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=his volume gives a Jeralled specificatlien of the LUGQ vrogrammlng
system. The level of deseriptlon is intended o enable system
programrers to deslgn LGGO processors of thelr owxn, and 1o carry
implementatlon through to within the innermost levels of "nleky"
detalls. Thus, while the discussion of sterage allocatlion and
garbage collection algorithms is virtually complele, the resder
willl net find the answers t¢ myriads of guestions like: »eal
happens 1 one erases a nonexistent procedura? Guestler: ax this
level of detall are best answered by looking at the system jlstings
directliy.

The mozt complete desceriptions, the annotated LOID system listings
of existing verslons of LOGO, may be obtained on request. We have
¥We have already previded program listings (and, in fact, actual
programs) to a number of university research centers wlth PDP=10
computer systems.

The BEN PDP-10 LOGO system was implemented by Walter B. Welner
with the assistance of Faul Wexelblat and Charles R. Morgan.
Earlier versions were implemented on the PDP-1 in LISP by Danlel
Bobrow and in assembly language by Richard Grant and Charles R.
Morgan, assisted by Paul Wexelblat. Thls document was writven
by Walter B. Weiner and Charles R. Morgan. Wallace Feurzelg
contributed extensively to the organization ana exposition.
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0. Introduction

Since its introduction in 1967, interest in the LOGO programming
ianguage has grown steadily and rapidly. Partvicular interest
has been shown by mathematiclans, computer scientists, and
educators. Individuals representing several institutions have

asked us how they could get LOGO processors on their own computer
systems.

We seek, through this document, to help make LOGO generally
available by elaborating a virtually complete design for a LOGO
processor. We have tried to describe the processor algorithms
plainly and clearly so as to make the underlying operation of
LOGO accessible to researchers and teachers, as well as system
programmers. At the same time, we have provided more-detailed

information for use by system programmers who will be implement-
ing LOGO processors.

The structure of LOGO programs and data 1lmposes special require-
ments on the design of a reasonably efficient processor. An
essential aspect of the LOGO language 1s the connectlve structure
of user-defined procedures. Procedures can be recursively
embedded and chained -- in principle to arbitrary depth. Thus,
LOGO programs can generate a long string of procedure links (&
large control stack). DMoreover, programs can generate a long
list of strings of varied lengta. Care is therefore required in
the design to provide efficient use of both time and space. The
discussion and examples throughout the text lllustrate the

ratlionale for specific choices made to satisfy these general
requirements.



The main body of the document describes the algorithms for parsing
and execution of LOGO instructions, and for storage allocation

and garbage collection of LOGO programs and data. (Flow diagrams
for the main algorithms are appended.) The discussion leads to
the remarkable resulit that a single LOGO processor design is
virtually universal and near-optimal.

-

The appendices include lists of LOGO commands, operations, names,
and abbreviations for a complete and a minimal LOGO.

03 .
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1. Processing an Input Line

All data in LOGO are represented as strings. This includes
literals, names, abbreviations, comments, and procedure names.
It also includes outputs of operations and inputs to operations,
commands, and procedures. Input lines are also strings. An
input line is a string of characters terminated by a carriage

return or any other line terminator. This string of characters

comes from either the terminal or a file. When a line 1is com-

plete, all redundant spaces are removed. The line is then parsed
to identify and separate the elements.

T B T e e Y

TR

The elements include literals, names, comments, names of commands

and operations, names of procedures defined by the user, and
noise words such as OF, AND, AS, (, ), used to clarify expres-
sions. The following example shows how an input line 1is parsed.

The type of each element is shown in parentheses.

; PRINT FOO OF BUTFIRST OF "THE QUICK BROWN FOX"

% Element Type

3 (1) PRINT ( COMMAND)
(2) FOO (PROCEDURE )
(3) OF (NOISE WORD)
(4) BUTFIRST (OPERATION)
(5) OF (NOISE WORD)
(6) "THE QUICK BROWN FOX" (LITERAL)

After the input line is parsed, 1t is executed as follows.

(1) TFetch the first element PRINT: it needs one input.
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(2)

(3)

()

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Fetch the next element FOO. This is a procedure previously

defined by the user as follows.
«TO FOO /ANYTHING/

>1 PRINT /ANYTHING/

>2 OUTPUT BUTLAST OF /ANYTHING/
>END

FOO needs one 1lnput.

Fetch the next element OF, noise word (i.e., has no effect).
It is valid here.

Fetch the next element BUTFIRST: 1t needs one input.
Fetch OF, noise word. It is valid here.

Fetch the iiteral "THE QUICK BROWN FOX'". This is the input
for BUTFIRST.

Invoke BUTFIRST. It outputs "QUICK BROWN FOX'. This 1is
the i1nput for FOO.

Tnvoke FOO. Make its input, /ANYTHING/, the literal "QUICK
BROWN FOX'".

Fetch the first instruction line of FOO (PRINT /ANYTHING/) -

Fetch the first element of this line, PRINT: 1t needs one
input.

Fetch the next element of the line, JANYTHING/. This is a
name. Its value, '"QUICK BROWN FOX", is the input to PRINT.
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(12) 1Invoke PRINT. PRINT prints out its input. It has no
output.

(13) ' Fetch the next instruction line of FOO (OUTPUT BUTLAST OF _ =
JANYTHING/) . ' k!

(14) PFetch the first element of this line, OUTPUT: 1t needs
one input.

(15) Fetch the next element of iae line, BUTLAST: it needs one
input.

(16) Fetch the next element of the line, OF. This is a noise
word. It is wvalid here.

(17) Fetch the next element of the line, /ANYTHING/. This is a

name. Its value, "QUICK BROWN FOX'", is the input to
BUTLAST.

(18) 1Invoke BUTLAST. It outputs '"QUICK BROWN'",

(19) Invoke OUTPUT. It outputs its input, '"QUICK BROWN", and
terminates execution of the procedure FOO.

(20) Invoke PRINT. PRINT prints out its input, the output of
FOO, ﬂQUICK BROWN'', It has no output.

