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OD FOREWORD
LCN

LeN The use of LOGO In he classroom requires that the teacher have

a broad overview Of the application of LOGO to the topics being

Lij treated. This/olume contains materials intended to present

such an overview in the topics of numbers and of functions. A

variety of alternative paths and approaches are presented, in

each case emphasis being placed on crucial points and on possible

pitfalls and difficulties. The idea is not to present material

in precisely the manner in which it is to be taught, but on

giving the reader enough insight so that he can freely apply LOGO

to the mathematical issues of direct concern to him. It may well

be, for example, that only carefully selected portions are dealt

with in the classroom, or that, a completely different approach

is taken, arising perhaps from a suggestion in the text or the

set of problems appended to each unit.

The material on numbers is not meant to accompany a first exposure

to the subject, but rather, a careful retracing of steps. Not

having to worry about what numbers are, the student can contrast

the various sorts of number representations, concerning himself

at each stage with understanding of the basic algorithms required.

Writing these algorithms as LOGO procedures enables him to define

them more precisely and concretely than otherwise, and gives him

powerful means for using and extending them. The level of

presentation in this unit is extremely detailed as befits the

nature of the material and the reader is encouraged, on first

reading, to skip around as his interests dictate.

The material on functions is much more suggestive and written more

freely. The idea of function as black-box is here concretely

realized as are many other aspects of t1;ae set-theoretic approach

to functions which otherwise trouble students by their "vagueness".
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V.ITtrara

LOGO Number Unit

Teacher's Text

1. Introduction to This Unit

The subject of this part of the LOGO mathematics course is

numbers and their representation. It introduces several distinct

ways of representing numbers, interprets the familiar operations

of arithmetic in terms of each notational system, and develops

the corresponding algorithms in the form of LOGO programs.

Four main representations are considered. We begin with a simple

notation called mark numbers, similar to the marks used by

children for scoring games. We extend this to a more compact

notational system similar to Roman numerals, called compact

numbers. We then introduce the idea of place value which makes

possible a relatively pure form of positional notation, which we

call place numbers. We evolve from this the relatively elaborate

and efficient notation we know from familiar, everyday, current

use as our numbers (these are called modern numbers, or mod

numbers for short). Along the way we consider some related

representations, such as "money numbers".

With each of these notations we develop LOGO procedures for per-

forming the operations of arithmetic -- that is, for counting

(succession), adding, comparing, subtracting, multiplying, and

dividing -- with the corresponding numbers. We also write

procedures for converting numbers across these various represen-

tations. Often several distinct algorithms for performing an

operation (such as comparing mark numbers) are developed.

Throughout the text we have generally adopted the conventional

use of "number" for what should properly be called "numeral".



In those instances where it is important to make this distinction,

we use the term "representation" or "notation" (for example, as

in "numbers expressed in this representation").

While this unit is a new presentation of number ar'Ithmetic, it is,

at the same time, a unit on programming as a constructive means

of expressing mathematical procedures, and this is an integral

part of the presentation.

The text is written for use primarily by teachers rather than

students, though the material is certainly appropriate for use

by capable and advanced students as a basis for independent

study and work. To help teachers in preparing their classroom

discussions, we have included a great deal of simple expository

material in the text.

The unit can be properly regarded as a re-Lntroduction to arith-

metic rather than as the first introduction. (We have distinctly

different ideas about the first introduction of concepts like

number and algorithm than those used here.) The material is

intended for use at about seventh grade level though we think it

would be equally suitable with many fifth grade classes. Like

any sound presentation of good mathematics it is also appropriate,

though in a somewhat different way for teach4_ng older and more

sophisticated studerts and teachers.

This unit illustrates one approach to the use of LOGO as a

conceptual framework for teaching mathematics. It might appear

feasible to teach the same material without using a computer,

and indeed this is possible in principle. But, it would be

:.
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very difficult to do so in an effective way. An essential

aspect of the presentation would be lost: we would no longer

be providing the student with an active operational universe

for constructing and controlling a mathematical process. This

modified presentation would seriously impoverish the character

and quality of the student's experience and of its educational

benefit.

The main author of the unit is Richard Grant who advanced the

central scheme, suggested the overall series of topics and

their sequencing, and wrote the material on mark numbers and

compact numbers. Philip Faflick wrote the chapters on place

numbers and modern numbers. Wallace Feurzeig made occasional

contributions to the ideas and writing, and edited the manuscript.



2. Mark Numbers

2.1 Introduction to Mark Numbers

Mark numbers are probably similar to the first way of expressing

numbers man invented. We can imagine an ancient shepherd with a

bag of pebbles, one pebble for every sheep. When he wants to

count the sheep, he 119.s them walk past in single file and removes

one pebble from the bag as each sheep passes. If the bag is

emptied just as the last sheep goes through, he knows that they

are all there.

The bag of pebbles represents a number just as a word composed

of X's does. They are both mark numbers; in the first pebbles

are used as the marks, while in the second X's are used. Notches

on the gun of a western gunfighter are another example.

An important virtue of mark numbers, besides their simplicity,

is the ease with which one mark number can be changed into the

next mark number. For example, by adding a pebble, an X, or a

notch. This makes them very handy for keeping tallies; it never

becomes necessary to erase the previous number in to create

the next. (The familiar modern form of mark numbers, which

people often use in scoring gameP, for example has

an added feature, grouping, that we shall discuss later.)

It is interesting to note that in writing a mark number we

actually count up to it. For example, in order to write the mark

number XXXXX, we must first write X, then writing another X we

have XX, and then XXX, and so on.

4



2.2 Addition of Mark Numbers

There are at least two ways to add mark numbers. One way, just

putting the two numbers together with the WORD operation, is

exceptionally simple.

A-TO ADD /M/ AND /N/
>10 OUTPUT WORD OF /M/ AND /N/
>END

With this algorithm, the two numbers are brought together into

one. For example, with the bag of pebbles'representation, add-

ing two bags of pebbles is just pouring the pebbles into one bag.

With mark numbers, adding is just putting all the X's from two

words into one word. The lirst demonstration program, DEMO-ADDA,

(see appendix for all demonstration programs) illustrates the

two words coming together into one.

If we use the "notches on the gun" representation, the above

method doesn't work very well. There is no way to take the notches

on two guns id somehow move them on to a single gun. What we can
_

do however is take a new gun and make notches on it, at the same

time checking off the notches on one of the old guns. When all

of these are checked, we continue with the other old gun. At

the end, the new gun will have the sum of the notches from the

two old guns. The idea here is that to add /N/ and /M/ we first

count to /N/ and then continue counting /M/ more steps. The

second demonstration program, DEMO-ADDB, illustrates this method

of adding.

This method can be-made more efficient by eliminating the first

counting up to /N/. Instead, we can just start there and count

/M/ more. For example, if we were given two sheets of paper,

1 0
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one with the mark number for 1000 and the other with the mark

nLmber 37 and were told to hand in the sum, we could take a clean

sheet and count to 1000 and then 37 more. On the other hand, we

could take the sheet that already has 1000 written on it and just

count 37 more.

2.3 Comparing Mark Numbers

It's reasonable to think, as we mentioned before, that numbers were

invented for some purpose like making sure that the number of

sheep that returned from pasture was the same as the number that

set out. In other words, two numbers, the number that left and

the number that returned, had to be compared to see 5..f they were

the same. If we want to compare two mark numbers on the computer,

we can use the built-in operation IS. IS /M/ /N/ will output

"TRUE" if the numbers are the same and "FALSE" if they are

different. It has one drawback compared to any scheme the shepherd

might have used to compare his two numbers. It doesn't tell which

of the two is bigger! In fact, it's difficult to think of a

method the shepherd could have used to find out whether two

numbers were the same that wouldn't also tell which one is actually

bigger.

Let's look at some algorithms for comparing mark numbers and their

programs.

(1) Comparing the numbers /M/ and /N/ will give the same answer

as comparing one less than /M/ with one less than /N/. But if we

keep reducing the problem this way, eventually either /M/ or /N/

will become /EMPTY/. Then we'll know the other is bigger.
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4-TO COMPARE /M/ AND /N/
>10 TEST EMPTYP OF /M/ (Is /M/ empty?)
>20 IF TRUE OUTPUT "SECOND" (If so, the second number /N/ is bigger)
>30 TEST EMPTYP OF /N/ (Similarly, is /N/ empty?)
>40 IF TRUE OUTPUT "FIRST" (If so, the first number /M/ is bigger)
>50 OUTPUT COMPARE OF

CBUTFIRST OF /MI) AND
CBUTFIRST OF IN/) (Get the answer for the reduced

>END problem.)

(2) We can start counting at /EMPTY/ (the zero mark number) and

keep on until we get to one of the two numbers that we are

comparing. The first one we reach will be the smaller number.

÷TO COMPARE /M/ AND IN/
>10 MAKE (Start counting from /EMPTY/)

NAME: "COUNT"
THING: /EMPTY/

>20 TEST IS /COUNT/ /M/
>30 IF TRUE OUTPUT "SECOND" (If /COUNT/ reaches /m/, /N/ is

bigger)
>40 TEST IS /COUNT/ /N/ (If /COUNT/ reaches /N/, /M/ is
>50 IF TRUE OUTPUT "FIRST" bigger)
>60 MAKE (Otherwise, /COUNT/ is not big

NAME: "COUNT" enough yet, so add one to it)
THING: WORD OF /COUNT/ AND "X"

>70 GO TO LINE 20 (Try again)
>END

(3) We can count backwards from the first number and see if we

get to the second. If we do, the first number must have been

the larger one.

