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FOREWORD

This volume gives 4 detailed speeification or 14he Lt43C vrogrumning

system. The lev0 or description lz intended te enable system

programmers to design LOGO processors of their own, 4nd tiP carry

implementation through to within the innermost levels f)r

details. Thus, while the discussion of storage allocation and

garbage collection algorithms lz virtually complete, tte rea(:er

will not find the answers to myriads of questions like: wlat

happens ir one erae a nonexistent procedure? Questior,: at this

level or detail are best answered by looking at the system listings

directly.

The mint complete descriptions, the annotated 1,010 system listings

of existing versions of LOGO, may be obtained on requer,t. We have

We have already provided program listings (and, in fact, actual

programa) to a number of university research centers with PDP-l0

computer systems.

The BBN P1F-l0 LOGO system was implemented by Walter B. Weiner

with the assistafice or Paul Wexelblat and Charles F. Morgan.

Earlier versions were implemented on the mr-1 in IM by Daniel

Bobrow and in assembly 1 nguage by Richard Grant and Charled B.

Morgan, assisted by Paul Wexelblat. This document was written

by Walter B. Weiner and Charles R. Morgan. Wallace Feurzeig

contributed extensively to the organization and exposition.
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0. Introduction

Since its introduction in 1967, interest in the LOGO programming

language has grown steadily and rapidly. Particular interest

has been shown by mathematicians, computer scientists, and

educators. Individuals representing several institutions have

asked us how they could get LOGO processors on their own computer

systems.

We seek, through this document, to help make LOGO generally

available by elaborating a virtually complete design for a LOGO

processor. We have tried to describe the processor algorithms

plainly and clearly so as to make the underlying operation of

LOGO accessible to researchers and teachers, as well as system

programmers. At the same time, we have provided more-detailed

information for use by system programmers who will be implement-

ing LOGO processors.

The structure of LOGO programs and data imposes special require-

ments on the design of a reasonably efficient processor. An

essential aspect of the LOGO language is the connective structure

of user-defined procedures. Procedures can be recursively

embedded and chained -- in principle to arbitrary depth. Thus,

LOGO programs can generate a long string of procedure links (a

large control stack). Moreover, programs can generate a long

list of strings of varied length. Care is therefore required in

the design to provide efficient use of both time and space. The

discussion and examples throughout the text illustrate the

rationale for specific choices made to satisfy these general

requirements.



The main body of the document describes the algorithms for parsing

and execution of LOGO instructions, and for storage allocation

and garbage collection of LOGO programs and data. (Flow diagrams

for the main algorithms are appended.) The discussion leads to

the remarkable result that a single LOGO processor design is

virtually universal and near-optimal.

The appendices include lists of LOGO commands, operations, names,

and abbreviations for a complete and a minimal LOGO.
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1. Processing an Input Line

All data in LOGO are represented as strings. This includes

literals, names, abbreviations, comments, and procedure names.

It also includes outputs of operations and inputs to operations,

commands, and procedures. Input lines are also strings. An

input line is a string of characters terminated by a carriage

return or any other line terminator. This string of characters

comes from either the terminal or a file. When a line is com-

plete, all redundant spaces are removed. The line is then parsed

to identify and separate the elements.

The elements include literals, names, comments, names of commands

and operations, names of procedures defined by the user, and

noise words such as OF, AND, AS, (, ), used to clarify expres-

sions. The following example shows how an input line is parsed.

The type of each element is shown in parentheses.

PRINT FOO OF BUTFIRST OF "THE QUICK BROWN FOX"

Element Type

(1) PRINT (COMMAND)

(2) FOO (PROCEDURE)

(3) OF (NOISE WORD)

(4) BuTFIRST (OPERATION)

(5) OF (NOISE WORD)

(6) "THI QUICK BROWN FOX" (LITERAL)

After the input line is parsed, it is executed as follows.

(1) Fetch the first element PRII\IT: it needs one input.

m-4



(2) Fetch the next element FOO. This is a procedure previously

defined by the user as follows.

+TO FOO /ANYTHING/
>1 PRINT /ANYTHING/
>2 OUTPUT BUTLAST OF /ANYTHING/
>END

FOO needs one input.

(3) Fetch the next element OF, noise word (i.e., has no effect).

It is valid here.

(4) Fetch the next element BUTFIRST: it needs one input.

(5) Fetch OF, noise word. It is valid here.

(6) Fetch the literal "THE QUICK BROWN FOX". This is the input

for BUTFIRST.

(7) Invoke BUTFIRST. It outputs "QUICK BROWN FOX". This is

the input for FOO.

(8) Invoke FOO. Make its input, /ANYTHING/, the literal "QUICK

BROWN FOX".

(9) Fetch the first instruction line of FOO (PRINT /ANYTHING/).

(10) Fetch the first elemE.nt of this line, PRINT: it needs one

input.

(11) Fetch the next element of the line, /ANYTHING/. This is a

name. Its value, "QUICK BROWN FOX", is the input to PRINT.



(12) Invoke PRINT. PRINT prints out its input. It has no

output.

(13) Fetch the next instruction line of FOO (OUTPUT BUTLAST OF

/ANYTHING/).

(14) Fetch the first element of this line, OUTPUT: it needs

one input.

(15) Fetch the next element of Ue line, BUTLAST: it needs one

input.

(16) Fetch the next element of the line, OF. This is a noise

word. It is valid here.

(17) Fetch the next element of the line, /ANYTHING/. This is a

name. Its value, "QUICK BROWN FOX", is the input to

BUTLAST.

(18) Invoke BUTLAST. It outputs "QUICK BROWN".

(19) Invoke OUTPUT. It outputs its input, "QUICK BROWN", and

terminates execution of the procedure FOO.

(20) Invoke PRINT. PRINT prints out its input, the output of

FOO, "QUICK BROWN". It has no output.

(21) Done. (The execution phase is complete.)

