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Project COEXIST

This paper presents some of the preliminary results

of Project COEXIST at Dartmouth College, an NSF sponsored project to
investigate ways to use computers in introductory physics and
mathematics teaching. Students use the computer in a number of ways

on homework,

on individual projects, and in the laboratory. Students

write their own programs, whenever possible. 0On occasion, it is more
useful to have the student programs writter and saved by the teacher.
Five areas of work are described: (1) illustrations from a broad
range of study areas are introduced to show the versatility of
computer-connected graphic display devices such as X-Y plotters and
cathode ray terminals; (2) a simple, intuitive approach to the
propagation of waves in dispersive media is shown:; {3) a program is
~described which can be used to calculate a large number of
irterference and diffractive patterns; {(4) general methods are given
to find a map field patterns for general distribution of charges and
current loops:; and (5) solutions are found to some simple Schrodinger
equations using a computer program. {Author/Ts)
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This note presents a simple, intuitive approach to the propagation of waves

in dispersive media. The method Fourier analyzes a wave pulse, prepagates each

component according to its wave-vector dependent phase velocity, and then resyn-

thesizes the wave train. The method uses a computer to perform the algebra; a

program .which minimizes central processor time while maximizing the. intuitive

contenc of the calculation is-given in the Appendix.
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I. Introduction

Wave propagation is usually limited to non-dispersive media in introductory
physics. This limitation is primarily due to the complexity of the algebra of
dispersive media. Similarly, Fourier analysis is usually just mentioned in
most introductory physics courses. At most, Fourier analysis is applied to a
few simple periodic functions. Again the limitation is essentially due to the
complexity of the algebra involved -- not the sophistication of the concepts.
Both dispersive wave theory and Fourier analysis are fairly simple in concept
but algebraically complicated in practice.

This note demonstrates a simple, straight-forward way to introduce wave
propagations through dispersive media by means of Fourier transforms. A simple
computer program is introduced which Fourier analyzes the pulse, propagates each
wave-vector component separately and then resynthesizes the wave. The student
supplies the initial pulse shape and a fermula for the wave-vector dependent
phase velocity of the wave. The program has been used in second semester physics
courses with students ranging from pre-medical majors through physics majors.
Sophisticated students are able to understand the program and are able to write
their nwn versions.

Use of this computer approach has deepened the student's understanding of
non-dispersive wave theory as an approximation to real physical situations. The
student's intuitive understanding of expansion processes such as Fourier analysis

has also been strengthened.

II. Results

Figure I shows a triangular pulse propagated through a medium of lightly -

dispersive properties. The phase velocity of the wave is slightly wave-vector

dependent in the form V(k) VO (1+.01k). The top curve in Figure I (curve a)

is a plot of the initial pulse shape at t=0. The origin of the spatial

RIC | 2

Aruitoxt provided by Eic:



E

O

coordinate (X=0) lies at the center of the figure and the right and left sides
of the figure correspond to #4I. All the figures are scaled this way and,
within each figure, curves are offset vertically for clarity. Curve b of
Figure I is the real pert of the Fourier spectrum of the initial pulse; for the-

b g

simple pulses shown as illustrations, there are no imaginary parts to the Fourier

v

transforms. Curves ¢, d, ¢, f, and g in Figure I show the pulse after 2, 4, 6, 8
and 10 units of time has passed. The pulse moves to the right as expected, and,
due to the disper:'.on of the propagatiom medium, the pulse distorts as time pro-
gresses. Componerits of the wave with wave-vectors greater than the average k
vector (k=0 in this case) propagate faster than the average of the pulse; lower
wave-vector components fall behind. The propagation accentuates the average
wave-vector component and produces ripples preceding and following the pulse.
This simple model of a lightly dispersive medium corresponds roughly to the
edges of an optical absorptiorn band. The present calculation does not include
absorption itself, but the program is easily modified to include such effects.

Figure 2 shows the same triangular pulse undergoing ten times stronger
dispersion. Now-V(k) = V0(1+§1k) and the effects of dispersion are quite
striking. Curves a and b are again the initial pulse and the real part of its
Fourier transform. Curves c.- f show the pulse after 2, 4, 6 and 8 units of
time have passed. The distortion of the pulse follows the lines discussed in
Figure I. Again the k=0 component is accentuated and higher and lower k com-
ponents. run ahead and fall behind respectively.

Figure,3 shows the effects of the stronger dispersion on a simple model
of 'a wave packet. The original pulse (curve a) is two and oneehalf.ﬁycles of-.a
cosine wave. The (real part of the). Fourier transform, demonstrates the Reaking
hear wave-vector components of the basic cosine wave. The Fourier transform also
illustrates which wave vector components must be included in order to produce a
simple pulse from a cosine wave train. Curves c, d and e (part.B of Figure 3)

show the real (or cosine) part of the pulse after propagation times of 2, 4 and
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6 time units. Again the student observes the spreading of the pulse under the
dispersion V(k) = V0C1+.1k]_ The spreading now accentuates the wave-vector com-
ponents in the pulse near those of the basic cosine wave train. Figure 3C (curves
f through h) shows the imaginary (or sine) part of the resynthesized pulse after
2, 4 and 6 time units. Figure 3 illustrates that dispersion not only effects the
pulse envelope but also the phase relations within the pulse. The student can a
also examine vReZ+ Im? or the relative phase as function of position for various
times. He can demonstrate energy conservation by examining the total energy in
the pulse as a function of propagation time.

Figure 4 shows the effect of propagating phonon wave packets with several
basic wave-vectors ko through a one-dimensional lattice. The dispersion relation
w vs.k for lattice waves determining the wave-vector dependent phase velocity:
V(k)«=sin (ka/2)/k. Figure 4A shows the initial pulse (curve a) and the Fourier
transform. (curve b) for a wave packet whose basic wavelength is considerably
longer than the lattice spacing [kﬂa = 1 so that A= 2Nla). The Fourier trans-
form is again peaked near k = ;kc, and all but a small fraction of the wave-
vector components in the pulse have essentially the same phase velocity. The
sharp changes in the initial pulse (i.e. the high wave-vector components) are
influenced by dispersion, but the pulse shape remains approximately the same as
time progresses. Curves c and d of Figure 4A show the pulse after.12 and 24
time units of propagation.

Figure 4B shows the same information as Figure 4A except that the basic
wave length of the pulse is now somewhat closer to the lattice spacing
(koa'= 2 | Now a non-negligible fraction of the Fourier components are prop-
agated with different velocities. The propagated pulse (curves g and h) is
substantially distorted, and the motion of the center of the pulse (the group

velocity) is noticably less.




Figure 4C shows what happens when the basic wave-length is very near the

lattice spacing (k°a=3). The Fourier transform (curve j) now has peaks near

the Bragg vreflection planes, and the propagated pulses (curves k, 1 and m having

propagation times of 12, 24, 36 units) are highly distorted. The group velocity
is close to zero (as suggested by dw/dk at this point). The accentuation of
the basic wave-vector is apparent.

Similar dispersive effects in other areas of physics can also be examined.
The student can observe the distortions of quantum me:zhanical wave packets as
time progresses or of electromagnetic waves in plasmas and the inonosphere. An
interesting example is the propagation of a helicon or whistler wave pulse.
The dispersion relation for that magneto-plasma wave has ® proportional to kZ!
The d. c¢. component of the wave packet sits still and the two dominant k values
(+k,) in the pulse propagate:away.

