
DOCUMENT RESUME

ED 057 581 EM 009 421

AUTHOR Lukas, George; And Others
TITLE LOGO Teaching Sequences on Strategy in

Problem-Solving and Story Problems in Algebra.
Teacher's Text and Problems.

INSTITUTION T3olt, Beranek and Newman, Inc., Cambridge, Mass.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO R-2165
PUB DATE 30 Jun 71
NOTE 226p.; Programming-Language as a Conceptual Framework

for Teaching Mathematics, Volume Three; See also
EM009 419, EM 009 420, EM 009 422

EDRS PRICE MF-$0.65 HC-$9.87
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

*Mathematics Instruction; *Problem Solving; Secondary
School Mathematics

IDENTIFIERS Project LOGO

ABSTRACT
In order to provide high school students with general

problem-solving skills, two LOGO computer-assisted instruction units
were developed--one on the methods and strategies for solution and a
second on the relation between formal and informal representations of
problems. In both cases specific problem contexts were used to give
definition and articulation to central notions like problem, problem
form, solution method, and optimal strategy. The unit on strategies
in problem solving illustrates strategy formation in two
contexts--extrapolating number sequences and exploring mazes. The
unit on story problems in algebra attempts to help students learn to
convert a story problem into formal mathematical terms. For more
information about the LOGO project, see volumes I, II, and IV of the
report (Ell 009 419, EM 009 420, and EM 009 422). PIO



BC)LT BERA. AND NEWMAN
CON SILL T ING DEVELOPMENT

I N C

R E A R C H

CO
Report No. 21Am

N-

CD
PROGRAMMING-LANGUAGES AS A CONCEPTUAL

LAA
FRAMEWORK FOR TEACHING MATHEMATICS

LOGO Teaching Sequences on

Strategy in Problem-Solving

and

Story Problems in Algebra

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

Submitted to:

National ScienCe Foundation
Office of,CoMpung. Activittes
1800 G Street,-N:W.
Washington, D. C' 20560

tontract NSF7C 615

30 June 1971

Volume 3



Report No. 2165, Volume 3

Strategy in Problem-Solving

and

Story Problems in Algebra

FOREWORD

High-school students seldom acquire general problem-solving skills.

They lack a meta-language for discussing problem-solving and they

lack suitable models where the methods of problem-solving are

brought to the fore. The two LOGO units in this volume deal directly

with these issues. In the first unit, the focus is on methods and

strategies for solution; in the second, on the relation between

formal and informal representations of problems. In both cases

specific problem contexts are used to give definiteness and arti-

culation to central notions like problem, problem form, solution

method, and optimal strategy.

In the unit "Strategy in Problem-Solving," we develop extended

sequences illustrating strategy formation in two rather different

contexts -- extrapolating number sequences and exploring mazes.

These examples are designed to give a close-up view into problem-

solving work, while showing the flavour of different approaches,

and indicating the scope of results possible. Substantive mathe-

matical issues arise naturally along the way and are treated from

an intuitive, constructive point of view. We chose our examples to

facilitate such treatment -- many other good choices can be made,

including studying abstract structures such as groups, games of

strategy, and formal manipulation methods.

The unit "Story Problems in Algebra" deals with a central and

difficult issue to beginning students. All too often, a student

does not realize that the problem of converting a story problem into

a problem into formal mathematical terms is a problem in trans-

lation. Although the translation rules cannot be made as precise



as those for translation between formal systems, they are consider-

ably more precise than those governing the translation say, between
English and Chinese; The student who does realize that he is faced

with a translation problem still has the problem of formulating

the rules -- they are never given to him. In this unit we shall
try to give him such "rule-formulating" abilities.

We start with a relatively formal translation problem the trans-
lation from infix to prefix notation. This serves to shed consider-

able light on the operations needed to carry forward the less-formal

translation and seems a great deal easier. NeY.t we deal with story

problems themselves, but instead of taking the usual route of trans-
lating from story problems into equations, we translate in the other
direction. This route is considerably easier and focuses attention
on the translation process itself. For these purposes we develop
two kinds of story problem translations prefix to story and infix
to story. The former is used with a variety of different story

problem types involving a single unknown; the latter with problems
involving a system of equations.

3



Volume 3, Part 1

STRATEGY IN PROBLEM-SOLVING

Teacher's Text

and

Problems

The LOGO Project

NSF-C 615

George Lukas

Philip Faflick

Wallace Feurzeig

Bolt Beranek and Newman Inc.
50 Moulton Street

Cambridge, Mass. 02138

4



1. Number Guessing

CONTENTS

Page

1

1.1 Directing Successive Guesses 4

1.2 Binary Search 7

2. Number-Sequence Extrapolation 12

2.1 Sequences and the Extrapolation Problem 12

2.2 Designing a Sequence Extrapolation Program . 13

2.3 Representing Sequences and Generation Rules . 14

2.4 Testing Successor Procedures on Sequences 16

2.5 Enlarging the Procedure Bank 21

2.6 Automatic Generalization of Successor Procedures 28

2.7 Extrapolation Using Generalized Juccessor
Procedures 37

2.8 Transforming Sequences 42

3. Mazes 50

3.1 Introduction - A Minimal History of Mazes . 50

3.2 Setting un Mazes 51

3.3 Moving a Mouse Through a Maze 57

3.4 13elative and Absolute Motion . ... 62

3.5 New Strategies 71

3.6 Marking°the Path 77

3.7 History-dependent Strategies 81

Problems

5



LOGO UNIT ON STRATEGY IN PROBLEM-SOLVING

0. Introduction

This unit develops the art of solving problems by carrying through

some examples. We have chosen problem situations that are

amenable to different kinds and levels of attack, and that can

be approached initially by elementary, intuitively-grasped

methods such as guessing and searching. These basic methods are

naturally expressed as LOGO procedures. Using these, problem-

solving strategies are developed as higher-level procedures

either by extending the basic ones or by transforming the

problems themselves.

We have sought throughout the LOGO teaching units to counter the

harmful impression often given to students that "right" or "best"

theorems, algorithms, or solutions are born whole, or are

obvious, trivial constructions (or even always exist). In this

unit we do not produce optional strategies as instant solutions,

like rabbits out of a hat. Instead, the concepts of "good" and

"best" strategies arise gradually along with the development of

criteria for comparing strategies. Primary emphasis is given

to the process of building, testing, and improving strategies.

The unit is divided into three parts. We begin studying

strategies for a simple game -- guessing an unknown number.

Random and systematic guessing and searching methods are easily

introduced in this context.

We next extend number-guessing to a richer problem-solving

situation, extrapolating number sequences. Here there is enough

additional structure to permit developing a variety of different

strategies, some building on others and .some essentially



independent of others. Some strategies have to do with tran-
forming the sequences to be extrapolated, and others with

modifying the rules (LOGO procedures) for generating solutions.
The development is carried forward in a "learning" framework.
The capabilities of the extrapolation program are continually
improved by the incorporation of new strategies. Issues of
program organization such as the order of application of

strategies, arise naturally.

As a last example, we study an apparently very different

situation -- finding effective methods of traversing mazes. The

context here is geometric and topological rather than numerical.
The basic procedures for moving to adjacent cells are developed
first. Using these, various systematic strategies such as
"always bear to the left" are defined. Random strategies (and
substrategies) are introduced to try to avoid endless repetitive
loops :rnd "dead-ends". The possibilities for developing more

complex and interesting strategies are further enhanced by

marking cells as they are traversed, thus enabling the use of
history-dependent strategies.

The LOGO treatment of maze strategies was designed by George

Lukas with major contributions from Philip Faflick. George Lukas
and Wallace Feurzeig collaborated in the original*design of the
LOGO number sequence extrapolation material. Philip Faflick
contributed to the realization and did the major writing of both
this and the maze material. Wallace Feurzeig wrote the intro-
ductory section on number-guessing strategies. Pearl Stockwell
provided valuable editorial assistance, technical as well as

clerical, in the course of transcribing this unit to typed form.

7

II



1. NUMBER GUESSING

There are many games of the kind where one person attempts to

guess another's "secret" object, whether it is "in this room" or
"out of this world", or neither. Among these, Twenty Questions

is probably the best known. Some of the number-guessing games

are especially well-suited for developing efficient guessing

strategies, starting from the simplest guessing procedures.

Perhaps the least-sophisticated such game is number guessing

without responsive feedback. The situation is: one person

thinks of a number, say between 0 and 999, and another tries to

guess the number; each time a guess is made the guesser is

informed whether or not his guess is correct.

In this form of guessing game no further information about the

guess is given -- not even hints like "you're getting warmer"

or "you're ice cold". So it's not immediately obvious how we
should proceed in making good guesses. Let's start very system-

atically, by counting up from 0 until we get to the secret number.

This is a tedious process, so we'll write a LOGO procedure

COUNT-UP to do it for us.

TO COUNT-UP /N/ (/N/ is the currant guess)
10 PRINT SENTENCE OF SENTENCE OF

"IS YOUR NUMBER" /NT "?" (Announce the guess)
20 MAKE

NAME: "ANSWER" (Find whether or not the
THING: REQUEST guess is correct)

30 TEST IS /ANSWER/ "YES"
40 IF FALSE COUNT-UP (If not, increase guess and

(SUM OF /N/ AND 1) try again)
50 IF TRUE PRINT "HOORAY--I GOT IT!
END

Let's use COUNT-UP to guess a number.



÷COUNT-UP 0
IS YOUR NUMBER 0?
ct\10

IS YOUR NUMBER 1?
:q\10

IS YOUR NUMBER 2?
cl\10

IS YOUR NUMBER 333?
xyEs
HOORAY--I GOT IT!

(COUNT-UP starts by guessing 0)

(Assuming 333 is the answer)

COUNT-UP takes a long time to get to large numbers. Similarly,

the opposite kind of counting procedure, COUNT-DOWN, (for counting
backwards from the biggest number) is slow to a.,rive at small
numbers. A more effective guessing procedure should somehow be

less biased in favor of high or low numbers. We would like a
guessing procedure which better mixs successive guesses among
large and small numbers. At the same time, we don't want it to

a priori favor evens or primes or, generally, numbers with other

special properties. A good way of making such unbiased guesses

is by a random or "01ind" process in which each possible number

in the guessing interval is equally likely to be chosen and

where successive cnoices are independent or uncorrelated. It's

easy to write a LOGO procedure BLIND-GUESS to do this kind of
guessing.

TO BLIND-GUESS
10 MAKE

NAME: "GUESS" (Make a 3-digit random number
THING: RANDOM-NUMBER 3 fo7' use as the guess)

20 PRINT SENTENCE OF SENTENCE OF
"IS YOUR NUMBER" /GUESS/ "?" (Announce the guess)

30 MAKE "ANSWER" REQUEST (Find whether or not the guess
is correct)

40 TEST IS /ANSWER/ "YES"
50 IF FALSE BLIND-GUESS (If not, guess again
60 IF TRUE PRINT "HOORAY--I GOT IT!"
END



Here is an illustration of the operation of BLIND-GUESS.