(21) Done. (The execution phase is complete.) ' :

As shown above, LOGO processes an input line element by element,
fetching the elements it needs to invoke all the commands, opera-
tions,'and procedures encountered. If the first element of the




igput line 1s a number (that is, an unsigned integer), the line
s ot executed lmmediately but is stored with the procedure
purrently belng defined. In either case, LOGO continues by

processing the next input line.
2. Parsing a Line

The Tirst stage in processing an input line consists in parsing
the text string into a list of its elements. These elements
inelude literals, names, comments, noise words, and names of
eomeands, operations, and procedures. Literals are enclosed in
qupLes; names are enclosed in slashes; comments are enclosed in
gemleclons; nolse words and names »f commands, operations, and
procedures are not enclosed in special marks. An element is
buwilt up by scannling the successive characters of the text string
ard accumulating them by using the following logic.

Look at the fiprst character of the string to see if it is a
space, ", /5 3» (, ), <r end of line character (EOL). If it is
4 space, ignore it. If it is a " or /, it denotes the beginning
P 3 literal or name. In either of these cases, scan successive
eharacters and accumulate them to form an element, stopping when
the next " or / 1s seen, and ignoring certain spaces encountered
4long the way (those immediately after the beginning " or /,
thoze immediately before the terminal " or /, and all those
exeept the first space whenever several occur in succession).

I1f an EOL character is encountered before a subsequent " or /,
exit and generate an error message. After the element is
c@mpleted, ereate an associated list element containing the type
{iiteral or name) of the element just formed and a string pointer
te it.

10.



§» is a ;, this denotes the beginning of a comment. Once again,
build up the element string from successive Characters just as
with literals or hames. In this case, however, there are two
legal terminators -- an EOL as well as a closing ;. The 1ist

element associated with the string identifies the string as a
comment and points to its location in storage.

B s e i

If the first Character encountered in forming the next element

is a ( or a ), it denotes the beginning or end of a presumed

s R L e,

eéxpression. In either case, generate a 1ist element identifying
the specific character, i.e., the left or right parenthesis.
This element subsequently will direct the EXECUTE subroutine to
brocess the subexpression appropriately.

If the first character encountered in forming the next element
is an EOL, and there was a line number asséciated with the text
string, store the 1line in the proceduyre currently being defined
or edited. (If there is no such procedure, type out an error
comment. ) Then, in any case, exit from the parsing procedure.

If the first character encountered in forming the next element
is not one of these special delimiters, this means we are build-
ing up either the rname of a command, operation, or procedure or
a line number or a number literal. We proceed to build up a

string element from Successive characters until we encounter any

one of the following delimiters —— space, (, ), ", /, ;, EOL.
These delimiters cannot be inside a number or a command, operation,
Oor procedure name., '(As in the case of literals, names, and

comments, these built-up strings are stored without preceding or
terminating delimiters.)

11,




After the string is built up, we determine whether or not it Is

a number. A number consists entirely of digits except possibly

for a leading + or -. If it is a number without a leading sign
and it is the first element on the line, we indicate that what

we are building up will be a stored line of a procedure definition.
If it is not the first element of the line, it is a number

literal and we handle it in the same way as a guoted literal.

If the string is not a number string, we check to see whether

it is an abbreviation. To do this, we look for it in the user's
abbreviation table and, if it i1s not there, in the LOGO system's
abbreviation table. If we find the string listed in either
table, it is effectively replaced in the line by the thing 1t
abbreviates, and that part of the line is re-parsed.

If it is not an abbreviation, it must be a command, operation,
or procedure name or & nolse word. We first look for it in a
table of LOGO commands and operations. (Noise words are listed
with the LOGO commands.) If it is there, we create a list
element in the list we are building that identifies the command
or operation by its position in the command table. If it is not
there, it i1s treated as the name of a user procedure. It is
looked up in the user proceduré table; if it is not already
listed there, it is added to the table. Then a list element 1s
generated identifying this user procedure by its position in the
user procedure name table. The parsing process is performed by
the LOGO routine PARSE. A flow diagram detailing the operation
of PARSE 1s included iﬁ Appendix A.

There 1s an equivalent method of checking an input element in
the form of a procedure name which takes more space but less time.

The tables for built-in names and abbreviations are merged and
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separated into subtables for each letter of the alphabet. If

the element is not a user abbreviation, it 1s then checked against
the members of the subtable for its initial letter. The search
of this subtable, even if it fails, will take less time than the
average successful search of the whole table which covers an
average of half of the approximately 80 entries. Also, there

are about 40 abbreviations. If the element is a procedure name
and we search the abbreviation table first and then half of the
built-in name table, 80 elements on the average are searched.

On the other hand, the average subtable has a total length of
five or six with a maximum of 15. Thus we achieve a considerable
saving in time for processing many list elements. The extra
space comes in the form of the table of subtables and the

terminators for each of the subtables.
3. Executing a Parsed Line

LOGO is a procedural language for manipulating string expressions.
An expression can be any one of the following:

1) A literal.

2) A name.

3) The name of an operation, followed by a specified number of
expressions.

The value of the expression is, in each of these cases:

1) The literal itself.
2) The LOGO thing named.
3) The output of the specified operation.

Note that this deflnltlon for expression is recur51ve The main

' LOGO routine for evaluating expressions spe01f1ed by a parsed

list is EXECUTE.

i3 ¢



BT

ROTEE i

B L T T T S S el o e L P SR P YOI UPYPY

EXECUTE steps through a list of parsed elements and performs the
indicated commands, operations, and procedures. The parsed 1list

consists of five different types of elements. These are:

1. Names of LOGO commands and operations; noise words; and
parentheses.

. Names of user-defined procedures.

Literals.

Names

U= W

. Comments.

EXECUTE processes a complete parsed list. It expects a parsed
list corresponding to a LOGO instruction line (other than an
empty line or one consisting entirely of comments) to be of the
form: command name followed by a fixed number of expressions, its
inputs. If this is not so, EXECUTE will generate an error comment
after attempting to execute the line.

