will place such a ie#elopmeﬁt early in the college curriculum.

If I am close to being correct then this "Lebesgue" method would build

important readiness for college,
Here are some of the group?s reaction to keep in mind:

i The Lebesgue integral deals most naturally with a definite integral of a




bound=d function. It may be less natural as an indefinite integral,
- %
(This could be a blessing, since it would force us to write J[ f

&
instead of d[} .

2, To evaluate ‘/} you need an anti-derivative. Wouldn®t you thue need
the Riemann integral too?

3. Lebesgue integral 1is natural for problems like moment of inertia
problemns.

4, One member of the group adds a plea for both treatments. He endorses
the Lebesgue integral for the reasons above, putting most weight on the
wmathematical power. He notes that the Riemann integral is most natural
for problems involving growth, As a mathematical ap liecation of a growth
problem he cites the Cauchy Integral Test. Also jig is easier for

R~integral since an even subdivision of the y-axis is analogous to

integrating f#x in the R-integral case.
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APPENDIX A

Geometry Problems for the Grades 10-12 Block

These problems are, of course, available for any appropriate position
in the Grades T7-12 sequence. However, they were developed with the Synthetic

Geometry Block for possibly Grade 10 in mind.

It has been suggested several times that students should develop the
ability to analyze a "real life" problem situation, from a mathematical model.
(see various papers on modeling) and come to & reasonable understanding,
appreciation, and solution through the relationships between the situation
and the model. It was felt that both writers and teachers should have avail-
able a collection or "kit" of such problem gituations, which are not always
easily invented. This set of problems give a good wany such suggestions in
more less detail, and are often open-ended. A point of view that should not
be neglected is puzzles and problems, "just for fun". A few of these ars

included in this appendix.

Coordinate=free Geometry

1. (After: isosceles triangles and angle sum in a triangle)

Given AABC , with AC = &

(1) If m/1 =70, find m of the other angles.
(2) If m/3 = 160, find m of the other angles.
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(3) If m/5 =105, find m of the other angles,

(L) If m 21l = x , express m of the other angles i.t.o. x .
(5) For what m /1 will m /3 =m /5 ?

(6) For what m /1 will m /3 <m /5 %

(7) What are the domains of m /1 , m /2 , m /3 %

(8) As m /1 increases, describe the corresponding changes in m /2 ,

ms3 , msih . B
X
2 L] .
¢ , + D E_1 E
4 FnBs

. 4 B i

G H 5 . 6-\I J

_ s i
7 3 .

K L.

(Given the measure of any one of the eight numbered anglésg the measures

of the others can be determined.)
(1) If wm /1 = 4O , find the measure of the others,
(2) If m/6 = x , express the m of the others i.t.o0. x .

: 2 m /1l , find m of the others.

B

I

foad
[

(3) 1f
(4) If m/5<m/h, relate the m of each pair of the others. (28 such)
(5) If HB rotates counterclockwise about H

(a) Describe the changes in all the numbered angles.

MI\
=
—~
-
il
.

(b) Describe the changes in the segments DE , EH

(¢) Describe the changes in the ratios:

DH > EH’ HI ? EH ’ HI ’ DE *
£16
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3. Construction Problems,

Students should be able to discuss the possibility or impossibility of

these constructions.

(1) (a) Construct CM +to bisect
LACB , making it perpendicular
to iB .
(b) If M is the midpoint of AB ,
draw CM to bisect /ACB .
(c) If M is the midpoint of AB ,
draw CM perpendicular to
EE &
(2) (a) Connect A and C to

bisect DE .

(b) If E 1is the mildpoint of
' AC , draw line DEB .

L. Elementary ("familisr") Construction Problems with Constraints.

(1) Given A4E , tD with inaccessible
intersection O

(a) Bisect <ZAOC

(b) If P is an interior
point of <AOC, —
construct PQ )
through O.

(2) Given Seém'em: 1B
(a) Construct a perpendicnlar
.~ to AB at B, without
extending AB .
(b) Given point P "beyond"
A8 , conmstruct PR per-
pendicular to -EB  without
extending vK?E' .




=]

(¢) oiven point @ off AB , construct §8 perpendicular to AB

without using any point of AR as center of a circle.

Constructions with Constraints.

(Compasses only, Mascheroni constructions)

(1)
(2)
(3)
(1)
(5)
(6)
(7)
(8)
(9)

Given "segment" 7B , double it; triple it.

B

- o .t &

Find any number of points on AB . Se T —— e
. — S =l
Bisect AB . ~ g

S -
Given "triangle" ABC , construct CP/ JAB . ) xgg;f“i\ /
. _ _ 7 -
- - 1 ot . i, -7:% - 5-;; \\ [
Tn "triangle" ABC , construct CQ | AB . Y
B

Construct BR .l iB .
Find the intersection of AB 3 cs .

Find the fourth proportional to AR 5 CB .

Construct square ABXY .

Constructions with Constraints.

(Euclidean compasses "snap compasses'.
3 4

given center and given radius."

"A mircle can be drawn with a

This is not a justification for

"on AB mark P, @, so PQ = given segment". FEuclidean compasses

can be used to draw a clrcle with given center and radius, but cannot

"move" that radius.

As soon as you lift the compasses they snap

closed and you lose the setting.)

(1)
(2)
(3)
(1)
(5)
(6)

Double (triple) a glven seguent AB .
Bisect a given segment, & given angle.
Construet a perpendicular to a given line (2 cases) .
Add (subtract) two given segments.

Through a given point construct a line parallel to a given line.

Construct a fqurﬁh proportional to three given segments.
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Te Three-point Constructions.

A triangle is determined by its three vertices, A , B, C , given in
position; then also we can find, e,g., the midpoint of 1ts sides, Ma s
Mb 3 Mc . If we now remove &1l but points A, B, M=b ; leaving them
in position, we can still find the unique original triangle ABC . In

——

these problems we are given three points in position and are asked to

find the original AABC .
(1) ABM, (Redundant )

(2) A B IVI.b

(3) AM M
(&) AM M,
(5) ¥, 10, %,
. . (6) A B O (circumcenter) (Not determined - why?)

(7) A B I (incenter)

(8) AO© M
(9) A O M, (Needs discussion)
(10) O M, M

(There are many more difficult and interest:ing - roblems here. )

8.  Construction Problems (Areas).

C-, N
Given: p

P
AL L ‘, v___ i}
B L ~M
(1) Construct isosceles - AABD & AABC , with AD = BD .
(2) Comstruct isosceles AABE # AABC , with 2B = AE .

H

(3) Construet right oAW" & ALBC , with right angle at B .
(4) Construct right AABG % AABC , with right angle at G .
(5) Construct isosceles right AABH ® AARC (*Impossible?)
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(6)
(7)
(8)
(9)

(10)

(12)

(13)

(14)
(15)
(16)
(17)
(18)

(19)
(20)
(21)

(22)

(23)

Construct equilateral AABJ ® AABC (*Impcssible?)
Construct an isoaceles right A % AABC (Compare with (5)).
Construct an equilateral A & AABC (Compare with (6)).
Construct APQR % AARC .

Construct right APQS % AABC , with right angle at Q . (Students

should see that this is a combination of (9) and (3).)

Construct an isosceles APQT & AABC , with base PQ . (Students
should see that this is a combination of (9) anad (1).)

Construct rectangle ABKZ = AAEC .

Construct rectangle PQXY s AABC . (Students should see that this
is a combination of (12) and (9).)

Construct a square =® a given rectangle.

Construct a square =~ AABC (Combine (12), (1L)).

Construct AA'BIC? ~ AARC and = ATMN .

Construet a single A ® the sum of the areas of AABC and AIMN .
Construct a single A & the difference of the areas of AABC and
AIMN . (Students should be able to extend (17), (18) to find a
triangle whose area is a linear combination of the areas of AARC
and AIMN , e.g., 3(AABC) -2(AIMN) ).

Construct a square = the sum of the areas of AABC and ATVN .
(Students should see that this is a combination of (17) and {1k4).)

Constrict AA'B!C! ~ AABC and % AIMN (as in (16)). Then -cnstruct

A'B"C" ~ AABC and ® the sum of the areas of AABC and AIMN .
(Studeqts should be led to apply the Pythagorean theorem herc.)
Construct a rectangle on a given base, ® a given rectangle.

Construct a rectangle =® the sum of the areas of two given iectangles,
Construct a triangle % a given polygon.

Students should eventually be able to ccnstructAa'square ® Lo any
bolygon or combination of polygons, by combining ceftain ker :on-
structions in the collection above == a natural place for t. v chart
analysis.
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9. Problems.

Just a few miscellaneous ones ~- for fun (?)

(1) R is any point on altitude

CD , and so on.

Prove: (PDC = ZQDC

(2) R is any point on altitude
CDh , and so on.

Prove: If /AQB = /APB
then they are right angles.

(3) (The butterfly problem)
CD eand EF are two
chords through the mid-
point, M of AB , and

80 Oon.

Prove: PM = MR .

(4) Given m ZCAB

m /CBA

W

80

E

=50 , m /DBA = 60

Find: wm /EDB .
. & k .\ ); =

(5) If three circles intersect, their pairwise common chords are

concurrent.
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Problems Situations Leading to Geometric Models

There seems to be a good deal of ag csement among the group here with the
princlplie that students should develop the abillity to find a wathematical
model with which ﬁo analyze a gltuatlon in the physical world. The phrase
"the world of reality" may be an unfortunate one, because it seems to indicate
that our mathematical model exists in some other world, which we can reach
only by leaving reality. The phrase way be useful with teachers but should

not be used with students.

It is excellent pedagogy to have students Tind or construct these models
and then to recall or devise the appropriate mathematical techniques to deal
with them. Even if solutions are not found * iere iz value in the search,
which can frequently be used to motivate a _ater and deeper analysis., The
detail and rigor should be suiltable to the problem and the student -- don't

use a micrometer to determine the size of your shoe.
Puzzles and games are fun, but we should be careful not to over-
emphasize them and leave the idea that they are a significant part of the

body of mathematiecs,

l. Measurements in situations with some inaccessibility.

(l) In the chapter on Congruence
: we measured AB by finding
a point C from which
A and B are both

visible. Suppose there

is no such point?

(2) Pind .he height of a flagpole
on an inaccessible island. Rs

(on top of a building.)




(3) The distance from the earth to the sun is 93,000,000 miles.

How was that determined?
(4) TFind the size (length) of an egg in a bottle.

(5) How many square inches of skin do you have?

Industrial problems.

(1) What is the percent of waste 1f a maximum circle is cut from a

square? (& square from & cirele?)
(2) Circular discs are to be punched from a strip of metal of
constant width.
(a) For discs of diameter x what is most economical width?
(b) What lay-out for strip width y will be least wasteful in
production of discs vs,. waste, and what is the percentage

of waste?

(¢) If the raw stock costs a cents per pound (square inch
of uniform thickness), the discs sell at b cents per
pound, and the scrap metal at ¢ cents per pound, find
the net return for viarious lay-outs and discuss the effects

of smell changes in & , b , and ¢ separately and together.

(d) These questions can be related to corresponding problems in

three-space (packing problems),

(3) Paper stock comes from the mill in certain standard-size ;heets.
(20"x30", etc.) It 1s to be cut into smaller rectangles of
specified dimensions with least waste. (Many rélated problems
here: e.g., we may want two different sizes of smaller rectangles

in given fati@n?-e;g., 8 (kx5) for every 5 (8x12).)

(4) Assume that 2X4 lumber comes in uniform 12 foot lengths and is
 to be cut withileast waste inte x , ¥ ;-z , length in given ratio,
€.8., 6 (5 ft.) for every U (8 £t.) for every 3 (9 ft.) for every
8 (3 ft.). N
(5) Assume thit piéétié strips are shipped in 6 foot lengths and are
to be cut into x , ¥y , z , lengths in given ratio (as in (k%) above),
but that the scrap can be sold at half the cost price. Find best (?)

.production schedule. :
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3. Less traditional geometry settings.

(1) A triangle is a rigid figure because it 1s unigﬁely determined
(equivalence class) by SSS , 1.e., glven S88 we can find the
angles and so on. A p. éér 7 I

quadrilateral is not a
rigid figure because it
is not determined by
5838 . Buppose that
ABCD is a gquadrilateral

whose sides are given. A

(a) If we join AC by a rigid link does that fix the figure?
Discuss.

(b) As above, with P, Q, respectively any points on AB ,
BC ? Discuss.

(¢) As above, with P, R, any points on a pair of opposite sides?
Discuss.

(d) Discuss meximum and minimum size for each angle of the original-

quadrilateral.

(2) A pentagon with given sides is not determined, Discuss the
ways in which we can make |
the figure rigid:. How
many new links are
sufficient? Generalize
the discussion to polygons.
.Show, how diagonal bracing

is used to make a box or E

scaffolding strueture
rigid, Apply to problem of strengthening a piece of furniture,

(3) Many solid geometry problems are really plane geometry problems
in differeat planes. Students should develop the ability to "see"
these planes and apply the proper glane—geametry techniques,.

() Find redius of the small circle trace of a sphere of
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radilus r which cuts a plane at distance h from its
center.

(b) Given the face angles of a trihedral angle, find each of the
dihedrsl angles.

(¢) Eratosthenes! measure of the earth (altitude and latitude).

(d) Shortest path across faces of a box (spider and fly).

(e) Show that the lines joilning the mid-point of the sides of
a skew quadrilateral form a parallelogram.

(f) Find the edge of the smallest cube that will contain two
unit spheres.

(g) Find altitude of regular tetrahedron of unit edge.

(4) Puzzles. Problems with DOMINOES, TETROMINOES, POLYCMINOES.

Unicursal curves; (Chromatic) graphs.

Problem Situations (which lead to geometric models)

How could you find the inside diameter of a bottle?