Figure 5 is a simple test of' the procedure which occurs to almost all
students. The dispersion of the medium for Figure 5 is zero, that is V(k) = Vo.
The initial pulse keeps its shape when propagated either forward in time
(curves ¢ and d for +2 and +4 time units respectively) or backward in time
(curve e for -6 time units). The imaginary or sine part of the resynthesized
pulse is everywhere zero on the scale of this figure. Because the method of
numerical integration is approximate, '‘ghost" (illegitimate replica) of the
pulse occur for sufficiently large positive and negative wave-vectors. The
infinite integral for.the Fourier transform is approximated in the present
program by a finite sum from -5I to +5I in steps of 1/16. This approximation
is sufficient for most.applications; a better approximation costs more central

processor time to accomplishlt
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III. Methed

A few comments on the computer method may be useful. The computer strategy
is very simple; a form of the program in the Dartmouth form of the languape BASIC
is given in the Appendix. The program calculates the Fourier integral by the
trapezoidal rule since the. trapezoidal rule is more accurate than Simpson's ru.ie
for nearly periodic functionsz. The limits on the integral sum and the number
of partitions are chosen to follow reasonable detail in the pulse structure and to
keep ''ghosts'" away from the region of intersect. To use the program, the stu-
dent ‘defines the original pulse shape as two functions FNR and FNI, the real and
imaginary parts of the initial pulse. These functions are used to fill two
vectors (R( ) and I{ )) whose elements are called repeatedly in the Fourier
transform routine. The use of vectors is considerably faster in central processor
ti..2 than repeated calls of the defined functions themselves. TI=a programs which
calculate Fourier integrals, every shortening of time is advantageous.

Fourier transforms need sines and cosines repeatedly. SIN and COS functions
are quite slow on most machines and so vectors (S( ) and C( )} are used. The
sines and cosines obtained this way are only accurate to one degree, but this
accuracy is usually sufficient. The INT function used to find the right sine
or cosine element is usually a very fast function. Another fast form of sine
and cosine, this one using the angle sum formulas, is used to fill the sine
and cosine vectors initially.

After calculating and storing the real and imaginary parts of the Fourier
transform, the transform is printed out as tables. Each Fourier component is
then propagated the correct amount using the phase velocity V(k) and the user
supplied time. Finally, the resultant, resynthesized pulse is printed. The
final result is the pulse as propagated the giveh time through a medium .of
supplied dispersion. On the Dartmouth GE635 system, each set of Fourier trans-

forms (which produces a complete spectrum or.curve) takes about five central

6



O

ERIC

Aruitoxt provided by Eic:

processor seconds so the student can examine several different propagation times
during one RUN.

This computer method is fairly fast and introduces the student to program-
ming methods which conserve computer time. The student is also introduced to
real problems in numerical integration, to the practice of Fourier transform

theory and to the effects of wave propagation in dispersive media.

IV. Concliusion

This note has presented a simple computer approach to the theory of waves
propagated through dispersive media. The introductory student sees dispersive
media as an extension »f and a comparison to the non-dispersive wave propagation
usually introduced in text books. The program given in the Appendix has been
used by numbers of students ranging from pre-meds to physics majors at the in-
troductory level. The response has been favorable. The program and illustrations
of dispersive wave phenomena are useful from introductory physics courses

through upper level solid state, plasma, and quantum mechanics courses.
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FOOTNOTES

sum or a finer mesh leads to more central processoyr time. Other integration
schemes can be used. Gaussian-Hermite quadrature using order one-hundred gives
about as good results as thé trapezoidal rule; clever use of the Gaussian scheme
seems to gain about a factor of two in CPU time. The author has not used
Gaussian quadrature with classes since the integrations in the program are.then
complicated to describe. For discussions of more sophisticated integration
schemes see A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-

Hz1l, Englewood Cliffs, New Jersey, 1966.

2 . . . . . .
For comments on this and other points having to do with numerical analysis

see B. Carnahan, H.A. Luther, and J. O. Wilkes, Applied Numerical Methods,
Wiley and Sons, Inc., New York, 1569.



CAPTIONS _

Figure I. Propagation of a triangular pulse through a lightly dispersive medium.
a) shows the original pulse; b) shows the real part of the Fourier transform of
the initial pulse; «c¢) through g) show the pulse after 2, 4, 6, &, and 10 units
of time have passed. The distortion of the pulse is due to the dispersive nature
of the propagation medium. The zero of spatial and Fouries transform coordinates
is at the center of the figure; the left and right sides of the figure correspond
to -4I and +4Il respectively. All the figures are scaled this way. Curves are.

separated vertically for clarity.

Figure 2. Propagation of a triangular pulse through a strongly dispersive medium.
a) shows the original pulse; b) shows the real part of the Fourier transform;

c) through f) show the pulse after propagating 2, 4, 6, and 8 units of time.

Figure 3. Propagation of a wave packet through a strongly dispersive medium.
A) shows the original pulse and the real part of its Fourier transform. The
Fourier spectrum is peaked near plus and minus the wave-vector of the cosine
part of the pulse shape. B) The real or cosine part of the pulse after prop-
agating 2, 4, and 6 units of time. C) The imaginary or sine part of the pulse

after propagating 2, 4, and 6 units cf time.

Figure 4. Propagation of a phonon wave packet through a . one-dimensional lattice.
A) Shows the initial pulse, its Fourier spectrum, and its propagation for 12
and 24 time units. This pulse has a wavelength substantially longer .than the
lattice spacing so the distortion is minimal. B) Shows the.effects on a pulse
whose basic wavelength is nearer the lattice spacing. The distortion is more
noticeable and the group velocity is smaller. C) Shows the effects on a pulse
whose basic -wavelength is nearly the lattice spacing. The distortion is large,

and the group velocity is nearly zero.

Figure 5. Propagation of a triangular pulse through a non-dispersive medium.
The original pulse and its Fourier transform are shown. The pulse after 2, 4

and -6 units of time are also shown. The similarity in pulse shapes gives the
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FIGURE 4A
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REM
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APPENDIX

PROGRAM FOURIER TRANSFORMS A WAVE PULSE AND THEN PROPAGATES EAGCH
FOURIER COMPONENT SEPARATELY IN TIME. THE UVELOCITY CAN SE WAVE-
NUMBER DEPENDE(T SO THAT THE RESULT IS a4 DISPERSIVE MEDIUM OF
PROPAGATION. WRITE THE INITIAL PULSE SHAPE INTO FNRsFNI = THE
REAL % IMAGINARY PARTS OF THE PULSE, AND WRITE THE (K DEPENVDENT)
VELOCITY IN THE PLACE INDICATED.

PRINT '"PROGRAM CALCULATES THE FOURIER _TRANSFORM (BOTH REAL AND"
PRINT “IMAGINARY PARTS) FOR THE WAVE PULSE DEFINED IN FNR & FNI."
PRINT “IT PRINTS OUT THE FOURIER TRANSFORM AND THEN THE RESULT"
PRINT '"OF PROPAGATING THE PULSE THROUGH A DISPERSIVE MEDIUM.'
PRINT

REM
DEF
LET
LET

FNRsFN1=RE,IM PARTS OF FN. TO BE TRANSFORMED
FNR(X)

FNR=0 . -
X2=1

IF (X-X2)*¢(X+X2>>08 THEN 280

LET

FNR=1-ABS (X/X2)

FNEND

DEF

REM
LET
LET
LET
LET

"LET

REM
DIM
LET

FOR

LET
LET
LET

FNI(X)=0

DEFINE SEVERAL PARAMETERS RELATED TO PI
P9=3.14159265

P8=2 %P9 -

P7=P9/16

P6=SAR(P8)

PS=5%P9

FILL FUNCTION VECTORS
R(50@),1(590>

1=

XP==pP5 TO PS5 STEP P7
Iga=Ia+1
RCIB>=FNR(X2)
1CI2)=FNIC(X2).

NEXT X0

REM

DI
LET

LET
LET:

LET
LET
LET.
FOR
LET
LET
LET
LET

FILL SIN % CO0S LISTS
C(3605,5¢360) .
P3sPB8/360 -
Cl=COS(P3)
S1=sSINC(PO)

Ci{B)ral

S(a)>=g

C2=]

I=1 TO 360

GC3=C2

C2=sC2%C1 =52%5]
S2=52%0]1+C3%51
CCl)=C2

139



WAVE

619
old
6323
430
643
Hn50
660
573
583
690
733
712
723
738
T40
750
760
T73
784
792
820
813
g0
838
848
850
863
8706
&80
899
WA
91a
915
R
axa
;=% ]
S953
950
973
989
993
995

1209
1016

1229
1630

1048
1050
1862

1272

5 (CONTINUED)

LET 5(I13>=82

NEXT 1

REM CALC. FOUR. TRANSF. FOR RANGE OF K'S

PRINT "K' s "RBECF «T o) 2"IMCF T« )"
DIM F(S02),G(503)

LET I9=@8 °'COUNTER

FOR HO=-P5 TO PS5 STEP P7

LET I19=19+1

LET Il=0 °'REAL F.T.