EXECUTE uses two stacks. One, the string stack, or S-stack for
short, is used for accumulating all string pointers to inputs of
procedures, commands, and operations not yet executed. The other,
the procedure stack, or P-stack, is used for holding the names of
procedures, commands, and operations encountered but not yet
executed, the number of associated inputs not yet accumulated on
the string stack, and associated information, other than string

pointers, that is relevant to the execution of procedures,
commands, and operations.

EXECUTE is entered with a pointer to the beginning of the parsed
list to be executed. If the list has any leading comments,
EXECUTE steps past them. If the line is now finished, EXECUTE
eXits. Otherwise, EXECUTE takes the next element from the list
and dispatches on its type -- i.e., it performs a subroutine
associated with the element type, as fcllows.

14
L



If the list element is a noise word, a parenthesis, or the name
of a built-in command or operation (we will henceforth call these
entities built-in functions), the list element, and the number

of inputs it currently requires, are plac2d on the P-stack.
Initially the number of inputs required by the built-in function
is the total number specified for that function. The number is
reduced by one each time an input is processed. If the number of
inputs remaining to be processed is non-zero, then EXECUTE takes
the next element and dispétches on it. If the number of inputs
remaining to be processed is zero, EXECUTE removes the last
built~-in function identifier from the P-stack and goes to the
subroutine referenced by this identifier.

If the list element is a literal, the string pointer for this
literal is placed on the S-stack. The literal will be used as
an input for the last function that was placed on the P-stack.
EXECUTE decrements the number of inputs still left to collect
for this function and proceeds as above when this number becomes
zero, i.e., when all inputs have been collected.

If the list element is a name, the pointer to its current value
(a LOGO word or sentence) is placed on the S-stack and EXECUTE
then proceeds exactly as with literals.

If the list element is a comment, EXECUTE steps past it to process
the next element on the line.

If there is no list element remaining, and EXECUTE has elements
1eft on the P-stack, it generates the error message "SOMETHING
MISSING" to indicate that it has not found all the inputs it
needs.

e
|l



If the list element is the name of a user-defined procedure, the
element 1s placed on the P-stack. The number of inputs needed

to execute the procedure is determined from the procedure defini=
tion. This number and the identifier for the LOGO routine
PROCEDURE, which processes user-defined procedures, are placed on

the P-stack. The user procedure 1s then handled by EXECUTE just
as a built-in function.

Built-in functions are either operations or commands. Operations

generate an output; ccmmands do not generate any output. When

EXECUTE dispatches on a particular operation, the corresponding
subroutine removes the appropriate inputs from the S~stack and
uses them to perform the operation. When the execution of the
operation is completed, the subroutine puts its generated output
string onto the S-stack and returns to EXECUTE which treats this
new entity just as it does any literal encountered on the original
list of elements. When the execution of a command is completed,
however, the subroutine returns to a different place in EXECUTE

to terminate the execution of the instruction line, since no

other function can legally precede a command.

The following is a simple example of the operation of EXECUTE.
It shows the state of the two stacks after each element is pro-

cessed during the execution of the instruction line

PRINT BUTFIRST OF "I GO LOGO".

(In the column headed P-stack, each function i1s preceded by the
number of inputs i1t currently needs.)

-
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Element

Processed S—-stack P-stack Comments
PRINT 1 PRINT
BUTFIRST 1 PRINT
1 BUTFIRST
OF 1 PRINT
1 BUTFIRST
"] GO LoGO" I GO LOGO 1 PRINT
g BUTFIRST
GO LOGO g PRINT LOGO types
"GO LOGO"
empty empty

(Since the P-stack is empty¥, EXECUTE exits.)

%Except for a marker which EXECUTE inserts on the P-stack on
entry to denote the beginning of the line. After completion of
a command, EXECUTE checks the stack for that marker. If the
marker is on top of the stack, EXECUTE exits. If not, 1t gives

an error printout.

The LOGO routine PROCEDURE is called by EXECUTE whenever all of
the inputs to a user-defined procedure have been accumulated in
the S-stack. The main functions of PROCEDURE are: (1) save the
current position in the line being executed, (2) bind the inputs
to the formal parameters, (3) call EXECUTE for ,each line of the
procedure, and (when done with the procedure_qr‘after an OUTPUT
command) (4) unbind the formal names and restore the old state
of EXECUTE.

Since the procedure being called may alter the state of the

compilad code, the current position must be saved relative to

o
A
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the beginning of that line, along with lts line number and the
prodedure it's in. Also, since the line itself may be altered,
a version number or a line sequence number must be saved so

chat changes to that line can be determined. Furthér, the state
of the truth flag must be saved, and in order to be able to
unwind the pushdown stacks, if necessary, the depth of pushdown

the last time through must also be saved and the current position
recorded.

Binding inputs is a two-stage process. The old values associated
with the.formal names must be saved on a pushdown stack and the
new values must be taken from the S~stack and associated with
the names. There is a potential conflict since the logical
place to save the old values for the formal names is also the
S~stack. This difficulty only arises if the stack mechanism
allows one to use only the last thing pushed. However, in
virtually all existing machines one can use data other than the
last-in datum on the stack. This process thus reduces to an
eXxchange of the 0ld values associated with the names with the
corresponding number of things on the S-stack. |

The following example shows the operation of EXECUTE in process-~

ing an instruction line which includes calls to user procedures.
The instruction line is:

PRINT BUTFIRST OF BACKWORD OF "HELLO'" AND STRIP OF "GOODBYE"

BACKWORD and STRIP are user~defined procedures. The procedure
BACKWORD is defined as follows.

