
DOCUMENT RESUME

ED 058 034 SE 012 698

AUTHOR Merrill, John R.
TITLE [Use of Computers in Introduct ry Physics

Teaching.]
INSTITUTION Dartmouth Coll., Hanover, N.H. Dept. of Physics.
SPONS AGENCY National Science Foundation, Washington, D.C.
PUB DATE [711
NOTE 80p.

EDRS PRICE ME-$0.65 HC-$3.29
DESCRIPTORS College Science; *Computer Assisted Instruction;

*Computer Oriented Programs; Educational Technology;
*Instructional Materials; *Physics; *Teaching
Procedures

IDENTIFIERS Project COEXIST

ABSTRAcT
This paper presents some of the prellminary results

of Project COEXIST at Dartmouth College, an NSF sponsored project to
investigate ways to use computers in introductory physics and
mathematics teaching. Students use the computer in a number of ways
on homework, on individual projects, and in the laboratory. Students
write their own programs, whenever possible- On occasion, it is more
useful to have the student programs written and saved by the teacher.
Five areas of work are described: (1) illustrations from a broad
range of study areas are introduced to show the versatility of
computer-connected graphic display devices such as X-Y plotters and
cathode ray terminals; (2) a simple, intuitive approach to the
propagation of waves in dispersive media is shown; (3) a program is
described which can be used to calculate a large number of
interference and diffractive patterns; (4) general methods are given
to find a map field patterns for general distribution of charges and
current loops; and (5) solutions are found to some simple Schrodinger
equations using a computer program. (Author/TS)



U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATIONPr%

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON on ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR °PIN-

CE)
IONS STATED DO NOT NECESSARILYLe%
REPRESENT OFFICIAL OFFICE OF EDU-c)

%la

CATION POSITION OR POLICY.

Waves in Dispersive Media: Another Use of Computers in

Introductory Physics

John R. Merrill
Project COEXIST
Physics Department
Dartmouth College
Hanover, N. H. 03755

ABSTRACT

This note presents a simple, intuitive approach to the propagation of waves

in dispersive media. The method Fourier analyzes a wave pulse, propagates each

component according to its wave-vector dependent phase velocity, and then esyn-

thesizes the wave train. The method uses a computer to perform the algebra;

program which minimizes central processor time while maximizing the intuitive

content of the calculation is-given in the Appendix.



I. Introduction

Wave propagation is usually limited to non-dispersive media in introductory

physics. This limitation is primarily due to the complexity of the algebra of

dispersive media. Similarly, Fourier analysis Is usually just mentioned in

most introductory physics courses. At most, Fourier analysis is applied to a

few simple periodic functions. Again the limitation is essentially due to the

complexity of the algebra involved -- not the sophistication of the concepts.

Both dispersive wave.theory and Fourier analysis are fairly simple in concept

but algebraically complicated in practice.

This note demonstrates a simple, straight-forward way to introduce wave

propagations through dispersive media by means of Fourier transforms. A simple

computer program is introduced which Fourier analyzes the pulse, propagates each

wave-veetor component separately and then resynthesizes the wave. The student

supplies the initial pulse shape and a formula for the wave-vector dependent

phase velocity of the wave. The program has been used in second semester physics

courses with students ranging from pre-medical majors through physics majors.

Sophisticated students are able to understand the program and are able to write

their own versions.

Use of this computer approach has deepened the student's understanding of

n Tlilispersive wave theory as an approximation to real physical situations. The

student's intuitive understanding of expansion processes such as Fourier analysis

has also been strengthened.

II. Results

Figure I shows a triangular pulse propagated through a medium of lightly

dispersive properties. The phase velocity of the wave is slightly wave-vector

dependent in the form V(k) = Vo (14-.0lk). The top curve in Figure I (curve a)

is a plot of the initial pulse shape at t=0. The origin of the spatial
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coordinate (X=0) lies at the center of the figure and the right and left sides

of the figure correspond to ±411. All the figures are scaled this way and,

within each figure, curves are offset vertically for clarity. Curve b of

Figure'I is the real part of the Fourier spectrum of the initialpulse; for the.

simple pulses shown as illustrations, there are no imaginary parts to the Fourier

transforms. Curves c, d, e, f, and g in Figure i show the pulse after 2, 4, 6, 8

and 10 units of time has passed. The pulse moves to the right as exPected, and,

due to the disper-on of the propagation medium, the pulse distorts as time pro-

gresses. Components of the wave with wave-vectors greater than the average k

vector (k=0 in this case) propagate faster than the average of the pulse; lower

wave-vector components fall behind. The propagation accentuates the average

wave-vector component and produces ripples preceding and following the pulse.

This simple model of a lightly dispersive medium corresponds roughly to the

edges of an optical absorption band. The present calculation. does not include

absorption itself, but the program is easily modified to include such effects.

Figure 2 shows the same triangular pulse undergoing ten times stronger.

dispersion. Now-V(k) = Vo(1+.1k) and the effects of dispersion are quite

striking. Curves a and b are again the initial pulse and the real part of its

Fourier transform. Curves c.- f show the pulse after 2, 4, 6 and 8 units of

time have passed. The distortion of the pulse follows the lines discussed in

Figure I. Again the k=0 component is accentUated and higher and lower-k com-

ponents run ahead and fall behind respectively.

Figure-3 sh0Ws :the effects of the stronger dispersion on a simple model

of 'a wave packet. The original pulse (curve a) is two and one-half cycles ofa.

cosine Wave. The (real Part of the).Fourier tranSform,demo strates.the peaking

near.wave-vector components cif the basic coSine wave-. The Fourier transform also

illustrateS which wave vector components_must-be included in order to produce a

Simple pulse from a cosine wave train. Curvesc, d and e (part.B of Figure 3)

show the real (or cosine) part.of the pulse after propagation times of 2; 4 and

3



--4-

6 time units. Again the student observes the spreading of the pulse under the

dispersion V(k) = V0(14-.1k). The spreading now accentuates the wave-vector com-

ponents in the pulse near those of the basic cosine wave train, Figure 3C (curves

f through h) shows the imaginary (or sine) part of the resynthesized pulse after

4 and 6 time units. Figure 3 illustrates that dispersion not only effects the

pulse envelope but also the phase relations within the pulse, The student can a

also examine Vke2+ IM or the relative phase as function of position for various

times. He can.demonstrate energy conservation by examining the total energy in

the pulse as a function of propagation time.

Figure 4 shows the effect.of propagating phonon wave packets with several

basic.wave-vectors k
o
through a one-dimensional lattice. The dispersion relation

w vs.k for lattice waves determiningthe wave ector.dependent phase velotity:

V(k)=sin (ka/2)/k. Figure 4A shows the initial pulse (curve a) and the Fourier

transforiL(curve b) for a wave packet whose basic wavelength is considerably

longer than the lattice spacing (koa = 1 so that X7 211a). The Fourier trans-,

form is again peaked near k = , and all but a small fraction of the wave-

vector components in the pulse have essentially the same phase velocity. The

sharp changes in the initial pulse (i.e. the high wave-vector components) are

influenced by dispersion, but the pulse shape-remains approximately the same as

time progresses. Curves c and d of Figure 4A show the pulse after.12 and 24

time units of propagation.

Figure-4B shows the samp information as Figure 4A except that the basie

wave length of the pulse is now somewhat-closer to the lattice spacing

(k
O
a = 2 Now a non-negligiblp fraction of the-Fourier components are prop-

agated-with different velocities. The propagated pulse (curves g and h) is

Substantially distorted, and the motion ef the center of thp=pulse (the group

velocity) is noticably less.



Figure 4C shows what happens when the basic wave-length is very near the

lattice spacing (k0a=3). The Fourier transform (curve j) now has peaks near

the Bragg reflection planes, and the propagated pulses (curves k, 1 and m having

propagation times of 12, 24, 36 units) are highly distorted. The group velocity

is close to zero (as suggested by dw/dk at this point). The accentuation of

the basic wave-vector is apparent.

Similar dispersive effects in other areas of physics can also be examined.