Before & ship is launched the water line is rainted on it. How do they
know where to paint it? The topic of floating bodies is excellent for
investigation both mathematically and physieally. Certainly the "Eureka'
story should be told, and students urged to find Archimedes?! solution

by themselves., Why does a homogeneous wooden prism (cylinder) float
horizontally, rather than vertically? Discuss speeifie gravity as much
as needed, and the effects of immersion in fresh water, salt ﬁater, air,
and so on. It is an interesting experiment to bring In some reasonably
regular wooden objects and try to determine (mathematically) where the
water line would be, then to test by actual immersion, t 1s particularly
interesting to use several different but similar objects. (If a 6 inch
sphere sinks 3 inches will an 8 4inch sphere sink 4 ihches?)
(Puzzle): A rope ladder hanging over the side of a ship has 20 rungs,
i foot apart. At low tide rung number 4 is at water level, At high
tide the water rises 6 feet, Which rung is now at water level?
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3. The center of gravity of a figure (polygon) made of a thin homogeneous
sheet can frequently be found by mathematical, then physical methods.
Show how CG of triangles
can lead to (3 of & general
quadrilateral. (If P is
CG of AABC , and Q is
CG of AABC , then PG will
support ABCD and must con-
tain its CG . Analogously
R iz CG of AABD and 8
is CG of ACBD then RS
must contain the CG of ABCD , which therefore must be at the inter-

section of PQ and RS .)

Y, What is the longest ladder we can get horizontally into a room? (What
is the shape of the room and where are its doors?) This is related to
a familiar calculus problem (what is the longest ladder that can Wurn
& corner between perpendicular ccrridérs of widths a and b ) which
can be extensively generalized. -
k-1. (as above) ... the ceillings are ¢ feet high, and we may tilt
the ladders (line segments, rectangles).

h-2. ... there is immovable furniture with given positions and dimensicis

L-3, ... we want to get through & maze (orthogonal, general).

L-k, ... the corridors meet obliquely, at angle a .

h=5, ... we want to follow a path through 8 forest of trees with
given diameters and positions,

4=6. Will a given log float all the way down a curving stream?

L-7, Will a given ship go through a given curved canal?

L-8. What shape barge of maximum area will go through & given curved
canal?

5. Paper folding can lead to a good collection of problem situations involving
lengths, areas, volumes, and spatial imagination. They lend themselves
readily to mathematical models that lead to predictions which can be

tested by measurements.
226




Measure a dollar bill, then compute, without further measurement,

’U“‘_Iﬂ\
f—
L]

the length of the crease obtained by folding together a puir of
diagonally oppogite corners. (The bill is about 2 %% X 6 32

but we may use 3 X 6 and then generalize,)

5-2, Find the length of the crease if a (unit) square is folded to
make one vertex come to the midpoint of an cpposite side.

5-3. A (unit) square is folded in half to make a rectangle, which is
then folded to make a pair of its opposite corners coinecide, If
the square is then unfolded, compute the lengths of each segment
of the folds and edges, then check by measurement.

5-4, In book-binding a large sheet is usually printed so that after
folding and cutting, the pages appear in proper position.

5-k.1 Suppose that an original horizontal rectangle is to be
folded IR , BT , IR , to produce a 16 page section.
Determine, before the folding, the proper numbering and
orientation of the final pages. '

5=L,2 As above, but fold BT, IR , LR. {(other folds)

5-L.3 As above, but produce a 32 page section by an additional
fold (various orders of folding).

5-k.4 After various folds, punch a hole near one corner, then
predict the hole positions on each page (after unfolding).

5-k.5 Predict the effects of various cuts of the folded page on
the unfolded sheet, (Betsy Ross story:  find 1 cut of a
folded paper to meke a regular star pentagram, )

5-5. Prepare plan (cuts and folds) to form various polyhedra: regular,
glven irregular (crystal), star,

And still more problem situations

-lg If we consider the earth as a sphere, we can devise some sigﬁificant problems
for which there are good mathematical models.
1-1, Find difference in latitude (longitude) between given points A ,
B. (20N, 308 ; 160E , 1500 ). '
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l"?i

1-8.

1'9:

1510-

lslli

1-1=.

l‘ll“‘§

Find arc length (mileag nautical miles) along given meridian
(parallel),

Fina are length Jjoining any two given points,

Discuss: bearing, azimuth; zenith, nadir; altitude, colatitude,

declination, right ascension.

Discuss: hour-angle, time zones, the date-line, (analemma?)

chronometer, Greenwich mean time.

Discuss and construect a sun-dial. (horizontal base, vertical

base, any base)

The earth is less a sphere than it is an oblate spheroid. (Explain

cblate, prolate.) How was that determined?

Are vertical lines sometimes, always, or never parallel? (horizon=
tal?; planes?)

(Chestnut) If the equator (idealized) is circled by a steel band
which is then cut, opened, and an extra 6 foot length added =--

how far will it be raised off the surface?

What direction is Moscow from here?

[INTO the earthl]

(Chestnut) T leave my tent, walk 10 miles south, shoot a bear,
walk 10 miles east, then 10 miles north to the tent., What

color was the bear? (Many solutions (?))

Explain: A straight tube without ends can contain any given
quantity of water. A "bucket" to contain any given quantity of

water can be made from a plane without any cutting or bending,

If you awakened in an enclosed room after an undetermined period
of unconsciousness, could you tell if you were in the northern or

in the southern hemisphere?

Bow can you determine direction on the surface of the earth? What
is meant by "shooting the sun"? What observations are needed to

determine position? Bring in some history of navigation and of

_ search for accurate chronomecer, (Why =so important?) What is

meant by "NORTH"? (Magnetic, Geographic, ...) Suppose that you
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stand at the North Pole and drop a snowball (along the axis of

the earth). Does the ball travel north or south?

Some celestial "geometry". Plane of the ecliptic, signs of the
zodiac, orbital plane, syzygy (transit, occultation, eclipse)g

parallax, precession, abhelion, perihelion, a parsec.
Many problems in cartography, large and small.

1-16.1 Various ways of representing (mapping) spherical surface
on a plane: mercator, Lambert conical, polar, etc.;

advantages, disadvantages.

1-16.2 Ordinary road maps can be used in a classroom in a number
of ways: cordinates; scale representation (distance,
area); direction; (vertical) surface features.

1-16,3 Contour maps, level lines. Determine vertical profile
of a line across a contour map. Determine road route

with minimum changes of elevation between given points,

The situations involving balances, levers, first moments, and so on lead

to simple mathematical models, some involving easy linear equations and

some involving more or less difficult puzzle situations.

g’ll

2-3,

v
=
L]

On a single line the weights Wy Vp s ee at distances di R

dy , e.. are balanced by a given single weight W at what

distance (D)? and so on. o
A vertical cartesian plane with a set of weights W5 Wy s e

at points P, , P «+« 18 placed in neutral equilibrium by

1 27"

what weigtt (W) at a given point P ?
(As in 2-1) TFind the center of gravity of a given weight-position
distribution (on the line; in the plane(?)).
(Puzzles, old and new.)
2-4,1 A set of 9 <coins contains one (light) counterfeit coin

of ‘identical appearance with the others. Determine, in two

balancings, which is the light one., (Good for flow-chert

analysis.)
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o.4,2 A set of 13 coins contains one counterfeit coln of identical
- appearance with the others. (7% lighter, heavier?) Determine
in three balancings which is the counterfeit. (Excellent
for flow-charts,)

2-4,3 Twentv sacks each contain 25 gold colns supposed to weigh
exsotly one pound each. One sack contains only counterfeit
coins, each one ounce underweight. What is the least number
of weighings to determine which is the sad sack?

o-4,4 Slippery Sem, the storekeeper, had various devices to cheat
his customers: How?

5. 41 TRON POTATO. A small misshapen "potato” made of iron,
ook 2 TMBATANCE. A "balance" scale set slightly off=-center.
2-L4.43 LIGHT-WEIGHTS (heavy-weights). A set of brass welgnhtis
plainly stamp 4 "1 1b., 2 1bs., 5 1lbs., 10 1bs.",
but actually underweight (overweight) by 1 oz., 2 0%.,
5 0z., 10 oz. ’
2-4. 4} SHORT STICK (long stick)., A ruler plainly marked
"1 yard, 36 inches", but actually only 35 inches
long,

* Dapper Dan is measured for & custom-made suit with
a tape-meamsure marked "1 yard - 36 inches" but
actually shrunk down to 35 inches, Will his sult
be too small or too large? (That depends -- on what?)

3 Pendulume can lead to a number of interesting problem sltuations and
mathematical models involving various levels of difficulty.
3-1, TFoucault pendulum (rotation of the earth)..
3-2, Simple harmonic motion (small oscillation).
3=-3, Length-time relationship. Determination of g . Simple clocks;

horology and chronometry.

3=k, A pair of pendw .. (¢ ' in parallel planes) to show beats, etc.
3-5. 3. -.ag. . figures, compositions of harmonic motions.
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3-6. Combinations of pendulums: different lengths on cume horizontsi

axis; different positions on the same vertical axis,

3~7. Isochrone, Brachistochrone, Tautochrone, (cycloid).

. Linkages.
4=1, Peaucellier: Rhombus AFBP? ,
and equal links OA , OB .
Show (1) 0, P, P! are a
collinear; (2) oOP . OP! v ~

= & constant (r2 = 0A° - AI?) .

B

Because of this second property
the points P and P' are
inverse points with respect to
the circle with center O and radius r , and this linkage is some-
times called Peaucellier's inversor. If O 1is fixed, and P ‘traces
any curve 8 , then P! will trace the inverse curve 8! . 1In
particuwlar, if P  traces an arc of a circle ﬁhich passes through O,

then P! will trace a segment of a straight line.

4-2, Hart: Crossed quadrilateral
ABCD , with AB = CD and
AD = BC ; alse AP = CP! ,
Show: (1) there is a fixed
point O on AB such that
0, P, P' are collinear;
(2) OP « OP* = a constant
(+* = (0B + BP!) + (AP - 40)).

(see comment: L-1)

" 4-3, These linkages can be varied and combined:

4-3,1 1In Peaucellier linkage connect the equal arms from 0O to

symmetric points on AP , BP and investigate OP = OP' .

4-3,2 A second Pesucellier linkage O'A'B? R,E' , with O1,R

on P,P’ ; (other superpositions).
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S Topologicai problems.,

These involve only incidence, ccparation, betweenness, comnectednes

]

separation, and so on, but not any measure of length or area, They usually
require more ingenuity than formal mathematies.
5-1, (Puzzle) Three houses are to be individually connected by non-
intersecting lines to three wells,
5-2. (Puzzle) Unicursal curves; Konigsberg bridges; Hamilton paths,
5=3. EKnots: classification, invariants.
5-k, Given an incidence matrix, construct (the) graph (equivalents):
5=4,1 TIn the rectangular area bounded by North and Scath Drives
and ‘East and West Roads there are five lanes that stars
at South Drive: Red, Yellow, Blue, Black and White; and
five alleys that start at West Road: Gold, Silver, Lead,

Tin and Copper. A lane intersects only alleys, and vice=

versa. (Show that there can be no triple intersections.)

5=L.11 Draw a map if each lane intersects just one alley,
(Possible?)

5-4,12 , . . . each lane intersects Just two alleys.

(Possible?) (just three? four? all five?)

5-4,13 If every lane intersected every alley there would
pe 25 intersections. If all lanes and alleys went
Northeast there would be O intersections. Draw a
map in which there are exactly n (0 <n <25) inter-
sections. (Possible for all these 1n ?)

5-k,14 Given any specific incidence pattern, draw & map
(Possible?), e.g., Red, blue; gold; yellow, black;
silver; blue, white: lead; black, red: tin;
white, yellow: copper.

5-4.15 Vary ad 1ibidum: more lanes, alleys; non-rectangular

' boundary.

6. Originals (just fer Zan).

6-1. If P is inside square ABCD so that m ZPCD = m /PDC = 15 s Pbrove
that AABP is equilateral. '
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Construct a cyclic quadrilateral, given the four sides. (Possible?)

If possible, find 3 solutions with same lengths in various order.

Of all quadrilaterals with four given sides the cy~lic quadrilateral

haes the greétest ares.

If equileteral AABC 1s inseribed in a circle, and P 1s any point
on AB , then PA + EC

PB .

If regular hexagon ABCDE is inscribed in a circle end P is any
point on iF , then PA+ PC + FE = FB + ID .

What is the least cube that will just contain two unit spheres?
sense TWO Epﬁeres: one of radius 1 , the other of radius 2 7
.-ses three unit spheres? |

{other combinations of spheres)

What is the least sphere that will enclose two cubes: a one inch
and a two inch cube? ‘

(enee. other combinations.)

What is the height of the pyramid formed when a unit sphere rests
on & base formed by three tangent spheres with respective radii
2,3, 47 What is the least cube (sphere) that will emclose this

pyramid?
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APPENDIX B

Modeling - Grades T-12

Contents

Teachers Manual for Supplementary Section UM (Modeling) for Grade 7,
titled "Applications of Mathematics and Mathematical Models".

Preface to Materials From the Modeling Group: SBuggestions for
Attacking e Problem of Making the Uses of Mathematics a Viable
Part of the 7-12 Curriculum.,

Suggestion for Carrying the Free Fall Example Begun in Grade 7,
Chapter 3, on through Grades 8-9, This has been lifted from
"Suggestions on Where to go with Flow Charting in Grades 8-9",

A Secaling Problem,
Hints for Teachers and Writers. Includes references,

Questions and Comments Raised by A Proposed Chapter on Ihysical
Models for 7-8-9 Grade Level, This document is & concerted attempt

to keep modeling in its proper place in the 7-12 sequence,
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1. Teachers Manual for Supplementary Section UM (Modeling) for Grade 7,

titled "Applications of Mathematics and Mathemastical Models".

