ED 055 457

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUNE

EXx 009 308

Goldberg, Adele

A Generalized Instructional System for Elementary
Mathematical Logic.

Stanford Univ., Calif. Inst. for Mathematical Studies
in Social Science.

National Science Foundation, Washington, D.C.

TR-179

11 Oct 71

96p.; Psychology and Education Series

MP-$%$0.65 HC-$3.29

Calculus; #*Computer Assisted Imstruction; *Computer
Programs; *Mathematical Logic; *Mathematics
Instruction

A computer-based instructional system for teaching

the notion of mathematical proof is described. The systen is capable
of handling formalizations of the full predicate calculus vwith
identity and, with minor work, definite description. Designed as aan
instructional device, the program is also the basis for a number of
research projects inavolving the use of mechanical theoremr-provers for
teaching theorem-proving. The entire system is presented here in
detail: the program as writtem in the LISP programing language for a

PDP-10 computer.

Instructions on how to use the system for research

and teaching, block diagrams of key program routines, and exanmple
curriculums are included. Enough detail is provided so that versions
in other languages for other computer systems may be programed from
the information presented here. (Author/JY)

EDO055457

A GENERALIZED INSTRUCTIONAL SYSTEM FOR
ELEMENTARY MATHEMATICAL LOGIC

; SCOPE OF INTEREST NOTICE
3 i
BY | The ERIC Facility has assigned 1

| this document for_e{ocessing !
S = /v E ‘
: .

In our judgement, this document
is alsc of interest to the clearing-

ADELE GOLDBERG e e

points of view.

TECHNICAL REPORT NO. 179

OCTOBER 11, 1971

Q

ERIC

Aruitoxt provided by Eic:

50

51

52

53
54
55
56
57

58
59
60

61
62

S

64

65

.13

67
68

69

" 70

7
72

73
74
75
76
7

78

79
80

82 -
83
85 "

86

87
.88

89

- 92,

93

95

" M. V. Liwine, The generalization function In the probability leprning experiment. June:3, 1965._]‘_

P, Sums, M. Jmn, and:'G 'Groen“ Arl!hmutle drllls

P, Holland. A varlation on the minfimum chl-squm test, 0. Ps!chol., 1967, 3, 377-413).
‘P, Sumﬂ Amnlmud program

TECHNIGAL REPORTS

PSYCHOLOGY SERIES 2
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES Y
(Place of publication shown I parentheses; Ir pw‘.llshed title is different from title of Technical Report, .
this is niso shown In parentheses.)

.

(For reports no. 1.= 44, see Technical Report no. 125,)

R.-C. Atkinson and R, C. Caffer. Mathematical learning theory, January 2, 1963. (i 8, 8. Wolman (Ed.), Scientific Psycholbgy. New York:
Basic Books, Inc., 1965, Pp, 254-275)

P. Suppes, E, Crothers, and R, Welr, Application of mamemnlcn! learning Ihewy znd Ilngulstlc analysis to vowel phoneme matching in
Russian words, December 28, 1962,

R. C. Atkinson, R, Calfee, G. Sommer, W, Jeffrey and R. Shoemaker, A test of three models for stimulus compounding with children.
January 29, 1963. . exp. Psychol,, 1964, 67, 52-58)

E. Crothers. General Markov modals for learning wlﬂ\ Inter=trial forgetting, Aprll 8, 1963, : .

J. L. Myers and R. C. Atkinson. Cholce behavior and reward structurs, May 24, 1963. (Journal math. Psychol., 1964, |, 170-203)

R. E. Roblnson. A set-theoretical approach to empirical meaningfulness of measurement statements. June 10, 1963.

E. Crothers, R, Welr and P. Palmer. The role of transcription in the learning of the orthographic repy tatlons of Russian swunds. June17,. 1963,

P. Suppes. Probl of optimization in learning a Hist of simple Items. July 22, 1963. (In Maynard W. Shelly, 1l and Glenn L. Bryan (Eds.),
Human Judgments and Optimality. New York: Wiley. 1964. Pp. 116-126)

R. c Ak.k!nson and E. J. Crothers, Theoretica! note: all-or-none learning and Intertrial forgetting. July 24, l963.

R. C. Calfee. Long-term behavior of rats under probabiiistic reinforcement schedules, October i, 1963,

R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms ior paired-assoclate learning. October 25, 1963. (A comparison
of paired-associate learning models having different acquisition and retention axioms, J. meth. Psychot., 1964, |, 285-315)

W. J. McGili and J. Gibben. . The.general~yamma distributicn and reaction times. Nmnber 20 1963, . math. Pszchol., 1965, 2, 1-18) -

M. F. Norman. Incremental leaming on random trials. December 9, 1963. (J. math, Psychol,, 1964, L "336-35D0

P. Supm The development of mathematical concepts In children, February y 25, 5, 1964. (On the behaviorai foundations of mlthematlul concepts.,

Monographs of the Snclctz for Research In. Child Development, 1965, 30 60-96)

P. Suppes. Mathamtlcll concept % formation n n children. Aprll 10, 1964, (Ame-, P:!cholﬂm, 1966, 2| 139-150)

R. C. Salfu, R. C. Atkingon, and T, Shelton, Jr. Mathematical models For vubnl feaming. August 21, 1964, (In'N. Wiener and J-P. Schoda
(Eds.), Qb«mtlcs of the Netvous S!stem: Progress In Brain Reuarch Amsten..m, The thhcrtnnds- Elsevier Publlshlng Co., 1965.
Pp. 333-349)

L. Ketler, M. Cole, C. J. Burke, and W, K, Estns. Palred asscclate lcaming with differential rewards. August 20 1964, (Revutd and
Information’ vnlues of trial cutcomes in palred associate learning. (Psychol. Monogr., 1965, 79, 1=21) -

M. F. Norman. A probabliistic model for free~responding. Decumber 14, 1964.

W. K, Estes lnd H. A. Taylor. Visual datection In relatie= to display size and mlundnn.:y of critical elements. January 25, I965 Reviged

7-1-65, (Percaption and Psychophysics, 1966, |, 9-16)

. P, Suppes and J, Donlo. Founda!lom of stimulug-samp!ag theory for con!lmous-!lme proeesses February 9, 1965. . math, Ps! . l967, '

4,202-225)
R. c Atkinson and R. A. Kinchla. Almnlngmodelfor foreed-cholee detection exnrlmunts. February io, I965 (Br i m_a__ E Ps!ehol'.,
1965, 18, 184-206) :
E.J. Crotheu Presentation orders for Items from dlﬁmmumwlu. March 10, 1965. ' : -
P. Suppes, G. Groen, and M. Schlag-Rey. Somt modelsfamponse Intency In palnd-uloellms Ielmlng Mlys I%S (J m:{. Ps‘vg’h_ol.,s
" 1966, 3, 99-128). o

D. Hansen lnd T.S. Rodgers. An oxplautlon of psyclwltngulsuc unln In-Initial rndlnq.,July b |965
B. C. Amold,. A correlated um-schame for & continuum ofmponsas. July 20, 1965." LR L :
C. lzawa and W. K. Estes. Relnforceiment-test sequences In palred-assoclate. learning., Augus!l 1965, (Psythol.'Reporis. 1966, 18, 879-919}

'S, L. Blehart. ‘Pattern discrimination leaming with Rhesus monkeys. September I,1965, (Ps!chol m 1966, 19, 3|I-324) :

