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A SYMBOLIC LOGIC FOR REPRESENTING LINEAR MODELS

Charles E. Hall

Abstract

A set of symbols is presented along with logical operators which

represent the possible manipulations of the linear model. The use of these

symbols and operators is to simplify the representation of analysis of vari-

ance models, correlation models and factor analysis models.



A SYMBOLIC LOGIC FOR REPRESENTING LINEAR MODELS

Charles E. Hall

The development of statistical inference from correlation theory to

multivariate analysis of variance should be familiar to most readers, even

though it may be beyond the interests of many. Most of this development has

been concerned with the linear relationships among variables. Techniques of

solving linear models of the relationships among variables for statistically

relevant figures are not familiar to many because the general solutions for

these models involve the techniques of matrix calculus. These techniques

have become a little better known during recent years due to the increasing

popularity of multivariate analysis and to the use of computers to generate

solutions to large classes of statistical procedures.

The notational system presented here attempts to solve tl-ree problems:

(1) a simplified representation of various linear model procedures, (2) an

improved description of the matrix calculus procedures used to solve linear

models, and (3) a simplified interface between the statistician and the

computer program which does the calculations.

Following the presentation of the symbolism, there is a section showing

how the sydbolism can be used to expose the identity or similarity of various

linear models.

A Short History

Without belaboring the history of calculation procedures) it may be noted

that the general solution for linear procedures seems to have been devised by

R. A. Fisher, about 1930 or so, out of Gauss' method of reducing a general

square matrix to a diagonal matrix. The first reasonable discussion of the
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calculation technique, called the "method of fitting constants," seems to have

been undertaken by Wilks (1938) in a paper discussing the solution of non-

orthogonal analysis of variance. An earlier paper by Wilks (1932) on the

lambda criterion for multivariate distributions provides cues as to how this

method can be applied to various kinds of problems in correlations and analysis

of variance. A paper by Vartak (1955) showed how pseudovariables for factorial

analysis of variance interactions could be generated from Kronecker products of

main effect pseudovariables, thus simplifying the "method of fitting constants"

as a calculation technique.

However, the history of calculation technique has ignored the "mefhod of

fitting constants" in the main. Instead, special calculation formulae were

developed suitable to each of several analysis of variance designs. The bulk

of practicing statisticians were unable to solve linear models unless their

design conformed to those models for which special calculation formulae had

been worked out.

With the advent of computers, special calculating formulae had to be

abandoned and calculating technique reverted back to the "method of fitting

constants" with some improvements. What had been too laborious a technique

to do by hand became the most efficient method to program for a computer (see

Bock, 1963). Currently, the major computer programs for computing analysis

of variance and correlation analysis [for example, Cramer's MANOVA (Clyde,

Cramer, & Sherin, 1966), Finn's Multivariance (1967) and Beatm's F4STAT (1971)]

all use this form of calculation.

With the growth of generalized computer programs and the increasing scope

of the problems they solve, it is becoming more and more obvicu2 to all stat-

isticians that all linear models are but variations on a central theme. There
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is no need for special calculation formulae for apparently diverse designs.

With the unification of calculation technique and the attendant recognition

of the unity of design types, there has also become a need for a notation

system which will serve for all linear models.

To this point the following rules are proposed.

General Notation and Rules

It is general practice in texts on analysis of variance to refer to row

and column effects of a factorial design as A or B and in'6eraction effects as

AxB. In the arithmetic of solving linear models, any effect, say A, has as

many design parameters (pseudovariables, dummy parameters) as it has degrees

of freedom. For convenience we will call these the A variables; likewise the

design paraneters for the B effect will be called the B variables. The inter-

action effect AxB is calculated using the Kronecker product of the A varjables

and the B variables; these product variables will be designa.,,ed AB with no

intervening symbol to designate interaction terms and Kronecker product of

main effect design parameters.

Rule 1. Sinae upper-case Roman lettors will designate main effect parameters

of analysis of variance designs and solutions (excepting V and W).

Rule 2. Two or more upper-case Roman letters juxtaposed without intervening

symbols will indicate the Kronecker product of main effect parameters and

designate the interactions effect parameters in analysis of variance designs

and solutions (excepting V and W).

In texts on correlation analysis, the measurements of variables are often

designated x, y and z. It is also customary in analysis of variance to desig-

nate the variable which an experiment manipulates as x. In this system V will

denote continuous variables.