LET I2=0 'IMAG FeTe.

LET 10=0

FOR X@=-P5 TO PS5 STEP P7

LET Id=10+1

LET K9=HO*xX3

LET H8=INT((K9= INT(KQ:PE)*PS)JP@)
LET C@=C(KB)>

LET 5@2=5(K8>

LET R8B=R(C(IQ)

LET R9=I1(1@)

LET R1=CO*R8~-50%R9

LET 2=ca*a9+sa*ns

LET 11=I1+R]

LET I2=12+R2

IF (X@8=P5)*(XB3+P5)><>@ THEN 878
LET Il=sll1=Riv/2

LET I2=]I2-R2/2

NEXT X0

LET Il=I1%P7/P6

LET I2=]I23%P7/P6&

LET FC(19)=11

LET G(I9)=12

IF INTC(CIO9~ l)zB)<(I§-‘)!S THEN 930
PRINT KO,1I1,12.

NEXT Ko .

‘REM RESYNTHESIS AFTER PROPAGATING EACH FOUR. COMPONENT

REM BY AN AMOUNT ch:*r

PRINT :

PRINT " TIME";

INPUT T1

PRINT X" ,""WAVECCOS)>","WAVE(SIN)"
FOR X1=~5 TO S STEP .5

LET 11=0 : ,,*_;

LET 12206 - Ll

LET 19=0 o

FOR K@=-PS TO PS" STEP P7.
LET 1@=1g+1 -
REM ###PUT UCK) BETWEEN HERE
“LET VO=l+.@1%Ka -~

20~




=-2i-

WAVES (CONTINUED)

1080 REM ***AND HERE
1993 LET KO=KB*(X1-UaT])

1180 LET K8=INT((K9-~INT(K9/PB)*P8)>,Pg)
1116 LET C@=C(Kg)>

1123 LET S@=$(K8)

1130 LET RB=F(IG)

1140 LET R9=G(10)

1159 LET R1=CO*R8+S@*RO

1160 LET R2=C@*R9-SQ+R8

1178 LET Il=I1+R1

1183 LET I2=12+R2

1198 IF (KO-PS5)*(KO+PS)<>@ THEN 1220
1299 LET Il=Il1-Rl,2

12189 LET I2=12-R2/2

1220 NEXT Ko

1238 LET 11=11%P7,Ps

1240 LET I2=I2%P7/P§

1252 PRINT X1sI1,12

1260 NEXT X1

1270 GOTO 983

1280 END
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Computers and Introductory Interference Phenomena
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John R. Merrill
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ABSTRACT

This note presents a simple program which can be used to calculate a

large number of interference and diffraction patterns. Several applications
of the method are discussed; radio antennas are emphasized. In class use,
the student writes his own program and calculates intensity patterns for

interference systems of interest to him.

+Wark supported by the National Science Foundation Foundation (NSE-GJ-650)
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Introduction

This note describes some uses of the computer in practical applications
of wave interference. Although the applications discussed are complicated
to handle in closed, analytic form, they are easy to understand with the
computer. The computer program propagates waves out from any number of
wave sources to some point cn.a large sphere. The program then adds the
amplitudes of all the.waves (including phase) at that point, squares the
result to get the total intensity, and averages over a complete cycle of the
sources. One straightforward practical application of this method is to
""broadside arrays' of radio antennas.

Most students have seen broadside arrays. A radio station will place
a number of antennas in an equally spaced row, the plane. of the antennas
facing a city. The station feeds the antennas with radio frequency currents
of certain relative amplitudes and phases, The result is a highly directional
transmission of the station's power, usually directly toward the city.

The simplest broadside array feeds equal amplitude, in-phase currents
to the N antennnas. The antennas are often one-half wavelength apart. The
transmission pattern is the N slit diffraction pattern. It is common to
express the transmission pattern as a polar plot of. intensity versus angle.
around the sources. Plotting the results in this way. affords the student
a comparison to typical diffraction patterns in physics which show the
intensity pattern across a screen placed parallel to.the plane of wave

sources (or slits).

Results:

Fiéure 1 shows the polar plot of the transmission pattern for two
antennas separated by two wavelengths and fed with equal amplitude, in~phase
currents. There are two sets of three maximum intensity lobes in the. for-
ward and backward directions; there are broad maxima in the side directions.
This is also a polar plot for.the intensity pattern of a double slit dif-

fraction experiment (narrow slits placed A/2 apart).



Figure ZA shows a more common broadside array - four antennas placed
half wavelengths apart and fed equal, in-phase currents. The increased
directionality is clear from the polar plot of intensity. Figure 2B is
the polar plot for a "binomial broadside array'" in which the currents fed
to the antennas are in the rotio of binomial coefficientsﬁl The trans-
mission pattern has no power wasted in side lobes; all the intensity is
radiated in the forward and backward directions.

More complicated arrays are sometimes used. The '"optimal array' has
a complicated set of relative amplitudes of the feed currents. Two dimen-
sional arrays are. sometimes used, usually at high radio frequencies. The
student can even consider Yagi-Uda arrays such as those used in TV recep-
tion antennas. The reception pattern of an antenna system is simply re-
lated to its transmission pattern. The method presented here can also
be applied to interferrometric radio telescopes, interference patterns
through thin films, or the diffraction pattern of the sound emitted from a
loud speaker. Using secondary waves, the student can model intensity
patterns in auditoria. In all these problems, the method adds up waves
from a finite (but sometimes large) number of distinct sources having

different relative amplitudes and phases.

Program

All the cases mentioned above can be treated by a very simple com-
puter program. Figure 3 is such a program in BASIC. The relative ampli-
tudes of the N wave sources are stored in the vector A( ):; the relative
phases are stored in P ); and the positions of the sources are stored
in X( ) and Y( ). The wavelength of the waves is L. The program cal-
culates the intensity 10 (averaged over a period of the wave) at 10 degree
intervals . (angle T) around a circle of radius 10. The average over one
cycle in phase is performed by the FOR-NEXT loop on PO. The fundamental.
loop .which adds the wave amplitudes from the N sources 1s lines 230 through
290 (7 statements). As written, the program calculates the intensity as
a function of angle for two source interference. Figures 1 and 2 were

plotted directly from output of a program such as that shown in. Figure 3,

24



Coneclusion
The program discussed in this note can be used with the smallest

computers. The method is easy to explain even to the most mathematically

unsophisticated students. The method of the program is entirely general

and covers a very large number of applications of interference and dif-

fraction phenomena.

References
1 . . .
"See Reference Data for Radio Engineers, H.P. Westman, ed., International

Telephone and Telegraph Corp., N. Y., N..Y. (1967).
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Captions

Figure 1.

Figure 2.

Figure 3.

Polar plot of the intensity pattern for two sources, two
wavklengths apart. The program allows any number of sources
to Be pldaced anywhere in the.plane; the program then-cal-

culates 4 polar intensity pattern.

Polar plot of the intensity pattern for four element radio
antenna broadside arrays. The antennas are placed half
wavelengths apart so maximum transmission is in the forward
and backward directions. A) Simple broadside array.

B) Binomial broadside axrray.