As shown above, LOGO processes an input line element by element,

fetching the elements it needs to invoke all the commands, opera-

tions, and procedures encountered. If the first element of the

9



Inp4t line is a number (that is, an unsigned integer), the line

i4t not executed immediately but is stored with the procedure

currently being derined. In either case, LOGO continues by

processing the next input line.

2. Parsing a Line

The rirst stage in processing an input line consists in parsing

the text string into a list of its elements. These elements

Include literals, names, comments, noise words, and names of

conmands, operations, and procedures. Literals are enclosed in

4uotea; names are enclosed in slashes; comments are enclosed in

.-aemieolons; noise words and names lf commands, operations, and

procedures ure not enclosed in special marks. An element is

c4iip 4 scanning the successive characters of the text string

and accumulating them by using the following logic.

Look at ,ctle first character of the string to see if it is a

apace, ", /, ;2 (2 ), :r end of line character (EOL). If it is

4 Apact, ignore it. If it is a " or /, it denotes the beginning

of n literal or name. In either of these cases, scan successive

characters and accumulate them to form an element, stopping when

the next " or / is seen, and ignoring certain spaces encountered

along the way (those immediately after the beginning " or /,

the4e immediately before the terminal " or /, and all those

except the first space whenever several occur in succession).

ir an EOL character is encountered before a subsequent " or /,

exit and generate an error message. After the element is

completed, create an associated list element containing the type

(literal or name) of the element just formed and a string pointer

to it.

10
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If the first character encountered in forming the next elementis a ;, this denotes the beginning of a comment. Once again,build up the element string from successive characters just aswith literals or names. In this case, however, there are twolegal terminators -- an EOL as well as a closing ;. The listelement associated with the string identifies the string as acomment and points to its location in storage.

If the first character encountered in forming the next elementis a ( or a ), it denotes the beginning or end of a presumed
expression. In either case, generate a lf.st element identifyingthe specific character, i.e., the left or right parenthesis.
This element subsequently will direct the EXECUTE subroutine toprocess the subexpression

appropriately.

If the first character encountered in forming the next elementis an EOL, and there was a line number associated with the textstring, store the line in the procedure currently being definedor edited. (If there is no such procedure, type out an error
comment.) Then, in any case, exit from the parsing procedure.

If the first character encountered in forming the next elementis not one of these special delimiters, this means we are build-ing up either the name of a command, operation, or procedure ora line number or a number literal. We proceed to build up a
string element from successive characters until we encounter anyone of the following delimiters -- space, (, ), ", /, ;, EOL.These delimiters cannot be inside a number or a command, uperation,or procedure name. (As in the case of literals, names, and
comments, these built-up strings are stored without preceding or
terminating delimiters.)

H.
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After the string is built up, we determine whether or not it is

a number. A number consists entirely of digits except possibly

for a leading + or -. If it is a number without a leading sign

and it is the first element on the line, we indicate that what

we are building up will be a stored line of a procedure definition.

If it is not the first element of the line, it Is a number

literal and we handle it in the same way as a quoted literal.

If the string is not a number string, we check to see whether

it is an abbreviation. To do this, we look for it in the user's

abbreviation table and, if it is not there, in the LOGO system's

abbreviation table. If we find the string listed in either

table, it is effectively replaced in the line by the thing it

abbreviates, and that part of the line is re-parsed.

If it is not an abbreviation, it must be a command, operation,

or procedure name or a noise word. We first look for it in a

table of LOGO commands and operations. (Noise words are listed

with the LOGO commands.) If it is there, we create a list

element in the list we are building that identifies the command

or operation by its position in the command table. If it is not

there, it is treated as the name of a user procedure. It is

looked up in the user procedure table; if it is not already

listed there, it is added to the table. Then a list element is

generated identifying this user procedure by its position in the

user procedure name table. The parsing process is performed by

the LOGO routine PARSE. A flow diagram detailing the operation

of PARSE is included in Appendix A.

There is an equivalent method of checking an input element in

the form of a procedure name which takes more space but less time.

The tables for built-in names and abbreviations are merged and



separated into subtables for each letter of the alphabet. If

the element is not a user abbreviation, it is then checked against

the members of the subtable for its initial letter. The search

of this subtable, even if it fails, will take less time than the

average successful search of the whole table which covers an

average of half of the approximately 80 entries. Also, there

are about 40 abbreviations. If the element is a procedure name

and we search the abbreviation table first and then half of the

builtin name table, 80 elements on the average are searched.

On the other hand, the average subtable has a total length of

five or six with a maximum of 15. Thus we achieve a considerable

saving in time for processing many list elements. The extra

space comes in the form of the table of subtables and the

terminators for each of the subtables.

3. Executing a Parsed Line

LOGO is a procedural language for manipulating string expressions.

An expression can be any one of the following:

1) A literal.

2) A name.

3) The name of an operation, followed by a specified number of

expressions.

The value of the expression is, in each of these cases:

1) The literal itself.

2) The LOGO thing named.

3) The output of the specified operation.

Note that this definition for expression is recursive. The main

LOGO routine for evaluating expressions specified by a parsed

list is EXECUTE.

_13
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EXECUTE steps through a list of parsed elements and performs the

indicated commands, operations, and procedures. The parsed list

consists of five different types of elements. These are:

1. Names of LOGO commands and operations; noise words; and

parentheses.

2. Names of user-defined procedures.

3. Literals.

4. Names

5. Comments.

EXECUTE processes a complete parsed list. It expects a parsed

list corresponding to a LOGO instruction line (other than an

empty line or one consisting entirely of comments) to be of the

form: command name followed by a fixed number of expressions, its

inputs. If this is not so, EXECUTE will generate an error comment

after attempting to execute the line.

EXECUTE uses two stacks. One, the string stack, or S-stack for

short, is used for accumulating all string pointers to inputs of

procedures, commands, and operations not yet executed. The other,

the procedure stack, or P-stack, is used for holding the names of

procedures, commands, and operations encountered but not yet

executed, the number of associated inputs not yet accumulated on

the string stack, and associated information, other than string

pointers, that is relevant to the execution of procedures,

commands, and operations.