The student can observe the distortions of quantum mechanical wave packets as

time progresses or of electromagnetic waves in plasmas and the ihonosphere. An

interesting example is the propagation of a helicon or whistler wave pulse.

The dispersion relation for that magneto-plasma wave has to proportional to k 2 .

The d. c. component of the wave packet sits still and the, two dominant k values

(±k0) in the pulse propagate away.

Figure 5 is a simple test of, the procedure which occurs to almost all

students. The dispersion of the medium for Figure 5 is zero, that is V(k) Vo.

The initial pulse keeps its shape when propagated either fnrward in time

(curves c and d for +2 and +4 time units respectively) or backward in time

(curve e for -6 time units). The imaginary or sine part of the resynthesized

pulse is everywhere zero on the scale of this figure. Because the method of

numerical integration is approximate "ghost" (illegitimate replica) of the

pulse occur for sufficiently large positive and negative wave-vectors. The

infinite integral for the Fourier transform is approximated in the present

program -by a finite sum from -51I to +511 in steps of 11/16. This approximation

is sufficient for most applications; a better approximation costs more central

1
processor time to accomplish



III. Method

A few comments on the computer method may be useful. The computer strategy

is very simple; a form of the program in the Dartmouth form of the language BASIC

is given in the Appendix. The program calculates the Fourier integral by the

trapezoidal rule since the trapezoidal rule is more accurate than Simpson's rule

for nearly periodic functions
2

. The limits on the integral sum and the number

of partitions are chosen:to fellow reasonable detail in the pulse structure and to

keep "ghosts" away from the region of intersect. To use the program, the stu-

dent'defines the original pulse shape as two functions FNR and FNI, the real and

imaginary parts of the initial pulse. These functions are used to fill two

ectors (R( ) and I( )) whose elements are called repeatedly in the Fourier

transform routine. The use of vectors is considerably faster in central processor

ti_o than repeated calls of the defined functions themselves. In programs which

calculate Fourier integrals, every shortening of time is advantageous.

Fourier transforms need sines and cosines repeatedly. SIN and COS functions

are quite slow on most machines and so vectors (S( ) and C( )) are used. The

sines and cosines obtained this way are only accurate to one degree, but this

accuracy is usually sufficient The INT function used to find the right sine

or cosine element is usually a very.fast function. Another fast form of sine

and cosine, this one using the angle sum formulas, is used to fill the sine

and cosine vectors initially.

After calcuLating and storing the real and imaginary parts of the Fourier

transform the transform is printed out as tables. Each Fourier component_is

then propagated the correct amount using the phase velocity V(k) and the user

supplied time. Finally, the resultant, resynthesized pulse is printed. The

final result is the pulse as propagated the given time through a medium.of

supplied dispersion. On the Dartmouth GE635 system, each set of Fourier trans-

forms (which ,produces a complete spectrum or.curve) takes about five central



processor seconds so the student can examine several different propagation times

during one RUN.

This computer method is fairly fast and introduces the student to program-

ming methods which conserve computer time. The student is also introduced to

real problems in numerical integration, to the practice of Fourier transform

theory and to the effects of wave propagation in dispersive media.

IV, Conclusion

This note has presented a simple computer approach to the theory of waves

propagated through dispersive media. The introductory student sees dispersive

media as an extension of and a comparison to the non-dispersive wave propagation

usually introduced in text books. The program given in the Appendix has been

used by numbers of students ranging from pre-meds to physics majors at the in-

troductory level. The response has been favorable. The program and illustrations

of dispersive wave phenomena are useful from introductory physics courses

through upper level solid state, plasma, and quantum mechanics courses.
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FOOTNOTES

1 Using the trapezoidal rule of integration, either larger limits on the integral

sum or a finer mesh leads to more central processoi time. Other integration

schemes can be used. Gaussian-Hermite quadrature using order one-hundred gives

about as good results as the trapezoidal rule; clever use of the Gaussian scheme

seems to gain about a factor of two in CPU time. The author has not used

Gaussian quadrature with classes since the integrations in the program are then

complicated to describe. For discussions of more sophisticated integration

schemes see A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas, Prentice-

Englewood Cliffs, New Jersey, 1966.

2
For comments on this and'other points having to do with numerical analysis

see B. Carnahan, H.A. Luther, and J. O. Wilkes, Applied_Numerical Methods,

Wiley and Sons, Inc., New York, 1969.



CAPTIONS

Figure I. Propagation of a triangular pulse through a lightly dispersive medium.

a) showsthe original pulse; b) shows the real part of the Fourier transform of

the initial pulse; c) through g) show the pulse after 2, 4, 6, 8, and 10 units

of time have passed. The distortion of the pulse is due to the dispersive nature

of the propagation medium. The zero of spatial and Fouriel- transform coordinates

is at the center of the figure; the left and right sides of the figure correspond

to -4H and 1-411 respectively. All the figures are scaled this way. Curves are

separated vertically for clarity.

Figure 2. Propagation of a triangular pulse through a strongly &_spersive medium.

a) shows the original pulse; b) shows the real part of the Fourier transform;

c) through f) show the pulse after propagating 2, 4, 6, and 8 units of time.

Figure 3. Propagation of a wave packet through a strongly dispersive medium.

A) shows the original pulse and the real part of its Fourier transform. The

Fourier spectrum is peaked near plus and minus the wave-vector of the cosine

part of the pulse shape. B) The real or cosine part of the pulse after prop-

agating 2, 4, and 6 units of time. C) The imaginary or sine part of the pulse

after propagating 2, 4, and 6 units of time.

Figure 4. Propagation of a phonon wave packet through a one-dimensional lattice.

A) Shows the initial pulse, its Fourier spectrum, and its propagation for 12

and 24 time units. This pulse has a wavelength substantially longer than the

lattice spacing so the distortion is minimal. B) Shows the effects on a pulse

whose basic wavelength is nearer the lattice spacing. The distortion is more

noticeable .and the group velocity is smaller. C) Shows the effects on a pulse

whose basic wavelength is nearly the lattice spacing. The distortion is large,

and the group velocity is nearly zero.

Figure S. Propagation of a triangular pulse through a non-dispersive medium.

The original pulse and its Fourier transform are shown. The pulse after 2 4

and -6 units of time are also shown. The similarity in pulse shapes gives the

student confidence in the simulation method.
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F GURE 3C
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FIGURE 5
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APPENDIX

WAVES

-19-

100 REM PROGRAM FOURIER TRANSFORMS A WAVE PULSE AND THEN PROPAGATES EACH110 REM FOURIER COMPONENT SEPARATELY IN TIME. THE VELOCITY CAN BE WAVE-
120 REM NUMSER DEPENDEJT SO THAT THE RESULT IS A DISPERSIVE MEDIUM OF130 REM PROPAGATION. WRITE THE INITIAL PULSE SHAPE INTO FNR,FNI = THE
140 HEM REAL 4 IMAGINARY PARTS OF THE PULSE, ANP WRITE THE (Ft DEPENDENT)
150 REM VELOCITY IN THE PLACE INDICATED.
150 PRINT "PROGRAM CALCULATES THE FOURIER TRANSFORM (BOTH REAL AND"
170 PRINT "IMAGINARY PARTS) FOR THE WAVE PULSE DEFINED IN FNR FNI."
180 PRINT "IT PRINTS OUT THE FOURIER TRANSFORM 4N0 THEN THE RESULT"
190 PRINT "OF PROPAGATING THE PULSE THROUGH A DISPERSIVE MEDIUM."
200 PRINT
210
220 aEm FNR,FNI=RE,IM PARTS OF FN. TO BE TRANSFORMED
230 DEF FNR(X)
240 LET FNR=0
250 LET X2=1
26e IF (X-X2)*(X+X2)>0 THEN 280
270 LET FNR=1-ABS(X/X2)
260 FNEND
290 DEF FNI(X)=0
300
310 REM DEFINE SEVERAL PARAMETERS RELATED TO PI
380 LET P9=3.14159265
330 LET p8.e*p9
340 LET P7=P9/16
350 LET P5=Sc1R(P8)
350 LET P5=5*P9
370
380 aEm FILL FUNCTION VECTORS
390 DIM R(500),I(500)
400 LET I0=0 0