This section has been printed separately from this report so that it can
be tested in the classroom 1967/68.

2. Preface to Materials From the Modeling Group: Suggestions ifor Attacking
the Problem of Making the Uses of Mathematice a Viable Part of the 7-12

As everycne knows, it is very difficult to change school curricula and
practices. Nowhere is this better illustrated than in the recommendations
that the uses of mathematics be made to play a more prominent part in school
mathematics instruction. Such recom =zndations have been a prominent
feature of every major reform suggestion since 1900 (cf. E. H. Moore) with
few visible results. From this we can either conclude that the problem is
not solvable and simply throw up our hands, or we can hypothesize that we
have simply not given sufficient attention to the problem in a sustained and
consistent way.

It seems possible to subdlvide the problem of how to make the uses of
mathematics a genuine part of mathematics instruction into several distinct,
and to some extent separable, parts, then see if each of these can be attacked.
It should be apparent by now that any less systematic procedure will probably
not succeed. As a start, let us try the following division of the problem,

with each subdivision seen as further from solution than the previous one:

(1) Good problem material dealing with genuine "real" situations must exist.

Furthermore, it must exist in sufficient variety to be usable for youngsters
at any specified level in the curriculum. However, it is possible to
believe that this is the least troublesome aspect of our problem.

- (2) Once such waterial exists, it must be adapted and worked into the

curriculum in sensible and fruitful ways. Existence is certainly no

guarantee of effective use. For one thing, adaptation for specific
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curriculum levels and purposes is nearly always necegsary. For ansther,
it is difficult to work in applications in natural ways that contribute

to a spiral program, rather than appearing as isolated events,

into %he curriculum effectively there still remains the problem of

(3) Even if good material on the uses of mathematics exists end is worked

whether, when, and in whal way the processes involved in applying

mathematics should be discussed explicitly. This problem has not yet

engaged very many people, and among those who have tried to cope with

it (e.g., the present outlining group) there are strongly divergent
opinions. Even given such cogent descriptions of the processes as
Burrington®s and Juncosals, it is not clear how much explicitns:. in
these watters is called for in order to make the processes a natural
part of students! awareness and functioning without becoming a memorized
relatively useless catechism (such as ﬂggg Scientific Method or The

Steps in Problem Solving").

(4) Given the solution to all the above problems in the material for

students, teachers of mathematics may still find it difficult to use

the materials in effective ways. The training of most mathematics

teachers has not bad much to do with either specific uses of mathematics
or the processes through which mathematics ls applied, Also, it may be
that some of the new materials on applications will depend for effective-

ness on modes of teaching that are quité unfamiliar to most teachers.

(5) How do we avoid such distcrtions of this emphasis as happened in the

first round with respect to "sets"? That is, if we do aim for in-remsed

attention to the uses of mathematics and if we do try to make the processes

~ involved explicit by, for eiample, adopting the rhetoric of "mathematical
madels"'that is curréntly fashionable aﬁoﬂg actual users of mathematics,
then there is certainly potential both for actual overemphasis and for
Journalistic distortion. There appears to be considerable (largely un-
expressed) fear among the outlining group that {this is likely to happen.

If we consider these questions more or less independently, as I think we
must, then perhaps we can sort out what we have in hand and what still needs

. -
7
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doing. A preliminary attempt at this exercise is included below:

(1)

Existence of problem material.

Az far as mere existence goes, we are not nearly so impoverished as is
sometimes supposed. The real problem is in the next category -- adapta-
tion of existing suggestions and materials for our specific purposes.

There is a need, of course, to collect more such applications materisl

way. At this stage, any groups convened to write problems or suggsst
applications should be given fairly specific assignments -- a problem is
needed that motivates or applies a specilic tople; a certain point about
applications or building mathematical models needs to be wmade; an interest-

ing context for certain finger exercises is needed; and so on.

Sources of raw material for the applications~-mathematical models-will

include at least the following:

(a) The Naw Orleans report has a long list of suggestions, many with
specific references, on pages 3-1k, It also has an annotated
bibliography of several dozens of articles that deal with applica-
tions using only school mathemsties and, in addition, the annotations
specify what mathematics is used and the grade level difficulty of

the articles.

(b) SMSG Studies in Methematics, Volume XVI, contains reprints of 2k
articles, including many of those annotated in the New .Orleans report
and some others.

(¢) Many suggestions are contained in the July 1966 Tentaitive Outlines of
a Mathematics Curriculum for Grades 7, 8, and 9., Other suggestions
produced by the 1967 outlining group are contained in the present

document.

(d4) Such magazines as Science, Scientific American, and the American

Scholar, as well as journals of mathematics organizations, operations

research, The Horve' " Business Review, and so on, freguently contain

expository articles with material adaptable to our purposes -- or
even usable directly. The annotations in the New Orleans report do

not begin to exhaust the possibilities,
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(e) The SMSG Mathematics Through Scisnce and Mathemetics anirLiying

Things contain among them about twenty suggestions of simple experi-
ments with rudimentary apparatus, the majority leading to graphing

and curve fitting exercises.

(f) Cirea 1953 and 195h William L Schaaf published in the Mathematics
Teacher a series of bibliographies covering varioug aspects of
mathematics and its uses (e.g., "Map Projections and Cartogiaphy"
M. 7. (October 1953) L5:4LO-4L3), These contain references to a
large amount of raw waterial -- the problem of zslection and
adaptation still remains. Similarly, P. 8. Jones of the University
of Michigan has compiled a number of such bibliogranhies and
examples which he would no doubt share with anyone who>wantea

to take the trouble to go through his files.

(g) Applications of Elementary Mathematics, A Compendium Prepared for

contains brief reference to a large number of applications. (In the

SMSG library, No. C1256.)

(h) Textbooks of recent origin have many examples, especially in such
fields as linear programming, See, for example, Dorn and Greenberg,

and books on operations research, etc.

(i) Paperback books for popular consumption (e.g., some of the Sawyer
bocks; William G. Vergara, Mathematics in Everydsy Things, Signet
T2098; and many others) have large numbers of simple minded applica-

tions perhaps suitable especially for the lower grades of our
sequence, Again, thé main problem is selection.and adaptation {o
our specific use. It would be & tedious, but perhaps very useful,
exercise to simply extract some of these on 5x8 cards, sort and

classify them, and'get them into the writing mill.

In other words, I think we already have more raw material on applications
than we are likely to make effective use of. Any attempt to generate new material

should probably be directed to gquite specific topiecs and purposes.
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(2) 0The Problem of Adapting the Raw Maoterisl .n Applications and Working it into

the Curriculum.

This seems to me to be cobviously the crux of the matter and I think it is
safe to say that no school text up to now has done it well. We might

try to make visible at least the following specific tvpes of materials:

(a) Applications tied in with specific topicc of our text., Most can
be used eitner for motivation of a new toplc or for application
afterward to demonstrate its usefulness -~ with the main line
development independent of the application in either case. I prefer
use as motivation, but one or the other should prokably he 2 feature
of most topics we present. Example: Argand diagrams of complex

numbers in connection with electrical circuit phase relationships.

(b) Appliecations used to carry the main burden of development of a given
topic., Example: ILinear programming as the reason for doing systems
of equations (see appended mate -ialg),

(e¢) Applications that use only elcmentary means +o get at interestir:

or surprising results, Examples: Appended material on scaling laws

via a new statue of J, T. Cornpone; Polya on the minimum popular vote
to elect a president.

(d) Problem material arranged to make specific points about the process
of applying mathematics. Example: Dual linear programming problems

in appended material,

(e) Specific single topies carried over several grade levels in a s»iral
fashion, ZExample: Sequence on falling body laws as follows: [1]
vegin about as in Grade 7, Chapter 5, with Galileo's experiment;

[2] continue &s in Item No, 3 in this Appendix; [3] consider the
behavior of material falling not in & vacuum (perhaps with parachute
Jjumper lead in) via "The Falling Sphere" experiment in SMSG

Mathematics Througzh Science, Part III, pp. 59+.

(f) A fairly global topic worked in over the whole 7-12 sequence.
Example: Greenhood, David, Mapping, University of Chicago Press,
1964 (Paper). This is a beautiful book with material that could
be worked in over the whole 7-12 sequence, from coordinates to con=

tours and level curves to a rich variety of projections. The mileage
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with many mathematical topics 1n cur sequence.

L

(g) Appli~ations kits where a problem is descri =d to the youngsters

5914“ i~

but the pertinent data, means of sclution, zte.,

the teacher, This would aAlliow considerahle vars

instruetion to the ability of the kids -~ a Leaco:r would simply

be judicious in how much information to give cut to keep the

i

1tatici, as well

problem going. Collection of data and le
as mathematics beyond the power of a5 given v
cutted by prefabricated data an.. results

by the "consultant" (teacher). {One of

eilghth grade material has advoecated this

1 [ 1 Tt 4 -
produce some such "kits" or "blocks' of

The Problem of How and When to be Txp cozs Involved in

Applying Mathematics,

This is a problem on which only prejudices eiist at the moment. Some feel

that a graded set of explicit treatments should begin fairly early with
others feel that the

"simple'" things such as arithmetic as a wvehic
processes ought to be left very much implicit until a fairly grand example
is. at hand -- one that has at least two possible mathematical models, for
example. Let us try both appropaches and see what happens. My own pre-
Judice is that even simple arithmetic, geometry, and uses of "formulas"
give sufficiently rich scope for discussion of some parts of the v ucess
to be worth exploiting. What is needed for this is a consisztent graded
sequence to try out.

in our waterials for students the word "modeling”

It does seem to me that
should never be used as a verb, however useful it may seem to us in our
discussions. Rather, one should always use a specific phrase: "We are

looking for a mathematical model', "These things go into building &

i
3
o
6]

model", ete, To say, ever, that we are "modeling" is so unspecific
’ ] ) P

to practically guaranlee distortion.
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The last twe problemsz listed at the beginning of this note are remote

from present concerns, since we are very far from having solved the [irst

three. The problem of teacher vre-education for nev approaches and & new

[

enphasis is, of course, likely to be very sticky indeed, Perhaps we will
have a better idea how to attack it as we make more progress on really
good materials for atﬁdents and think about the teachers?! role in pre-

senting such materials.

The appended materials do not .epresent a consensus, but are merely a
series of individual contributions as a Tew people thought about the
problems of getting uses of mathematics into school materials. Some of

the appended materials are referred to above, others are not.

3 Suggestions for Carrying the Free Fall Example Begun in Grade 7, Chapter 3,

on Through Grades 8-9,

This has been lifted from "Suggestions on Where to go with Flow

Charting in Grades 8-9".

A Note on Modeling

Mathematics cannot deal directly with physical objects. Mathematics can
only talk about idealized objects such as points, lines, numbers, and functions.
These objects are abstract creations of the mind and have no existence in the
real world. In order to use mathematics to solve problems abcuﬁrreal life
objects, we must first create a "Mathematical Model" in which the real life

objects are represented as methematical objects.

In different types of problems, the same physical objects may be repre-
sented mathematizally in différent ways. TFor example, when we draw geometric
figures on a sheet of paper, we think of the sheet of paper as representing a
plane. Hovever, when we have a problem involving the volume of a book, we

think of the sheet of paper as & box shaped solid with one dimension very small

. compared with the other two. We would say that we have chosen different mathe-

mwatical models apprngria%e to the different types of problem.

TLet?s consider some problems concerning gravitational ateraction. We have
already considered the problem of falling objects and Galileol!s experiment. Now

2h1

246



E

O

RIC

we want to take & look at fthe

in, we Lhink of the Vool Ll elns e
; z :

In thinking of Galilieo’s
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e and we thinkg of ihe

pointa. We regard the surface ¢

paths of the objects =as
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elng parallel lines, —obh

the earth,.

He will disregard air resistance. Lo

11l assume that Hhe
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obdects are falling in a vacwuum. W

by a falling body in a given time does not depend on the height from which the

object is dropped,

We finally assumme that the distrrce travellsi I a f317ins objech iz given

by the formula:

where + 1s the time in seconds and d 1is the distance in feet.

A rather strange picturs of the worlil The earth is a plane with nothing

but vacuum above it and a falling object is -sgueezed down into a single point.

In fact, every one of our assumptions is wrong. We know that the earth

is roughly spherical in shape and that faliing objects will fall toward the

center of the earth and thelr paths will not be parallel.

Furthermore, the distance travelled by a falling body in one second is
not independent of the height of the starting point., IEven if we neglect the
effect of air resistance, an object falling from & mile high will fall less
far in a second than an obJject dropped near the earthls surface., The amount
less would be about one part in 2000 .
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Alr resistance ils certainly not always negligible. It is because of air
resistance that a piece of paper falls more slowly than a penny. They would

fall at the same speed in a vacuum. (See SMSG Mathematics Through Science,

Part IIT, pp. 50+, for an experiment showing that velocity becomes constant

for fall in a resisting medium.)

A1l of these remarks must have weakened your confidence in our model.
Thet was what they were supnosed to do. Now we are going to restore your
confidence again.

Although the earth is a sphere, it is such a big sphere that a small
poirtion of its surface is very nearly a plane. I two objects fall to the earth
so that they land no more than 100 feet apart, then their paths miss being

parallel by about é%ﬁb of one degree. which is practically negligible.

The effect of the height of the starting point only produced a difference
of one part in 2000 for objects dropped from a mile high. The effect will be
even more negligible if we consider only objects dropped from within a few
hundred feet of the earth!s surface,

The effect of alr resistance is very complicated. It depends on the
weight, shape, and the speed of the falling body. For objects which are
nearly spherical in shape and about as dense as a rock falling for no more
than two or three seconds (so as not to build up too much gpeed) we can regard
alir resistance as negligible,

So our model for the motion of falling bodies is not so bad affer all.