BASIC program to calculate interference patterns. The
positions X( ), Y( ) of the N wave sources which emit

waves of wavelength L, relative amplitudes A( ), and phases
P( ) are READ in from DATA. The fundamental loop adding the

waves from the sources is lines 230 through 290.
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FIGURE 3

100 REM SIMPLE VERSION @F I VS ANGLE

110 READ NasL

120 FOr I=1 T6 N

130 READ XCIX»¥YCIXsACI)sPCL)

140 NEXT 1

150 DATA 2,1

160 DATA 55051505 =+5s0s150

170 PRINT "ANGLE","INTENSITY"™

180 FAR T=0 TO 6.28318 STEP 3.14159/18

190 LET X0=104#C@83S<¢T)

200 LET YO=10%S8SINCT)

210 LET 10=0

220 FOR PO=0 TO 6.:28318-3.1415¢/8 STEF 3.14159/8
230 LET A=0

240 FOR I=1 T@ N

250 LET A=X0-X(1)

260 LET Y=YO0-YCI)D

270 LET R=SQR(X*X+Y*Y)

280 LET A=A+AC(II*S5INC6.28318kR/L + PO)

290 NEXT I

300 LET I10=10+A%A
310 NEXT PO

320 PRINT 180%T/3.14159,10/8
330 NEXT T '

340 END

.
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INTRODUCTION
Past publications concerning the uses of the computer in field mappings
have stressed particular geometries for the charge distributionslg This note
presents general methods to find and map field patterns for general distributions
of charges and current loops. Two fundamental programs are presented with il-
lustrations of the student's uses of both. Both programs use subroutines as
building blocks so that the student can write programs using very simple calls
to subroutines. The programs are given.in appendices in the language BASIC
as implemented on Dartmouth's time-sharing computer system.
'8
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GENERAL ELECTROSTATIC FIELDS

The first program allows students to map electric field lines and equi-
potentials for an arbitrary number of point charges placed anywhere in the
plane. The program could also map fields of line charge distributions or any
combination of line charge and point charge distributions. The program just
needs an expression for the electric field E (due to the charge distribution)
everywhere in space. Thus the program can perform the calculations for uni-
formly charged spheres, if cne wishes

The strategy of the program is as follows:

The program to follow elecfric field lines first chooses the start-

ing point for the field line; second, calculates the electric field in the
X and Y directions at that point; third, uses the differential equation for a

field line to take a small step (along the field line) o0 a new point in gpace,

Finally, the program goes back to the second step and repeats the calculation.

For equipotentials, the program first chooses the starting coordinates
for the equipotential; then, segqnd; calculates the electric field at that
poinf; théﬁ, third, movés axsmall step,perpeﬁdicﬁiar fo'the.electric field E
to find a new péint on the equiﬁoteﬁtiai; Einélly the calculation goes back

to the second stép and repedts itself.

The method only needs to calculate the electric field E at each point in
space. The steps taken along the field lines or equipotential surfaces must
be small enough to be treated as differentials. This latter demand is more
simply stated by saying that the numerical approximation to the integratibn_
of the differential equation must converge. The initial choice of starting
coordinate may be a set of inputted coordinates X, Y or could be the result
of a hunting routine to find, say, some point on ‘the 2 volt equipotential.

Figures 1 thru 4 show the results .of chese calculations for several con-
figurations of point charges, Figure 1 is the field lines and equipotentials

O or three, equdl, positive charges placed on.the corners of an equilateral
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triangle. Notice that the starting points for the equipotentials were choosen
in such a way that equal steps in potential occurred. Figure 2 shows the field
lines and equipotentials for a system of four, equal, positive charges placed
on the corners of a square. Figure 3 shows the field lines and equipotential
surfaces in the plane of a two dimensional quadrupole(two positive and two
equal, negative charges on opposing corners of a square). Notice that the
starting points for the field lines were not chosen quite symmetrically. Fig-
ure 4 shows the field lines and equipotential surfaces in the plane of a one
dimensional quadrupole(two back-to-back dipoles).

Charge distributions even as simple as these are not usually given in
introductory physics courses simply because of the complication of the closed
form solutions to these problems. Using the iterative techniques, outlined
above, the problem is not only tractable but even easy for the introductory

student to understand and to compute by himself.

CRITICAL PARTS OF THE STRATEGY
Two separate parts of these calculations deserve a little attention.
First, how does one calculate movement along a field line? Consider.taking a
step A5 from a point X,Y at which the electric field has components Ex’ and
E_. Using the fact that the triangle with sides 'dX, dY, and dS is similar to

¥y
the triangle having sides E_, E._ and vE_2 + E 2
X y X Y

AX

AS(E,/VE, §+Eyz)

AY

AS(E_/VE 2+E,z)
y X y

Finally, then, the new coordinates X,Y are just the old coordinates X,Y plus
AX and AY., The fact that E lines are everywhere tangent .to the electric

field E leads.to these simple equations for integrating along a field line.
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This process is easily introduced to a student. The student can then use the
procedure as a subroutine, which is general encugh to be available for any
field mapping problem,

The second part of the calculation which deserves a little attention is
following an equipotential. Consider stepping the distance AS perpendicular
to the electric field E at the point X,Y. Use the fact that the slope of a
line perpendicular to a line of slope K has, in turn, the slope -1/K. Then

for a step AS along the perpendicular to the electric field one has

AX

-AS(E_/VE_Z+E_2)
y X Yy

AY

, : //E 2+E 27
+AS(E /VB, +Ey )
Finally, again the new X,Y is just the old X,Y plus AX and AY.
Using subprograms such as these, the student can write his own programs-

to perform more complicated calculations of various types. Appendix I shows

such a program finding electric field lines and equipotentials for an arbitrary

point charge distribution. The program is written in the Dartmouth form of
the language BASIC. Notice that, since this form.of the language BASIC has
in languages such as FORTRAN. This is one of the few cases in which FORTRAN:
is easier for the student to use than is the language BASIC. Some newer

forms of BASIC will use local variables in subroutines.

GENERAL MAGNETOSTATIC FIELDS
The second fundamental program reported inm this note calculates the
magnetic. field B at -any point ‘in space due -to a current loop (which is par-
allel to the X,Y plane at some point Z). The program simply uses the Biot-

Savart law and integrates around the.current loop. The student then uses’
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this program (as a subroutine) to calculate magnetic fields due to such
current loop configuration as Helmholtz pair, or even a short solenoid (treated
as a number of separate loops placed next to each other along the Z axis).
Another interesting program calculates the field at some point X,Y,Z due to

a straight wire segment. When used as a subroutine, this straight wire pro-
gram can do another set of interesting current geometries.

After calculating the magnetic field B at some point, the student can
call the field line subroutine, considered above, and then plot field lines
for the coil configuration. Figures 5 and 6 show plotted results from pro-
grams such as these. Figure 5 is a magnetic field line pattern for a single
loop around the origin. This problem is sufficiently complicated that in
closed form it is not normally given to introductory students. Again, since
the calculation is, first of all, iterative and, second of all, based on using
subroutines as building blocks in programs, the introductory student has no
difficulty understanding this approach to a fairly complicated problem. Fig-
ure 6 is the magnetic field lines for a Helmholtz pair. Notice that the
homogeneity in the central field region is clear, as is also the symmetry of
the inhomcgeneous part of the field. Other interesting‘figures can also be
introduced. For example, if the student treats a short solenoid as a series
of current.loops placed near each other, not only does he observe (in the
plotted field lines) the obvious homogeneity and additive character of the
field from the various loops, but he also sees immediately the effects of
his approximation. Because the student has made discrete what is more closely
approximated by a centinuous current loop distribution, there is imposed on
the homogeneous field an inhomogeneous ripple with the periodicity of his

chosen -loops.
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MAGNETIC LOOP SUBROUTINES

The strategy of the subroutine which calculates the magnetic field at a
point X,Y,Z due to a current loop is as follows: The program, first, breaks
the loop into segments. The program then takes the cross product of the loop
segment and the X,Y,Z vector from the origin to the observation point. The
program then divides by R3 and sums the result over the loop segments. This
subroutine is very easy to program and is also very easy for the student to
understand. Having written the subroutine, the student simply calls this
subroutine (and perhaps others) to plot field lines. The student uses a
building block approach, putting b’ocks together to form the.structure he
wishes. Appendix II contains a loop subroutine and a program which calls
this subroutine and calculates the magnetic field at any point in space due

to a single loop.