EXECUTE is entered with a pointer to the beginning of the parsed

list to be executed. If the list has any leading comments,

EXECUTE steps past them. If the line is now finished, EXECUTE

exits. Otherwise, EXII:CUTE takes the next element from the list

and dispatches on its type -- i.e., it performs a subroutine

associated with the element type, as follows.

.14
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If the list element is a noise word, a parenthesis, or the name

of a built-in command or operation (we will henceforth call these

entities built-in functions), the list element, and the number

of inputs it currently requires, are plac?.d on the P-stack.

Initially the number of inputs required by the built-in function

is the total number specified for that function. The number is

reduced by one each time an input is processed. If the number of

inputs remaining to be processed is non-zero, then EXECUTE takes

the next element and dispatches on it. If the number of inputs

remaining to be processed is zero, EXECUTE removes the last

built-in function identifier from the P-stack and goes to the

subroutine referenced by this identifier.

If the list element is a literal, the string pointer for this

literal is placed on the S-stack. The literal will be used as

an input for the last function that was placed on the P-stack.

EXECUTE decrements the number of inputs still left to collect

for this function and proceeds as above when this number becomes

zero, i.e., when all inputs have been collected.

If the list element is a name, the pointer to its current value

(a LOGO word or sentence) is placed on the S-stack and EXECUTE

then proceeds exactly as with literals.

If the list element is a comment, EXECUTE steps past it to process

the next element on the line.

If there is no list element remaining, and EXECUTE has elements

left on the P-stack, it generates the error message "SOMETHING

MISSING" to indicate that it has not found all the inputs it

needs.

1 5



If the list element is the name of a user-defined procedure, the

element is placed on the P-stack. The number of inputs needed

to execute the procedure is determined from the procedure defini=

tion. This number and the identifier for the LOGO routine

PROCEDURE, which processes user-defined procedures, are placed on

the P-stack. The user procedure is then handled by EXECUTE just

as a built-in function.

Built-in functions are e-ither operations or commands. Operations

generate an output; commands do not generate any output. When

EXECUTE dispatches on a particular operation, the corresponding

subroutine removes the appropriate inputs from the S-stack and

uses them to perform the operation. When the execution of the

operation is completed, the subroutine puts its generated output

string onto the S-stack and returns to EXECUTE which treats this

new entity just as it does any literal encountered on the original

list of elements. When the execution of a command is completed,

however, the subroutine returns to a different place in EXECUTE

to terminate the execution of the instruction line since no

other function can legally precede a command.

The following is a simple example of the operation of EXECUTE.

It shows the state of the two stacks after each element is pro-

cessed during the execution of the instruction line

PRINT BUTFIRST OF "I GO LOGO".

(In the column headed P-stack, each function is preceded by the

number of inputs it currently needs.)

1 6,
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Element
Processed S-stack P-stack Comments

PRINT 1 PRINT

BUTFIRST 1 PRINT
1 BUTFIRST

OF 1 PRINT
1 BUTFIRST

"I GO LOGO" I GO LOGO 1 PRINT
0 BUTFIRST

GO LOGO 0 PRINT LOGO types
"GO LOGO"

empty empty

(Since the P-stack is empty*, EXECUTE exits.)

*Except for a marker which EXECUTE inserts on the P-stack on

entry to denote the beginning of the line. After completion of

a command, EXECUTE checks the stack for that marker. If the

marker is on top of the stack, EXECUTE exits. If not, it gives

an error printout.

The LOGO routine PROCEDURE is called by EXECUTE whenever all of

the inputs to a user-defined procedure have been accumulated in

the S-stack. The main functions of PROCEDURE are: (1) save the

current position in the line being executed, (2) bind the inputs

to the formal parameters, (3) call EXECUTE for each line of the

procedure, and (when done With the procedure or after an OUTPUT

command) (4) unbind the formal names and restore the old state

of EXECUTE.

Since the procedure being called may alter the state of the

compiled code, the current position must be saved relative to



the beginning of that line, along with its line number and the

procedure it's in. Also, since the line itself may be altered,

a version number or a line sequence number must be saved so

chat changes to that line can be determined. Further, the state

of the truth flag must be saved, and in order to be able to

unwind the pushdown stacks, if necessary, the depth of pushdown

the last time through must also be saved and the current position

recorded.

Binding inputs is a two-stage process. The old values associated

with the formal names must be saved on a pushdown stack and the

new values must be taken from the S-stack and associated with

the names. There is a potential conflict since the logical

place to save the old values for the formal names is also the
S-stack. This difficulty only arises if the stack mechanism
allows one to use only the last thing pushed. However, in

virtually all existing machines one can use data other than the

last-in datum on the stack. This process thus reduces to an

exchange of the oldvalues associated with the names with the

corresponding number of things on the S-stack.

The following example shows the operation of EXECUTE in process-
ing an instruction line which includes calls to user procedures.
The instruction line is:

PRINT BUTFIRST OF BACKWORD OF "HELLO" AND STRIP OF "GOODBYE"

BACKWORD and STRIP are user-defined procedures. The procedure
BACKWORD is defined as follows.

TO BACKWORD /A/ AND /B/
1 PRINT /A/
2 PRINT /B/
3 OUTPUT WORD OF /B/ AND /A/
END

8
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STRIP is defined as fcllows.