In fact this model is used for very accurate scientific calculations invelving

"in the small" or "local" problems. In such work, however, the more precise
5 B ] i
formula d = 16.1 t° is used instead of d = 16 t- .

Another type éf gravitational problem concerns a satellite travelling in
an orbit around the earth, Just as the falling body falls due to the earth’s
gravitational attraction;‘SO the satellite is held in its orbit by the earth's
gravitational attraction.

Tt would be ridiculous in such problems to represent the earth as a plane.
Instead, we would represent the earth as a sphere and the satellite as a point

moving around the sphere in & circular path.
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It is interesting that a simpler model gives Lthe same results in many cases,

In thie simpler model, the earth iz vepresented Ly a point and the path of Lhe
satellite by a circle with center at this point.

,‘-”f

This amounts to considering all tne muss of the earth to be compressed intec a

single point at its center.

To get more accurate results, more "sophisticated" models are required
(i.e., results agreeing more closely with observed behavior) Near the end of
the 17th century, Isaac Newhton devised a wonderful model for describhing the
motion of objects. The w~del was so good that for 200 years no phenomena
were observed which did not agree with this model. 8Scientists began to forget
that they were dealing with a model. They thought that they were actually
talking about the real world. They felt that all motion had to be governed uy

akk

VAR



O

ERIC

Aruitoxt provided by Eic:

"Newtonian mechanics', i.e., by the functions used in Newten's model. But
around the end of the 19th century & number of experiments seemed to indicate
that some phenomena did not agree with the Newton model. Tor & period, many
scientists made vain attempts to explain these phencmena in terms of Newtonian
mechanics., TFinally, Alber! Einstein devised & new model which explained the
mysterious phencmena. Calculations involving this model led to some predicted
behavior which seemed wildly improbable. TFor the first forty years of the
present century experiments were devised to determine whether the predicted
behavier actually occurred in fact. These experiments confirmed the predictions
of the Finstein model. Among the consequences was nuclear energy. Today, all
sophisticated work involving high speed particles is done in terms of the
Einstein model., In some ecalculations, however, the added sophistication of

the Einstein model is not needed and the old Newtonian model is used. Tine

physicist must know which model is appropriate to his problem.

Our process in finding a mathematical solution to a physical or real life
problem can now be described. First, we select a model appropriate to the
problem. Then we make exact calculations relative to this model. All of our
answers are relative to our model, We do not concern ourselves with the
question of how closely our results agree with the real life situation. That
is not to say that the answers to such guestions are of no interest to us.

But the answers to these questions lie in the realm of physics, not mathematics.

To see how this modeling process works, consider this problem,

Problem: Two towers are 40 feet apart. One is 70 feet high and
the other is 52 feet high., A stone is dropped off the higher tower
and one second later a stone is dropped from the shorter tower, How far

apart will the stones be one second after the second stone is dropped?

Now we will discuss the solution to this problem. No mention has been
made of a model but it is tacitly understood that the falling body model

discuseed earlier in this section is to be used. We draw this skelch.
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52

The horizcontal line lies in the surface of the earth., The vertical 1ire-
repregsent the paths of the two stones, If we knew where the two ataon:
at the desired time, we might be able to find the distance between
We use the function

S it - 16t°
to get the distance fallen by each stone, The firet stone dvoried {or two
seccends and travelled 6L fect; the second stone fell for ore zesond awnd

traelled 16 feet.
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We see that the first stone iz 6 feet sbove the ground and the second stone
is 36 feet above the ground at the time in gue: “on., If we draw a horizontal

line at height 6 feet above the ground we see that the required distance is

[

&

the hypotenuse of a right triangle whose legs have length 30 feet and L4O

feet, This distance iz easily computed from the Pythagorean thecrem to be

3@2 + 402

o
1]

50 .

/900 + 1600 = ¥2500

The correct answér to the problem is 50 feet, It is the only correct solution
in our model. If you went out and performed the experiment, and measured the
distance, and came out with 52.3 feet, that answer would not be considered to
be the correct answer. You are supposed to be working in the falling body
model. We are not supposed to accept the answers that come from the model,

regardless of how closely they agree with reality.

4. A Scaling Problem.

Problem for class discussion on similarity and its implications involving
scaling laws, modeling (in an explicit sense) and approximating assumptions,
(Language is expected to be adjusted to level expected of students. )

Consider the following problem:

The municipality of Dogpatch (begging Al Capp's permission) wishes to

erect & new and perhaps different cast brc..ze equestrian statue of its famous
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Dirvicns one having Gla-

tivil “ar here, CGen'l. Jubilation T. Cornpone, the

e

appeared into the last batch of Kickapoo Joy Juice made Ly that inveterats
moonshining pair, Lonesome Polecat and Hairless Joe, The "statchoo” committee,
headed by none other fhan, you guessed 1t, Mammy Yokum, is =z little concerned
about the cost and would like to at least try to estimate the cost of the
material. Now, it just so happened that one citizen, s nephew of Sen, Jack I,
Phogbound (who else?), did sctually get as fer as completing the seventh grade
in school 2nd he was appolnted a subcommitte. of one to estimate the cost.

How may he go about doing it?

During his data gathering stage he gleaned the following informstion:

# The statue was to be twelve feet tall from the tip of the Generalls
upraised sword to the bottom of the hooves of his steed.

e The unit price of bronze is $laOQ per pound.

e Bronze statues are nollow shells with nearly uniform thickness and
for bronze statues of approximately the intended size and shape the average
thickness of the shell is one inch,

e The artist?s clay model of the statue was two feet high when measured
in the same way. '

Since the information gathered about the statue is essentially dimensisnal,
whereas the cost information 1s in the form of price of bronze by the pound, he
realized he needed some information connecting weight and velume for bronze,
Thus he also sought and found that o

s A cubic foot of brass weighs LOO 1bs. (The weight per unit of

volume of a substance is called its density,)

Now, he knew that if he could only determine the volume of the intended
mmnument in cubic feet simpl? multiplying the unit price by the density and
this product by the volume would give him the total material cost of the
statue,

Lowering the scale model in an lrregularly shaped vat he was able to
commandeer, he fiiléd the vat to the brim and then drew out the model, taking
care not to lose much water in the process. By carefully measuring the water

added to fill the vat again to fhe brim he was thus able to get the volume

2418



of the artist's clay model of the desired monument to "Jube'. It waz L4 cubic
feet. DBut, how did he get from this volume of a solid figure to the volume of
a relatively thin, approximately uniformly thick shell whose external shape is
similar? Noting that, since the shell is thin and essentially uniform in ita
thickness, the interior volume contained by the shell must also be essentially
similar to the clay model, he reasoned that the volume of the shell could be
obtained simply as the difference hetween this interior volume and the total

volume enclosed by the outside surface of the statue.

Now, how did he obtain these volumes from his previously obtained informa-
tion? By use of certain "secaling laws" for similar volumes. Tet us see what
these "scaling laws' are.

Recall various surface area and volume formulas from past, €.g.,

2 i .
bxr™ = surface area of sphere of radius r .

3

wr~ - volume of sphere of radius r .

s

By calculation, obse: = that doubling radius, guadruples area and multiplies

volume by 23 ; tripling radius multiplies area by 32 , volume by 33 N

Lead to fact that multiplying radius by p , multiplies ares by pg and
3

volume by p~ .

Consider cylinder A = 2xrh + 2t s V= xroh .

Double radius znd height (l.e., preserve similarity) and note again
quadrupling of area and "octupling" volume and multiplying radius
[s]
and height by same factor p leads to area multiplied by p and
volume by pB -
Consider a few more examples, e.g., cones and lead heuristically to

conclusion that if any three dimensional figure 1s scaled by a

factor p (i.e., any linear measurements taken on it are multiplied

by & factor p ) then its area is multiplied by a factor pg and its

volume by‘ p% or stated as ratios

irs Taws

2 3
; by ko v, 4y
- =) v. T T3

si' -
Sl A 5 2 4,
8]

where El and LE are any two correspending lengths in the two
2ko
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figures and A AE » Vo oand Vg are the respective areas and

volumes,
Returning to the problem given the Honorable Senatorfs nephool’s
problem, the chronicles ‘have it that, in nossession of these facts he
computed the volume VQ to be encased by the outer surface of the intended

monument from

”g;ééi
T3

giving O64  cubic Ffeet, Similarly, uvet with more arithmetic lavor tons

interior volume Vi encesed by the shell, from

;1043 1.3
v (11 =) (12 - 3)-
. 127 L N U U N
- = 3 —g— =g (1720 - 3 X 1hk X g3 x12 X3 - égé)

he obtained v, = 828,5 cubic feet (2 means approximately equal) and
finally the approximste volume of the statue as

86k - 828.5 = 35.5 cu. ft.
Thus, the approximate cost of the bronze was determined to be $1h,200 e

(I hope the arithmetic is correct.)

Simple follow- on problems for the student:

1. Suppose that the surface area of the model of General Cornpe

_.8tatue was 15 square feet and as an afterthought it was wondered what it

1
L

would cost to gild the statue with éSS inch thick gold foil which costs

$5O per ounce and whose density is three times that of bronze. What would
the cost of materials be?

2, Approximately how much longer would it take for one man to paint the
exterior of two essentially similar builldings with essentislly equal ease of

accesrihility of its surfaces when the heights are in the ratio 3:2 .

3. Which is worse: +o be slugged during a riot by a crude blackjack
made of & sock containing 4 steel ball bearings each 1/2 inch in diameter



~T by one containing one bearing with a diameter of 2 1nches?

4, Joe lives 1 mile from the main street where the trolley cais run
every 10 minutes. Their average speed, because of stops, trafiic, passengers
fumbling for che e, etc., is 10 miles per hour. To go to school he must
travel UL miles on the trolley car, besides his walk which he can do in
15 wminutes.

Tor the summer he has taken a Job at the beach. This requires him to
take the railroad from a station which is 2 miles from his house and 8
miles from work. The train?!s speed, however, averages 20 miles per hcur.

Joe decides to jog the 2 miles from his house to the station in fifteen

minutes to sawve time.

What should the time between trains be for his average total travel time
to the beach. TIs it the same as to school? What nssumption did you make about
Joets departure, to arrive at this answer? What other assumptions could you

make? What effect would they have on your answer?

Se A meteor crashing into the earth's atmosphere takes on a quantity of
heat per unit time which is proportional to its surface area. This gquantity
of heat per unit time, in turn, is proportional to the volume of the meteor and
to its temperature rise per unit time.

Suppose ancther meteor of similar shape and same material but of twice the
volume gf the first were to crash into the atmosphere also at the same speed.
What effect would its size have on its temperature rise per unit time? What is

the ratio of the two tewperature rises?

5. Hints for Teachers and Writers.

If it is our task to teach students mathematics, if it is our 525; to
prepare'students to handle situstions which will confront him later and if it
is our desire to show him the way toward such a goal in an effective yet
‘enjoyable and exciting manner, as he moves along from Grade 7, we must plan
his activities carefully. There uust be student involvement, class discussions,
an atmosphere in which questions may be raised by students or teacher and

answers developed Sé a result of this give and take.



To this end, throughout the course wmudaling (as treated in the "Oull . ies
3 =) D] ng

——

July 19467, see pages 16-30), chould be used in e neturm] way, The “tenoii oo
problem-solution” seauencs nust be replaced by creating a probliem situat!on
vhere the student takes over or at least partisipates in analvzing Lthe sitia-

tion, farmulating the nroblem and finding a solutien. He mist rarngnize the

:lation between the problem and mathematlces, Starti

and without making hin awvare of modeling at Pirst, this approach =hc.id i

¥ developed and become an aid in his whan is

inventcry allows, there must be made a consclous effurt, in =

to show him the impartant role of models in various situations:

physical, life.

(b) At the rate of a miles per hour, the distance 1 iravelled

in n Thours is

{c) If the number of students per class is a , the namber I

(o]
=

o)

textbooks needed in n classrooms is

N =mna.

All three of these problems are models of linear equations.

This phase of teaching needs no special emphasis of the fact that there
is a model involved.

(2) When in Chapter 3 the function concept is introduced and a problem leads
to mapping x —ax + b , as before, we graph y = ax + b , The graph is

& description, a model, of the linear ejuation, which allows for a

meaningful discussion of input-output, effect of the factor a on graph,
tc. Again this is still the phase where Little emphasis on modeling

)

per se 1s made., But we, as teachers, must be aware of it and a casual

¥* This, of course, holds only ir .ection UM was omitted, The tescher should
definitely study this chapter.
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ceniark might be made hers and therve,

Now consider the problems in Grade 7, Chapter 8, Congruence, pages 1

and 24. TLead the student to recognize (and the solution should not be
in the text) that he can sight both towns from a point. How do we go
gbout the sclution? You need a gecmetric model, in this case a triangle.
B, the proper guestions the ctudent should bhe led to this stage. ATter

drawing the t:izngle the next sitep lg to find a method for the solution,

The ways in which the stud: "¢ locate the point from which *the towns

"ean" be sighted should leas to Airlerent triangles. Solullons by actual

measurements, using congruent ' riangles, similar triangles and scale
drawings should be encouraged; Jdifferent resulis should be compared and
interpreted.

Use the same approach for Example 1, Section 8-5.

-- again the text should contain no more than the first 5 1lines and the

diagram (OMIT the solution [rom student text).

Nex- let the students create scme situation for which a similar model

can be constructed, Divide the students in groups A , B , C , etc.

and let group A find a solution for a situation developed by group B ,
ete. Possibly the students will think up 2 problem for which they can
devise a model but then they are not ready, mathematically, to go on -=
they are not prepared to solve the egustions, constructions, etc.,
involved. Do not reject such a situation but capitalize on it, motivating

further study in mathematics,

Now it is time, in a next round of modeling, to expose the students to
a problem situation which is more involved {read pp. 15-19 of Outlines,

July 1966) but within their reacu.

