
ED 056 535

TITLE
INSTITUTION
SPONS AGENCY
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRT-ICT

DOCUMENT RESUME

EM 009 400

Project Solo; Newsletter Number Nineteen.
Pittsburgh Univ., Pa. Dept. of Computer Science.
National Science Foundation, Washington, D.C.
29 Oct 71
26p.; See also ED 053 566

MF-$0.65 HC-$3.29
Computer Programs; *Computer Science Education;
Digital Computers; Grade 9; *Programing; Programing
Languages
*Project Solo

A module designed to teach ninth grade students how
to write simnle machine language programs offered in this
newsletter of the University of Pittsburgh's Project Solo. The first
few pages of the newsletter present a rationale for having ninth
grade students learn prograrrming, and some programs which were
written by such students are presented. The relationship between
machine language and a high-level language such as BASIC is then
discussed. A general overview of the principle components of a
digital computer and their relationships is presented, together with
a discussion of the basic operation and use of a computer. These
principles are then applied to a program, MICROCOMPUTER, which
simulates a small computer. Instruction and data words are discussed,
various instructions of the accumulator are described, and the
functions of the control unit are provided. A sample program
including flow chart and procedures for signing onto and using
MICROCOMPUfER are also included. (SH)

AN EXPERIMNT IN REop.NAL computiNG.
. .

FOR SECONOARN,:.:.scHp.pt :,..$)is.TErves

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

University , of Pittsbur

t" Newsletter No. 19
reN
111 Inside Computers

One of the theoretical objections to using computers in education is that students might
u'N become "computer bums", i.e. they could conceivably get all caught up with computer sci-

ence to the detriment of their other studies. This argument has some validity, although it
cz sounds vaguely reminiscent of John Holt's story about the teacher who told the students to
w stop playing with the turtle because it was time to start studying biology.

The basic approach of Project Solo has been to emphasize the use of computers as
tools which support both teacher and student in their learning activity. It has been our ex-
perience, however, that the truly inquisitive mind always wants to know about the tool as
well as its use. When the tool is something as complex as a computer, the answers to such
questions cannot be given in a few words. To help fill this gap, the Pittsburgh Public School
system is working with Project Solo in the development of a 9th grade Computer Science
course. In addition to supplying answers'to the questions students ask about this new tech-
nology, we feel that such a course will eventually contribute to our original objective by
bringing these youngsters up to a level of sophistication in the use of the computer as a tool
that matches the sophistication of modern high school curricula. (Those who doubt this
necessity should look at any good 12th grade mathematics or science text published recent-
ly.) We also feel that our 9th grade course can open up new career possibilities, as well as
contributa to the motivation of students in tackling all of their learning opportunities.

October 29, 1971

MICRO COMPUTER
One of the units prepared for this new course is enclosed (Module #0100). The pro-

gram, which simulates a very small computer that can only be programmed in machine lan-
guage, should run with about any version of BASIC currently available. Oh yes...the simula-
tion program was written by 9th grader Rob Drelles for us last summer. It took him all of
one afternoon (we kid you not). Higher level versions (which permit such fancy features as
Hcore" dumps) took him a little longer.

MAXI COMPUTER
But should high school students learn to program in such things as real assembly lan-

guage? It all depends. Herewith is an example of a project that was put togethec from pro-
blem definition to final implementation by Howard Seltman, grade 12. (Howard has had one
previous year of programming experience achieved through his use of computers in chemistry
in a Project Solo school.)

O
The problem Howard attacked was to provide a measure of what the educational psy-

chologists call "latency" in student response to CAI queries. This means that he had to ar-
() range for the computer to calculate the time it took for a student to answer a query, supply-
Zs- ing that time to the student or to a teacher file. It was also to be possible to use the time

elapsed as a signal to interrupt the student response phase of the CAI cycle and take over
control. Anyone who knows something about time-sharing will appreciate the complexity of
this problem. A simple example of how Howard's program works is on the following page.

0
*Supported in part by NSF grant GJ-1077

1

>L0/11D /CAROLYN/
>RUN
SUBPROGRAMS REQUIRED
FILE:/TTIM/

ANSWER IN 5 SECONDS.
WHAT IS THE SORT OF 100?10
YOU ANSWERED CORRECTLY IN 2
ki-1AT IS THE SORT OF 64?8
YOU ANSWERED CORRECTLY IN 4 SECS.
kkHAT IS THE SORT OF 81?9
YOU ANSWERED CORRECTLY IN 2 SECS.
,HAT IS THE SORT OF 25?5
YOU ANSWERED CORRECTLY IN 2 SECS.
.1.4HAT

Tati

WHAT
YOU
I.HAT

YOU
t.HAT

YilU

TAIAT IS- THE: SORT OF 49?
SLOW, IT TOOK YOU MORE THAN 5 SECS.