410 FOR X0=-P5 TO P5 STEP P7
420 LET I0=I0+1
430 LET R(I0)=FNR(X0)
440 LET I(I0)=FNI(X0).
450 NEXT X0
450
470 'REM FILL SIN &COS LISTS
480 DIM C(360).5(360)
490 LET P0=P8/360
500 LET C1=COS(P0):
510 LET- S1=SIN(P0)
520 LET C(0)=1
530 LET St0)=0
540 LET. C2=1
550 FOR I=1 TO 360
560:LET C3=C2
570 LET C2=C2*C1-S2*S1
580 LET S2=S2*C1+C3*S1
590 LET CCI)=C2

19
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;WAVES (CONTINUED)

600 LET 5(T)=S2
610 NEXT I

620
630 REM CALC. FOUR. TRANSF. FOR RANGE OF K'S
640 PRINT "K","RE(F.T.)".."IM(F.T.)"
650 DIM F(500).G(500)
660 LET 19=0 'COUNTER
670 FOR K0=-P5 TO P5 STEP P7
580 LET 19=19+1
690 LET I1=0 'REAL F.T.
700 LET 12=0 'IMAG F.T.
710 LET 10=0
720 FOR X0=-P5 TO P5 STEP P7
730 LET I0=I0+1
749 LET K9=K0*X0
750 LET K8=INTC(K9-INT(K9/128)*P8)/P0)
763 LET C0=G(1(8)
770 LET S0=SCK8)
780 LET R8=R(I0)
790 LET R9=I(I0)
800 LET R1=C0*R8-50*R9
810 LET R2=C0*R9+S0*R8
820 LET I1=I1+R1
830 LET I2=I2.R2'
840 IF (X0-P5)*(XO.P5)41.0 THEN 870
850 LET I1aII-R1/2
860 LET 12012-R2/2
870 NEXT X0
880 LET I1=I1*P7/P6
89'0 LET I2=I2*P7/P6
930 LET F(19)=I1
910 LET G(19)=I2
915 IF INT((19-1)/8)4.(19--01.)/8 THEN 930
920 PRINT 110,11,12
930 NEXT HO
940
950 REM RESYNTHESIS AFTER PROPAGATING EACH FOUR. COMPONENT960 REM RY AN AMOUNT V(K)*T
970 PRINT
980 PRINT " TIME"'
990 INPUT T1
995 PRINT "X"."WAVE(COS)"."WAVE(SIN)"
1000 FOR X1=-5 TO 5 STEP .5
1010 LET 11=0
1020_LETA2=0
1030:LET 10=0
1040 FDR 1C0=.425 TO 125STEP P.!v
1050A.ET 10=10+1
1060 RE1 ***PUT V(K) BETMEEN HERE
1070AZT V0a1...01*R0



-3-
WAVES (CONTINUED)

1080 REm ***AND HERE
1090 LET K9=K0*(X1-v0*T1)
1100 LET K8=INT(

(K9-INT(K9,0P8)*P8)/120)1110 LET C0=C(K8)
1120 LET S0S(K8)
1130 LET R8=FC10)
1140 LET R9=G(I0)

.

1150 LET R1=C0*R8+S0*R9
1160 LET R2=C0*R9-S0*R81170 LET I1=II+R1
1180 LET I2=I2+R2
1190 IF (110-1,5)*(KO+P5)4200 THEN 12201200 LET r1=11-R1/2
1210 LET I2=12-R2/2
1220 NEXT KO
1230 LET I1=I1*P7/P6
1240 LET I2mI2*P7/P6
1250 PRINT X1a11aI2
1260 NEXT X1
1270 GOTO 980
1280 END

21.
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ABSTRACT

This note presents a simple program which can be used to calculate a

large number of interference and diffraction patterns. Several applications

of the method are discussed; radio antennas are emphasizecL In class use,

the student writes his own program and calculates intensity patterns for

interference systems of interest to him .

t
Work supported by the National Science Foundation Foundation (NSF-GJ-650)
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Introduction

This note describes some uses of the computer in practical applications
of wave interference. Although the applications discussed are complicated

to handle in closed, analytic form, they are easy to understand with the

computer. The.computer.program propagates waves elut from any number of

wave sources to some point on a large sphere. The program then adds the

amplitudes of all the.waves (including phase) at that point, squares the

result to get the total intensity, and averages over a complete cycle of the

sources. One straightforward practical application of this method is to

"broadside arrays" of radio antennas. 1

Most students have seen broadside arrays. A radio station will place

a number of antennas in an equally spaced row, the plane of the antennas

facing a city. The station feeds the antennas with radio frequency currents

of certain relative amplitudes and phases. The result is a highly directional

transmission of the station's power, usually directly toward the city.

The simplest broadside array feeds equal amplitude, in-phase currents

to the N antennnas. The antennas.are often one-half wavelength apart. The

transmission pattern is the N slit diffraction pattern. It is common to

express the transmission pattern as a polar plot of.intensity versus angle.

around the sources. Plotting the results in this way-affords the student

a comparison to typical diffraction patterns in physics which show the

intensity pattern across a screen placed parallel tothe plane of wave
sources (or slits).

Results:

Fiigure 1 shows the polar plot of theftransmission pattern for two

antennas separated by.two wavelengths and fed with.equal amplitude, in-phase
currents. There are two sets of three maximum intensity lobes in the-for-

ward and backward directions; there are broad maxima in the side directions.

This is also a.polar plot for.the intensity pattern of a double slit dif-

fractioniexperiment (narrow slits placed A/2 apart).

2 3



Figure 2A shows a more common broadside array - four antennas placed

half wavelengths apart and fed equal, in-phase currents. The increased

directionality is clear from the polar plot of intensity. Figure 2B is

the polar plot for a "binomial broadside array" in which the currents fed

to the antennas are in the retio of binomial coefficients,
1

The trans-

mission pattern has no power wasted in side lobes; all the intensity is

radiated in the forward and backward directions.

More complicated arrays are sometimes used. The "optimal array" has

a complicated set of relative amplitudes of the feed currents. Two dimen-

sional arrays are sometimes used, usually at high radio frequencies. The

student can even consider Yagi-Uda arrays such as those used in TV recep-

tion antennas. The reception pattern of an antenna system is simply re-

lated to its transmission pattern. The method presented here can also

be applied to interferrometric radio telescopes, interference patterns

through thin films, or the diffraction pattern of the sound emitted from a

loud speaker. Using secondary waves, the student can model intensity

patterns in auditoria. In all these problems, the method adds up waves

from a finite (but sometimes large) number of distinct sources having

different relative amplitudes and phases.

Program

All the cases mentioned above can be treated by a very simple com-

puter prOgram. Figure 3 is such a program in BASIC. The relative ampli-

tudes of the N wave sources are stored in the vector A( ); the relative

phases are stored in P( Y; and the positions of the sources are stored

in X( ) and Y( ). The wavelength of the waves is L. The program cal-

culates the intensity IO (averaged over a period of the wave) at 10 degree

intervals.(angle.T) around a circle of radius 10. The average over one

cycle in phase is performed by the FOR-NEXT loop on PO. The fundamental

loop.which adds the wave amplitudes from the N sources is lines 230 through

290 (7 statements). As written, the program calculates the intensity as

a fUnction of angle for two source interference. Figures 1 and 2 were

plotted directly from output of a.program such as that shown in Figure 3.

2 4



Conclusion

The program discussed in this note can be used with the smallest

computers. The method is easy to explain even to the most mathematically

unsophisticated students. The method of the program is entirely general

and covers a very large number of applications of interference and dif-

fraction phenomena.

References

1
-See Reference Data for Radio Engineers, H.P. Westman,

Telephone and Telegraph Corp., N. Y., N..Y. (1967).
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Captions

Figure 1. Polar plot of the intensity pattern for two sources, two

wavelengths apart. The program allows any number of sources

to be placed anywhere in the plane; the program then cal-

culates a polar intensity pattern.