Rule 5. All the continuous variables will be designated by the symbol V.

On occasion it is necessary to subdivide the design parameters for a

main effect into subsets. Such occasions arise when the experimental treat-

ments of an analysis of ariance involve a control groun and several treat-

ments and one wishes to test control against the average o" treatments and

treatments among themselves. The subdivisions, partitions, c: file main effect

A will be labeled Al, A2, etc. The same holds true for subsets of the continu-

oas variables.

Rule 4. Diviaion of sets of parameters into subsets will be designated by an

upper case Roman letter (not W) followed by a numeral 1, 2, 3, etc.

It is assumed that subsets will be enumerated ordinally from 1 to N and

that the N subdivisions exhaust the parameters designated by the Roman letter.

Examples: (A1lA2) = A, (V1,V2,V3) = V.

There are three basic types al' linear model problems: correlation, analy-

sis of variance and factor analysis. These three types of models can all be

written as solutions to determinantal equations, regardless of the number of

design parameters or continuous variables involved. For correlations we can

have an equatiun of the type

I SSH SST 1 = 0 (1)

where SS
H
denotes sum of squares for hypothesis and SS

T
denotes sum of squares

for total. For analysis of variance we can have an equation of the type

I SS
H

- 'N SSE I = 0 (2)

where SS
E

= SS
T

- SS
H

designates the sum of squares for error. For principal

components analysis we have the equation



1 SS -VII= 0

where SS
T

is sometimes reduced to correlations.

Factor analysis may be distinguished from components analysis by altering

(3a) to

1 SS
T

- v U2 I = 0

where U
2
denotes uniqueness variance. In this case it is customary to reduce

SR
-T

to correlations and U
2

correspondingly. The various forms of factor and

components analysis are usually capable of representa'cion as eigenvalue problems

and therefore have determinantal equations similar to (3a) or (3h) with only

minor alterations.
1

Rule 5. Every statement will begin with one of the acronyms ANOVA, CORREL

FACTOR to denote which linear model solution is required. A colon will follow

the acronym.

The following simple rules are usefult

Rule 6. An equal sign will be used to separate hypothesis parameters from

error parameters of an analysis. Hypothesis terms will be to the left, error

timis to the right of the equal signs.

Rule 7. Commas will separate different tests in a model statement and a period

will end the stacement.

Rule '3. The letter W will designate the constant term of the model or grand

mean of the data when used singly as a hypothesis term.

1Since Lae eigenvector's other basis of (3a) and (3b) form a basis for the

vector spaces involved, any of the space must be a linear combination of the

eigenvectors. Thus, any factor analytic solution must be expressible in terms

of rotated eigenvectors of either (3a) or (3b).
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Rule 9. The number 0 when used in conjunction with either a hypothesis term

or an error term will designate a set of parameters included in a model but

not tested.

Rule 10. The statistical estimate of errors is assumed to be the residual

variance of the error variables after all hypothesis effects have been removed,

unless otherwise indicated.

With these 10 rules it is possible to describe symbolically many of the

common orthogonal designs.

Example (1) Factorial analysis of variance, multivariate or univariate, two

factors.

ANOVA:W=0,A=V,B=V,AB=V.

W=0 indicates that the effect of the grand mean of the data is to be

extract-d but not tested. A=V indicates a test of the variables V aver the

main effect A. B=V indicates a test for the main effect B. AB=V indicates

a test of the interaction effect.

Example (2) Canonical, multiple or prodact-moment correlation within a single

sample.

CORREL:W=0,V1=V2.

The effect of the variable means is extracted but not tested. The vari-

ables in V1 are to be correlated with those in V2 and the correlation tested

using V2 for errors.

Example (3) Factorial analysis of variance with partitioning in the A factor

which is carried into the interaction.

ANOVA :W=0 ,A1=V; A2=V;B=V)A1B=V;A2B=V.



Example (1+) Randomized Blocks (Snedecor) 1956, p. 300 et seq.).

ANOVA:W=0)B=0)T=V.

The effect B.0 is the effect of blocks (normally not tested) and T=V is

the effect of treatments within blocks) pooled across blocks. Alternative

representations of this design are available.

Example (5) Subjects by Treatments designs.

ANOVA:W=0)S=0)T=V.

S denotes the Subject effect) T the Treatment effect which is tested.

Alternative representations of this design are available.