PAT IS THE SORT OF 16?4
YCIU ANSERED CORRECTLY IN 2 SECS.
END OF DATA LINE 40

IS THE SORT OF 121?
SLOW, IT TOOK YOU MORE THAN 5 SECS.
IS THE SORT OF 9?3

ANSWERED CORRECTLY IN 4 SECS.
IS THE SORT OF 4?2

ANSWERED CORRECTLY IN 3 SECS,
IS THE SORT OF 17 1

ANSVERED CORRECTLY IN 1 SECS.

Listing of the NBS Program /CAROLYN/
10 INTEGER A,B,C,I
20 PR. "ANSWER IN 5 SECONDS"
40 READ I
41 A=5/13=0,C=O
50 PH. "WHAT IS THE SORT OF":I:"?":
60 CALL TTIM(A,E3sC)
70 IF A=-1 END
80 IF A=0 PR."TOO SLOW, IT TOOK YOU MORE THAN 5 SECS."GOTO 40

90 IF C=SORT(I) PR. "YOU ANSWERED CORRECTLY IN":13:" SECS."GOTO 40

100 PR. "YOU ANSWERED INCORRECTLY IN ":B:"SECS."
110 PR. "THE ANSWER IS":SORT(J):"."
120 GOTO 40
200 DATA 100,64,81,25,121,9,4,1,49,16

The subprogram requested is the special as-
sembly language program called TTIM which
Howard wrote. Users on other numbers
should request:

159WR /TTIM/

The subprogram capability illustrated here
is one of the ways in which NEWBASIC can
be extended for special users.

TrA.. 174 eu)e%

The subroutine /TTIM/ used here was writtén in XAP. XAP is a combination of XTRAN
(extended FORTRAN) and the SDS 940 assembler, TAP. One of the advantages of using a full-
blown system like Com-Share is the availability of other processors which can do more subtle
things than BASIC or NEWBASIC. The beauty of NEWBASIC is that it can call on an "infinite"
supply of auxiliary routines of this sort:

What's a Teacher to Do?
One last comment. The teacher who has gotten this far may have thrown up his or her

hands in despair. How can computers possibly be used by hard working teachers who don't
begin to have the time to keep up with soniething like the above? It strikes us that this is not
a problem at all, but a rare opportunity to improve the educational process. The president
of a big industrial firm does not worry about not knowing how to apply differential equations
to engineering problems. Quite the contrary. He understands the importance of his role as
a mapager, and the value of his setting goals to guide a multitude of talents. And so it should
be for the teacher. The tendency for computer technology to bring out this managerial role
in educators can be a very big plus. We see more and more teachers exploiting this oppor-
tunity, with some very fine teacher-student relationships developing as a result.

SUBROUTINE TTINC
UTEGER I (20)
LIN ESCAPE:100
ON BF.LL :100
RJR K=1,20: I(R)
ENTER XAP
BRS 11
LDA =2000077713
1311S 55
13P S 14
BR S 42
STA I T I ME
STA JT I ME1
LDA* I SEC
MUL =60
RSH 1

COPY BA
ADM ITIME
COPY X
COPY A
STA I NDEX
STA I NUM
STA I COUNT
STA TEMP
4L2 13RS 13
DIX L9
BRS
SKL I TIME
13RU L6
BRU .L2
L9 TC I I TEMP
SKU =14713
BRU .L14
SKO =141B
E3RU . L5
SKU =1678
BRU L26
SKU =I. 61B
13RU L26
SKU =15513
BRU . L3
MIN INDEX
LDX INDEX
STA I 2
BRU L2
.L5 LDX INDEX
COPY A
STA I 2
LDA = -1
ADM INDEX
E3RU L2
.L26 COPY A
ENTER XTRAN

)1I K=1, INDEX

ISEC,ITIM.IRESULT)

=0,

ENTER XAP
COPY A
STA INDEX
BRU .L2
.L3 BRS 42
STA JTIME2
.L27 MIN ICOUNT
LDX ICOUNT
LDA 1,2
SKG =17B
BRU .L19
SKL =32B
BRU .L19
LDA 1NUM
MUL =12B

-3-

ADD 1,2
SUB =20B
STA INUM
BRU L27
411.14 LDA =-1
BRU L18
L19 LDA INUM
STA* IRESULT
LDA JTIME2
SUB JTIME1
STA JTIME
ENTER XTRAN
JTIME=JTIME/60
ENITER XAP
LDA JTIME