7



÷TO COMPARE /M/ AND /N/
>10 MAKE

NAME" "M"
THING: BUTFIRST OF /M/

>20 TEST IS /M/ IN/
>30 IF TRUE OUTPUT "FIRST"

>40 TEST EMPTYP OF /M/
>50 IF TRUE OUTPUT "SECOND"

>60 GO TO LINE 10
>END

(Start backing up on /M/)

(We've come down to /N/ so /M/ must
have started out larger)

(We've counted all the way down to
/EMPTY/ without passing /N/, so
/N/ must have been larger)
(Try again)

(4) We nan type out the two numbers by typing first an X from

the first number, then an X from the second number, and repeating

this until one of the numbers is completely typed. The one that

is finished first is the smaller number. The procedure

DEMO-COMPARE uses this scheme.

4-DEMO-COMPARE "XXX"
FIRST

X
X
X

SECOND

SECOND
X
X
X
X
X

AND "XXXXX"

(Now the program knows which number is
larger but it finishes typing the larger
one anyway)
(... and announces the answer)

These are just some of the ways mark numbers can be compared.

Possibly other ways will occur to students. One interesting way

that works for people, but not for the computer, is to simply

look at the two numbers together. The problem is that the

operation of "looking at" is complex, for people as well as

computers. But people have a working program for this, and the

computer does not.



Even people have problems looking at some numbers. In fact, if

we consider very large numbers, a person can't compare them at a

glance and he would be forced to resort to some method similar

to the programs we've just written. This is exactly what the

prehistoric shepherd had to do to compare the number represented

by the sheep with the number represented by the pebbles.

One small bug in all of the COMPARE procedures above is their

behavior when the two inputs are the same. They will still out-

put either "FIRST" or "SECOND". This can be easily fixed by adding

a special check for equality and outputting, say, "EQUAL" if it

is true. The first procedure might then look like this.

4-TO COMPARE /M/ AND /N/
>5 TEST IS /M/ /N/
>6 IF TRUE OUTPUT "SAME"
>10 TEST EMPTYP /M/ (The rest is the same as before)
>20 IF TRUE OUTPUT "SECOND"
>30 TEST EMPTYP /N/
>40 IF TRUE OUTPUT "FIRST"
>50 OUTPUT COMPARE OF BUTFIRST OF IM/

AND BUTFIRST OF /N/
>END

2.4 Subtraction of Mark Numbers

The difference between two numbers can be thought of in several

ways. With mark numbers the most obvious way is to think of the

difference between two numbers as the amount one number is bigger

than the other. If we have two mark numbers,

XXXXXXXX and
XXXXX

then we can see that the difference is the number circled

44E4XXXX
XXXXX

That is XXX. We can alter the first compare program so that



instead of outputting "FIRST" or "SECOND" it outputs the differ-

ence between the numbers. We'll use the fact that the difference

between two numbers is the same as the difference between the two

numbers both reduced by one. That is, the difference between XXX

and XXXXX is the same as the difference between XX and XXXX which

is the same as the difference between X and XXX which is the same

as the difference between /EMPTY/ and XX. But, when one of the

numbers is /EMPTY/, the difference is ,ju.st the other number. So

a program can be written

÷TO DIFFERENCE /M/ AND /N/
>10 TEST EMPTYP OF /M/
>20 IF TRUE OUTPUT /N/

>30 TEST EMPTYP OF /N/
>40 IF TRUE OUTPUT /M/
>50 OUTPUT DIFFERENCE OF

(BUTFIRST OF /M/) AND
(BUTFIRST OF /N/)

>END
-4-

/M/ is /EMPTY/,the difference
between /M/ and /N/ is all of /N/)

(Similarly in the opposite case)
(Neither is /EMPTY/ so the answer
is the same as the difference of
one less than each number)

Notice that this program is essentially the same as the very first

COMPARE program, except that different things are output in lines
20 and 40. The COMPARE program actually finds how big the differ-

ence between the numbers is, but it dces not output that; it merely

outputs either "FIRST" or "SECOND" to indicate which of the

numbers is bigger.

An important characteristic of the difference between two numbers

is that if we add this to the smaller number we get the larger

one. We can use this fact to write a different kind of difference

program. We'll call this one SUBTRACT. SUBTRACT has two inputs.

It starts from /EMPTY/ and.counts until it finds a number which,

when added to the smaller input, gives the larger one.

15
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4-TO SUBTRACT /LARGER/ AND /SMALLER/
>10 MAKE

NAME: "COUNTER"
THING: /EMPTY/ (Start the count at /EMPTY/)

>20 TEST IS /LARGER/ (ADD OF /COUNTER/
AND /SMALLER/)

>30 IF TRUE OUTPUT /COUNTER/ (/COUNTER/ is the difference
if /LARGER/ is the sum of
/COUNTER/ and /SMALLER/)

>40 MAKE
NAME: "COUNTER"
THING: WORD OF /COUNTER/ AND

>50 GO TO LINE 20
>END

!IV! (/COUNTER/ wasn't the
difference so now
increase it by one ...)
(... and try again)

This program is a little different from DIFFERENCE. With

DIFFERENCE we could write the inputs in either order.

+PRINT DIFFERENCE OF "XXXX" AND "XX"
XX
÷PRINT DIFFERENCE OF "XX" AND "XXXX"
XX

But, with SUBTRACT the larger number must come first. If we

were to ask the computer to PRINT SUBTRACT OF "XX" AND "XXXX",

it would try to find a number which it could add to "XXXX" to

get "XX". It will check /EMPTY/, then X, then XX, then XXX, and

so on. It will never find a number that works and so it will

continue searching until someone interrupts it.

We could have avoided this "b g" by adding the lines

2 TEST IS COMPARE OF /LARGER/ AND /SMALLER/ "SECOND"
3 IF TRUE OUTPUT SUBTRACT OF /SMALLER/ AND /LARGER/

These lines cause the two inputs to exchange if /SMALLER/ is

larger than /LARGER/.

16
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Discussion about this "deficiency" of the natural numbers (or

counting numbers or positive integers), that there is no number

which can be added to "XXXX" so as to give "XX", will be used

later in motivating the construction of negative numbers.

3. Compact Numbers

3.1 Grouping Mark Numbers

When mark numbers are used in scorekeeping these days, the most

common form is _I-4-1-1-1-1-1-1- I I I
where the marks are grouped into

bunches of five marks each. A possible origin of this technique

is finger counting. If we count on our fingers up to a large

number, we'd be apt to think of the number as so many hands and

so many fingers left over. Suppose a prehistoric general wanted

to count the soldiers in his army. He could get an aide to help

him. The aide would stand by and raise one finger as each soldier

walked by him. After ten soldiers passed, all of the aide's

fingers would be raised and the general would call another aide.

This aide would count the next ten men on his fingers, and then

the general would call still another aide. When the counting is

over, the number of soldiers is represented by the aides used to

determine it -- Marcus, Attila, Xenophon, Jura, Albert, and part

of Hector (his left hand and thumb). This is much harder to

remember than "fifty six" but it is much easier to remember than

"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX".

We can write a procedure GROUP-COUNT that will count using mark

numbers, but leave a space after every ten marks. Then, each

group of marks stands for one man's fingers. One way to write

this program is to use a subprocedure that types out t,:n marks.

Then the main procedure will only have to call this subprocedure,

-12-



PRINting.maraa.Y. ...1,41PSR71#,377......Ear19.14108

then type a space, and then.go back to the beginning and start

over. If this were all we wanted to do, then we could just use

TYPE "XXXXXXXXXX" as the subprocedure and the program would work.

(Remember TYPE is like PRINT except that it doesn't carriage

return.)

÷TO GROUP-COUNT
>10 TYPE "XXXXXXXXXX"
>20 TYPE /BLANK/
>30 GO TO LINE 10
>END

(Types a blank space)

÷GROUP-COUNT
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX (and so on)

This would be a more reasonable program if it actually counted

something instead of just typing X's at high speed. One idea is

to pause before typing a mark and wait until the ENTER key on the

teletype is pressed, then typing one mark and waiting again.

This way the computer will be counting the number of times the

ENTER key is pressed.

The way to make the computer wait until ENTER is pressed is to

use the REQUEST operation. For example,

4-TO COUNT-ONE
>10 REQUEST (The computer waits until the ENTER or RETURN

key is pressed)
>20 TYPE "X" (... and then types "X")
>30 GO TO LINE 10 (... and then goes back to the beginning)
>END

This program counts in ordinary, ungrouped mark numbers. If we

modify it so that it does the two commands REQUEST and TYPE "X"

exactly ten times and then stops, we can use it in place of line

10 in GROUP-COUNT. It is easy to extend COUNT-ONE in this way.



All we need to do is write

÷TO COUNT-TEN
>10 REQUEST
>20 TYPE "X"
->30 REQUEST
>40 TYPE "X"
>50 REQUEST
>60 TYPE "X"
>70 REQUEST
>80 TYPE "X"
>90 REQUEST
>100 TYPE "X"
>110 REQUEST
>120 TYPE "X"
>130 REQUEST
>140 TYPE "X"
>150 REQUEST
>160 TYPE "X"
>170 REQUEST
>180 TYPE "X"
>190 REQUEST
>200 TYPE "X"
>END

Now if we.try COUNT-TEN it will count and write ten marks, so we
can' put it into GROUP-COUNT, as follows.

÷TO GROUP-COUNT
>10 COUNT-TEN
>20 PRINT /BLANK/
>30 GO TO LINE 10
>END

COUNT-TEN can be improved from a programming point of view just
as SINGTWO was improved to become SINGALOT in the introductory
unit. We can write COUNT-TEN so that it takes an input (a mark
number) and types the number of marks of the input. If the in-
put is /EMPTY/, it will stop. Otherwise, it will type one X and
then shorten the input by one. Then it will start again with
this shorter input.