Example 1. (Grade 7, Chapter 7)

There are 63 students of whom U1 take algebra, 24 biology and 27

music. If 14 students take both algebra and biology, 11 algebra :ind
music ard 7 biology avl vusin, he. w.ay ave asaigned to one, two, or

all 3 subjects?
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Suggested Solution. (For teacher only): **Let the number of students taking

all three subjects he x .
. Algsbra. __Biglogy

There are 3 students in all three subjects. Now é@ back to the Venn

dilagram:
ﬁlgebra” Biolday:

*% BSee problems 2 and 3 in Chapter M, Part II.
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From the point of view of modeling let us trace the various transitions

from model to model, concrete as well as conceptual.

‘a) concrete (students)

(b) conceptual (numbers)

|
4

(c) concrete (Venn diagram)

.

(a) conceptual (equation and solution)

}

(e) concrete (interpretation of result as numbers of students).

Compare the aid to thinking by step (c) , using the Venn diagram with
the solution, possibly suggested by students, going from step (a) to
step (b) to step (d) : Let the number of students studying algebra
alone be a , studying biology alone be b , studying music alone he

¢ , studying all three subjects be x .,

Then:
a+b+c+11l+14+7-2x= 63
& + 11 + 14 - x =14
' b + 14 +7 - x =24
c + 11 +7 - x =27

This system is obviously beyond the studert at this stage ~- 4 equations

in L wvariables,. ’ o

On the one hand emphasize the importance of creativeness, the power of
a good idea, the clarity anl brevity'af the solution offered by using a
Venn diagram. On the other hand the system of L equations can be
solved by the éhildren at this stage -- with a little imagination. They
learned the properties ‘

if P=9qg and r=8 and x =y ,
then pt+r+x=q+s8+y,
and m+n+p=(m+n) +p.

Applied to the system of L4 enjuations (by adding the last three equations
you get the system

(a +b +e¢e) - 2x = 31

(a +b +e) - 3x =28,

25
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Now let the number (a + b + c) be n ,

M2

)

then i 1 X = 31

[n-2x - 28,

" which in turn is eguivalent to

Tl
P

I
o

{ n = 2x +

n = 3x +:

s0 3x + 28 = 2x + 31

It is important, whenever possible, to shov that one right find o way to
handle a "difficult situation” but also, since this system is a very
special one (the coefficients are very cooverative) this system can well

be usec as a motivation for solution of systems of egquations.
Txample 2. (Reflection example, Grade 7, Chapter 8)

Race. Run from A +to B, touching the wall, in a3 short a time as

possible.

Solution. (For teacher only, not for student text)

(a) Compute the sum of the distances from A to P to B for various
cases. The shortest distance will require the least time., Let
the students measure the distances and tabulate for various cases.
(Call the numbers Ry s 25 ete,)
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Compare the suus

r decreasing

(KR}

< increasing L

Observe the sums get smaller, then again'largef, Is there a point on the

wall for which the distance is less than for any other point?

(b) Conclude ronjecture:

There exists an optimal point C (it must be between P and Q ).

5HeE



{¢) Conclude also conjecture that
LA0T = /BCE at optimal choice of - C &

(d) Show how use of mathematics can prove the genrral thecyrem by
using reflection, vertical angles, shortest distance betveen
two points, (A , B') AB' s a straight 11 and Bf the

reflection of B in line DE .

(e) Note how mathematics saves computation although the model suggests

the theorem.

Next:

See Appendix A -- Problem Situations Le.ding to Geometric Models, pp.

Suggested Grade and Chapter Level:

1. Grade 7, Chapter 8 , (a) - (e); (b) more difficultl
2. Grade 7, Measurement Chapter, (a) and (b); Grade 8, Linear Prog., (c) = (e).
3, Grade 7, Chapter 8, (a) - (d); (b) Any level of Geometry.

Also:
See Avpendix A -- Problem Situations (which lead to geometric madels)g

PPa

References:
1, Richmond, Prof. Donald E.; Mathematical Models of Growth and Decay, Twenty-

Fighth Yearbook, National Council of Teachers of Mathematics, 1963.

2. Magee, John E,; Guides to Inventory Policy, I Functions and Lot Size

(particularly Cpiimm Lot Size, pp. 56-00), Harvard Business Review,

Vol. 34, No. 1, Jan,-Feb. 1956, pp.’ 49-60.
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O, Questions and Comments Raised by A Proposed Chapter on Physical Models

for 7-8-9 Grade Level.

It is assumed that such a chapter would come after & reasocnable amount
of methematical vocabulary, discussion of numbers, points, graphing, functions,
. 1suration, elements of geometry, and exhibition of some mathematical symbol

manipulation has been put to the students. HNevertheless some problems remain,

Manipulative skills and sophistication could still be at a very elewentary
wevel; after all, the student has come out of aritlmetic only the year before.

Thus the examples must be cimple. However, if t. - are too simple the spirit

of modeling is not grasped. It is essential that neither the teacher nor the
student become partial to the idea that modeling is Jjust a new name for pro-
cedures for specific problem solving. It is important that they realize Lhat

it is a tool, or even more, a methodology, for facilitating thinking about a
problem or classes of problems, which problems or classes thereof need noct

have a basis in the physical or non-mathemati:al world. (In fact, the use of
an artificial physical world model is most common in clarifying probabilistic
and combinational questions particularly throusgh examples involving drawings
from urns or, in other cases, random walks. E£imilarly, the use of Venn diagrams
in problems having some set-theoretic content is another case of a physiecal

model for a mathematically structured problem.)

A feasible area ripe with opportunities for model making is mathematical
prograuming, particularly linear programming. Models in economics, industrial
planning, network routing, operations analysis, ete., having mathematical
programming formulations abouﬁd. However, if in the earlier chapter on linear
algebra, specializing in linear equations and inequalities, also briefly intro-
duces linear programming, then ¢ re-visit may tend to give the teacher and
student the idea that modeling is solely thevsolﬁtion of certain large scale
problems by mathematical programming. Thus caveats that these examples are
only one kind of modeling, or in this case, equlvalently, problem formulation,

what goes on should be frequently emphasized.

Another question raised concerns the level of notational sophistication

achieved by the student before his exposure to linear pr@gramming, For problems

and the student should have bes1 previously exposed to them -- likewise for
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notations sueh az Pl-.,y) ana Piy o,

Toundering -n the rasefs of manipuletive

i

arvive at “he port of understanding

m

Another area where mathematical wodels of physi

probability. {In fact 1% 1c the physt

1

for its exisitence ag discipline, whereas, wathematlcally probalbil

ieally just a

manipulative machinery Trom

needs some familisrity and scphisticcsion in  rmbol manipule ion 1Y the

examples of wodeling here are not Lo .= too sample.  froblems vhich cransiszie

into mathematicsnl wmodelis and their concomitant formu

corvey the spirit of modellag Thayona s very shallow leve!

Plane Fuclidean geometry has provided +the sarliest

&
ale mathematical mwodeling activity and one would expect vould pro-
vide a continuing source of examples of modeling. Nevertheless, it does not
seem comfortably feasible to develop an entire chapter at an early stage
devoted to exposing the spirit, goals, and methodology of model making. Tt
is possible, however, that certain items for class discussion (something less
than a chapter) can be devel oped. An example is the statue problem for clazs
discussion on similarity and its implications for sealing laws, etc, Here
modeling, with explicit stating of simplifying assumptions, (1) enables tue
student to think about an unfamiliar situation, bringing the problem down to
a level or hope that it is soluble; (2) identifies the facts that need to be
known or determined; (3) suggests the requirement of scaling laws subsequently
heuristically derived; and finally (4) actuslly enables an adequate solution to
the problem,

Similarly at =2n early level going to simglé Phy..cal kinematic problems
for examples of modeling results in too quick a transition from the physical
situation to formulas to ~{ve the right depth. It is essential thet the teacher
and the student do not look upon the activity in much ..ie same light as they

may the problems at the ends of chapters.

and digressions on models and modeling and their various aspects should be
liberally but not piotusaly nor oppressively (like sets were) eorinkled through-

1t tie mathems iesl education process, a chapter on mathematical models of
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real world situations should be deferred uatil the 10-1.-12 grade levels.
Tnis is to enable the student to get a _esasonable intuition for model making
(1) ensuring that the student has some reasonable mathematical
vocabulary and familiarity with things such as subscripts,
single and double, functional valv: notation, e.g., f(x,y,z) ,
composition of functions f{g(x)) ;

(2) allowing the students to have more extra-mathematical knowledge,
€.8., 1n natural and physical sciences, economics, business,

albeit of a very rudimentary sort to permit the formulation ~7F

problems which are reasonably plausible to the student;

(3) allowing the student to have command of some primitive mathe-
matical skills with a litile variety so that, if possible, two
different m chematiral modelings of the same problem leading to
similar answers can be made, or even, if extrapolated far enough
the two models could lead to substantially and possibly quali-
tatively different answers giving impressions bf the strengths
as well as limitations inherent in practically all mathemaiical
modeling. (One sees this in the closeness of results cbtained
with plane and sphericsl trigonometry used on problems in olving
points relatively close on the earth's surface as contrasted with
the absurdities obtainable fror +the use of plsue trigeonometry on
widely separated earthpoints.) (A reasonable bag of prerequisites
may inelude knowledge of how to solve systems of linear eéuaticnsg
sum arithmetic and gecmetric series, evaluate some polynomials,
graph functions, compose functions of functions, solve gquadratics,
possibly some knowledge of elementary combinatorics and probability,
no fear of sumation symbols or of seeing, say, max{xi} for the

first time.)

Furthermore, whenever or wherever a chapter or less, say a class discussion,
:n models or model making (thinking primarily of the case of & matheratical
model of real world situation) the guidelines made in the Report .of- the Modeling
“ommittee, pp. 12-30, of the SMSG Tentative Outlines of & Mathematice Currici’um
Cor Grades 7, £, 9, July 1966, are worthwhile adhering to.
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A chapter on methematical models should have a varlety of examples ox,

more appropriately, something resembling case histories.
can include one or two linear programming problems, a simple dynamic pro-
gremming problem (good for iteration and flow charting as well), a queuing
problem or two, some deterministic and probabilistic growth and decay situa-
tions. Problems in biological, economics, and gambling or

randcm walks exhibiting isomorphic structure are desirable. A strategic probley

¢r wwo formulable as game theoretic problems. Fossibly even s market situatiorn

corceived of here.) (Note different criteria, maximising ewpectations,

minimizing maximum possible loss, ete., fregquently lead to different modelc

and different conclusions.)
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Contents

1. Introduction.
Ce The Mathematical Model.
3e Related Problems,

L Outline for Mathematics Sections of Chanter on Systems of Linear Equations

and Inequalities,

5e Suggestions for the Development of the Topic, Systems of Linear Equations

and Inequalities in Grades 7, 8, 9, and 10.

6. Some Thoughts on the "Student?s Manual" to Accompany the Teacher®s Text
for Model-Motivated Mathematics (3M). '

Te Two Pairs of Physically Stated Dual Linear Programming Problems.

Background Assumptions.

Same as p. 149, July 1966 Outline Book.

Content,

Introduction to sysfems of limear equations and inequalities'with optimization.

.Furvose.
To teach the mafhematical ecrtent through immediate problem involvement and

modeling,
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e inbroductory section is designed through a decision problem to motivate
and provide sufficient familiarity {using only arithmetic and logical reasoning)

to permit the development of a mathematical model of the problem.

L. introductiona

Often in life we must make a decision. Sometimes the docoeisions invelve
things that are not important or are easy to make, like what Time to get up
or what to have for dinner. Sometimes they are very lmportant and very
difficuit to make, like what Jjob to take or where to live. Think of the
decigions you a@liready made today and think of the kind of decisions the

President of the Unitrd States will have to make today.

Wheri you go about making a decision you try to find out as much about
the situation as you can. Then you see what choices cf action you have.
You may in your mind try to imagine the consequences of each possilile cholce
of action. Comparing the consequences you try to arrive at a decisinn as to

what choice suits your purpose beste.

In the case of getting up in the morning, you know that you need time for
éetting ready, eating breakfast and getting to work. You know that 1f you are
late you will need an excuse and have to go to the office, . On the other hand,
if you were up late the night before you might want some extra sleep. You

consider the situation and try to decide.

In-simple or unimportant decisions it doesntt bay to spend toc much time
thinking about it. However, in the kind of decisions that have to be made by
scientists, engineers, business men, Jjudges, doctors, political leaders,
military men and others, it pays to spend as much time as necessary or as much

time as you can.

Tt may come as no surprise to you to learn that scientific thinking and
especially mathematics can be of great assistance in making decisions,. How~
ever, it has only been since giant electronic computers became available that
it became practical to look for a systematic wathematical way to arrive at

decisions. TIn many important decision problems there are hundreds or thousands

"or even millions of separaté things to be decided to reach the final answer.

The nuuber of Dossible choices is tno large to look at each possible one

individually, even with a computer. The number of choices may even be infinite,
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What wmathematicians and mgthematics (o is first, weplace the real situa-
tion by a "mathemztical model'. We will find out more about such models later.
For now you may think of it as a description of the real situation using
mathengtice in which detsils you think are unimportant have been left out.
Second, the decislon to be made 1s stated as a special kind of wathematics
provlem. Third, mathematics then provides special methods for solving the
problem in a reasonsbl- =wmont of time even though there may be an infinite

number of possible cholices.

Let us look at the kind of a decision problem faced by business men.
Suppose you are president of a division of a large corporation called "General
Engines'". How many cars and how many trucks should be schedulzd fTor the aext
vearis production to make as large a profit as possible? Profit is the money
left from the sale of the cars and trucks after all the costs in making them

have been paid for.