Figure 2. Polar plot of the intensity pattern for four element radio

antenna broadside arrays. The antennas are placed half

wavelengths apart so maximum transmission is in the forward

and backward directions. A) Simple broadside array.

B) Binomial broadside array.

Figu e 3. BASIC program to calcula e interference patterns. The

positions XC ), YC ) of the N wave sources which emit

waves of wavelength L, relative amplitudes A( ), and phases

P( ) are READ in from DATA. The fundamental loop adding the

waves from the sources is lines 230 through 290.

26
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FIGURE
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F I GURE 3

100 REM SIMPLE VER ION OF 1 VS ANGLE
110 kEAD N,L
120 FOX 1=1 TO N
130 READ X(I),Y(I),A(I),P(I)
140 NEXT I
150 DATA 2)1
160 DATA .5,0,1. - 5,0, l 0
170 PRINT "ANGLE","INTENSITY"
180 FOR T=0 TO 6.28318 STEP 3.14159/18
190 LET X0=10*COSCT)
200 LET Y0=10*SIN(T)
210 LET 10=0
220 FOX P0=0 TO 6.28318-3.1415(;/8 STEP 3.14159/8
230 LET A=0
240 FOR 1=1 TO N
250 LET X=X0-XCI)
260 LET Y=YO-YCI)
270 LET X=50KCX*X.I.y*y)
280 LET A=A+A(I)*SIN(6.2831 L + P )

290 NEXT
300 LET I0=I0+A*A
310 NEXT PO
320 PRINT 180*T/3.14159.10/8
330 NEXT T
340 END
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INTRODUCTION

Past.publications concerning the uses of the computer in field mappings

have stressed particular geometries for the charge distributions
1

This note

presents general methods to find and map field patterns for general distributions

of charges and current loops. Two fundamental programs are presented with il-

lustrations of the student's uses of both. Both programs use subroutines as

building blocks so that the student can write programs using very simple calls

to subroutines. The programs are given in appendices in the language BASIC

as implemented on Dartmouth's time-sharing computer system.
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GENERAL ELECTROSTATIC FIELDS

The first program allows students to map electric field lines and equi-

potentials for an arbitrary number of point charges placed anywhere in the

plane. The program could also map fields of line charge distributions.or any

combination of line charge and point charge distributions. The program just

needs an expression for the electric field h)- (due to the charge distribution)

everywhere in space. Thus the program can perform the calculations for uni-

formly charged spheres,-if one Wishes

The strategy of the program is as follows!

The program to follow electric field lines first chooses the start-

ing point Tor the field line; second, calculates the electric field in the

X anclY directions at that point; third, uses the differential equation for a

field line to take a small step (along the field line) vo a new point in space.

Finally, the program goes back to the second step and repeats the calculation.

For-equipotentials, the program first chooses the_starting coordinates

for the equipotential; then, seOend, calculates the, electric field at that

point; then, thirdi moves a small stepTerpendiculat to the electric field E

to find a neW point on the equipotential. Finally the calculation goes Back

to the second step and repeats itself:

The method only needs to calculate the electric field at each point in

space. The steps taken along the field lines or equipotential surfaces must

be-small enough to be treated as differentials. This latter demand is.more

simply stated by saying that the numerical-approximation t_ the integration

of the differential equation must. converge. The initial dhoice of starting

coordinatc may be a set of inputted coordinates X, Y or could be the result

of a hunting routine to find, say, some point on .the 2 volt equipotential.

Figures 1 thru 4 show the.results uf diese calculations for several con-

figurations uf point charges. Figure 1 is the field lines and equipotentials

for three, equal, positive charges placed on.the corners.of an equilateral
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triangle. Notice that the starting points for the equipotentials were choosen

in such a way that equal steps in potential occurred. Figure 2 shows the field

lines and equipotentials for a system of four, equal, positive charges placed

on the corners of a square. Figure 3 shows the field lines and equipotential

surfaces in the-plane of a two dimensional quadrupole(two positive and two

equal, negative charges on opposing corners of a square). Notice that the

starting points for the field lines were not chosen quite symmetrically. Fig-

ure 4 shows the.field lines and equipotential surfaces in the plane of a one

dimensional quadrupole(two back-to-back dipoles).

Charge distributions 'even as simple as these are not usually given in

introductory physics courses simply because of the complication of the closed

form solutions to these problems. Using the iterative terliniques, outlined

above, the problem is not only tractable but even easy for the introductory

student to understand and to compute by himself.

CRITICAL PARTS OF THE STRATEGY

Two separate parts of these calculations deserve a little attention.

First, how does one calculate movement along a field line? Consider taking a

step AS from a point X,Y at which the electric field has components Ex, and

E . Using the fact that the triangle with sides dX, dY, and dS is similar to

the triangle having sides E
x'

E
y

and 1/E
x

+ E f

AX = ASCEx/ E+y--)

AY. = AS(E +E-)
y x y

Finally, then, the new coordinates X,Y are just the old coordinates X,Y plus

AX and AY. The fact that E lines are everywhere tangent to the electric

field leads to these simple equations for integrating along a field line.
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This process is easily introduced te a student. The student can then use the

procedure as a subroutine, which is general enough to be available for any .

field mapping problem.

The second part of the calculation which deserves a little attention is

following an equipotential. Consider stepping the distance AS perpendicular

to the electric field -g at the point X,Y. Use the fact that the slope of a

line perpendicular to a line of slope.K has, in turn, the slope -I/K. Then

for a step AS along the perpendicular to the electric field one has

AX = -AS(E /it Z+E 2'
Y x Y

AY = +AS(E /i/E 2+E
x x y

Finally, again the new X,Y is just the old X,Y plus AX and Y.

Using subprograms such as these, the student can write his own programs

to perform more complicated calculations of various types. Appendix I shows

such a program finding electric field lines and equipotentials for an arbitrary

point charge distribution. The program is written in the Dartmouth form of

the language BASIC. Notice that, since this form of the language BASIC has

global variables, the alls to subroutines are more cumbersome then they are

in languages such as FORTRAN. This is one of the few cases in which FORTRAN

is easier for the student to use than is the language BASIC. Some newer

forms of BASIC will USe local variables in subroutines.

GENERAL MAGNETOSTATIC FIELDS

The second fundamental program reported in this note calculates the

magnetic field -g at any point in space due to a current loop (which is par-

allel to the X,Y plane at some point Z). Th program simply uses the Biot-

Savart law and integrates around the current loop. The student then uses
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this program (as a subroutine) to calculate magnetic fields due to such

current loop configuration as Helmholtz pair, or even a short solenoid (treated

as a number of separate loops placed next to each other along the Z axis).

Another interesting program calculates the field at some point X,Y,Z due to

a straight wire segment. When used as a subroutine, this straight wire pro-

gram can do another set of interesting current geometries.

After calculating the magnetic field B at some point, the student can

call the field line subroutine, considered above, and then plot field lines

for the coil configuration. Figures 5 and 6 show plotted results from pro-

grams such as these. Figure 5 is a magnetic field line pattern for a single

loop around the origin. This problem is sufficiently complicated that in

closed form it is not normally given to introductory students. Again, since

the calculation is, first of all, iterative and, second of all, based on using

subroutines as building blocks in programs, the introductory student has no

difficulty understanding this approach to a fairly complicated problem. Fig-

ure 6 is the magnetic field lines for a Helmholtz pair. Notice that the

homogeneity in the central field region is clear, as is also the symmetry of

the inhomogeneous part of the field. Other interesting figures can also be

introduced. For example, if the student treats a short solenoid as a series

of current-loops placed near each other, not only does he observe (in the

plotted field lines) the obvious homogeneity and additive character of the

field from the various loops, but he also sees immediately the effects of

his apprOximation. Because the student has made discrete what is more closely

approximated by a continuous current loop distribution, there is imposed on

the homogeneous field an inhomogeneous ripple with the periodj ity of his

chosen-loops.
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MAGNETIC LOOP SUBROUTINES

The strategy of the subr utine which calculates the magnetic field at a

point )C,Y,Z due to a current loop is as follows: The program, first, breaks

the loop into segments. The program then takes the cross product of the loop

segment and the )C,Y,Z vector from the origin to the observation point. The

program then divides by R
3

and sums the result over the loop segments. This

subroutine is very easy to program and is also very easy for the student to

understand. Having written the subroutine, the student simply calls this

subroutine (and perhaps others) to plot field lines. The student uses a

building block approach, putting blocks together to form the structure he

wishes. Appendix II contains a loop subroutine and a program which calls

this subroutine and calculates the magnetic field at any point in space due

to a single loop.