4-BLIND-GUESS
IS YOUR NUMBER ]7?
:c110

IS YOUR NUMBER 694?
:c110

IS YOUR NUMBER 17?
0, AS I ALREADY SAID!

IS YOUR NUMBER 333?
:cYES
HOORAY--I GOT IT!

BLIND-GUESS uses the subprocedure RANDOM-NUMBER /L/ which outputs

a random number of /L/ digits length.

TO RANDOM-NUMBER /L/
10 TEST IS IL/ 0 (If no more digits are needed)
20 IF TRUE OUTPUT /EMPTY/ (Terminate process)
30 OUTPUT WORD OF (Otherwise, attack another

RANDOM random digit and repeat
RANDOM-NUMBER (DIFF /L/ AND 1) /L/-1 more times)

END

Thus:

4-PRINT RANDOM-NUMBER 2-
49
÷PRINT RANDOM-NUMBER 10
0924366015

An evident way of improving BLIND-GUESS is to insure that it

generates a new guess each time, by remembering previous guesses

and disallowing repetitions of them. But, no further means of

reducing guesses is possible. In this very limited kind of

number-guessing situation, the information gained on any

incorrect guess is not sufficient to eliminate any other number

in the domain.



1.1 Directing Successive Guesses

A genuine improvement in the game comes about by giving the

guesser one more piece of information about his guess. Instead
of merely responding with a "no" to an incorrect guess, as before,

we will also say whether the guess is too high or too low. In

this somewhat extended game, the strategy of blind guessing is

obviously seen to be unintelligent. If the guesser is told that
his guess is too high, he clearly should choose a lower number
for his next guess. Similarly, a too low guess should cause the
guesser to make a bigger next guess. Let/s start by writing

such a procedure, TRAP, that operates as follows. Since we have
to get this process started, and we don't have any feedback yt,
let's begin with a randomly chosen guess. If a guess is too big,
TRAP will decrement it by one, if too small TRAP will add one to
it.

TO TRAP /GUESS/ (/GUESS/ is the starting guess)
10 PRINT SENTENCE OF

"MY GUESS IS" /GUESS/
20 PRINT "TELL ME--IS THAT HIGH, LOW, OR OK?"
30 MAKE "ANSWER" REQUEST
40 TEST IS /ANSWER/ "HIGH"
50 IF TRUE TRAP (DIFFERENCE OF /GUESS/ AND 1)
60 TEST IS /ANSWER/ "LOW"
70 IF TRUE TRAP (SUM OF /GUESS/ AND I)
80 TEST IS /ANSWER/ "OK"
90 IF TRUE PRINT "HOORAY--I GOT IT!"
100 IF FALSE TRAP /GUESS/ (Try again if /ANSWER/ is not
END "HIGH", "LOW", or "OK")

Here is an example of the operation of TRAP. Let's start it

with a 3-digit random number, say 422, generated by RANDOM-NUMBER
3. If our secret number happened to be 131, this is what would
happen:

11



÷TRAP (RANDOM-NUMBER 3)
MY GUESS IS 422
TELL ME--IS THAT HIGH, LOW, OR OK?
HIGH

MY GUESS IS 421
TELL ME--IS THAT HIGH, LOW, OR OK?
NHIGH
MY GUESS IS 420
TELL ME--IS THAT HIGH, LOW, OR OK?

MY GUESS IS 131
TELL ME--IS THAT HIGH, LOW, OR OK?
NOK
HOORAY--I GOT IT!

So, TRAP leads to lengthy (and dull) exchanges. The difficulty

with this procedure is that it is too conservative. The only

surprise in its operation is at the start when it finds, from

its first (random) guess, an upper or lower bound. From that

point on, it closes in on the answer inevitably, but very very

slowly. It cannot overshoot (or undershoot) but it can take an
enormous number of guesses.

A more efficient strategy comes abcPc from making the guess

depend upon both an upper bound and a lower bound. If we know

that the answer lies between two numbers, we certainly should

choose an intermediate number for our guess. If that number

turns out to be too high (too low), it defines a new upper (lower)

bound and thus we have further reduced the range of numbers for

making our next guess. So this kind of procedure, like TRAP,

will converge, though it may make many underestimates and over-

estimates along the way. And, hopefully, it will be a good deal

more efficient on the average.

Let's write such a procedure SQUEEZE to reduce the interval of

possible answers at each stage of guessing. The interval is



bounded on the low side by /BOTTOM/ and on the high side by /TOP/.

SQUEEZE uses a subprocedure INSIDE for randomly choosing as its
next guess a number within the specified interval.

TO SQUEEZE /BOTTOM/ /TOP/
10 MAKE

NAME: "GUESS"
THING: INSIDE OF /BOTTOM/ AND /TOP/

20 pRINT SENTENCE OF
"MY GUESS IS" /GUESS/

30 PRINT "AM I HIGH, LOW, OR OK?"
40 MAKE "ANSWER" REQUEST
50 TEST IS /ANSWER/ "HIGH" (If guess is too large)
60 IF TRUE SQUEEZE /BOTTOM/ (Try again using /GUESS/-1 as a

(DIFF OF /GUESS/ AND 1) better upper bound)
70 TEST IS /ANSWER/ "LOW" (If guess is too small)
80 IF TRUE SQUEEZE (SUM OF (Try again using /GUESS/4-1_ as a

/GUESS/ AND 1) /TOP/ better lower bound)
90 TEST IS /ANSWER/ "OK"
100 IF TRUE PRINT "HOORAY--

I GOT IT!"
110 IF FALSE SQUEEZE /BOTTOM/ /TOP/
END

The subprocedure INSIDE uses the procedure RANDOM-NUMBER /L/,

previously defined, to generate a random increment for /BOTTOM/.

TO INSIDE /BOTTOM/ /TOP/
10 MAKE "GAP" (DIFFERENCE OF /TOP/ AND /BOTTOM/)
20 MAKE "R" RANDOM-NUMBER OF (COUNT OF /GAP!)
30 TEST GREATERP /GAP/ /R/ (If interval length is greater

than random increment)
40 IF TRUE OUTPUT (Use it)

SUM OF /BOTTOM/ AND /R/
50 GO TO LINE 20 (Otherwise, try again)
END

Thus,

*PRINT INSIDE OF 35 AND 144
47

13
6-



Let's try SQUEEZE in the same example we used above with TRAP.

÷SQUEEZE 0 999
MY GUESS IS 422
AM I HIGH, LOW, OR OK?

MY GUESS IS 375
AM I HIGH, LOW, OR OK?
xHIGH
MY GUESS IS 293
AM I HIGH, LOW, OR OK?
xHIGH
MY GUESS IS 144
AM I HIGH, LOW, OR OK?

MY GUESS IS 48
AM I HIGH, LOW, OR OK?
LOW

MY GUESS IS 77
AM I HIGH, LOW, OR OK?
:4L0W
MY GUESS IS 139
AM I HIGH, LOW, OR OK?
xHIGH
MY GUESS IS 118
AM I HIGH, LOW, OR OK?
:CLOW
MY GUESS IS 136
AM I HIGH, LOW, OR OK?
xHIGH
MY GUESS IS 124
AM I HIGH, LOW, OR OK?
LOW

MY GUESS IS 129
AM I HIGH, LOW, OR OK?
xLOW
MY GUESS IS 131
AM I HIGH, LOW, OR OK?
x0K
HOORAY--I GOT IT!

1.2 Binary Search

SQUEEZE shows the kind of improved convergence pattern that we

expected relative to TRAP. We can speed up the operatipn of



SQUEEZE further by noting that there is a great deal of buffeting

possible when the sequence of random choices made by INSIDE

clusters on one or the other side of the interval, causing it to

contract rather slowly even when the gap F:ize has become quite
small.

Therefore, we will replace the random incrementation procedure

usea in INSIDE by a procedure which splits the uncertainty evenly

between the lower bound and the upper bound. We'll write a new

procedure MIDDLE to directly output the mid-point of the gap as
a best guess. Let's first replace line l0 of SQUEEZE by:

10 MAKE
NAME:
THING:

"GUESS"
MIDDLE OF /BOTTOM/ AND /TOP/

MIDDLE is, simply:

TO MIDDLE /BOTTOM/ /TOP/
10 OUTPUT QUOTIENT OF (SUM OF /BOTTOM/

AND /TOP/) AND 2
END

Thus,

÷PRINT MIDDLE OF 2 98
50
±PRINT MIDDLE OF 175 1000
587
÷PRINT MIDDLE OF 44 45
44

Using MIDDLE and SQUEEZE, let's replay the example used above.

4-SQUEEZE 0 999
MY GUESS IS 499
AM I HIGH, LOW, OR OK?
HIGH

MY GUESS IS 249
AM I HIGH, LOW, OR OK?

IGH



MY GUESS IS 124
AM I HIGH, LOW, OR OK?
NLOW
MY GUESS IS 186
AM I HIGH, LOW, OR OK?
NHIGH
MY GUESS IS 155
AM I HIGH, LOW, OR OK?
NHIGH
MY GUESS IS 139
AM I HIGH, LOW, OR OK?
NHIGH
MY GUESS IS 131
AM I HIGH, LOW, OR OK?
NOK
HOORAY--I GOT IT!
-4-

The strategy of splitting the interval of search in half on each
round is called binary search. In the example shown, it required
fewer guesses than the previously used strategies. Let's see
whether or not that was an accidental result of our choice of

the interval size or the number to be guessed. (One might

observe, for example, that if the unknown number had been 134

instead of 131, binary search would have taken 10 guesses
instead of 7.)

Assume we are guessing in the interval (A,B) and that N the

number to be guessed is somewhere in the interval, i.e., A<N<B.

Using TRAP we only eliminate one possibility with each guess.

Using binary search our guess, (B-A)/2, eliminates half the

possibilities -- the subsequent guessing interval is either
(A,(B-A)/2) or ((B-A)/2,B).

Using SQUEEZE, and randomly guessing between A and B, eliminates
only one-third of the possibilities -- the argument is as
follows: Let's call our guess G, where A<G<B. Assume first
that G is too high. If so, TRAP eliminates B-G possibilities.



The probability that G is too high is simply (G-A)/(B-A) (i.e.,
the relative frequency of high guesses). Thus, the number of
possibilities eliminated by a too high choice is

(G-A)
(B(B-A) -G).

Similarly, when G is too low it eliminates G-A possibilities.
And this is true with probability (B-G)/(B-A). Thus, the number
of possibilities eliminated by a too low choice is

(B-G)
-ITT

(G-A).

So altogether, adding these, we have

(G-A) (B-G)
2 (G-A)(B-G)(BA) (G A)(B-G)+

-(B-A) (B-A)

possibilities eliminated on the average. Integrating over all
possible guesses within the interval, we get

2
(G-A)(B-G)dG = (B-A)/3(B-A)fA

Finally then, SQUEEZE with random guessing eliminates one-third
of the possibilities and hence is less efficient than binary
search.