1-TO COUNTALOT /INPUT/
>10 TEST EMPTYp OF /INPUT/ (Are there any marks left in /INPUT/?)
>20 IF TRUE STOP (If not, STOP)
>30 REQUEST
>40 TYPE "X" (Othbrwise, COUNT-ONE)
>50 MAKE (Shorten the input by one)

NAME: "INPUT"
THING: BUTFIRST OF /INPUT/

>60 GO TO LINE 10 (and go back to the beginning)
>END

We can shorten COUNTALOT a little more by using recursion. To

do this, we notice that after we've typed the first X the work

we have left to do is exactly what COUNTALOT (BUTFIRST OF /INPUT/)

does. That is, we want to type one fewer X's than before. So

we can write,

4-TO COUNTALOT /INPUT/
>10 TEST EMPTYP OF /INPUT/
>20 IF TRUE STOP
>30 REQUEST
>40 TYPE "X"
>50 COUNTALOT (BUTFIRST OF /INPUT/) (We've typed one X. Now

we'll type the rest of them)
>END

Now that we've changed COUNTALOT we have to go back to GROUP-COUNT.

COUNTALOT needs an input. That input is the number of marks in

each group, which could be any number. We decided to use ten,

to represent the number of fingers on a'man. So we write,

4.-TO GROUP-COUNT
>10 COUNTALOT "XXXXXXXXXX"
>20 TYPE /BLANK/
>30 GO.TO LINE 10
>END

We can, if we like, use groups of sbme size other than ten. We

would only need to change line 10 Of GROUP-COUNT. We will use



ten mark groups because they lead nicely into base ten number

systems. If we were actually adopting group notation, however,

it would probably be handier to use groups of five. The reason

for this smaller grouping is that a reader can see at a glance

whether a group has one, two, three, four, or five marks in it,

while it is not so easy to distinguish groups of eight, nine, and

ten marks. For groups that large it is helpful, even for people,

to use some kind of discrimination procedure.

3.2 Conversion of Mark Numbers to Grouped Numbers

Since it's easier to read a mark number when it is grouped, we'll

consider the problem of writing a procedure that takes an ordinary

mark number and converts it to a grouped number. For example

÷PRINT GROUP OF "XXXXXXXXXXXXX"
XXXXXXXXXX XXX

One of the easiest ways we've found to write this procedure is

by using two subprocedures, FIRSTTEN and BUTFIRSTTEN. As the

names suggest, these procedures are like FIRST and BUTFIRST

except that they deal in groups of ten letters at a time.

FIRSTTEN of a word is the first ten letters'of the word; BUTFIRST-

TEN of a word is the rest of the word, that is, the whole word

except for the first ten letters.

We'll write GROUP first, assuming that we already have FIRSTTEN

and BUTFIRSTTEN, and then we'll write those two procedures. One

advantage to doing the writing in this order is that we can check

out the soundness of the superstructure before investing time in

working out its parts in detail. Further, we may discover, while

writing GROUP, some special things FIRSTTEN or BUTFIRSTTEN should

-16'4



do to make GROUP easier, whereas writing the two subprocedures

first is not likely to help us in writing GROUP.

The basic idea behind the procedure GROUP is recursive. We'll

reduce the problem of grouping a large word to that of grouping

a smaller word. We'll keep this up until the problem is reduced

to grouping the /EMPTY/ word. (That's easy. The result is

/EMPTY/.)

In order to reduce grouping a large word to grouping a smaller

one, we'll take the first ten marks of the word and put them into

one group and then group the BUTFIRSTTEN of the word. To attach

these two parts together as a group number, we can use the

operation SENTENCE. SENTENCE OF (FIRSTTEN OF /WORD/) AND (GROUP

OF BUTFIRSTTEN OF /woRD/) should take the first ten marks of

/WORD/ and put a space between them and GROUP of the rest of the

word. So GROUP is

+TO GROUP /WORD/
>10 TEST EMPTYP OF /WORD/
>20 IF TRUE OUTPUT /EMPTY/ (If we've reduced /WORD/ all the

way to /EMPTY/, then output the
answer /EMPTY/)

>30 OUTPUT SENTENCE OF (Otherwise, to get the answer, take
(FIRSTTEN OF /WORD/) AND the first ten, and GROUP of all
(GROUP OF BUTFIRSTTEN OF the rest and make a sentence of
/WORD/) them.)

>END

Now we can write BUTFIRSTTEN. All we need to do is peel off the

first ten marks. BUTFIRST OF /N/ will peel off one mark

(BUTFIRST OF "XXX" is "XX"). BUTFIRST OF BUTFIRST OF /N/ will

peel off two marks since what it says is take the BUTFIRST of

whatever BUTFIRST of /N/ is. And finally, if we use ten

BUTFIRST's, we can peel away ten marks.



4-TO BUTFIRSTTEN /N/
>10 OUTPUT BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF

BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF
BUTFIRST OF /N/

>END

In writing FIRSTTEN we can use an important fact. If a word has

ten or more marks in it, FIRSTTEN of the word is "XXXXXXXXXX".

We don't have to actually use tbe first ten letters of the word

itself by peeling off the last ones, or by using WORD to put

together the first letter and the second and the third and so

forth. We would have to do this if we wanted FIRSTTEN to work

on arbitrary words (like "ABCDEFGHIJKLMNOP" or "ANTIDISESTABLISH-

MENTARIANISM"). But, since we're working with mark numbers, all

of the letters in our words are X's.

What should FIRSTTEN do if a word has fewer than ten marks? A

reasonable action would be to output the whole word. Reasonable-

ness isn't an appropriate criterion, however, if it does not lead

to our goal. Will this action by FIRSTTEN cause GROUP to work
properly? Before we check that, let's take a look again at

BUTFIRSTTEN. When we wrote that procedure, we didn't consider

whether inputs had fewer than ten marks. The way we've written

it, BUTFIRSTTEN will output /EMPTY/ for an input of ten or fewer

marks. (Because BUTFIRST of /EMPTY/ is /EMPTY/.) So in the case

of BUTFIRSTTEN we made a decision about small mark numbers more

or less accidentally. We may have to go back and change it if

it doesn't work out properly in GROUP.

Let's see what happens when GROUP gets an input smaller than ten

X',s, say "XXXX". First, "XXXX" isn't /EMpTY/ so we'll output the

sentence of FIRSTTEN OF "XXXX" and GROUP OF BUTFIRSTTEN OF "XXXX".

Assuming we've tentatively made the decisions for FIRSTTEN and
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BUTFIRSTTEN that we felt were reasonable, then FIRSTTEN OF "XXXX"

is "XXXX" and BUTFIRSTTEN OF "XXXX" is /EMPTY/. So we're output-
., ,

ting sentence of "XXXX" and GROUP' OF jEMPTY/: ,But GROUP OF

/EMPTY/ is /EMPTY/ because of lines 10 and 20 in GROUP. So we're

outputting sentence of "XXXX" and /EMPTY/. That is just "XXXX".
,

This says that when the input is a word smaller than ten marks

if we write FIRSTTEN to output the whole word and BUTFIRSTTEN to

output /EMPTY/,cthen_GROUP of the input mord_will be the word

itself. Thus, GROUP OF "XXXX" will be "XXXX". But this is

exactly_wbat G,Roup is supposed 'GQ. do in this case,_and what happens

here with "XXXX",is typical of mhat should happen to any mark

number with ten oz, fewer marks.

Thus, we'll write FIRSTTEN so that it output's the whole word if

the input has fewer than ten marks'. The procedure will test if

there are at least JCen If theri4e are, it will output

"XXXXXXXXXX"; if there aren't, it will output' the whole word.

A way to test whether there are at least ten marks is to peel

off nine, using nine BUTFIRST's and then see if there are any
'

left.

4-TO" 'FIkSTTEN- /INPUT/
1VTEST'EMPtYPOF:BUT:FiaSTOF(..T.s.-thereanything:.aeft: after

BUTFIRST OF BUTFIRST OF peeling off.,nine plarks.?).
BUTFIRST OF BUTFIRST OF
BUTFIRST OF BUTFIRST OF
BUTFIRST OF BUTFIRST OF
/INPUT/

>20 IF FALSE OUTPUT "XXXXXXXXXX" (If zo.71\TP,UT/: must have had at
leaSt ten Marks sinbet Masn't

-JEMP5',V,afJp-nine were peeled
- _

>30 IF TRUE OUTPUT /INIDul-A: -/T1MT/M*$Hfe.wer than
teri marks so output tbe-WhOle

>END
input
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Now GROUP should work. Let's test it.

+PRINT GROUP OF "XXXXXXXXXXXXXXXXXXXXXXX"
XXXXXXXXXX XXXXXXXXXX XXX
4-

It worked with that input. That's a good sign but it's not com-

pletely convincing in showing that GROUP will work for all

inputs. How can we make a test that will be more convincing?

Of course, we can't simply test every possible input since there

are an infinity of them. What we can do is to test a representa-

tion of each different type of input. That is, each input which

the procedure seems to handle differently. In this case we can

properly use:

"XXXXXX" An input with fewer than ten marks.

"XXXXXXXXXX" Exactly ten marks.

"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" An input that groups evenly with

no marks left over.

"XXXXXXXXXXXXXXXXXXXXXXX" Several groups and some left over.

If GROUP works with these four inputs, we can be fairly sure it

will always work; not perfectly sure, since we might have over-

looked an important type, but nearly so. This way of.choosing

test inputs is much morp ffective in finding bugs than choosing

test inputs at random.

÷PRINT GROUP OF "XXXXXX"
XXXXXX
+PRINT GROUP OF "XXXXXXXXXX"
XXXXXXXXXX
+PRINT GROUP OF "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
+PRINT GROUP OF "XXXXXXXXXXXXXXXXXXXXXXX"
XXXXXXXXXX XXXXXXXXXX XXX
4-

25
-20-



Wilummeam,

So GROUP probably works. There is an additional feature in LOGO

that will let us watch more closely and exactly now GROUP works.

