ED 057 580

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

EM 009 420

Grant, Richard; And Others

LOGO Teaching Sequences on Numbers and Functions and
Equations. Teacher's Text and Problems.

30lt, Beranek and Newman, Inc., Cambridge, Mass.
National Science Foundation, Washington, D.C.

R-2165

30 Jun 71

230p.; Programming-Languages as a Conceptual
Framework for Teaching Mathematics, Volume Two; See
also FM 009 419, EM 009 u21, EM 009 422

MF-$0.65 HC-$9.87

*Computer Assisted Instruction; *Mathematics
Instruction; Numbers; *Programing Languages; Set
Theory; *Teaching Guides

Project LOGO

The teacher's texts for two teaching sequences in the

LOGC mathematics course are presented in this second volume of a
four-wvolume report. The material presented here is designed to be a
broad overview of the application of LOGO to the topics of numbers
and functions., A variety of alternative paths and approaches are
presented; in each case the emphasis is on crucial points and on
possible pitfalls and difficulties. The sequence on numbers is not
meant to acccmpany a first exposure to the subject, but rather, a
careful retracing of steps., The level of presentation in this unit is
extremely detailed, and the reader is encouraged, on first reading,
to skip around as his interests dictate. The sequence on functions is
written more freely. The idea of function as a black-box is here
concretely realized as are many other aspects of the set-theoretic
approach to functions which otherwise trouble students by their
"vagueness." For Volumes I, III, and IV of the report see EM 009 419,

EM 009 421,

and EM 009 422. {Author/JY)

BOLT BERANEK A #D

C ONSULTI NG ¢ D E V EL O P M

NEWMAN snc

E N T .

R E S E A R C H

AN

009 420

ED057580

Submitted to:

_Contract NSF C 615

Report No. 216F%

PROGRAMMING-LANGUAGES AS A CONCEPTUAL

FRAMEWORK FOR TEACHING MATHEMATICS

LOGO Teaching Sequences on

Numbers

and

Functions and Equations

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-

DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
: INATING IT. POINTS OF VIEW OR OPIN-
i ... IONS STATEO DO NOT NECESSARILY
) L REPRESENT OFFICIAL OFFICE OF EDU-
LY CATION POSITION OR POLICY,

National Sc1ence Foundat1on
Office of Comput1ng Act1v1t1es

1800 G Street, N.W.

Wash1ngton, D. c. 20550

=

.30 June 1971

)

CAMBRIDGE . NEW YORK- CHICAGO 1OS ANGELES

A

Volume 2

SAN FRANCISCO

T T

e e s e

R

ED057580

PLTITENR SRR pr gt aene

Report No. 2165, Volume 2 Numbers and Functions—and—Equatiqns

FOREWORD

The use of J1.0GO ;Q/{he classroom requires that the teacher have

a broad overview of the application of LOGO to the topilcs being
treated. This/éolume contains materials intended to present

such an overview in the topics of numbers and of functions. A
variety of alternative paths and approaches are presented, in
each case emphasls being placed on crucial points and on possible
pitfalls and difficulties. The idea is not to present material
in precisely the manner in which it is to be taught, but on
giving the reader enough insight so that he can freely apply LOGO
to the mathematical issues of direct concern to him. It may well
be, for example, that only carefully selected portions are dealt
with in the classroom, or that, a completely different approach
is taken, arising perhaps from a suggestion in the text or the
set of problems appended to each unit.

The material on numbers is not meant to accompany a first exposure
to the subject, but rather, a careful retracing of steps. Not
having to worry about what numbers are, the student can contrast
the various sorts of number representations, concerning himself
at each stage with understanding of the basic algorithms required.
Writing these algorithms as LOGO procedures enables him to define
them more precisely and concretely than otherwlse, and gives him
powerful means for usling and extending them. The level of
presentation in this unit 1s extremely detailled as befits the
nature of the material and the reader 1s encouraged, on first
reading, to skip around as hils interests dictate.

The material on functions is much more suggestive and written more
freely. The 1dea of function as black-box 1s here concretely
reallzed as are many other aspecté of the set-theoretic approach
to functions which otherwise trouble students by their "vagueness"

2

PR 1 e e a
BFHOPRAS s sk e e o

AT NTE R

Volume 2, Part 1

LOGO NUMBER UNIT

Teacher's Text

and

Problems

The LOGO Project
NSF-C 615

Richard Grant
Philip Faflick
Wallace Feurzeig

Bolt Beranek and Newman Inc.
50 Moulton Street
Cambridge, Mass. 02138

3

CONTENTS

Page
l. Introduction to This Unit« « « « « «+ « « .« .+ . 1
2. Mark NUmMDEIrS + « + o o o s o« o o o &+ « « o o o o o o 4
2.1 Introduction to Mark Numbers . « . « « + « « « =+ = 4
2.2 Addition of Mark Numbers e s e e s e e e e e e 5
2.3 Comparing Mark Numbers . .« « « « o « o « + o o o & 6
2.4 Subtraction of Mark Numbers . + « « « « =+ + « + 9
3. Compact Numbers e e e e e e e w e e s e e e e e . 12
3.1 Grouping Mark Numbers « « « « « &+ + + « » 12
3.2 Conversion of Mark Numbers to Grouped Numbers . . 16
3.3 A Compact Representation of Grouped Mumbers 22
3.4 Conversion of Compact Numbers to Mark Numbers . . 24
3.5 Disordered Compact Numbers e e e e e e e e e e o. 27
3.6 Standard FOrm =« =« « + + o o« « « + o o o« & « o« « « 34
3.7 Comparing Compact Numbers e+ e e s s s s e & . = 37
3.8 Subtraction of -Compact Numbers 39
I, More About Mark Numbers e e e e e e e e e e Ly
4,1 Multiplication of Mark Numbers Ly
4,2 Counting, Copying, and Compact Multiplication . . 49
4,3 Division of Mark Numbers . . . « « « « + « . . 52
5. Place NUMDEYS « « « o« « « o o o s o o o o s o s o o« o » 5T
5.1 Positional Notation . . « + « « « « o « « « + « « 57
5.2 Addition of Place Numbers . . « « « « « « « « .« . 60
5.3 The Place Number Successor e e e e 4 e e e e 4 . B4
5.4 Converting Place Numbers to Standard Form 66
5.5 Comparing Place Numbers . . . « « « « .« « « . . +» 170
5.6 Subtraction of Place Numbers . « . « + « « « « « o 7h
6. Modern NUMDEIrS =+ =+ = 2 « o o o o« o o o s o s o o o + = 80
6.1 DIZItS + + « ¢ v e e e e e e e e e e e e . .. B0
6.2 Conversion Between Mod Numbers and Place Numbers . 82

2 .o

CONTENTS (continued)

Page

6.3 Mod Arithmetic Along the Lines of Place Arithmetic 84
6.4 Adding Money Numbers e« +« « « « <« « . B89
6.5 Mod Number Addition .+« « . . 95
6.6 Mod Number Subtraction + « « « « « « « « « « « « « 96
6.7 Multiplication of Mod Numbers . . . « « . « . . . 100
6.8 Division of Mod Numbers =« « « « « « « « « « « « . 104

Appendices

Problems

i1

Frain Y R TR

LOGO Number Unit

Teacher's Text

1. Introduction to This Unit

The subject of this‘part of the LOGO mathematics course is
numbers and their representation. It introduces several distinct
ways of representing numbers, interprets the familiar operations
of arithmetic in terms of each notational system, and develops
the corresponding algorithms in the form of LOGO programs.

Four main representations are considered. We begin with a simple
notation called mark numbers, similar to the marks used by
children for scoring games. We extend this to a more compact
notational system similar to Roman numerals, called compact
numbers. We then introduce the idea of place value which makes
possible a relatively pure form of positional notation, which we
call place numbers. We evolve from this the relatively elaborate
and efficient notation we know from familiar, everyday, current

use as our numbers (these are called modern numbers, or mod

numbers for short). Along the way we consider some related
representations, such as "money numbers".

With each of these notations we develop LOGO procedures for per-
forming the operations of arithmetic -- that is, for counting

fsuccession), adding, comparing, suttracting, multiplying, and
dividing -- with the corresponding numbers. We also write

procedures for converting numbers across these various represen-
tations. Often several distinct algorithms for performing an
operation (such as comparing mark numbers) are developed.

Throughout the text we have generally adopted the conventional
use of "number" for what should properly be called "numeral".

-1l-

In those instances where it is important to make this distinction,
we use the term "representation" or '"notation' (for example, as
in "numbers expressed in this representation").

While this unit is a new presentation of number arithmetic, it 1is,

at the same time, a unit on programming as a constructive means

of expressing mathematical procedures, and this is an integral
part of the presentation.

The text is written for use pfimarily by teachers rather than
students, though the material is certainly appropriate for use
by capable and advanced students as a basis for independent

study and work. To help teachers in preparing their classroom

discussions, we have included a great deal of simple expository
material in the text.

The unit can be properly regarded as a re-introduction to arith-
metic rather fthan as the first introduction. (We have distinctly
different ideas about the first introduction of concepts like
number and algorithm than those used here.) The material is
intended for use at about seventh grade level though we think it
would be equally suitable with many fifth grade classes. Like
any sound presentation of good mathematics it is also appropriate,
though in a somewhat different way. for teach'ng older and more
sophisticated studernts and teachers.

This unit illustrates one approach to the use of LOGO as a
conceptual framework for teaching mathematiecs. It might appear
feasible to teach the same material without using a computer,
and indeed this is possible in principle. But, it would be

very difficult to do so in an effective way. An essentilal
aspect of the presentation would be lost: we tould no longer
be providing the student with an active operational universe

for constructing and controlling a mathematical process. This

modified presentation would seriously impoverish the character

and quality of the student's experience and of its educational
benefit.

o T e

The main author of the unit is Richard Grant who advanced the
central scheme, suggested the overall series of topics and
their sequencing, and wrote the material on mark numbers and
compact numbers. Philip Faflick wrote the chapters on place
numbers and modern numbers. Wallace Feurzeig made occasional

contributions to the ideas and writing, and edited the manuscript.

Pruiitext provided by enic [

2. Mark Numbers

2.1 Introduction to Mark Numbers

Mark numbers are probably similar to the first way of expressing
numbers man invented. We can imagine an ancient shepherd with a
bag of pebbles, one pebble for every sheep. When he wants to
count the sheep, he has them walk past in single file and removes
one pebble from the bag as each sheep passes. If the bag is

emptied just as the last sheep goes through, he knows that they
are all there.

The bag of pebbles represents a number just as a word composed

"of X's does. They are both mark numbers; in the first pebbles

are used as the marks, while in the secord X's are used. Notches

on the gun of a western gurifighter are another example.

An important virtue of mark numbers, besides their simplicity,
is the ease with which one mark number can be changed into the

next mark number. For example, by adding a pebble, an X, or a

" notech. This makes them very handy for keeping tallies; it never

becomes necessary to erase the previous number in virde. to create
the next. (The familiar modern form of mark numbers, which
people often use in scoring games, for example M L 1], has
an added feature, grouping, that we shall discuss later.)