TO BACKWORD /A/ AND /B/

1 PRINT /A/

2 PRINT /B/

3 OUTPUT WORD OF /B/ AND /A/
END

o
..
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STRIP is defined as fcllows,

TO STRIP /ANYTHING/

1 OUTPUT BUTFIRST OF BUTLAST OF /ANYTHING/
END

Element S—-stack P-stack
PRINT "1 PRINT

BUTFIRST , 1 PRINT
1 BUTFIRST

OF 1 PRINT
1 BUTFIRST

BACKWORD : 1 PRINT
1 BUTFIRST
BACKWORD
2 PROCEDURE

OF : 1 PRINT
1 BUTFIRST
BACKWORD
2 PROCEDURE

"HELLO" HELLO 1 PRINT
1 BUTFIRST
BACKWORD
1 PROCEDURE

AND HELLO 1 PRINT
: 1 BUTFIRST
BACKWORD
1 PROCEDURE

STRIP HELLO 1 PRINT
‘ 1 BUTFIRST
BACKWORD
1 PROCEDURE
STRIP
1 PROCEDURE

OF HELLO . 1 PRINT

1 BUTFIRST
BACKWORD
1 PROCEDURE

. STRIP
1 PROCEDURE

_13;
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Element

"GOODBYE™"

OUTPUT

BUTFIRST

OF

BUTLAST

S-stack

HELLO
GQOODBYE

HELLO

HELLO

HELLO

HELLO

HELLO

[ =1

" P-stack

PRINT
BUTFIRST
BACKWORD
PROCEDURE
STRIP
PROCEDURE

PRINT
BUTFIRST
BACKWORD
PROCEDURE

PRINT
BUTFIRST
BACKWORD
PROCEDURE
return to
OUTPUT

PRINT

BUTFIRST
BACKWORD
PROCEDURE
return to
OUTPUT

BUTFIRST

PRINT

BUTFIRST
BACKWORD
FROCEDURE
return to
OUTPUT

BUTFIRST

PRINT -

BUTFIRST
BACKWORD
PROCEDURE
return to

"OUTPUT

BUTFIRST
BUTLAST

20
-14-

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

Comments

PROCEDURE has

bound "GOODBYE" to
/ANYTHING/ and will
now take instruc-
tion lines from
STRIP as it calls
EXECUTE



Hunsinzaiaaner

' Element

OF

/ANYTHING/

PRINT

S-—-stack

HELLO

HELLO
GOODBYE

HELLO
GOODBY

HELLO
00DBY

"HELLO

ooDBY

P-stack

P-

= = =

=

] =~ =

[y

I

PRIMT

BUTFIRST
BACKWORD
PROCEDURE
return to
QUTPUT

BUTFIRST

BUTLAST

PRINT
BUTFIRST
BACKWORD
PROCEDURE
return to
OUTPUT
BUTFIRST
BUTLAST

PRINT
BUTFIRST
BACKWORD
PROCEDURE
return to
OUTPUT

BUTFIRST

PRINT
BUTFIRST
BACKWORD
PROCEDURE
return to
OUTPUT

PRINT
BUTFIRST
BACKWORD
PROCEDURE

PRINT.
BUTFIRST

PRINT

BUTFIRST

~return to
PRINT =~

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

Comments

OUTPUT is now
called. Its effect

1s to terminate

the execution of
PROCEDURE by re-
moving the return
to PROCEDURE from
the P-stack

PROCEDURE has

bound "HELLO" to
/A/ and "OOLDBY'
to /B/ 7



Element

A/

PRINT

/8/

ouTPUT

WORD

OF

/8/

AND

1A/

S-stack

HELLO

oobBY

00DBY

ooDBY

00DBY
HELLO

P--stack

- - = - - -

- - - - - - - - - Ni= == N =

PRINT
BUTFIRST
return to
PRINT

PRINT
BUTFIRST
return to
PRINT

PRINT
BUTFIRST
return to
PRINT

PRINT
BUTFIRST
return to
OUTPUT

PRINT
BUTFIRST
return to
OUTPUT
WORD

PRINT
BUTFIRST
return to
OUTPUT
WORD

PRINT
BUTFIRST
return to
OUTPUT
WORD

PRINT
BUTFIRST
return to
OUTPUT
WORD

PRINT
BUTFIRST
return te
OUTPUT
WORD

22
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PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

PROCEDURE

Comments

LOGO types
"HELLO"

LOGO types
"ooDBY ™"




Element S-stack P-stack Comments

OODBYHELLQO

—

PRINT

BUTFIRST

return to PROCEDURE
# OUTPUT

[y

OODBYHELLO PRINT

1
g BUTFIRST

ODBYHELLO g PRINT , LOGO types
"ODBYHELLO"

At this point, both stacks are empty so the execution 1s
completed and EXECUTE exits.

As the example shows, during the evaluation of a LOGO expression'
(or the execution of a LOGO instruction line) many inputs may be
accumulated and many operations may be called before the expres-

sion is reduced to a single value.

It can be shown that one pushdown stack is sufficient to accom-
plish the evaluation of" any expression. It is also true that the
nse of two stacks is more convenient for performing auxiliary

functions such as garbage collection (see Section 6).

There are at least two apparently different, but equivalent,
encodings of EXECUTE:

1) when the EXECUTE routine encounters an operation, it accumulates

the appropriate number of inputs before invoking the operation,

2) when EXECUTE encounters an operation, the operation 1s invoked

immediately, and it in turn calls EXECUTE n times, where n is
the number of its inputs.



In the first instance, what appears on the stack are the inputs
already found, the names of the operations to be called, and the
number of inputs remaining to be accumulated. In the second
instance, what appears on the stack are the outputs already
accumulated and the place to go after the next output is put
onto the stack.

Almost any encoding of EXECUTE is sufficient to execute an instruc-
tion line with no errors. A good encoding is one that not only
performs the embedded functions and prdcedures correctly and
efficiently, but also detects all possible user errors and

preserves lots of relevant information for generating insightful
error comments.

The following errors must be detected by EXECUTE.

THERE ARE 7 INPUTS MISSING FOR x. End of line reached while

looking for an input for wx.

‘2 IS EXTRA. Elements are stilll unused after a command completes
its action.

x CANNOT BE USED AS AN INPUT. IT DOES NOT OUTPUT. There is
‘something left on the line to the left of the command x.
(This could have been detected at COMPILE time for built-in
commands, but not for user procedures which do not produce
an output. So, for symmetry, the detection of this error
is deferred until run time.)