BRU .L18
.L6 LDA* I SEC
STA* I TIM
COPY A
L18 STA* I SEC
LDA =15513
SKE ITEMP
TCO =15513
EMTER XTRAN
100 C E
ENTER XAP
LDA =400006008
BRS 55
ENTER XTRAN
RETURN

RSH 1 STA* ITIM END
COPY BA LDA =1

EXPLANATION OF THE SUBROUTINE /TTIM/ (by Howard Seltman)
The first part of this program, to read elapsed time of an input state-
ment, is relatively simple. The system clock is read via a system
programmed operator. When the carriage return is recognized, the
system clock is again read. The difference between the two times is
divided by 60 (because the system clock is incremented every 1/60 of
a second) and the elapsed time in seconds is arrived at. To make an
interrupt possible after a specified number of seconds is more difficult.
First, every character must be made a break character, again by a
S':SPOP. The reason for this is that after a terminal character input
statement (TCI) the computer waits for input until it re.cognizes a break
character. The value of the system clock when the specified number of
seconds is elapsed is then calculated. Next a loop is initiated which
checks for a character in the input buffer and then checks if the time is
up. If time is up, a 0 is stored in the first argument and the subroutine
returns to the calling program. If a character seen in the input buf-
fer, a single character is read with a TCI. This can be done because
all characters are break characters. TCI simply reads the internal
ASCII value of the character. This must then be processed. If the
character is a control-G, a -1 is stored in the first argument as an
indicator and the subroutine returns., If an editing character (control
A, W, or Q) is recognized a branch is made to editing routines. Editing
must be done "by hand" because this is not a "normal" input statement.
If the character is not a carriage return, it is stored in an array and
the check-buffer check-time loop is restarted. If the character is a
carriage return, it is converted from internal ASCII to the actual base
10 value of the inputed digits. A 1 is stored in the first argument to
indicate successfui input within the allowed time. The converted input
is stored in the third argument and the subroutine returns. One special
problem must also be dealt with: in no case can the subroutine be al-
lowed to return without setting the terminal status back to normal, i. e.
cont::.ol characters again become the only break characters and editing
is done by the system.

I (10=0

Newsletter Reminder:
Have you sent in your renewal form? (see Newsletter No. 18)

P.S. : Free loan of the film "Project Solo" is now being handled by Association-Sterling
Films through their office located at 324 Delaware Avenue, Oakmont, Pa. 15139. Write
them directly for a booking.

PROGRAMMING IN MACHINE LANGUAGE ON

INTEGER
PROCEDURE

moD(Di mum):INTEGER ARRAY HEAD[0:mAxD-1];
FOR [:=1 STEP 1 UNTIL mAxD-1

DO HE4D(1):=
FOR 1:=2 STEP 1 UNTIL m DO

#0100
PROJECT SOLO

Computen Science Depantment
Univeuity o.6 Pitt4buxgh 15213

This module will help you understand what really goes on inside a
computer when it is told to run a program written in a higher level
language like BASIC or NEWBASIC.

After giving you a general picture of the internal organizatLon
of a digital computer, the module will then allow you to write simple
machine language programs, using a "simulated" machine called MICRO-
COMPUTER. The prerequisite for this module is some experience with
programming,and a lot of curiosity.

4

1

INSIDE COMPUTERS

Learning to Write Machine-Language Programs

for the MICRCOMPUTER

1. INTRODUCTION

Computers cannot actually "understand" high-level lan-

guages such as BASIC or FORTRAN. Because of their electronic

nature they must have instructions given to them in a more

primitive form which is called machine language.

Since the statements of machine languages are strings

of numbers, writing programs in them is at best a tedious

and complicated task. For this reason most people write

their programs in a high-level language (like BASIC), and

then let the computer itself translate their instructions

into machine language. The translator is really another

program (permanently stcred in the computer) which is

usually called a a2mil2.1:..

In this module you will:

a) Study a general overview of the organi-

zation of a digital computer.

b) See how this applies to a specific example

called the MICROCOMPUTER (actually this is

not a real computer, but a program which

simulates a very small computer).

c) Learn to write machine language programs

for the MICROCOMPUTER. In this way you

will see what life would be like without

a high level language and compiler. You

will also get a much better feel for what

really goes on inside real computers.

5

Although the MICROCOMPUTER is a very small and limited

device compared to real-life computers, it is possible to

write interesting and powerful programs for it.

2. THE ORGANIZATION OF COMPUTERS

The principal components of a digital computer and their

relationships are illustrated in Figure 1.

f//

'INPUT DEVICE

1
CONTROL UNIT

ARITHMETIC

AND

LOGICAL UNIT

FIGURE 1.

The Control Unit--controls the sequence of events within

the computer by interpreting and causing the execution of

coded instructions received from the memory. (If this

sounds vague, read on. It should become clearer.)