There is of course a lot of information you will need to have, but as a
starter suppose that you know that this year's profit on each truck when sold
is $hOO and each car when sold gives a pfofit of $300 + You might think
that it would be most profitable to build only trucks since sach truck brings

100 more profit than each car, But it is not that siwmple. For one thing
each truck uses more steel and if the total supply of steel is limited, you
may be able to build many fewer units of trucks than cars and so your total

profit. may be not asz great if you decide to make only trucks.

A little more inguiring turns up the information that each car uses
approximately 1 % tons of steel and each truck approxiﬁately .3 _tons. Also
you learn that the total amount of steel availlable to your division next year
will be approximately 975,000 tons. Can you reach a decision? Let?s see.
If you use all the steel for cars, you can make 9?5,000/1.5 units or
650,000 cars, At a profit of 300 each, you get a total profit of
$l95,000,000= On the other hand if you make only trucks, the steel would be
enough for 975,000/3 units or 325,000 trucks. At a profit of $broo each,,
the total profit would be 130,000,000, It loocks as if your decision should

_ be to manufacture only cars next year. In fact you wonder why your division of
General Engines made any trucks last year at all. However, sincé the previous
president is a pretty smart fellow (in fact he is vour bosg) you suspect there

must be more information that you need to have.
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A call to the manager of production asking if he could turn out
650,000 cars next year turns up the fact that the factories have a limited
" capacity and that at most a half & million units of cars or trucks or both

can be turned out in a year.

This changes the situation. ILetl!s see what results if all of the units
are cars. This gives a total profit of 500,000 X $300 or 3150,000,000.
But since there is going to be enough steel to make 650,000 cars, a lot of
steel, in fect 150,000 X 1.5 or 225,000 tons is going to be unused ( remembsr
the factories can only turn out 500,000 units). On the other hand sll the
500,000 units cannot be trucks since there is only enough steel on hand for

325,000 trucks.

You, as president, have identified two seemingly possible choices, Use
all the steel to make 325,000 trucks at a total profit of $13O,OOO,OOO
(this does not use the total capacity of the factories to produce)g Or use
the total capacity of the factories, to produce 500,000 cars at a total
profit of ¥150,000,000 (this does not use all the steel). It would seem

‘that the second choice is the one to follow.

At this point you call up the manager of manufacturing and ask him what
the production plan for the current year is. You find out that 90,000 trucks
and 410,000 cars are being made and the fzctories are in full production. A
little calculation shows the following. The proiit on + trucks is
90,000 x 400 or $36,ooo,ooo . The profit on the ca. s 110,000 X $300
or 123,000,000 . The total profit this year will be 159,000,000 if all
the cars and trucks are sold, This is 9,000,000 mc than if you Just made
carss Should you go ahead with the decision to make = 2 same number of trucks
and cars again next year as this year? After all, the plant is being used to
capacity, But how about steel? The amount of steel used would be
90,000 X 3 = 270,000 tons oh the trucks and 410,000 X 1.5 = 615,000 tons
on the cars. This totals 885,000 +tons which is within the limit of
975,000 tons that will be available next year. Of course 90,000 tons
of steel will be unused. However, if only cars were made, you recall that
225,000 tons of steel would be unused, Therefore, the present production
plan is certainly to be preferred from the point of view of steel used, as

well as profit.
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Before going ahead, however, you decide to see what the situation was
like when the decision was made a year ago for the current year?!s production.
 Getting the old figures out of a file you find that last year the amount of
available steel for the current year was estimated at 900,000 tons. The
present plans call for using all but 15,000 tons. However, next year there
will be an extra 75,000 “tons availeble and so the surplus 1f you stick to
this year®s production plan will be 90,000 tons, Shouidn't you be able to

make use of this extra steel?

At this point you decide to make a list or table showing the choices so

far and the profit resulting from each.

Tablz
TOTAL
CHOICE NUMBERS | NO. OF CARS | NO. OF TRUCKS | UNUSED STIEL | UNUSED CAPACITY| PROFIT
{tons) (units) (millions)
1 500, GO0 0 ’ 225,000 0 _ 150
2 o] 325,000 o] 175,000 130
3 410,000 ' 90, 000 90,000 - 0 159

Inspecting the table you see that decreasing the number of cars produced from
500,000 to 410,000 (and‘producing tyrucks instead) decreases the amount of
unused steel and increases profits. However, if you continue to detrease the
number of cars, say to zero, then profits decrease too. This suggests that
Somewhere in between 410,000 cars and zero cars there may le still room for

improvement.

SUGGESTION: HAVE A CONTEST IN YOUR CLASS TO SEE WHO CAN FIND THE BEST PRODUCTION
i PLAN.

You decide to test this idea by trying a production schedule calling for'
400,000 cars and 100,000 trucks. A little arithmetic shows that 900, 000
tons of steel will be required with a total profit of 160,000,000. This
increases profits b& 1,000,000 and would leave only 75,000 tons. of steel

.t year?!s end. You are delighted at being able to improve on the current yearts
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record. But vou still feel troubled about not using 755000 tons of steel,
So you call the Director of Research to get scme expert help on the problem
and tell him that you need an answer as soon as possible. To your surdprise «

he sends a masthematician to youf offices

The mathematician listens while you explain the situstion and looks
. L

closely at your table and your latest plan which will make a profit of

11—

160,000,000. "You have done very well", he says. '"In fact, the most profit
you can make is 165,000,000." You are more surprised than you admit and

ask him what decision leads to this result. The answer he gives you is to
manufacture 350,000 cars and 150,000 trucks. When you check the aritimetic
you find that not only will the factories work to capacity, but all of the -

©

woBL . adli. e useds

Before calling your boss and telling him this decision you ask the
mathematician if he is sure that you can't do better. He assures you that “
you can't and explains as follows. You will be manufacturing 500,000 units,
the total allowed and so you cannot make any more units. Therefore if you
make one more car you must make one less truck., If you do, you will lose

100 profit and have 1 % tons of steel left over, On the other hand, to
make one more truck would require steel you don?t have,

This satisfies you for the momm=nt but you want to know how he was able to
decide so guickly on the best production schedule., His answer contains é lot
of mathematics you never knew before, We will cover this in the rest'bf'the
chapter. But perhaps you would first like to knhow some of the other things

he ktad to say about your decision making problem.

First of all the mathema%ician explained that this kind of decision
problem comes up in many différent situations so often that people have given

this kind of problém a special name. It is called a linear programming problem.

vIn this one you had two quantities to determine, the number of cars and the '
number of truckse. In Cther situations there may be thousands of quantities

to determine and a computer would be necessary to solve the problem.

While 350,000‘ cars and 150,000 +trucks furnished the best answer to
“the problem, the mathematician cautioned that the information being used might
still not be complete enough. For example, if "General Engines" would be

willing to build a new feactory for your division so as to increase the number
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of units that can be produced it might be possible to increase profits still

further. Remember that 650,000 cars would use no more steel than avallable

"and would increase the profits to 195,000,000, Of course the cost of the

new factory and additional salaries would have to be taken into account and
this would reduce the profit on the additional cars bullt so that it might not
be profitable. Also you have not takern into account that materials other than
steei might be limited in supply, which could affect your production plans.
Many other complications could be taken into account in trying to arrive at a

decision. Some might be important, others have only a minor effect.

SUGGESTTION: HAVE THE CLASS MAKE A IIST OF OTHER FACTS THAT MIGHT BE TAKEN INTO

ACCOUNT IN DECIDING HOW MANY TRUCKS AND CARS TO BUILD. INDICATE
BY THE NUMBERS 100 , 10 , 1 HOW IMPORTANT EACH FACT IS THCUGHT
70 BE. (100 -- VERY IMPORTANT; 10 -- SOMEWHAT IMPORTANT;

1 -- NOT TMPORTANT)

Notes on Section 2

This 1s the second section of a chapter on linear equations ahd inequalitiese.
Here a pathematical model invoiving equations, inequalities ard géometry is
provided for the production problem previously presented in verbal and simple
arithme&ic forme The production problem is rediced to maximizing a linear
function subjeet to linear inequality constréints_and the solution is found
through examination of the geometric model. The result is that in one specific
situation, the student encounters and deals with a variety of mathematical '
problems related to linear systems. The stage is then set for a feturn to
these problems on their own ground divorced of a specific contéxt‘to state

the problems in more general terms and gain technique in their solutione

The treatment in this section is especially sketchy toward the end. It
needs more thought, writing and time. '

2 The Mathematical Model.

We are now going to translate our production problem_into a mathematical
one. First, we must replace the words we have used to describe the situation

in ordinsiy 1anguage by mathematical symbols ¢ id relations. This will provide

-
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a wmathematical model. It is oaly & model of the real gituation becsauce

(1) we can never list and include all the facts, only those facts that ve
think are most important, and (2) we cannot know the exact relationships in
the real situstion, so our mathematical relations will only be approximatlons

+to the real 1ife situation.-

A great advantage of a mathematical wodel 1s that you can do "experimwents”
with it Jjust with pencil and paper or computer. You can say, "What would

happen if such and such were done%"

Then, you can carry out the mathematics
and find out what the model predicts. You don®t have to build something in

a laboratory and test it, or wait until it happens in the real world., Often a
mathematical model 1s the only way to get such informat nn when no laboratory
experiment is possible. TFor instance, when you want to determine the route

to be travelled to the moon by the Tirst manned spaceships.

If our model is complete enough it will provide a good enough approxima-
tion to the real life situation so that we can rely on the answers it gives us.
Of course the best test we have is tc compare the predictions made by the model
with the real situation and see how well they agree. BEventually this must alwawvr
be done. If the agreement is poor we may have to add more features to the model .
You can see that many different models can be made for the same real life situs-

tion just as an artist can depict a scene in many different ways.

We first introduce symbols for the quantities we need to find in the
production problem. To begin with, let € = number of cars to be produced
and T = number of trucks to be produced. The first fact we can express is
that the profit made by producing C cars is 300 C dollars. The profith
made by selling T +trucks is 400 T dollars. The total profit then if we
produce C cars and T <%rucks is 300 C + Loo T » Let us use the symbol

P to stand for the total profit in dollars. Then

300 C + 400 T =P . (1)

This we will call the profit equation. It is a part of our mathematical model.

Tt is often useful and particularly in decision problems to think of ouw

model geometrically. If we interpret C and T as rectangulér coordinates

"in a graph and take for P a particular value, say P = 150,000,000 , then

equation (1) represents a straight line.
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QUESTION: WHAT IS THE SLOPE OF THIS LINE?

The model of the profit relation then becomes the straight line segment
8 a! in Figure 1. The segment is all of the line (1) we are interested in
since both C and T cannot be negative; that is, in our real situation we
can have the number of cars and trucks positive or zero but not negative.

This means that our whole geometrical model must lie in the first guadrant.

Locking at the points on the profit line a a' we see that the point
¢ = 500,000 , T =0 1lies on it. This corresponds to the fact thai these
values lead to a profit of 150,000,000, As we have previously seen, this
is a possible production choice. Our nodel tells us something new, however:

every point (C,T) on & a' satisfies the equation
300 C + 40O T = 150,000,000

and so gives a profit of 150,000,000 . For example the point (300,000 ,
150,000) shown in Figure 1.

QUESTION: Is C = 3CJ,000 , T = 150,000 =& possible production plan?

Fach time we find or choose a value for the total profit P we will
get a new position of the profit iire. For example if P = 130,000,000 ,
we get the segment b b?! in Figure 2, corresponding to points on the
line

300 C + 400 T = 130,000,000 .

Compare b b?! and & a! as shown in Figure 2. The geometrical model suggests
that they are parallel. This implies that changing the total profit P moves
the profit line parallel to itself, If P decreases, the line moves in toward
the origin O . If P increases, the line moves out away fron. the origin O .
That the lines obtained by warying P are all parallel is confirmed from the
mathematical model expressed by equation (i) . The slope of this line ( - 4/3
is fixed by the coefficients 300 and 4CO and is not affected by the value
of P.

We notice that the point b in Figure 2 corresponds to the production
" plan where we manufscture dnly trucks, for C = 0 and T = 325,000 at that
point. The interesiing fact we iearn from our wmodel is that all the other
points on b b?! also yield the same profit of 130,000,000 . For example
C = 300,000 ; T = 100,000 .




500,000 -

250,000-L

250,000 500,000 C

Figure 1. 300C + LOOT = 150,000,000
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0 e - [ 'a"
: b

250,000 500,000 ol

Figure 2. Profit Lines Tor P = 130,009,000
and 150,000,000




QUESTION: Is C = 300,000 , T = 100,000 & possible production plan?

QUESTION: Are there any points on b b? which do not correspond to possible

production plans?

Our geometrical model has suggested an important way of looking at the
production decision problem. Each production pian gives a number pair
(c R T) . Each such pair corresponds to a point in the first guadrant.

Therefore each production plan corresponds to a point (C , T) in the first

guadrant. But we know from other conditions in the real problem and

production plans such as C = 500,000 , T;= O _that not every point in the

first quadrant is an allowable production plan. That means our model 1s

incomplete., We must try to put the missing conditions into our model.

et us see what can be domne to incorporate the fact that the amount of
steel used cannot exceed 975,000 tons. Since each car requires 1 % tons
of steel, ir we produce C cars, the amount of steel used is 1.5C 1in tons.
Tach truck requires 3 +tons of steel and if T +trucks are produced, the
amount of steel used is 3T +tons. The total amount of steel used is Just
1.5C + 3T in tons. This amount must be 1esé than or at most eqgual to

975,000. In symbols we have the relation

1.5C + 3T < 975,000 & (2)
This relation we . steel restriction; it is an inequality. It
states a restric.. .le number pair (c 3 T . v golution set or solu-

tions of (2) gives us the set of all pairs (C , T) which do not use up
more than the allotted amount of steel.