THERE IS NO COMMAND ON THIS LINE. This also could have been
detected at COMPILE time for built-in commands but not for

user procedures, so it is also deferred.
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4, Internal Representation of Data

Along with specifications for the several LOGO commands and
operations, the preceding descriptions of the PARSE and, EXECUTE
routines are, in principle, sufficient for designing a LOGO
processor. The rest of this report deals primarily with con-
siderations relating to designing an efficient processor. The
difference between a relatively efficient implementation of LOGO
and one with obvious inefficiencies can be dramatic in terms of
the speed of service to an individual user and/or the total

number of users that can be simultaneously served on a given
multi-user system. ’

A major parﬁ of the time spent in LOGO processing 1s taken with
parsing and executing instructions. PARSE can be a cbstly
process because it involves scanning each of the individual
characters on an instruction line, one at a time, and because it
requires a great deal of searching of tables to determine the

meanings of the various names encountered in the line. EXECUTE
can be a costly process because it may require a great deal of
referencing to process a parsed list.

We can reduceé the time spent inlparsing lines mainly by perform-
ing PARSE just once for each line, instead of parsing a line
each time it is referenced. This leads fo an implementation
that is efficient in space as well as time usage. We need to
save only the parsed list of elements not the original text
string of the line, and the parsed list need not require appre-

ciably more space -- and often requires less space -- than the
original string.




The main way to reduce the time spent in executing parsed lines
is to eliminate all searches for the values of elements refer-
enced during EXECUTE. Thus, our strategy here is to structure
the data used during EXECUTE so as to enable elements to be
accessed directly. Figure 1 is a schematic diagram showing how
the various types of data used during EXECUTE are structured to

permit direct referencing.

EXECUTE operates on a parsed list. A list element must contain
two pieces of information. One is an indicator of the element
type and the other is a p01nter to the value of the element.

In the case of literals and comments the pointer is a pointer to
the text of the element in the string storage. In all the rest
(names, names of built-in funcvions, names of user procedures),
the pointer is a pointer into one of threé tablzs. The tables
are all of the same form. Each entry in each table contains two
pleces of information. One is a pointer to the name of the ele-
ment and the other is a pointer to the value.

The table for built-in names contains an entry for every word
known to LOGO. Since these names are all known in advance, the
names do not occur in the standard string storage but in LOGO's
permanent storage. The tables for names'énd procedure names
contain an entry for each and every name of that type that has
ever been encountered in parsing of input lines.

For names, the value is a text in the string storage. For
built-in functions, the value is a subroutine which produces the
desired effect. For user procedure names, the value is a 1list
of entries in another table, the table of procedure directories.
Each entry in this 1ist, like entries in all other lists, has
two pieces of information. The first entry of each list is
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special. It contains the number of inputs to the procedure and
a polnter to the parsed list of the title line of that procedure.
The rest of the entries in each list contain a line number and a
pointer to the parsed list of that instruction line. These
entries are kept in ascending line number order. This form of
procedure directory was primarily designed to make referencing
as direct as possible.

All data in LOGO, including numbers, are strings. Strings can be
of any length. To manipulate number strings, one can either
provide number-string conversion and arithmetic for arbitrarily
long integers or else perform the arithmetic operations directly
on the character strings themselves. In PDP-10 ILOGO we chose

the latter course.

Since integer arithmetic is most naturally performed least
significant digit first, but strings are most easily accessed
most significant digit first, PDP-10 LOGO reverses the input
strings before arithmetic operations and then reverses the output
strings afterwards. In division, which is done by repetitive
subtraction and shifting, starting with a subtraction of a like
number of digits in both the divisor and the dividend, both the
quotient and the remainder are generated in the same process.

We asserted at the beginning of this chapter that the parsed form
of LOGO instructions, along with the procedure directories and
variable tables, might take up less space than the original text.
We can show that for a program of reasonable compiexity a storage
compression ratio of three to two or even more is feasible. For
the illustration on page 10, for example, the thirty characters
reduce to twenty; and for the instruction line along with the two
procedure definitions on pages 12 and 13, we get a ratio of 209
to 143, i.e., approximately 3 to 2.
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5. Storage Allocation

The previous section on data structures did not discuss the sizes
of the various tables or how these might change across time.

There is no a priori selecticn of table sizes that will satisfy
the needs of all users. Different programs and programming styles
will generate different requirements for table sizes of the
various data types. Thus, it is desirable that the only restric-
tion on the size of tables should be the unavoidable cne that the
total amount of data in all the tables cannot exceed the maximum
amount of space available to the user.

We therefore expect to vary the sizes of tables dynamically
according to the user's needs. Any set of initial table sizes
will suffice. If any type of data grows to exceed the size of
its table, the size of that table will be expanded. A1l the
data following that table will then be moved up and the pointers
to these data appropriately adjusted. In general, with LOGO, we
should expect this to happen routinely.

When one table is expanded, the tables after it are moved only
as a whole. Data do not change their relative rositions within
each table. Thus, if all pointers into tables are made relative
to the beginning of their tables, when a table expansion occurs,
only the pointers to the beginnings of the tables following the

expénded table need be modified, but not pointers to individual
data within those tables.

If the process of expanding a table will cause the total amount
of allocated space to exceed some bound, then any unused alloca-
tions in the various tables will be recovered to permit the
necessary expahsion. The bound might be the top of core or the

top of a quantum of storage allocation in a multiple-user
variable allocation scheme.
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When starting a LOGO session, no user data have been created,

and there is no reason to assign more than a minimal amount of
space until such data are generated.

Many charging algorithms penalize users with large core alloca-
tions. The penalties are not necessarily monetary but may be in
degraded overall system performance. Moreover, if the scarcest
resource in the system is memory space rather than processor
time, and this is typically the case for interactive systems,

it is worthwhile to spend some percentage of time keeping the
utilized memory to a minimum.

Thus, a means of eliminating space for data which are no longer
referenced may be of considerable practical value. This kind

of process is called garbage collection.