It is interesting to note that in writing & mark number we
actually count up to it. For example, in order to write the mark
number XXXXX, we must first write X, then writing another X we
have XX, and then XXX, and .so on.

2.2 Addition of Mark Numbers

There are at least two ways to add mark numbers. One way, Jjust
putting the two numbers together with the WORD operation, is
exceptionally simple.

+<TO ADD /M/ AND /N/
>1g OUTPUT WORD OF /M/ AND /N/
>END

-+

With this algorithm, the two numbers aré brought together into
one. For example, with the bag of bebblés'representation, add-
ing two bags of pebbles i1s Jjust pouring the pébbles into one bag.
With mark numbers, adding is just putting all the X's from two
words into one word. The 1irst demonstration program, DEMO-ADDA,
(see appendix for all demonstration programs) illustrates the

two words coming together into one.

If we use the "notches on the gun" representation, the above
method doesn't wbrk very well. There is no way to take the notches
on two gunsﬁand sumehow move them on to a s:'Lngle_;g;_p.m_t What we can
do however is take a new gun and make notches on it, at the same .
time checking off the notches on one of the old guns. When all

of these are checked, we continue with the other old gun. At

the end, the new gun will have the sum of the notches from the

two old guns. The idea here is that to add /N/ and /M/ we first
count to /N/ and then continue counting /M/ more steps. The 7
second demonstration program, DEMO-ADDB, illustrates this method
of adding. | '

This method cén béﬁﬁade more efficient by eliminating the first
counting up to /N/. Instead, we can just start there and count

/M/ more. For example, if we were given two sheets of paper,

“10

-5~

one with the mark number for 1000 and the other with the mark
number 37 and were told to hand in the sum, we could take a clean
sheet and count to 1000 and then 37 more. On the other hand, we
could take the sheet that already has 1000 written on it and just
count 37 more.

2.3 Comparing Mark Numbers

It's reasonable to think, as we mentioned before, that numbers were

.invented for some purpose like making sure that the number of

sheep that returned from pasture was the same as the number that
set out. In other words, two numbers, the number that left and

the number that returned, had to be compared to see if they werse
the same. If we want to compare two mark numbers on the computer,
we can use the built-in operation IS. IS /M/ /N/ will output
"TRUE" if the numbers are the same and "FALSE" if they are
different. It has one drawback compared to any scheme the shepherd
might have used to compare his two numbers. It doesn't tell which
of the two is bigger! In fact, it's difficult to think of a

method the shepherd could have used to find out whether two

numbers were the same that wouldn't also tell which one is actually
bigger.

Let's look at some algorithms for comparing mark numbers and thelr
programs. -

(1) Comparing the numbers /M/ and /N/ will give the same answer
as comparing one less than /M/ with one less than /N/. But if we
keep reducing the problem this way, eventually <ither /M/ or /N/

will become /EMPTY/. Then we'll know the other is bigger.

<TO
>14
>20
>34
>4p
>50

>END

P

(2)
keep

comp

<~TO
>1¢

>20
>34

>4
>54
>60

>74
>END
P

(3)
get

the

COMPARE /M/ AND /N/

TEST EMPTYP OF /M/ (Is /M/ empty?)

IF TRUE OUTPUT "SECOND" (If so, the second number /N/ is bigger)
TEST EMPTYP OF /N/ (Similarly, is /N/ empty?)

IF TRUE OUTPUT "FIRST" (If so, the first number /M/ is bigger)

OUTPUT COMPARE OF:
CBUTFIRST OF /M/) AND
(BUTFIRST OF /N/) (Get the answer for the reduced
problem.)

We can start counting at /EMPTY/ (the zero mark number) and

on until we get to one of the two numbers that we are
aring. The first one we reach will be the smaller number.
COMPARE /M/ AND /N/

MAKE (Start counting from /EMPTY/)
NAME : "COUNTY
THING: /EMPTY/

TEST 1S /COUNT/ /M/

IF TRUE OUTPUT "SECOND'" (If /COUNT/ reaches /M/, /N/ is

bigger)

TEST IS /COUNT/ /N/ (If /COUNT/ reaches /N/, /M/ is

IF TRUE OUTPUT "FIRST" bigger)

MAKE (Otherwise, /COUNT/ is not big
NAME: '"COUNT" enough yet, so add one to it)
THING: WORD OF /COUNT/ AND nxn

O TO LINE 24 o (Try again)

We can count backwards from the first number and see if we
to the second. If we do, the first number must have been
larger one. ‘

S e p B

g s

N ———

«TO COMPARE /M/ AND /N/

>14 MAKE (Start backing up on /M/)
NAME" VL '

THING: BUTFIRST OF /M/
>2¢ TEST IS /M/ /N/ _
>3@ IF TRUE OUTPUT "FIRST" (We've come down to /N/ so /M/ must

have started out larger)
>4g TEST EMPTYP OF /M/ ’ '

>5¢ IF TRUE OUTPUT "SECOND'" - (We've counted all the way down to
/JEMPTY/ without passing /N/, so
/N/ must have been larger)

>6f GO TO LINE 18 (Try again)

>END '

-

(4) We rcan type out the two numbers by typing first an X from
the first number, then an X from the second number, and repeating
this until one of the numbers is completely typed. The one that
is finished first is the smaller number. The procedure
DEMO-COMPARE uses this scheme.

«DEMO—COMPARE "XXX" AND 'XXXXX'"

FIRST SECOND
X X
X X
X X '
X (Now the program knows which number is
X larger but it finishes typing the larger
' one anyway)
SECOND ' (... and announces the answer)
<

These are just some of the ways mark numbers qanube compared.

|

Possibly other ways will occur to students. One interesting way

- that works for peoplé, but not for the compﬂter, is to simply
look at the two numbers tbgether. The problem is that the |
operatibh of "looking at" is complex, for people as well as
computers. But peoplevhave‘a working program for this, and the
computer does not. |

T FTLRCRS

Even people have problems looking at some numbers. In fact, if
we consider very large numbers, a person can'‘t compare them at a
glance and he would be forced to resort to some method similar
to the programs we've just written. This is exactly what the
prehistoric shepherd had to do to compare the number represented

by the sheep with the number represented by the pebbles.

One small bug in all of the COMPARE procedures above is their
behavior when the two inputs are the same. They will still out-
put either "FIRST" or "SECOND". This can be easily fixed by adding
a special check for equality and outputting, say, "EQUAL" if it

is true. The first procedure might then look like this.

<TO COMPARE /M/ AND /N/

>5 TEST 1S /M/ /N/

>6 IF TRUE OUTPUT "SAME"

>1@ TEST EMPTYP /M/ (The rest is the same as before)
>2@ IF TRUE OUTPUT "SECOND"

>3@¢ TEST EMPTYP /N/

>4@ IF TRUE OUTPUT "FIRST"

>58¢ OUTPUT COMPARE OF BUTFIRST OF /M/

AND BUTFIRST OF /N/

>END
P

2.4 Subtraction of Mark Numbers

The difference between two numbers can be thought of in several

ways. With mark numbers the most obvious way is to think of the

difference between two numbers as the amount one number is bigger

than the other. If we have two mark numbers,
XXXXXXXX and
XXXXX

then we can see that the difference is the number circled
XXXX

XXXXX

That is XXX. We can alter the first compare program so that

14

e

instead of outputting "FIRST" or "SECOND" it outputs the differ-
ence between the numbers. We'll use the fact that the difference
between two numbers is the same as the difference between the two
numbers both reduced by one. That is, the difference between XXX
and XXXXX is the same as the difference between XX and XXXX which
is the same as the difference between X and XXX which is the same
as the difference between /EMPTY/ and XX. But, when one of the
numbefs is /EMPTY/, the difference is just the other number. So
a program can be written

<TO DIFFERENCE /M/ AND /N/

>1¢ TEST EMPTYP OF /M/

>2¢ IF TRUE OUTPUT /N/ (If /M/ is /EMPTY/, the difference
between /M/ and- /N/ is all of /N/)

>3 TEST EMPTYP OF /N/

>4g IF TRUE OUTPUT /M/ (Similarly in the opposite case)

>5¢ OUTPUT DIFFERENCE OF (Neither is /EMPTY/ so the answer
(BUTFIRST OF /M/) AND is the same as the difference of
(BUTFIRST OF /N/) one less than each number)

>END

-(—

Notice that this program is essentially the same as the very first
COMPARE rrogram, except that different things are output in lines
20 and 40. The COMPARE program actually finds how big the differ-
ence between the numbers is, but it dces not output that; it merely
outputs either "FIRST" or "SECOND" to indicate which of the
numbers is bigger.

An important characteristic of the difference between two numbers
is that if we add this to the smaller number we get the larger
one, We can use this fact to write a different kind of difference
program. We'll call this one SUBTRACT. SUBTRACT has two inputs.
It starts from /EMPTY/ and counts until it finds a number which,

when added to the smaller input, gives the larger one.

o
15 -

. R
CELE

-10-

PR G i SO AT Y

i «<TO SUBTRACT /LARGER/ AND /SMALLER/

>1f MAKE
NAME: "'COUNTER"
THING: /EMPTY/ (Start the count at /EMPTY/)

>2@ TEST IS /LARGER/ CADD OF /COUNTER/

AND /SMALLER/)
>3@ IF TRUE OUTPUT /COUNTER/ (/COUNTER/ is the difference
' v if /LARGER/ is the sum of
/COUNTER/ and /SMALLER/)

>4@ MAKE
NAME: T"COUNTER"
THING: WORD OF /COUNTER/ AND "X" (/COUNTER/ wasn't the
difference so now

increase it by one ...)

>S5 GO TO LINE 24 (... and try again)
>END . :

P

This program is a little different from DIFFERENCE. With
DIFFERENCE we could write the inputs in either order.

<PRINT DIFFERENCE OF '"XXXX'" AND '"'XX"
XX

<PRINT DIFFERENCE OF "XX'" AND "XXXX"
XX

P

But, With SUBTRACT the larger number must come first. If we
were to ask the computer to PRINT SUBTRACT OF "XX" AND "XXXX",
it would try to find a number which it could add to "XXXX" to
get "XX". Tt will check /EMPTY/, then X, then XX, then XXX, and
so on. It will never find a number that works and so it will

continue searching until someone interrupts 1it.

We could have avoided this "bug" by adding the lines

2 TEST IS COMPARE OF /LARGER/ AND /SMALLER/ ''SECOND"
3. IF TRUE OUTPUT SUBTRACT OF /SMALLER/ AND /LARGER/

These lines cause the two inputs to exchange 1if /SMALLER/ is
larger than /LARGER/. o

Discussion about this "deficiency" of the natural numbers (or
counting numbers or positive integers), that there is no number
which can be added to "XXXX" so as to give "XX", will be used

later in motivatihg the construction of negative numbers.