The Arithmetic and Logical Unit--performs the four arith-

metic operations on data sent to it from the memory unit(+1-,*,/);

it also controls "branching"by testing for negative and zero values.

The Memory--contains the instructions to be executed and

the data on which the operations are to be performed.

3

The Input Deviceaccepts information, both instructions

and data, and stores it in the memory. Examples of input de-

vices include Leletype keyboards, paper tape readers and

punched card readers.

The Output Device--receives results from the memory and

presents them to the user. Paper tape punches, teletype and

line printers, and plotters can all serve as output devices.

3. BASIC OPERATION AND USE OF THE COMPUTER

The memory of a computer consists of a sequence of units

called words, each of which can store the same amount of in-

formation. This amount of information varies from computer

to computer but is typically something like a 10 decimal

digit number. Each word is individually addressable; that

is, each word can be referenced by a unique address. These

addresses are numbers which start with zero and go up to one

less than the number of words in the memory. It is very im-

portant to keep clear the difference between the address of

a word, and the contents of a word. (See page 6)

There are two properties which are common to all computer

memories/ these are destructive read in and nondestructive

read out. What the first term means is that each time infor-

mation is stored in a given word in memory, the contents of

that word are erased as the new information is "read in".

Non-destructive read-out means that when information is

"read out" from a given word of memory, the contents of

4

the memory location itself are undisturbed. Hence, informa-

tion may be "read out" of a given memory location as many

times as needed, without destroying the contents of the

word itself.

The key to the operation of the computer is the component

referred to above as the "control unit". This device is cap-

able of retrieving the contents of those words in memory

that describe the "program" to be run. Each time such in-

formation is brought into the control unit it is interpreted

as an instruction which is then executed.

The execution of an instruction involvec the use of one

or more of the other components of the computer. For example,

an arithmetic instruction will require the use of the memory

and the arithmetic and lcgical unit; an input instruction will

involve an input device and the memory.

In any case, the use of a computer consists of a process

of placing in memory a sequence of instructions in the order

in which they will be fetched, interpreted and executed. A

string of instructions so arranged that their execution ac-

complishes a particular task is called a prou2m.

The instructions themselves are indistinguishable from

any other kind of information in memory. They are recognized

and interpreted as instructions only, when they are brought

into the control unit. Each type of computer is distinguished

by its own repertoire or list of instructions which the control

5

unit is capable of interpreting and executing. The reper-

toire is fixed and is determined by the electronic circuitry

of the computer.

4. THE MICROCOMPUTER

Let us now look at a specific case called the MICROCOM-

PUTER to see how the general principles discussed above apply

to it. We will use decimal digits to represent the instruc-

tions and data.

In reality, the MICRCOMPUTER is not an actual "hard-

ware" computer. It is a program written in NEWBASIC which

simulates a small computer. You do not have to understand

what simulation means at this point. Just tell yourself

that when you run the program /MICRO/ you can think of the

teletype as the input and output devices of a "make believe"

computer whose design is described below:

The Memory

The memory consists of 100 words addressed (numbered)

from 00 to 99. Each word will have the capacity to store

three decimal digits and a sign as shown in Figure 2 on

the following page.

FIGURE

00 20

01

40

41

6

2-

60 80

61 81

79 99

ADDRESS OF THE WORD COI TENTS OF THE WORD

Although every word in ou-

storing a sign and 3 digit num

for the computer is not always

the computer to think of this

number between -999 and +999 w

At other times, we will w.

contents of a word as an instr

also consist of a three digit (

of the word in which it is sto)

\s13 digits 0-9
sign + or -

MICROCOMPUTER is limited to

the meaning of these digits

the same. Sometimes we want

umber as data, i.e., an actual

ich will be used in a calculation.

nt the computer to view the

ction. Each instruction will

ode but the sign position

ed will be ignored.

7

The Format of an Instruction Word

An instruction word will contain 1) a single digit oper-

ation code from 0 to 9 (there is one for each of the 10 in-

structions in the repertoire) and 2) the address of the word

which is to be used in execution of the instruction. The way

in which the MICROCOMPUTER knows which words in memory are

instructions words will become clear in the discussion of

the Control Unit. The instructions are summarized in Table 1

and described in detail in the next three sections.

TABLE 1

Instruction Repertoire for the MICROCOMPUTER

Operation Code Action

1 Clear and add

2 Add

3 Subtract

4 Store Accumulator

5 Multiply

6 Divide

7 Read

8 Print

9 Transfer Unconditionally

0 Transfer on Minus

Operation Code Address to be used.