J. L. Philiips and R. C. Atklnsun. Tho eﬁects of dlsley size on short-term memory August 3, I%S .
R. C. Atkinson and R, M. Shlfftln. Mnﬂnmucul models for memwy and Iemlng. Sepunber 20, I965. B - ’
P. Suppes. The psyt.holoulul foundl!lons of mntlnnltlcs. October 25, 1965. '(Coll gm Internationatn du cenln Nltlonll de ll Rethmhe
“Sclentifique. "Editlors &1 Ccmn Hn!lmi ‘de Rcch.rche Scientifigue. Peris: 1963, Pp. 2I3-242) N vt
P. Suppes. Computar sIste fon in the & chools: potentialities, prohlems, prospecls October- 29 1965. _-' [
R A. Kinchla, J Townund J Yellolt Jrey and R. C. Atklnson. Iuﬂuenceof correllted vlsual cues on audltory slgnal detectlon
mmbef 2, I965 (Perception lnd Psychoptiysics,,: '

ompnur-bned l.eletype. November 5 |965 (Arlthmetlc Teacher
Aprll 1966, ‘303-309 . R
P. Suppes and L. Hymn.. Cmept Inmlng wllh non-ver!?ll gamwlcnl stinull. Nwember IS 1%8

J I*)_GS.‘

" (Paychology i the Schools; 1966,

3 294-307)

mms. Dneembcr I0 I%S
Jo 1. Yollou, Jr. Somcﬁle

Induetlvc l;ﬂ. Amhﬂhnu Nuth-"ollund Publl

P. Sum Thi: axlomatic method in hlgh-u:haol riat)] The

' '“Il canfmneo Bcld of ﬂn Mnlnmatlnl Sclaneu, Wuhlngton, D. C Glm and Co., ; I966 Pp. 69- Do
: (Ctmtlmnd on ln:!deblckcwm - B e 2

14.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OF51CE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRC-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
|ONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

A GENERALIZED INSTRUCTIONAL SYSTEM FOR

EDO55L57

EILEMENTARY MATHEMATICAL LOGIC
by

Adele Goldberg

‘TWMCHNICAL REPORT NO. 179

October 11, 1971

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANTORD UNIVERSITY

STANFORD, CALIFORNTA

ERIC - 3

Acknowledgment.s

The effort expended in developing this instructional system was
shared equally by Tobin Barrozo and myself. I would like to thank him
for his endless patience. Note that Tobin provided the annotation to
Appendix V.

We would also like to thank Leon Henkin for suggesting the original

nsel.

idea for the program, and Patrick Suppes for his couns

The research in this report was supported by National Science

Foundation Grant GJ-4u3.

Table of Contents

Acknowledgments
Part I. Introduction

Part II. Specifying the Formal System
1. The Vocabulary
2, Implementation of Proper Substitution
3, Instantiation Procedures for Nonlog!cal Axiomatic
Thecries

4. Axioms and Theorems

Part III. The Command Lenguage
. Introduction
Proof Procedures

Primitive Rules of Inference

1

2

3

4. Generalized Intercl.ange Rules

5 Derived Rules of Inference

6. Miscellaneous Commands

7. Interfacing Mechanical Theorem Provers to the

Instructional System

Part IV. Defining Problems
1. Prespecified Curriculum-TEACHER Mode
5., Commands for Requesting Problems in the STUDENT

mode
Part V. Summary of the Command Language
References
Appendix I

Appendix II
Appendix IIT

Appendix I
Appendix V

i

ii

13

20
23
26
26
33
38
45
Y7
58

59
6l
65
68
IS}

76

PART I. INTRODUCTION

This report describes a computer-based instructional system for teaching

the notion of mathematical proof. The system is capable of handling formalizations

of the fuli predicate calculus with ideatity (and, with minor work, def'inite
description). Designed as an instructional device (a course in number theory is
presently being prepared), the program is a’so the basis for a number of research
projects involving the use of mechanical theorem-provers for teaching theorem-
proving. The intention here is to present, in destail, the entire system: the
program as written in the LISP programming language [McCarthy, 1963] for a PDP-10
computer. Instructions on how to use the system for both research and teaching,
block diagrams of key program routincs, and eXample curricuiums are included.

The purpose of this report is to provide enough detail so that versions in other
larguages for other computer systems may be programmed rrom the information
offered here. As a result, subseguent sections are dense with descriptions

of wparticular routines of the irstructional program. While current research on
interfacing various theorem-proving programs are mentioned in this paper, they
will be reported on in more detail elsewhere.

The underlying foundation of first-order logic of this instructional system,
1ike the Institute for Mathematical Studies in the Social Sciences (IMSSS) logic
and algebra program [Suppes & Binford, 1965; Suppes, Jerman & Brian, 1968,
Appendix I; Suppes & Ihrke, 1970; Suppes, 1971}, is & natural deduction
treatment. The main thrust of both programs is to let the student construct
proofs or derivations. The student has a simple command language made up of
mnemonics +that name axioms and theorems, rules of inference, and proof
procedures. The user can type commands that reference specific lines of the
proof or derivation and that specify occurrences of symbols and terms within
a line. If the commands are correct, the program generates new lines of the
proofs or derivations. By these means, the student can generate any line
regardless of its relevance to finding the problem solution. The freedom to
use commands means that the program rejects all ideas of right and wrong proofs;
the student can follow any one of a number of solution paths. But this freedom
means that the program is not aware of what the studen: is doing. It may mean,
aside from prestored hints, thet the program cannot. offer the user (the student)
any help in completing the derivation. In an attempt to solve this problem, a

mechanical theorem-prover that genefates solutions of the algebra problems was

* 5

developed. The theorem-prover is employed as a proof-analyzer that examines
incomplete derivations done by students and gives the students hints or advice
on how to utilize their own partial proofs to arrive at complete ones. Details
of this theorem-prover will appear in Goldberg [1971].

The core of this instructional program is a set of routines that permit
the user to construzt proofs or derivations. The program is a natural successor
to the IMSSS logic and algebra program, and many of its features result from
experience obtained in schools running that program. Unlike the logic and
algebra program, this instructional system .can.be characterized.as more than a
proof checker. It is a more powerful interpretive system in which an’individual,
be he student, teacher, or reseercher, can develop and then study a nonlogical
axiomatic theory along whatever lines he himself specifies. The program allows
one to build the command language for constructing proofs; the user can specify
a vocabulary and a set of axioms with correspoinding names:. prove and name
theorems and lemmas, and derive new rules of inference. The program, which
"knows" only primitive rules of predicate calculus, consists of routines that
compute and learn new commands from the well-formeda formulas of the system.
When the user attempts to construct a proof within trhe system he so specifies,
he types commands from the command language he built himself. In order to
interpret such commands, generalized processing routines check each ~ommand
for correct syntax and usage and compute appropriate error messages 1if the
command is not a valid one.

Both the command language and a currizulum can be coustructed by a Leacher. i
The zurriculum can be a course, say, in number theory or elementary axiomatic
geometry. The student follows the curriculum, but he always has the option of
interrupting the linear sequence of problems and making up his own problems.

The student might avail himself of this feature of the program when (a) he wants

to redo a problem to assure himself that he understands the proof procedures
being introduced; (b) the problems are too hard and he wants to try some easier
ones before continuing with the teacher's problems; (¢) the problems are too
easy and he wants to try more challenging ones; or (4) a problem requires a

subsidiary derivation. The student may prove the formula and name it as a

s 8 el S SR Pt N S 30

lemma, thereby simplifying the original problem by using that lemma. Here,
the distinction between a teacher and a student becomes a narrow one, because
the student himself can enlarge (or iniially specify) the command language or

invent a "curriculum” for himself and his classmates.