3. Compact Numbers

3.1 Grouping Mark Numbers

When mark numbers are used in scorekeeping these days, the most
common form is | M |} ||| where the marks are grouped into
bunches of five marks each. A possible origin of this technigue
is finger counting. If we count on our fingers up to a large
number, we'd be apt to think of the nﬁmber as so many hands and
so many fingers left over. Suppose a prehistoric general wanted
to count the soldiers in his army. He could get an aide to help
him. The aide would stand by and raise one finger as each soldier
walked by him. After ten soldiers passed, all of the aide's
fingers would be raised and the general would call another aide.
This aide would count the next ten men on his fingers, and then
the general would call still another aide. When the counting is
over, the number of soldiers is represented by the aides used to
determine it -- Marcus, Attila, Xenophon, Jura, Albert, and part
of Hector (his left hand and thumb). This is much harder to
remember than "fifty six" but it is much easier to remember than
"XX".'

We can write a procedure GROUP-COUNT that will count using mark
numbers, but leave a space after every ten marks. Then, each
group of marks stands for one man's fingers. One way to write
this program is to ﬁse a subprocedufe that types out tin marks.

Then the main procedure wilill only have to call this subprocedure,

17

—12-

then type a space, and then go back to the beginning and start
over. If this were all we wanted to do, then we could just use
TYPE "XXXXXXXXXX" as the subprocedure and the program would work.
(Remember TYPE is like PRINT except that it doesn't carriage
return.)

«TO GROUP-COUNT
>1f TYPE "XXXXXXXXXX"

>2@ TYPE /BLANK/ ' (Types a blank space)
>3 GO TO LINE 1¢ :

>END

-

«GROUP-COUNT ’
XXXXXXXXXX XXXKXXKXXXX XXXKXXXXXXX (and so on)

This would be a more reasonable program if it actually counted
something instead of just typing X's at high speed. One idea is
to pause before typing a mark and wait until the ENTER key on the
teletype is pressed, then typing one mark and waiting again.

This way the computér will be ébunting the number of times the
ENTER key is pressed.

The way to make the computer wait until ENTER is pressed is to
use the REQUEST operation. TFor example,

«<TO COUNT-ONE

>1g REQUEST (The computer waits until the ENTER or RETURN
key is pressed)

>2@ TYPE "X (... and then types "X")

>3% GO TO LINE 1@ (... and then goes back to the beginning)

>END ‘ - '

+.

This program counts in ordinary, ungrouped mark numbers. CIf we

-modify it so that it does the two commands REQUEST and TYPE "X"

exactly ten times and then'stops, we can use it in place of line

1@ in GROUP-COUNT. It is easy to extend COUNT-ONE in this way.

e
Y

ey

-13-

18

SR

All we need to dc¢ is write

<TO COUNT-TEN
>1f REQUEST
>2f TYPE "X"
>3f REQUEST
>4g TYPE "X"
>50 REQUEST
>6f@ TYPE "X"
>7@# REQUEST
>8f TYPE "Xx"
>9f REQUEST
>1g@ TYPE "Xx"
>11% REQUEST
>12¢ TYPE "X"
>13¢ REQUEST .
>14g TYPE "Xx"
>15@ REQUEST
>168 TYPE "X"
>17% REQUEST
>184 TYPE f'x"
>19% REQUEST
>2¢¢ TYPE "X"
>END

<

Now if we. try COUNT-TEN it will count and write ten marks, so we
can put it into GROUP-COUNT, as follows.

<TO GROUP-COUNT
>1@% COUNT-TEN

>2@% PRINT /BLANK/
>3% GO TO LINE 14

>END
P

COUNT—TEN can be improved: from a programming point of view just
as SINGTWO was improved to become SINGALOT in the introductory
unit. We can write COUNT—TEN so that it takes an input (a mark
number) and types the number of marks of the input. If the in-
put is /EMPTY/, it will stop. Otherwise, it will type one X and
then shorten the input by one. Then it will start again with
this'éhofter input. -

C 19

T DA

+TO COUNTALOT /INPUT/
>1@ TEST EMPTYP OF /INPUT/ (Are there any marks left in /INPUT ?2)

>2@ IF TRUE STOP (Lf not, STOP)

>3 REQUEST B

>4y TYPE "X" (Othirwise, COUNT-ONE)

>58 MAKE (Shorten the input by one)
NAME: "INPUT"
THING: BUTFIRST OF /INPUT/

>6f GO TO LINE 18 (and go back to the beglnnlng)

>END

-

We can shorten COUNTALOT a little more by using recursion. To

do this, we notice that after we've typed the first X the work

we have left to do is exactly what COUNTALOT (BUTFIRST OF /INPUT/)
does. That is, we want to type one fewer X's than before. So

we can write,

+<TO COUNTALOT /INPUT/

>1f TEST EMPTYP OF /INPUT/

>2@% IF TRUE STOP

>3 REQUEST

>4y TYPE "'x"

>5f COUNTALOT (BUTFIRST OF /INPUT/) (We've typed one X. Now

we'll type the rest of them)
>END

P

Now that we've changed COUNTALOT we have to go back to GROUP-COUNT.
COUNTALOT needs an input. That input is the number of marks in
each group, -which could be any number. We decided to use ten,

to represent the number of fingers on a man. So we write,

«<TO GROUP-COUNT

>1% COUNTALOT "XXXXXX\ KXX"
>2@ TYPE /BLANK/

>3@. GO. TO LINE 14

>END :

We can, if we like, use groups of some size other than ten. We
would only need to change line 1 of GROUP~COUNT. We will use

ten mark groups because'they lead nicely into base ten number
systems. If we were actually adopting group notation, however,
it would probably be handier to use groups of five. The reason
for this smaller.grbuping is that a reader can see at a glance
whether a group has one, two, three, four, Or_five'mafks in if,
while it is not so easy to distinguish groups bf eight, nine, and
ten marks. For groups that large it is helpful, even for people,

to use some kind of discrimination procedure.

3.2 Conversion of Mark Numbers to Grouped Numbers

Since it's easier to read a mark number when it is grouped, we'll
consider the problem of writing a procedure that takes an ordinary

mark number and converts it to a groupedvnﬁmber. For example

<PRINT GROUP OF MXXXXXXXXXXXXX"
XXXXXXXXXX XXX :

&=

One of the easiest ways we've found to write this procedure is

by using two subprocedures, FIRSTTEN and BUTﬁIRSTTEN. As the
names suggest, these procedures are like FIRST and BUTFIRST

except that they deal in groups of ten letters at a time.

FIRSTTEN of a word is the first ten letters of the word; BUTFIRST-
TEN of a word is the rest.of the wofd; thatﬁis,.thé whole word

- except for the first ten letters. o o '

We'll‘write‘GRQUPvfirst, assuming that we already have‘FIRSTTEN
‘and BUTFIRSTTEN, and then we'll write those two procedures. One
advantage to doing the writing in this order is that we can check
‘oﬁt‘the'soundﬁeSS of the superstructure before investing time in
working out itS~parts in detéil; vFurther,fwe may discover,'while

. writing GROUP, some special‘things'FIRSTTEN‘or BUTFIRSTTEN should

‘ ‘”ﬁ‘zj‘

16wk

do to make GROUP easier, Whéréaéﬂwriting the two subprocedures

 first is not likely to help us in writing GROUP.

The basic idea behind the procedure GROUP is recursive. We'll
reduce the problem of grouping a large word to that of grouping
a smaller word. We'll keep this up until the problem is reduced

to grouping the /EMPTY/ word. (That's easy. The result is
/EMPTY/.)

In order to reduce grouping a large word to grouping a smaller
one, we'll take the first ten marks of the word and put them into
one group and then group the BUTFIRSTTEN of the word. To attach
these two parts together as a group number, we can use the
operation SENTENCE. SENTENCE OF (FIRSTTEN OF /WORD/) AND (GROUP
OF BUTFIRSTTEN OF /WORD/) should take the flrst ten marks of
/WORD/ and put a space between them and GROUP of the rest of the
word. So GROUP is *

«TO GROUP /WORD/
>14 TEST EMPTYP OF /WORD/ :
>2@¢ IF TRUE OUTPUT /EMPTY/ (If we've reduced /WORD/ all the
way to /EMPTY/, then output the
answer /EMPTY/)
>384 OUTPUT SENTENCE OF (Otherwise, to get the answer, take
C(FIRSTTEN OF /WORD/) AND the first ten, and GROUP of all
(GROUP OF BUTFIRSTTEN OF the rest and make a sentence of
/WORD/D them.)
>END

Now we can write BUTFIRSTTEN. All we need to do is peel off the
first ten marks. BUTFIRST OF /N/ will peel off one mark
(BUTFIRST OF "XXX" is "XX"). BUTFIRST OF BUTFIRST OF /N/ will
peel off two marks since what it says is take the BUTFIRST of
whatever BUTFIRST of /N/ is. And finally, if we use ten
BUTFIRST's, we can peel away ten marks. -

a 2 F

T-

& L

-

op-1

I o PSR
R

b A S X
R e

«<TO BUTFIRSTTEN /N/
>1@ OUTPUT BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF

BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF
BUTFIRST OF /N/

>END

In writing FIRSTTEN we can use an important fact. If a word has
ten or more marks in it, FIRSTTEN of the word is "XXXXXXXXXX".

We don't have to actually use the first ten letters of the word
itself by peeling off the last ones, or by using WORD to put
together the first letter_and the second and the third and so
forth. We would have to do this if we wanted FIRSTTEN to work
on arbitrary words (like "ABCDEFGHIJKLMNOP" or "ANTIDISESTABLISH-
MENTARIANISM")} But, since we're working with mark numbers, all
of the letters in our words are X's. |

What>should FIRSTTEN do if a word has fewer than ten marks? A
reasonable action would be to output the whole word. Reasonable-
ness isn't an appropriate criterion, however, if it does not lead
to our goal. Will this action by FIRSTTEN cause GROUP to work
properly? Before we check that, let's take a look again at
BUTFIRSTTEN. When we wrote that procedure, we didn't consider

whether inputs had fewer than ten marks. The way we've written

it, BUTFIRSTTEN will output /EMPTY/ for an input of ten or fewer

marks. (Because BUTFIRST of /EMPTY/ is /EMPTY/.) So in the case
of BUTFIRSTTEN we made a decision about small mark numbers more

or less accidentally. We may have to go back and change it if

it doesn't work out properly in GROUP.

Let's see what happens when GROUP gets an input smaller than ten
X's, say "XXXX". First, "XXXX" isn't /EMPTY/ so we'll output the
sentence of FIRSTTEN OF "XXXX" and GROUP OF BUTFIRSTTEN OF "XXXX".

Assuming we've tentatively made the decisions for FIRSTTEN and

23

A

- lﬁg—ta,

. BUTFIRSTTEN that we felt were:reasonable, then FIRSTTEN OF "XXXX"
% Cis "XXXX" and BUTFIRSTTEN OF "XXXX" 1s /EMPTY/ So we re output—
i ting sentence of "XXXX" and GROUP OF" /EMPTY/ But GROUP OF ‘
/EMPTY/ is /EMPTY/ because of lines 18 and 2ﬁ in GROUP So we 're
outputting sentence of "XXXX" and /EMPTY/. That is just "XXXX".
This says, that when the 1nput 1s 2. word smaller than ten marks,
if we wr1te FIRSTTEN to output the whole word and BUTFIRSTTEN to
output /EMPTY/ then GROUP of the 1nput word w1ll be the word
‘1tsel£.“ Thus, GROUP OF "XXXX" w1ll be "XXXX" , But thls is
exactly what GROUP is supposed to do in, th1s case, and what happens
here w1th "XXXX" 1s typlcal of what should happen to any. mark
rnumber w1th ten or fewer marks.