11

8

The Arithmetic Unit

The arithmetic unit consists of a device called the ac-

cumulator whose purpose is to hold the results of individual

additions, subtractions, multiplications, and divisions. The

accumulator has the capacity to hold a sign and four digits.

As an example of how the accumulator works consider the task

of adding the two numbers found in words 21 and 23 of memory.

Assume that the values found in these locations are +055 and

+199.

Hence, the situation can be represented as:

ACC

21
+055

After executing the instruction

we have

ACC

+0055

1 21

+055

23
+199

23
+199

The clear and add instruction, whose operation code is 1

makes the accumulator zero then adds to it the contents of

the designated word of memory. Note that the contents of

word 21 are unchanged (non-destructive read out).

Summary: When you give the MICROCOMPUTER the command 121, what
you are telling it is "change the contents of the accumulator
to zero, then add to the accumulator a "copy" of the number
found in memory location 21".

2'

9

Now let's execute

After which we have

ACC

F0254

2 23

+055
23

The add instruction, whose operation code is 2, simply adds

to the accumulator the contents of the specified word and

places the result in the accumulator. If the absolute value

of the sum is greater than 9999, the accumulator is set to

zero, an overflow warning message is typed out, and the

program continues running.

Subtraction is accomplished with an instruction whose

operation code is 3. When a subtract instruction is exe-

cuted, the contents of the specified word are subtracted

from the accumulator. Again the result is placed in the

accumulator and an overflow message is printed if necessary.

The operation code for multiplication is 5.. The

contents of the memory word and the contents of the accu-

mulator are mutliplied, the result is stored in the accu-

mulator, and an overflow warning is written if the result

is too large.

Division is slightly different because of the fact

that fractions cannot be represented within a single word

of the MICROCOMPUTER. When a divide instruction--one with

10

an operation code of 6 is executed, the MICROCOMPUTER takes

the contents of the accumulator as the dividend, and the

contents of the specified memory word as the divisor. The

quotient is placed in the accumulator but the remainder is

lost (ignored).

The store accumulator instruction (operation code 4)

provides the means to return the results of the arithmetic

operations to the memory. This allows you to save a number for

future use, while using the accumulator for other purposes. No-

tice however that the accumulator can contain 4 digit signed

numbers but the memory words can only contain 3 digit

signed numbers. If an attempt is made to store a number

with absolute value greater than 999 an error error message

will be typed and the program stopped.

The Control Unit

In the above discussion of the arithmetic unit it was

not clear where the instructions that were executed came

from or how the order of their execution was determined.

This is the function of the control unit. In the MICRO-

COMPUTER, the control unit has two components. (1) The in-

struction register (IR) has a three digit capacity to hold

the instruction that is being examined and executed. (2) The

instruction counter (IC) has a two digit capacity to hold

14

11

the address of the next instruction to be brought from memory.

When the action of one instruction is completed, the control

unit will bring the next instruction from the memory address

given by the IC and place it in the IR. While this is going

on, the number in the IC is increased by 1.

Figure 3 illustrates this sequence of events for a stored

program which executes the same instruction sequence discussed

above in the section on the arithmetic unit (pages 8 and 9).

CONTROL UNIT

IR

tl I 21 1

IC

0 3

MEMORY-in- ,
/

0 4 0 6 0 8 0

0 1 2 1

:
6 1 8 1

0 2
4. 1 1

2 2 2 6 2 8 2

031 2
4.

3

1 9 9
4 3

.

6 3 8 3
(4. 2 2 -3)

-0 4
4. 4 2 5

2 4 4 4 6 4 8

-

4

0 5 2 5 4 5 6 5 8 5

0 6 2 6 M 6 6 6 8 6

0 7 2 7 4 7 6 7 8 7

ACC

1+1 0 0 5 5

C011iTROL UNIT

IR IC

12 12 31 10 14

MEMORY
0 0 2 0 4 0 6 0 8 0

0 1 2 1
0 5 5

1+ 1 6 1 8 1

0 2
1 2 1

2 2 4 2 6 2 8 2

0 3
+ 2 2 3

2 3
/1. 1

4 3
9 3")

6 3 8 3

0 4
+ I+ 2 5

......,
2 4

_
4 4\ 6 4 8 4

0 5 2 5 1 4 5 6 5 8 5

0 6 2 6 \ 4 6 6 6 8 6

0 7 2 7 V 6 7 8 7 1

ACC\I

+1 012ILLI

ARITHMETIC UNIT (a) ARITHMETIC UNIT (b)

FIGURE 3.
a) The instruction in the IR has just been executed leaving
+0055 in the ACC. The instruction of 03 is being brought
from fflemory to be placed in the IR (destructive read in).
While this is going on, the number in the IC will be in-
creased by 1. b) The instruction from 03 is examined and
executed, resulting in a new value, +0254 in the ACC.