2 7

The principai advantages of this program are twofold. First, the generality

and flexibility of tne program provides the user with a sort of experimental

laboratory in which to explore new ideas (or investigate old ones) connected with

formalized theories. The student with some of his own notilozns about constructing

formal systems can readily tect them in a systematic and unambiguous manner:

the program acts as & tireless proof checker. Second, CAI programs ure usually

based on a curriculum that is organized around strictly frame-by-frame, Or

branch-on—a-predetermined-algorithm, strategy. This mode of teaching can

sometimes be too restrictive and somewhat less informative. We hoped to provide

a freer structure in order to give the more innovative students access to those

computational facilities available to the teacher.

The interpretive tools of the system “.nderstand"” two languages. Th

he first,
call it C, is the set of commands used in constructing proofs or derivations and

is defined in M, the second language. A block diagram of the program is presented

in Figure 1. With M, the user is able to AXIOMATIZE a theory, i.e., to specify

- o Wm A R S SN O G e v SN G S

(a) the class of nonlogical constants, and (b) a class of axioms. It is assumed

that the logical system is always the foundation on which new theories are built,

but the symbols representing the logical nonstants are specified by the user.

The names of axioms and the well-formed formulas derivable from the axicw:s

(theorems and lemmas) are members of C. Also. M enables the user to derive rules

of inference from axioms and from established theorems an
yules are added to C.

d lemmas. These new
Thus, C is further augmented by the basic logical system,
which is outlined in Part ITII.

After the command language for constructing derivations and proofs is
specified, the program takes on the rocle of a proof checker.
part of the program.

This is the DERIVE
In the DERIVE stage, +he user types a command and expects

the program to generate a line of = derivation. JThis may involve either requests

for substitution instances of axioms or previously proved theorems, or

references to a set of previous lines in order to infer a new one. The program

accepts the command, checks to see that its syntax 1s correct, and, in attempting

to carry out the command, checks to make sure that the application is proper.

3 8

e B i Wi e TR T I

T g e A &

O

ERIC

Aruitoxt provided by Eic:

send &
command genereate
a line
DERIVE MODE

(to construct proofs)

4

TPIERFRETER fer the
COMMAND LANGUAGE

'PROBLEM mode
(to present

the problens)

specify the
non-logical
axiomatic thesry

(to’

ACTOMATIZE mode
specify the theory)

specify the ;
problems and :
questions

PRESTORED

!

INIT mode
(problems specified
by the students at
run time)

Fig. 1.

system.

Block diagram of the instructional

CURRICULUM

If the syntax of the command is not acceptable, the program has a simple method
for giving syntactic error messages. The command cannot be executed if an
application error is detected. In this case, the program has a method for
computing the appropriate error message. This computation is necessary because,
ypically, the program interprets commands it knows only implicitly.

Figure 2 shows a block diagram of the routines monitoring the teacher- and

student-user modes and Presents 2 more detailed picture of the control structure

of the program. The history of the student's past performance is distinct from
the collection of any data (that is, to collect exact user protocols). The
profile consists of information on the last problem solved, the last theorem
proved, rules and axioms specified by the teacher that the student has been
taught and therefore is allowed to use, and the student's own derived rules of
inference and lemmas he may have proven. This information is all part of the
canmand language the student is building, and it can be retained for all future
work.

The distinction between teacher and student is not a hard and fast one. ___
Conceivably, an individual may act as both the teacher and the student, setting
up a theory in which he wants to try to construct proofs. Or a student may
try his skills on specifying a curriculum for his fellow classmates. It is
possible that the teacher specifies the vocabulary and then gives the student
a set of formulas. The student is told to choose no more than N formulas as
axioms and then to prove the rest from these axioms, the primitive rules and
procedures, and any new rules he derives. Although this is an instructional
technique with which this instructional system has already been used, it will
not be described here.

The remainder of this report is organized into three parts. In the first
part, the components of a first-order theory and the methods for specifying it
cre explained. The reader who is mainly interested in how a user constructs
proofs might well skip this background material. The second presents the
structure of the command langu-:ge, C, with explanations on how to use the
proof procedures and primitive rules of inference, and how to derive new rules

of inference. There is a problem, viz., the kinds of error analysis routines

5

i0

"WHO ARE YOU?"
FLAG « Student or

Teacher -

l

“PLEASE TYPE YOUR NUMBER"

Yes

TEACHER
MODE

STUNUM « <number>

Can this <number> act

as a teacher?

No

- FIN

logout

O

ERIC

Aruitoxt provided by Eic:

(Logout)

VOCAB AXIOM
specify the
vocabulary

]

' "DO YOU WANT TO CREATE
OR ALTER A THEORY
(TYPE C OR A)?"

!

THEORY RAME?
CURRTYPE .
<pname> .

* Y

Read in the teacher's

file
]

REQUEST COMMANDS

No - STUDENT MODE

(¢}

| - THEOREM
T

derive a rule
of inference

profile

Get student Check student

Croooin

cmuo-rl ~ NoP.

"GALI, PROCTOR" =

name
ch

Readin student's
‘teacher's file

r

Fetch problems from

p——pe curriculum file e
QUESTION DERIVE - PROVE:
Present Present any
problem - premises
Get answer .
[comstmucr proor - |

| |
‘——rstudent types a command’ l

-DISPATCH
command

]

_-L‘ Solution

found?

Yes

Yes

Save present
problem

1

Student
requests
problems

e Derive, prove or

‘Restore
rule ¢ommands curriculum
problem

[]

F:Lg 2. Program structure.

A S A

required in order to effectively teach the student the command language. They
are of two kinds--~errors of command syntax and errors in applying the rules of
inference, especially the derived rules. The error analysis routines are described
in this second part. Finally, the language for specifying problems is defined

with examples taken from elementary algebra.

PART II. 3PECIFYING THE FORMAL SYSTEM

1. The Vocabulary

The program is limited to purely symbolic languages, where each identifier
is a string of one or more alphabetic or special characters. The first step in
developing a formal language is to define a meaningful expression.. There are
two kinds of expressions, terms and formulas. In order to give a precise

i characterization of a term or a formula, the user mighf specify the primitive
vocabulary of the language, i.e., the user must unambiguously define each
individual constant and variable, each operation symbol and each predicate
letter. In addition, the list must include representations for the logical
constants.

Associated with every symbol, except the individual variables, is a fixed
DEGREE, and attached to every individual variable is a TYPE label.” These two
elements are all that is needed to build a syntax-directed analysis routine to
determine if a string constitutes a well-formed expression in the language.

Every language includes three special characters that serve as delimitors--

left parenthesis *(', right parenthesis ')‘ and comma ','. A check for precedence
relationships is not included in the analysis. Unless expressions are explicitly
grouped using the three special characters, the routine performs a simple left-to-
right scan. Thus expressions of the form A x B + C are parsed as A x (R + C) and
not as (A x B) + C, which is the usual parse if hierarchy tables are used.

A DEGREE is an ordered quadruple <i m n p> such that i and n are non-
negative integers, and n and p are (a) any nonatomic element if the corresponding
operation symbol, logical constant or predicate letter p repfesents a binary
infix relation; (b) nonnegative integers otherwise. Formulas ahd nonatomic terms

are formed with the aid of constants calied "forrula-makers” or "term-makers"

*With some modifications, this notion is borrowed from Kalish and
Montague {1964).