TO STRIP /ANYTHING/
1 OUTPUT BUTFIRST OF BUTLAST OF /ANYTHING/
END

Element S-stack P-stack

PRINT 1 PRINT

BUTFIRST 1 PRINT
1 BUTFIRST

OF 1 PRINT
1 BUTFIRST

BACKWORD 1 PRINT
1 BUTFIRST
BACKWORD

2 PROCEDURE

OF 1 PRINT
1 BUTFIRST
BACKWORD

2 PROCEDURE

"HELLO" HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE

AND HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE

STRIP HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE
STRIP

1 PROCEDURE

OF HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE
STRIP

1 PROCEDURE

-13-
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Element S-stack P-stack Comments

"GOODBYE" HELLO 1 PRINT
GOODBYE 1 BUTFIRST

BACKWORD
1 PROCEDURE

STRIP
0 PROCEDURE

HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE

OUTPUT HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE

BUTFIRST

OF

BUTLAST

PROCEDURE has
bound "GOODBYE" to
/ANYTHING/ and will
now take instruc-
tion lines from
STRIP as it calls
EXECUTE

return to PROCEDURE
1 OUTPUT

HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE
return to PROCEDURE

1 OUTPUT
1 BUTFIRST

HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE
return to PROCEDURE.

1 OUTPUT
1 BUTFIRST

HELLO 1 PRINT
1 BUTFIRST
BACKWORD

1 PROCEDURE
return to PROCEDURE

1 OUTPUT'
1 BUTFIRST
1 BUTLAST

20
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Element S-stack P-stack

PROCEDURE

OF HELLO 1

1

1

PRIrT
BUTFIRST
BACKWORD
PROCEDURE
return to

1 OUTPUT
1 BUTFIRST
1 BUTLAST

/ANYTHING/ HELLO 1 PRINT
GOODBYE 1 BUTFIRST

BACKWORD
1 PROCEDURE
return to PROCEDURE

1 OUTPUT
1 BUTFIRST
0 BUTLAST

HELLO 1 PRINT
GOODBY 1 BUTF1RST

BACKWORD
1 PROCEDURE

return to PROCEDURE
1 OUTPUT
0 BUTFIRST

HELLO 1 PRINT
OODBY 1 BUTFIRST

BACKWORD
1 PROCEDURE

HELLO
OODBY

Comments

OUTPUT is now
called. Its effect
is to terminate
the execution of

return to PROCEDURE PROCEDURE by re-
0 OUTPUT moving the return

to PROCEDURE from
the P-stack1 PRINT

1 BUTFIRST
BACKWORD

0 PROCEDURE

1 PRINT
1 BUTFIRST

PRINT -1 PRINT
1 BLITFIRST
return tO RROCEDURE

1 PRINTH

PROCEDURE has
bound "HELLOT! to
/A/ and ,"00DBY''..
to /B/:



Element S-stack P-stack

PROCEDURE

Comments

/A/ HELLO 1 PRINT
1 BUTFIRST

return to
0 PRINT

LOGO types
"HELLO"

PRINT 1 PRINT
1 BUTFIRST

return to PROCEDURE
1 PRINT

/8/ OODBY 1 PRINT LOU() types
1 BUTFIRST
return to PROCEDURE

"OODBY"

0 PRINT

OUTPUT 1 PRINT
1 BUTFIRST

return to PROCEDURE
1 OUTPUT

WORD 1 PRINT
1 BUTFIRST

return to PROCEDURE
1 OUTPUT
2 WORD

OF 1 PRINT
1 BUTFIRST

return to PROCEDURE
1 OUTPUT
2 WORD

AS/ OODBY 1 PRINT
1 BUTFIRST

returli to PROCEDURE
1 OUTPUT
1 WORD

AND OODBY 1 PRINT
1 BUTFIRST
return to PROCEDURE

1 OUTPUT
1 WORD

OODBY 1 PRINT
HELLO 1 BUTFIRST

return to PROCEDURE
1 OUTPUT
0 WORD



Element S-stack P-stack Comments

OODBYHELLO 1 PRINT
1 BUTFIRST
return to PROCEDURE

0 OUTPUT

OODBYHELLO 1 PRINT
0 BUTFIRST

ODBYHELLO 0 PRINT LOGO types
"ODBYHELLO"

At this point, both stacks are empty so the execution is

completed and EXECUTE exits.

As the example shows, during the evaluation of a LOGO expression

(or the execution of a LOGO instruction line) many inputs may be

accumulated and many operations may be called before the expres-

sion is reduced to a single value.

It can be shown that one pushdown stack is sufficient to accom-

plish the evaluation of any expression. It is also true that the

use of two stacks is more convenient for performing auxiliary

functions such as garbage collection (see Section 6).

There are at least two apparently different, but equivalent,

encodings of EXECUTE:

1) when the EXECUTE routine encounters an operation, it accumulates

the appropriate number of inputs before invoking the operation,

2 when EXECUTE encounters an operation, the operation is invoked

immediately, and it in turn calls EXECUTE n times, where n is

the number of its inputs.



In the first instance, what appears on the stack are the inputs

already found, the names of the operations to be called, and the

number of inputs remaining to be accumulated. In the second

instance, what appears on the stack are the outputs already

accumulated and the place to go after the next output is put

onto the stack.

Almost any encoding of EXECUTE is sufficient to execute an instruc-

tion line with no errors. A good encoding is one that not only

performs the embedded functions and procedures correctly and

efficiently, but also detects all possible user errors and

preserves lots of relevant information for generating insightful

error comments.

The following errors must be detected by EXECUTE.

THERE ARE n INPUTS MISSING FOR x. End of line reached while

looking for an input for x.

x IS EXTRA. Elements are still unused after a command completes

its action.

x CANNOT BE USED AS AN INPUT. IT DOES NOT OUTPUT. There is

something left on the line to the left of the command x.

(This could have been detected at COMPILE time for built-in

commands, but not for user procedures which do not produce

an output. So, for symmetry, the detection of this error

is deferred until run time.)

THERE IS NO COMMAND ON THIS LINE. This also could have been

detected at COMPILE time for built-in commands but not for

user procedures, so it is also deferred.



4. Internal Representation of Data

Along with specifications for the several LOGO commands and

operations, the preceding descriptions of the PARSE and EXECUTE

routines are, in principle, sufficient for designing a LOGO

processor. The rest of this report deals primarily with con-

siderations relating to designing an efficient processor. The

difference between a relatively efficient implementation of LOGO

and one with obvious inefficiencies can be dramatic in terms of

the speed of service to an individual user and/or the total

number of users that can be simultaneously served on a given

multi-user system.