Binary search is clearly a better strategy than the others we
have considered. We might ask if there is a best strategy for
guessing numbers. And we might investigate other strategies
that might appear better than binary search. For example, if it
is good to divide the interval of search into two parts, might
it not be better to divide it into three or more parts instead?

Just as we calculated the effect of binary search in reducing
remaining choices, we can calculate it for the case where the
guess divides the interval into three parts (ternary search)



instead. The probability of a too low guess here is 1/3 and the

fraction of cases eliminated thereby is 2/3; the probability of

a high guess is 2/3 and the fraction of cases eliminated is 1/3.

Thus, at each stage 1/3 x 2/3 + 2/3 x 1/3, or 4/9, of the

possibilities are eliminated and this is somewhat poorer than

the fifty percent reducti-on obtained with binary search.

Similarly, the n-ary search efficiency is

n-1 n-1 1 2(n-1)
3

n
2

so the efficiency gets worse with increasing n.

Instead of studying number-guessing strategies further, we can

extend the guessing task somewhat and thereby obtain a richer

situation that calls for new kinds of strategies. We want to

consider guessing problems with more structure than can be

provided by guessing a single isolated number. Instead, we will

provide more initial information by giving a sequence of numbers

satisfying some (unknown) generation rule. The task will be to

guess the rule or, rather, to guess the next element of the

sequence by finding some generation rule that correctly enumerates

the numbers in the sequence thus far.

In this problem situation we can develop, not only more varied

strategies, but also a system which applies given strategies,

and others derived from them, more and more effectively to new

problems. We can build a program which in some very definite

sense grows and "learns" as it is used.

.18K.

-11-



2. NUMBER-SEQUENCE EXTRAPOLATION

2.1 Sequences and the Extrapolation Problem

We shall be concerned next with another kind of guessing game --
guessing the next number in a sequence of numbers. An illustrativ
problem is:

given the sequence 0 1 2 3 4 5

what is the next number?

This kind of problem is not mathematically well-defined because,

of course, there are an infinite number of different sequences
which contain the above one as a subsequence. One might think
to restrict the domain of possible answers considerably by

demanding that a rule be prescribed for generating an arbitrary
number of successors of the given subsequence. But such is not
the case -- in fact, for any given finite subsequence, there are

an infinite number of such rules. Thus, in the example given,
the intended rule might be - each term is the integer successor
of the last, modulo 6. In that case the next term would be 0.
But the hapless subject might argue with some vehemence that a

far more naturai generation rule is the ordinary integer successor

-- which would prescribe 6 as the next term.

Most people feel they have a good idea of what naturalness means.

But, how can we impart the same sense to a computer? To resolve
this non-mathematical problem -- of choosing the most natural

rules -- we let the participants in our game make up the rules

for generating their problem sequences and thereby define thPir

criteria of naturalness operationally, by the choices they
actually make. Thus, the computer "learns" their meaning of

nauuralness in an adaptive, evolutionary manner. Our problem
then is to design a computer program which, using rules defined

by its users, can build effective and natural guessing strategies.

01.9



We wish to solve not only "easy" problems, like that in the above

example, but also sequences of moderate difficulty such as

3 1 13 33 61 97

2.2 Designing a Sequence Extrapolation Program

We wish to design a program for predicting the next term of any

sequence given to it as an input. Our object is not to make a

"perfect" program that would correctly extrapolate any sequence

given to it by a mathematician, but only to do so for most

sequences devised by high-school students. A conceptually simple

way of proceeding is to gradually build up in memory a very large

storehouse of sequences, a sort of "sequence bank", and directly

look for a copy of the given sequence there so as to find its

possible continuation.

The program starts out with an empty sequence bank. In this

initial state it must immediately give up on its first problem

and ask for the solution. It then stores the entire sequence,

including the new term, as the first entry in its sequence bank.

The next time it is given a sequence, it can check whether or

not this new sequence is a subsequence of one it already contains.

If so, it can hazard a possible extrapolation. If not, or if the

extrapolation is incorrect, it asks for the solution and stores

this new sequence too.

If we think about implementing this scheme, we find that it has

some very serious drawbacks. Using it, we must exclude many of

the natural sequences of interest. For example, to store just

the constant sequences (e.g., 1 1 1 1 1) of length 5 for numbers

between 0 and 1000 would require nearly 15,000 digits. By

comparison, the universal rule for generating the succssor for

any constant sequence is very easy to write as a program and



this requires no more than a few dozen characters. Furthermore,
in addition to the enormous memory requirements for storing
sequences, the time required to search through tens of thousands
of words of storage becomes prohibitive.

How much more reasonable it would be to store the rule itself,
instead of some partial sequence it describes. Not only will
this be more efficient -- but we will be able to build more
powerful strategies using rules than we could using sequences.
Let's, therefore, see what is involved in building an extrapola-
tion program based upon rules.

2.3 Representing Sequences and Generation Rules

Let's consider first how we want to express sequences and genera-
tion rules in our programs. Sequences can be represented in
LOGO the same way they are ordinarily written, i.e., as LOGO
number sentences, for example:

"1 2 3 4 5"
"0 0 0 0 0 0 0"
"24 48 96"
"14029 871432 -82 40072"

Rules for prescribing sequences, however, can be of many
different forms. One standard form of rule gives for any count-
ing number N, the Nth term of the series. Thus, the sequence

1 2 3 4 5

is described, using this form of "indexing" rule, as "the Nth
term Is the number N". Another standard form of rule, a kind of
successor function, prescribes the next term of the sequence
given only the previous one. The above sequence can be described
by the succession rule "the next term is the sum of the last
term and 1". This same rule would apply to -



395 396 397 398
1002 1003 1004
-3 -2 -1 0 1

whereas each of these would require a different indexing rule
than the one given above.

Clearly, we would like to regard all of these sequences as sub-
sequences subsumed under a single rule. So we will use successor
functions for our standard way of prescribing and generating
sequences. The natural representation for a successor function
in LOGO is a single-input LOGO procedure. The input to the
procedure is a term in a sequence and the output is the next
term in that sequence. Thus, for the sequence 1 2 3 4 5, and
the related ones just shown, the LOGO successor procedure can be
written:

TO ADD-ONE /N/
10 OUTPUT SUM OF /N/ AND 1
END

This kind of successor function is not universal -- there are
sequences that cannot be described by it. An obvious class of

such sequences includes those whose terms are functions of two
or more preceding terms; for example, sequences which oscillate

as follows.

0 1 2 3 LI 5 LI 3 2 1 0 1 2 .

It is not possible to write a one-input successor procedure for
this sequence since a term is not always determined by its
immediate predecessor. The successor of 23 for example, can be
either 3 or 1, depending on whether that 2 is in the increasing
or decreasing part of the sequence.

Nevertheless, the successor function is a good choice for a first
form of sequence generation rule. This kind of rule is both easy

A

2215_



to describe and sufficient for describing many different kinds

of sequences. It can, in fact, be used for most sequences

students are likely to think of. Let's limit ourselves initially

then to integer sequences whose terms can be derived from the

previous term alone.

2.4 Testing Successor Procedures on Sequences

We can test whether or not a successor procedure describes a

sequence by trying it out on the known terms. If ADD-ONE is

truly a successor function for the sequence "1 2 3 4 5", then it

must correutly output the second term given the first, the third

given the second, etc., for all the terms given, as follows.

+PRINT ADD-ONE OF 1
2

+PRINT ADD-ONE OF 2
3

+PRINT ADD-ONE OF 3
4

+PRINT ADD-ONE OF 4
5

Let's write a procedure TESTER to perform this test of a

successor's possible validity. TESTER needs two inputs, a

sequence and the name of a successor-procedure. It compares the

output of the given procedure with the next term, or each pair

of terms, in the sequence until either the successor fails or

the sequenOe is exhausted.



TO TESTER /SEQUENCE/ AND /PROCEDURE-NAME/
10 TEST EMPTYP OF BUTFIRST OF (Have all the pairs of terms

/SEQUENCE/ been tested?)
20 IF TRUE OUTPUT "TRUE" (If so, the test is successful)
30 TEST IS SECOND OF /SEQUENCE/ (Is the successor of the first

EXECUTE OF /PROCEDURE-NAME/ term identical to the second
AND FIRST OF /SEQUENCE/ term?)

40 IF FALSE OUTPUT "FALSE" (If not, the successor does not

50 OUTPUT TESTER OF
(BUTFIRST OF /SEQUENCE/)
AND /PROCEDURE-NAME/

END

describe the sequence)

(Otherwise go on to the rest
of the sequence)

TESTER uses two subprocedures, SECOND and EXECUTE. SECOND simply

outputs the second term of a given sequence.

TO SECOND /SEQUENCE/
10 OUTPUT FIRST OF BUTFIRST OF /SEQUENCE/
END

EXECUTE is the procedure that actually applied the successor

procedure to the terms in the sequence. It uses the DO command

to perform the procedure named by /PROCEDURE-NAME/:

TO EXECUTE /PROCEDURE/ AND /INPUT/
10 DO SENTENCE OF "OUTPUT" AND SENTENCE

OF /PROCEDURE/ AND /INPUT/
END

e.g.,
4-EXECUTE "ADD-ONE" "5"
6

TESTER is used as follows.

, +-PRINT TESTER OF "1 2 3 4 5" AND "ADD-(JNE"
TRUE
+-PRINT TESTER OF "1 3 5 7 9" AND "ADD-ONE"
FALSE



Let's introduce another successor procedure now.

TO ADD-TWO /N/
10 OUTPUT SUM OF /N/ AND 2
END

÷PRINT TESTER OF "1 3 5 7 9" AND "ADD-TWO"
TRUE

Given a list of successor procedures stored in a "procedure bank",

TESTER can be used to determine which of these procedures

describes a given sequence. If one or more of them are success-

ful, we can consider using these for predicting the next term of

the sequence.

Assuming we have such a /PROCEDURE-BANK/ (i.e., a sentence of

successor-procedure names), the next thing we want is a procedure

to apply TESTER with a given sequence on each of the procedures

listed in /PROCEDURE-BANK/. This new procedure SCAN-P-LIS1 will

scan the list of procedures, apply each one in succession, and

output the name of the first procedure that works. If none of

the successors describe the sequence, SCAN-P-LIST will output

/EMPTY/.

TO SCAN-P-LIST /SEQUENCE/ AND /PROCEDURES/
10 TEST EMPTYP /PROCEDURES/ (Have we exhausted the list of

possible successor-procedures?)
20 IF TRUE OUTPUT /EMPTY/ (If so, we have no effective

procedure)
30 TEST TESTER OF /SEQUENCE/ (Does the first procedure describe

AND (FIRST OF /PROCEDURES/) the sequence?)
40 IF TRUE OUTPUT FIRST OF (If so, make it our candidate)

/PROCEDURES/
50 OUTPUT SCAN-P-LIST OF (Otherwise, try the rest of the

/SEQUENCE/ AND (BUTFIRST OF list)
/PROCEDURES/).