This feature, called TRACE, will cause the teletype to print the

inputs of GROUP each time it is called. For example,

÷TRACE GROUP (This turns on the trace feature)
÷PRINT GROUP OF "XXXXXXXXXXXXXX"
GROUP OF "XXXXXXXXXXXXXX" (GROUP is first called with this

input)
GROUP OF "XXXX" (Next, GROUP is called with BUTFIRST-

TEN of that input. This calling
happens at line 30 in GROUP)

GROUP OF "" (To compute GROUP OF "XXXX" the com-
puter needs to output sentence of
FIRSTTEN of "XXXX" and GROUP of
BUTFIRSTTEN of "XXXX", that is GROUP
of /EMPTY/, or as written, GROUP OF
11)

GROUP OUTPUTS " (GROUP OF " can be computed immedi-
ately, line 20, and doesn't call
GROUP again)

GROUP OUTPUTS "XXXX" (Now that GROUP OF "" has been com-
puted, GROUP OF "XXXX" can output)

GROUP OUTPUTS "XXXXXXXXXX XXXX" (Finally, GROUP OF "XXXXXXXXXXXXXX"
can output since GROUP OF "XXXX" is
now known)

XXXXXXXXXX XXXX (PRINT types out the final result)
÷ERASE TRACE GROUP (This turns off the trace feature)

This TRACE feature is actually most useful when a procedure

doesn't work properly at first and we want to know what is wrong.

We turn on the TRACE feature and run our procedure with an input

that doesn't work. Then, by looking at the printout we can often

see where things are going wrong.

Notice the way inputs and outputs pair in the TRACE printout.



JMZREITAMemexuat.ow

÷TRACE GROUP
÷PRINT GROUP OF "XXXXXXXXXXXXXX"
rGROUP OF "XXXXXXXXXXXXXX"

i-GROUP OF "XXXX"
rGROUP OF

1 1 +-GROUP OUTPUTS "
'.GROUP OUTPUTS "XXXX"

LGROUP OUTPUTS "XXXXXXXXXX XXXX"
XXXXXXXXXX XXXX

If the outermost GROUP gave the wrong answer, we could check the

others to see where the error started. In this way we can usually

find a very simple case where the procedure goes wrong. Then, by

pretending to be the computer, we can examine that case in great

detail and find the bug.

3.3 A Compact Representation of Grouped Numbers

So now we can have mark numbers typed out in groups of ten. We

can go a step further and instead of typing out ten X's in each

group, we can use another letter to represent a whole group.

For example, if we choose T to stand for ten marks, then the

number XXXXXXXXXXXXXXXXXXXXXXX, or XXXXXXXXXX XXXXXXXXXX XXX,

would be written TTXXX; that is, two groups of ten marks and XXX

left over. One procedure for doing this is very similar to the

one used in writing GROUP. In fact, we will be able to use the

same programs we used there, with some minor changes. First,

wherever GROUP had a word of ten X's we now want a T. The words

of ten X's always come from lfne 20 of FIRSTTEN. So we'll change

that to output T instead of XXXXXXXXXX.
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÷TO FIRSTTEN /INPUT/
>10 TEST EMPTYP OF BUTFIRST

BUTFIRST OF BUTFIRST OF
BUTFIRST OF BUTFIRST OF
BUTFIRST OF /INFO./

>20 IF FALSE OUTPUT "T"
>30 IF TRUE OUTPUT /INPUT/

>END

OF BUTFIRST OF
BUTFIRST OF
BUTFIRST OF

(Instead of the ten X's)
(/INPUT/ has fewer than ten marks so
the X's are output, as before,
instead of a T)

Now we'll try GROUP with this changed subprocedure.

÷PRINT GROUP "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
T T T XXXXXX

This is almost exactly what we want. The only things wrong with

it are the spaces. These are due to the line in GROUP that says

OUTPUT SENTENCE OF ... If we change SENTENCE to WORD, the

various parts will be put together without spaces. While we make

this change let's also change the name of the procedure frJm

GROUP to something else, since its function has changed. It now

converts a mark number to a different kind of number than a

grouped mark number. We'll use the name COMPACT for the procedure

and call numbers made up of these T's and X's compact numbers.

+TO COMPACT /WORD/
>10 JEST EMPTYP OF /WORD/
>20 IF TRUE OUTPUT /EMPTY/
>30 OUTPUT WORD OF FIRSTTEN OF /WORD/ AND COMPACT OF

BUTFIRSTTEN OF /WORD/
>END

COMPACT is exaCtly the same as GROUP except that WORD replaces

Sentence Li aine-3.10- Let's try it out.



÷PRINT COMPACT OF "XXX"
XXX
÷PRINT COMPACT OF "XXXXXXXXXX"

÷PRINT COMPACT OF "XXXXXXXXXXXXXXXXXXXXXX"
TTXX
÷PRINT COMPACT OF "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
TTT

So COMPACT seems to work.

Compact numbers have one big advantage over mark numbers. They

are much smaller, that is, they have fewer mars. The mark

number that corresponds to TTTTTTTTXXX wouldn't fit on one line.

Because of their size, compact numbers are easier to write and

easier to read. On the other hand, counting, adding, subtracting,

and comparing are somewhat harder with compact numbers. TX is a

bigger number than XXXXXXXXX despite appearances. Also, we can

no longer count just by adding a mark to the preceding number.

Sometimes it works, but every tenth time we have to rewrite the

number, changing the nine X's into one T.

The advantages above seem, in practice, to far outweigh the dis-

advantages. As far back as history goes men used some form of

compact numbers, usually with more than two different markS

(Roman numerals or Babylonian cuneiform for example). Roman

numerals, in fact, have been going out of use on1y gradually over

the last thousand years and are still used todaY when a second

number system is needed. Examples are for numbering chapters in

a book, pages in an introduction, or topics in an outline.

3.4 Conversion of Compact Numbers to Mark Numbers

We have a program, COMPACT, that .converts mark rambers to compact

numbers. We could also use a program that goes in the opposite
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direction, converting compact numbers to mark numbers. This is

useful because mark numbers are, in many ways, easier to deal

with than compact numbers. They are easier to compare and to add,

for example. (We'll see later that mark numbers are also easy to

multiply and divide.)

A simple idea for writing this program is to go through the com-

pact number, leaving the X's alone and changing each T to

XXXXXXXXXX. What we can do is t9ke a T away from the front of

the compact number and add XXXXXXXXXX to the back. Then we can

do this over and over again until there are no more T's at the

front of the word. For example, TTX would be changed to

TXXXXXXXXXXX by taking off the first T and adding on the ten X's.

Then TXXXXXXXXXXX would become XXXXXXXXXXXXXXXXXXXXX. This

number doesn't begin with T, so we're done.

±TO UNCOMPACT /N/
>10 TEST IS FIRST OF /N/ "T"
>20 IF FALSE OUTPUT /N/

>30 MAKE
NAME: "N"
THING: BUTFIRST OF /N/

>40 MAKE
NAME: "N"
THING: WORD OF /N/ AND

"XXXXXXXXXX"
>50 GO TO LINE 10
>END

Now we should test UNCOMPACT.

representative -cases.

4-PRINT UNCOMPACT OF "XXXXX"
XXXXX
4-PRINT UNCOMPACT OF "TTXX"
XXXXXXXXXXXXXXXXXXXXXx
4-PRINT UNCOMPACT OF "TTT"
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.(Does the number begin with T)
(It doesn't, so all the T's must
be gone. So it is a mark number
and we should output it)
(Remove the first T)

(And put ten X's on the end)

(Repeat the process with the
partially converted number, taking
care of the next T if there is one)

XXXXX and TTXX and TTT seem to be
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An amusing way to test UNCOMPACT is to notice that COMPACT OF

UNCOMPACT OF /X/ should be /X/ and UNCOMPACT OF COMPACT OF /X/

should also be /X/. (Provided, of course, that /X/ is a compact

number in the firt case and a'mark number in the second.)

4-PRINT COMPACT OF UNCOMpACT OF 'TTTXX"
TTTXX

Since UNCOMPACT OF "TTTXX" is "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"

and COMPACT of that is "TTTXX".

÷PRINT UNCOMPACT OF COMPACT OF "XXXXXXXXXXXXX"
XXXXXXXXXXXXX

Since COMPACT OF "XXXXXXXXXXXXX" is "TXXX" and UNCOMPACT OF "TXXX"

is "XXXXXXXXXXXXX".

;

It is also interesting to try COMPACT OF UNCOMPACT and UNCOMPACT

OF COMPACT on words that aren't numbers (for example,

"ABCDEFGHIJKLMNOPQRSTUVWXYZ") to see what they do. A good

problem is to describe exactly which words these two operations

(COMPACT OF UNCOMPACT and UNCOMPACT OF COMPACT) leave unchanged.

The effect of these operations might be surprising. For example,

÷PRINT COMPACT OF UNCOMPACT OF "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
TTUVWXYZ

The explanation is straightforward. Since "ABCDEFGHIJKLMNOPQRST-

UVWXYZ" doesn't begin with "T", UNCOMP.ACT leaves it unchanged.

COMPACT substitutes a "T" for the first ten marks, "ABCDEFGHIJ",

and another for the next ten, "KLMNOPQRST", and leaves the last

six unchanged.

31
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3.5 DiE,rdered Compact Numbers

So far all the compact numbers we've looked at have had all T's

to the left of the X's. But, what about a number like XXXTTX?

If we follow the rule that a T stands for ten X's, then that

number is the same as XXXXXXXXXXXXXXXXXXXXXXXX. That is, it is

the same as TTXXXX or TXXXXT or several other forms, such as

XXXXXXXTXXXXXXX. There are many ways of writing this number,

and the order of marks really doesn't matter at all. It doesn't

even matter if the number isn't completely compacted. It is

always clear which number is meant. (We're ignoring the commonly

used subtractive notation of Roman numerals which makes IV the

same as IIII.

time anyway.)

The only import4nt modern use of this is in telling

We shall write an uncompacting procedure to work for any form of

compact number. Notice that our old UNCOMPACT doesn't work with

most compact numbers. It will convert the T's on the left end of

the word but not any others.