NOTE: The above program starts in the location with address

02. Actu9lly, we could have "loaded" the program anywhere

we wished in memory.

12

Two very useful instructions which are closely related

to the IC are the Transfer Unconditionally Instruction (Oper-

ation Code 9) and the Transfer on Minus Instruction (Operation

Code 0). A computer's power lies largely in its ability to

execute sequences of instructions over and over, or to choose

between two possible instructions depending on the result of

some previous operation. The two transfer instructions make

these things possible in the MICROCOMPUTER. Transfer Uncon-

ditionally causes the IC to receive the address which is spec-

ified in the instruction. Hence, the next instruction to be

executed after the Transfer Unconditionally is the instruction

located in the word whose address was specified in the Trans-

fer Unconditionally instruction. Figure 4 may help clarify this.

CONTROL UNIT

IR

8 1215

IC

2 1 1

MEMORY
00 20

825
4 0 6 0 80

01 21_ 41 61 81
90/)

02 22 42 62 82
+721
-
03 23 43 63 83

.+723
-

04 24 44 64 84
...+121
05 25 45 65 85
+223
06 26 46 66 86
+425
07

,

27 47 67 87
+821

(a)

+1

CONTROL UNIT

9

IR IC

012 MIN31
MEMORY

00 20 14060
+825

80 1

01 21
+902

41 61 ,81

01 22 142 62 82
+721
03 23 JL3

-

63 83
+723
04 24 144 64 84
+121'
05 25 145 65 85
+223
06 726 46 66 86
+425
07 27 47 67 87

,+821

FIGURE 4.

(b)

13

Figure 4. The IC initially contains 21 so the in-
struction in word 21, namely 902, is brought into
the IR (Figure 4a). But 9 is the operation code
for Transfer Unconditionally instruction hence when
the instruction is executed, the IC gets the address
part of the instruction--that is 02 (Figure 4b).
Then the next instruction to be loaded into the IR
will be 721 in word 02, and the program will con-
tinue from there.

The Transfer on Minus instruction is similar, but the IC

receives the address of the instruction only if the accumulator

contains a negative number. If the accumulator is not negative,

the IC has its content incl-eased by 1 in the normal manner.

Input/Output

A computer is useless unless the results of its work

can be printed out and unless it can receive data from the

outside world. An instruction is provided in the MTCRO-

COMPUTER's repertoire called the Read Instruction with an

operation code of 7 which causes a number typed into the

teletype keyboard to be stored in the memory location spec-

ified in the instruction. For example, suppose the IC con-

tains 05 and word 05 of the mem)ry contains 723. After the

instruction is executed the IC will contain 6, word 05 will

be the same, and word 23 will contain whatever number was

typed on the teletype.

Suppose now that word 06 contains 823. The operation

code 8 means print. The same number that was read will

be printed back onto the teletype paper.

14

A Sample Program

The flow chart in Figure 5 repres(ts e. procedure for

reading two numbers, computing the absolute value of their

difference, and printing the result. A possible program to

accomplish the procedure is listed as it would appear in the

MICROCOMPUTER in Table 2. You should follow this program

step by step to gain an added grasp of what goes on in the

computer by doing the following:

1. Draw the memory, arithmetic unit, and control

unit as in Figures 2,3, and 4.

2. Enter the instructions in their proper squares

of the memory.

3
Place 09 in the IC. (09 was arbitrarily chosen as
the location of the first instruction).

4. Execute the instruction in word 09, update the

IC, execute the next instruction, etc.

Remember that when a transfer instruction is executed,

the IC may be loaded with the address of some instruction

rather than being increased by 1.

(READ A

I

rREAD B

I,

(:C NEGATIVE

NO

YES

PRINT C

FIGURE 5.

1 8

Lf = B -A

15

Address

TABLE 2

1A-BI (See note 2 below)

Explanation

Program for Computing

Instruction

09

10

11

701

702

101

Read A

Read B

Store A in the Accumulator

12 302 Subtract B

13 403 Store C=A-B in word 03

14 017 Transfer on Minus to 17

15 803 Print C

16 909 Transfer to 09 (start again)

17 102 Store B in the Accumulator

18 301 Subtract A

19 403 C=B-A in word 03

20 915 Transfer to 15 (Print)

Note 1: Instructions begin at word 09. A is stored at

01, B at 02, C at 03.

Note 2: The mathematical notaton 1A-B1 is sometimes also
written as "Absolute value of A-B" or ABS(A-B).

ABS(A-B) is defined as the number you get by substracting
the smaller of the two numbers A and B from the larger of
the two numbers.