END



Let's build a /PROCEDURE-BANK/ and try out SCAN-P-LIST:

4-MAKE "PROCEDURE-BANK" "ADD-ONE ADD-TWO"
4-PRINT SCAN-P-LIST OF "1 2 3 4 5" AND /PROCEDURE-BANK/
ADD-ONE
4-PRINT SCAN-P-LIST OF "1 3 5 7 9" AND /PROCEDURE-BANK/
ADD-TWO
4-PRINT SCAN-P-LIST OF "2 4 8 16 32" AND /PROCEDURE-BANK/

(SCAN-P-LIST outputs /EMPTY/)
-4-PRINT SCAN-P-LIST OF "1" AND /PROCEDURE-BANK/
ADD-ONE

The last example points to an obvious limitation in SCAN-P-LIST

in its current form. The successor procedure ADD-TWO describes

the given sequence as well as does ADD-ONE and, indeed, the

extrapolated sequence might be "1 3 5 7 ..." instead of

"1 2 3 4 ...". But SCAN-P-LTST has stopped short of any further

testing of ADD-ONE that might rule it in or out as the actual

solution. The requirement that a successor procedure satisfy

TESTER for all terms given in the input sequence is not sufficient;

the procedure should also extrapolate a correct next term, as

judged by the user. Unless one of the procedures in /PROCEDURE-

BANK/ can satisfy both these conditions, SCAN-P-LIST should keep

searching until the bank is exhausted.

Once a successor procedure is found that satisfies TESTER on all

the given terms, we can easily compute the next term given by

the procedure, as follows.

MAKE "NEXT-TERM" EXECUTE OF (FIRST OF /PROCEDURES/)
AND (LAST OF /SEQUENCE/)

We must then ask the user whether this is, in fact, the correct

next term. If it is the number he intends, we regard the

-19-



sequence as solved.* If not, we continue scanning the /PROCEDURE-

BANK/ for other possible solutions. Assuming we write a sub-

procedure, APPROVAL, that elicits the user's acceptance of the

tentative next term and outputs TRUE or FALSE accordingly,

SCAN-P-LIST now looks like this:

TO SCAN-P-LIST /SEQUENCE/ AND /PROCEDURES/
10 TEST EMPTYP /PROCEDURES/
20 IF TRUE OUTPUT /EMPTY/
30 TEST TESTER OF /SEQUENCE/ AND (FIRST OF /PROCEDURES/)
40 IF FALSE OUTPUT SCAN-P-LIST OF /SEQUENCE/ AND

(BUTFIRST OF /PROCEDURES/)
50 MAKE "NEXT-TERM" EXECUTE OF (FIRST OF /PROCEDURES/)

AND (LAST OF /SEQUENCE/)
60 TEST APPROVAL OF /NEXT-TERM/
70 IF TRUE OUTPUT (FIRST OF /PROCEDURES/)
80 OUTPUT SCAN-P-LIST OF /SEQUENCE/ AND

(BUTFIRST OF /PROCEDURES/)
END

The subprocedure APPROVAL need only type out the tentative next

term and test the user's response:

TO APPROVAL /NEXT-TERM/
10 TYPE SENTENCE OF "IS THE NEXT TERM" AND SENTENCE OF

/NEXT-TERM/ AND "?..." (Ask for user's judgment of
20 MAKE "ANS" REQUEST tentative next term)
30 TEST IS /ANS/ "YES"
40 IF FALSE OUTPUT "FALSE" (Rejection)
50 OUTPUT "TRUE" (Acceptance)
END

*
Of course, he may have another sequence in mind which is identi-
cal to this one up to this number of terms. Assume for example
that a user has in mind the sequence "1 2 4 16 ..." (each number
is 2 raised to the previous number). To exclude "1 2 4 8 ..."
(each number is 2 times the previous one) from being declared
the solution, he merely has to inpt the starting sequence
"1 2 4", since "1 2" is not sufficient. It is incumbent on the
user to give enough terms to "uniquely specify" the solution.

-20-



We can now try our modified SCAN-P-LIST on /PROCEDURE-BANK/:

÷PRINT SCAN-P-LIST OF "1 2 3 4" AND /PROCEDURE-BANK/
IS THE NEXT TERM 5?...YES (The extrapolation is acceptable
ADD-ONE (So SCAN-P-LIST announces the solution)
÷PRINT SCAN-P-LIST OF "1" AND /PROCEDURE-BANK/
IS THE NEXT TERM 2?...NO (This extrapolation is rejected)
IS THE NEXT TERM 3?...YES (This one is accepted)
ADD-TWO (SCAN-P-LIST gives the solution)
÷PRINT SCAN-P-LIST OF "2 4 8 16"
AND /PROCEDURE-BANK/

(No solution was found)

2.5 Enlarging the Procedure Bank

The power of this extrapolation program depends entirely on the

contents of its /PROCEDURE-BANK/ and thus far we have no means

of extending it. A good way to do this is to ask the user to

supply us with the successor procedures for any sequence

SCAN-P-LIST can't solve. If the procedure he types in does

indeed describe his sequence, we can add its name to /PROCEDURE-

BANK/. The next time we use the extrapolation program the new

procedure will be considered along with the others.

The procedure OCCAM sets up SCAN-P-LIST and requests a successor

procedure from the user if SCAN-P-LIST fails.

TO OCCAM
10 TYPE "WHAT IS YOUR SEQUENCE?..."
20 MAKE "SEQUENCE" REQUEST
30 TEST EMPTYP OF SCAN-P-LIST OF /SEQUENCE/

AND /PROCEDURE-BCNK/ (Note that OCCAM does not announce
40 IF FALSE STOP the name of the winning procedure)
50 PRINT "I CAN'T DO THAT ONE. WRITE A LOGO PROCEDURE THAT

WILL FIND THE SUCCESSOR OF ANY TERM IN THE SEQUENCE AND
THEN TYPE 'CONTINUE"

END

28



CONTINUE is a LOGO procedure that asks for the name of the user's

procedure, and then tests this procedure on the sequence (using

TESTER). If the procedure correctly describes the sequence,

OCCAM adds the procedure to /PROCEDURE-BANK/; otherwise, it

executes the procedure and prints out the sequence it actually

generates.

TO CONTINUE
10 TYPE "WHAT WAS THE NAME OF YOUR PROCEDURE?..."
20 MAKE "PROCEDURE" REQUEST
30 TEST TESTER OF /SEQUENCE/ AND /PROCEDURE/
40 IF TRUE MAKE "PROCEDURE-BANK" (SENTENCE OF

/PROCEDURE-BANK/ AND /PROCEDURE/)
50 IF FALSE PRINT SENTENCE OF SENTENCE OF

"ERROR ON YOUR PROCEDURE. I RAN IT STARTING WITH"
AND FIRST OF /SEQUENCE/ AND "AND GOT:"

60 IF FALSE RUN /PROCEDURE/ AND (FIRST OF /SEQUENCE/)
END

The subprocedure RUN prints the sequence described by the faulty

successor procedure indefinitely:

TO RUN /PROCEDURE/ AND /FIRST-TERM/
10 PRINT /FIRST-TERM/
20 MAKE "NEXT-TERM" EXECUTE OF /PROCEDURE/

AND /FIRST-TERM/
30 RUN /PROCEDURE/ AND /NEXT-TERM/
END

We now have a sequence extrapolation procedure that can automat-

ically be extended with use. To begin witn, it knows how to

handle two kinds of sequences:

+-OCCAM
WHAT IS YOUR SEQUENCE?...7 8 9 10
IS THE NEXT TERM 11?...YES
+-OCCAM
WHAT IS YOUR SEQUENCE?...22 24 26 28
IS THE NEXT TERM 30?...YES

And it will auickly need to incorporate new ones:



+OCCAM
WHAT IS YOUR SEQUENCE?...2 4 8 16

I CAN'T DO THAT ONE. WRITE A LOGO PROCEDURE THAT
WILL FIND THE SUCCESSOR OF ANY TERM IN THE SEQUENCE
AND THEN TYPE 'CONTINUE'
+TO TIMES-TWO IN/
>10 OUTPUT PRODUCT OF /N/ AND 2
>END
TIMES-TWO DEFINED
+CONTINUE
WHAT WAS THE NAME OF YOUR PROCEDURE?...TIMES-TWO
+OCCAM
WHAT IS YOUR SEQUENCE?...5 10 20
IS THE NEXT TERM 40?...YES

Now that things are beginning to move, let's make some changes

to shorten OCCAM's printouts and reduce the user's typing

somewhat.

+EDIT OCCAM
>10 TYPE "SEQUENCE?..."
>50 PRINT "CAN'T DO THAT ONE. TELL ME HOW AND THEN

TYPE 'CONTINUE'
>END
OCCAM DEFINED
+EDIT CONTINUE
>10 TYPE "PROCEDURE NAME?...
>END
CONTINUE DEFINED
+ABBREVIATE "CONTINUE" AS "CON"

And now we'll try a new kind of sequence.

+OCCAM
SEQUENCE?...1 4 9 16
CAN'T DO THAT ONE. TELL ME HOW AND THEN TYPE 'CONTINUE'
-4-TO SQUARES /N/
>10 MAKE "X" SUM OF (SQUARE-ROOT OF /N/) AND 1 (Assuming we've
>20 OUTPUT PRODUCT OF /X/ AND /X/ written a SQUARE-
>END ROOT procedure)
÷CON
PROCEDURE NAME?...SQUARES

30



÷OCCAM
SEQUENCE?...25 36 49
IS THE NEXT TERM 64?...YES

Let's check the other branch of CONTINUE by making a deliberate

mistake.

÷OCCAM
SEQUENCE?...1 8 14 21
CAN'T DO THAT ONE. TELL ME HOW AND THEN TYPE 'CONTINUE'
+TO ADD-SEVEN /N/
>10 OUTPUT SUM OF /N/ AND 7
>END
÷CON
PROCEDURE NAME?...ADD-SEVEN
ERROR IN YOUR PROCEDURE. I RAN IT STARTING WITH 1 AND GOT:
1

8

15
22
29
BREAK (The user terminates the computation here)
I WAS AT LINE 10 IN EXECUTE
4-

Let's also see how OCCAM handles ambiguous sequences.

÷OCCAM
SEQUENCE?...9 16
IS THE NEXT TERM 25?...NO
IS THE NEXT TERM 23?...YES

Another interesting kind of sequence, that involves a non-numerical

successor function, is added next.

4-OCCAM
SEQUENCE?...1 11 111 1111
CAN'T DO THAT ONE. TELL ME HOW AND THEN TYPE 'CONTINUE'
4-TO GROW-ONE /N/
>10 OUTPUT WORD OF /N/ AND "1"
>END

-24-



Unfortunately, OCCAM can't extend its knowledge of GROW-ONE to

get this sequence:

÷OCCAM
SEQUENCE?...2 22 222
CAN'T DO [etc.]
÷TO GROW-TWO /N/
>10 OUTPUT WORD OF /N/ AND
>END
GROW-TWO DEFINED
÷CON
PROCEDURE NAME?...GROW-TWO
÷OCCAM
SEQUENCE?...1 12
IS THE NEXT TERM 122?...YES
-4-

11211

We can include sequences whose successive terms get smaller

instead of larger.