Thus, we'll write FIRSTTEN so that 1t outputs the' whole word if

the 1nput has fewer than ten marks The procedure wlllwtest 1f

there ‘are at least ten marks TIf there are,'lt w1ll output

”XXXXXXXXXX" if there aren't 1t Wlll output the whole word.

A way to test whether there are at least ten marks is to peel'

: off n1ne, us1ng n1ne BUTFIRST's and then see 1f there are any
left ST INNEY SRRy FIRRTEC T DR e . , y

«TO FIRSTTEN /INPUT/ = S P .
>1f ‘TEST- EMPTYP-'OF' BUTFIRST ‘OF '+ (Is. there- anything left after
BUTFIRST OF BUTFIRST OF peeling off .nine marks?)

BUTFIRST OF BUTFIRST OF oo ’
BUTFIRST OF BUTFIRST OF
BUTFIRST OF BUTFIRST OF }

: /INPUT/ ‘
>2@ IF FALSE OUTPUT "XXXXXXXXXX" (If so, ./INPUT/ must have had ‘at
least tén marks since’ 1t wasn't
../EMPTY /. .after nine. were ‘peeled
' . y away) .
- >3f¢ IF TRUE OUTPUT /INPuTAXF,;:wx(If not, /INPUT/ has fewer than
‘ B marks S0 output the . whole

input “word)

[AN N
TN

>END

P

iy

Now GROUP should work. Let's test it.

<PRINT GROUP OF "XXXXXXXXXXXXXXXXXXXXXXX"
XXX AXXXXXX XXXXXXXXXX XXX

P

It worked with that input. That's a good sign but it's not com-
pletely convincing in showing that GROUP will work for all
1nputs. ~How can we make a test that will be more convinecing?

. Of course, we can't simply test every possible input since there
are an infinity of them. What we can do is to test a representa-
tion of each different type of input. That is,‘each input which
the procedure seems to handle differently. In this case we can.
properly usé: ' .

"XXXXXX" An input with fewer than ten marks.

MXXXXXXXXXX'" Exactly ten marks.) '

TEXXX XX XXX XXX KXXXRXXXX XXX X KXXXX XXX An input that groups evenly with
no marks 1eft‘over. o

IXXXXXXXXXXXXXXXXXXXXXXX!" Several groups and some left over.

If GROUP works with these four inputs, we can be fairly sure it
will always work; not perfectly sure, since we might have over-
looked an important type, but nearly so. This way of .choosing

test inputs is much more erfective in findling bugs than choosing
test inputs at random.

<PRINT GROUP OF "XXXXXX"

XXXXXX

<PRINT GROUP OF "XXXXXXXXXX"

XXX XXXXXXX :
+<PRINT GROUP OF ”XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX

+PRINT GROUP OF "XXXXXXXXXXXXXXXXXXXXXXX"
XXXXXXXXXX XXXXXXXXXX XXX

P

25

o | . =20-

So GROUP probably works. There is an additional feature in LOGO
that will let us watch more closely and exadtly now GROUP works.
This feature, called TRACE, will cause the teletype to print the
inputs of GROUP each time it is called. For example,

<TRACE GROUP (This turns on the trace feature)
«<PRINT GROUP OF M"XXXXXXXXXXXXXX" _
GROUP OF "XXXXXXXXXXXXXX" (GROUP is first called with this
input) _
GROUP OF ""XXXX" (Next, GROUP is called with BUTFIRST-

TEN of that input. This calling
happens at line 3@ in GROUP)
GROUP OF "" (To compute GROUP OF "XXXX" the com-
: puter needs to output sentence of
FIRSTTEN of "XXXX" and GROUP of
BUTFIRSTTEN of "XXXX", that i1s GROUP
of /EMPTY/, or as written, GROUP OF
"
)
GROUP OUTPUTsS "" (GROUP OF "" can be computed immedi-
ately, line 2@, and doesn't call
GROUP again)
GROUP OUTPUTS "XXXX" (Now that GROUP OF "" has been com-
puted, GROUP OF "XXXX" can output)
GROUP OUTPUTS "XXXXXXXXXX XXXX" (Finally, GROUP OF "XXXXXXXXXXXXXX"
can output since GROUP OF "XXXX" is
now known)

AXXXXXXXXXX XXXX . (PRINT types out the final result)
«<ERASE TRACE GROUP (This turns off the trace feature)
< » o

This TRACE feature is actually most useful when a procedure
doesn't work properly at first and we want to know what is wrong.
We turn on the TRACE feature and run our procedure with an input
that doesn't work. Then, by looking at the printout we can often

see where things are going wrong.

 Notice the way inputs and outputs pair in the TRACE printout.

+<TRACE GROUP |
<PRINT GROUP OF "XXXXXXXXXXXXXX"
 FGROUP OF "XXXXXXXXXXXXXX" |
{ [GROUP OF MXXXX"
} ' I"GROUP OF "
I | L.GROUP OUTPUTS ""
« “GROUP OUTPUTS "XXXX"
LGROUP OUTPUTS "XXXXXXXXXX XXXX"
XXXXXXXXXX XXX

P

If the outermost GROUP gave the wrong answer, we could check the
others to see where the error started. In this way we can usually
find a very simple case where the procedure goes wrong. Then, by
pretending to be the computer, we can examine that case in great
detail and find the bug.

3.3 A Compact Representation of Grouped Numbers

'So now we cah have mark numbers typed out in groups of ten. We
can go a step further and instead of typing out ten X's in each
group, we can use another letter to represent a whole group.

For example, if we choose T to stand for ten marks, then the
number XXXXXXXXXXXXXXXXXXXXXXX, or XXXXXXXXXX XXXXXXXXXX XXX,
would be written TTXXX; that is, two groups of ten marks and XXX
‘left over. One procedure for doing this is very similar to the
one used in writing GROUP. In fact, we will be able to use the
same programs we used there, with some minor changes. First,
wherever GROUP had a word of ten X's we now want a T. The words
of ten X's always come from line 2@ of FIRSTTEN. So we'll change
that to output T instead of XXXXXXXXXX. |

iy '

-22-

<TO FIRSTTEN /INPUT/ .
>1¢ TEST EMPTYP OF BUTFIRST OF BUTFIRST OF
BUTFIRST OF BUTFIRST OF BUTFIRST. OF
BUTFIRST OF BUTFIRST OF BUTFIRST OF
BUTFIRST OF /INPUT/) :
>2¢ IF FALSE OUTPUT "T' (Instead of the ten X's)
>3¢ IF TRUE OUTPUT /INPUT/ (/INPUT/ has fewer than ten marks so
AR the X's are output, as before,
instead of a T)

Now we'll try GROUP with this changed subprocedure.

- <PRINT GROUP "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX”

T T T XXXXXX

P

This is almost exactly what we wanf. .The only things wrong with
it are the spaces. These are due:’ ‘to the 1ine in GROUP that says
OUTPUT SENTENCE OF If we cnange SENTENCE to WORD, the
various parts will be put together without spaces. While we make
this change let's also change the name of the procedure from
GROUP to sométhing else, since its function has changed. It now
converts a mark number to a -different kind of number than a

groupéd mark number. We'll use the name COMPACT for the procedure
~and call numbers made up of these T's and X's compact numbers.

+<TO COMPACT /WORD/

>1f TEST EMPTYP OF /WORD/

>2@ IF TRUE OUTPUT /EMPTY/

>3 OUTPUT WORD OF FIRSTTEN OF /WORD/ AND COMPACT OF
. BUTFIRSTTEN OF /WORD/

>END

I

COMPACT is exactly the same as GROUP except that WORD replaces

sentence i.a line 3¢. - Let's try it out.

2‘8@

-23=

“PRINT COMPACT OF "XXX"
XXX '

«PRINT COMPACT OF "XXXXXXXXXX'"
:

“PRINT COMPACT OF "XXXXXXXXXXXXXXXXXXXXXX"
TTXX

“PRINT COMPACT OF "XXXXXXXXXXXXXXXXXXAXXXXXXXXXXX"
TTT | ~
-~

So COMPACT seems to work.

Compact numbers have one big advantage over mark numbers. They
are much smaller, that is, they have fewer marks. The mark
number that correSpdnds to TTTTTTTTXXX wouldn't fit on one 1line.
Because of their size, compact numbers are easier to write and
easier to read. On the other hand, counting, adding, subtracting,
and comparing are somewhat harder with compact numbers, TX is a
bigger number than XXXXXXXXX despite appearances. Also, we can
no longer count just by addihg a mark to the preceding number.
Sometimes it wofks,'but'eVery tenth time we have to rewrite the

number, changing the nine X's into one T.

The advantages‘abOVe seem, in practice, to far outweigh the dis-

advantages. ‘As far back as history goes men used some form of
compact numbers, usually with more than two different marks
" (Roman numerals or Babylonian cuneiform for exghple). Roman

numerals, in fact, have been going out of use only gradually over
theilast thousand years‘and are stilil used today when a second
number system is needed. Examples are for numpering chapters in

a book, pages in an introduction, or topics in an outline.

3.4 Conversion of Compact Numbers to Mark Numpers

We have a program;'COMPACT, that‘convérts mark numbers to compact

numbers. We could‘also'uSe a program that goes in the”oppoéite

' ‘:’;&Qé!ﬁ“&‘mmm

direction, converting compact numbers to mark numbers. This is
useful because mark numbers are, in many ways, easier to deal
with than compact numbers; They are easier to compare and to add,
for example. (We'll see later that mark numbers are also easy to
multiply and divide.)

A simple idea for writing this program is to go through the cdm—
pact number, leaving the X's alone and changing each T to
XXXXXXXXXX. What we can do is take a T away from the front of
the éompact numbef and add XXXXXXXXXX to the back. Then we can
do thislover and over again until there are no more T's at the
front of the word. For exampie, TTX would be changed to
TXXXXXXXXXXX by taking off thé first T and adding on the ten X's.
Then TXXXXXXXXXXX would becomé XXXXXXXXXXXXXXXXXXXXX. This

pErHES gt R
Fibaln s KOk S St S e A e SR A

number doesn't begin with T, so we're done.
«<TO UNCOMPACT /N/ .
>1@g TEST IS FIRST OF /N/ "T" (Does the number begin with T)
>2@¢ IF FALSE OUTPUT /N/ (It doesn't, so all the T's must
: ' , be gone. So it is a mark number
and we should output it)

>3@ - MAKE : (Remove the first T)

NAME: '"N" I

THING: . BUTFIRST OF /N/ ' :
>4g MAKE . : (And put ten X's on the end)

NAME : "N : E . .