Example (6) Correlation from multiple samples.

CORREL:W=OIS=0)Vl=V2.

The effect parameters S are included to eliminate the differences among

sample means which would otherwise confound the test of the correlation between

V1 and V2 (unfortunately this is not common practice).

Example (7) Factor analysis from a single sample.

FACTOR:W=0)0=V.

The variables V are the ones to be analyzed. Specification of type of

factor analysis will not be discussed here.

Example (8) Factor analysis from multiple samples.

FACTOR:W=0)A=.0)0=V.

The effect A is included to eliminate the differences among sample means

which might otherwise give rise to spurious and unidentifiable factors (unfor-

tunately this is not common practice).

Rule 11. Analysis of covariance is denoted in the error term by a slash) / )

follawed by an upper case Roman letter to denote which parameters are to be

used as covariates. When the covariates are the same for all tests in the

model the designation may follow the acronym and precede the colon.



Example (9) Analysis of covariance in a factorial design.

ANOVA:W=0,A=V1/1/2, B=1/31V2, AB =V1/1/2) or

ANOVA/V2 W =0 IA=V11 B =V11AB=V1.

The parameters V2 are the covariates. The attendant regression analysis

may be described'as a correlation model.

CORBEL :W=0, A=0, B=0, AB=0, V2=Vl.

Example (10) Partial correlation (product =lent, multiple or canonical

correlation).

CORREL:W=0V3=V1/V2.

V2 are the covariates for the test of the correlation between V1 and V.

Example (11) Partial correlation from multiple samples.

CORREL :W=0 A=0 V3=VVV2

Removal of the sample means from criteria (hypothesis variates), predictors

(error variates) and covariates is accomplished by including dummy parameters

A for the sample means as in examples 6 and 8 above.

Example (12) Homogeneity of regression in a factorial design ignoring other

tests.

ANOVA :W=0 A=0 B=0 AB=0) V2=0, AV2=Vly BV2=VlIABV2=V.1.

The parameters AV2 are a Kronecker product of V2 and the parameters of A

and test the homogeneity of regression aver the A effect, say rows, of the

design; BV2 tests homogeneity over the B effect, say columns; and ABV2 tests

homogeneity in the AB interaction. Example 13 is more detailed.

Example (13) A complete study of analysis of covariance (Snedecor, 1956,

p. 394 et seq.).

Let A be the main effect (states), V1 the variate and V2 the covariate.

10



Arm :W=0,A=0,V2=0,AV2.,V1.

The error term for this homogeneity of regression problem is the residual

after fitting individual regressions for each sample of A. W=0 and A=0 indicate

parameters of an analysis of variance which are to be extracted independently of

tests of the covariate regressions. V2=0 indicates that the "common" (custom-

arily the "error") regression effect is to be eliminated before testing for

homogeneity of regression. AV2=V1 test the homogeneity of regression effects

over the factor A by obtaining the differences between regressions for each

sample after the common regression has been removed.

This example shows the similarity of covariance analysis to analysis of

variance by way of treating V2 as a factor of the design and AV2 as an interac-

tion effect.

ANOVA:W=0,A=V1/V2,A=V2.

Tte test A=VVV2 is the standard analysis of covariance. This model

includes A=V2 as a check of the homogeneity of covariate means over the effect

A. (Snedecor does not include this but it is suggested by many authors.) The

test A=VVV2 is the standard analysis of covariance. The error term here is

VI residual to A and the common regression of V2 on V1 assuming the test AV2=

V1 to be null.

The "common" regression analysis, assuming homogeneity of regression, is

formed as in example 10 and pools the individual regression coefficients of the

samples.

Method of Solution and Nonorthogonal Data

Two types of solutions exist for linear models. These might be termed

the part solution and the partial solution as in correlation theory. The dis-

tinction between the two models arises when there are two sets of hypothesis

1 1
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parameters in a nonorthogonal anal3rsis of variance to be tested separately

against the same set of error parameters.