CONCLUSION

This note has pre ented several programs to solve general field mapping

problems in electrostatics and magnetostatics. Students are encouraged to

write programs as blocks using the subroutine capabilities of even simple

languages such as BASIC. The student can then write driver programs (main

programs) which are both particularly simple and also intuitively easy to

understand. The student reponse to systems such as this has been very good.

Cal ulations based on these programs have instilled in the students a much

deeper, and more intuitive understanding of field patterns due to electric

charge distributions and magnetic fields.
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Captions

Figure 1 Electric field lines and equipotentials in the plane of three, equal

point charges on the corners of an equilateral triangle. The equi-

potentials are in equal steps (+1,2,5,4 and 5 in normalized units);

the field lines start at equal angles around each charge. The cen-

ter of the figure is marked with a cross.

Figure 2 Electric field lines and equipotentials in the plane of four, equal,

point charges on the corners of a square, The equipotentials are in

equal steps (+1,2,3 and 4 in normalized units); the field lines

start symmetrically at equal angles around each charge. The center

of the figure is the cross.

Figure 3 Electric field lines and equipotential surfaces in the plane of a

two-dimensional quadrupole (equal but opposite point charges on

alternating corners of a square). The equipotentials are in equal

steps except for the outermost set; the equipotentials displayed are

.1, .5,1.0, 1.5. The electric field lines do not start precisely

symmetrically and their shape far from the charges is sensitive to

the asymmetry.

Figure 4 Electric field lines and equipotentials in a plane containing a

onedimensional quadrupole (two dipoles head-to-head). Again the

field lines are very sensitive in the far region to small asymmetries

in the choice of starting point.
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Figure 5 Magnetic field lines in a central plane due to a circular current

loop. The loop is perpendicular to the page and is centered on

the middle; two dots mark the places where the loop cuts the page.

The pattern is symmetric under rotations around the central field

line.

Figure 6 Magnetic field lines in a central plane of a Helmholtz pair. The

pair is perpendicular to the page; four dots mark the points where

the loops cut the page. The central homogeneity of the field pat-

tern is clear as is the symmetry of the inhomogeneous part of the

pattern.
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Appendix I

E8VSUES

FIFLD,LINES & OUIPOTE: "TALS USING SUBROUTF ,-
0 sun fLIDLINFOVEPERP

120 PFM (FNX,F'NY)=(EX,EY)
1:30.7.DFF FNMX,Y)=X/CH*R*F,)
140 DEF FNY(X,Y.)=Y/(R*R*F)
150 PRINT "X","Y"
160 REM FIELD LINE PART
70, PRINT "INITIAL POINT

180 .INPUT
190'IF X1=999 THEN 370'
200 LET N=0
210.LET.'NI=0
220 'LET FI=0
30.LET F2=0.

240 LET FO=.1
250 LET R=1

0 LET F3=FNX(X +Fl 2,Y1+F2/2)
P70 LET F4=FMY(X +F1/20YI+F2/2)
20 GOSUB #1
290, LET N1=N1+1
300 .IF NI<5 THEN
310.LET N1=0
.320 PRINT X1,Y1
330 LET M=N+1
340,IF W<10 THEN
350 -GOTO 160
360'STOP
370.REM EOUIPOTEATIAL'PA T
380-.PRINT "INITIAL-POINT ON EC-1 I-V (),Y.; TO END)".;
390INPUT X1.,y1
400 IF X1=999 THEN 560
410.REM:FOLLOWS- tpui-v 13? MOVIPG .PER- 0 E
1120 LET N=0
430. LET NI=0
440 LET M9=.1
450)-ET R=1
-460:LET.M7=FNXCX1+ /2,Y1+M6/2)
470A,ET M8=FNYCX1+ 5/2,Y1+M6/2)
460 _GOSUB #2
490-.LET N1=N1.+1
5001F NI-410 .THEN..540
51.0ET N1=0.
520 PiiINT XI,Y1
.530 LtT.M=N+1
5.40JF 460
5F-0.09T9 380
560 ENTJ

DO EQUI-U)''.
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._ _NEXT P T
REM GIVE XI ,Y 1 (PRESENT) , TO

C'F FTFInXnJY
REm ETTER CONVERGENCE IF* GIVE FIELDLaEn__USL_N_G _1 AS , E_11) ri2 REM USES FC3-75

31 LET
36 LET F1=FC*F3/F5

45 LET X 1=X1I-F1

55 RETURN

MOVE ALONG LINE, AND
ri T I (IS J.-intro-9

1/2 E,TEP AHEAD OF PRES .
T_ILL_S__SILBROLLTLNE
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OVET

r
NG PERP . TO A GIVEN LINE

I R En _si.r.9R OLLTI - . NEX:E_X _

REM CALCS NEW PT. A DIST . M9 ALO
PF",1 AT GTVFN_ PT, (XI ,Y1)

6 REM GIVE PROG X1 ,Y 1 (PRESENI
R a' cr:17_,_1s) 7,VEL TOJE fl NI u_o_a_TALa

26 REM PROGRAM RETURNS X1,Y1(NEW)

36 LET M-4:--SOR (M7*M7+MS*g)

46 LET M5-zi19>(-M8/M4)

55 LET X1=X1+M5
cf.3 RFT_URA_
66 END

M:DST TO
,_u_Ntr AT p

AND M5 ,M6(DX,DY)
,rYlqki
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LOOFELD

100 2--lEm GIVES FIELD LIJES ir XZ -3LANE FOR SINGLE LOOP
110 =JEN AOUNO OaIGIN IN X? FLA '--USES STIROUTIMES

.120 'SUB LOOPB;FELDLINE
130 PliINT "CURizENT, & RADIU'
140 INPUT I'A
150 LET L0=0
160 LET FO=.05
170 PRINT "INITIAL POINT C it;

1,30 INPUT X.1..Z1
190 LET N=0
200 LET N1=0
210 PRINT "X".."Z"
220 LET ,C2=X14-F1/2
230 LET Y2=0
240 LET 7.2=141+E2/2
250 GOSU.9 #1
260 LET F3=L5
270 LET F4=L7
230 LET Y1=7.1
90 GOSUB 42

300 LET 2:1=Y1
310 LET NI=N11+1
320 IF N1-45 THEN 360
330 LET N1=0
340 LET N=N+1
350 PRINT X1,Z1
360 IF N10 THEN 220
370 PRINT
330 QOTO 170
390 END



LOOPS

1 REN SU8RIOUTIME--CP-1,C6. B OF LOOP OT GIVN POINT
6 REM GIVE ICCiJRRENf),Ai,kADIUS..(2,'f2,42)=FIELD PT., ANn 1CJ7 OF LOOP
11 IEM.4=ETL;NS L5,L6,1 =( SX:11Y,8) AT ((2,Y2,Z2)
16 -HEM'LOOP -IS PARALLEL TO ',Vt PLANE ("\T PT. Z=LO
21 i'EM'.USES LO-'); MO-9
26 LET. MO=IS-7*I
31 LET-K4=3.14.15?,265
34 LET L1=2*K4*A/32
/41 LET L2=K4/1