THING: WORD OF /N/ AND (Repeat the process with the
, EXXXXXXXXXX! . partially converted number, taking
>5¢ GO TO LINE 1¢ care of the next T if there is one)
>END -
<

Now we should test UNCOMPACT. XXXXX and TTXX and TTT seem to be
representative cases., »

«~PRINT UNCOMPACT OF "XXXXX"

XX XXX ; S

<PRINT UNCOMPACT OF "TTXX"

XXX XXX XXXXXKXXXXXXKKKKK
~<PRINT UNCOMPACT OF "TTT"

XXX XXXXXKXXXKXXX XXX XX XK XKXXK XX XX

 433£)

—25-

An amusing way to test UNCOMPACT is to notice that COMPACT OF
UNCOMPACT OF /X/ should be /X/ and UNCOMPACT OF COMPACT OF /X/
should also be /X/. (Provided, of course, that /X/ is a compact

number in the firwt case and a mark number in the second.)

<PRINT COMPACT OF UNCOMPACT OF "TTTXX"
TTTXX

Since UNCOMPACT OF "TTTXX" is 153 0.0090909909900.0000000000000000000 4
and COMPACT of that is "TTTXX".

<PRINT UNCOMPACT OF COMPACT OF "XXXXXXXXXXXXX"
XXXXXXXXXXXXX

Since COMPACT OF "xxxxxxxxXxxxx" is "TXXX" and UNCOMPACT OF "TXXX"
is "HXXXXXXXXXXXX"M. ' ‘

It is also ihteresting‘to try COMPACT OF UNCOMPACT and UNéOMPACT
OF COMPACT on words that aren't numbers (for example,
"ABCDEFGHIJKLMNOPQRSTUVWXYZ“) to see what they do. A good
problem is to describe eXactly which words these two operations
(COMPACT OF UNCOMPACT and UNCOMPACT OF COMPACT) leave unchanged.

The effect of these'operations might be surprising. For example,

<PRINT COMPACT OF UNCOMPACT OF "ABCDEFGHIdKLMNOPQRSTUVWXYZ"
TTUVWXYZ :

The. explanation is straightforward. Since "ABCDEFGHIJKLMNOPQRST-
UVWXYZ" doesn't begin with "T", UNCOMPACT leaves it unchanged.
COMPACT substitutes a "T" for the first ten marks, "ABCDEFGHIJ",

and another for the‘neXt ten,‘"KLMNOPQRST", and leéves the last
.six unchanged. ' '

31

-26~

3.5 Dic-rdered Compact Numbers

So far all the compact numbers we've looked at have had all T's
to the left of the X's. But, what about a number like XXXTTX?

If we follow the rule that a T stands for ten X~s, then that
number is the same as XXXXAXXXX XXX XXX XX XXXXKKX L That is, it is
the same as TTXXXX or TXXXXT or several other forms, such as -
XXXXXXLTTXAXXXXX . ’There‘are many ways of writing this number,

and the order of marks really doesn't matter at all. "It doesn't
keven,matter if the number isn't completely compacted. Tt is
always clear‘whibh number is meant. (We're ignoring the commonly
used subtractive hotation of Roman numerals which makes IV the
same‘as'IIII; The only importént modérn use of this is in telling
time anyway.) - | ‘

We shall write an uncompacting procedure to work for any form of
compact number. Notice that our old UNCOMPACT doesn't work with
most compact numbers. Tt will convert the T's on the left end of
the word but not any others. ’

+<PRINT UNCOMPACT OF '"XXTTT"
XXTTT

+<PRINT UNCOMPACT OF "TXTXT"
KXXXXXXXXXXTXT

The simplest way to write this procedure is to use recursion. We
note that if a WOrdibegins with X, then UNCOMPACT OF thg word is
the same as UNCCMPACT OF BUTFIRST_OF that word, with an X stuck
on the end. If the word begins with T, then UNCOMPACT of the
word is the same as UNCOMPACT OF BUTFIRST OF the word, with
XXXXXXXYXF¥X stuck on the end. So, UNCOMPACT works on the word by
working on the BUTFIRST of>the word. And UNCOMPACT works on the
BUTFIRST of -the word bvaorking on the BUTFIRST OF BUTFIRST of

the word. And so on. With each time around, the word gets smaller.

Eventually it will be /EMPTY/ And UNCOMPACT OF /EMPTY/ 1s‘
/JEMPTY/, so the process terminates.

<TO UNCOMPACT /N/
>1p" TEST EMPTYP OF /N/

>2@ IF TRUE OUTPUT /EMPTY/ (If /N/ is /EMPTY/, the answer is
>3f TEST IS FIRST OF /N/ "x" ’ ' - /EMPTY /)
>4f IF TRUE OUTPUT WORD OF (UNCOMPACT o ‘

OF BUTFIRST OF. /N/) AND "x" " (FIRST is "X", so tack "X"

, . onto UNCOMPACT of BUTFIRST)
>50 OUTPUT WORD OF (UNCOMPACT OF : ' .

BUTFIRST OF /N/)D AND_ o - . ‘ ‘
TXXXXXXXXXX" - (FIRST is not "X" so it must be T,
: o Herice tack "XXXXXXXXXX" onto

UNCOMPACT OF BUTFIRST)
>END ; » :

Let's 1ook at thls procedure Obviously it works for empty
1nputs. If /N/ is /EMPTY/, then UNCOMPACT will output /EMPTY/,
the cofrect response. What happens if /N/ is only one letter
long? Well, if /N/ is "X", then line 4% is used and UNCOMPACT
outputs WORD OF UNCOMPACT OF /EMPTY/ AND "X". But UNCOMPACT OF
JEMPTY/ is /EMPTY/ as we just saw, so this is WORD OF /EMPTY/ AND
"X" or "X". Thus, UNCOMPACT OF "X" is "X". If /N/ is "T", then
line 5@ is used and UNCOMPACT outputs WORD OF UNCOMPACT OF /EMPTY/
AND "XXXXXXXXXX". _That is WORD OF ’EMPTY/ AND "XXXXXXXXXX" or
"XXXXXXAXXX". So UNCOMPACT OF "T" is "XXXXXXXXXX". - UNCOMPACT
works for both of the one-letter inputs. We could continue like
this, showing that UNCOMPACT works for allktwo—letter inputs and
for all threefletter inputs, and so on. Psychologically this
can be very"ednvincing. After. a short time (say, when we've

, prbvedVit_fof:up‘to seven-letter inputs); anyone but a mathemati-
_cian'prpbablvaould be”eompletely_assufed that UNCOMPACT will
alwajs‘work" Lhe:mathemafician'would ask how we cduld be sure
that the flrst 1nput for whlch UNCOMPACT fails 1sn't ‘some huge:-

word COns1st1ng of mllllons of 1etters.

Pl abiiade L L P & o e e LI ol

i
3
.
b
L
L
4
¢

)

S
5
X
by

ey

Fortunately, there are ways to avoid this problem. One is
called mathematical induction (or, in the form we will use, the
method or infinite descent). We will show that if there is any
compact number that UNCOMPACT doesn't work on, then there is a
smaller compact number (BUTFIRST of the original number) on
which UNCOMPACT also doesn't work. But, then we'll be able to
apply this argument again to the new number and get a still
smaller number on which UNCOMPACT won't work. We can continue
this way until eventually we'll be down to a one-letter number
which UNCOMPACT can't handle. But there are only two one-letter
numbers, X and T, and UNCOMPACT works perfectly on both of them.
So this method will show that there can't be any compact number
that UNCOMPACT won't correctly convert into a mark number.

Well, all we need to show is that if UNCOMPACT docesn't work for
some compact number, then it also doesn't work for the BUTFIRST
of that number. The number begins with either X or T. If it
begins with X, then BUTFIRST of it is a compact number one less
than the original number. So UNCOMPACT OF BUTFIRST OF the
original number should have one mark less than UNCOMPACT OF the
original number. But, the way the procedure for uncompacting
works in this case (line 48 of UNCOMPACT) is to tack one more X
onto the UNCOMPACT OF BUTFIRST. So if UNCOMPACT of the number

itself is wrong, then UNCOMPACT of the BUTFIRST of the number
must have been wrong.

The same argument is true if the original number began with T.
We'd refer to line 5@ of the procedure and to tacking on YXXXXXXXXX
instead of line U4f and tacking on X.

This argument will convince the mathematician that UNCOMPACT will
work for any compact number. It is a curious fact that the

earlier, incomplete argument is much more likely to be convincing

&, .
34
il

-29-

DR r——— .., .

to nonmathematicians. This is probably because few nonmathemati-
cians have any fluency with complex logical arguments. Arguments
in 1ife situations nearly always hinge on questions of evidence
or values rather than subtle logical points.

The reason for choosing mathematical induction for the test of
UNCOMPACT is the close relationship between induction and recursion.
When we write a recursive procedure, we decide to solve the
problem of a large input by solving the same problem for a smaller
input. Eventually the 1nput becomes small enough so that the
solution is trivial (usually we let the input get down to '
/EMPTY/). With a related form of mathematical induction, we say
that if the solution is wrong for a large input 1t must be wrong
for a smaller inpnut. Then it must be wrong for a still smaller
input. PFinally, the solution must be wrong for the case of
/EMPTY/. But, we can check that case and see that is correct.

So, the solution can't be wrong for any input.

Tracing will show how the UNCOMPACT procedure makes the problem
simpler and simpler until it can finally solve it.

<TRACE UNCOMPACT
<PRINT UNCOMPACT OF "XTx"
UNCOMPACT CF "XTX" (The original problem)
UNCOMPACT OF ™TX" (We can solve the original problem
if we know the answer to this one.
The solution to the original prob-
lem is WORD OF (UNCOMPACT OF "TX")
AND llxll)
UNCOMPACT OF "X" . (Now we can solve the problem Jjust
above 1f we can solve this problem.
The solution to the problem above,
UNCOMPACT OF "TX" is WORD OF
(UNCOMPACT OF "X") AND "ZXXXXXXXXX",
by line 5@ of UNCOMPACT. If we
substitute this into the solution
of the original problem above we get
that, the solution is WORD OF (WORD
OF UNCOMEACT OF "X" AND "XXXXXXXXXX")
« AND llxll)

35

~30-

Rl

E TR SRR R Lo LIRS o

UNCOMPACT OF "" (BUTFIRST OF "X" is /EMPTY/, also
written "". By line 48 of UNCOMPACT
we have UNCOMPACT OF "X" is WORD OF
(UNCOMPACT OF "") AND "X")

UNCOMPACT OUTPUTS "' (The problem UNCOMPACT OF "" is al-
ready as 3imple as possible. The
_ answer is "")
UNCOMPACT OUTPUTS "X" (Now that UNCOMPACT OF "" is solved .

UNCOMPACT OF "X" is known. It was
jusg WORD OF (UNCOMPACT opF "") AND
"X"
UNCOMPACT OUTPUTS MXXXXXXXXXXX" (Remember that UNCOMPACT OF "TX"

was WORD OF (UNCOMPACT OF "X") AND
WYX XN XXXXXX" ., . Now that UNCOMPACT
OF "X" is solved, UNCOMPACT OF "TX"
is known)

UNCOMPACT OUTPUTS MXXXXXXXXXXXX'" (Finally.the original problem
is solved now that UNCOMPACT OF
"TX" is known)

XXXXXXXXXXXX ‘ (And the result is printed)
< ’ .

Despite all these discussions about UNCOMPACT, we should still

test it with some representative inputs just to make triply sure
it works.