Examples: ABS(5-3) = 15-31 = 5-3 = 2

ABS(3-5) = 13-51 = 5-3 = 2

16 -

5. OPERATION OF THE MICROCOMPUTER

To run programs on the MICROCOMPUTER you must first log

in and enter NBS (recall that the MICROCOMPUTER is simulated

by a NEWBASIC program). Then type >RUN 106UOP /MICRO/.

The MICROCOMPUTER will print a header message and an

asterisk (*). When this happens you can do any of the fol-

lowing:

a) Enter or change a memory word by typing the

address, a comma, the contents of the wordo

and return. For example, *l6,201(CR) would

put +201 in word 16.

b) Begin execution of a program in the memory by

typing 100, a comma, the address of the first

word to be executed, and return. This sets

the IC and starts the MICROCOMPUTER.

c) Examine the contents of a word by typing 101,

comma, the address of the word, and return.

d) Leave the system (turn off the MICROCOMPUTER)

by typing 102, comma, 0, return.

On the follawing page is a sample run of the program

discussed in the previous section. Because of the way in

which the program was written the only way to make it stop

is to type ESC. Look at the flawchart to see why.

20

17

This is the program to calculate ABS(A-B). Your program

for A samIt Program should closely resemble the sample run

below:

PLEASE LOG IN:I113;PIT
READY, SYSTEM W04
SEP 29 9:00
LAST LOGIN SEP 29 8:58
NBS
VER. AUG 26 9:26
>RUN 113PIT /MICRO/-

LOG IN

ENTER NES

RUN THE MICROCOMPUTER

MICROCOMPUTER VERSION 5 LEVEL 1 SEP 29 09:01
*9,701
*10,702
*11,101
*12,302
*13,403
*14,017
*15,803 ENTER INSTRUCTIONS AND/OR DATA INTO THE MEMORY

*16,909
*17,102
*18,301
*19,403
*20,915
*100,9 SET THE INSTRUCTION COUNTER (IC) AND BEGIN'

OPERATION OF THE PROGRAM

DATA ENTERED WHEN READ STATEMENTS WERE EXECUTED

RESULT PRINTED BY THE PROGRAM
]?-19

?36

55
?91
?54
37
?27
718
9
?18
?27
9

4-*.ESC: 9200

18

6. SUGGESTED PROJECTS

6.1 Write and execute a MICROXPUTER program which will

read two numbers, compute their sum, and print the

result.

6.2 Write and run a program whi=th will compute the function

y =I 2 x -4. The program s) Duld read x, compute and

print y, return to read anc:her value of x, etc.

6.3 Do the same as in 6.2 for I e function y = x3.

HINT: It should only be nc--lessary to execute

one STORE instructi,n.

6.4 Write and run a progran wtich will read a pair of num-

bers a, b, compute y (.-b)/(a+b), print the result y,

return to read another pair of numbers, etc.

NOTE: I. Before t division can be carried out,

hilt che numerator and the denominator

must be computed. At least one of these

must be saved in the memory while the

other is being computed.

2. Recall that the remainder is lost when a

division is executed. For example, you

will get y = 0 for a = 2, b = 1. Thus,a

MICROCOMPUTER program can compute the

quotient, but not the remainder of the

division.

a 2

SOLUTIONS TO SUGGESTED PROJECTS

Pruplem 6.1

>RUN

MICROCOMPUTER VERSION 5 LEVEL 1 OCT 19 14:24
*0,730
*1,130
*2,730
*3,230
*4,430
*5,830
*100,0

?7
?2
9

*102,0
GOODBYE, COME AGAIN SOON...

Problem 6.2

>RUN
MICROCOMPUTER VERSION 5 LEVEL 1 OCT 19 14:26
*0,750
*1,150
*2,099
*3,551
*4,352
*5,453
*6,853
*7,900
*51,2
*52,4
*100,0

?10
16

?20
36

9200

19

Problem 6.3

>HUN
MICROCOMPUTER VERSION 5 LEVEL 1 OCT 19 14:27
*0,730
*1,130
*2,530
*3,530
*4,430
*5,830
*6,900
*100,0

?3
27
?4
64

?5
125

?.