6. Garbage Collection

Thus far, we have discussed only the generation and storage of
data. Whenever LOGO runs out of memory for data stourage there

are two possible ways to get more. One is to request more from

the host system. This way fails if the memory allocation is
fixed or if it is at the maximum. The other way is to eliminate
any data which are no longer referenced. One situation in which
data become unnecessary is when an instruction line is replaced.
The space occupied by the superseded parsed list is no longer
needed and should be recovered at that time. When an instruction
line is erased, the space for both the parsed list and the pro-
cedure directory entry for that line should be recovered. To
recover the space occupied by a parsed list, all parsed lists

o
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following the superseded list are copied down a number of cells
equal to the length of that list, then, all the pointers to
parsed lists in all procedure directories which point to lists
which have been moved are decremented by the amount the lists
have been moved.

If the procedure directory is not the last one in the procedure
directory table when it expands or contracts, then all of the
directories above the one being modified must be moved for each
line that is added or deleted. But typically, when a procedure

is edited, more than one line of the procedure is added or deleted
at a time. Thus, when the editing of a procedure is initiated,
that procedure directory is moved to the end of the table of
procedure directories and all subsequent modifications to that
procedure directory affect'only that directory, and not those
which previously may have followed it.

Names and procedure names have a permanent entry assigned to
them in their respective name tables. It is possible that some
of these entries may become unnecessary due to the deletion of
all references to them in the parsed code. These can be

recovered by the following garbage collection technique.

(1) Search for all references to names and procedure names in
the parsed code (the only place they can occur) and mark the

table entries that are referenced.

(2) Search each table from the bottom for unreferenced entries.
When one is found, search the table from the top for a referenced
entry. If one is found above the unreferenced one, move the
referenced entry down and replace it with a pointer fo where it
was moved. This process is terminated when there are no refer-

enced entries above unreferenced ones.
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(3) Search the parsed code. again for name and procedure name
elements. Check each one to see if it points at a pointer

instead of an entry. If it does, update the element to point at
the entry rather than the pointer.

Thus fair we have only considered the process of garbage collec-
tion for non-string data. We have not yet discussed the form or
handling of strings, other than acknowledging their existence.

All Strings are stored in the string table in order to 1ocalize
the special ﬁrocessing required for strings. Strings present
special problems because they can be arbitrarily long. Moreover
a string is generated whenever a LOGO operation is performed and
there is no way of knowing whether or not it will be saved and,
if so, for how long a period. Thus, the storage allocation and
garbage collection of strings are not the same as with other data.

Depending on the particular form used for representing strings,
the amount of storage needed for them, and the amount of time
needed to garbage collect them, can be very different. We shall
consider three distinct ways of representing strings. The first
uses the least space, but requires the most time for garbage
collection; the second takes the most space of the three repre-
'sentations, and requires more time tﬁan the others for storage
and retrieval, but less time for garbage collection; the third
usually takes less space than the second without requiring
significantly more time»for garbage collection.

In‘the first representation, strings consist of characters start-
ing at é'WOrd boundary énd terminating with an EOM. In the
PDP-10 implementation, characters are seven bits long and stored
five to the word. This leaves the least significant bit of any
string word free for marking strings to be saved.
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The space allocated for string storage is located after all other
storage areas. This allows for the use of the upper bound of all
assigned memory to be used as thevupper bound on the string

storage. Then the test for no more room in the string space can
‘be the occurrence of a memory bound violation on a store charac-

ter inatruction 1nstead of a p01nter compare before every store
character.

The garbage collection procedure cons1sts of two parts.‘ First,
all data types that use string p01nters are searched (they are:
‘names and their thlngs, abbreviation names and thelr thlngs

the S- stack, procedure names, and literal and comment references
in the parsed code). For each'string pointer found, the corre-
sponding‘string must be marked for saving. A string is marked

by setting the spare bit of its first word.

Second, the string,storage is searched word-by-word until it

finds one with’the spare bit set. When one is found, all possible
"pointers are scanned for those that point to this string (there
may be more than one) and modified to point where the string will
be located after it is moved down over the garbage strings. Then
this string is unmarked and is copied word-by-word and the loca~
“tion follow1ng its last cell . will become the flrst cell available
for the next string. This process is repeated until all the
strings have been passed over.

Thls method requlres N+1 full scans over the strlng p01nters
2_(where N is the number of strings belng saved), and might be
: reasonable'for a system that has 1little or no zvallable‘memory'
but a greatpdeal of available time. A machine with little
memory cannot'affordjspace.fOr\any}kindAof overhead words in

Fou
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strings. However, since so 1ittle memory 1is available, there
cannot be enough strings to make the garbage collection time
prohibitive.

The second way of representing and storing strings is to list
structure them. This has the following advantages: (1) good
strings do not have to be moved in order to fully utilize the
recovered space, (2) the pointer spaces have to be passed over
only once (marking pass) because the poilnters do not have to be
altered since the strings do not move.

The marking pass consists of searching all the pointer lists for
string pointers and marking all the cells of all the good strings.
The collection pass consists of passing over the string space
searching for unmarked cells and chaining them to each other and
also unmarking those that had been marked. This method affords
considerable savings in time for the garbage collection because
the pointer spaces and the strings have to be scanned only once
each.

The disadvantages of this representation are: (1) the storage
and retrieval of characters in strings stored with pointers
embedded in them must be done by subroutine, causing some added
processing time even for a machine with good character handling
instructions; (2) the amount of storage allocated to strings
cannot be reduced without further manipulation similar to that
used with the first type of string representation; (3) the
storage efficiency is less than with the first type of string
representation.

A string cell in this representation is a contiguous group of
storage locations. Each cell contains a polnter to the next cell

n”
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of the string or a termination pointer. The rest of the cell
space is occupied by the characters comprising the string. The
storage efficiency obtainable with this type of string storage
varies according to the choice of cell size. The maximum
efficiency possible using a single word for a cell is 40%; for
a cell size of two words, the maximum efficiency goes up to 70%;
for a four word cell size it can approach 90%. These figures
assume that all available space for characters in the cell is
used, and that the chain pointer is 18 bits long, leaving space

for two characters in the same 36-bit word.

The process of reducing the amount of space allocated to strings
in the list-structured representation is the same as the fixed

garbage collection described on pages 25 and 26.