LET'L5=0-
51 LETt6=0
66 LET L7=0
51 F0h,M9=0 TO 2441.<4.7.L2 STEP L2
66 LET L4=COSCM9)
71 LET-L3=SIN(M9)
76 HEM-M1h243 = DL,ON LOOP
81 LET M1=1,1*L3
86 LET 7j12.-=L1i4L4
91 LET M3=0
96 REM-- LS,-9,0.=,GOORDS. OF LOOP PT
L01 LET L;3=A*L4-
106 LET L9=A*L3
111-.1EM = 11 FROM LOOP PT. TO FIELD PT
116 LET M4.---X:2-'1,8
121 LET MS=Y2L9'
i26 LET M6=7,21-0
13I-LET M7=5ORICM4*M44.M5tM5+ 6 M6)
136,LET l'.1=M714M7*M7
i4I,1E1 K1,2,3=CROSSPRODUCT
146 LET K1m2M2*M6M3*15
151.LET K2=M3*M4-1l*M6
156 L.ET K3=MI*M5-M2*M4
161 REM L5,6,7=JCOMPS. OF E
166. LET.L5=L54'MO*Kl/M8
171 LETA-.6=L6+MO*K2/M8..
176 LET L7'-4L74-MO*K3/M8
181 NEXT M9
186 RETURN
191 END
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HELMHOLZ

100 REN1 ELM L T. PAIR B 'FIELD USING SUBROUTINE LO 1-1

110 SUB L0OPF3
120 "CUENT2 LOOP HADI0 111G4T SIDE COIL 2 COOhD.";
130 INPUT
140 PI-INT "FIELD POINT (X.Y,Z)";

INPUT X2,Y2..Z2
150 LET LOg--7,0
170 GOSUU 111
180 LET 131=L5
190 LET 82=L6
200 LET 83=L7
210 LET L0=-ZO
220 GOSUB #1
230 LET 13I=B14-L5
'=)z;', LET B2=327FL6
250 LET 83=B3-PL7
260 PRINT "B FIELD:"
270PRINT C";B1;" .13 " .";B3;').
260 GOTO 140
290 END
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ABSTRACT

The Schrodinger equation solutions for the sequence of potentials

V(x) = lxIn for n = 1, 2, is investigated. The eigenvalues and eigen-

functions are calculated numerically using a short program students write

themselves. The program and its results are illustrated in the note. The

ground state eigenvalues illustrate an interesting competition between

kinetic energy (wavefunction curvature) and potential energy as the exponent

n increases.
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Introduction

The Schrodinger equation for stationary states in one dimension is

easily solved numerically using even the smallest computer. The problem

is especially simple if the potential, V(x), is symmetric so that each

eigenfunction is either of even or odd parity. The method of solution is .

very similar to iterative numerical solutions for F = ma mechanics problems.
1,2

This note points out an interesting sequence of potentials which approximate

an infinite square well but have rounded corners. Figenfunctions and eigen-

values ae reported for the sequence, and a simple program which students

themselves write is presented. The sequence of lowest energies for these

potentials demonstrate a balance between kinetic and potential energy to

achieve the lowest total energy for the ground state.

Potentials

The infinite square well is a useful approximation to many physical

problems, mostly because the problem is exactly solvable, Many physical

situations, however, are more realistically modeled by a well with rounded

corners. The sequence of potentials-V(x) = IxIn for n = 1, 2, 3, --- ap-

proaches the infinite square well but round3 the corners of the potential.

Figure 1 shows several of these potentials. The curves for n = 2, 6,

10, and 40 are shown.for x '0; the infinite square well is shown for

comparison. A 1 the potentials go through the points,(0,0) and (1,1).

As m increases, the corner for x <_ 1 sharpens, and a larger region for

which V(x) is essentially zero occurs. As n increases, the potential

beyond x = 1 increases more sharply.

Program

Since all the potentials are symmetric around x = 0, the eigen-

functions have either even parity or odd parity. The ground state is even,

and the excited states alternate odd, even, odd, The program to inter-

grate Schrodinger's iquation to find an eigenfunction is very simple. The

student demands that 4)(0) = 1 and 40(0) = 0 for even states (or 4(0) = 0 and



40(0) = 1 for odd states He then picks an energy and integrates the

d2tp
Schrodinger equation -72-d) 2(V(x) - E) in a stepwise way out the x-axis.

(All the problems discussed in this note will have-15= m = 1.) If E is an .

eigenvalue, the wavefunction will go to zero for large x; if not, the wave-

function will diverge. For energies on either side of an eigenvalue, the

wavefunction diverges to opposite signed infinities. Hence the student

zeros in on an eigenvalue in three or four pairs of energies. Four figure

accuracy of the energy eigenvalues is typical even for the simplest pro-

grams. The wavefunctions the student derives are unnormalized,

The programs the students write can be very short. The basic inte-

gration strategy is seven lines long. Figure 2A) shows a program which steps

along the x-axis (X1) and calculates the wavefunction (PO) at each step.

The program iS in the language BASIC. The calculation of PO uses the aver,

age of the two first derivatives(0, P4) at the two ends of each interval

Ax (Ll). The calculations of the first derivatives use the average of the

potentials (V1, V3) at the two ends of the interval. The wavefunction is

assumed to vary slowly enoUgh thatits change over one step (of size L1)

can be neglected. Figure 24)shows changes in the program to achieve a more.

convergent.numerical method. (One which is more accurate even for larger

step sizes.)

Ei5envalues'and EigenfunctIons

Figure 3 shows the energies of the.ground state, El, and the second

excited state, E3 (the third energy level), as functions of exponent, n,
1 in

in the potential, V(x) = jxi Table 1 gives numerical values for these

energies. The sequence of energies is asympotic to the infinite square

m2n2
well ( n = 00) for which Em in the.present units. The values cal-

culated numerically for n.= 2, the harmonic oscillator, agree with the exact

solutiun, E
m

= On - 1/2) IT, to six figure accuracy using the higher conver

gence program (four figures using the simple program). Figure 4*shows some

of the wavefunctions calculated by .the program. Even for an eigenvalue cor-

rect,to six:figures, the eigenfunction will still diverge for large enough

x. For eigenvalues correct to three or more figures, the wavefunction in

the region of interest (0 < Ix! 1.5) is not significantly.changed by

higher eigenvalue accuracy.
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The minimum in the values of the ground state energy, El, as a function

of exponent n has an interesting physical basis. For n between 1 and about

5, the major effect on states of low energy (E A,1) includes not only the

more steeply increasing potential beyond x = 1, but also the substantial

broadening of the region (for x < 1) where V is essentially zero. The

increasing breadth of this V 0 region allows the wavefunction to spread

out and hence to decrease its curvature in the central area, This decrease

in curvature is a decrbase in kinetic energy, and, for small n, is larger

than the increased potential energy experienced by the tails of the wave-

function in the classically forbidden region, Thus, initially as n in-

creases from 1, the total energy c-c the ground state, El, decreases,

After n6, most of the broadening of the V "40 region has been ac-

complisd and the further broadening is progressively smaller. For larger

exponents, n, then, the cost of the increased penetration of the classically

forbidden region rises sharply, and the total energy of the ground state

rises accordingly, By attempting to cut off the eigenfunction tails sharply,

the wavefunction's curvature and hence the kinetic energy increase again

For states with energies substantially greater than one, the increased

V, 0 region is of much less importance. For these states, the dominant

effect, as n increases, is always the steepening of the potential beyond

X = 1. For these higher energy states, the total energy should increase

monotenically with n. The energy of the second excited state, E3, which

is shown,in Figure 3, illustrates the dependence fbr these higher energy

states upon the exponent n. Figure 3 also shows that the dependence of

E on n approaches that ef higher energy states after the broadening effect
-1
of V "-,0 has become negligible

Conclusion

The sequence of potentials V(x) = 'WI for n = 1, 2, 3, --- has in-

teresting properties. Not only does this sequence apprOach the infinite

square well (but with rounded corners), but also the stationary state en-

ergies of this sequence illustrate tie effects of competing changes in

kinetic energy (wavefunction curvature) and potential energy as the ex-

ponent n inc-eases. This note has presented a simple program te find eigen-



functions and eigenvalues for one dimensional Schrodinger equation problems..