1-PRINT UNCOMPACT OF "XXT7T"
XXTTT
÷PRINT UNCOMPACT OF "TXTXT"
XXXXXXXXXXXTXT

The simplest way to write this procedure is to use recursion. We

note that if a word begins with X, then UNCOMPACT OF the word is

the same as UNCCMPACT OF BUTFIRST OF that word, with an X stuck

on the end. If the word begins with T, then UNCOMPACT of the

word is the same as UNCOMPACT OF BUTFIRST OF the word, with

XXXXXXXY_XX stuck on the end. So, UNCOMPACT works on the word by

working on the BUTFIRST of the word. And UNCOMPACT works on the

BUTFIRST of the word by working on the BUTFIRST OF BUTFIRST of

the word. And so on. With each time around the word gets smaller.

2 2
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Eventually it will be /EMPTY/. And UNCOMPACT OF /EMPTY/ is

/EMPTY/, so the process terminates.

±TO UNCOMPACT /N/
>10 TEST EMPTYP OF /N/
>20 IF TRUE OUTPUT /EMPTY/ (If /N/ is /EMPTY/, the answer is
>30 TEST IS FIRST OF IN/ "X" /EMPTY/)
>40 IF TRUE OUTPUT WORD OF (UNCOMPACT

OF BUTFIRST OF IN!) AND "X" (FIRST is "X", so tack "X"
onto UNCOMPACT of BUTFIRST)

>50

>END

OUTPUT WORD OF (UNCOMPACT OF
BUTFIRST OF:/NI) AND
"XXXXXXXXXX" (FIRST is nOt "X" so it must be

:Hence tack "XXXXXXXXXX" onto
UNCOMPACT OF BUTFIRST)

Let's look at this procedure. Obviously it works for empty

inputs. If /N/ is /EMPTY/, then UNCOMPACT will output /EMPTY/,

the correct response. What happens if /N/ is only one letter

long? Well, if /N/ is "X", then line 40 is used and UNCOMPACT

outputs WORD OF UNCOMPACT OF /EMPTY/ AND "X". But UNCOMPACT OF

/EMPTY/ is /EMPTY/ as we just saw, so this is WORD OF /EMPTY/ AND

"X" or "X" Thus, UNCOMPACT OF "X" is "X". If /N/ is "T", then

line 50 is used and UNCOMPACT outputs WORD OF UNCOMPACT OF /EMPTY/

AND "XXXXXXXXXX". That is WORD OF /EMPTY/ AND "XXXXXXXXXX", or

"XXXXXXXXXX". So UNCOMPACT OF "T" is "XXXXXXXXXX" UNCOMPACT

works for both of the one-letter inputs. We could continue like

this, showing that UNCOMPACT works for all two-letter inputs and

for all three-letter inputs, and so on. Psychologically this

can be very convincing. After a short time (say, when we've

proved it for up to seven-letter inputs), anyone but a mathemati-

cian probably would be completely assured that UNCOMPACT will

always work. The mathematician would ask how we could be sure

that the first input for which UNCOMPACT fails isn't some huge

word consisting of mdllions of letters.
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Fortunately, there are ways to avoid this problem. One is

called mathematical induction (or, in the form we will use, the

method of infinite descent). We will show that if there is any

compact number that UNCOMPACT doesn't work on, then there is a

smaller compact number (BUTFIRST of the original number) on

which UNCOMPACT also doesn't work. But, then we'll be able to

apply this argument again to the new number and get a still

smaller number on which UNCOMPACT won't work. We can continue

this way until eventually we'll be down to a one-letter number

which UNCOMPACT can't handle. But there are only two one-letter

numbers, X and T, and UNCOMPACT works perfectly on both of them.

So this method will show that there can't be any compact number

that UNCOMPACT won't correctly convert into a mark number.

Well, all we need to show is that if UNCOMPACT doesn't work for

some compact number, then it also doesn't work for the BUTFIRST

of that number. The number begins with either X or T. If it

begins with X, then BUTFIRST of it is a compact number one less

than the original number. So UNCOMPACT OF BUTFIRST OF the

original number should have one mark less than UNCOMPACT OF the

original number. But, the way the procedure for uncompacting

works in this case (line 40 of UNCOMPACT) is to tack one more X

onto the UNCOMPACT OF BUTFIRST. So if UNCOMPACT of the number

itself is wrong, then UNCOMPACT of the BUTFIRST of the number

must have been wrong.

The same argument is true if the original number began with T.

We'd refer to line 50 of the procedure and to tacking on YXXXXXXXXX

instead of line 40 and tacking on X.

This argument Kill convince the mathematician that UNCOMPACT will

work for any compact number. It is a curious fact that the

earlier, incomplete argument is much more likely to be convincing

'3
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to nonmathematicians. This is probably because few nonmathemati-

cians have any fluency with complex logical arguments. Arguments

in life situations nearly always hinge on questions of evidence

or values rather than subtle logical points.

The reason for choosing mathematical induction for the test of

UNCOMPACT is the close relationship batween induction and recursion.

When we write a recursive procedure, we decide to solve the

problem of a large input by solving the same problem for a smaller

input. Eventually the input becomes small enough so that the

solution is trivial (usually we let the input get down to

/EMPTY/). With a related form of mathematical induction, we say

that if the solution is wrong for a large input it must be wrong

for a smaller input. Then it must be wrong for a still smaller

input. Finally, the solution must be wrong for the case of

/EMPTY/. But, we can check that case and see that is correct.

So, the solution can't be wrong for any input.

Tracing will show how the UNCOMPACT procedure makes the problem

simpler and simpler until it can finally solve it.

+-TRACE UNCOMPACT
÷PRINT UNCOMPACT OF "XTX"
UNCOMPACT OF "XTX"
UNCOMPACT OF "TX"

UNCOMPACT OF "X"

(The original problem)
(We can solve the original problem
if we know the answer to this one.
The solution to the original prob-
lem is WORD OF (UNCOMPACT OF "TX")
AND "X")
(Now we can solve the problem just
above if we can solve this problem.
The solution to the problem above,
UNCOMPACT OF "TX" is WORD OF
(UNCOMPACT OF "X") AND "XXXXXXXXXX",
by line 50 of UNCOMPACT. If we
substitute this into the solution
of the original problem above we get
that, the solution is WORD OF (WORD
OF UNCOMPACT OF "X" AND "XXXXXXXXXX")
AND "X")

35.
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UNCOMPACT OF "" (BUTFIRST OF "X" is /EMPTY/, also
written "". By line 40 of UNCOMPACT
we have UNCOMPACT OF "X" is WORD OF
(UNCOMPACT OF ") AND "X")

UNCOMPACT OUTPUTS "" (The problem UNCOMPACT OF " is al-
ready as simple as possible. The
answer is "")

UNCOMPACT OUTPUTS "X" (Now that UNCOMPACT OF 11 is solved
UNCOMPACT OF "X" is known. It was
just WORD OF (UNCOMPACT OF "") AND
"X")

UNCOMPACT OUTPUTS "XXXXXXXXXXX" (Remembef that UNCOMPACT OF "TX"
was WORD OF (UNCOMPACT OF "X") AND
"XXXXXXXXXX". Now that UNCOMPACT
OF "X" is solved, UNCOMPACT OF "TX"
is known)

UNCOMPACT OUTPUTS "XXXXXXXXXXXX" (Finally the original problem
is solved now that UNCOMPACT OF
"TX" is known)

XXXXXXXXXXXX (And the result is printed)

Despite all these discussions about UNCOMPACT, we should still

test it with some representative inputs just to make triply sure

it works.

+PRINT UNCOMPACT OF "XT"
XXXXXXXXXXX
+PRINT UNCOMPACT OF "XXXXXX"
XXXXXX
÷PRINT UNCOMPACT OF "TT"
XXXXXXXXXXXXXXXXXXXX

We can write programs to do arithmetic with compact numbers by

using UNCOMPACT to convert the compact numbers into mark numbers,

using the old mark number procedures ADD, SUBTRACT, and so on,

and then using COMPACT to convert the answer back into a compact

number. This method would work but it is inefficient. It

preserves the advantages of compact numbers for the people using

the computer but not for the computer itself. It would be silly



to worry about being "fair" to the computer except that the more

work we make the computer do the longer it takes. And long waits

for an answer are annoying to people. So it is to our advantage

to allow the computer to operate efficiently.

In handling compact numbers, it is a great convenience to be able

to separate the T's and the X's. Suppose we have two procedures,

T'S OF /N/ and X'S OF /N/ (the ' can be used in the name of a

LOGO procedure just as if it were a letter) that work as follows:

÷PRINT I'S OF "XXTTXT"
TTT
÷PRINT X'S OF "XXTTXT"
XXX
*-PRINT T'S OF "T"

+PRINT X'S OF "T"
(/EMPTY/ is printed)

T'S outputs a word made up of all the T's in its input and X'S

does the same for the X's. These two procedures can be used for

straightening out disordered compact numbers, for comparing com-

pact numbers (since we have to compare the T's and then, if both

have the same number of T's, compare the X's), and so forth.

We'll write T'S and X'S. Let's do T'S first. Then X'S should

turn out to be a trivial modification of T'S. We'll write T'S

using recursion. All we need to do is to notice that if a word

begins with X, then T'S OF that word is the same as T'S OF BUTFIRST

OF the word. If the word begins with T, then T'S OF the word is

just T'S OF BUTFIRST OF the word, with an extra T stuck on at the

end. That is, WORD OF (T'S OF BUTFIRST OF the word) AND "T".

So whether the word begins with T or X, we can reduce the problem

to getting T'S OF BUTFIRST OF the word. We can keep doing this
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until the problem is reduced to finding T'S OF /EMPTY/. This is

a trivial question and we can immediately give the answer,

/EMPTY/.