÷OCCAM
SEQUENCE?...6 5 4
CAN'T DO ...
+TO DIM-ONE IN/
>10 OUTPUT DIFFERENCE OF_/N/ AND 1
>END
DIM-ONE DEFINED
÷CON
PROCEDURE NAME?...DIM-ONE

Also, we can include sequences that are not monotone:

÷OCCAM
SEQUENCE?...0 1 2 3 0 1 2

CAN'T DO ...
+TO MOD-FOUR /N/
>10 OUTPUT REMAINDER OF (SUM OF

/N/ AND 1) AND 4
>END
MOD-FOUR DEFINED
4-



With some effort we can even add the factorial sequence (where
the factorial function is defined F(N) = N.F(N-1), N>1; F(1)=1)

4-OCCAM
SEQUENCE?...1 2 6 24
CAN'T DO ...
4-TO NEXT-FACTORIAL /N/
>10 OUTPUT FACT OF /N/ AND 1 (NEXT-FACTORIAL uses the following
>END recursive subprocedure, FACT)
NEXT-FACTORIAL DEFINED
4-TO FACT /N/ AND /COUNTER/
>10 TEST GREATERP /COUNTER/ AND /N/ (Is /COUNTER/ bigger than /N/?)
>20 IF TRUE OUTPUT /COUNTER/ (If so, the answer is /COUNTER/)
>30 OUTPUT PRODUCT OF /COUNTER/ AND (If not, the answer is

FACT OF (QUOTIENT OF /N/ AND /COUNTER/ multiplied by the
/COUNTER/) AND (SUM OF /COUNTER/ result of the indicated
AND 1) recursion)

>END
FACT DEFINED
+-CON

PROCEDURE NAME?...NEXT-FACTORIAL
4-OCCAM
PROCEDURE?...6 24
IS THE NEXT TERM 120?...YES

Our extrapolation program is beginning to acquire some power.
But, it has some unnecessary operational flaws. For instance, it
can make annoyingly repetitive extrapolations. As an example,
look at what happens now if our input sequence is simply "1".

IS THE NEXT
IS THE NEXT
IS THE NEXT
IS THE NEXT
IS THE NEXT
IS THE NEXT
IS THE NEXT
IS THE NEXT
IS THENEXT

TERM "2?-..NO
TERM-3?.NO
TERM:2?...NO
TERM q?...No
TERM 8.?...NO
TERM
TERM I2?...NO
TERM 0?...NO
TERM 2?,..NO

We see here that 2 was offered as

modify OCCAM so that it will never

a next termHthree times. Let's

try any /NEXTTERM/ more than



once. All we need do is keep a running list of all the /NEXT-

TERM/s that failed, and check to see whether or not a /NEXT-TERM/

is already on the list before we submit it to the user.

This list, call it /BAD-NEXT-TERMS/, should be made empty each

time OCCAM is used. One new line does this.

÷EDIT OCCAM
>5 MAKE "BAD-NEXT-TERMS" /EMPTY/
>END
OCCAM DEFINED

Related changes must be made to APPROVAL. First of all, APPROVAL

should check to see if its input /NEXT-TERM/ is on this list of

rejected extrapolations. It uses a subprocedure CONTAINSP,

defined below, to do this test.

÷EDIT APPROVAL
>5 TEST CONTAINSP /BAD-NEXT-TERMS/ /NEXT-TERM/

If /NEXT-TERM/ is on the list, we know without further query that

it is not the correct next term. Thus:

>6 IF TRUE OUTPUT "FALSE"

Also, APPROVAL should add any unsuccessful extrapolations to the

list as soon as they have been rejected:

>35 IF FALSE MAKE "BAD-NEXT-TERMS" (SENTENCE
OF /BAD-NEXT-TERMS/ AND /NEXT-TERM/)

>END
APPROVAL DEFINED

The procedure CONTAINSP is a predicate with two inputs, a list

and an element.



TO CONTAINSP /LIST/ AND /ELEMENT/
10 TEST FMPTYP /LIST/ (Have we exhausted the list?)
20 IF TRUE OUTPUT "FALSE" (If so, the list did not contain

the element)
30 TEST IS (FIRST OF ILISTI) (Is the first thing on /LTST/

/ELEMENT/ the element?)
40 IF TRUE OUTPUT "TRUE" (Yes, /LIST/ contains /ELEMENT/)
50 OUTPUT CONTAINSP OF,(BUTFIRST (Otherwise, try the rest of

OF /LIST/) AND /ELEMENT/ the list)
END

OCCAM's responses to the sequence "l" are now non-repetitive:

IS THE NEXT TERM 2?...NO
IS THE NEXT TERM 3?...NO
IS THE NEXT TERM 4?...NO
IS THE NEXT TERM 8?...NO
IS THE NEXT TERM 11?...NO
IS THE NEXT TERM 12?...NO
IS THE NEXT TERM 0?...NO
CAN'T DO ...

2.6 Automatic Generalization of Successor Procedures

OCCAM has another more basic limitation.. If we look at the
current procedure-bank --

4-PRINT /PROCEDURE-BANK/
ADD-ONE ADD-TWO TIMES-TWO SQUARES ADD-SEVEN GROW-ONE
GROW-TWO DIM-ONE MOD-FOUR NEXT-FACTORIAL

we find many cilccessor procedures that are virtually identical
in form. In particular, the LOGO definitions for the procedures

ADD-ONE, ADD-TWO, and ADD-SEVEN differ only by a constant. (The

same is true for GROW-ONE and GROW-TWO.) These are essentially
the same procedures. Moreover, many more procedures of the same
kind will surely be added as OCCAM is used. Clearly it is
inefficient to have so many instances of virtually the same

generating procedures. More importantly, though, no matter how
many instances of the same general form OCCAM has seen, it will

-28-



nevertheless be unable to extrapolate any new such instance. In

effect, it fails to generalize its experience. If OCCAM somehow

were able to construct, from a single such instance, a more

general procedure which included all similar instances, it would

gain enormously in power. In particular, it would then be able

to extrapolate sequences it has never seen before. There is a

simple way of accomplishing this for many procedures of interest.

Let's redefine ADD-ONE as follows.

TO ADD-ONE /N/ AND /DUMMY/ (/DUMMY/ is a new input)
10 OUTPUT SUM OF /N/ AND /DUMMY/ (/DUMMY/ replaces the old "1"

END here)

The original ADD-ONE describes a particular arithmetic sequence.

Replacing the constant "1" with a dummy variable has the effect

of generalizing the original one-input successor function to a

two-input successor which describes the entire family of arith-

metic sequences. If /DUMMY/ is 1, we get the original ADD-ONE

again; with /DUMMY/ set to 2, we have ADD-TWO, and so on for all

such arithmetic sequences (i.e., those whose successive terms

differ by some constant). Similarly, a generalized TIMES-TWO

TO TIMES-TWO /N/ AND /DUMMY/
10 OUTPUT PRODUCT OF /N/ AND /DUMMY/
END

will describe all geometric sequences, sequences whose terms are

some constant multiple of their predecessor. Let's show next

how OCCAM can construct these generalized procedures. Then we

will see how it can use them to improve its extrapolation capa-

bilities. In the examples we looked at, ADD-ONE and TIMES-TWO,

the generalization was accomplished by replacing the constant

with a variable, /DUMMY/, and appending /DUMMY/ to the title.

Some procedures contain two or more constants that could be

replaced by variables but, instead of replacing all of these,



we will content ourselves with simply replacing the first

constant that occurs within the procedure.

To change a one-input successor procedure into such a "generalized"
two-input form, we will need,to be able to write procedures for
modifying other procedures. We can do this using the LOGO command
DO along with two LOGO operations, LINES and TEXT, which enable
us to extract from any procedure the list of line numbers and the
associated instructions in specified lines. The LOGO operation
LINES takes as its input a procedure name and outputs a sentence
made up of the line numbers contained in the procedure, for
example:

+-PRINT LINES OF "APPROVAL"
5 6 10 20 30 35 40 50

The built-in operation TEXT gives us access to the instruction
lines themselves. For example:

-4-PRINT TEXT OF "APPROVAL" AND 50
50 OUTPUT "TRUE"

-C-

With access to the contents of a procedure, we can write a
procedure SCAN-LINES which goes through a procedure line-by-line
looking for a constant to replace.

TO SCAN-LINES /PROCEDURE/ AND /LINES/ (LINES is the sentence of
line numbers)

10 TEST EMPTYP /LINES/ (Have we gone through all the lines?)
20 IF TRUE OUTPUT "FALSE" (If so, there were no constants to

replace)
30 MAKE-"LINE-TEXT" TEXT OF (Get the text of the first line)

/PROCEDURE/ AND (FIRST
OF /LINES/)

40 TEST CONTAINS-NUMBER OF (Are there any numbers in the
BUTFIRST OF /LINE-TEXT/ aine besides the line number?)

50 IF FALSE OUTPUT SCAN-LINES (If not, check the next line)
OF /PROCEDURE/ AND BUTFIRST
OF /LINES/

-30-



60 CHANGE /PROCEDURE/ AND
/LINE-TEXT/

70 OUTPUT "TRUE"
END

(If so, edit the procedure)
(and indicate that we have
generalized the procedure)

The subprocedure CONTAINS-NUMBER simply applies NUMBERP to every
word (excluding the line number) in the text of an instruction

line:

TO CONTAINS-NUMBER /LINE/
10 TEST EMPTYP /LINE/ (Have we exhausted the line?)
20 IF TRUE OUTPUT "FALSE" (If so, it contained no constant)
30 TEST NUMBERP OF FIRST OF /LINE/ (Is first word a number?)
40 IF TRUE OUTPUT "TRUE" (The answer is yes)
50 OUTPUT CONTAINS-NUMBER OF (If not, repeat the process with

(BUTFIRST OF /LINE/) the rest of the line)
END

SCAN-LINES uses CHANGE to edit a procedure known to contain a

constant. (The LOGO command DO takes its input as a LOGO

instruction and executes it as such.)

TO CHANGE /PROCEDURE/ AND /LINE-TEXT/
10 DO SENTENCE OF "EDIT" AND /PROCEDURE/
20 DO SENTENCE OF (TEXT OF /PROCEDURE/

AND 0) (AND "/DUMMY/")
30 DO SENTENCE OF FIRST OF

/LINE-TEXT/ AND REWRITE OF
BUTFIRST OF /LINE-TEXT/

40 DO "END"
END I

(Put LOGO into edit mode)
(Append /DUMMY/ onto
line 0, the title line)

(Rewrite the line contain-
ing a number)
(Leave edit mode)

CHANGE's subprocedure, REWRITE, is very much like CONTAINS-NUMBER;

it scans a line looking for a constant. .However, REWRITE actually

reconstructs the line, changing the first number in it to the

word "/DUMMY/".



TO REWRITE /LINE/
10 TEST NUMBERP OF FIRST OF (Is the first word a number?)