To distinguish between the two solutions let us consider the model:

A=V1 B=V. The partial solution tests B against V with the effects of A removed

from both B and 111 then tests A against V with the effects of B removed from

both A and V. The part solution considers the order of the hypotheses and

first tests B against V with the effects of A removed from both B and VI then

tests A against V with B removed from V only. If A and B are uncorrelated, as

the effect parameters of analysis of variance are with orthogonal data, the two

models are identical because A and B are uncorrelated. When A and B are cor-

related, as in correlation or nonorthogonal analysis of variance, the test of

B is the same for both solutions but the test of A is confounded with the test

of B in the part solution since the variance of B which is correlated with the

variance of A is pooled with the variance of A. Without describing the pros

and cons of the twl) solutions it must be noted that if the test of B is sig-

nificant in the rext solution, no "exact" test of A can be made since A is

confounded with B.

In computer programs it is desirable to use the part solution rather than

the partial solution because the partial solution can be obtained from the part

solution by simply reordering the variables as follows. Suppose we are forced

to use the part solution for example 1.

ANOVA:W=0,A=V,B=VIAB=V.

The only test which has the desired partial is AB:=V. To obtain all the

tests as partials we should use all the models

ANOVA:W=0,A=0,B=0,AB=V,

ANOVA:W=0, A=0 AB=0 B=V,

and ANOVA:W=0,B=0,AB=0,A=V.

12



For a more formal discussion of the part method see Bock (1963). The

partial method is discussed by Yates (1933).

When computer programs use the partial solution, it is impossible to

obtain a part solution. Therefore, in this logic the part solution will be

the rule.

Rule 12. The solution of the model is by the part method. The hypothesis

of any test will be taken residual to all hypotheses to the left of it and will

possibly be confounded with all hypotheses to the right of it. All errors are

residual to all hypotheses and confounded with each other. The order of test-

ing proceeds from left to right.

This rule allows some alternative statements for various models. For

instance, a one-way analysis of covariance can be stated in various ways.

Proof of the identity is presented in a later section.

ANOVA/V2:W=0,44:011.

ANOVA:W=0,A=V1/1/2.

ANOVA:W=0,V2=0,A=71.

ANOVA:V2=0,W=0,A=V1.

With this rule, the usual orthogonality restrictions on examples 1 to 13

can be lifted without loss of meaning.

Nested Designs

A nested design can also be viewed as a special kind of factorial. Scheffe

(1959, p. 179) does this with some ease. If one views the primary sampling as

th.
the rows of a factorial design, then subsampling of the i primary sample j

times produces j subsamples as the column entries of the i
th

raw. For the

simple case of three primary samples with two subsamples eachlthe following

12
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two diagrams may be drawn to illustrate nesting. The first is a common method

of diagramming nested designs, the second a variation which shows the similar-

ity to factorials more clearly.

Al

B1 B2

A2

B3

A
1

A2

I

A3

B1 B3 B5

B
2

B4 B6

A
3

B6

Statistical testing involves testing the differences of means between Bl

and B
2'

the differences in means between B
3
and B4' the differences in means

between B
5

and B6 and the differences among the means for Al,A2, and A
3

primary samples. Using the common notation of W to denote "within" we can

promulgate the following rule.

Rule 13. Nesting of several subsamples, say B, within a larger sample A shall

be denoted with an upper case Roman W as in BWA. When several samples are

involved in A the notation for the B effect within sample A3 will be denoted

BWA3.

Example (14) The nesting design cited above.

ANOVA:W=0,BWA1=V,BWA2=VyBWA3=VIA=V.

Pooling of Parameters

Pooling effects is a convenience to have in some analytic problems.

For instance, in some complex factorial designs, some statisticians pool high

14



order interactions and test them collectively rather than singly. Such pro-

cedures may be allowed for here as follows.

Rule 14. The parameters for two effects may be pooled and tested collectively

by placing a + (plus sign) between them. In a given level of nesting, when

all nested effects are to be pooled before testing, the notation may be

shortened by dropping the integers on the levels of the effect in which the

nesting occurs.

Example (15) A four factor analysis of variance pooling toird and fourth

order interactions.

ANOVA :W=0,A=V B=V C=V,D=VAB=V AC=V,AD=V,BC=V,BD=V, CD=V,

ABC+ABD+ACD+BCD+ABCD=V.

Example (16) A nested design with two primary samples and subsamples nested

in each (Winer, 1962, pp. 184-185) (fixed effects).

ANOVA:W=0,BWA1=V,BWA2=VA=V (B effects not pooled),

or ANOVA:W=0,BWAI+BWA2=7,A=V (B effects pooled),

or ANOVA:W=0,BWA=VIA=V (short version equivalent to B effects pooled).

Example (17) A complicated nesting design, partial1y factorial.