÷TO T'S /N/
>10 TEST EMPTYP OF /N/

>20 IF TRUE OUTPUT /EMPTY/

(Have we gotten down to the trivial
case yet?)
(if so, the answer is /EMPTY/; there
are no T's in the empty word)

>30 TEST IS FIRST OF /N/ "T"
>40 IF TRUE OUTPUT WORD OF (T'S (If /N/ begins with T, then the

OF BUTFIRST OF /N/) AND "T" anzwer is T'S OF BUTFIRST OF /N/
with one more T stuck on)

>50 OUTPUT T'S OF BUTFIRST OF (Otherwise the first letter of /N/
IN/ isn't T so the answer is just_T'S

OF BUTFIRST OFJN/. We can just
forget the first letter)

>END

And, of course, we'll test the procedure.

÷PRINT T'S OF
(The empty word, since there are no T's in XXX)

4-PRINT T'S OF "TT"
TT
÷PRINT T'S OF "XTTXTX"
TTT

The procedure X'S can be written exactly like T'S. We need only

replace "T" in lines 30 and 40 by "X".

÷TO X'S IN/
>10 TEST EMPTYP OF /N/
>20 IF TRUE OUTPUT /EMPTY/
>30 TEST IS FIRST OF /N/ "X"
>40 IF TRUE OUTPUT WORD OF (X'S OF BUTFIRST OF /N/) AND
>50 OUTPUT X'S OF BUTFIRST OF /N/
>END

÷PRINT X'S OF "TTXTX"
XX



3.6 Standard Form

Now that we have the procedures T'S and X'S, it is a simple matter

to write some compact number manipulators. For example, while it

is true that order has no effect on the value of a compact number,

it is also true that it is easier to read compact numbers if they

are written in some standard form (say, all T's followed by all

X's). So, let's write a procedure to convert any compact number

to standard form. All the procedure needs to do is put the T's

at the beginning and the X's at the end.

+TO STANDARDIZE /NUMBER/
>10 OUTPUT WORD OF (T'S OF /NUMBER/)

AND (X'S OF /NUMBER/)
>END

We can try STANDARDIZE on some of the disordered compact numbers

we mentioned before.

-4-PRINT STANDARDIZE OF "XTXTXX"
TTXXXX
4-PRINT STANDARDIZE OF "XXXTT"
TTXXX
÷PRINT STANDARDIZE OF "XX"
XX
4-PRINT STANDARDIZE OF "TTXX"
TTXX
4-PRINT STANDARDIZE OF "XXXXXXTXXXXXX"
TXXXXXXXXXXXX

STANDARDIZE works, up to a point. It does seem to arrange the

T's and X's properly but it doesn't do any compacting. This is

perfectly reasonable, since we didn't instruct it to do so when

we defined the procedure. We could leave STANDARDIZE as it is

and truthfully say that we've written what we set out to write,

a program that will arrange the T's and X's of a compact number

39



so that the T's are to the left of the X's. It is an advantage,

however, if any two standard compact numbers that stand for the

same mark number are exactly the same. (For example, if we

wanted to see if two compact numbers were equal, we could just

do IS OF STANDARDIZE OF one AND STANDARDIZE OF the other.) So

let's add to our criteria for standard form that there be no more

than nine X's in the number. So, a compact number is in standard

form only if (a) all the T's are on the left, and (b) there are

no more than nine X's. The reader shoula convince himself that

these rules guarantee that two equal compact numbers will be

exactly the same.

In order to fix STANDARDI:E so that it will output numbers in our

newly-defined standard form, we need to adjust the phrase (X'S

OF /NUMBER/). The problem occurs when (X'S OF /NUMBER/) is a

word of more than nine X's. COMPACT is a program that will handle

this problem. COMPACT will take the word of X's and output a word

with nine or fewer X's, the extra X's compacted into T's. As a

special piece of fortune, COMPACT puts those extra T's to the left

of the X's, just the right place to connect them properly with

the T's output from (T'S OF /NUMBER/). So we can write

-(--TO STANDARDIZE /NUMBER/
>10 OUTPUT WORD OF (T'S OF /NUMBER/)

AND (COMPACT OF X'S OF /NUMBER/)
>END

If we consider STANDARDIZE OF "XXXXXXTXXXXXX", we can see that the

procedure will output WORD OF "T" AND "TXX" which is "TTXX".

÷PRINT STANDARDIZE OF "XXXXXXTXXXXXX"
TTXX
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And, of course, we should test the new STANDARDIZE on a representa-
tive group of compact numbers.

÷PRINT STANDARDIZE OF "TT"
TT
÷PRINT STANDARDIZE OF "XX"
XX
÷PRINT STANDARDIZE OF "XXXTT"
TTXXX

Now that we have STANDARDIZE, ADD is a trivial task. If we didn't

care whether or not the answer was in standard form, then the

elementary operation WORD would serve as a working ADD procedure.

Simply putting the two compact numbers together gives a new

number with exactly enough T's and X's to represent the sum of
the two original numbers. But, as long as we can get any repre-

sentation for this sum, we might as well get the standard form

representation by using STANDARDIZE.

+TO ADD /X/ AND /Y/
>10 OUTPUT STANDARDIZE OF WORD OF

/X/ AND /Y/
>END

ADD is so simple it is hard to think of test cases for which it
might be wrong. The subprocedures we wrote to help us with ADD,

T'S, X'S, and STANDARDIZE, turn out to be so powerful that our

original problem, ADD, has become a triviality. This is a common
occurrence in mathematics. It also often happens that tools

(subprocedures, subtheorems, techniques) invented to attack some

problem end up having an importance of their own, quite apart

from the problem they were invented for.
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3.7 Comparing Compact Numbers

Before we write a procedure to compare two compact numbers, let's

assume that from now on compact numbers will be written in standard

form, unless stated otherwise. Thus, the inputs to compact number

procedures will be in standard form and the procedure must output

numbers in standard form. This requirement for the outputs is

obviously desirable. The requirement that the inputs be in

standard form will make our procedures less powerful (they won't

handle nonstandard inputs) but simpler. If, for any reason, we

decide later that we want the extra power, we can convert each

nonstandard input into standard form simply by adding the

instruction line

MAKE
NAME: "INPUT"
THING: STANDARDIZE OF /INPUT/

at the beginning of the procedure (with "INPUT" replaced by "X"

or "M" or "FIRST" or whatever name the procedure uses for the

input). These lines will put the inputs into standard form and

then we won't have to worry about them again.

In comparing two compact numbers, the first thing to look at is

the T's. If one of the numbers has more T's than the other, that

one must be the larger. This is because, with the numbers in

standard form the difference of the X's can't be more than nine;

not enough to make up for an extra T. Only if the number of T's

is the same for both do we need to look at the X's. In that case,

of course, the larger number is simply the one with the more X's.

Comparing the number of T's (or X's) in the two numbers is just

a matter of comparing the number of letters in two words. But,

that is a problem we solved when we wrote the procedures to

compare mark numbers. One of the programs was



÷TO MARK-COMPARE /FIRST/ AND /SECOND/ (We changed the name to
MARK-COMPARE so that we
can use the name COMPARE
for the compact number
program)

>10 TEST IS /FIRST/ /SECOND/
>20 IF TRUE OUTPUT "EQUAL"
>30 TEST EMPTYP OF /FIRST/
>40 IF TRUE OUTPUT "SECOND"
>50 TEST EMPTYP OF /SECOND/
>60 IF TRUE OUTPUT "FIRST"
>70 OUTPUT MARK-COMPARE OF (BUTFIRST

OF /FIRST/) AND (BUTFIRST OF
-/SECOND/)

>END

When we wrote MARK-COMPARE (we called it COMPARE then), we

intended that it should work for words made up entirely of X's.

But, there is nothing in the program that takes the least notice

of what letters make up /FIRST/ and /SECOND/. So MARK-COMPARE

will work with any two words, outputting the name of the word

that has the larger number of letters.

To write COMPARE (for compact numbers), we'll use MARK-COMPARE

to compare the T's. If these aren't EQUAL, we're done and the

larger number is simply the one with the more T's. If the T's

are EQUAL, then the answer to the problem is just MARK-COMPARE

of the X's.

÷TO COMPARE /FIRST/ AND /SECOND/

>10 TEST IS (MARK-COMPARE OF T'S
OF /FIRST/ AND T'S OF
/SECOND/) "EQUAL"

>20 IF FALSE OUTPUT MARK-COMPARE
OF (T'S OF /FIRST/) AND
(T'S OF /SECOND/)

(/FIRST/ and /SECOND/ will
always be compact numbers in
standard form)
(Do both inputs have the same
number of T's?)

(If they don't, the one with
the more T's is the larger)
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>30 OUTPUT MARK-COMPARE OF
(XIS OF /FIRST/) AND (XIS
OF /SECOND/)

>END

(If they do have the same number
of T's, then the answer is the
one with the more X's. ,Notice
that if the numbers have equal
T's and equal X,'s, this line
will output "EQUAL')

We'll test COMPARE with some representative inputs.

÷PRINT COMPARE OF "TTX" AND "XXXX"
FIRST
÷PRINT COMPARE OF "TTXX" AND "TTXXX"
SECOND
÷PRINT COMPARE OF "TXX" AND ,"TXX"
EQUAL

We were quite specific in insisting that COMPARE would oe

guaranteed to work only on numbers in standard form. In fact,

COMPARE will work properly with many, but not all, nonstandard

compact numbers. Disordering presents no problem because T'S

and X'S handle that satisfactorily. Incomplete compacting

(more than nine X's) is what can cause problems. (Find an

example for which CpMPARE gives the wrong answer.)