/LINE/
20 IF TRUE OUTPUT SENTENCE OF (If so, replace it with "/DUMMY/"

"/DUMMY/" AND BUTFIRST OF and append the rest of the line)
/LINE/

30 OUTPUT SENTENCE OF (FIRST OF (Otherwise, put it back in the
/LINE/) AND (REWRITE OF line and repeat the process
BUTFIRST OF /L1NE/) with the rest of the line)

END

The outer procedure GENERALIZE simply invokes SCAN-LINES, giving

it a procedure name and the associated list of the procedure's
line numbers:

TO GENERALIZE /PROCEDURE/
10 OUTPUT SCAN-LINES OF /PROCEDURE/ AND

(LINES OF /PROCEDURE/)
END

Let's try out these new generalization capabilities:

--PRINT GENERALIZE OF "ADD-ONE" (ADD-ONE has now been generalized)
TRUE
--LIST ADD-ONE
TO ADD-ONE /N/ /DUMMY/
10 OUTPUT SUM OF /N/ AND /DUMMY/
END

Not all successor procedures can be generalized in this way.

GENERALIZE acknowledges its inability to generalize a procedure
with the output "FALSE". For example:

-(-TO SQUARE /N/
10 OUTPUT PRODUCT OF /N/ AND /N/
END
SQUARE DEFINED
--PRINT GENERALIZE OF "SQUARE"
FALSE

Now that we can construct some generalized procedures, let's see

how to incorporate these in our extrapolation program.



SCAN-P-LIST and TESTER, as they stand, will not work for two-input

successor procedures. We still need these procedures in their

present form to handle the ungeneralizable successors in

/PROCEDURE-BANK/, but we will also require precisely parallel

procedures to do the same things for generalized successor

procedures that we will accumulate in /GENERAL-BANK/.

First, let's write a new TESTER. To determine whether or not a

general successor correctly describes a given sequence, we will

have to test it on every term across a range of values for

/DUMMY/. A reasonable way to do this is to divide the problem

into two parts -- to write one procedure, GENERAL-TESTER, to run

through the range of /DUMMY/ values, and another, GEN-TEST-2 to

check each pair of known terms in the problem-sequence with some

fixed value of /DUMMY/. GEN-TEST-2 is almost identical to TESTER.

TO GEN-TEST-2 /SEQUENCE/ AND /PROCEDURE/ AND /DUMMY/
10 TEST EMPTYP BUTFIRST OF /SEQUENCE/ (Have we checked all the

pairs of terms?)
20 IF TRUE OUTPUT "TRUE" (If so, the procedure - with this

/DUMMY/ - is accepted)
30 TEST IS (SECOND oF /SEQUENCE/) (Does the procedure correctly

(EXECUTE-2 OF /PROCEDURE/ give the second term of the
AND FIRST OF /SEQUENCE/ sequence?)
AND /DUMMY/

40 IF FALSE OUTPUT "FALSE" (If not, it is rejected)
50 OUTPUT GEN-TEST-2 OF BUTFIRST (If so, repeat the test on

OF /SEQUENCE/ AND /PROCEDURE/ the rest of the sequence)
AND /DUMMY/

END

The subprocedure EXECUTE-2 is a simple extension of EXECUTE

designed to execute two-input procedures:

TO EXECUTE-2 /PROCEDURE/ AND /INPUT-1/ AND /INPUT-2/
10 DO SENTENCE OF "OUTPUT" AND SENTENCE OF /PROCEDURE/

AND SENTENCE OF /INPUT-1/ AND /INPUT-2/
END



Now we will have to choose a range of values to use with
GEN-TEST-2. Should we try two values? ten? one hundred?
a thousand? On the one hand, we want to use a "big" range; the
larger the range the more eCfective the successor procedures
will be. But, even if it checks all values from 0 to 100Z, a
generalized ADD-ONE, for example, would miss the sequence -

1 1002 2003 3004

But a person confronted with such a sequence of large numbers
would not carry out this kind of generalization technique for
1000 successive values of a parameter. Rather, he would try to
transform the problem into a more tractable form where rules
using small parameter values might be effective. Perhaps the
most natural such transformation is to replace the original
sequence by one consisting of the differences between successive
terms of the original -- obviously a good choice for the above
sequence. Use of such transformations can vastly improve our
extrapolation capabilities. We will develop some procedures of
this kind after seeing the kind of benefits we obtain with
GENERALIZE.

Since we are not depending upon GENERALIZE to solve problems with
large parameters, and since the larger the range chosen the
longer it takes to do the checking, we shall choose a small range
of values. The range zero through ten is a natural one for people
doing parametric calculations so let's make the same choice for
our program. GENERAL-TESTER then will test a given generalized
procedure on a sequence using values of /DUMMY/ between 0 and 10
successively. It will output the first /DUMMY/ that is success-
ful across all known terms in the sequence. If no /DUMMY/ is
successful, it will output /EMPTY/.

41



TO GENERAL-TESTER /SEQUENCE/ AND /PROCEDURE/
10 MAKE "DUMMY" 0
20 TEST GEN-TEST-2 OF /SEQUENCE/ AND /PROCEDURE/ AND /DUMMY/30 IF TRUE OUTPUT /DUMMY/
40 TEST IS /DUMMY/ 10
50 IF TRUE OUTPUT /EMPTY/
60 MAKE "DUMMY" (SUM OF /DUMMY/ AND 1)
70 GO TO LINE 20
END

1

Let's try GENERAL-TESTER with our generalized ADD-ONE:

4-PRINT GENERAL-TESTER OF "1 5 9 13 17" AND "ADD-ONE" 34 (This is the "winning" /DUMMY/)
4-PRINT GENERAL-TESTER OF "2 4 8 16" AND "ADD-ONE"

(There is no winning /DUMMY/)

1

a

1

We will also need a procedure similar to SCAN-P-LIST which uses
GENERAL-TESTER to scan a list of generalized successor procedures.
The only differences between this procedure, call it SCAN-G-LIST,
and the old SCAN-P-LIST are due to the extra input, /DUMMY/;
SCAN-G-LIST will have to save the output of GENERAL-TESTER
(either a number or /EMPTY/, rather than "TRUE" or "FALSE") and
use it in EXECUTE-2 to calculate the rext term.

TO SCAN-G-LIST /SEQUENCE/ AND /PROCEDURES/
10 TEST EMPTYP /PROCEDURES/ (Have we exhausted the list?)20 IF TRUE OUTPUT /EMPTY/ (Yes, no winners in the list)30 MAKE "WINNING-DUMMY" GENERAL-TESTER (Test the first procedure

OF /SEQUENCE/ AND (FIRST OF - save the result)
/PROCEDURES/)

40 TEST EMPTYP /WINNING-DUMMY/ (Did the procedure fail?)
50 IF TRUE OUTPUT SCAN-G-LIST OF (If so, try the rest of the

/SEQUENCE/ AND (BUTFIRST OF list)
/PROCEDURES!)

60 MAKE "NEXT-1ERM" EXECUTE-2 OF (If the procedure succeeded,
FIRST OF /PROCEDURES/ AND use it to calculate a next
LAST OF /SEQUENCE/ AND term)
/WINNING-DUMMY/

70 TEST APPROVAL OF /NEXT-TERM/ (Is this extrapolation accepted?)
80 IF TRUE OUTPUT FIRST OF /PROCEDURES/ (Yes)
90 OUTPUT SCAN-G-LIST OF /SEQUENCE/ (No, so repeat the processAND (BUTFIRST OF /PROCEDURES7) with the rest of the proce-END dures)



We now have procedures that can generalize successor functions

and procedures that can test lists of generalized successors

against a given sequence. Linking these procedures to our exist-
ing sequence extrapolation is straightforwardly done.

First of all, we need to modify CONTINUE so as to add new proce-
dures to /GENERAL-BANK/. When a new successor satisfies TESTER,
CONTINUE should give it to GENERALIZE. If GENERALIZE outputs

"TRUE", the generalized procedure can be added to /GENERAL-BANK/,

otherwise the procedure iF not generalizable and must be appended
to our other list, /PROCEDURE-BANK/. With these changes CONTINUE
looks as follows.

TO CONTINUE
10 TYPE "PROCEDURE NAME?..."
20 MAKE "PROCEDURE" REQUEST
30 TEST TESTER OF /SEQUENCE/ AND /PROCEDURE/
40 IF FALSE PRINT SENTENCE OF "ERROR IN YOUR PROCEDURE. I

RAN IT STARTING WITH" AND SENTENCE OF (FIRST OF
/SEQUENCE/) AND "AND GOT:"

50 IF FALSE RUN /PROCEDURE/ AND (FIRST OF /SEQUENCE/)
60 TEST GENERALIZE OF /PROCEDURE/ (Does the procedure generalize?)
70 IF TRUE MAKE "GENERAL-BANK" (If so, add the generalized

SENTENCE OF /GENERAL-BANK/ procedure to /GENERAL-BANK/)
AND /PROCEDURE/

0 IF FALSE MAKE "PROCEDURE-BANK" (Otherwise, put it with the
SENTENCE OF /PROCEDURE-BANK/ other one-input successor)
AND /PROCEDURE/

END

All that remains to do is to give OCCAM the option of using

generalized procedures (if there are any) for its extrapolations.
So we will have to do SCAN-G-LIST after it does SCAN-P-LIST.

This is done by adding a single line to OCCAM.

35 IF TRUE TEST EMPTYP OF
SCAN-G-LIST OF /SEQUENCE/
AND /GENERAL-BANK/

(If SCAN-P-LIST fails,
test SCAN-G-LIST)

4 3.

-36-



2.7 Extrapolation Using Generalized Successor Procedures

We're now able to try the new and more powerful extrapolation

program we have been building. Since many of the successor

functions in /PROCEDURE-BANK/ can be expressed more efficiently

with a generalized successor, let's start once again with a

completely blank slate.

4-MAKE "PROCEDURE-BANK" /EMPTY/
<-0CCAM
SEQUENCE?...5 5 5 5

CAN'T DO THAT ONE. TELL ME NOW AND THEN TYPE 'CONTINUE'
-c-TO FIVERS /N/
>10 OUTPUT 5
>END
FIVERS DEFINED
+-CON
PROCEDURE NAME?...FIVERS
-OCCAM
SEQUENCE?...8 8 8 8

IS THE NEXT TERM 8?...YES

A user who didn't know about our generalizer might be surprised

to see OCCAM solving sequences for which it wasn't specifically

given a rule. Instead of keeping him completely in the dark

about OCCAM's methods though, we might like to let him know what

particular procedure(s) it employed to extrapolate his sequence.

So let's modify SCAN-P-LIST to declare a "winning" ungeneralized

procedure, as follows.