Note that having a fixed location for temporarily keeping pointer
information while strings are being moved saves some scanning of
the pointer list. With that in mind, we next propose a represen-
tation which incorporates an overhead word for each string. This
word can be in a separate table or it can be interleaved with the
strings. Let us compare the space utilization for strings of
various lengths stored with one overhead word per string versus
list-structured string cells of various sizes. For the one word

list-structured cell:




Contiguous String

String Length List-Structure plus one word
(characters) (words )" (words)
1-2 1 2
3-4 ) 2
5-6 3 3
7-8 Yy 3
9-10 5 3

The only case where there is any saving with one word cells is
in strings of one and two characters.

For two word cells:

1-5 2 2
6-7 2 3
8-10 4 3
11-14 4 4
15 6 4
16-20 6 5
For four word cells: :
1-5 4 -2
6-10 4 3
11-15 4 4
16-17 4 5
18-20 8 5
21-25 8 6

In each case, as the string gets longer, the amount of space
required with the list-structured representation gets progressive-
ly worse by comparison to the new scheme.




If the overhead word for a string is kept in a separate table,
it can be used in any of a number of ways. One way is to use it
as a fixed location which contains the location of the text of
the string and string pointers in turn point to it. Garbage
collection for this configuration consists of scanning the lists
for string pointers to good strings. Marking a string is done
by putting the first word of the text into this fixed location
and pointing to the table where the text used to be. At the end
of the marking pass the string pointers and the strings both
point into this table. The string compression pass_consists of
searching for marked strings. When one is found, the first word
of text is retrieved from the table and replaced by the new
location of the string. The entire string is then moved to the
first available slots for good text. It may be necessary to
compress the table as well. Compressing the table is done in a
manner equivalent to that used for compressing the name tables
as deécribed above. The table in this instance is, in effect,
an indirect address for the strings.

In another approach, the extra word 1s used only during garbage
collection. One has to insure that there are at least as many
words in the table as there are strings. The marking‘pass in
this case consists of pﬁttihg the first word of the string into
the table and making both the string itself and the string
pointef point into the table. The string compression pass is
the same as described above, but this time there always needs to
be a third pass, to replace the relocated string pointers with
the contents of the table address pointed to by the relocated
string pointer. Here the table acts as a fixed address for the
string only while it is being moved.

Both of these ways of using the overhead word suffer in that the
allocation of space for the extra table is not exactiy in step
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with the generation of strings. If all allocation areas are
contiguous and the strings are stored at the end, the strings

need to be moved each time the size of the extra table is
increased. Also, the string storage area may fill up while there
is room still left in the table, and this is not optimal. Finélly,
strings stl1ll have to be searched word-by-word and moved a word

at a time.

In yet another storage technique, the word of overhead for each
string is put at the head of the string itself. Half of this
word is used to contain the length of the string. This length
information has a number of uses: (1) when comparing two
strings, if the two strings are of differing lengths, they will
not match on the first word of the comparison. This may be a
significant saving in comparisbn time. (2) Since one knows in
advance where the end of the string is, during the string com-
pression a block transfer can be used instead of a word-by-word
copy, because the source, the destination, and the length of the

string are all known.

The other half of the word is used during garbage collection by
making it the head of a linked list of all of theﬁrPF necs~te.
that string. During the marking pass this Lalf word is used to
denote that the string is to be saved by making it point at the
pointer that refers to this string. Thus, during the compression
pass,. the pointers to the strings can be updated without .searching,
by using this back pointer to update the_étring pointers. - Since
afStrihg can be pointed to by more than one pointer, it is neces-
sary to treat the back pO’uuer as a pointer list. We do this by

.putting the current content< of the marking half of the overhead

word into the address part of the string pointer, and putting the
address of that strlng pointer into the marking half of the over-

head word. Then, after the marking pass is complete, one can find
no oo
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all references to a string by tracing back through the pointer
list starting at the string itself and ending with the terminator
that was in the overhead word before the marking pass was
initiated. Another advantage of having the string length stored
with the string is that the search for marked strings is as small
as possible because it can be limited to the first word of each
string.

The above discussion on storage allocation assumes that the data
of fhe various types are kept in separate tables, varying in
internal structures, with separate garbage collection techniques
for each. An alternate method of data storage is to consider all
data to be.of the same form, the one relegated only to strings in
all the preceding discussion, i.e., one word of overhead and any
number of words of data. Lines of compiled code can be handled
this way, as can individual procedure directories, the list of
all procedure names, the list of all names, and the list of
abbreviations. In fact, all data in LOGO, except for pushdown
lists, can be handled in this manner.

Even a sentence can be a list of pointers to words, rather than
a string of characters. This representation can lead in a
straightforward way to extensions of the language to other data

types and operations on these types.

Using this type of data structure, some small changes in the
handling of data are required. When a list ié&gdded to and there
is no room left in that list or table, instead of moving up the
data following the list to make room for the expansion, the table
is moved to the end of the data storage and extra room is made
there.
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Now that elements can contain pointers to other elements as well
as data, garbage collection of the data in such a mixed structure
also differs, because pointers to elements in the structure are
data in other elements. The marking pass is the same as 1n the
last method above. The second pass in the previous method, the
one that does thebpointer fixups and element compression, must

be altered. Otherwise, if any element compression 1s done before
the pointer fixups are complete, some of the pointers in the
fixup chains may move and the chains will then become invalid.
Therefore, this pass 1s itself broken up into two passes, the
first for doing the pointer fixups, and the second for doing the
storage compression once the pointers are all modified (to
reflect the state of affairs after the compression would have
been done).

7. Filing Requirements

A filing system is an integral part of LOGO. An essential aspect
of the use of LOGO involves the elaboration and extension of
previous programs. To eliminate the need for reentering the
growing body of previously written programs, at each session, we

provide a filing system which satisfies the following requirements.

(1) Each student should have his own catalog of saved programs
(that is, his own file).

(2) He should easily be able to T

(a) see what programs are in his file or other files made
available to him;

(b) add programs to his file;

-

(c) add to or otherwise modify a program in his file;
(d) remove any program from his file;
(e) 1load one or more programs from his file.
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(3) A program saved in a file should contain names, abbreviations,

and procedures.