QUESTION: Which of the fc™ 'owing pairs are solutions of (2) 2
" (500,000 , 0) ; (0, 500,000) , (400,000 , 100,000) ,
(350,000 , 150,000) .

_ What is the geometrical meaning of (2) 2 Or, in other words, what is
the graphical model of (2) ? Craphing an inequality is not wuch different
_ from graphing an equation. For example, C = O in Figure 1 is the line
- - representing the T-axis. The solutions of C > O are all points (C , T)
in the plane with C > O . These are the points lying to the right of the
T-axis. The solutions of C > O are the points lying to the right of or
on the T-axis. Similarly, the solutions of C < O are the points lying to

the left of the T-axis.
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500,000 L

1.5C + 3T = 975,000

Figure 3.

250,000

Figure L.

Solutions of 1.5C + 3T < 975,000

500,000 st

Sciutions of 1.5C + 3T < 975,00
which also satisfy C > 0 and

T > 0 (Production restriction
due to limit on steel)



To teke a few more simple examples, the solutions . C <2 are gll
points (C , T) 1lying %o the left of and on the line C =2 . The solutions
" of T <2 are the points {(C , T) lying below and on the line T =2 .

If the lines asre not parallel to the C~ or T~axls the situation is
the same. The ineqguality leads us to the set of points lying on one side of
the line. We shali sﬁﬁdy this carefully later in this chapter. For now,
however, let us Jjust accept this as being reasonable, In.Figure 3 we have

drawn the line given by the eguation

1.5C + 3T = 975,000 . (3)

The points (C , ') which are solutions of the inequality (2) all lie

on the same side of this line. Which side? We already know some polnts that
are solutions of the inequality, such as (500,000 , 0) , (k00,000 ;, 100,000) .
These lie "below' the line. In Figure 3 we show the graph of the solutions

of (2) ; these are the points in the shaded region (which is infinite).

Sinre we are only interested in positive values of C and T , we
have the restrictions C >0 and T > 0 to include in 6ur model. The
solutions of C > O &are the points to the right of and on the T-aXis._ The
solutions of T > O are the points above and on the C-axis. The\points
commonAto these two sets (their intersection) are the points of the first
quadrant. Combining this restriction with the restriction imposed by the
inequality (2) we must drop all shaded points in Figure 3 exXcept those in
the first quadrant. This gives us the set of points contained in the triangle
0SSt in Figure 4 including its boundary. o

To summarize what we have Jjust found: +the set of v , &) satis-

fying the inegualities

1.5C + 3 T < 975,000
c>o0
T>0

consists of the triangle 0SS! and its boundary (shaded in Figure 4), This is

a mathematical model of the following statement:

The amount of steel used in the production of C  cars and

T trucks ca aot exceed 975,000 tons.

However, Querodel is not yet complete, We have not taken into account
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C +T = 500,000

c
S sure 5.
g tutions of 2 + T < 507,000
T
:E'.
500,000
250, 000+
i .
o L R jﬁF -
250,000 500,000
Tigure 6.
- Production Restriction Due to Factory Limitation.
(¢ + T < 500,000, C >0, T>O0)
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the restriction on plant capacity. Tor example there are points in 0SS!
for which the total number of vehicles would exceed 500,000 , the capacity

of the factories.

QUESTION: Which of the following points in 08S8? correspond to production

plans which would exceed plant capacity?

(250,000 , 150,000) , (500,000 , 0) , (525,000 , 10,000)

The restriction on plant capacity states that the total number of cars
and btrucks cannot exceed 500,000 . The mathematical model of this statement

cast as an inequality is given by

C + T < 500,000 . . (%)
To find the geometrical model we first graph the linc

C + T = 500,000 .
(see Figure 5)

The inequality (4) admits as solutions ail points to one side of this line.

These are the points shown shaded in Figure 5.

ASSTGIMENT. Tocate the points (250,000 , 200,000) , (100,000 , 500,000) ,
(400,000 , 100,000) , (600,000 , 300,000) , (200,000 , 300,000) ,
(400,000 , 50,000) . Which of these points are solutions of
(4) ?

If to (L4) we add the restrictions C > O and T > 0, the solution set
is reduced to the shaded triangle OFF! in Figure 6. o

We can now interpret the totality of possible production plans in terms
of our model. The allowsble plans for the production of cars and trucks are
given by the number pairs (c R T) satisfying the following restrictions:

c>0,T2>0
1.5C + 3T < 975,000
¢ + T < 500,000 .

Geometrically this solution set is the intersection of the solution sets

shown shaded in Figures 4 and 6; that is, the set of points satisfying C >0,

T>0 which satisfy both of the other inequalities. The intersection of these

sets is shown cross-hatched in Figure 7. It consists. of the points: contained
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500,000 Ll;

w0

250,000 -

3T = 975,000

o

250,000 500,000

FT S?

Figure 7.
Intersection of Solution Sets of 1.5C + 3T < 975,000, C >0, T >0
And C + T < 500,000, C > 0, T > 0 Representing all Permissible Production Plans

T
500,000 +
s 1
250,000 -
ok
0 L | —y . . e
+ +— + z
250,000 500,000

Figure 8.
The Set of all Permissible Production Plans (C, T)
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in the four sided figure (quadrilateral) OSQF?! and its boundary.

The point @ which locates the intersection of the line segments FF?
(the factory restriction boundary) and SS? (the steel restriction boundary)
is of particular importance as we shall see. What are the coordinates of this
point? The number pair (C s T) at Q can be found from the equations of

the lines,

it

1.5C + 3T
C+ T

975,000
500, 000

1

on which @ 1lies by simple algebra. We shall explain these useful techniques
later in this chapter. TFor now, however, we observe from Figure 7 that the
intersection appears to be at. the point (350,000 R 150,000) « We can check
that this is correct by replacing C = 350,000 , T = 150,000 In the above

equations and seeing that the statements are true.

Qur mathematical model has led us tou the region O0SQF! in Figure 8,
This set of points corresponds to all production plans wnich satisfy the
restriction on plant capacity and the restriction on steel. But which pro-
duction plan is best? Which plan gives the most profit? Can we ask this

question in mathematical terms? What is the mathematics problem which ex-

presses the production problem and whose solution is the solution of the

production problem?

To state the problem, we return to equation {1), whi~" tells us what the
profit P is for any chnire ~f C ar . o N3 -..alces ¢ Droduction
plans are re:resenced by uue number pairs or points (C , T) in the set shown
in Figure 8. Whichk of these points gives the largest value t: -he profit P ?
That is, what number pair (C , T) in or on the guadrilatera. OSQF' mekes P

& daxiTum (as large as possible)?

This is very nearly the‘precise mathematical statement of the problem.
n wholly mathematical language, we want the number pair (c, T, satisfying

v a1e conditions
cC>0,T>0

1.5C + 3T < 975,000
C + T < 500,000

fo. whi.a the caant . ty
300C + LOOT (1)

Hd
i

is > maximum,
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P = 120M ' P=180M C

]
P = 60M

Figure 9.
Profit Lines Intersecting Solution Set for Three P Values

T

500,000 -

s L
250,000 -
0 ! ——ep st} } 5
250,000 500,000
Fﬂ
Figure 10.

Intersection of Maximum Profit Line with Solution Set
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What 1s the solution to this new mathematical problem? You will recall

that the mathematician in the previous section chote the point @ with

 coordinates (350,000 , 150,000) as the point for which P is & maximum.

How does our mathematiczal model lead to this solution?

To answer this let us study Figure 9. Here we have shown the solution
set and also by dashed lines the lines given by (1) corresponding to three
different profits: 60,000,000 , 120,000,000 , and 180,000,000 ("million" is
abbreviated by the letter M 1in the figure). As we saw at the beginning of
this section the lines given by (1) with different values of P are all

parallel to each other.

The line for P = 60M intersects the solution set in the line segment

shown closest to the origin in Figure 9. All points along that segment 1ie.

in the quadrilateral OSQR' and so represent possible production plans which

iead to the profit of $6O,OOO,OOO . If we ask for a larger profit, say
Wl2O,OOO,OOO , we plot the line given by the equation

300C + 400T = 120,000,000 .

This gives the dashed line ségment midway between the others. ' All points
along this segment also lie in the solution set of permissible production
plans. Tnerefore, all the points on this segment are permissible production

plans yielding a total profit of $12O,OOO,OOO .

However, if we ask for a total profit of $180,OOO,OOO our model tells

us this is not possible. Plotting the line
300C + 400T = 180,000,000

we get the top dashed line in Figure 9. This does not intersect the
quadrilateral OSQF' anywvwhere. Therefore, there is no production -plan which
will give this large a profit. '

The model suggests the following. The profit line should be moved "as
far out as possible', since moving it out corresponds to increasing profit.
Tt can be moved no further when it will Just be tangent to the solution set.

This situation is shown in Figure 10. Here the profit 1line just touches the

“'solution set at Q . Sinceat 9 , C - 350,000 and T =.150,000 , the value
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of P from (1) is $165,000,000 . Any further increase in P means that
the line (1) moves further out from the origin (remaining parallel tc the

line showr.) and so cannot intersect the solution set.

The method of solution corresponds to moving the profit line as far
as possible until it is just tangent to the solution set corresponding to the
conditions of the problem. The point of tangency gives the solution -- that
is, the values of C and T . Tt can happen in problems of this kind that
instead of a single point of tangency, the line will coincide with a segment
of the boundary of the solution set. In this case more than one possible

s~lution to the problem exists. However, if the solution set is a (convex)

282

<7



(a). (b)

(e) | ' : | | (£)

Figure 11. :
Some Sample Situations. At What Point Does the Solution Ocecur?
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plane figure bounded by stiraight edges, the maximum can always be found atb
one of the vertice:.

Thig means that in seeking a productlon plan we need only chzck thao proiin
at eacn verbex of the gravh of the sclution set. Since there are only a Tinite
{and in our case smsll) number of vertices this is a rapid method of findiiyg
the best plan, 1In the study.of these probhlemns {(linesr programming problews
is the name given by mzthematicians) there iz a method of solution called

the "simplex method" ir which the vertices only are used.

1n Pigure 11 are shown some examples illustrating the wathematical model
in geometrical terms corresponding to several decision problems, The closed
figure represents the set of possible sclutions. The dashed line cerresponds
to one position of the profit line (or whatever quantity it is desired to

maximize).

Tnereasing prefit corresponds to moving the profit line in the direction
shown by the arrow, Tell in sach case what point (or points) of the soiution
set maximize the profit. In cases (e) and (f) there are additional

restrictions which account for the additional sides in the plane figure.

Notes on Section 3

In this section are cited some of the most common situations reducible to
linear programming problems. It is intended to broaden the perspecti#e of
student and teacher with fegard to the applicatility of the mathematics con-
tained in this chapter. Having concentrated on the car-truck manufacturing
problem, it is importent to break the tie, toc emphasize that the power of

mathemstics lies in its gensrality. -

Following this section will come the mathematical treatment of simple
linear systems of equations and inequalities. The end of the chapter can then
draw on some of the situations sketched in the present section for probleuw

material.

3. Related Problems,

In the precediug sections "¢ have spent & good deal of time analyzing one

particular problem: how much to produce of two products with limited resources

284



so a8 to maximize the profit. We have said that this is one kind of linear

- programing problem. Such problems arise in many situatlons which can seeming-

ly be very different. It 1s the great power of mathematics that once these
seemingly different problems have been analyzed by means of a mathematic&lV 
model, they are ull found fto reduce to the same or very similar mathematics
problems. Once we learn how to solve these kinds of méthematics problems
we are eguipped to handle many situations which at first seem completvely
different.

In the following sections of this chapter we will learn how to solve
some of the kinds of mathematics problems which are common.to all the different
situations. Before doing this, however, we will now describe some of the
different situations which lead to linear programming problemr and therefore

to similar mathematical questions.

Qe The Diet Problem.

A diet for losing or controlling weight is 4o be planned using a
number of different foods. EFEach food contains cerfain amounts of different
nutriments (such as proteins, vitamin C, calcium, etc,) per ounce. Fach
food also contains a certain number of calories per ounce. The diet
requires certain minimum amoqpts of wach nutrient per day. The problem
is to find the amount of each: fOOﬁ‘to be included in the diet which will
give at least the minimum amount of nutrition but will make the total

number of calories as-small as possible.

b. Transportation Probiems.

A company mainfains a warehouse in each of a nuﬁber of cities. Each
warehouse holds a certain number of units of a giﬁen commodity (such as
refrigerators)., Orders come in from dealers in surrounding places. We
are given the muber of units required by each dealer, the distances from
the dealers to the warehouses and the cost of shipping from each warehouse
to each dealer. The problem is to decide how to fill the_orders: how many
units to ship to each deaier from each warehoﬁse in order that the cost of

shipping to meet all the orders be a minimum (as smdll as'pdssible).

‘ A variation of this problem (in wording alone) occurs in military
operations planning. A nation maintains a number of naval bases. Fach

base is the home of a certain number of alrcraft carriers, destroyers,
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ete., At a certain time it is necessary to assemble a task force ai <o
of several locations for maneuvers. The number of ships of each typs to
reridezvous at these spots ig assigned. The distance from each base to
each rendezvous location is given. The problem is to decide on the orders
for the ships: which destination for the ships from each hase in order
to have the total travel time for all the ships a minimum. Notice that
in this example and the warehouse problem, minimizing time is the same =5
minimizing distance, Since fuel consumption (for trucks or ships) is
proportional to distance travelled, this is also the same as minimizing

cost.

An interesting variation is the foilowing: if the task forces have
to be assembled as fast as possible (say if there is an international
emergency), then the nroblem is no longer the same, We would not be
interested in adding the travel times of all the ships, but in the longest
time taken by any ship to reach its destination. This leads to a difiexent

type of wathematical probleu.

Ce Blending Problems.