A major part of the time spent in LOGO processing is taken with

parsing and executing instructions. PARSE can be a costly

process because it involves scanning each of the individual

characters on an instruction line, one at a time, and because it

requires a great deal of searching of tables to determine the

-meanings of the various names encountered in the line. EXECUTE

can be a costly process because it may require a great deal of

referencing to process a parsed list.

We can reduce the time spent in parsing lines mainly by perform-

ing PARSE just once for each line, instead of parsing a line

each time it is referenced. This leads to an implementation

that is efficient in space as well as time usage. We need to

save only the parsed list of elements not the original text

string of the line, and the parsed list need not require appre-

ciably more space -- and often requires less space -- than the

original string.



The main way to reduce the time spent in executing parsed lines
is to eliminate all searches for the values of elements refer-
enced during EXECUTE. Thus, our strategy here is to structure
the data used during EXECUTE so as to enable elements to be
accessed directly. Figure 1 is a schematic diagram showing how
the various types of data used during EXECUTE are structured to
permit direct referencing.

EXECUTE operates on a parsed list. A list element must contain
two pieces of information. One is an indicator of the element
type and the other is a pointer to the value of the element.
In the case of literals and comments the pointer is a pointer to
the text of the element in the string storage. In all the rest
(names, names of built-in functions, names of user procedures),
the pointer is a pointer into one of three tablas. The tables
are all of the same form. Each entry in each table contains two
pieces of information. One is a pointer to the name of the ele-
ment and the other is a pointer to the value.

The table for built-in names contains an entry for every word
known to LOGO. Since these names are all known in advance, the
names do not occur in the standard string storage but in LOGO's
permanent storage. The tables for names and procedure names
contain an entry for each and every name of that type that has
ever been encountered in parsing of input lines.

For names, the value is a text in the string storage. For
built-in functions, the value is a subroutine which produces the
desired effect. For user procedure names, the value is a list
of entries in another table, the table of procedure directories.
Each entry in this list, like entries in all other lists, has
two pieces of information. The first entry of each list is
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Elements which
make up a
Parsed List

Literal String Storage Space

Typel

Comment

Typel __A

Names

iType

Built-in
Procedures

Type'

>Ptr to Name String

User-Defined
Procedures

ITypei

tr to Thing

Ptr to Name in
Permanent Storage

Address & No. of
Inputs

Ptr to Name

[
Ptr to Directory

Procedure Directory

No. of Dummy Inputs

Ptr to Title Line

Line Number

Ptr to Parsed Code

Line Number

Ptr to Parsed Code

Fig. 1, Structure of Data Used During EXECUTE.
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special. It contains the number of inputs to the procedure and

a pointer to the parsed list of the title line of that procedure.
The rest of the entries in each list contain a line number and a
pointer to the parsed list of that instruction line. These

entries are kept in ascending line number order. This form of

procedure directory was primarily designed to make referencing
as direct as possible.

All data in LOGO, including numbers, are strings. Strings can be
of any length. To manipulate number strings, one can either

provide number-string conversion and arithmetic for arbitrarily
long integers or else perform the arithmetic operations directly
on the character strings themselves. In PDP-10 LOGO we chose
the latter course.

Since integer arithmetic is most naturally performed least

significant digit first, but strings are most easily accessed

most significant digit first, PDP-10 LOGO reverses the input

strings before arithmetic operations and then reverses the output
strings afterwards. In division, which is done by repetitive

subtraction and shifting, starting with a subtraction of a like
number of digits in both the divisor and the dividend, both the
quotient and the remainder are generated in the same process.

We asserted at the beginning of this chapter that the parsed form

of LOGO instructions, along with the procedure directories and

variable tables, might take up less space than the original text.

We can show that for a program of reasonable complexity a storage

compression ratio of three to two or even more is feasible. For

the illustration on page 10, for example, the thirty characters

reduce to twenty; and for the instruction line along with the two

procedure definitions on pages 12 and 13, we get a ratio of 209

to 143, i.e., approximately 3 to 2.
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5. Storage Allocation

The previous section on data structures did not discuss the sizes

of the various tables or how these might change across time.

There is no a priori selecticn of table sizes that will satisfy

the needs of all users. Different programs and programming styles

will generate different requirements for table sizes of the

various data types. Thus, it is desirable that the only restric-

tion on the size of tables should be the unavoidable one that the

total amount of data in all the tables cannot exceed the maximum

amount of space available to the user.

We therefore expect to vary the sizes of tables dynamically

according to the user's needs. Any set of initial table sizes

will suffice. If any type of data grows to exceed the size of

its table, the size of that table will be expanded. All the

data following that table will then be moved up and the pointers

to these data appropriately adjusted. In general, with LOGO, we

should expect this to happen routinely.

When one table is expanded, the tables after it are moved only

as a whole. Data do not change their relative positions within

each table. Thus, if all pointers into tables are made relative

to the beginning of their tables, when a table expansion occurs,

only the pointers to the beginnings of the tables following the

expanded table need be modified, but not pointers to individual

data within those tables.

If the process of expanding a table will cause the total amount

of allocated space to exceed some bound, then any unused alloca-

tions in the various tables will be recovered to permit the

necessary expansion. The bound might be the top of core or the

top of a quantum of storage allocation in a multiple-user

variable allocation scheme.
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When starting a LOGO session, no user data have been created,

and there is no reason to assign more than a minimal amount of

space until such data are generated.

Many charging algorithms penalize users with large core alloca-

tions. The penalties are not necessarily monetary but may be in

degraded overall system performance. Moreover, if the scarcest

resource in the system is memory space rather than processor

time, and this is typically the case for interactive systems,

it is worthwhile to spend some percentage of time keeping the

utilized memory to a minimum.