This is the same design as Example 16 with each subsample divided into

two categories, CI which are consistent over samples and subsamples (fixed

effects) (Winer, 1962, p. 186).

.ANOVA:W=0,BWA=V, C =V, A=V, BCWA=V.

Example (18) Pooling of error variables.

ANOVA :W=0 A=V1,B=V14-V2,AB=V1.
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Components of Variance Models

There are two assumptions implicitly in the above rules which restrict

the application of this logic to factorial designs. They are: (a) the error

term for a test is the residual sum of squares remaining after all hypothesis

effects have been removed from the da7,a, and (b) the statement of the hypoth-

esis in say A=V assumes that a hypothesis sum of squares is generated for the

regression of V onto A.

These assumptions make it difficult to express a components of variance

model in the logic. To include components of variance models in the logic

it is necessary to invent a notation for generating a regression sum of

squares as the error term of an analysis of variance.

Rule 15. When an error term is to be obtained as a sum of squares due to

regression, an asterisk, *1 will be used to separate the dummy parameters and

the continuous variables which denote the regression.

Example (19) A subjects by treatments analysis.

ANOVA:W=0,S=0,T=ST*V.

This is an alternative representation of Example 5. In Example 5 the

error term for the treatment effect was obtained as a residual after eliminat-

ing the grand mean; subjects and treatments effect. Here the error term is

generated directly as an interaction sum of squares. This interaction sum of

squares as a hypothesis would have been generated from a statement ST=V.

Example (20) A complete three factor components of variance model (Kempthorne,

1952, p. 110 et seq.). Only the tests of second order interactions are

shown assuming the third order interaction to be the appropriate error

term.

ANOVA:AB=ABC*V,AC=ABC*V,BC=ABC*V.



Note that it is not necessary to eliminate the grand mean or the main

effects from the model since the error term is generated directly and not

obtained as a residual.

Assuming that the second order interactions test null we can use other

choice of error terms for various main effects.

ANOVA : A =AB C+AB*V, B=ABC+AB+BC*V, C=ABC*V.

Whether these choices are rational or not is irrelevant to the notation.

Example (21) A nested design with four levels of nesting and replication

(Kempthorne, 1952, p. 3_07). Equal numbers of subsamples are assumed

within each sample.

ANOVA:W=0,A=BWA*V,B=CWAB*Vy C =DWABC*V,D..--V.

Example (22) A nested design with two levels of nesting and unequal numbers

of subsamples. Let A be two primary samples; Al having two subsamples,

A2 having four subsamples. To do this it will be necessary to treat the

design as a full 2 x 4 factorial with sone missing cells Al B3 and Al B.

The B effect will be partitioned: Bl will have one parameter and B2 will

have two.

ANOVA:W=0,A=BlWAl+B1WASI-B2WA2*V,B1WA1=VyBl+B2WA2=V.

Shortened notation can be

ANGJA:W=0,A=B1WAl+BWA2*V,B1WA1=V,BWA2=V.

Extension

The notion of extension in factor analysis has been generalized to other

forms of the linear model by Hall (1969). Briefly, the technique explores the

relationship of an external variable to the canonical variables of a significance

test.

17



Rule 16. When a significance test is to be extended to variables not

involved in the test, an ampersand, &I will be used to separate the error

variables from the variables of the extension.

Example (23) A multiple group discriminant analysis extended to a set of

variables, V2.

ANOVA:WO,AVl&V2.

Some Miscellaneous Examples

These examples are included for whatever interest the reader may have

in them.

Example (2)-i.) Two factor experiment with repeated measures on one factor

(Winer, 1962, p. 302 et seq.). Two groups of subjects, SI are subjected

to two treatments A1 and A2. Each group is given three successive treat-

ments B1, B2 and B3.

ANOVA :W=0,A=SWA,B=SWAB,AB=SWAB.

Example (25) Three schools are participating in an experiment on teaching

fourth grade arithmetic. Each school has four classes, two teachers in

method 1 and two teachers in method 2. Differences concerned method,

teacher and school. All effects are fixed; all students and teachers

assigned at random within schools. Third grade arithmetic scores are

assigned as covariates.

(a) Check of whether covariate scores (V2) are randomly distributed

among teacher (r), method (A) and school (B).

ANOVA:W=0,S=V2 TWMS=V2,MWS=V2.