CONCLUSION

This note has presented several programs to sol&e general field mapping
problems in electrostatics and magnéetostatics. Students are encouraged to
write programs as blocks using the subroutine capabilities af even simple
languages such as BASIC. The student can then write driver programs (main
programs) which are both particularly simple and also intuitively easy to
understand. The stuéént reponse to systems such as this has been very good.
Calculations based Qﬁ these programs have instilledvin tﬂe students a much
deeper, ‘and more intuitive understanding of field pétterns due to electric

charge distributions and magnetic fields.
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Captions

Figure 1

Figure 2

Figure 3

Figure 4

Merrill American Journal of Physics, 37, 837 (1969)

Electric field lines and equipotentials in the plane of three, equal
point charges on the corners of an equilateral triangle, The equi-
potentials are in equal steps (+#1,2,3,4 and 5 in normalized units);
the field lines start at equal angles around each charge. The cen-

ter of the figure is marked with a cross.

Electric field lines and equipotentials in the plane of four, equal,
point charges on the corners of a square. The equipotentials are in
equal steps (+1,2,3 and 4 in normalized units); the field lines

start symmetrically at equal angles around each charge. The center

of the figure is the cross.

Electric field lines and equipotential surfaces in the plane of a
two-dimensional quadrupole (equal but opposite peint charges on
alternating corners of a square) . The equipotentials are in equal
steps except for the outermost set; the equipotentials displayed are
£ .1, .5,1.0, 1.5. The electric field lines do not start precisely
symmetrically and their shape far from the charges is sensitive to

the asymmetry.

Electric field lines and equipotentials in a plane containing a
one-dimensional quadrupole (two dipoles head-to-head). Again the
field lines are Very sensitive in the far region to small asymmetries

in the choice of starting point.
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Figure 5

Figure 6

-14-

Magnetic field lines in a central plane due to a circular current
loop. The loop is perpendicular to the page and is centered on

the middle; two dots mark the places where the loop cuts the page.
The pattern is symmetric under rotations around the central field

line.

Magnetic field lines in a central plane of a Helmholtz pair. The
pair is perpendicular to the page; four dots mark the points where
the loops cut the page. The central homogeneity of the field pat-
tern is clear as is the symmetry of the inhomogenegous part of the

pattern.
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Appendix I

—f -

® FIFLD LINES £ EQUIPOTENTIALS USING SUBROUTINE
¥

FLDLINEIWMOVEPERP
(FNXSFMYI=(EX, EYD
FNHIN,Y)=X/(R*R*R)
bNY(ﬂ:T) Y/ CRERFRD

PRINT "X,y

REM

TIFIT LINE.-PART

PRINT "INITIAL POINT CK:E‘ 999 TG DG EQUI-U)™:

LET

LET

LET
LET

CIWNBUT X1.Y1

IF X1=999 THEN 370
LET"
LET
LET
"LET

N=0O

Ni=0

F1=0
F2=Q.

FO=+1

n=1
F3=FNX(X1+F1/2,Y1+F2/2)
F4=FNY(X1+F1/2,Y14F2/2)

GOSUR #1

LET

IF

LET

PR

LET

Ni=N1+1 .

N1<5 THEN 340

Ni=0.

WT XlsY1

\\1.%;-\;-{! 1

IF N=<1G THEN 260
GOTO 160
STOPR

EQUIPOTENTIAL BART .

PRINT "INITIQL5PDINT‘QN EQUIﬁV (X,¥3 999 T0 ENDIYYS

INPUT X15Y1

IF Xi=999. THEN 560

LET
LET
LET

LET

LET

LET.

FOLLOWS- EQUI-V BY MOVING PERP«. TO E

N=0"
MNiI=0

MO=a]
R=1

'MiaFNX(¥1+M5f?:Yl+M6/3}

M8= FNYCX;+M%/2:Y1+F6!?)

Ni=N1+1

YIF N1<10. FHEN 540
VELET '
PRINT 31,¥z

Ni=0-
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e = E e wm m— ome w= e

: Ea T
SEELDUENE _ ———
et BENM SUBROUTINE--CALGH . NEKI.“E’,,L,,AL,D MG A FIELD LINE
§ REM GIVE X1 ,YI1(PRESEH ), FAzDEST. TO MOVE ALONG LINE, AND
11 REM F3 Fa=¥ ,Y COMPS, QOF FIFID (AMNIY RATIAS COUNTD ,
lg REXN RETTER Coj VWWERGENCE IF GIVE FIELD 1/2 STEP AHEAD OF PRES. PT.
21 _REM ¥ NG 1AST Fl LE22DX0Y RETURNED BY THIS SUBROUTINE. ,
28 REM US a-F5
-1 LET : TI3RFI+FA%FL) _ , - —
38 LE BxF3/F5
41 1FT F2-Fa*«F4/F5 o
458 LET X!=X1+FI
51 1FT ¥i1=Y|+F2 I .
56 RETURN
53 FEND - —_ -




=17~

1 REM SUPROUTINE=-CALCS.. . NEXT X,Y ON EQUIPOTEMITAL RY GOING FEXP TC L
6 REM CALCS NEW PT. A DIST. M9 ALONG PERF. TC 4 GIVEN LINE

i1 RBEM &T GIVEMN BT (X1 Y13 R _ _

16 REM GIVE PROG.: X!1,Y! (PRESENT), MO=DEST TO MOVE, AND

Sl REM (M7,MBYZVURCTOR DEFINING GIVEN 1 INE AT POINT X1 ,¥1 e
28 REM FROGRAM RETURNS X],YI1(NEW) AND M5,M8=(DX,DY)

3l QFEM _PROGRAM USFS M4, M5 ,ME,M7 MEMQ U

35 LET M4=CQR(M7x MI/+M3BxNG)
4] VET MAzMOw(MT/MA)
46 LET MS=Mex(-M8B/M4D
51 1ET YizY1+M§ _
5§ LET X1=X1+M5

§4 RETURN

§6 END




Appendix 11

-] -

LOOEFFELD

GIVES FILELD LINES IN XZ FLANE FOR SINGLE LOOP

100

110 HiEM AROUND OSRIGIN IN XY PLANE--USES SURROUTIMES
S120 SUB LOCFBRIFELDLINE _ .
130 PAINT "CURHENT, & RADIUS®:
140 INPUT IsA

150 LET 1.0=0

160 LET FO=.05 - ~
170 PRINT “INITIAL FOINT (X,7Z)>'";
130 INPUT X1s21

190 LET N=O

200 LET Ni=0

210 PRINT "X'"s"'z"

220 LET X2=X1+F1/2

230 LET Y2=0

‘240 LET Z2=Z1+F2/2

250 GOSUB #1

240 LT F3=L5

270 LET F4a=L7

230 LET ¥Y1=71

290 GOsSUB #2

300 LET Zil=Y1"

310 LET Ni=Nl+1l .

320 IF N1<5 THEN 3450

330 LET N1=0

340 LET N=N+1

‘350 PRINT X1,71

360 IF N<l10 THEN 220

370 PRINT

330 GOTO 170

320 END

a7
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LOoOPS

I REM SUBROUTINE--2L,C35e B OF LOOP 1T GIVEW POINT

3 | GIVE ©CCURREN LY ACKADIUSs (KR, 72s A2) =FIELD PTes» AND LO=7Z OF

HETUANS LS,L6,L7=(BX-BY,H82) AT (X2,Y2,72)
1 LOOP IS PARALLEL TO XY PLANE nT PT. Z=1.0

EMUSES Kil-43 LO-93 M0-9

24 MO=1E=-7%1

21 LET K4=3.141528565

35 LET L1=2%K4%a/32

41 LET LE=K4/1%

G5 LET LS=0

51 LET L6=0

35 LET L7=0

S1 FOR M2=0 TO 2+K4-L2 STEP L2

56 LET LA=COSIM9)

Y1 LET L3=SINC(M9)