(4) When a program is loaded into LOGO fiom a file, the effect
should be the same as if the program had been entered on the
terminal. Similarly, the input of a DO command should have
the same effect as if it was loaded from a file or typed in
at the terminal.

8. General Design Considerations

LOGO, like many programming languages, 1is most effectively used
in an interactive environment. The LOGO system provides all the
facilities, such as editing and debugging, required to give the
user complete control of everything he needs to carry out a
working session. He does not need to know the special and
relatively complex conventions necessary to operate the equiva-

lent facilities that may be provided by the host system.

When LOGO must be used in a system which does not provide the
facilities for interactive operation, a LOGO compiler might be
written in preference to a semi-compiler or an interpreter.
However, the resulting code that would be compiled has,
essentially, a one-to-one correspondence with the parsed elements
of the semi-compiler which we have described. The central dif-
ference is that the code produced by the compiler will be a list
of subroutine calls to the same routines that.are dispatched to
by the EXECUTE routine in the case of the semi-compiler. The
compiler gains relatively little either in space or time, 1in
typlcal cases, over the semi-compiler which, in turn, is superior

to an interpreter both in space and time savings, as we indicated
in Section 4.
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In a LOGO system we need to provide a sizable amount of storage
for user data, in one form or another. This storage can be split
between primary memory and high-speed devices such as discs or
drums. Even tape can be effectively usecd as secondary memory

in a one-user system but a disc or drum is essentially necessary
for a multi-user system.

Several questions must be asked about implementing LOGO on
smaller computers.

1. How small a computer? -
2. How much of LOGO is to be included?

3. What kind of environment?

LOGO inherently uses large amounts of storage. This is not a
function of the implementation so much as the character of the
language. LOGO is a string and/or list handling language. By
their very nature, strings and the procedures that process them
take much more storage than numbers and numeric procedures.
Thus, on a 12-bit or 16-bit computer we think that at least 24%
bytes of memory are necessary to implement a single user in-core
LOGO system. Also, in impleméhtation; space mustmpe_the prime
design criterion. Thus such methods as efficient variabiE‘Etorage,
storing strings as lists of words, storing only one copy of each
word or string, etc., are all the more important. Some form of
file storage should also be included, for one of the basic

principles in LOGO's design is that e¢ach stﬁdent builds on his
past work.

Attached as Appendix C is a list of what we consider a minimal
set of LOGO commands, operations, and names. A command or opera-
tion was eliminated if its use was infrequent and it could be

written as a LOGO procedure, but some commands were retained that
were trivial to implement.
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The final question concerns the typé of environment. Classroom
use of LOGO will generully require a multi-user system. Such a
system will necessitate at least 8K bytes more memory and
certainly a high-speed swappling device. Its implementation,
however, would not be too different from the implementation of

a single-user sysftem on the same machine, assuming that the user-
specific data is kept separate from the LOGO system code.

There are situations where an even smaller machine might be used

to implement a LOGO processor. For thes-, & swapping device 1is
absolutely necessary because either the LOGO processor or the

data will not entirely fit in core. There is a logical way of
partitioning the sections of a LOGO processor. The set of parts
are: the input and parsing; EXECUTE and the operations and
commands; listing, editing, and erasing; filing; garbage collection.
The operations can be separated from the commands and even from
each other if absolutely necessary.

There are many possibilities for the partitioning of LOGO data.
The pushdown 1list or lists can be segmented to secondary storage.
The procedures can be broken down into single instruction line
segments on secondary storage. Also, the procedure name table
and the variable table can be segmented. In a situation where
all of these occur, it is probably better to keep name strings in
the tables and literal strings with the instruction lines and

the operands themselves on the stack rather than having string
pointers into a separate string or list area in an attempt to
reduce the number of virtual references to retrieve a datum. The
only place where pointers rather than strings would have tc be
kept is for the values in the name table because one wants to
keep a fixed relationship betweén a name ahd its position in the

name table for speed in referencing.
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When lines of procédures are in separate segments, it is desirable
to have them chained forward for fastest sequential execution

and also backward for ease in editing. To keep GOTO's from
getting excessively slow, it would also be advantageous to have
~a table of contents (or index) for the lines of the procedures.

An index is also helpful for rapid retrieval of wvariable refer-

ences from the name table and also for the procedure name table.

With the kinds of data partitioning described above, the amount
of core needed for a single user's data can be made very small.
Most of the available time will be spent waiting for data from
secondary storage. One way to increase throughput is to reduce
latency. However, there is no foolproof look-ahead scheme for

a single user. Therefore, it would probably pay to have the
minimum amount of data in core sufficient to accommodate many
users at the same time, where many 1s on the order of the number
of segments that can be individually read in one revolution of
the secondary storage. |

An example of a fairly minimal configuration for implementing a
LOGO processor is a DEC PDP-8 (or a comparable machine) with 8K
of memory and a DEC tape, microtape or other form of addressable
tape. Half the primary memory is used for code and the other
half for user data. A relatively complete LOGO implementation,
realized on a DEC PDP-10 requires 4K or 36-bit words for the
LOGO code; another relatively complete one, realized on a DEC
PDP-1 takes 8K of 18-bit words. |
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The LOGO implementation we have described is a general one. The
basic algorithms used for parsing and execution would be roughly
the same if one were interested in minimizing space rather than
time. Even such a radical change:in optimization strategy would
mainly affect the internal repreSenfation: the list elemenﬁs
might be‘structured somewhat differently, e.g., different elements
might have different lengths. Aside from this, the only processF:7
that wouid be significantly affected is garbage collection,:and
we have described a range of different algorithms spanning the
significant options here. Esséntially then, to within these
variations in garbage collection algorithms, the LOGO design
applies to a variety of distinctly different machines, cdnfigura—

tions, sizes, speeds, and operating environments.

-39-



Volume 4

Appendix A: Flow Diagrams for
EXECUTE
PARSE
TIS (Type in String)
TO0 (Define Procedure)
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