9200

Problem 6.4

>RUN
MICROCOMPUTER VERSION 5 LEVEL 1 OCT 19 14:29
*9,701
*10,702
*11,101
*12,202
*13,403
*14,101
*15,302
*16,603
*17,404
*18,804
*19,909
*100,9

9200

24

20

21

LISTING OF /MICRO/

100 DIM M(100)
200 PRINT "MICROCOMPUTER VERSION 5 LEVEL 1 ":DATE
1200 GO TO 1600
1300 FOR A=1 TO 100
1400 LET M(A)=0
1500 NEXT A
1600 PRINT "*": DEMAND L,I.E--READ LOCATION AND CONTENTS
1700 IF L=INT(L) THEN 2000
1800 PRINT "LOCATIONS MUST BE INTEGERS 0-99"
1900 GO TO 1600
2000 IF L>=0 THEN 2300
2100 PRINT "NO MEGATIVE LOCATIONS PLEASE"
2200 GO TO 1600
2300 IF L<103 THEN 2600
2400 PRINT "THERE ARE LOCATIONS 0 99"
2500 GO TO 1600
2600 IF L=100 THEN 44004-IF LOCATION IS 100 START EXECUTION
2650 IF L=101 THEN 32504E-IF LOCATION IS 101 PRINT WORD SPECIFIED (SEE 3250)
2660 IF L=102 THEN 32984T-IF LOCATION IS 102 "LOG OUT"
2700 IF I=INT(I) THEN 3000
2800 PRINT "ONLY INTEGERS CAN BE STORED"
2900 GO TO 1600
3000 IF ABS(L)<1000 THEN 3300
3100 PRINT "999 IS THE LARGEST LEGAL INTEGER"
3200 GO TO 1600
3250 PRINT M(I+1)
3260 GO TO 1600
3298 PRINT "GOODBYE, COME AGAIN SOON..."
3299 STOP
3300 LET M(L+1)=I-IF THERE IS NO ERROR, STORE I IN MEMORY LOCATION L+1
3400 GO TO 1600
4400 PRINT
4500 LET A=0*------SET ACC = 0
4600 LET C=I-1
4700 LET C=C+1*-----INCREMENT INSTRUCTION .COUNTER
4800 IF C=100 THEN 1300
4900 LET I=M(C+1)/E-------I IS THE CURRENT INSTRUCTION
5000 LET I2=INT(I/100).0E-I2 IS THE OP-CODE OF THE INSTRUCTION
5100 LET 0=I-(I2*100)-4:---0 IS THE ADDRESS IN THE INSTRUCTION
5200
5300
54 00

5500
5600
5700
5800
5900
6000
6100
6200

IF
IF
IF
IF
IF
IF
I F

IF
IF
IF

12=0 THEN 6400
12=1 THEN 6800
12=2 THEN 7000
12=3 THEN 7300
12=4 THEN 7600
12=5 THEN 8100
12=6 THEN 8400
12=7 THEN 9100
12=8 THEN 9800
12=9 THEN 1000

BRANCH TO THE PART OF THE PROGRAM THAT
EXECUTES THAT INSTRUCTION

PRINT "SYSTEM ERROR AT LOCATION";C

6300 GO TO 1600
6400 IF A<0 THEN 6600
6500 GO TO 4700
6600 LET C0-1

TRANSFER ON MINUS
=

6700 GO TO 4700

00
6800 LET A=M(0+1) CLEAR AND ADD
69 GO TO 4700
7000 LET A=A+M(0+ 15-1
7100 GOSUB 10200
7200 GO TO 4700
7300 LET A=A-M(0+17--
7400 GCSUB 10200 SUBTRACT
7500 GO TO 4700
7600 IF ABS(A)<1000 THEN 7900
7700 PRINT "ACC CANNOT BE STORED. MORE THAN 3 DIGITS. LOCATION";C
7800 GO TO 1300
7900 LET M(0+1)=A
6000 GO TO 4700
8100 LET A=A*M(0+1)
8200 GOSUB 10200 I MULTIPLY
8300 GO TO 4700
8400 IF M(0+1)<>0 THEN 8700
8500 PRINT "DIVIDE BY ZERO AT LOCATION"; C

8600 GO TO 1300 DIVIDE
8700 LET A=A/M(0+1)
8800 GO SUB 10200
8900 GO TO 4700
9000 PRINT IN FORM "DDB": 0+1
9100 INPUT I
9200 LET I=INT(I)
9300 IF ABS(I)<1000 THEN 9600

22

411.MME11111111

9400 PRINT "TOO HIGH AN
9500 GO TO 9100
9600 LET M(0+1)=I
9700 GO TO 4700
9800 PRINT M(0+1)
9900 GO TO 4700
10000 LET C=0-1-1
10100 GO TO 470,1j
10200 IF ABS(A)<10000
10300 PRINT "OVERFLOW
10400 LET A=0
10500 RETURN
10600 END

INPUT--RETYPE"

PRINT

READ

TRANSFER UNCONDITIONALLY

THEN 10500
AT";C OVERFLOW PROCEDURE

11=11111.11111111.

-STORE

4111.011

A

r

4

I

1

1

1

..L

A.

____---I
4

,