Thus, a means of eliminating space for data which are no longer

referenced may be of considerable practical value. This kind

of process is called garbage collection.

6. Garbage Collection

Thus far, we have discussed only the generation and storage of

data. Whenever LOGO runs out of memory for data storage there

are two possible ways to get more. One is to request more from

the host system. This way fails if the memory allocation is

fixed or if it is at the maximum. The other way is to eliminate

any data which are no longer referenced. One situation in which

data become unnecessary is when an instruction line is replaced.

The space occupied by the superseded parsed list is no longer

needed and should be recovered at that time. When an instruction

line is erased, the space for both the parsed list and the pro-

cedure directory entry for that line should be recovered. To

recover the space occupied by a parsed list, all parsed lists
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following the superseded list are copied down a number of cells

equal to the length of that list, then, all the pointers to

parsed lists in all procedure directories which point to lists

which have been moved are decremented by the amount the lists

have been moved.

If the procedure director;y is not the last one in the procedure

directory table when it expands or contracts, then all of the

directories above the one being modified must be moved for each

line that is added or deleted. But typically, when a procedure

is edited, more than one line of the procedure is added or deleted

at a time. Thus, when the editing of a procedure is initiated,

that procedure directory is moved to the end of the table of

procedure directories and all subsequent modifications to that

procedure directory affect only that directory, and not those

which previously may have followed it.

Names and procedure names have a permanent entry assigned to

them in their respective name tables. It is possible that some

of these entries may become unnecessary due to the deletion of

all references to them in the parsed code. These can be

recovered by the following garbage collection technique.

(1) Search for all references to names and procedure names in

the parsed code (the only place they can occur) and mark the

table entries that are referenced.

(2) Search each table from the bottom for unreferenced entries.

When one is found, search the table from the top for a referenced

entry. If one is found above the unreferenced one, move the

referenced entry down and replace it with a pointer to where it

was moved. This process is terminated when there are no refer-

enced entries above unreferenced ones.



(3) Search the parsed code again for name and procedure name

elements. Check each one to see if it points at a pointer

instead of an entry. If it does, update the element to point at

the entry rather than the pointer.

Thus fir we have only considered the process of garbage collec-

tion for non-string data. We have not yet discussed the form or

handling of strings, other than acknowledging their existence.

All strings are stored in the string table in order to localize

the special processing required for strings. Strings present

special problems because they can be arbitrarily long, Moreover

a string is generated whenever a LOGO operation is performed and

there is no way of knowing whether or not it will be saved and,

if so, for how long a period. Thus, the storage allocation and

garbage collection of strings are not the same as with other data.

Depending on the particular form used for representing strings,

the amount of storage needed for them, and the amount of time

needed to garbage collect them, can be very different. We shall

consider three distinct ways of representing strings. The first

uses the least space, but requires the most time for garbage

collection; the second takes the most space of the three repre-

sentations, and requires more time than the others for storage

and retrieval, but less time for garbage collection; the third

usually takes less space than the second without requiring

significantly more time for garbage collection.

In the first representation, strings consist of characters start-

ing at a word boundary and terminating with an EOM. In the

PDP-l0 implementation, characters are seven bits long and stored

five to the word. This leaves the least significant bit of any

string word free for marking strings to be saved.
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The space allocated for string storage is located after all other

storage areas. This allows for the use of the upper bound of all

assigned memory to be used as the upper bound on the string

storage. Then the test for no more room in the string space can

be the occurrence of a memory bound violation on a store charac-

ter instruction instead of a pointer compare before every store

character.

The garbage collection procedure consists of two parts. First,

all data types that use string pointers are searched (they are:

names and their things, abbreviation names and their things,

the S-stack, procedure names, and literal and comment references

in the parsed code). For each string pointer found, the corre-

sponding string must be marked for saving. A string is marked

by setting the spare bit of its first word.

Second, the string storage is searched word-by-word until it

finds one with the spare bit set. When one is found, all possible

pointers are scanned for those that point to this string (there

may be more than one) and modified to point where the string will

be located after it is moved down over the garbage strings. Then

this string is unmarked and is copied word-by-word and the loca-

tion following its last cell will become the first cell available

for the next string. This process is repeated until all the

strings have been passed over.

This method requires N+1 full scans over the string pointers

(where N is the number of strings being saved), and might be

reasonable for a system that has little or no available memory

but a great deal of available time. A machine with little

memory cannot afford space for any kind of overhead words in



strings. However, since so little memory is available, there

cannot be enough strings to make the garbage collection time

prohibitive.

The second way of representing and storing strings is to list

structure them. This has the following advantages: (1) good

strings do not have to be moved in order to fully utilize the

recovered space, (2) the pointer spaces have to be passed over

only once (marking pass) because the pointers do not have to be

altered since the strings do not move.

The marking pass consists of searching all the pointer lists for

string pointers and marking all the cells of all the good strings.

The collection pass consists of passing over the string space

searching for unmarked cells and chaining them to each other and

also unmarking those that had been marked. This method affords

considerable savings in time for the garbage collection because

the pointer spaces and the strings have to be scanned only once

each.

The disadvantages of this representation are: (1) the storage

and retrieval of characters in strings stored with pointers

embedded in them must be done by subroutine, causing some added

processing time even for a machine with good character handling

instructions; (2) the amount of storage allocated to strings

cannot be reduced without further manipulation similar to that

used with the first type of string representation; (3) the

storage efficiency is less than with the first type of string

representation.

A string cell in this representation is a contiguous group of

storage locations. Each cell contains a pointer to the next cell



of the string or a termination pointer. The rest of the cell

space is occupied by the characters comprising the string. The

storage efficiency obtainable with this type of string storage

varies according to the choice of cell size. The maximum

efficiency possible using a single word for a cell is 40%; for

a cell size of two words, the maximum efficiency goes up to 70%;

for a four word cell size it can approach 90%. These figures

assume that all available space for characters in the cell is

used, and that the chain pointer is 18 bits long, leaving space

for two characters in the same 36-bit word.