12

according to the kind of expression they generate. In the associated DEGREE,
i is either O or 1 according as the constant is a term-maker or formula-maker;
m, n, and p, respectively, are the number of immediately following variables,
number of terms and number of formulas that the constant demands. If m # O,
then the constant is a binding operator. The individual variables are atomic
terms. Members of the set of integers are always considered terms, but if TYPE
labels are to be considered, their TYPE lsbel must be specified by the user
(in the usual interpretation, the integers have type 'ALGEBRA' or t ARTTHMETIC').
The general mathematical characterization of terms and formulas is embodied in
(1) through (8) below (Kalish & Montague, 1964, p. 272. Ttems (2)-(4) are their
characterization of a term and a formula.).

1. The sequence'of three dots, '...', is a variable.

2. Every variable is a term and every numeral is a term.

3, If ® is aiconstant of DEGREE <0 m n p>, O ,...,& are

immediately following variables, Bl,...,Bn are terms,
dl,...,op are formulas, and m, n, and p are nonnegative
integers, then

5. .. O B ...

R SRR E R

is a term.
L. 1If B is a constant of DEGREE <1 m n p>, O ,...,Q% are
immediately following variables, Bl,...,Bn are terms,
'dl,...,op are formulas, and m, n, p.are nonnegative
integers, thep
sal"'oﬁpl'f'sngl"'up
is a formula.
The following restrictions and additions to the characterization of terms and
formulas handle formally what is usually considered informal notation conventions.
5. If m is nonzero, n and p must be nonnegative integers.
Then the terms 2nd formulas are defined as in (1)-(4).
6. If m is zero and n 1is nonatomic (we use n = (2)1),
- then p mﬁst be zero and thé constant ® represents a
binary infix relation such that
a. if ® is of DEGREE <0 O (2) 0>, and B, B, are terms,
then 51552 is a term;

ERIC , TS

b. if ® is of DEGREE <1 O (2) 0>, and Bl,B2 are terms,
then 51552 is a formula.
7. If m is zero and p is nonatomic (we use p = 1(2)!), then
n must be zero and the constant ® represents a binary
infix relation such that -if ® is of DEGREE <l O O (2)>
and ¢,s0, are formulas, then 01802 is a formula.]
Hence, (1)-(7) is an exhaustive characterization of expressions in the language.™
If this characterization were, in fact, implemented on the computer, we
could easily have as a well-formed formula in the language the expression FaG,
where F has DEGREE <1 0 1 1> and G, <L O 0 O>. By using the comma and the
parentheses as delimitors or punctuation marks, we can write the expression
F(a,G), a.more readable format. Thus, an expression transcending first-order
logic is acceptable. For our purposes this is undesirable. Admittedly, the
parsing routine is a realization of (1)-(7). An eighth restriction is imposed:
8. n is zero if and only if p is nonzero.

- 8o, with the eighth restriction included, any Sseguence that follows a constant
and the possibly empty string of immediately following variables will be either
a sequence of terms or one of formulas.

To complete the characterization of terms and formulas, the user must
(a) give a list of symbols regarded as constants, together with their degrees;
and (b) name the types associated with each individual variable. For example,
in the case of quantification-free elementary algebra built on sentential logic,

see Table 1. The constants in the table have their usual - *thematical

interpretations, and, by the appended definition for binary relations, are
; written in the usual way. Note that multiple definition of the minus sign,
‘ '-1, is acceptable. In fact, multiple definitions in general may be handled
§ by careful recomputations in the cases when a particular definition is required.
i The element associated with each individual variable is the TYPE. The
| purpose of type labeling is to restrict tﬁe use of individual variables in the
i expressions, e.g., it restricts the range of values of a variable to a particular

universe of discourse. The TYPr is a list of labels where each label is used to

Q *\ term-maker with degree <0 O O (2)> is meaningless.

i4

9

Constant
-

&

TABL® 1

Elementary Algebra Symbols

AL DL DL A ADAD

2

<0

Representation on the

Degree ' standard teletype

00 1> NOT
00 (2)> &
00 (2)> OR
00 (2)> >
o (2) o> =
101> A
101> E
00 (2)> IFF
o (2) o> +
o (2) o> -
010> -
o (2) o> /
0 (2) 0> x

10

name a list of fndividual. variables. For example, consider the operation symbol
141 with DECREE <O O (2) 0> and assume that '+' requires two algebraic terms.

The user might name the TYFE of an algebraic term with the atom !'ALGEBRA' where
AIGEBRA = (A B C D). The TYPE list, then, consists of the TYPE names for each
term waich the term-maker '+' demands. The term formed with '+! and the two terms
is, in itself, a term that can have a TYPE name associated with it. This type is
called the "computed type." The computed type is also stored on the TYPE 1list
associated with '+'. Thus, the TYPE for '+' is a list consisting of three
elements--three names, each of which specifies the TYPE of the argument expressions
and well-formed terms. Given two algebraic terms, the operation symbol t+1 forms
an algebraic term.

A+B is a well-formed term because A and B are algebraic terms. Its computed
type is ALGEBRA, so (A+B)+C is also well formed. Suppose the identity relation
Y=t with DEGREE <l O (2) 0> has TYFE = (AIGEBRA ALGEBRA NIL}. This TYPE indicates
that '=' demands two algebraic terms. The computed type 1s NIL, an atom : that
denotes the empty set or the 'don't care' type. In other words, NIL can represent
any TYPE. Formulas, such as those formed by '=', always have TYPE NTL, and all
formula-makers will have NIL as the computed type. Term-makers must be associated
with a non-NIL computed type and so the atom T was chosento dsnote the fdon't
care' type for terms.

A=B is well formed. TFor this example, if BOOLE = (G H), then G=H is not
well formed. However, if the TYPE associated with 1= ywere (NIL NIL NIL), it
would not matter what the types of the two terms were and G=H would be well
formed. '

The 1list of all the types associated with the term-makers and formula-
makers is called VARIABLES. If nc type checking is desired, the user could
presumably let VARIABLES be a 1list of all the individual variables and let =11
the types be NIL. This will not do however. The procedure for proper
substitution for predicate letters (see discussion on page 22) is where problems
would arise. The formula to be substituted for the predicate ® may have a
number of different free variables. Some of these variables may be replaced by
corresponding arguments of ;- the rest are nonsubstitutable parameters. - How does
the intérpreter know the difference? Both kinds mist be variables for the parser

to recognize the expression generated by the operation of -substitution.

n 18

So there must always be at least two lists. The first is always named
'PARAM' (for fparameter!) and contains a list of variables that are considered
nonsubstitutable parameters in the procedure for proper substitution for.
predicates. All the others can be specially grouped under another TYPE name
(such as BOOLE).

Some simplifications are possible.

1. If a variable can be in two groups, or when a TYPE is the
union of two groups already named, the type checking is
performed both directly (is the variable ¢ a member of
the list <TYPE>?) and indirectly (is the variable o a
member of a list whose TYPE name is on the list <TYPE>?)
Therefore, if PARAM are the special parameter-variables
and VARS is a list of all the other variables, VARIABLES
is the list (VARS PARAM). All the atomic terms &re then

- recognized indirectly through the type name VARIABLES.

2. The TYPE associated with '+' is (ALGEBRA ALGEERA AIGEERA).
Since all the members of the list are the same, the TYPE
can be written as the single atom ALGEERA.

By computing the associated types in the above manner, the program
retains the recursive evaluation procedure for determining well formedness.
This procedure depends on (a) the table of symbols; (b) associated DEGREES;
(c) TYFE parameters; and (d) the list of individual variables. It is possible
to multiply define symbols: if the parse fails in frming én expression with
respect to one DEGREE, it will continue the search with any other DEGREE
existing on the list for the constant in gquestion. The result obtained by the
parser is a representaticn of the expression in prefix-list notation. Henceforth,
an expression in the prefix-list notation will be called the FATTERN for the
expression. The PATTERN is the list form of the tree, e.g., (+ A B) for A+B.
Further examples: (= (+ A B) C) is the PATTERN for A+B = C; (= (+ (+ A B) C)
(+ A(+ B C))) is the PATTERN for (A + B) + C = A+ (B + C).