<PRINT UNCOMPACT OF "XT"
XXXXXXXXXXX

<PRINT UNCOMPACT OF "XXXXXX"
XXXXXX

+<PRINT UNCOMPACT OF "TT"

XXXXXXXXXXXXXXXXXKXXX
- .

We can write programs to do arithmetic with compact numbers by

- using UNCOMPACT to convert the compact numbers into mark numbers,

using the old mark number procedures ADD, SUBTRACT, and so on,
and then using COMPACT to convert the answer back into a compact
number. This method would work but it is inefficient. It
preserves the advantages‘of compact numbers for the people using

the computer but not for the computer itself. It would be silly

-31-

to worry about being "fair" to the computer except that the more
work we make the computer do the longer it takes. And long waits
for an answer are annoying to people. So it is to our advantage

to allow the computer to operate efficiently.

In handling compact numbers, it is a great convenience to be able
to separate the T's and the X's. Suppose we have two procedures,
T'S OF /N/ and X'S OF /N/ (the ' can be used in the name of a

LOGO procedure just as if it were a letter) that work as follows:

<PRINT T'S OF "XXTTXT"

TTT

<PRINT X'S OF "XXTTXT"
XXX

<PRINT T'S OF 1"

T

«PRINT X'S OF "T"
(/EMPTY/ is printed)

<

T'S outputs a word made up of all the T's in its input and X'S

does the same for thé.X's. These two procedures can be used for
straightening out disordered compact numbers, for comparing com-
pact numbers (since we have to compare the T's and then, if both

have the same number of T's, compare the X's), and so forth.

We'll write T'S and X'S. Let's do T'S first. Then X'S should

turn out to be a trivial modification of T'S. We'll write T'S
‘usingbrecursion. All we need to do is.to notice that if a word
begins with X, then T'S OF that word is the same as T'S OF BUTFIRST
" OF the word. If the word begins with T, then T'S OF the word is
just T'S OF BUTFIRST OF the:word,jWitﬁ ah extra T stuck on at the
end. That is, WORD OF (T‘S OF BUTFIRST‘OF the word) AND "T".

So whether the word begins with T-Or X, we can reduce the problem
to getting T'S OF BUTFIRST OF the word. We can keep doing this

until the problem is reduced to finding T'S OF /EMPTY/. This is

a trivial question and we can immediately give the answer,
/EMPTY/. o

<TO T'S /N/

>1f TEST EMPTYP OF /N/ (Have we gotten down to the trivial
' - case yet?)
>2@ IF TRUE OUTPUT /EMPTY/ (If so, the answer is /EMPTY/; there

PR, 1 .
»5g TEST 1S FIRST OF /N/ " are no T's in the empty word)

>4y IF TRUE OUTPUT WORD OF (T'S (If /N/ begins with T, then the
OF BUTFIRST OF /N/J AND "T" anzwer is T'S CF BUTFIRST OF /N/
with one more T stuck on) ,
>5@ OUTPUT T'S OF BUTFIRST OF (Otherwise the first letter of /N/
/N/ . isn't T so the answer is Jjust T'S"
OF BUTFIRST OF /N/. We can just

forget the first letter)
>END

P

And, of course, we'll test the procedure.

<PRINT T'S OF "XXX"

(The empty word, since there are no I's in XXX)
+«PRINT T'S OF "TT"

TT

<PRINT T'S OF "XTTXTX"

TTT

-

The procedure X'S can be written exactly like T'S. We need only

replace "T" in lines 3@ and 4% by "X".

«TO X'S /N/

>1% TEST EMPTYP OF /N/

>2@ IF TRUE OUTPUT /EMPTY/

>3@ TEST IS FIRST OF /N/ "Xx"

>LEPE IF TRUE CUTPUT WORD OF (X'S OF BUTFIRST OF /N/) AND '"X"
>5@ OUTPUT X'S OF BUTFIRST OF /N/

>END ‘

<

<PRINT X'S OF "TTXTX"

XX

-33-

ot

T, TR e

P T T T T T T e T T AP P

Now that we have the procedures T'S and X'S, it is a simple matter
to- wrlte some compaﬂt number manipulators. For example, while it
is true that order has no effect on the value of a compact number,
it is also true that it is easiler to read compact riumbers if they
are written in some standard form (say, all T's followed by all
X's). So, letfs write a procedure to convert any compact number
to standard form. All the procedure needs to do is put the T's

at the beginning and the X's at the end.

<TO STANDARDIZE /NUMBER/

>1¢ OUTPUT WORD OF (T'S OF /NUMBER/)
AND (X'S OF /NUMBER/D

>END

P

We cén try STANDARDIZE on some of the disordered compact numbers

we mentioned before.

<PRINT STANDARDIZE OF "XTXTXX"
TTXXXX

<~PRINT STANDARDIZE OF "XXXTT"

TTXXX :

<PRINT STANDARDIZE OF "XX"

XX :

«~PRINT STANDARDIZE OF "TTXX"

TTXX ‘

<PRINT STANDARDIZE OF "XXXXXXTXXXXXX"
TXXXXXXXXX XXX

P

STANDARDIZE works, up to a point’ It does seem to arrange the
T's and X's properly but it doesn't do any compacting. This is
perfectly reasonable, since we didn't instruct it to do so when
we def;ned the procedure. We could leave STANDARDIZE as it 1is

and truthfully say that we've written what we set out to write,

" a program that will arrange the Tts and X's of a compact number

3 9
=344

T At e SO Tt S b o R e

S

PR

e

so that the T's are to the left of the X's. It is an advantage,
however, if any two standard compact numbers that stand for the
same mark number are exactly the same. (For example, if we
wanted to see if two compact numbers were equal, we could just

do IS OF STANDARDIZE OF one AND STANDARDIZE OF the other.) So,
let's add to our criteria for standard form that there be no more
than nine Xfs in the number. So, a compact number is in standard
form only if (a) all the T's are on the left, and (b) there are
no more than nine X's. The reader should convince himself that
these rules guarantee that two equal compact numbers will be

exactly the same.

In order to fix STANDARDI_E so that it will output numbers in our
newly-defined standard form, we need to adjust the phrase (X's

OF /NUMBER/). The problem occurs when (X'S OF /NUMBER/) is a
word of more than nine X's. COMPACT is & program that will handle
this problem. COMPACT will take the word of X's and output a word
with nine or fewer X's, the extra X's compacted into T's. As a
special piece of fortune, COMPACT puts those extra T's to the left
of the X's, just the right place to connect them properly with
the T's output from (T'S OF /NUMBER/). So we can write

<TO STANDARDIZE /NUMBER/

>1@ OUTPUT WORD OF (T'S OF /NUMBER/)D
AND C(COMPACT OF X'S OF /NUMBER/)

>END

P

If we consider STANDARDIZE OF "XXXXXXTXXXXXX", we can see that the
procedure will output WORD OF "T" AND "TXX" which is "TTXX".

<PRINT STANDARDIZE OF "XXXXXXTXXXXXX"
TTXX

e

W g8

.4(135_

B S VN ——

And, of course, we should test the new STANDARDIZE on a representa-
tive group of compact numbers.

<PRINT STANDARDIZE OF "TT"
TT

«<PRINT STANDARDIZE OF "XxXx"
XX

“PRINT STANDARDIZE OF "XXXTT"
TTXXX

3 «

Now that we have STANDARDIZE, ADD is a trivial task. If we didn't
care whether or not the answer was in standard form, then the
elementary operation WORD would serve as a working ADD procedure.
Simply putting the two compact numbers together gives a new

number with exactly enough T's and X's to represent the sum of

the two original numbers. But, as long as we can get any repre-
sentation for this sum, we might as well get the standard form
representation by using STANDARDIZE.

| «TO ADD /X/ AND /Y/

. >1f OUTPUT STANDARDIZE OF WORD OF
/X/ AND /Y/

>END

P

ADD is so simple it is hard to think of test cases for which it
might be wrong. The subprocedures we wrote to help us with ADD,
T'S, X'S, and STANDARDIZE, turn out to be so powerful that our
original problem, ADD, has become a triviality. This is a common
occurrence in mathematics. It also often happens that tools

(subprocedures, subtheorems, technigues) invented to attack some

problem end up having an importance of their own, gquite apart
from the problem they were invented for.

¢ Bt
~36- ,

3.7 Comparing Compact Numbers

Before we write a procedure to compare two compact numbers, let's
assume that from now on compact numbers will be written in standard
form, unless stated otherwise. Thus, the inputs to compact number

procedures will be in standard form and the procedure must output

numbers in standard form. This requirement for the outputs is
obviously desirable. The requirement that the inputs be in

standard form will make our procedures less powerful (they won't

handle nonstandard inputs) but simpler. If, for any reason, we

%2 decide later that we want the extra power, we can convert each
% nonstandard input into standard form simply by adding the

% instruction line

gg MAKE

% NAME: "INPUT"

5

15

THING: STANDARDIZE OF /INPUT/
at the beginning of the procedure (with "INPUT" replaced by "X"
or "M" or "FIRST" or whatever name the procedure uses for the
input). These lines will put the inputs into standard form and
then we won't have to worry about them again.

In comparing two compact numbers, the first thing to look at is
the T's. If one of the numbers has more T's than the other, that
one must be the larger. This is because, with the numbers in
standard form the difference of the X's can't be more than nine;
not enough to make up for an extra T. Only if the number of T's
is the same for both do we need to look at the X's. In that case,

of course, the larger number is simply the one with the more X's.

Comparing the number of T's (or X's) in the two numbers is just
a matter of comparing the number of letters in two words. But,
that is a problem we solved when we wrote the procedures to

compare mark numbers. One of the programs was

,“‘ 1y
“Ha

-37-

L Ao

«<TO MARK-COMPARE /FIRST/ AND /SECOND/ (We changed the name to
MARK-COMPARE so that we
can use the name COMPARE
for the compact number

program)
’ >1¢ TEST 1S /FIRST/ /SECOND/

>2@ IF TRUE OUTPUT "EQUAL"

>3 TEST EMPTYP OF /FIRST/

>4@ IF TRUE OUTPUT '"'SECOND"

>5¢ TEST EMPTYP OF /SECOND/

>6@ IF TRUE OUTPUT "FIRST"

>73 OUTPUT MARK-COMPARE OF (BUTFIRST

OF /FIRST/) AND (BUTFIRST OF

.- “/SECOND/D
>END

P

When we wrote MARK-COMPARE (we called it COMPARE then), we
intended that it should work for words made up entirely of X's.
But, there is nothing in the program that takes the least notilce
of what letters make up /FIRST/ and /SECOND/. So MARK-COMPARE
will work with any two words, outputting the name of the word
that has the larger number of letters.

To write COMPARE (for compact numbers), we'll use MARK-COMPARE
to compare the T's. If these aren't EQUAL, we're done and the
larger number is simply the one with the more T's. If the T's

are EQUAL, then the answer to the problem is just MARK-COMPARE
of the X's.