The process of reducing the amount of space allocated to strings

in the list-structured representation is the same as the fixed

garbage collection described on pages 25 and 26.

Note that having a fixed location for temporarily keeping pointer

information while strings are being moved saves some scanning of

the pointer list. With that in mind, we next propose a represen-

tation which incorporates an overhead word for each string. This

word can be in a separate table or it can be interleaved with the

strings. Let us compare the space utilization for strings of

various lengths stored with one overhead word per string versus

list-structured string cells of various sizes. For the one word

list-structured cell:
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Contiguous String
Length List-Structure plus one word

(characters) (words) (words)

1-2 1 2

3-4 ,
c.- 2

5-6 3 3

7-8 4 3

9-10 5 3

String

The only case where there is any saving with one word cells is

in strings of one and two characters.

For two word cells:

1-5 2 2

6-7 2 3

6-10 3

11-14

15 6

16-20 6 5

For four word cells:

1-5 2

6-10 3

11-15

16-17 5

18-20 8 5

21-25 8 6

In each case, as the string gets longer, the amount of space

required with the list-structured representation gets progressive-

ly worse by comparison to the new scheme.



If the overhead word for a string is kept in a separate table,

it can be'used in any of a number of ways. One way is to use it

as a fixed location which contains the location of the text of

the string and string pointers in turn point to it. Garbage

collection for this configuration consists of scanning the lists

for string pointers to good strings. Marking a string is done

by putting the first word of the text into this fixed location

and pointing to the table where the text used to be. At the end

of the marking pass the string pointers and the strings both

point into this table. The stl'ing compression pass consists of

searching for marked strings. When one is found, the first word

of text is retrieved from the table and replaced by the new

location of the string. The entire string is then moved to the

first available slots for good text. It may be necessary to

compress the table as well. Compressing the table is done in a

manner equivalent to that used for compressing the name tables

as described above. The table in this instance is, in effect,

an indirect address for the strings.

In another approach, the extra word is used only during garbage

collection. One has to insure that there are at least as many

words in the table as there are strings. The marking pass in

this case consists of putting the first word of the string into

the table and making both the string itself and the string

pointer point into the table. The string compression pass is

the same as described above, but this time there always needs to

be a third pass, to replace the relocated string pointers with

the contents of the table address pointed to by the relocated

string pointer. Here the table acts as a fixed address for the

string only while it is being moved.

Both of these ways of using the overhead word suffer in that the

allocation of space for the extra table is not exactly in step



with the generation of strings. If all allocation areas are

contiguous and the strings are stored at the end, the strings

need to be moved each time the size of the extra table is

increased. Also, the string storage area may fill up while there

is room still left in the table, and this is not optimal. Finally,

strings still have to be searched word-by-word and moved a word

at a time.

In yet another storage technique, the word of overhead for each

string is put at the head of the string itself. Half of this

word is used to contain the length of the string. This length

information has a number of uses: (1) when comparing two

strings, if the two strings are of differing lengths, they will

not match on the first word of the comparison. This may be a

significant saving in comparison time. (2) Since one knows in

advance where the end of the string is, during the string com-

pression a block transfer can be used instead of a word-by-word

copy, because the source, the destination, and the length of the

string are all known.

The other half of the word is used during garbage collection by

making it the head of a linked list of all of the refercnccc-tc____
that string. During the marking pass this half word is used to

denote that the string is to be saved by making it point at the

pointer that refers to this string. Thus, during the compression

pass, the pointers to the strings can be updated without.searching,

by using this back pointer to update the string pointers. Since

a string can be pointed to by more than one pointer, it is neces-

sary to treat the back poinLer as a pointer list. We do this by

putting the current contents of the marking half of the overhead

word into the address part of the string pointer, and putting the

address of that string pointer into the marking half of the over-

head word. Then, after the marking pass is complete, one can find



all references to a string by tracing back through the pointer

list starting at the string itself and ending with the terminator

that was in the overhead word before the marking pass was

initiated. Another advantage of having the string length stored

with the string is that the search for marked strings is as small

as possible because it can be limited to the first word of each

string.

The above discussion on storage allocation assumes that the data

of the various types are kept in separate tables, varying in

internal structures, with separate garbage collection techniques

for each. An alternate method of data storage is to consider all

data to be of the same form, the one relegated only to strings in

all the preceding discussion, i.e., one word of overhead and any

number of words of data. Lines of compiled code can be handled

this way, as can individual procedure directories, the list of

all procedure names, the list of all names, and the list of

abbreviations. In fact, all data in LOGO, except for pushdown

lists, can be handled in this manner.

Even a sentence can be a list of pointers to words, rather than

a string of characters. This representation can lead in a

straightforward way to extensions of the language to other data

types and operations on these types.

Using this type of data structure, some small changes in the

handling of data are required. When a list iadded to and there

is no room left in that list or table, instead of moving up the

data following the list to make room for .the expansion, the table

is moved to the end of the data storage and extra room is made

there.
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Now that elements can contain pointers to other elements as well

as data, garbage collection of the data in such a mixed structure

also differs, because pointers to elements in the structure are

data in other elements. The marking pass is the same as in the

last method above. The second pass in the previous method, the

one that does the pointer fixups and element compression, must

be altered. Otherwise, if any element compression is done before

the pointer fixups are complete, some of the pointers in the

fixup chains may move and the chains will then become invalid.

Therefore, this paf,s is itself broken up into two passes, the

first for doing the pointer fixups, and the second for doing the

storage compression once the pointers are all modified (to

reflect the state of affairs after the compression would have

been done).

7. Filing Requirements

A filing system is an integral part of LOGO. An essential aspect

of the use of LOGO involves the elaboration and extension of

previous programs. To eliminate the need for reentering the

growing body of previously written programs, at each session, we

provide a filing system which satisfies the following requirements.

(1) Each student should have his own catalog of saved programs

(that is, his own file).