The effect S=V2 would likely be significant and will be taken to be so

here.
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(b) Check the homogeneity of regression of third grade scores against

final fourth grade scores wlthin teacher and method for each school.

ANOVA :W=0, S=0 TWNE =0 MATS =0 V2=0, TV2WMS1=V1, TV2WMS 2=V1, TV2WMS3=V1, MV2WS1=V1,

MV2WS2=V1,MV2WS3=V1.

It will be assumed that all these tests will be null.

(c) Check for homogeneity of regression among schools.

ANOVA:W=0,S=0,TWS=0,MWS=OITMWS=0,V2=0,SV2=V1.

If this test is significant, the experiment must go to an analysis of gains

of the form where the p is different for each school. The model

follows from example of analysis of covariance. Where V2WS removes the

separate school regressions, the appropriate statement is:

ANOVA:W=0,S=0,V2WS=V1,TWMS=V1,MWS=V1.

MWS has three degrees of freedom; if this is not significant there is no

effect due to method. If it is significant it is entirely possible that

the significant differences occurred in only one school, but this has not

been exanined. The differences in separate schools can be discovered as

follows.

ANOVA:W+s+vags+Twms=olmwsL=VLIMWS2=V1IMWS3=V1.

The Rules as an Operator Calculus on a Set of Vectors

Consider a set, 01.of K vectors (the variables) in an N dimensional (the

observations) vector space; K < N.

Notation. Subspaces of 0 nay be designated by letters of the alphabet,

not W. Subsets of subsets are designated by a letter followed by an indexing

digit (examples: A, B, Al, A2, etc.). The null space vd11 be noted as (1) (zero);

W used alone designates the unit vector.

19
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Operator 1. Direct Product. The direct product of two vectors is a vector

whose elements are the pairwise products of corresponding elements of the

two vectors. The direct product of two subsets of vectors consists of all

possible direct products of two vectors one from each of the subsets. This

will be indicated by juxtaposing the two subspace notations without inter-

vening symbols, i.e., AB, AlB, ABC (generating interaction parameters from

main effects. This is an alternative to the Kronecker product).

Some Algebraic Properties of the Notation

One of the basic properties of mathematics is that it provides a simple

notation for representing a complex event. One of the advantages of mathematics

is that the simplified notation can be manipulated to express relationships

among complex events when these relationships are too complicated to be observed

directly. For example, a sheepherder can merge two counted flocks of sheep and

know the size of the resulting flock without counting it: the mathematics of

addition relieves him of the necessity of counting the merged flock.

If thic use of mathematics is accepted, the present notation scheme can

be manipulated to show certain properties of linear models. For example, it is

possible to show that some of the model statements made above are identical

without going through the labor of calculating the model to find identical

results. Consider the following two theorems and a lemma about identities.

Lemma: A given model statement produces a unique ordered series of hypoth-

eses as subspaces of a vector space, when the hypotheses are correlated.

Proof: [The proof here is very simple and depends on the method of

solution stated in Rule 12.]

20
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Suppose we are given a linear model statement with hypotheses parameters

and error parameters folul...T. Rule 12 says that the hypothesis of

any test will be taken residual to all hypotheses to the left of it and

(possibly) confounded with any hypothesis to the right of it. This makes it

possible to write the hypotheses of a model statement as an ordered list of

subspaces of a vector space: alp,...y .

It is apparent on the face of it that B,,-a,...Y is a different statement

from al(31. . .y when a and p are correlated since in alp,...y the hypothasis a

is confounded with p in the solution, but in pla,...y the hypothesis a will be

residual to p in the solution, Q.E.D.

Example (26) Consider the alternative models

(a) ANOVA:W=0,A=V1B=VIAB=V

and

(b ) ANOVA:W=0,B=VIA=VIAB.V.

If the design is not orthogonal (i.e., all cell frequencies are not the

same), the A pseudovariables are correlated with the B pseudovariables.

If we follow the method of the lemma, these give rise to two ordered

series of hypothesis subspaces (a) W, A, B, AB and (b) W, B, A, AB and are

obviously not the same model.

Theaoem: The following statements of a one-way analysis of covariance

produce identical analyses:

(a) ANOVA:W=0,A=V1/V2.

(b) ANOVA:W=0,V2=0,A=V1.

(c) ANOVA:V2=0,W=0,A=V1.

(d ) ANOVA/V2 :W=0, V1=V2.