That the details for setting up a well-defined vocabulary is tedious is
acknowledged. The cumbersome method presented later for creating and altering
the vocabulary will eventually be replaced in faver of routines for computing
DEGREES and TYPES frem user-entered definitions.” At no time should a student have

to go through the wresent process for specifying the vocabulary.

12 Elj?

by sl

EPREICR

A L k30 Lt e O L

At

Specifying the vocabulary. As teacher, the user specifies the individual

variables, and the table of logical constants, operation symbols and predicate
letters within the constraints of (1)-(8) above. Under the defining procedures
of the so-called TEACHER mode, the vocabulary can be created, altered by
addition or deletion, or just viewed. This perticular procedure is entered
with the command VOCAB. The procedure is illustrated by the dialogue in

Figure 3.* This is the first in a series of dialogues in which the teacher

specifies a first-order theory and the student receives and requests problems.
(See Figure 16 and Appendix IV). Unless otherwise stated, sample proofs
throughout this section depend on the vocabulary specified in Figure 3.
Observe that the teacher has one last option with regard to the form of
the formulas printed out to the student. In many cases (notably all first-
order theories), it is common mathematical practice to omit all universal
quantifiers and their variables if the scope of the quantifiers is the entire
formula. - Upon reguest: by the teacher, universal qguantifiers that govern the

entire formula can be suppressed.

2. Implementation of Proper Substitution

The instructional system includes routines that are realizations of the
definitions of bondage, freedom, closure, Proper substisution for free
occurrences of variables and proper substitution for predicate letters.g* The
procedures required in order to carry out the two kinds of substitutiors will
be discussed. First, some definitions. '

Definition 1. Dummy variables are additional variables not in the user-

defined vocabulary of the system. The dwmmy of a variable
is formed by concatenating the character ‘%' at the beginning

and end of the variable. Thus A becomes %A% .

*Dhe vocabulary and problems were chosen from exercises given by Professgor
Patrick Suppes to students taking an intermediate level course in logic.

*¥*standard terminology will be employed. The reader can consult Kalish and

Moutague as well as countless other books on logic. Definitions, unless to
describe implementations, will not be repeated here.

ST

*(START)

VHO ARE YOU C(TYPE § OR T)?
*TS

PLEASE TYPE YOUR NUMBER.

*58 .
DO YOU WANT TO CREATE OR ALTER A THEORYZ?(TYPE (; OR A)
*CS

THECGRY NAME? '
*EXS

Hleeo

IN SETTING UP A FIRST-ORDER THEORY YOU MUST SPECIFY
THE VOCAGGLARY AND THE AXIOMS5e THEN YOU CAN CHOOSE
A SET OF WELL-FORMED FORMULAS AS THEOREMS, AND DERIVE
NEV RULES OF INFERENCE FROM THESE THEOREMS. THE'
COMMANDS AREs VOCAB, AXIOM, THEOREM, AND RULE. TYPE
FIN UMEN YOU ARE THROUGH.

s*VOCABS .
YOU ARE SPECIFYING THE VOCABULARY FOR A
FIRST-ORDER THEORY. VE VILL BEGIN BY
SETTING UP THE TABLE OF OPERATION SYMBOLS,
PREDICATES, AND LOGICAL CONSTANTS.
DO YOU WANT TO CREATE,ADD,DELETE,VIEV,
CR FINISH? (TYPE CsAsDs Vs OR F)

«CS
FIRST YOU MUST SPECIFY THE LOGICAL CONSTANTS

NEGATION SIGN: sNOTS
CONJUNCTION SIGN: +4$
" DISJUNCTION SIGNI *URS R
MATERIAL IMPLICATI(N: *THENS
MATERIAL YQUIVALENCEt *IFFS
IDENTITY SIGN: #=$
UNIVERSAL QUANTIFIER: *AS
EXISTENTIAL QUANTIFIERs *ES

NOW, SPECIFY THE NON~LOGICAL CONSTANTS. WHEN YOU ARE
- FINISHED, JUST TYPE ALTMODE INSTEAD OF A NEV SYMBOL. '
SYMBOL: B3 - B ’ . ’
DEGREEs #¢1 0 3 0>$
TYPELISTs »NILS

SYMBOLs® ®RS$S
DEGREEs =t} 0 0 0>8
TYPELISTs #NILS '

SYMBOLs *F$
-DEGREEs *(! 0 2 0)S
TYPELLISTs *NILS

SYMBOL3 *PS
DEGREE; =(1 0 O D8
TYPELISTS *NILS

SYMBOL: *FS ~
DEGREEs: #=<¢0 0.1 018
i TYPELISTs *TS

SYMBOLs SNS .
DEGRIEEs *¢(} 0 1 018
TYPELLSTs *NILS

SYMBOLS *L i
DO YOU WANT TO CREATE,ADD.DELETE,VIEW,
OR FINISHT (TYPE CsAsDs Vs OR F)

»AS

SYMBOL:s *BS ’

DEGREE:s »(1 0 3 018 .
TYPELiST: *(POINT POINT POINT NIL>S

i

h
:
4
I
!

Pig. 3. Specifying a vdca.bﬁla.ry.

19

1L

t
A Fuirmext provided by R

O

ERIC

Aruitoxt provided by Eic:

Figure 3, continued.

SYMBOL® *$.

’ DO YOU WANT TO CREATE,ADD,DELETE,VIEW»
OR FINISH? ¢ TYPE C»A»D» Vs OR F)

»D$

WHICH SYMBOL DO YOU VISH TO DELETE?
»BS i

1 VILL TYPE OUT EACH DEGREE. TYPE Y 1IF YOU "
WANT 70 DELETE IT: OYHERVISE TYPE ANYTHL¢G.

@ 1 0 30 CPCINT POINT POINT NIL)) *NOS
(B 1 0 3 0 NIL) *YS$S
DONE

VHICH SYMBOL DO YOU WISH 70 DELETE?

“ .
DO YOU VANT TO CREATE,ADD,DELETE,VIEW»
OR FINISH? ¢ TYPE C»A.Ds Vs OR)

ors " ‘
DO YOU VANT TO CREATE,ALTER,OR VIEV .
THE VARIABLE LISTS OR ARE YOU
FINISHED (TYPE C»AsV: OR Fi?

oS

“PECIFY THE INDIVIDUAL VARIABLES
BY PLACING THEM ON A LIST VITH AN
ASSOCIATED TYPE NANE. DO NOT USE
THE NAME <~VARIABLES~ ’
END BY T/PING AN ALTMODE.

FIRST INDICATE A 1YPE ~PARAN-

THIS IS THE LIST OF VARIABLES WHICH ARE
CONSTANTS FOR THE PS PROCEDUREs: IT CAN
BE AN EMPTY LISTe

TYPEs PARAM

LIST VARIABLES (VITH FARENTHESES»t #(U V)$
NOW ANY OTHERS?

TYPE NANE: *POINTS .
LIST VARIABLES (VITH PARENTHESES)S #(¥W X Y 2)%
TYPE NAMEs +ALGEBRAS

‘LIST VARIABLES (VITH PARENTHESES)$ *tA B C DS

TYPE NAME: 3 N

VHAT IS THE TYPE LABEL FOR THE NON-NEGATIVE
INTEGERS? a .