76 HEM M1,2,3 = DL ON LOOZ

Bl LET M1i=-L1%L3

B6 L.ET ¥MZ=L1%L4

91 LET M3=0

95 REM L3,9,0. = COORDS. OF LOGPF eT

101 LET L3=Aa%L4

106 LET L9=A#L3

111 BEM M4-%,6 = 2 FROM LOOP PT. T0 FIELD PT

116 LET Ma=<2-L4

121 LET MS5=Y2-L9’

126 LET M6=Z2-L0

131 LET ¥M7=S0R(MA*MA+MSEMS+ME6*M6

136, LET MA=M7%MT7%M7 ’

141 REM Kl,2,3=CROSSPRODUCT

146 LET K1=M2%M6-M3%M5 !

151 LET KE2=M3%M4=-M1%M6

156 LET K3=M1#%MS5-M2%Ma

151 REM L5,6,7=COMPS. OF =

166 LET L5=L5%MO*K1/M8

171 LET L6=L6+MO¥K2/M8

176 LET L7=L7+MO*K3/M8

181 NEXT ™9

136 RETURNM

191 END

a8
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ELMHOLZ

100 BEM HELMHLOTZ PAIR B FIELD USING SUBRQUTINE LOOFD
110 SUB. LOODPE

120 FRINT "CURRENTs LOOP HADIUSs & RIGHT SIDE COIL 7 COORD™;
130 INPUT 150520 '

140 PRINT "FIELD POINT (X.¥s,Z)*";

5O INPUT X8,Y2,2Z2

150 LET LO=Z0

17C GOsSUB #1

180 LET Bl=LS

190 LET B2=L6

200 LET B3=L7

210 LET LO=-20

220 GOsSUB #1

230 LET Bl=B1l+L5

240 LET B2=RB2+L6

250 LET B3=B3+L7

250 PRINT "B FIELD:"

270 .PRINT "  (';Bl3' L":;B2:" ,"3B33')."
280 GOTO 140
290 END
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Computer Solutions to Some Simple 1D Schrodinger Equations

EDO 58034

John R. Merrill and Gregory P. Hughes
Project COEXIST
Physics Department .
Dartmouth College
Hanover, New Hampshire 03755

ABSTRACT

The Schrodinger equation solutions for the sequence of potentials
v(x) = |x|" for n = 1, 2, --- is investigated. The eigenvalues and eigen-
functions are calculated numerically using a short program students write

themselves. The program and its results are illustrated in the note. The

ground state eigenvalues illustrate an interesting competition between

kinetic energy (wavefunction curvature) and potential energy as the exponent

n increases.

fWork supported by National Science Foundation (NSF-GJ-650)
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Introduction

The Schrodinger equation for stationary states in one dimension is
easily salved numerically using even the smallest computer. The problem
is especially simple if the potential, V(x), is symmetric so that each
eigenfunction is either of even or odd parity. The method of solution is.
very similar to iterative numerical solutions for ¥ = ma mechanics prablems.l’2
This note points out an interesting sequence of potentials which approximate
an infinite square well but have rounded corners. Eigenfunctions and eigen-
values are reported for the sequence, and a simple program which students
themselves write is presented. The sequence of lowest energies for these
potentials demonstrate a balance between kinetic and potential energy to

achieve the lowest total energy for the ground state.

Potentials

The infinite square well is a useful approximation to many physical
problems, mostly because the problem is exactly solvable. Many physical
situations, however, are more realistically modeled by a well with rounded
corners. The sequence of potentials V(x) = |x|™ for n =1, 2, 3, --- ap-
proaches the infinite square well but rounds the corners of the potential,

Figure 1 shows several of these potentials. The curves for n = 2, 6,
10, and 40 are shown.for x > 0; the infinite square well is shown for
comparison. All the potentials go through the points  (0,0) and (1,1).

As n increases, the corner for x £ 1 sharpens, and a larger region for
which V(x) is essentially zero occurs. As n increases, the potential

béyond x = 1 increases more sharply.

Program ; )
Since all the potentials are symmetric around x = 0, the eigen-

functions ‘have either even parity or .odd parity. The ground state is even,

and the excited states -alternate odd, even, odd, ---. The program to inter-

grate Schrodinger's 2quation to find an eigenfunction is very simple. The

student .demands that ¢(0) = 1 and $'(0) = 0 for even states (or ¥(0) = 0 and

o1



Pr(0) = 1 for odd statesjaz He then picks an energy and integrates the

Schrodinger equation %;g = 2(V(x) - E) in a stepwise way out the x-axis.
(All the problems discussed in this note will have-fi = m = 1.) If E is an
eigenvalue, the wavefunction will go to zero for large x; if not, the wave-
function will diverge. For energies on either side of an eigenvalue, the
wavefunction diverges to opposite signed infinities. Hence, the student
zeros in on an eigenvalue in three or four pairs of energies. Four figure
accuracy of the energy eigenvalues is typical even for the simplest pro-
grams. The wavefunctions the student derives are unnormalized.

The programs the students write can be very short. The basic inte-
gration strategy is seven lines long. Figure 2A) shows a program which steps
along the x-axis (X1) and calculates the wavefunction (PQ) at each step.

The program is in the language BASIC. The calculation of P0 uses the aver-
age of the two first derivatives(?s, P4) at the two ends of each interval

AX (L1). The calculations of the first derivatives use the average of the
potentials (V1, V3) at the two ends of the interval. The wavefunction is
assumed to vary slowly enough that its change over one step (of size Ll)

can be neglected. Figure 2B) shows changes in the program to achieve a more.
convergent numerical method. (One which is more accurate even for larger

step sizes.)

Eigenvalues:and Eigenfunctions

Figure 3 shows the energies of the.ground state, El’ and the second
excited state, E3 (the third energy level), as functions of exponent, n,
in the potential, V(x) = |x|™. Table 1 gives numerical values for these
energies. The sequence of energies is asympotic to the infinite square

242

well ( n = «) for which Em =~m8 in the present units. The values cal-

culated numerically for n .= 2, the harmonic oscillator, agree with the exact
solutivn, E_ = (m - 1/2) ¥2, to six figure accuracy using the higher conver-
gence program (four figures using the simple program). Figure 4 shows some.
of the wavefunctions calculated by the program. Even for an eigenvalue cor-
rect to six figures, the eigenfunction will still diverge for large enough
x. For eigenvalues correct to three or more figures, the wavefunction in

the region of interest (0 g_[x] <,1.5) is not significantly.changed by

O .gher eigenvalue accuracy.

IC .
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The minimum in the values of the ground state energy, El’ as a fup<tion
of exponent n has an interesting physical basis. For n between 1 and about
5, the major effect on states of low energy (E s 1) includes not only the
more steeply increasing potential beyond x = 1, but also the substantial
broadening of the region (for x < 1) where V is essentially zero. The
increasing breadth of this V ~ 0 region allows the wavefunction to spread
out and hence to decrease its curvature in the central area. This decrease
in curvature is a decrease in kinetic energy, and, for small n, is larger
than the increased potential energy experienced by the tails of the wave-
function in the classically forbidden region. Thus, initially as n in-
creases from 1, the total energy c® the ground state, El’ decreases.-

After n~v 6, most of the broadening of the V~¥0 region has been ac-
complist :d and the further broadening is progressively smaller. For larger
exponents, n, then, the cost of the increased pz=netration of the classically
forbidden region rises sharply, and the total energy of the ground state
rises accordingly. By attempting to cut off the eigenfunction tails sharply,
the wavefunction's curvature and hence the kinetic energy increase again.