<TO COMPARE /FIRST/ AND /SECOND/ (/FIRST/ and /SECOND/ will
. always be compact numbers in
. . standard form)

>1@ TEST IS (MARK~-COMPARE OF T'S (Do both inputs have the same
OF /FIRST/ AND T'S OF number of T's?)
/SECOND/) "EQUAL" - ‘ -

>2@ IF FALSE OUTPUT MARK-COMPARE (If they don't, the one with
OF (T'S OF /FIRST/) AND , the more T's. 1s the larger)
(T'S OF /SECOND/) LS I

P . (continued)

>3 OUTPUT MARK-COMPARE OF : (If they do have the same number
(X'sS OF /FIRST/) AND (X'S of T's, then the answer is the
OF /SECOND/) one with the more X's. Notice
that if the numbers have equal
T's and equal X's, this line .
will output "EQUAL")
>END

P

We'll test COMPARE with some répresentative inputs.

«<PRINT COMPARE OF "TTX" AND MXXXX"
FIRST ,
«PRINT COMPARE OF "TTXX" AND "TTXXX" .
SECOND
<PRINT COMPARE OF "TXX'" AND ''TXX"
EQUAL

-«

We were quite specific in inéisting that COMPARE would pe
guaranteed to work only on numbers in standard form. In fact,
COMPARE will work properly with many, but not all, nonstandard
compact numbers. Disordering presents no problem becausé T'S
and X'S handle that satisfactorily. Incomplete compacting

(more than nine X's) is what can cause problems. (Find an

example for which CCMPARE gives the wrong answer.)

3.8 Subtraction of Compact Numbers

This COMPARE procedure cannot be converted into a SUBTRACT program
‘as easily as in the mark number case. An attemptfﬁo do so would
go like this. We'll make the difference between tﬁo compact

" numbers a new compact number whose T's equal the difference in

the T's of the two original numbers and whose X's equal the
difference of the X's. To do this we'll use MARK-DIFFERENCE on
the T's and X's separately. Then DIFFERENCE would be -

i g
-39-

«TO DIFFERENCE /F/ AND /s/
>1¢ MAKE o : _
NAME: "T'S OF ANSWER" (Find the number of T's in the
THING: MARK-DIFFERENCE OF answer) '
: (T'S OF /F/) AND
o (T'S OF /Ss/) =
>2@ MAKE o
NAME: "X'S OF ANSWER'": (FPind .the number of X's in the
THING: MARK-DIFFERENCE OF - 4nswer).
: " (X'S OF /F/) AND’ :
_ - (X's OF /s/) ' ' '
>3@f OUTPUT WORD OF. /T'S OF j (Put the T's and X's together
ANSWER/ AND /X'S OF ANSWER/ Wlth WORD and output)
>END [. .

o

Recall the mark number.subtractioh procedure, MARK—DIFFERENCE:

«TO MARK-DIFFERENCE /M/ AND /N/
>1¢ TEST EMPTYP OF /M/

>2@f IF TRUE OUTPUT /N/

>3 TEST EMPTYP OF /N/

“>4P IF TRUE OUTPUT /M/

>58¢ OUTPUT DIFFERENCE OF (BUTFIRST

OF /M/) AND (BUTFIRST OF /N/)D
>END
£

" If wé try out ‘DIFFERENCE, we will find that it doesn't work in
all cases. ’ ' T

<PRINT DIFFERENCE OF "'TTX" AND "'TX"
T A ,

<~PRINT DIFFERENCE OF "TXX" AND "TTTXXXX"
TTXX | o
C€PRINT DIFFERENCE OF "TTX" AND "TXXXX'"
TXXX . . S
< .

Here is a’bug. ~ The correct answer is XXXXXXX, not TXXX. Tt's
clear how che error occurred) The flrst input has two T's and
‘the second has one so the dlfference in the T's is T. The first

4:)

‘ —uOri

input has one X and the second four, so the difference in the

X's is XXX. So, DIFFERENCE output TXXX. The problem is that the
smaller number has more X's than the larger number. How can we
handle this<

A solution to our problem is to partially uncompact the larger
number, changing one of its T's to ten X's. Then it will certainly
have more X's than the smaller number (which can have no more than
nine, being in standard form). When we try this on the problem
that gave us the trouble, DIFFERENCE QF "TTX" AND "TXXXX" we

change i1t to DIFFERENCE OF "TXXXXXXXXXXX" AND "TXXXX". The
procedure DIFFERENCE will have no difficulty with this problem,

the difference of the T's is /EMPTY/ and the difference of the

X's is XXXXXXX. So, the answer is XXXXXXX.

If we try to fix DIFFERENCE this way, we'll have a little trouble
g because we'll have to first find out which of the two input
' numbers is larger before we can decide whether we need to do the
uncompucting.' This isn't particularly difficult to do -- we
already have the COMPARE procedure we need. And, since DIFFERENCE
is becomlng somewhat complicated, instead of repairing it, we'll
write a new procedure, SUBTRACT, which uses it as a subprocedure.
SUBTRACT wiil be like DIFFERENCE except that it will require that
the first of the two inputs be larger than the second.

+TO SUBTRACT /BIG/ AND /SMALL/
>1f TEST IS (COMPARE OF X'S OF /BIG/ (Which number has more X's?)
AND X'S OF /SMALL/D) "SECOND"

>2@ IF TRUE MAKE (/SMALL/ has more X's, so
NAME: "BIG" change one of the T's in
THING: WORD OF (BUTFIRST OF /BIG/ to ten X's)

T'S OF /BIG/) AND
(WORD OF X'S OF /BI1G/
AND TXXXXXXXXXX™)
>3 OUTPUT DIFFERENCE OF /BIG/ AND (We've made sure that this is
/SMALL/ a case that DIFFERENCE can
>END ' handle so we use it)

W

46 ir-

§
E
i
:
i

TRy

There are a few qQquestions that need to be settled before we can

have confidence in SUBTRACT. For example: how can we be sure,
in line 2@, that /BIG/ has a T at all? If /BIG/ has no T, then,
of course, we can't uncompact it. What line 2@ does, in that

case, is replace /BIG/ by another number, ten larger. That would
be certain to foul up our subtraction. Fortunately, line 28 is
carried out only if /SMALL/ has more X's than /BIG/ (because of
the IF TRUE condition following the test in line 1@) and, if that

is so, /BIG/ must have at least one T in order to be bigger than
/SMALL/.

Tt is also important, if wé do perform line 2@, that /BIG/
originally have more T's than /SMALL/ has. Otherwise, after

line 2@ is carried out, /SMALL/ will have more T's than /BIG/

and so the subprocedure DIFFERENCE won't work. (For example,
consider [.FFERENCE OF "TXXXXXXXXXXXXX" AND "TTX". The correct
answer l: XY but DIFFERENCE will give TXXXXXXXXXXXX.) But, this
cannot occur. The argument is as follows. Since /BIG/ must be
larger tnan /SMALL/, it must start wlth at least the same number
of T's. But, if it had exactly the same number of T's as /SMALL/,
it car a0t have had fewer X's. Thus we would not have performed

line 2@. So, since we did perform line 28, /BIG/ must have had
more T's than /SMALL/.

Finally, we must be sure that SUBTRACT outputs in standard form,
since we decided that all of our compact number procedures should
deal with numbers in standard form. The output of DIFFERENCE
will always have the T's to the left of the X's so the ordering
requirement is satisfied. What isn't obvious is that the answer
will always have fewer than ten X's. The original /BIG/ and
/SMALL/ each have “ver than ten X's (since they are in standard

form) so, if line 2@ isn't used, we're all right. (The difference

47

42—

between two numbers both less than ten is less than ten.) But,
if line 28 is used, then /BIG/ wlll have at least ten X's, often

more. How can we be sure that the answer will have fewer than

ten? If we were to take away the number of X's that /BIG/ had
originally, then the answer would have exactly t n X's. If we
take more than that, the answer will have fewer than ten X's.

But the only time line 2@ happens is when the number of X's in
/SMALL/ (that is, the number we're subtracting) s larger than

the original number of X's in /BIG/. So, the answer will have
fewer than ten X's.

Choose some representative cases and test SUBTRACT. Notice that

it will do something, if the inputs are in the wrong order, but
the result will be incorrect.

The old MARK-SUBTRACT program_that we discussed previously can

be made to work with compact numbers by making a very minor change.
Line 4@ was '

L@ MAKE
NAME : "COUNTER"
THING: WORD OF /COUNTER/ AND ''X"
We'll change that to

Lg MAKE
NAME : "COUNTER"
THING: ADD OF /COUNTER/ AND 'X"
This makes no difference as far as mark numbers are concerned
since ADD and WORD are the same procedure for them. With compact

numbers, however, ADD does more than just WORD the two numbers

together.

This SUBTRACT program isn't as "good" as the one we just wrote
specially for compact numbers, since it is slower in getting an

answer, particularly if the answer is large. It is an interesting

b P e —

program though, because it depends very littie on what method we
use for writing numbers. It works equally well for mark numbers,
compact numbers, and (as we'll see later) place value numbers.

In fact, the reason 1t is a relétively slow program 1s that it

i doesn't take advantage of any of the special shortcuts that may

be possible with each particularfnumber notation.

As we find that we want to use 1afger and larger numbers we'll
soon decide that compact numbers,_while some help, are not enough.
Three lines full of T's is easier to read or write than thirty

% lines full of X's but both tasks are unpleasant. Fortunately, we
| dan improve the situation somewhat. We can introduce a new symbol,
say H, and let each H stand for ten X's. Then we'll have to
redefine standard form and rewrite most of our compact number
procedures, but when we're finished we will have gained consilder-
ably in the size of the numbers we can deal with easily. If we
want to work with still larger numbers, we can add yet another
symbol standing for ten H’s. This process can be repeated until
we either have great difficulty remembering all the symbols we
introduced or, hopefully, until we can handle any numbers that
come up in our work. But, if we need to work with still larger

; numbers without introducing still more symbols, there are other

| number representations and some of these will be developed
subsequently.

4, More About Mark Numbers

4,1 Multiplication of Mark Numbers

When we wrote the procedure UNCOMPACT, we were actually writing a
sort of multiplication procedure. For each T. we substituted ten

g X's. If our original number had only T's in it, the new

Qﬁg

~hh-

HE et

uncompacted number would be ten times as long; So, in a way, we
have multiplied a mark number by ten. In The process we aiso
changed the marks from T's to X's which, if we had been thinking
of compact numbers would have made an important difference. But,
with simple mark numbers a mark is a mark (that is, all marks
mean the same thing). Nevertheless, let's rewrite UNCOMPACT so
that it will take a word of X's (a normal mark number) and
substitute ten X's for each X. Since the purpose of this program

is different from UNCOMPACT, we'll give it a new name, TIMESTEN.

+TO TIMESTEN /N/

>1¢ TEST EMPTYP OF /N/ (We are using the second UNCOMPACT
procedure as our model - the one
that works on disordered compact

numbers)
>2@% IF TRUE OUTPUT /EMPTY/

>3% OUTPUT WORD OF (TIMESTEN (We don't want to check whether

OF BUTFIRST OF /N/D) AND FIRST OF /N/ is "T". Every mark
MXXXXXXXXX X in /N/ should have "XXXXXXXXXX"
substituted for it)
>END
-

Notice that TIMESTEN is a recursive procédure{ The program says
tﬁat if /N/ isn't /EMPTY/, then TIMESTEN OF /N/ is the same as
TIMESTEN OF (BUTFIRST OF /N/) with ten extra X's tacked onto the
end (that 1s, substituted for the one X that BUTFIRST chops off
at the beginning).