*ALGEBRAS

DO YOU WANT TO CREATE,ALTER,OR VIEW
THE VARIABLE LISTS OR ARE YOU
FINISHED (TYPE C»A>V» OR F)?

ws

ALGESBRA » (A B C D)

POINT © (W X ¥ 2)

PARAN = <U V) *

DO YOU WANT TO CREATE,ALTER,CR VIEV
THE VARIABLE LISTS OR ARE YOU .
FINISHED (TYPE C»AsVs OR F)?

ws ~ :

DO YOU VANT TO SUPPRESS PRINTING OF
UNIVERSAL QUANTIFIERS VHERL THE SCOPE OF THE
QUANTIFIER IS TME ENTIRE FORMULAT
CTYPE Y» ELSE ANYTHING)
sY$ -

s3F INS
T

.®

i
i
3
{
i

Definition 2.

Definition 3.

Definition L.

Definition 5.

Definition 6.

The dummy pattern of an expression is its prefix-list notation

withk each free occurrence of a variable replaced by its
corresponding dummy. Thus 'A + B = B + A' is an expression
whose dummy pattern is: (= (+ %A% %B%)(+ 48% BA%)).

The cccurrence number of a symbol or term in an expression is

determined by counting the occurrences of the symbol or term,
starting at the left of the expression and scanning to the right.
The scope of a constant ® in a dummy pattern is given explicitly
as any element, either a list or an atom, .contained in the list
whose first element is O.

Let I be the list whose first element is a constant ® of DEGREE
<i m n p> such that m # 0. Thus by 'L contains the variable

125 term) Q' is understood to mean that O is either an element

of +he 1lis. L or, recursively, there is a list L; guch that L'

is an element of L and L' contains C.

An occurrence of a variable @ is-bound only if there is an L

of the sort described in definition 5 such that L contains C.

Then the following determines which variable binding operator d

of the list L binds a variable C.

1. If the variable & is one of ai,i=l,.,,,m in the

expression al.,.amﬁl...ﬁngl...ap, then & is a variable

of guantification bound by that . In I, oy is the

(i+1l)st element, & is the first element.

2, If o deoes not satisfy (1), but & is within the

scope of 8. If @ is not also within a list It
such that L contains L' and the first element
of I' is a binding operator, then & binds C.

The system has two functions for testing bondage.
BOUND [IT STRING OCCl

BOUND asks if a particular occurrence (OCC) of a variable (IT) is bound in
the expression (STRING). The value of the expression is *¥% if the indicated

occurrence of IT is not in STRING; it is NIL if there is such an occurrence,

but it is not bound. If the occurrence is bound, the value of the functions is

the occurrence nu-t2r of the binding operator.

21

16

Since symbols can be multiply defined, it is possible that the functions
which FIND ONE of the occurrences of a binding operator will, in fact, find an
occurvence of a symbol identical with a binding operator, but one that is used
as, say, a predicate. Therefore, the program has the task of determining if the
symbol is the initial element of the list L of a well-formed expression, and, if
so, if it is being used as a binding operator. For example, let A have multiple
degrees: <L 10 I>and <L O 1 0> Then the formula (A X(A X)) is well formed.
The first occurrence of A is a binding operator, the second is a formula-maker.
In the sublist (A X), X is not, of course, bound by the formula-maker A. But,
if A has the DEGREE <1 1 0 0>, it would be.

In order to differentiate between these various cases, the program reparses
the list L. The parse is initially limited to a symbol table consisting
entirely of degrees for binding operators. It is then expanded to the original
symbol table in order to complete the analysis. If L is well formed, the first
element of L is necessarily a binding operator.

BOUNDANY [IT STRING] ’

Is the variable (IT) bound anywhere in the expression (STRING)? The value

is *P* if there is not any occurrence of the indicated variable in STRING, T

if there is at least one bound occurrence, and NIL if there is at least one

occurrence but no occurrence is bound. BOUNDANY is an iterated application of

the function BOUND. '

Definition 7. An occurrence of a variable & is free in the expression @ if it
stands within © but is not bound in 9. Three functions answer
the questions about freedom. A

FREE [IT STRING OCC]

Is the occurrence (OCC) of the variable (IT) in the expression (STRING)
free? This function calls on BOUND and returns NIL if the value of BOUND is

T or *¥T¥; otherwise it returns T.

FREEEVERY [IT STRING]

Is every occurrence of the term (IT) free in the expression (STRING)?
This function returns T if BOUNDANY returns the value NIL or *¥ for all
variables free in the term IT; otherwise it returns NIL.
FREEANYWHERE [IT TRING]

Is any occurrence of the variable (IT) free in the expression (STRING) ?
FREEANYWHFRE returns NIL if no free occurrences of IT exist. Otherwise it

17

22

returns the occurrence number of the first free cccurrence of IT.

Definition 8. Two kinds of proper substitution--for free variables and for

predicate letters--are made available by using the procedures
for bondage and freedom of a variable in an expression.

Proper Substitution for Free Occurrences of Variables. Technically, a

symbolic formula ¥ comes from a symbolic formula ¢ by proper substitution of a
symbolic term B for a variable & if ¥ is like ¢ except for having free
occurrences of P wherever ¢ has free occurrences of C. Implementation of
proper substitution for free variables requires two steps.

1. Only replace an occurrence of & by B if the occurrence of & is free,
Recall that & is free in @ if and only if it is not bound in @. The
function FREE performs this check.

2. Keep the (possibly nonatomic) term B free. For a term to be free,
all free variables contained in the term must remain free after
the substitution.

A flow diagram for the function PSVAR [B ¢] (proper substituticn of

yariables) is presented in Figure 4.

Note on Figure 4: In testing for freedom and bondage, the function BOUND
serves to "mark" the specified occurrence of the variable O in the expression by
replacing @ with the atom.%aﬁ. It then calls on the function BINDl to determine
if that marked location is within thr scope of a binding operator and, moreover,
if that binding operator governs &. To determine if the term P remains free,
PSVAR bypasses the function BOUND because the location is already ﬁarked. PSVAR
must call on BIND1 for each free variable in B.

Proper Substitutions for Predicate ILetters.: Recall that PARAM is a list of

nonsubstitutable variables. Any variable in the language which is not a member
of PARAM can, by proper substit:tion, be replaced by a wellffdrmed térm. For the
following discussion, let PARAM = (WX Y 2Z). Let A,B,C be individual variables,
and let.-the predicate letters F and G have degrees <L 01l 0>and <L 02 0>
respectively.

Consider the sentence of first-order logic:

vz3Xx (F (X) -~ F.(2)). - 23
18

O

ERIC

A 7o Providea by ERic

COUNT « 1

T ;

is there a. <COUNT>
occurrence of a7 . ,--'———'m.—— v

Is this occurrence Yes | 'MARK' this ocourrence of O
of a free? = ‘in g -

| . K

COURT + COUNT + 1

FV « list of free variables

vhich occur in B

Substitute B for the -
YMARKED' place in § |

g + first element in FV .
“|Fv «~ FV - [first element of FV]

1

“BINDL:

Yes if ¢ were a simple term in the
: - - Yo *MARKED' - place in @, would &
-COUNT « COUNT + 1

be free?’

Fig. 4. PSVAR[a B ¢]
Propor::substitution of & for P in the
expression ¢.