The methbd is easy to explain and is very general, This use of the computer

in introductory quantum mechanics has removed much of the mystery of solving

the Schrodinger equation, and has a!lowed the students to concentrate on

the physics of what is happening.
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TABLE 1

Ground state energy, El, and second excited state energy,

= m = 1,

-6-

for V(x) = IXIn

El

1 .809 2.58

2 .707 3.54 = 6,36', B7 = 9,19) (harmonie oscillator
with k .= 2)

.675 4.20

.668 4.70

.672 5.08

6 681 5.40

7 .692 5.66

8 .704 5.89

9 .717 6.08

10 .729 6.26 = 16.3; E7 = 29.9)

12 .753 6.57

14 .776 6.82

16 .796 7.05

18 .814 7.24

20 .831 7.41

30 .898 8.05

40 .942 8.48

1.234 11.10 = 30.8, E = 60.5) (co square well)



Captions

Figure 1. Potentials V(x) = IxIn for n.= 2, 6, 10, and 40. The infinite

square well of width 2 is shown for comparison. For n up to

about 6, the breadth of the region where V(x) is nearly zero

increases substantially.

Figure 2. Program to solve 10, stationary state, Schrodinger equation

problems. A) The program is in the language BASIC. The

fundamental-calculatiens ate in lines 230-330. B) Replace-

ment lines for a form of the program having faster convergence.

Figure 3. Energy levels as a function of the exponent, n, in the potential.

Eisthegroundstateenergy;-E3 is the third energy level-1
(the second excited state). The minimum in E

1
near n = 6 is

discussed in the text. Both curves are asymptotic to the in-

finite square well (n =

Figure 4. Several wavefunctions for the potentials V(x) = Ix111.

Top) Ground state wavefunctions.for 11:= 2, 10 and 40. The

traces are halted just as the wavefunctions start to diverge.

Bottom) Second excited state wavefunctions for n = 2, 10 and

40. All traces are drawn directly by the computer from data

calculated by the program of.Figure 2.
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FIGURE

HA) SIMPLE PROCEDURE TO SOLVE 1D -14RODINGER E N6

100 DEF FNVCX)=XtN9
110 PRINT "N";
120 INPUT N9
130 PRINT "END OF INTERVAL, STEP IZE";
140 INPUT L,L1
150 PRINT "INITIAL WAVErNoi DICRIV.."1
160 INPUT 'PES,P9
170 PRINT "ENERGYHI
1$0 POUT C
190 LET POPP8
200 LET P4IIP9
210 LET X11,0
220 LET V1aFNV(0)
230 LET V30V1
240 LET V1.FNVCX1.14.1)
270 LET P8s2*C(V14.V3)13 E 44:0
280 LET 1230P4
310,LET 04=124.0122%1
3201LET.POIRP04,44.*IP4.P3 2
330-LET X11011+0.:
340.LET N*N4L1'.
3501F N4L/10 THEN 230
360 ;LET N*0..
370 ;PRINT X1J130
320 IF X141. THEN 230
390 !GOTO 170 '

400;END:

B) iOR FASTER CONVERGENCE

240 LET=V10FNVCX14L1,
250 LET V4WNV(X14.L1/4)
260 'LET V2*4VCX1+L1/E)
270 LET 122*G*C((V141.V3)/24.V2 2 E)*P0
280 LET 133w4/4
290 LET P502*CCCV24,V31/24.V4) 2 - E')*P0
300 LET P60P4+P5*L11$
310, ;LET 124P4+P2411,
320'LET P0EIP0+1.1*CCP4 P3 134496)/2
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This paper presents some of the preliminary results of Project COEXIST at

Dartmouth College. Project COEXIST is an NSF sponsored project to investigate

ways to use computers in introductory physics and mathematics teaching. The

computer opens up areas of study not previously available at introductory levels.

Students use the computer in a number of ways on homework, on :individual projects,

and in the laboratory. Students, v:henever possible, write their:own programs. On

occasion, it is more useful to have the students programs written and saved by the

teacher.

Project COEXIST has made wide use of computer-connected graphic display devices

such as X-Y plotters and cathode ray terminals: This paper presents illustrations

of the Project's uses of these devices: Illustrations from a broad range of study

areas are introduced to show the versatility of these display devices.

TELEPHONE-CONNECTED TIME-SHARED COMPUTERS

John R. Merrill
Project COEXIST, Physics Dept., Dartmouth College

Hanover, N. H. 03755

EQUIPMENT USED

X-Y plotters of-the type used are made by several companies. They utilize

a regular X-Y analog recorder with an interface between the recorder and the com-

puter. The interface converts digital characters coming from the computer over

a telephone line into voltage positions on an X-Y page. The computer software

converts calculated values of X-Y coordinates to sets of ASCII characters. The-

ASCII characters are the'elements actually sent over the telephone line. Such

an analog X-Y recorder is corsiderably faster in real time (and in CPU time) than,

for example, a Cal Comp incremental system. The most important attribute of X-Y

plotter systems and graphic systems, in general, is that the graphic or plotted

output.is usually much more useful than tabulated numbers. While graphic displays

do not have the resolution of tabulated numbers, they nevertheless convey a great

deal more information in a short time. The cost on one of these inexpensive X-Y

plotter systems is about $3300, of which the cost of the interface itself is about

$2000. A typical X-Y plotter system. connected to.a teletype and to an acoustical

coupler is shown in figure 1.
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FIGURE i

Teletype and X-Y plotter as used with the time-shared Dartmouth GE-635 syst:..in.
Software saved in the computer can be called from any program to position the
X-Y pen anywhere on the page. The final output can then be a hard copy paper
plot, graph or picture.
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A second graphic display device is the cathode ray Tektronix 4002 terminal.

This terminal is similar to an X-Y plotter except that it incorporates the ke

board. Also, hard copy can not be obtained from the cathode ray terminal with-

out photographic techniques or a hardware attachment. However, the cathode rar

terminal is often very much faster than an X-Y plotter, which makes the terminal

useful for debugging, and for those situations where the student must observe

large numbers of curves. Since no inexpensive hard copy is available from the

CRT display device, the CRT will not.be emphasized. Nonetheless, everything in

this paper has been performed on the CRT device, The Tektronix 4002 cathode ray

system is shown in figure 2.

ILLUSTRATIONS

Illustrations from classical mechanics, fluid fields, electrostatic fields,

geometrical optics, and physical optics have been chosen. The ways in which graphic

display devices have been used, in as broad a range of introductory physics topics

as possible, are-shown. In classical mechanics, students have written and used

programs on such areas as trajectory motion, strobe photograph labs (including

non-closed integrable force laws), Keplerian and non-Keplerian orbits, relativ-

istic dynamics (including relativistic motion of charged particles), acceler-

ator simulation, and a number of-scattering situations. The following are results

of one sophmore-level scattering simulation laboratory.

Figure 3 shows the results of the classical scattering of point positrons off

a model of S-state hydrogen. The atom is modeled as a point nucelus surrounded

by a uniform negatiVely charged sphere. The total-negatve.charge in the sphere

exactly cancels the total charge of the point nucleus The scattered particle is

repelled from the-nucleus.. The figure shows the trajectories of positrons with

an energy.of .25 of the ionization energy (13.7 volts) and for various impact par-

ameters. The-scattering is entirely.classical. The student becomes familiar

with the concepts of impact'parameter, angular momentum, differential cross section,

total cross sectim, and effective potential, in a classical system. The student

then finds these concepts much easier to understand in quantum-mechanical cases.