An oil company through its refining of crude oil produces a certain
number of barrels daily of ea:zh of several different chemical components
of the oil. These components can be blendéd to make different marketabi
products such as grades of automotive gasolines and aviation gasolines.
These products sell for different prices. We are given the number of
barrels of each component produced daily, the blending rules and the
sale prices of the final products, The problem is how much of each produch

to produce daily to yield the maximum income.

A veriation of this problem involves mixtures. As an example, SUppos®
that tﬁo mixtﬁres of nuts are to be offered for sale: a reguiar mix and &
party mix. The proportions of the different kinds of nuts used for each
mix are prescribed. Also given are the costs per pound of each kind oi
nut, the total supply of each kind of nut available and the selling price
per pound of the two mixes. The problem is to decide how many pounds of

each mix to produce out of the given supply so as to maximize the protrit.
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de Network Problems.

These are problems involving & network of some kind such as the tele-
phone lines interconnecting cities, roads and highway systems, connections
in an electronic circuit and so forth. As an exaumple suppose that special
communications cables (say f£or TV) have to be laid to joiln a nuumber of
distant cities. It is not necessary to lay a cable directly between
each two cities as long as some route can be found between them. For
example a cable need not join Chicago and Los Angeles directly if there is
one from Chicago to San Francisco and one from San Francisco to Los Angele
since these can be joined at . switching st. tion in S~ T'rancisco. Given
the distances betwe n ea. .. of cities th= probler is to determine
which citi:s to join by ¢ le 1 order that zny city n the network can

comrmicate with any other i~ and so that the total amount of cable to

be _zid is a minimum. Trie :alled the shortest co-necting network
and —he same problem frecuent - arises in the telephcne business, If
n-2

there are n points in the network to be connected there are n
possible networks. This number increases very rapidly as n increases
and it becomes iwpossible simply to measure all possible'networkse As

a linear programming problem the solution is easily found.

In Figure 1 is shown the location of a number of points to be
joined by the shortest connecting network and in Figure 2 is shown the

solution.

A related problem concerns the maximum flow in a network. - Suppose
the various cities in a network are joined by telephone "trunk lines',
and that each trunk line cén handle a certain number of calls. If a
trunk is fully used, alternate routes can be found to placé'a call,
usiﬁgﬁtrupks_to other intermediate cities. Given the locations of all
thehfruﬁké and/fhe'mgximﬁm number of calls each can handle, what‘is the
magimum number of cails which can be made at one time from one city to

another, say from New York to Los Angeles?

e, The Asslignment Problen,

Suppose there are a number of Jjobs to be filled and a certain number
of people available to carry out these assignments. Each person could he

asgsigned to any one of the jobs, but he is better at some Jobs than others.

-
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Figure 1.
15 Points to be Joined by = o swork

Figure 2.
Shortest Connectilons Network
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Suppose we are given a rating for each person for each of the jobs (say
10 if he is very good at it, down to 1 if he is very poor). The
problem is to assign the people to the Jjobs so that the sum of all the

ratings of the people in the jobs they are assigned is a maximum.

f. The Trim Problem.

Paper mills produce paper in large rolls in certair tandard widths
only. Customer orders come in specifying any intermediate¢ widths they
desire and the number of rolls of each. These widths are .btained by
cutting or trimming the rolls. TFigure 3 shows the locaticn of cuts along

a roll which might occur.

A single roll might be cut in many ways to fill different orders.
The problem is, given the widths of the standard rolls and given the
customers? orders, how should the rolls be cut so that the amount of paper

wasted (unused ends of rolls) is a minimum?

C;;Stéd?end

cut - cut



L. Outline for Methematics Sections of Chapter on Systems of Linear

Equations and Inequalities.

The preceding three sections of this Appendix are Sections 1, & and 2
of a chapter on systeas of linear equations and insqualities. The object of the
succeeding sections o. the chapter is to develop the wmathematic il ideas and
skills which underlie the formulation and solution of the parc::ular problem
already considered in detail. ‘No attempt has been made to do tais in detail
since there is no need for a new approach or for much, if any, dovetailing
with the previous material. The presentation cén be quite straightforward.
The motivation and the experience are already present. The need now is first_ 
to cover the mathematics with dispatch and at a level of explanation in keeping
with the students intuition and expérience; second, to provide drill and third,
teo provide good problem material at the end, roughly equivalent in difficulty
to the original problem which began it all (see Section 3 of this Appendix for

source material).

Section L. ‘ Linear Equations.

4-1, Graphing a line.
-- stress solution set description of points (x,y),
-- relate slope to coefficients, perhaps informally.

-- when are two lines parallel?

4-2, Graphing System of Two Equatiohs.
~- solution set possibilities.

-~ approximate solution.

4-3. Algebraic Solution of System of Two Equations.
-- gsubstitution.
-= elimination.

-= flow chait of algorithm.
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Sectio. 3. Linear Inegualities.

5-1, Graphing an Inequality.

-~-x>a,x<8a,xX2>2a,xg8a.
y>b,y<b,y>b,y<b (a,b nur =rs),

-= gtress solution set description.

—~—x+y=1,x+y>1,x+y<1l, etc,

-- linear inequality as half-plane.
5-2. Graphing System of Two or More Inequalities,

-- intersection of half planes x2>8 , y > Db (boundar: 28 - = allel
to axes). '

-- intersection of two half planes of any orientation (emphas _ze
geometry, not algebra). '

-- intersection of three half planes to define triangle (empt .size
geometry, not algebra).

-= distinguish unbounded and bounded situations.

Section 6. Optimization.

6-1., TLinear Functions Defined on Plane Domain,

-- f: (x,y) »ax + by . _

-- intersection of solution set for ax + by = P (é, b, P given
numbers) with solution set cofresponding t> system of inequalities.

-~ effect of varying P on intersection.

-- maximum or minimum of P at extreme points of set (informal).

Exercises: A set of exercises at close of chapter to explore applications
such as considered at the beginning of the chapter. ' Types of
problems are included in Section 3. Consult many existing sources

for actual mmerical problems (The Mathematics Teacher articles;

Kemeny, Snell, Thompson; Richardson; Dorn and Greenbefg; etc. ).
Emphasis on finding solution sets corresponding to various linear
restrictions and combinations of restrictions; secondarily on

optimization (to be returned to in a higher grade).
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%. Suggestions For the Development of the Topic "Systems of Linen. Fy

and Inequalities "in Grades 7, 8, 9 and 10.

The written wmaterial in the first 4 sections of this Appendiz (caw-timuwr
production model through accompanylng mathematics) was intendsd for inclusi.o,
in the 7th grade syllabus. This wss based on the suggested « tline (Summer 19070,
it goes far beyond what was included in the Tth grade waterisl written during
the year., However, new proposals indicaste changes in the Tth grads syiiabus
making it likely that the mzterisl will be more appropriate for the Gih grade.
If this is the case, it is recommended that the material outlined on pp. 316,
317, 318 (July 1966 outline) together with the material in the first 4 sections
of this Appendix be used as a basis for the 8th grade chapter.

This would leave the Tth grade still not settled in this topical ares.
It would seem reasonable to cover single equations and inequalities emph- sizing
solution sets, graphical understanding and problem situations. The 8th grade

material might be anticipated without going into details of technique.

There are several objections to the present Chapter‘7, in Grade 7. First,
the problems are almost classic examples of the kind we want to avoid., They
are unreal and uninteresting., They also come last instead of first. Secondj
the method of solution of eguations based on "boxes® does not seem & good one
to introduce although it is clever, It will not be followed up in later work.
It eats up a lot of space and time. It also is apt to be confused with flow
charting since it involves boxes and arrows. Finally, it does not seem as if
enough ground is covered. One could, for example, consider the maximun and
minimum of a linear function on an interval, that is, f: x 2ax + b | c <xd
to find Max £ and Min £ ., These occur at the ends of the interval (extreac
points) wh;ch{leads well into the optimization problems to be encoﬁntered in

8th and 9th grades. Also some work with systems ought to occur,

Assuming that the 8th grade is based on the kind of mwaterial in this
Appendix and in the outlihe on PpPe 316-318, we can proceed to & 9th grade
syllabus in this topic. It 1is suggested that a natural topic is convexity and
particularly polyhedfal convex sets as defined by the intersections of half-
planes. The problem of maximizing or minimizing linear fﬁnctions defined on
such sets should be the focal point of the treatment and it should be weoun

that these occur at extreme points of the set.
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This topic would be a good bridge to the vectors and linear algebrs of
the 10th grade and is of considerable interest both maethematically and for

‘applicetions,

Linear programming examples-ought to form the bulk of the problem material
involving applications. However, one should not go beyond two variables and so
there is no need to present the simplex method. Howevér, this would be a good
topic for the 10th grade together with more variables and a general algorithm
for solving systems of linear equations (Gaussian elimination), Flow charting
should be used in the 10th grade to specify the algorithms and here is an
excellent point to emphasize numerical analysis and introduce computer pro-

‘ gramming Csée Dorn~Greenbarg, Chapters 1 and 2).

6. Some Thoughts on the "Student's Manual" to Accompany th» Teacher's Text
for Model-Motivated Mathematics (3M).

There seems to be some basis for the claim that students in Grades T7-12
(and beyond) do not read, or read only the minimum required to do their
assignments. It also seems that a 3M presentation is largely in the hands
of the temcher and it is for her or him that the text will be written.
Accordingly, what is it that is to Be produced in print for the stﬁdent?

As a start,'here is a list of some possible purposes of the material
printed for the student, assuming that what goes on in the classroom

thoroughly involves the student as an active participant:

1. 'To consolidate the gains in the classroom and summarize content

for clarification and review,
2, Provide additional practice with more and varied problem material.
3. Provide sPecial,material for more talented students.
One can (probably perilously) jump to the conclusion that no expository

text material of the usual kind is needed, This does not mean that a list of .

problems of the usual kind is what is needed either.

An acceptable and perhaps even ideal solution for our purposes is suggested

by the Learning Mathematics books. (Shropshire Mathematics Experiment - Penguin

Inoks; see SMSG library);:iHefe'ﬁe apparently find no exposition, only exercises.

L) s
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However, on closer inspection we find that the exercises in each section cull-
tain =11 the instructional material. These are so arranged and graded that
in working through them the effect is cumulative -instruction combined witn
problem solving. Because the exercises constantly involve new ideas arxi
techniques they are challenging and can be expected to devzlop the students

ability to reason mathematically.

One of the iwpressive features of these books is their casual (ocne might
say, cool) and concise way of introducing new material. This is zlmost Torced
by the format. As a result there is genuine and visible progress from sxercise

to exercise, page to page.

Clearly, to devise an exercise book of this kind is a wost difficult thing
to do., The reason is that we usually write a chapter of arﬁéxt first and then
supply the exercises. At this point and only at this point, however, do we
know what the chapter contains. If we want to produce student wmaterial for a
3M type of course perhaps we ought then to throw away the text {or maybe give
it to the teachers) and redo the exercises to incorporate what is essential in
the text. This would be doing for the student in a conscious way what he

instinctively ®tries to do for himself,

It might be worthwhile to produce a'sample of this kind of student waterial,
perhaps to accompany the 3M kind of text waterial (mainly for teachers) that
is in this Appendix on linear systems. This kind of material in the studentc®
hands for homework would seem to be an ideal complement to the classroom situa-
tion in a 3M style course, A test of student use, acceptance, and learuing

from such material would be interesting.

7. Two Pairs of Physically Stated Dual Linear Programming Problems.

Two items worth doing or considering, among the others suggested in
Grade 9, Chapter 3, Systems of Sentences and Optimization, is {1) to pick some
problems which are really isumorphisms of each other, e.g., the single commodity

transportation problem (steel), the naval task force problem (Section 3 of this

Appendix), and the personnel sssignment problem and (2) to pick some problem

pairs which are dual problems. While it is not recommended that algebra of
duality be gone intc, a remark about dvality being a nctien appearing frequently

jn various places in more advanced mathematics is probably i srder.  The fact
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In a well planned overall operation the inequalities are actually equalities.
" The total production of the furnaces is also the total of input capacities of

" the foundries. We will assume these conditions. Thus

(6) Exgg=ey
J
. ' A =b
and ‘
Za, =2 b, .
i 1 i J

Dual.

Entrepreneur enters the scene again. Because of a certain tightness in
the market a grey market in steel has arisen, The entrepreneur, however, knows
of cert in alternative sources of supply at the foundry sites and of certaln
customers demanding .ateel at the cities where the furnaces are located. Thus
he offers to take the steel off General Steel's hands at the furnace sites at
a pri-e of D, Dper ton and supply "grey market" steel at the‘founer sites j

at a price of qj per ton. Clearly no deal results unless
(8) . TPy v Ay S €445

where pi and as ‘are non-negative, obviously. ‘The entrepreneur must supply
bj tons at foundry J and buy ay tons at furnace site 1 . Thus his
enterprising venture with General Steel brings him a sales return of

(9) |  (-e,)py + 2 by

which he wishes to maximlze.

We note once again that the coefficients in (5) become the right hand sides
of the 1nequalities (8) and, writing (6) as

(6') ." v : -2 X,, = -a,

“we see that the right hand sides of (6') and (7) become~the'ceefficients
of the objective function (9) . Also the matrix associated with the system -
(61) - (7) has as its transpose the matrix associeted with (8) . Thus again
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we get a physically stated dual problem.

The model making aspects of these problems should be made explicit. 'he
.assumption of negligence of certain characteristics to meke the mathematical
solutions feasible should not escape mention. For example in both pairs of

problews the commonly occurring situation of lower unit prices for large
guantities (either bought or shipped) is assumed not to happen. (Actually
with more sophistication this can be dealt with also,) Another assuption
in the steel shipmenﬁ problem was that only one grade of steel was shipped.
Usually there are different kinds, making & multi-commodity problem or,

instesad, possibly several separate probleus,
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