What we are reélly after is a general multiplication procedure,
not just one that multiplies by ten. We want a procedure that
willl take two inputs instead of one and will output the product
of these inputs. 1In order to generalize TIMESTEN in this way, we
first look carefully at the procedure to see where the fact that
we are using ten rather than some other number shows up. The

only place in TIMESTEN that this happens is at the end of line 3/

Q ; . a{l
-45-

where we have "XXXXXXXXXX", If that word were changed, say to
"XXXX", TIMESTEN would multiply by four. So, to make TIMESTEN

multiply by its second input, we will just put the name of that
input in line 38.

«TO TIMES /N/ AND /Y/ (Let's change the name of the
procedure since we won't be
multiplying only by ten)
>1@ TEST EMPTYP /N/
>2@¢ IF TRUE OUTPUT /EMPTY/
>3@ OUTPUT WORD OF (TIMES OF (Instead of tacking on ten X's,
BUTFIRST OF /N/ AND /Y/D we will use the number given in
AND /Y/ B /Y/)

>END

-~

- Let's TRACE TIMES and watch it run.

<TRACE TIMES
<PRINT TIMES OF "XXX'" AND "XXXX"
TIMES OF "'XXX'" AND '"'XXXX'"
TIMES OF "XX' AND "XXXX"
TIMES OF "X" AND "XXXX"
TIMES OF "' AND "XXXX"
TIMES oOuTpuTS "!

TIMES OUTPUTS "XXXX"
TIMES OUTPUTS MXXXXXXXX"
TIMES OUTPUTS "MXXXXXXXXXXXX"

XXX XX XXXXXX

P .

In order to calculate TIMES OF "XXX" AND "XXXX" the computer had
to first find TIMES OF "XX" AND "XXXX" and TIMES OF "X" AND "XXXX"
and TIMES OF "" AND "XXXX". So the procedure TIMES is actually
called four times. iNow supposé we try TIMES OF "XXXX" AND "XXX".

" The answer will be the same as before, XXXXXXXXXXXX, (unless

there is a bug in our program) but the process of getting that
answer will be different.

RIS b s

<PRINT TIMES OF "XXXX'" AND '""XXX"
TIMES OF "XXXX'" AND "XXX"
TIMES OF "XXX'" AND '"XXX"
TIMES OF '"'XX'" AND "'XXX"
TIMES OF "X'" AND '"XXxx"
TIMES OF """ AND "XxXX"
TIMES ouTPUTS "" '
TIMES OUTPUTS "XXX"
TIMES OUTPUTS "XXXXXX"
TIMES OUTPUTS "XXXXXXXXX"
TIMES OUTPUTS MXXXXXXXXXXXX'"
XAXXXXXXXXXX

PS

In this case the procedure is called five times. If we think
about how different the two processes we've just watched are, it
may seem surprising that they give the same final result. A very
good, mathematical question is "why does this happen?". A good
answer to this question, and there are many, would be a way of
looking at the TIMES procedure that makes it clear that the order
of the inputs doesn't change the final result. Most of the
impcrtant advances in mathemutics have come from discoveries of

new ways to look at things which revealed hidden relations.

For the particular question we have here, why TIMES gives the same
result even if the two inputs are switched around - we'll look at
one possible explanation. First we'll relax slightly the restric-
tions on how we write mark numbers. We've always written the X's
in a horizontal line, like XXXXX, but now let's permit ourselves

to write in any patterns we please, . for example,

X
or X ; X. FEach of these
X X

P
o
]
el ol

represents the same number. Now, if we gq:back to the problem

of TIMES "XXX" AND "XXXX", we can think of substituting "XXXX"

TR
o2
47~

for each X in "XXX". But, let's write it like this

X X X
X X X For each X in "XXX" we've substituted a vertical
X X X
X X X
row of "XXXX". If we follow the same scheme for TIMES OF "XXXX"
AND "XXX" and substitute a vertical row of "XXX" for each X in
"XXXX" we get X X X X . But now, if we look at both of
X X X X
X X X X

these patterns, we can see that they are the same except for
position, that is, by a simple half turn of the paper the three
by four turns into the four by three, and vice-versa. So

naturally they have the same number of X's and so they are the
same mark number.

A property of this type of explanation is that it is good only
if the reader is convinced by it. There are no objective grounds
on which to judge it right or wrong, its value depends on how it
is received. TFor this reason most teachers tend to collect as

many explanations as they can so that when one doesn't "elick"
they can try another.

To go back to the TIMES procedure, notice that in the second half
of the TRACE printout (the lines that go TIMES DUTPUTS) the
computer is counting up by threes in one case and by fours in

the other. (That is, three, six, nine, twelve, and four. eight,
twelve.) The programs stopped when they came to twelve, the
first number thait they both reach. An interesting question is:
if two programs (nr people) start counting up by different
amounts (in the case we did, by three and four), what numbers
will both programs reach?

S e '
as N8~ \

4.2 Counting, Copying, and Compact Multiplication

We wrote TIMES to work with mark numbers. We didn't think about
how it would behave with other inputs. In fact, whenever we-
create a LOGO procedure we decide, at least implicitly, what sort
of inputs are legal. The mere fact that the procedure is written
in LOGO means that the inputs must be either words or sentences
(LOGO words or sentences, of course, not necessarily English ones)
and not something like a dog, a pound of butter, or a moment of
joy. Often, as in the case of TIMES, we intentionally restrict
the legal inputs still more. TIMES may have only mark numbers

as inputs, other LOGC things are illegal. The word domain is
used to describe the collection of legal inputs to a procedure.
We would say that the domain of TIMES is pairs of mark numbers
(pairs because there must be a first input, /N/, and a second
input, /Y/).

Sometimes, when the inputs to a procedure are LOGO things that
are not in the domain, the computer will stop and type an error
comment; sometimes the computer will "go into an infinite loop"
(that is, work and work but never output anything). Neither of
these cases is particularly interesting. But sometimes the
procedure will finish its work and output something. When this
happens, it sometimes turns out that we've found & new use for
an o0ld %00l as, for example, when we found we could use MARK-
DIFFERENCE to get the difference of two compact numbers. This
new use might be rather similar to the old one (like using
scissors as tin snips), or it might be very different (like using

a magnifying glass to start a fire). Either way the tool becomes
more useful. ’ '

This is the case with the procedure TIMES. The first input, /N/,

exists simply to have each of:its letters replaced by the second

51 %

g

&
4
&

S

input, /Y/. So, it doesn't make any difference what those letters
were originally. The only thing that matters is how many there
are. Any word at all, used for the first input, can be replaced
by the mark number containing as many X's as the original word
had letters. So, in fact, we can extend the domain to allcw the
first input to be any LOGO word. That seems to give us nothing
new or interesting. This appearance is misleading however. We
can use this observation to write a short procedure called COUNT
which will output the number of letters in its input. For
example, COUNT OF "CAT" is "X X" (three), COUNT OF "NARNTIA" is
"XXXXXX" (six), and so forth. The program is simple.

«<TO COUNT /W/

>1% OUTPUT TIMES OF /W/ AND "X"
>END
P

TIMES just substitutes an X for each letter in /W/ and so outputs
the mark number equal tc the number of letters in /W/. Before

we get back to TIMES, notice that we've discussed COUNT only with
word inputs, not sentences. Think about COUNT of a sentence,
remembering that FIRST of a sentence is the first word and
RUTFIRST of a sentence is all except the first word.

<PRINT COUNT OF "APPLES PEARS PLUMS CHERRIES"
XXXX

<PRINT COUNT OF "APPLESPEARSPLUMSCHERRIES"

PO 0 0.9.9.9.9.9 9.9.9.9.9.9.0.9.9.9.9.9.0,.9.9

Varying the second input to TIMES is even more interesting. The
second input is copied over as many times as there are marks (or
letters) in the first input. Thus, for example,

<PRINT TIMES OF "XXX'" AND '"CAT"
CATCATCAT

P

55

-50- ;

This use of TIMES seems cute but not very useful. In fact, it

is a surprisingly powerful technique that we Will use later when
we write programs whose outputs will be LOGO instructions.
(Recall, in the procedure BUTFIRSTTEN, we used a line that con-
tained BUTFIRST OF BUTFIRST OF BUTFIRST OF BUTFIRST OF and so on.
Procedures like TIMES can produce this kind of instructicn.)

Right now, however, let's look at what happens when the second
input is a compaczt number. The output of the procedure will be

the compact number repeated as many times as the first input, a\
mark number, says. So, TIMES OF "XXXX" AND "TTX" is "TTXTTXTTXTTX".
But, this is really the product of the mark number and the compact
number, except that it isn't in standard form. Using this obser-
vation, we can write a multiplication for two compact numbers by
uncompacting one of them, using TIMES to multiply the resultant
mark number by the other compact number, and finally standardiz-
ing the result.

<TO MULTIPLY /CM/ AND /CN/

>1@ OUTPUT STANDARDIZE OF TIMES OF
C(UNCOMPACT OF /CM/) AND /CN/

>END

P

Notice that we are careful to uncompact the first input of TIMES

in line 1% and not the second. Doing it the other way would give

a program that does something quite different from multiplication.
This program for multiplying compact numbers is considerably

better than the simple-minded one of converting both numbers tc
marks, multiplying the mark numbers, and then compacting the

result. In fact, with a little bit of improving (to make sure

that the smaller input to MULTIPLY is the one that gets uncompacted),

this would be a very reasonable and practical multiplication

I & 1

procedure. To achieve the most efficient multiplication possible,

we'd have to consider also the problem of muitiplying T's together

(such as_"TTT"'times "TTTT"). With extended compact numbers (X's,

T's,ﬁand H's), the problem is evenhmore acute since "HHHHHH"

times "HHHHH" is equal to about one teletype page (fifty lirnes) :
full of H's. We won't study the problem here, however, since
we're going to solve it in a cbmbletely different way in the

next chapter. '

4.3 Division of Mark Numbers

In the same way that UNCOMPACT leads to mark multiplication,
COMPACT leads to mark number division. One way the problem of
division cén be looked at is to ask how mény groups . of a given
size can we make from the number we have. But this‘is precisely
what COMPACT does for a special case, division by ten. In COMPACT
we asked how many groups of ten there are in the input number.
The answer was used as the number of T's in the compact represen-
tation of the number. Let's look again’at COMPACT to see what
will be involved iﬁvchanging it to a general mark division pro-
cedure, that is a procedure for dividing & given mark number by
any other mark number.

+~T0 COMPACT: /WCRD/
>1f TEST EMPTYP OF./WORD/
>2@ IF TRUE OUTPUT /EMPTY/

>3@§ OUTPUT WORD OF (FIRSTTEN OF /WORD/) AND (COMPACT
OF BUTFIRSTTEN OF /WORD/)
>END

<

Remember that FIRSTTEN would output "T" if /WORD/ had at least
ten marks and it would output /WORD/ unchanged if /WORD/ had
fewer than ten letters. If we're going to make COMPACT divide by

LA
Q“;‘ e

a7

co