For states with energies substantially greater than one, the increased
Vv~ 0 region is of much less importance. For these states, the dominant
effect, as n increases, is always the steepening of the potential beyond
X = 1. For these higher energy states, the total energy should increase
monotonically with n. The energy of the second excited state, ES’ which
is shown .in Figure 3, illustrates the dependence for these higher energy
states upon the exponent n. Figure 3 also shows that the dependence of
E, on n approaches that of higher energy states after the broadening effect

1
of V~~0 has become negligible

Conclusion

The sequence of potentials V(x) = |x|" for n = 1, 2, 3, --- has in- .
teresting properties. Not only does this sequence approach the infinité
square well (but with rounded corners), but also the stationary state en-
ergies of this seguence illustrate tie effects of competing changes in
kinetic energy (wavefunction curvature) and potential energy as the ex-

ponent n inc-eases. This note has presented a simple program to find eigen-
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functions and eigenvalues for one dimensional Schrodinger equation problems.
The method is easy to explain and is very general. This use of the computer
in introductory quantum mechanics has removed much of the mystery of solving
the Schrodinger equation, and has allowed the students 10 concentrate on

the physics of what is happening-
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TABLE 1
Ground state energy, El’ and second excited state energy, ES’ for V(x) = lxina
H=m=1.

= 1 s

1 . 809 2.58

2 . 707 3.54 CE5 = 6.36; E7 = 9.19) (h§rmcnic @scillatar

with k = 2)

3 ~675 4.20

4 .668 4.76

5 .672 5.08

6 . 681 5.40

7 692 5.66

8 . 704 5.89

9 .717 6.08

10 - 729 6.26 CES = 16.3; E, = 29.9)

1z .753 6.57

14 776 6.82

16 . 796 7.05

18 .814 7.24 -
20 .831- 7.41
30 .898 8.05
40 .942 8.48

) 1.234 11.10 (E5 = 30.8; E7 = 60.5) (= square well)

i
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Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Potentials V(x) = ]xln for n.= 2, 6, 10, and 40. The infinite
square well of width 2 is shown for comparison. For n up to
about 6, the breadth of the region where V(x) is nearly zero

increases substantially.

Program to solve 1D, stationary state, Schrodinger equation
problems. A) The program is in the language BASIC. The:

fundamental "calculatidns afe in lines 230-330. B) Replace-

ment lines for a form of the program having faster convergence.

Energy levels as a function of the exponent, n, in the potential.

El is the ground state energy; E3 is the third energy level
(the second excited state). The minimum in El near n = 6 is
discussed in the text. Both curves are asymptotic to the in-
finite square well (n = =).

Several wavefunctions for the potentials V(x) = |x|".

Toup) Ground state wavefunctions for n.= 2, 10 and 40. The
traces are halted just as the wavefunctions start to diverge.
Bottom) Second excited state wavefunctions for n = 2, 10 and
40. All traces are drawn directly by the computer from data

calculated by the program of Figure 2.
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FIGURE 1
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FIGURE 2

A) SIMPLE PRGCEDURE T@ SOLVE 1D SCHRODINGER EN.

DEF FNV(X)=XtN?

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
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LET P
LET P

LET X
LET V
LET V
LET V

!‘N"s

N9
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350 !IF N<L/10 THEN 230
350 LET N=0.
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380 IF X1<L THEN 230"

390
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END.
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B8) FOR FASTER CONVERGENCE
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REPRESENT OFFICIAL OFFICE OF EDU-

TELEPHONE - CONNECTED, TIME-SHARED COMPUTERS CATION POSITION R FO-icY

John R. Merrill
Project COEXIST, Physics Dept., Dartmouth College
Hanover, N. H. 03755

EDO 58034

This paper presents some of the preliminary results of Project COEXIST at
Dartmouth College. Project COEXIST is an NSF sponsored project to investigate
ways to use computers in introductory physics and mathematics teaching. The
computer opens up areas of studv not previously available at introductory levels.
Students use the computer in a number of ways on homework, on individual projects,
and in the laboratory. Students, vhenever possible, write their own programs. On
occasion, it is more useful to have the students programs written and saved by the
teacher.

‘Project COEXIST has made wide use of computer-connected graphic display devices
such as X-Y plotters and cathode ray terminals. This paper presents illustrations
of the Project's uses of these devices. Illustrations from a broad range of study

areas are introduced to show the versatility of these display devices.

EQUIPMENT USED

X-Y plotters of .the type used are made by several companies. They utilize

a regular X-Y analog recorder with an interface between the recorder and the conm-

puter. The interface converts digital characters éoming from the computer over

a telephone line into voltage positions on an X-Y page. The computer software

converts calculated values of X-Y coordinates to sets of ASCII characters. The:-

ASCII characters are the elements actually sent over the telephone line. Such

an analog X-Y recorder is corsiderably faster in real time (and in CFU time) than,

for example, a Cal Comp incremental system. The most important attribute of X-Y

plotter systems and graphic systems; in general, is that the graphic or plotted

output .is usually much more useful than tabulated numbers. While graphic displays

do not bave the resolution of tabulated numbers, they nevertheless convey a great

deal more information in a short time. The cost on one of these inexpensive X-Y
Q, plotter systems is about §$3300, of which the cost of the interface itself is about
$2000. A typical X-Y plotter system connected to a teletype and to an acoustical

coupler is shown in figure 1.
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FIGURE i
Teletype and X-Y plotter as used with the time-shared Dartmouth GE-635 systoia.
Software saved in the computer can be called from any program to position the
X-Y pen anywhere on the page. The final output can then be a hard copy paper
plot, graph or picture.
E
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A second graphic display device is the cathode ray Tektronix 4002 terminal.
This terminal is similar to an X-Y plotter except that it incorporates the key-
board. Also, hard copy can not be obtained from the cathode ray terminal with-
out photographic techniques or a hardware attachment. However, the cathode ray
terminal is often very much faster than an X-Y plotter, which makes the terminal
useful fer debugging, and for those situations where the student must observe
large numbers of curves. Since no inexpensive hard copy is available from the
CRT display device, the CRT will not be emphasized. Nonetheless, everything in
this paper has been performed on the CRT device, The Tektronix 4002 cathode ray

system is shown in figure 2.

ILLUSTRATIONS

Illustrations from classical mechanics, fluid fields, electrostatic fields,
geometrical optics, and physical optics have been chosen. The ways in which graphic
display devices have been used, in as broad a range of introductory physics topics
as possible, are.shown. 1In classical mechanics, students have written and used
programs on such areas as trajectory motion, strobe photograph labs (including
non-closed integrable force laws), Keplerian and non-Keplerian orbits, relativ-
istic dynamics (including relativistic motion of charged particles), acceler-
ator simulation, and a number of scattering situations. The following are results
of one sophmore-level scattering simulation laboratory.

Figure 3 shows the results of the classical scattering of point positrons off
a model of S-state Liydrogen. The atom is modeled as a point nucelus surrounded
by a uniform negatively charged sphere. The total negative charge in the sphere
exactly cancels the total charge of the point nucleus. The scattered pzarticle is
repelled from the .nucleus. The figure shows the trajectories of positrons with
an energy of .25 of the ionization energy (13.7 volts) and for various impact par-
ameters. The-scattering is entirely classical. The student becomes familiar
with the concepts of impact parameter, angular momentum, differential cross section,
total cross section, and effective potential, in a classical system. The student
then finds these concepts much easier to understand in quantum mechanical cases.
Figures such as figure 3 are used in a laboratory simulation experiment. The-
student starts with hard spheres. After plotting and understanding the trajec-
tories of hard sphere stattering, the. student then plots trajectories such as
these shown in the figure. The student measures the angle of deviation and then
7 ~ts the -number of particles scattered into 20° intervals of scattering angle

ERIC ,
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FIGURE 2

Cathode Ray Display terminal as used with the time-shared Dartmouth CE-635
system. Software saved in the computer can be called from any program to
position the light spot anywhere on the screen. The keyboard is part of the
display terminal and letters are ''printed'" by the light spot on the screen.
Hard copy is only available by photographic techniques or from a hardware
attachment. '
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FIGURE 3

Classical scattering of a point positron off a model of an S-state hydrogen atom.
The model is a point nucleus surrounded by a uniformly oppositely charged cloud.
The whole structure is neutral. The units are normalized so that the circle is
the outrside of the cloud and is one spatial unit; energy is in units of 13.7 ev.
The student plots many such trajectories and medsures angles of deviation. b is
the impact parameter. The program illustrates a classical mechanics use of dis-
" play devices.
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a3 a function of the angle of deviation. The plot is normalized in such a way

as to make it a nlot of differential cross secticn. The student gets results

like those shown in figure 4. This figure shows the number of particles scattered
into a given angle as a function of scattering angle. Notice the large number of
small angle scatterings. Since the potential is cut off by the electron screening,
the number of small angle scatterings is large but not infinite. The student

géts even better data than this shown by using smaller bin sizes and more trajec-
tories. The total cross section in the normalized units used in these plots shculd
be approximately II since the normalized radius of the model atom is 1, and the.
total cross section should be essentially HRz. If the student adds up the results
for the differential cross section, he typically gets a total cross secticn be-
tween 3.12 and 3.15. The data from this figure gives a value of 3.12. So, in
general, students dc at least as well as shown in the figure.