Figures such as figure 3 are psed in a laboratory simulation experiment. The-

student starts with hard spheres. After plotting and understanding the trajec-

tories of hard.sphere scattering, the.student then plots trajectories such as

these shown.in the figure. The student 'measures the angle of deviation and then

plots the-number of particles scattered.into 200 intervals of scattering angle



FIGURE 2

Cathode fay Display terminal as used with the time-shared Dartmouth GE-635
system. Software saved in the computer can be called from any program to
position the light spot anywhere on the screen. The keyboard is part of the
display terminal and letters are "printed" by the light .spot on the screen.
Hard copy is only available by photographic techniques or from a hardware
attachment.
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FIGURE 3

Classical scattering of a point positron off a model of an S-state hydrogen atom.
The model is a point nucleus surrounded by a uniformly oppositely charged cloud.
The whole structure is neutral. The units are normalized so that the circle is
the cyJtcide of the cloud and is one spatial unit; energy is in units of 13.7 ev.
The student plots many such trajectories and meAsures angles of deviation. b is
the impact parameter. The program illustrates a classical mechanics use of dis-
play devices.
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a function of the angle of deviation. The plot is normalized in such a way

as to make it a plot of differential cross secticn. The student gets results

like those shown in figure 4. This figure shows the.number of particles scattered

into a giveh angle as a function of scattering angle. Notice the large number of

small angle scatterings. Since the potential is cut off by the electron screening,

the number of small angle scatterings is large but not infinite. The student

gets even better data than this shown by using smaller bin sizes and more trajec-

tories. The total cross section in the normalized units used in these plots should

be approximately H since the normalized radius of the model atom is 1, and the-

total cross section should be essentially 11R2. If the student adds up the results

for the di2ferential cross section, he typically gets a total cross section be-

tween 3.12 and 3.15. The data from this figure gives a value of 3.12. So, in

general, students de at least as well as shown in the figure.

Figure 5 shows this same S-state hydrogen model for electron scattering.

That is, the scattered particles are attracted to the central nucleus. Notice

the peculiar looping orbits. These orbits are correct. They are not due to a

calculational error. The student must explain these effects. The answer is seen,

most 'easily, in the effective potential. Figure 6 shows the effective potential

for various impact.parameters. The physical situation is that of figure S. Near

an impact parameter of .9 (for a normalized energy of .25), the negative charge

just makes it.over the bump. Since the radial velocity squared is proportional

to- the total energy minus the effective potential, the particle slows down radi-

ally while passing over the bump in Veff. Conservation of the angular momentum

demands that the charge wind around the nucleus-a number of times. Ultimately

the electron leaves the atom, but for angular momenta very near .9 it may take

an arbitrarily long tiMe to get away.

In COEXIST, graphic displays have been very useful with various field pat-

terns. The concept of vector fields has been introduced by means of flow patterns

in hydrodynamics. Figure 7 shows the pattern of e velocity field around a

cylindrical object placed in a.uniform stream. Students plot such flow patterns

for a number of objects. Then they find densities and directions of lines to

derive the relative velocities at.different points in the.pattern. In this way

the student not only acquires some information about fluid flow, but alsb about

various ways te represent vector fields. Vortex fields in fluid flow can often

motivate curl discussions very well.

Figure 8 shows theplot ef the electric field lines and equipotentials

around a two dithensional quadrupole. This program allows placing point c.harges

anywhere-in the plane. The program then follows the field lines by integrating



FIGURE 4

Differential cross section as a function of scattering angle for trajectories
such as those of figure 3. The scatiering angles arP grouped in 20 degree inter-
vals. The differential cross section is then the number in a bin times the impact
parameter b, divided by sineAe. The small angle scattering is large but not in-
finite since the potential is cut-off by the charged cloud.
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FIGURE 5

Classical scattering of a point electron off the model of S-state hydrogen. The
looping orbits are real. Near an impact parameter of .9 for energy of .25 (norm-
alized units) the particle takes an arbitrarily long time to escape from the atom.
The program illustrates another of many uses of computer graphics in classical
mechanics.
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f.fective potential for several impac7t parameters for electron scattering off
hydrogen. The cuFes corresnor:d to the trajectories shown in Fig: 5. Since the
(radial velocity) is proportional to (E-V

ff
) the particle can take a long time

e

moving in or out over the bump in V
eff.

During this time, conservatio.i of arcular

momentum forces the particle to wind many times around the nucleus.
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dx/E
x

= cy. , The program follows the equipotentiel by a hunting routine which

follows the equipotential contour. Programs have also been developed which follow

the equipotential by moving everywhere perpendicularly to the local electric field

lines. These programs and plots are useful in that the student very quickly gains

an intuitive grasp of the meaning of the abstract concepts of field lines and equi-

potential surfaces. Figures 9, 10 and 11 show other charge distributions that

students have found interesting and useful.

In geometrical optics we have developed programs to illustrate tracing

principal rays through a thin lens or spherical mirror optical system. By plotting

rays for several systems the student understands imaging much more quickly. We

have also developed true ray tracing programs in which the student can place any

number of spherical interfaces between media anywhere in the plane. The student

then starts the ray at some angle and at some position, and the program traces

the ray through the system. This program demonstrates nicely the various forms

of abberation, as shown in figure 12. The shift in focal point dae to spherical

aberration is apparent.

Figure 13 shows another application of the computer to introductory geometri-

cal optics - mirages. The program allows the index of refraction of the medium to

be a function of height. The figure shows the results for a model index of re-

fraction near heated ground. The sheet of less dense air near the ground pro-

duces a second, inverted, virtual image of any object above the surface. One

observes two objects - one at the true position of a tree; the second a mirage

image. This program can also be used to demonstrate "looming". Looming is an

upside down mirage and probably explains most sightings of the "Flying Dutchman".

Looming is due to a layer of warm air sandvdched between layers of cold air. The

program also illustrates reflections of radio waves off the ionospheric F layer.

In physical optics, we have programmed a number of applications of Huygen's

Principle. The student, for example, actually shows that an N-slit diffraction

pattern is produced by adding up circles centered on the slits. One can even

produce a fairly good single slit pattern with relatively short times.

Such programs have also led to more applied physical optics. Students have

dealt with arrays of radio antennas placed to maximize the directionality for

transmission or reception. They have studied broadside arrays and interferometric

radio telescope arrays. In these programs the student compares plots of intensity

versus angle, and intensity versus position on a screen. Figure 14 is a plot of

intensity versus angle for three line sources placed on a equilateral triangle of

side length = 1/2 wavelength.
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Field lines and equipotential surfaces for two back-to7back linear dipeles.
The complete set of surfaces are generated by rotating the figure about an
axis thrOugh the charges.
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FIGURE 14

Intensity of emitted radiation versus angle from three synchronous sources
placed at the corners of an equilateral triangle of side N/2. The program
allows the student to place any number of sources anywhera in the plane
and to choose relative intensities and phases.
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A laboratory application of the computer in introductory physical optics

is shown in figure 15. This figure shows (normalized) N-slit diffraction patterns

from 1, 2, 5 and 10 slits using the geometry and wavelength given for an intro-

ductory lab. The student measures the intensity versus position across the ob-

servation screen of an N-slit experiment using a photoresistor and a He-Ne laser.

He plots his results on top of a theoretical plot such as figure 15. The agree-

ment is good.

CONCLUSION

This paper has illustrated a number of uses for graphic display devices

in introductory physics teaching. All the illustrations used inexpensive X-Y

plotter systems connected to the computer. The programs have also been performed

on a CRT terminal. Some of the plots also have been performed on the teletype

itself. Hopefully, a large number of examples of the use of graphic display de-

vices illustrates the importance of these devices better than volumes of words

and perhaps these examples will trigger other examples in the reader's mind. A

glance at a plot often leads to more understanding than a long look at a series

of numbers in tabular form.

A short comparison of the three methods of plotting we have used might be
helpful. The CRT device is faster than either the X-Y system or the teletype.

It is useful for debugging and for situations where large numbers of curves must

be displayed quickly. The CRT is, incidentally, essentially silent whon compared

to a teletype, but also relatively expensive when compared to a teletype and an

X-Y plotter. The X-Y recorder plotting system is much faster, in general, than a

teletype and has much higher resolution. It automatically gives the student a

hard copy of his results for further deductiOn It could well become the work

horse of introductory teaching applications. The plots are easy to handle, scale

and even label on the computer if the student wishes. The teletype itself can

be used to plot some curves; often however, the resolution available is insuf-

ficient to show anything but coarse behavior.. Nonetheless teletype plotting is

a useful way to introduce students to plotting in general and can be very useful

in debugging plotting routines fairly quickly.
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