19 2 4

It
¢
4
i

The proper substitution of the formula G(A,Y) for the one-place predicate F in
the above sentence takes place as follows:
1. replace every occurrence of F by G(A,Y);
2. successively replace each variable (Which ie not an element of PARAM)
of G(A,Y), in order, by the arguments of F. Here, A is replaced by X
in the first occurrence of F; by Y in the second occurrence of Fj
3. the resulting expression is:
vz3ax (6(X,Y) - - ¢(z,Y)).
There is one restriction imposed on this substitution operation. No variable that
ocecurred in the formula G occurs in the séntehce we started with. (A precise
characterization of proper substitution for predicate letters appears in Kalish
and Montague (1964, pp. 157ff).) .
In the program, the function PSPRED [X 1 ®] carries out thé'proper'substitution

of the predicate 7 by X in the expression ®. The flow diagram of PSPRED is given

in Figure 5. The routine first checks to see if X and @ have arguments in common.

If they do, the function returns NIL. Otherwise, PSPRED computes the list of
substitutable variables, L, and proceeds, for each occurrence of 1 and its
arguments al,...,am, to successively call on PSVAR [BieL ai X] in order to obtain
the proper instance of X which will replace the formula 1. If there are no
occurrences of 7 in @, then PSPRED returns *T*

The functions PSVAR and PSPRED, which carry out the two kinds of proper
substitutions, are used in constructing derivations or proofs, i.e., they are used
to compute a line which is an instance of an axiom or previeusly proven theorem.
The next sections explain how these procedures are used by an individual in

constructing a proof or derivation.

3, Instantiation Procedures for Nonlogical Axiomatic Theories

Each kind of substitution procedure (PSVAR and PSPRED) can be characterized

in terms of its use in constructing proofs or derivations, i.e., for obtaining
instances of an axiom or theorem.

Simultaneous Universal Instantiation. An axiomatic theory consists of two

things: (a) the class of nonlogical constants, and (b) a class of axioms, which is
any recursive class of formulas containing no nonlogical constants other than those

n (a). The manner for defining the class of constants was already discussed

20 25

o

o e

et i mtaie e TR R AT

O

ERIC:

Aruitoxt provided by Eic:

CT =~ 1

VARLIST +~ SORT [free variables in X]

Y

Ie VARLIST N [veriables in §] empty? No RETURN an error

g

Yes

o « FIND [the CT occurrence of 4 in §] |- There was none

1

Is 1 a predicate? I

.na 'l

I

CT« €T+ 1 ARGLIST +~ (all but £irst element of ‘g)

VARLIST « (remve perameters from VARLIST)
vex

Replace ¢ in ¢ by
¥

F_:'Lg. 5.

¥ « PSVAR [(first element of ARGLIST)
(first element of VARLIST)
¥

ARGLIST « all but first element of ARGLIST
VARLIST ~ all but first element of VARLIST

PSPRED[X n @]
Proper substitution of X for 7 in 'the expression

Y}
op)

21

3.

{
|
1
|
!
H
i
H
H
i
|
!

R e adiid

(page 7). The class of axioms is composed of a list of well-formed formulas.
Each formula has a distinct name associated with it with which the user can refer
to the axiom. Below is an example of a class of axioms for a Euclidean geometry
in a one dimensional space. (The vocabulary was already specified where B is a
three-place predicate denoting "betweenness" and the variables W, X, Y, and Z

are points on a line.)

NAME ' FORMULA

AXA B(X,Y,X) »X =Y .

AXB B(X,Y,Z) - B(Z,Y,X)

AXC (B(X,Y,W) & B(Y,Z,W)) — B(X,Y,Z)

AXD (B(X,Y,%.j OR B(Y,Z,X)) OR B(Z,X,Y)

AXE ((NOT ¥ = Z) & B(X,Y,2)) & B(Y,Z,W)) — B(X,Z,W)

The command for this kind of instantiation is the name of the axiom or theorem.
The program types out the formula associated with the name énd fhen presents each
distinct free variable Vi in the expression. The studeni types a well-formed term
Ti' BEach occurrence of the dummy Vi in the Jummy pattern of that expression is
replaced by Ti' The pattern is then tywed cut, in the usual format, as a new
line of the proof or derivation.

As an example, take axiom AXA.*¥ To obtain an instance of AXA, the sequence

of commands is:
AXA B(X,Y,X) - X =Y

(1) B(W’X’W) —»W =X

The PS Procedure.. 1PS! is the command name of the second kind of

instantiation procedure. It is used to indicate that one wishes to take an
instance of a formula by proper substitution for individual variables and
predicates. The user indicates which formulas or terms are to be substituted for
the predicates and the free variables, respectively, and gives the order in
which the substitutions are to be made.

In the PS procedure, the actual value of the axiom or theorem, not the
pattern, is referenced. The student types:

PS: <name of axiom or previously proved theorem>

If, for some reason, the axiom or theorem is not available, an error message is
printed. Otherwise, the computer types a double colon indicating that the program
is waiting for a response, and the user gives the sequence of substitutions by

typing either the pair

*The convention is to underline all items typed by the user; all other
information is typed by the computer program.

22

27

1. <variable> : <well-formed term>
or 2. <predicate letter> : <well-formed formula>

where <variable> and <predicate letter> all belong to the vocabulary of the
theory. One or more such pairs could be typed. In fact, no pair can be typed
and the result cbtained will be the axiom or theorem itself.

The user indicates the end of the sequence by typing only the ALTMQDE'($).
Each substitution request is then applied, in the order in which it was typed,
to the result of the previous substitution in the sequence. The first is, of
course, applied to the axiom or theorem itself.

As an example, take the theorem TH1O to be (V X(F X>P)) e @ XF X -»P)).
If F is a one-place predicate and P is a zero-place predicate, the command
sequence to generate line (n) might look Llike this.

PS : TH1O

i (n) (¥ X(F(X,Y) » VZ(6(Y,2)))) <> EX(F(X,Y)) -
v z(6(Y,2))).
Line (n) was obtained by
1. Proper substitution of V Z G¢(Y,2) for P in TH1O to give
(v X(F X » V2(6(Y,2)))) «E@X(F X)) - (v z(c(Y,2))).
2,. Proper substitution of F(A,W) for F in the result of (1):
(v X(F(X, W) - V2(6(Y,2)))) = (EX(F(X,W)) - 7 2(6(Y,2)))

3., Proper substitution of I for free occurrences of W to obtain the

formula on line (n). ‘

' the command procedure PS merely checks fo see which kind of substitution is
desired and then calls on either the function of PSVAR (page 17) or the function
PSPRED (page 17) to carry it out. However, once the new line is formed, the
procedure reparses the formula in order to guarantee that all. of the computed
new terms agree with the corresponding TYPE parameters of the termrmakers and

formula~makers.

4, Axioms and Theorems

Below is a brief description of how the axioms and theorems are added to
the command language when the user is in . TEACHER mode, and how the formulas

are processed so that the user can reference them as indicatéd in Section 3.

22

Adding Axioms to the System. To assist in describing the program procedures

for adding axioms to the underlying nonaxiomatic logical system, some terminology
is introduced or reiterated here. Each axiom has a name, some mneumonic made up
of alphanumeric characters only. The formula @ is the value (VAL) of the name.
If ¢ is parsed and its closure formed (CLOSED) such that ¢ has the form

v 13,.kaﬂg then ¥ is the matrix of ¢@. The dummy pattern is formed for the
axiom by dropping the preceding string of universal quantlflers‘dal,...)fa and
replacing each free occurrence of the individual variables Oi""’ah in the
matrix by an alphabetic variant--the dummy. This transformed matrix, already

in the prefix-list notation due to the parsing, is the dummy pattern (PATTERN)

associated with the axiom name.