Figure 5 shows this same S-state hydrogen model for electron scattering.
That is, the scattered particles are attracted to the central nucleus. Notice
the peculiar looping orbits, These orbits are correct. They are not due to a.
calculational error. The student must explain these effects. The answer is seen,
most ‘easily, in the effective potential. Figure 6 shows the effective potential
for various impact parameters. The physical situation is that of figure 5. Near
an impact parameter of .9 (for a normalized energy of .25), the negative charge
just makes it over the bump. Since the radial velocity squared is proportional
to the total energy minus the effective potential, the particle slows down vradi-
ally while passing over the bump in Veff* Conservation of the angular momentum
demands that the charge wind around the nucleus -a number of times. Ultimately
the electron leaves the atom, but for angular momenta very near .9 it may take
an arbitrarily leng time to get away.’ ;

In COEXIST, graphic displays have been very useful with various field pat-
terns. The concept of vector fields has been introduced by means of flow patterns
in hydrodynamics. Figure 7 shows the pattern of .lie velocity field around a
cylindrical object placed in a uniform stream. Students plot such flow patterns
for a number of objects. Then they find densities and directions of lines to
derive the relative velocities at.different points in the pattern. In this way
the student not only acquires some information about fluid flow, but also about
various ways to represent vector fields. Vortex fields in fluid flow can often
meotivate curl discussions very well.

Figure 8 shows the plot of the electric field lines and equipotentials
around 2 two dimensional quadrupole. This program allows placing point charges

anywhere in the plane. The program then follows the field lines by integrating

bb



FIGURE 4 7=

Differential cross section as a function of scattering angle for trajectories
such as those of figure 3. The scatfering angles are grouped in 20 degree inter-
vals. The differential cross section is then the number in a bin times the impact
parameter b, divided by sin6A6. The small angle scattering is large but not in-
finite since the potential is cut-off by the charged cloud.
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FSF
FIGURE 5

Classical scattering of a point electron off the model of S-state hydrogen. The
looping orbits are real. Near an impact parameter of .9 for energy of .25 (norm-
alized units) the particle takes an arbitrarily long time to escape from the atom.

The program illustrates another of many uses of computer graphics in classical
mechanics.
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FLGURE 6

Effective potential for several impact parameters for eleciron scattering off
The cupves correspond to the trajectories shown in Fig. 5. Since the
is proportional to (Eﬁveff); the particle can take a long time

During this time, conservatioa of ancular

hydrogen.
(radial velocity)
moving in or out over the bump in Veff’
momentum forces the particle to wind meny times arcund the nucleus.
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d;:/Ex = dyjﬁy, The program follows the equipotential by a hunting routine which
follows thes squipotential contour. Programs have also been developed which follow
the equipotential by moving everywhere perpendicularly to the local electric field
lines. These programs and plots are useful in that the student very quickly gains
an intuitive grasp of the meaning of the abstract concepts of field lines and equi-
potential surfaces. Figures 9, 10 and 11 show other charge distributions that
students have found interesting and useful.

In geometrical optics we have developed pragrams to illustrate tracing
principal rays through a thin lens or spherical mirror optical system. By plotting
rays for several systems the student understands imaging much more quickly. We
have also developed true ray tracing programs in which the student can place any
number of spherical interfaces between media anywhere in the plane. The student
then starts the ray at some angle and at some position, and the program traces
the ray through the system. This program demonstrates nicely the various forms
of abberation, as shown in figure 12, The shift in focal point due to spherical
aberration is apparent.

Figure 13 shows another application of the computer to introductory geometri=-
cal optics - mirages. The program allows the index of refraction of the medium to
be a function of height. The figure shows the results for a model index of re-
fraction near heated ground. The sheet of less dense air near the ground pro-
duces a second, inverted, virtual image of any object above the surface. One
observes two objects - one at the true position of a tree; the second a mirage
image. This program can also be used to demonstrate ''looming'. Looming is an
Looming is due to a layer of warm air sandwiched between layers of cold air. The
program also illustrates reflections of radio waves off the ionospheric F layer.

In physical optics, we have programmed a number of applications of Huygen's
Principle. The student, for example, actually shows that an N-slit diffraction
pattern is produced by adding up circles centered on the slits. One can even
produce a fairly good single slit pattern with relatively short times.

Such programs have alsc led to more applied physical optics. Students have
dealt with arrays of radio antennas placed to maximize the directionality for
transmission or reception. They have studied broadside arrays and interfercmetric
radio telescope arrays. In these programs the student compares plots of intensity
versus angle, and intensity versus position on a screen. Figure 14 is a plot of
intensity versus angle for three line sources placed on a equilateral triangle of

side length = 1/2 wavelength.

Q
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Field lines and equipotential surfaces for two back-to-back linear dipoles.
The complete set of surfaces are generated by rotating the figure about an
Q axis through the charges.
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FIGURE 14

Intensity of emitted radiation versus angle from three synchronous sources
placed at the corners of an equilateral triangle of side A/2. The program
allows the student to place any number of sources anywhersz in the plane
and to choose relative intensities and phases.
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A laboratory application of the computer in introductory physical optics
is shown in figure 15. This figure shows (normalized) N-slit diffraction patterns
from 1, 2, 5 and 10 slits using the geometry and wavelength given for an intro-
ductory lab. The student measures the intensity versus position across the ob-
servation screen of an N-slit experiment using a photoresistor and a He-Ne laser.
He plots his results on top of a theoretical plot such as figure 15. The agree-

ment is good.

CONCLUSION

This paper has illustrated a number of uses for graphic dispiay devices
in introductory physics teaching. All the illustrations used inexpensive X-Y
plotter systems connected to the computer. The programs have also been performed
on a CRT terminal. Some of the plots also have been performed on the teletype
itself. Hopefully, a large number of examples of the use of graphic display de-
vices illustrates the importance of these devices better than volumes of words
and perhaps these examples will trigger other examples in the reader's mind. A
glance at a plot often leads to more understanding than a long look at a series
of numbers in tabular form.

A short comparison of the three methods of plotting we have used might be
helpful. The CRT device is faster than either the X-Y system or the teletype.
It is useful for debugging and for situations where large numbers of curves must
be displayed quickly. The CRT is, incidentally, essentially silent when compared
to a teletype, but also relatively expensive when compared to a teletype and an
X-Y ploiter. The X-Y recovder plotting system is much faster, in general, than a
teletype and has much higher resolution. It automatically gives the student a
hard copy of his results for further deduction. It could well become the work
horse of introductory teaching applications. The plots are easy to handle, scale
and even label on the computer if the student wishes. The teletype itself can
be used to plot some curves; often however, the resolution available is insuf-
ficient to show anything but coarse behavior. Nonetheless teletype plotting is
a useful way to introduce students to plotting in general and can be very useful

in debugging plotting routines fairly quickly.
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FIGURE 15

student laboratory, The student measures intensity
d a Simpson meter; he then compares his results to

2, 5 and 10. s1dt. diffraction patterns for data from a

he sereen Hy using a phiotoresistor an

yersus position on t ,
The program llustrates one of many ways computer display

- »plots such as tliese,

evices are used in physical =