3.8 Subtraction of Compact Numbers

This COMPARE procedure cannot be converted into a SUBTRACT program

as easily as in the mark number case. An attempt :) do so would

go like this. We'll make the difference between two compact

numbers a new compact number whose T's equal the difference in

the T's of the two original numbers and wlaose X's equal the

difference of the X's. To do this we'll use MARK-DIFFERENCE on

the T's and X's separately. Then DIFFERENCE would be -



4.-TO DIFFERENCE /F/ AND /S/
>10 MAKE

NAME: "T'S OF ANSWER"
THING: MARK-DIFFERENCE OF

(T'S OF /F/) AND
(T'S OF /S/)

(Find the number of T's in the
answer)

>20 MAKE
NAME: "X'S OF ANSWER'1 (Find the number of X's in the
THING: MARK-OLFFERENCE OF Lnswer)

(X'S OF IF!) AND'
(X'S OF /Si)

>30 OUTPUT WORD OF IT'S OF .(Put the T's and X's together
ANSWER/ AND /X'S OF ANSWER/ with WORD and output)

>END

Recall the mark number subtraction procedure, MARK-DIFFERENOE:

4.-TO MARK-DIFFERENCE /M/ AND /N/
>10 TEST EMPTYP OF /M/
>20 IF TRUE OUTPUT /N/
>30 TEST EMPTYP OF /N/
>40 IF TRUE OUTPUT /M/
>50 OUTPUT DIFFERENCE OF (BUTFIRST

OF IM/) AND (BUTFIRST OF /N/)
>END

-4-

If ',Ate try'butiDIFFERENCE, we will find that it doesn't work in

all caSes.

4-PRINT DIFFERENCE OF "TTX" AND "TX"

tPRINT DIFFERENCE OF "TXX" AND "TTTXXXX"
TTXX
+PRINT DIFFERENCE OF "TTX" AND "TXXXX"'
TXXX'

Jiere is a bug. The correct answer is XXXXXXX, not TXXX. It

clear how, the erroroccurred-..', The first input has two T's and

is T. The firstthe second has one so the difference in the T'
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input has one X and the second four, so the difference in the

X's is XXX. So, DIFFERENCE output TXXX. The problem is that the
smaller number has more X's than the larger number. How can we
handle this?

A solution to our problem is to partially uncompact the larger

number, changing one of its T's to ten X's. Then it will certainly

have more X's than the smaller number (which can have no more than
nine, being in standard form). When we try this on the problem

that gave us the trouble, DIFFERENCE OF "TTX" AND "TXXXX" we

change it to DIFFERENCE OF "TXXXXXXXXXXX" AND "TXXXX". The

procedure DIFFERENCE will have no difficulty with this problem,

the difference of the T's is /EMPTY/ and the difference of the
X's is XXXXXXX. So, the answer is XXXXXXX.

If we try to fix DIFFERENCE this way, we'll have a little trouble

because we'll have to first find out which of the two input

numbers is larger before we can decide whether we need to do the

uncompacting. This isn't particularly difficult to do -- we

already have the COMPARE procedure we need. And, since DIFFERENCE

is becoming somewhat complicated, instead of repairing it, we'll

wrlte a new procedure, SUBTRACT, which uses it as a subprocedure.

SUBTRACT will be like DIFFERENCE except that it will require that

the first of the two inputs be larger than the second.

4TO SUBTRACT /BIG/ AND /SMALL/
>10 TEST IS (COMPARE OF X'S OF /BIG/

AND X'S OF /SMALL/) "SECOND"
>20 IF TRUE MAKE

NAME: "BIG"
THING: WORD OF (BUTFIRST OF

T'S OF /BIG/) AND
(WORD OF X'S OF /BIG/
AND "XXXXXXXXXX")

>30 OUTPUT DIFFERENCE OF /BIG/ AND
/SMALL/

>END

(Which number has more X's?)

(/SMALL/ has more X's, so
change one of the T's in
/BIG/ to ten X's)

(We've made sure that this is
a case that DIFFERENCE can
handle so we use it)



There are a few questions that need to be settled before we can

have confidence in SUBTRACT. For example: how can we be sure,

in line 20, that /BIG/ has a T at all? If /BIG/ has no T, then,

of course, we can't uncompact it. What line 20 does, in that

case, is replace /BIG/ by another number, ten larger. That would

be certain to foul up our subtraction. Fortunately, line 20 is

carried out only if /SMALL/ has more X's than /BIG/ (because of

the IF TRUE condition following the test in line 10) and, if that

is so, /BIG/ must have at least one T in order to be bigger than

/SMALL/.

Tt Is also important, if we do perform line 20, that /BIG/

originally have more T's than /SMALL/ has. Otherwise, after

line 20 is carried out, /SMALL/ will have more T's than /BIG/

and so the subprocedure DIFFERENCE won't work. (For example,

consider F...FFERENCE OF "TXXXXXXXXXXXXX" AND "TTX". The correct

answer 1E. XX but DIFFERENCE will give TXXXXXXXXXXXX.) But, this

cannot occ.ur. The argument is as follows. Since /BIG/ must be

larger tnan /SMALL/, it must start wIth at least the same number

of T's. But, if it had exactly the same number of T's as /SMALL/,

it c,-;: lob have had fewer X's. Thus we would not have performed

line 20. So, since we did perform line 20, /BIG/ must have had

more T's than /SMALL/.

Finally, we must be sure that SUBTRACT outputs in standard form,

since we decided that all of our compact number procedures should

deal with numbers in standard form. The output of DIFFERENCE

will always have the T's to the left of the X's so the ordering

requirement is satisfied. What isn't obvious is that the answer

will always have fewer than ten X's. The original /BIG/ and

/SMALL/ each have "kwer than ten X's (since they are in standard

form) so, if line 20 isn't used, we're all right. (The difference



between two numbers both less than ten is less than ten.) But,

if line 20 is used, then /BIG/ will have at least ten X's, often

more. How can we be sure that the answer will have fewer than

ten? If we were to take away the number of X's that /BIG/ had

originally, then the answer would have exactly t n X's. If we

take more than that, the answer will have fewer than ten X's.

But the only time line 20 happens is when the number of X's in

/SMALL/ (that is, the number we're subtracting) is larger than

the original number of X's in /BIG/. So, the answer will have

fewer than ten X's.

Choose some representative cases and test SUBTRACT. Notice that

it will do something, if the inputs ar e. in the wrong order, but

the result will be incorrect.

The old MARK-SUBTRACT program that we discussed previously can

be made to work with compact numbers by making a very minor change.

Line 40 was

40 MAKE
NAME: "COUNTER"
THING: WORD OF /COUNTER/ AND "X"

We'll change that to

40 MAKE
NAME: "COUNTER"
THING: ADD OF /COUNTER/ AND "X"

This makes no difference as far as mark numbers are concerned

since ADD and WORD are the same procedure for them. With compact

numbers, however, ADD does more than just WORD the two numbers

together.

This SUBTRACT program isn't as "good" as the one we just wrote

specially for compact numbers, since it is slower in getting an

answer, particularly if the answer is large. It is an interesting



program though, because it depends very little on what method we

use for writing numbers. It works equally well for mark numbers,

compact numbers, and (as we'll see later) place value numbers.

In fact, the reason it is a relatively slow program is that it

doesn't take advantage of any of the special shortcuts that may

be possible with each particular number notation.

As we find that we want to use larger and larger numbers we'll

soon decide that compact numbers,.while some help, are not enough.

Three lines full of T's is easier to read or write than thirty

lines full of X's but both tasks are unpleasant. Fortunately, we

can improve the situation somewhat. We can introduce a new symbol,

say H, and let each H stand for ten X's. Then we'll have to

redefine standard form and rewrite most of our compact number

procedures, but when we're finished we will have gained consider-

ably in the size of the numbers we can deal with easily. If we

want to work with still larger numbers, we can add yet another

symbol standing for ten H's. This process can be repeated until

we either have great difficulty remembering all the symbols we

introduced or, hopefully, until we can handle any numbers that

come up in our work. But, if we need to work with still larger

numbers without introducing still more symbols, there are other

number representations and some of these will be developed

subsequently.

4. More About Mark Numbers

4.1 Multiplication of Mark Numbers

When we wrote the procedure UNCOMPACT, we were actually writing a

sort of multiplication procedure. For each T. we substituted ten

X's. If our original number had only T's in it, the new
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uncompacted number would be ten times as long. So, in a way, we

have multiplied a mark number by ten. In the process we also

changed the marks from T's to X's which, if we had been thinking

of compact numbers would have made an important difference. But,

with simple mark numbers a mark is a mark (that is, all marks

mean the same thing). Nevertheless, let's rewrite UNCOMPACT so

that it will take a word of X's (a normal mark number) and

substitute ten X's for each X. Since the purpose of this program

is different from UNCOMPACT, we'll give it a new name, TIMESTEN.

4-TO TIMESTEN /N/
>10 TEST EMPTYP OF /N/

>20 IF TRUE OUTPUT
>30 OUTPUT WORD OF

OF BUTFIRST OF
"Xxxxxxxxxx"

>END

/EMPTY/
(TIMESTEN
/N/) AND

(We are using the second UNCOMPACT
procedure as our model - the one
that works on disordered compact
numbers)

(We don't want to check whether
FIRST OF /N/ is "T". Every mark
in /N/ should have "XXXXXXXXXX"
substituted for it)

Notice that TIMESTEN is a recursive procedure; The program says

that if /N/ isn't /EMPTY/, then TIMESTEN OF /N/ is the same as

TIMESTEN OF (BUTFIRST OF /N/) with ten extra X's tacked onto the

end (that is, substituted for the one X that BUTFIRST chops off

at the beginning).

What we are really after is a general multiplication procedure,

not just one that multiplies by ten. We want a procedure that

will take two inputs instead of one and will output the product

of these inputs. In order to generalize TIMESTEN in this way, we

first look carefully at the procedure to see where the fact that

we are using ten rather than some other number shows up. The

only place in TIMESTEN that this happens is at the end of line 30

a()
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where we have "XXXXXXXXXX". If that word were changed, say to

"XXXX", TIMESTEN would multiply by four. So, to make TIMESTEN

multiply by its second input, we will just put the name of that

input in line 30.