Proof: Statement (d) is equivalent to (a) by definition in Rule 11.
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Statement (a) gives rise to an ordered series of hypotheses
2

(a') W, V2, A; V1

since the analysis of covariance is a pextial correlation technique with both

A and V1 residual to the covariate.

Statement (b) gives rise to the ordered series of hypotheses

(b') WI V2, A; V1

which is the same as (a') above and therefore produces an analysis identical

to (a) and (d).

Statement (c) gives rise to the ordered series of hypotheses

(c') V2, WI A; Vl.

Since W and V2are hypothesis statements to the left of A and V11 A and

V1 are residual to them regardless of what order they have between them.

Since A=V1 is the only test being made (c) is equivalent to (b) and also

(a) and (d). Q.E.D.

Theorem: The follawing statements about a subjects by treatments design

are equivalent:

(a ) ANOVA:W=0, S=0,T=V.

(b) ANOVA:T=ST*V.

Proof: [Subjects by treatments designs are customarily designs where a

number of subjects are given a fixed number of treatments, all in the same

sequence.]

Consider V to be univariate. If the number of subjects is s and the

number of treatments is t, then there are s.t = 1 + (s-1) + (t-1)+ (s-1).

(t-1) observations on subjects and degrees of freedom in the design.

2
Using a semicolon to separate hypotheses from errors.

22
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Statement (a) gives rise to the ordered series of parameters W, 5, T;V

where V is residual to S, T/ and W. Since W has one parameter, S has s-1 and

T has t-1 parameters, (s-1).(t-1) degrees of freedom are residual in V.

By Rule 15 one can see that ST of statenent (b) is a set of (s-1).(t-1)

dummy parameters which can be handled as if they were a hypothesis set. ST*V

will generate a sum of squares with (s-1).(t-1) degrees of freedom.

It is customary to use contrasts for S and T which are orthogonal to W

and to each other. Thus (s-1).(t-1) parameters of ST are also independent of

14, S and T and, trivially, residual to them. From this we conclude that the

sum of squares for ST*V has (s-1).(t-1) parameters. Therefore we claim that

V of statement (a) is identical to ST*V of statement (b).

Now: in statement A" since T is independent of W and S the parameters T

in (a) are identical to those of T in (b).

Therefore both hypothesis tests give the same results. Q.E.D.

In addition to identity relationships between model statenents there are

other types of simple relationships among models. Consider the following

definition.

Definition: Two models are said to be concordant if there exists an

isomorphism between the subspaces of each.

This requires that there be a one to one correspondence between: (1) the

ordered series of hypothesis subspaces of the two model statements and (2) the

errors subspaces of the two model statements, in such a way as to preserve the

mathematical relations between hypotheses and errors within both statements.

This does not require that the vectors of the subspaces be related in any way.

For example, the two model statements

ANOVA:W=0)A=V,B=VIAB=Ve (a)
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and

CORREL:W=0,V2=V1,V3=V1,V3=V1,V2V3=V1 (b)

are concordant if we set up the correspondence

model (a) W W model (b)
A 4-, V2
B 4-, V3
V 44 Vi

This correspondence must also extend to the mathematical operations of

testing and Kronecker product. These models satisfy the definition of con-

cord.ance because

model (a) AB 44 V2V3 model (b)
W=C W=0

A=V 9 V2=V1
B=V V3=V1

and AB=V 4-, V2V3=V1

In this example the ANOVA model is a two-factor factorial analysis of

variance, the CORREL model is a study of response surfaces.

The model

ANOVA:W=0, A=Vl, V2=V1, AV2=V1 (c)

is also in this concordance class since (c) we can set up the correspondence

model (a) W 4-,W model (c )
A A
B V2

V 44 Vl

Discussion

It should be noted that, throughout the description of the notational

scheme and its logical properties, there is no discussion of either the

distributional form of the data or whether the models have any exact test in

any distribution. Thus, it is up to the user to state the nature of data

distributions and to determine whether an exact test is available. For

24



instance, Nthile components of variance models can be stated for nonorthogonal

models there is no assurance that a solution exists which can be tested as an

exact test.

A similar but less complex scheme was produced by Cramer (see Clyde

et al., 1966) for use with a program to compute ruativariate analysis of

variance. The instigation to develop this system came from Cramer's wcmrk

and the need for a control mechanism for a similar type of computer program

for linear models.
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