65 IF TRUE PRINT SENTENCE OF "THE WINNING PROCEDURE WAS"
AND (FIRST OF /PROCEDURES/)

In modifying SCAN-G-LIST we will want to announce the /WINNING-

DUMMY/ as well as the procedure name:

75 IF TRUE PRINT SENTENCE OF "THE WINNING PROCEDUR WAS"
AND SENTENCE OF (FIRST OF /PROCEDURES/) AND SENTENCE
OF "FOR /DUMMY/ EQUALS" AND /WINNING-DUMMY/



Now let's try the last example again:

4-OCCAM
SEQUENCE?...8 8 8 8

IS THE NEXT TERM 8?...YES
THE WINNING PROCEDURE WAS
4-LIST FIVERS
TO FIVERS /N/ /DUMMY/
10 OUTPUT /DUMMY/
END

FIVERS FOR /DUMMYI-EQUALS 8
(The original-FIVERS procedure

was generalized as shown)

The generalized procedure FIVERS can solve all sequences of

constant terms (between 0 and 10). We can effect comparable

generalizations for arithmetic and geometric sequences as easily.

4-OCCAM
SEQUENCE?...99 101 103 105
CAN'T DO THAT ONE. TELL ME HOW AND THEN TYPE 'CONTINUE'
4-TO ADD-TWO /N/
4-10 OUTPUT SUM OF /N/ AND 2
4-END
ADD-TWO DEFINED
4-CON
PROCEDURE NAME?...ADD-TWO
4-OCCAM
SEQUENCE?...99 105 111
IS THE NEXT TERM 117?...YES
THE WINNING PROCEDURE WAS ADD-TWO FOR /DUMMY/ EQUALS 6
4-OCCAM
SEQUENCE?...8 16 32
CAN'T DO THAT ONE. TELL ME HOW AND THEN TYPE 'CONTINUE'

(TIMES-TWO is entered here)

4-CON
SEQUENCE NAME?'...TIMES-TWO
4-OCCAM
SEQUENCE?...1 9 81 729
IS THE NEXT TERM 6561?...YES
THE WINNING PROCEDURE WAS I-IMES-TWO FOR /DUMMY/ EQUALS 9

We can also add our old proceduresDIM=ONE and GROWONE, and

alsO be generalized.

-38-



Then, for example:

4-OCCAM
SEQUENCE?...57 576 5766 57666
IS THE NEXT TERM 576666?...YES
THE WINNING PROCEDURE WAS GROW-ONE FOR /DUMMY/ EQUALS 6

4-OCCAM
SEQUENCE?...70 61 52 43
IS THE NEXT TERM 34?...YES
THE WINNING PROCEDURE WAS DIM-ONE FOR /DUMMY/ EQUALS 9

The procedures SQUARES, MOD-FOUR, and NEXT-FACTORIAL can also be

generalized in the same way, but the results are less useful.

In all these cases, the generalized procedures simply describe

subsets of the sequence described by the original, ungeneralized

procedure. The original SQUARES, for example, describes the

squares of the integers; the generalized SQUARES procedure is:

TO SQUARES /N/ /DUMMY/
10 MAKE "X" SUM OF SQUARE-ROOT OF /N! AND /DUMMY/
20 OUTPUT PRODUCT OF /X/ AND /X/
END

Instead of describing sequences which are more general than the

original, this procedure merely describes various subsets of the

original sequence. Perhaps the most useful case is the subset

consisting of the squares of the odd integers:

4-OCCAM
SEQUENCE?...1 9 25 49
IS THE NEXT TERM 81?...YES
THE WINNING PROCEDURE WAS SQUARES FOR /DUMMY/ EQUALS 2 //

//

The procedures SQUARES, MOD-FOUR', and NEXT-FACTORIAL cap', however,

be otherwise defined in ways that lead to very useful//-zeneraliza-

tions. For example, if we define SQUARES:

46

-39-



TO SQUARES /N/
10 ouTpuT up-RooT op 2 AND /N/
END

As before, SQUARES computes (ing7+1)2. It uses the procedure

UP-ROOT which, in turn, uses two standard subprocedures, ROOT /M/

/N/ and POWER /M/ /N/, for getting /M/th roots and /M/th powers.

TO UP-ROOT /M/ AND /N/
10 MAKE "X" (ROOT OF /M/ AND /N/) (This gets the /M/th root of /N/)
20 OUTPUT POWER OF /M/ AND (This raises /X/+1 to the /M/th

(SUM OF /X/ AND 1) power)
END

When this version of SQUARES is generalized, it becomes:

TO SQUARES /N/ AND /DUMMY/
10 OUTPUT UP-ROOT op /DUMMY/ AND /N/
END

And this a genuinely useful extension -- it effectively

generaliz.?s z-QUARES to describe sequences of integers raised to

various int,eger powers. For example, if /DUMMY/ is 3, we get

the sequence of cubes 1 8 27 64...; if /DUMMY/ is 4 we get the

4th powers 1 16 81 256... and so on.

Similafly, let us rewrite the MOD-FOUR successor as,

TO moD-PouR /N/
10 TEST IS /N/ 4
20 IF TRuE ouTpuT 0
30 OUTPUT SUM OF /N/ AND 1
END

It will then truly generalize as the successor for the family of

modulo-/DUMMY/ sequences (except when /N/ is greater than

/DUMMY/).



TO MOD-FOUR /N/ /DUMMY/
10 TEST IS /N/ /DUMMY/
20 IF TRUE OUTPUT 0
30 OUTPUT SUM OF /N/ AND 1
END

Thus, by exercising some care in how the original, ungeneralized

procedures are defined, the strategy of generalizing procedures
can have a wide scope of application. It can, however, lead to
trouble with certain procedures. Consider, for example, what it
does with the procedure DIV-TWO:

÷OCCAM
SEQUENCE?...16 8 4
CAN'T DO THAT ONE. TELL ME HOW AND THEN TYPE 'CONTINUE'
÷TO DIV-TWO /N/
>10 OUTPUT QUOTIENT OF /N/ AND 2
>END
DIV-TWO DEFINED
÷CON
PROCEDURE NAME?...DIV-TWO
*-OCCAM
SEQUENCE?...8 4 2
DIVISION BY ZERO (Error comment - illegal operation)
I WAS AT LINE 10 IN DIV-TWO (LOGO terminates the program)

The "bug" is easily located. When GENERAL-TESTER tried to test
the generalized DIV-TWO procedure with its first /DUMMY/ value,
0, it called DIV-TWO OF 8 AND 0 which attempted to divide 8 by 0.
We can fix this by wl;iting DIV-TWO in a tricky way replacing the
divisor 2, by SUM OF 1 AND 1. Thus, in the generalized form,

/DUMMY/ will not replace the entire divisor, so division by zero
will not occur.

4-TO DIV-TWO /N/
>10 OUTPUT QUOTIENT OF /N/ AND (SUM OF I AND 1)
>END
DIV-TWO DEFINED
÷CON



PROCEDURE NAME?...DIV-TWO
÷OCCAM
SEQUENCE?...27 ;) 3

IS THE NEXT TERM 1?...YES
THE WINNING PROCEDURE WAS DIV-TWO FOR /DUMMY/ EQUALS 2
+LIST DIV-TWO
TO DIV-TWO /N/ /DUMMY/
10 OUTPUT QUOTIENT OF /N/ AND (sUM OF /DUMMY/ AND 1)
END

Situations of this kind, which call for rewriting a procedure to

eliminate an fllegal operation, are unavoidable but they do not

occur frequently.

2.8 Transforming Sequences

Generalizat!_on has measurably increased OCCAM's power. Before

we introduced GENERALIZE, OCCAM had a procedure-bank containing

ten ungeneralized procedures and thus could identify segments of

ten infinite sequences. Once again OCCAM has ten procedures in

its banks, one ungeneralized and nine in the /GENERAL-BANK/.

But each generalized procedure actually describes 11 different

successor procedures (corresponding to 12 different values of

/DUMMY/). So OCCAM can identify, all together, any segment of

100 different sequences.

We can, of course, considerably expand the number of procedures

in OCCAM without changing its structure. Adding new rules will

widen its scope at the rate of one sequence for every ungPneral-

ized procedure and 11 (or more if we increase the range of

/DUMMY/) for every new entry in /GENERAL-BANK/. We will certain-

ly add new rules, but there is a very different direction for

expansion that will be far more effective in boosting OCCAM's

power. Up to now we have concentrated our effort on a strategy ,

for generalizing sequence generation rules. Let's look now at



another kind of strategy, for transforming the given sequences
directly. As we noted before, even testing /DUMMY/ between 0

and 1000, OCCAM would fail to find the next term of the sequence:

1 1002 2003 3004 ...
Subtracting every term in this sequence from its successor,

however, yields a new sequence:

1001 1001 1001

which can be described by a simple, nongeneralized procedure:

TO CONSTANT /N/ (This is clearly a better rule
10 OUTPUT IN/ than the generalized FIVERS for
END describing constant sequences)

Assuming CONSTANT has been entered in /PROCEDURE-BANK/, OCCAM,

in its present form, can easily find the next term in the

difference sequence, i.e., the sequence made up of the difference

of succ,essive terms in the given sequence:

÷OCCAM
SEQUENCE?...1001 1001 1001
IS THE NEXT TERM 1001?...YES
THE WINNING PROCEDURE WAS CONSTANT

We can now hazard a successor for the given sequence itself. Our

method is based upon a truth and a supposition. The truth is:

each term in a sequence is expressible as the sum of its prede-

cessor and the corresponding term in its difference sequence.

Now our supposition: the next term will probably be the sum of

the last term in the original sequence (300)4 in the example) and

the winning next term of the difference sequence (1001), that is,
4005. Since this looks like an effective strategy (after all,

it seemed to work here, the first time we used it), let's put it

into OCCAM. We'll modify OCCAM so that, if its existing strategies



are unsuccessful, it will build the difference sequence, try to

solve it, and use the solutions it finds to compute possible

next terms for the original problem sequence.

We'll first write a procedure DIFF-SEQUENCE whose input is a

sequence and whose output is the corresponding difference sequence.

It simply outputs a sentence of differences of successive terms

in the input sequence.

TO DIFF-SEQUENCE /SEQUENCE/
10 TEST EMPTYP BUTFIRST OF (Have we subtracted all pairs?)

/SEQUENCE/ (Yes, done)
20 IF TRUE OUTPUT /EMPTY/ (If not, put the difference of
30 OUTPUT SENTENCE OF DIFFERENCE OF the first two terms in a

(SECOND OF /SEQUENCE/) AND sentence and repeat the
(FIRST OF /SEQUENCE/) process on the reduced
AND DIFF-SEQUENCE OF BUTFIRST sequence)
OF /SEQUENCE/

END

DIFF-SEQUENCE will, of course, transform arithmetic sequences

into constant sequences.

4-PRINT DIFF-SEQUENCE OF "1 1002 2003 3004"
1001 1001 1001
4-PRINT DIFF-SEQUENCE OF "66 77 88 99"
11 11 11

4-PRINT DIFF-SEQUENCE OF "60 52 44 36 28"
-8 -8 -8 -8
4-

'The usefulness of DIFF-SEQUENCE does not stop here, though.