(2) He should easily be able to 4v.

(a) see what programs are in his file or other files made

available to him;

(b) add programs to his file;

(c) add to or otherwise modify a program in his file;

(d) remove any program from his file;

(e) load one or more programs from his file.



(3) A program saved in a file should contain names, abbreviations,

and procedures.

(4) When a program is loaded into LOGO f2om a file, the effect

should be the same as if the program had been entered on the

terminal. Similarly, the input of a DO command should have

the same effect as if it was loaded from a file or typed in

at the terminal.

8. General Design Considerations

LOGO, like many programming languages, is most effectively used

in an interactive environment. The LOGO system provides all the

facilities, such as editing and debugging, required to give the

user complete control of everything he needs to carry out a

working session. He does not need to know the special and

relatively complex conventions necessary to operate the equiva-

lent facilities that may be provided by the host system.

When LOGO must be used in a system which does not provide the

facilities for interactive operation, a LOGO compiler might be

written in preference to a semi-compiler or an interpreter.

However, the resulting code that would be compiled has,

essentially, a one-to-one correspondence with the parsed elements

of the semi-compiler which we have described. The central dif-

ference is that the code produced by the compiler will be a list

of subroutine calls to the same routines that:are dispatched to

by the EXECUTE routine in the case of the semi-compiler. The

compiler gains relatively little either in space or time, in

typical cases, over the semi-compiler which, in turn, is superior

to an interpreter both in space and time savings, as we indicated

in Section 4.



In a LOGO system we need to provide a sizable amount of storage

for user data, in one form or another. This storage can be split

between primary memory and high-speed devices such as discs or

drums. Even tape can be effectively usrd as secondary memory

in a one-user system but a disc or drum is essentially necessary

for a multi-user system.

Several questions must be asked about implementing LOGO on

smaller computers.

1. How small a computer?

2. How much of LOGO is to be included?

3. What kind of environment?

LOGO inherently uses large amounts of storage. This is not a

function of the implementation so much as the character of the

language. LOGO is a string and/or list handling language. By

their very nature, strings and the procedures that process them

take much more storage than numbers and numeric procedures.

Thus, on a 12-bit or 16-bit computer we think that at least 2414.

bytes of memory are necessary to implement a single user in-core

LOGO system. Also, in implementation, space must be the prime

design criterion. Thus such methods as efficient variable---storage,

storing strings as lists of words, storing only one copy of each

word or string, etc., are all the more important. Some form of

file storage should also be included, for one of the basic

principles in LOGO's design is that each student builds on his

past work.

Attached as Appendix C is a list of what we consider a minimal

set of LOGO commands, operations, and names. A command or opera-

tion was eliminated if its use was infrequent and it could be

written as a LOGO procedure, but some commands were retained that

were trivial to implement.



The final question concerns the type of environment. Classroom

use of LOGO will generMy require a multi-user system. Such a

system will necessitate at least 8K bytes more memory and

certainly a high-speed swapping device. Its implementation,

however, would not be too different from the implementation of

a single-user system on the same machine, assuming that the user-

specific data is kept separate from the LOGO system code.

There are situations where an even smaller machine might be used

to implement a LOGO processor. For thee-, a swapping device is

absolutely necessary because either the LOGO processor or the

data will not entirely fit in core. There is a logical way of

partitioning the sections of a LOGO processor. The set of parts

are: the input and parsing; EXECUTE and the operations and

commands; listing, editing, and erasing; filing; garbage collection.

The operations can be separated from the commands and even from

each other if absolutely necessary.

There are many possibilities for the partitioning of LOGO data.

The pushdown list or lists can be segmented to secondary storage.

The procedures can be broken down into single instruction line

segments on secondary storage. Also, the procedure name table

and the variable table can be segmented. In a situation where

all of these occur, it is probably better to keep name strings in

the tables and literal strings with the instruction lines and

the operands themselves on the stack rather than having string

pointers into a separate string or list area in an attempt to

reduce the number of virtual references to retrieve a datum. The

only place where pointers rather than strings would have tc; be

kept is for the values in the name table because one wants to

keep a fixed relationship between a name and its position in the

name table for speed in referencing.



When lines of procedures are in separate segments, it is desirable

to have them chained forward for fastest sequential execution

and also backward for ease in editing. To keep GOTO's from

getting excessively slow, it would also be advantageous to have

a table of contents (or index) for the lines of the procedures.

An index is also helpful for rapid retrieval of variable refer-

ences from the name table and also for the procedure name table.

With the kinds of data partitioning described above, tne amount

of core needed for a single user's data can be made very small.

Most of the available time will be spent waiting for data from

secondary storage. One way to increase throughput is to reduce

latency. However, there is no foolproof look-ahead scheme for

a single user. Therefore, it would probably pay to have the

minimum amount of data in core sufficient to accommodate many

users at the same time, where many is on the order of the number

of segments that can be individually read in one revolution of

the secondary storage.

An example of a fairly minimal configuration for implementing a

LOGO processor is a DEC PDP-8 (or a comparable machine) with 8K

of memory and a DEC tape, microtape or other form of addressable

tape. Half the primary memory is used for code and the other

half for user data. A relatively complete LOGO implementation,

realized on a DEC PDP-10 requires LIK or 36-bit words for the

LOGO code; another relatively complete one, realized on a DEC

PDP-1 takes 8K of 18-bit words.
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The LOGO implementation we have described is a general one. The

basic algorithms used for parsing and execution would be roughly

the same if one were interested in minimizing space rather than

time. Even such a radical change in optimization strategy would

mainly affect the internal representation: the list elements

might be structured somewhat differently, e.g., different elements

might have different lengths. Aside from this, the only process

that would be significantly affected is garbage collection, and

we have described a range of different algorithms spanning the

significant options here. Essentially then, to within these

variations in garbage collection algorithms, the LOGO design

applies to a variety of distinctly different machines, configura-

tions, sizes, speeds, and operating environments.
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