+TO TIMES /N/ AND /Y/

>10 TEST EMPTYP /N/
>20 IF TRUE OUTPUT /EMPTY/
>30 OUTPUT WORD OF (TIMES OF

BUTFIRST OF /N/ AND /Y/)
AND /Y/

>END

(Let's change the name of the
procedure since we won't be
multiplying only by ten)

(Instead of tacking on ten X's,
we will use the number given in
/V)

Let's TRACE TIMES and watch it run.

+TRACE TIMES
+PRINT TIMES OF "XXX" AND "XXXX"
TIMES OF "XXX" AND "XXXX"
TIMES OF "XX" AND "XXXX"
TIMES OF "X" AND "XXXX"

TIMES OF "" AND "XXXX"
TIMES OUTPUTS Int

TIMES OUTPUTS "XXXX"
TIMES OUTPUTS "XXXXXXXX"

TIMES OUTPUTS "XXXXXXXXXXXX"
XXXXXXXXXXXX

In order to calculate TIMES OF "XXX" AND "XXXX" the computer had

to first find TIMES OF "XX" AND "XXXX" and TIMES OF "X" AND "XXXX"

and TIMES OF "" AND "XXXX". So the procedure TIMES is actually

called four times. Now suppose we try TIMES OF "XXXX" AND "XXX".

The answer will be the same as before, XXXXXXXXXXXX, (unless

there is a bug in our program) but the process of getting that

answer will be different.
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÷PRINT TIMES OF "XXXX" AND "XXX"
TIMES OF "XXXX" AND "XXX"

TIMES OF "XXX" AND "XXX"
TIMES OF "XX" AND "XXX"
TIMES OF "X" AND "XXX"
TIMES OF "" AND "XXX"
TIMES OUTPUTS

TIMES OUTPUTS "XXX"
TIMES OUTPUTS "XXXXXX"

TIMES OUTPUTS "XXXXXXXXX"
TIMES OUTPUTS "XXXXXXXXXXXX"
XXXXXXXXXXXX

In this case the procedure is called five times. If we think

about how different the two processes we've just watched are, it

may seem surprising that they give the same final result. A very

good, mathematical question is "why does this happen?". A good

answer to this question, and there are many, would be a way of

looking at the TIMES procedure that makes it clear that the order

of the inputs doesn't change the final result. Most of the

important advances in mathematics have come from discoveries of

new ways to look at things which revealed hidden relations.

For the particular question we have here, why TIMES gives the same

result even if the two inputs are switched around - we'll look at

one possible explanation. First we'll relax slightly the restric-

tions on how we write mark numbers. We've always written the X's

in a norizontal line, like XXXXX, but now let's permit ourselves

to write in any patterns we please, for example,

X
X X X

X or X or X X. Each of these
X X X X X

X

represents the same number. Now, if we go! back to the problem

of TIMES "XXX" AND "XXXX", we can think of substituting "XXXX"

A
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for each X in "XXX". But, let's write it like this

X X X
X X X For each X in "XXX" we've substituted a vertical
X X X
X X X

row of "XXXX". If we follow the same scheme for TIMES OF "XXXX"

AND "XXX" and substitute a vertical row of "XXX" for each X in

"XXXX" we getXXXX. But now, if we look at both ofXXXXXXXX
these patterns, we can see that they are the same except for

position, that is, by a simple half turn of the paper the three

by four turns into the four by three, and vice-versa. So

naturally they have the same number of X's and so they are the

same mark number.

A property of this type of explanation is that it is good only

if the reader is convinced by it. There are no objective grounds

on which to judge it right or wrong, its value depends on how it

is received. For this reason most teachers tend to collect as

many explanations as they can so that when one doesn't "click"

they can try another.

To go back to the TIMES procedure, noi;ice that in the second half

of the TRACE printout (the lines that go TIMES OUTPUTS) the

computer is counting up by threes in one case and by fours in

the other. (That is, three, six, nine, twelve, and four, eight,

twelve.) The programs stopped when they came to twelve, the

first number that they both reach. An interesting question is:

if two programs (nr people) start counting up by different

amounts (in the case we did, by three and four), what numbers

will both programs reach?
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4.2 Counting, Copying, and Compact Multilication

We wrote TIMES to work with mark numbers. We didn't think about

how it would behave with other inputs. In fact, whenever we

create a LOGO procedure we decide, at least implicitly, what sort

of inputs are legal. The mere fact that the procedure is written

in LOGO means that the inputs must be either words or sentences

(LOGO words cr sentences, of course, not necessarily English ones)

and not something like a dog, a pound of butter, or a moment of

joy. Often, as in the case of TIMES, we intentionally restrict

the legal inputs still more. TIMES may have only mark numbers

as inputs, other LOGO things are illegal. The word domain is

used to describe the collection of legal inputs to a procedure.

We would say that the domain of TIMES is pairs of mark numbers

(pairs because there must be a first input, /N/, and a second

input, /Y/).

Sometimes, when the inputs to a procedure are LOGO things that

are not in the domain, the computer will stop and type an error

comment; sometimes the computer will "go into an infinite loop"

(that is, work and work but never output anything). Neither of

these cases is particularly interesting. But sometimes the

procedure will finish its work and output something. When this

happens, it sometimes turns out that we've found a new use for

an old 1-;ool as, for example, when we found we could use MARK-

DIFFERENCE to get the difference of two compact numbers. This

new use might be rather similar to the old one (like using

scissors as tin snips), or it might be very different (like using

a magnifying glass to start a fire). Either way the tool becomes

more useful.

This is the case with the procedure TIMES. The first input, /N/,

exists simply to have each ofA.ts letters replaced by the second



input, /Y/. So, it doesn't make any difference what those letters

were originally. The only thing that matters is how many there

are. Any word at all, used for the first input, can be replaced

by the mark number containing as many X's as the original word

had letters. So, in fact, we can extend the domain to allow the

first input to be any LOGO word. That seems to give us nothing

new or interesting. This appearance is misleading however. We

can use this observation to write a short procedure called COUNT

which will output the number of letters in its input. For

example, COUNT OF "CAT" is "XXX" (three), COUNT OF "NARNIA" is

"XXXXXX" (six), and so forth. The program is simple.

+TO COUNT /W/
>10 OUTPUT TIMES OF /W/ AND
>END

Itxtt

TIMES just substitutes an X for each letter in /W/ and so outputs

the mark number equal to the number of letters in /W/. Before

we get back to TIMES, notice that we've discussed COUNT only with

word inputs, not sentences. Think about COUNT of a sentence,

remembering that FIRST of a sentence is the first word and

BUTFIRST of a sentence is all except the first word.

+PRINT COUNT OF "APPLES PEARS PLUMS CHERRIES"
XXXX
+PRINT COUNT OF "APPLESPEARSPLUMSCHERRIES"
XXXXXXXXXXXXXXXXXXXXXXXX

Varying the second input to TIMES is even more interesting. The

second input is copied over as many times as there are marks (or

letters) in the first input. Thu3, for example,

+PRINT TIMES OF "XXX" AND "CAT"
CATCATCAT

5 5
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This use of TIMES seems cute but not very useful. In fact, it

is a surprisingly powerful technique that we will use later when

we write programs whose outputs will be LOGO instructions.

(Recall, in the procedure BUTFIRSTTEN, we used a line that con-

tained BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF and so on.

Procedures like TIMES can produce this kind of instruction.)

Right now, however, let's look at what happens when the second

input is a compact number. The output of the procedure will be

the compact number repeated as many times as the first input, a

mark number, says. So, TIMES OF "XXXX" AND "TTX" is "TTXTTXTTXTTX".

But, this is really the product of the mark number and the compact

number, except that it isn't in standard form. Using this ober-

vation, we can write a multiplication for two compact numbers by

uncompacting one of them, using TIMES to multiply the resultant

mark number by the other compact number, and finally standardiz-

ing the result.

4-TO MULTIPLY /CM/ AND /CN/
>10 OUTPUT STANDARDIZE OF TIMES OF

(UNCOMPACT OF /CM/) AND /CN/
>END

Notice that we are careful to uncompact the first input of TIMES

in line 10 and not the second. Doing it the other way would give

a program that does something quite different from multiplication.

This program for multiplying compact numbers is considerably

better than the simple-minded one of converting both numbers to

marks, multiplying the mark numbers, and then compacting the

result. In fact, with a little bit of improving (to make sure

that the smaller input to MULTIPLY is the one that gets uncompacted),

this would be a very reasonable and practical multiplication



procedure. To achieve the most efficient multiplication possible,

we'd have to consider also the problem of multiplying T's together

(such as "TTT" times "TTTT"). With extended compact numbers (X's,

T's, and H's), the problem is even more acute since "HHHHHH"

times "HHHHH" is equal to about one teletype page (fifty lines)
full of H's. We won't study the problem here, however, since

we're going to solve it in a completely different way in the
next chapter.

4.3 Division of Mark Numbers

In the same way that UNCOMPACT leads to mark multiplication,

COMPACT leads to mark number division. One way the problem of

division can be looked at is to ask how many groups of a given

size can we make from the number we have. But this is precisely

what COMPACT does for a special case, division by ten. In COMPACT

we asked how many groups of ten there are in the input number.

The answer was used as the number of T's in the compact represen-
tation of the number. Let's look again at COMPACT to see what

will be involved in changing it to a general mark division pro-

cedure, that is a procedure for dividing a given mark number by
any other mark number.

4-TO COMPACT-/WORD/
>10 TEST EMPTYP OF./WORD/
>20 IF TRUE OUTPUT /EMPTY/
>30 OUTPUT WORD OF (FIRSTTEN OF /WORD/) AND (COMPACT

OF BUTFIRSTTEN OF /WORD/)
>END

Remember that FIRSTTEN would output "T" if /WORD/ had at least

ten marks and it would output /WORD/ unchanged if /WORD/ had

fewer than ten letters. If we're going to make COMPACT divide by
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