Various other kinds of sequences also yield difference sequences

that are easier to solve than the originals:

4-PRINT DIFF-SEQUENCE OF "121 144 169 196"
23 25 27
4-PRINT D1FF-SEQUENCE OF "1 12 123 1234"
11 111 1111



4-PRINT DIFF-SEQUENCE OF "5 5, 6 8 8 9"
0 1 2 0 1

We shall now use DIFF-SEQUENCE to make a difference sequence out

of any sequence that the procedures in SCAN-P-LIST and SCAN-G-LIST

fail to extrapolate. If this difference sequence is tractable,

we will add its potential successor to the last term of the

original sequence and submit the result to APPROVAL. If the

extrapolation fails, we will try again with other potential

successors of the difference sequence. Let's write a procedure

SCAN-DIFF to do this. SCAN-DIFF differs from SCAN-P-LIST only

in the additional input, the computation of /NEXT-TERM/, and

the form of its winning procedure declaration.

TO SCAN-DIFF /SEQUENCE/ AND /DIFF-SEQUENCE/ AND /PROCEDURES/
10 TEST EMPTYP /PROCEDURES/
20 IF TRUE OUTPUT /EMPTY/
30 TEST TESTER OF /DIFF-SEQUENCE/ (Does the first procedure de-

AND FIRST OF /PROCEDURES/ scribe the difference sequence?)
40 IF FALSE OUTPUT SCAN-DIFF OF (If not, try the rest of the

/SEQUENCE/ AND /DIFF-SEQUENCE/ bank)
AND BUTFIRST OF /PROCEDURES/

50 MAKE "NEXT-TERM" SUM OF (If so, the next term is the
(LAST OF /SEQUENCE/) AND last term in /SEQUENCE/ plus
(EXECUTE OF FIRST OF tne next term of
/PROCEDURES/ AND /DIFF-SEQUENCE/)

LAST OF /DIFF-SEQUENCE/)
60 TEST APPROVAL OF /NEXT-TERM/
70 IF TRUE PRINT SENTENCE OF

"THE WINNING PROCEDURE WAS"
AND SENTENCE OF FIRST OF
/PROCEDURES/ AND "APP'LIED TO (Note the additional comment)
THE DIFFERENCES OF THE TERMS"

80 IF TRUE OUTPUT FIRST OF
/PROCEDURES/

90 OUTPUT SCAN-DIFF OF /SEQUENCE/
AND /DIFF-SEQUENCE/ AND
BUTFIRST OF /pROCEDURES/

END

-45-



Let's also write a related procedure SCAN-GEN-DIFF, for perform-

ing the same process, using generalized procedures.

TO SCAN-GEN-DIFF /SEQUENCE/ AND /DIFF-SEQUENCE/ AND /PROCEDURES/
10 TEST EMPTYP /PROCEDURES/
20 IF TRUE OUTPUT /EMPTY/
30 MAKE "WINNING-DUMMY" GENERAL-

TESTER OF /DIFF-SEQUENCE/ (Test the first procedure against
AND FIRST OF /PROCEDURES/ the difference sequence)

40 TEST EMPTYP /WINNING-DUMMY/
50 IF TRUE OUTPUT SCAN-GEN-DIFF (If it fails, go on to the rest

OF /SEQUENCE/ AND of the list)
/DIFF-SEQUENCE/ AND
BUTFIRST OF /PROCEDURES/

60 MAKE "NEXT-TERM" SUM OF (If it wins, make the next term
(LAST OF /SEQUENCE/) AND the sum of the last term in
(EXECUTE-2 OF (FIRST OF /SEQUENCE/ and the next term
/PROCEDURES/) AND of /DIFF-SEQUENCE/)
(LAST OF /DIFF-SEQUENCE/)
AND (/WINNING-DUMMY/)

70 TEST APPROVAL OF /NEXT-TERM/
80 IF TRUE PRINT SENTENCE OF

"THE WINNING PROCEDURE WAS"
AND SENTENCE OF FIRST OF
/PROCEDURES/ AND SENTENCE OF
/DUMMY/ AND "APPLIED TO THE
DIFFERENCES OF THE TERMS"

90 IF TRUE OUTPUT FIRST OF /PROCEDURES/
100 OUTPUT SCAN-GEN-DIFF OF /SEQUENCE/

AND /DIFF-SEQUENCE/ AND BUTFIRST
OF /PROCEDURES/

END

To incorporate SCAN-DIFF and SCAN-GEN-DIFF in the extrapolation

program, we need only add them as alternative tests in OCCAM.

Lines 30 through 40 of OCCAM will now look like this:

30 TEST EMPTYP OF SCAN-P-LIST OF /SEQUENCE/ AND /PROCEDURE-BANK/
35 IF TRUE TEST EMPTYP OF SCAN-G-LIST OF /SEQUENCE/AND /GENERAL-

BANK/
37 IF TRUE TEST EMPTYP OF SCAN-DIFF OF /SEQUENCE/ AND (DIFF-

SEQUENCE OF /SEQUENCE/) AND /PROCEDURE-BANK/
39 IF TRUE TEST EMPTYP OF SCAN-GEN-DIFF OF /SEQUENCE/ AND

(DIFF-SEQUENCE OF ISEQUENCE/) AND /GENERAL/BANK/
40 IF FALSE STOP



3CCAM is once agaiL 2eady for testing. Let's start with our
old problem:

4-OCCAM
SEQUENCE?...1 1002 2003 3004
IS THE NEXT TERM 4005?...YES
THE WINNING PROCEDURE WAS CONSTANT APPLIED TO THE
DIFFERENCES OF THE TERMS

Let's show how OCCAM uses the differencing strategy to transform

a variety of different kinds of sequences into tractable form:

4-OCCAM
SEQUENCE?...75 60 45 30
IS THE NEXT TERM 15?...YES
THE WINNING PROCEDURE WAS CONSTANT APPLIED TO THE
DIFFERENCES OF THE TERMS

4-0CGAM
SEQUENCE?...2 4 8
IS THE NEXT TERM 16?...NO
IS THE NEXT TERM 24?...YES
THE WINNING PROCEDURE WAS SQUARE APPLIED TO THE
DIFFERENCES OF THE TERMS

Frequently OCCAM will apply the strategy of differencing usefully

to generalized procedures:

4-OCCAM
SEQUENCE?...2 5 10 17 26
IS THE NEXT TERM 37?...YES
THE WINNIMG PROCEDURE WAS ADD-TWO FOR /DUMMY/ EQUALS 2
APPLIED TO THE DIFFERENCES OF THE TERMS

4-OCCAM
SEQUENCE?...1 12 123 1234
IS THE NEXT TERM 12345?...YES
THE WINNING PROCEDURE WAS GROW-ONE FOR /DUMMY/ EQUALS 1

APPLIED TO THE DIFFERENCES OF THE TERMS



OCCAM can now make a guess at the successor of all sequences

whose difference sequences can be described by any of the
procedures in the banks. Thus, it can solve such sequences as
these:

÷OCCAM
SEQUENCE?...1 1 2 2 3 3 4
IS THE NEXT TERM 4?...YES
THE WINNING PROCEDURE WAS MOD-FOUR FOR /DUMMY/ EQUALS 1
APPLIED TO THE DIFFERENCES OF THE TERMS

÷OCCAM
SEQUENCE?...50 66 74 78
IS THE NEXT TERM 80?...YES
THE WINNING PROCEDURE WAS DIV-TWO FOR /DUMMY/ EQUALS 1
APPLIED TO THE DIFFERENCES OF THE TERMS

--OCCAM
SEQUENCE?...0 1 3 9 33
IS THE NEXT TERM 153?...YES
THE WINNING PROCEDURE WAS NEXT-FACTORIAL FOR /DUMMY/ EQUALS 1

APPLIED TO THE DIFFERENCES OF THE TERMS

÷OCCAM
SEQUENCE?...1 2 6 15 31
IS THE NEXT TERM 56?...YES
THE WINNING PROCEDURE WAS SQUARES FOR /DUMMY/ EQUALS 2
APPLIED TO THE DIFFERENCES OF THE-TERMS

OCCAM can now solve difficult and esoteric sequences as well as
familiar, "natural" types; a high-school student is not likely
to ask for a successor to the sequence 18 20 44 724, for
example, though OCCAM can give one. Also, the existing (general-
izing and difference-transforming) strategies using the relatively
small set of procedures presently in the banks, will often yieid
a large number of plausible extrapolations. Thus, for example,
OCCAM can now extrapolate over a thousand possible successors
for each sequence made up of two random numbers (though it is by
no means assured of getting the "right" one).



The strategy of transforming sequences by taking differences of

successive terms is one of a set of such effective strategies.

Others of this kind include transforming a given sequence into

the sequence comprised of its alternate terms, its partial sums

(products, quotients) over one or more preceding terms, etc.

Problems to incorporate these strategies are given in the

associated problem sequel.

As the extrapolation program becomeE larger both in the number

of procedures it has explicitly to consider and the number of

different strategies it has for modifying procedures or sequences,

it can become unwieldy or inefficient. Under these circumstances,

the use of higher order strategies or of administrative procedures,

to improve the operation of OCCAM, becomes important. Some ideas

for designing these kinds of facilities are also considered in

the problem set.

Thus far, OCCAM has been developed to work in the single domain

of sequences of numbers. With straightforward modification, it

can be adapted for use with Letter sequences or as the basis of

a simple function-guessing situation. Further, using the same

methods already built into OCCAM, the "inverse" program can be

built for genepating various kinds of sequences for the user to

extrapolate. These extensions also are considered in the problem

set.

Rather than studying further problem-solving strategies in the

context of sequence guessing, we shall next study new kinds of

strategies in yet another, distinctly different problem-solving

situation, traversing a maze.



3. MAZES

3.1 Introduction - A Minimal History of Mazes

The most famous maze of antiquity, the Labyrinth, was a gigantic

walled structure reputedly on the island of Crete designed by a

man named Daedalus. It had two openings to the outside world

between which lay not only an incredibly complex series of

corridors, loops, blind alleys, and traps, but the "man-eating"

Minotaur as well. Only three men are said to have escaped from

the Labyrinth. Resourceful Daedalus (who, it seems, couldn't

otherwise master his own creation) and his son Icarus, flew out

the top with wings fashioned from wax and bird feathers; the

clever hero Theseus trailed a thread behind him and, after he

killed the Minotaur, he followed the thread back to the entrance

and freedom.

After the Cretan empire fell and the Labyrinth was destroyed,

real mazes fell somewhat from favor. They flourished once again,

however, in 17th, 18th, and 19th century England, in palace

gardens, constructed as carefully clipped barriers of impenetrable

shrubbery. The plan of the maze at Hampton Court Palace, perhaps

the most intricate of such mazes, is shown in Figure 1.

Most modern mazes are both more modest and less treacherous.

Earlier in this century behavioral scientists found simple mazes

useful for testing certain learning patterns with various animals.

Unlike the English or Cretan varieties, these mazes generaily had

no exits -- the mouse .or rat was simply dropped into the maze at

some starting place and lifted out when it found the food.

Our task in the following pages will be to put ourselves in the

place of the Minobaur's m'ey, or a bewildered Englishman, or a

57
-50-