The REQUEST list is the list of variables of generalization.(al,...,an),
i.e., the variables occurring free in the matrix. BEach element on the REQUEST
1ist is in the vocabulary and, therefore, has a TYFE label associated with it.
The list of these types, ordered in accordance with the REQUEST 1list, is called
the TYPE list. Each of the five elements--VAL, CLOSED, dummy PATTERN, REQUEST
list, TYPE list--is an attribute on a property list associated with the axiom
name.

How to use the Axioms in Constructing Proofs. A line of a derivation of

proof may be obtained by universal instantiation of an axiom as demonstrated
in Section 3. When the user types the axiom name, the program replies with
the value VAL associated with the axiom. (Note that the axiom as given by the
teacher is always tyred out or, at any rate, the representation preferred by
the teacher is always typed out. In most cases, this would mean omitting any
universal quantifiers whose scope is the whole formula.) Each member of the
REQUEST list is then presented and followed by a double colon to indicate that
the program expects a response from the user. The program, in each case,
expects to receive a well-formed term of the same type as the corresponding
clement in the TYPE list. (If the TYPE is "T," any term is acceptable.)
The acceptable terms are paired with the dummy of the variable from the REQUEST
list in order to form a sequence of substitutions.

After all the elements of the REQUEST list have been presented, and the
substitution sequence has been completely specified, the program carries’ out
precisely, for each dummy-term pair, the proper substitution of the term for

the dummy variable in the matrix of the axiom (that is, PSVAR [term dummy matrix].)

Q

2k

23

1. <variable> : <well-formed term>
or 2. <predicate letter> : <well-formed formula>
where <variable> and <predicate letter> all belong to the vocabulary of the
theory. One or more such pairs could be typed. In fact, no pair can be typed
and the result obtained will be the axiom or theorem itself.
The user indicates the end of the sequence by typing only the ALTMODE ($).
Each substitution request is then applied, in the order in which it was typed,
to the result of the previous substitution in the sequence. The first is, of
course, applied to the axiom or theorem itself.
As an example, take the theorem TH10 to be (VX(F X>P))e @X(FX - P)).
If F is a one-place predicate and P is a zero-place predicate, the command
sequence to generate line (n) might look like this.
PS : TH1O
:: P 1 VA(G(Y,Z))

:: F i1 F(A,W)
D 4

(n) X(F(X,Y) - VZ(G(Y,2)))) e EX(F(X,Y)) -

v 2(6(Y,2))).

Line (n) was obtained'by
1. Proper substitution of V .Z G(Y,Z) for P in TH1O to give
v X(F X » VZ(6(1,2)))) e EX(F X)) - (v 2(c6(¥,2)))-
2. Proper substitution of F(A,W) for F in the result of (1):
O X(F(X, W) > V2(E(Y,2)))) <> BX(F(X,N)) » (7 2(6(¥,2)))
3., Proper substitution of_Y for free occurrences of W to obtain the
formula on line (n).

The command procedure PS merely checks to see which kind of substitution is
desired and then calls on either the function of PSVAR (page 17) or the functlon
PSPRED (page 17) to carry it out. However, once the new line is formed, the
procedure reparses the formula in order to guarantee that all of the computed
new terms agree with the corresponding TYPE parameters of the term-mekers and

formula-makers.

4., Axioms and Theorems

Below is & brief description of how the axioms and theorems -are added to
the command language when the user is in TEACHER mode, and how the formulas

are processed so that the user can reference them as indicated in Section 3.

[e 30 o3

Adding Axioms to the System. To assist in describing the program procedures

for adding axioms to the underlying nonaxiomatic logical system, some terminology
is introduced or reiterated here. Each axiom has a name, some mreumonic made up
of alphanumeric characters only. The formula ¢ is the value (VAL) of the name.
If ¢ is parsed and its closure formed (CLOSED) such that ¢ has the form
‘val...ﬁfanw, thenvw is the matrix of ®. The dummy pattern is formed for the
axiom by dropping the preceding string of universal quantifiers‘ddi,...)fah and
replacing each free occurrence of the individual variables al,...,ah in the
metrix by an alphabetic variant--the dummy. This transformed matrix, already

in the prefix-list notation due to the parsing, is the dummy pattern (PATTERN)

associated with the axiom name.

The REQUEST list is the list of variables of generalizati on (al,...,an),
i.e., the variables occurring free in the matrix. Bach element on the REQUEST
list is in the vocabulary and, therefore, has a TYPE label associated with it.
The list of these types, ordered in accordance with the REQUEST list, is called
the TYPE 1ist. Each of the five elements--VAL, CLOSED, dummy PATTERN, REQUEST
list, TYPE list--is an attribute on a property list associated with the axiom
name.

How "to use the Axioms in Constructing Proofs. A line of a derivation of

e

proof may be obtained by universal instantiation of an axiom as demonstrated

in Section 3. When the user types the axiom name, the program replies with
the value VAL associated ﬁith the axiom. (Note that the axiom as given by the
teacher is always typed out or, at any rate, the representation preferred by
the teacher is always typed out. In most cases, this would mean omitting any
universal quantifiers whose scope is the whole formula.) Each member of the
REQUEST 1list is then presented and followed by a double colon to indicate that
the program expects a response from the user. The program, in each case,
expects to receive a well-formed term of the same type as the corresponding
element in the TYPE 1list. (If the TYPE is "T," any term is acceptable.)
The acceptable terms are paired with the dummy of the variable from the REQUEST
iist in order to form a sequence of substitutions.

After all the elements of the REQUEST list have been presented, and the
substitution sequence has been completely specified, the program carries out
precisely, for each dummy-term pair, the proper substitution of the term for

the dummy variable in the matrix of the axiom (that is, PSVAR [term dummy matrix].)

2h

31

To continue the example given earlier, the property list of the axiom
AXA is:

VAL B(X,Y,X) - X =Y

CLOSED Vx(VY(B(X,Y,X) »X = Y))
PATTERN (- (B %x% %Yh Fx%) (= %x% B¥%))
REQUEST (X Y)

TYPE (POINT POINT)

Specifying an Axiom in the System. To specify an axiom, the teacher types

and responds to the following sequence

AXTOM
NAME: : <name of the axiom>
WEFF: s <a well-formed formula>

After seeing the name of the axiom and checking to see if it is distinect from
any other name associated with formulas, the program types IWFF::' in order to
request the formula. The formula must be well formed. If it is not, the
request is repeated. If the user changes his mind, he can type an AILTMODE to
get out of the entire command sequence. This escape route is available for all
command sequences in both the TEACHER and STUDENT modes of operation (see
Figure 16).

If the formula is accepted, the attributes for the axiom are computed, the
axiom name is added tc the general AXIOMLIST and the program continues. Generally,
in the TEACHER mode, the user specifies curriculum to be presented to other users,
the "students." As such, the program differentiates between the general axiom
list (the list of all the axioms specified by thgftéacher) and the list of
axioms the student may use. An axiom is not placed on the student's axiom list
(and thereby made available to that student for constructing proofs) until a
command to do so is given in the curriculum (see page 63, on Defining Problems).

Adding Theorems to the System. A theorem is a formula of a theory derivable

from the axioms of the theory alone. A theorem is processed in much the same
way as an axiom. Once a theorem has been proved, it can be named and used in
constructing other proofs or derivations. (The same is true of formulas chosen
as lemmas by the student.)

A theorem is used in the same manner as axioms in the construction of
proofs or derivations. The name of a theorem specified by the user in the

TEACHER mode is always 'TH' concatenated with a positive integer. Thus the

= 32

teacher can order and number the theorems. This is the only case in which a
command name is not an alphabetic string. The program uses the numerical portion
of the command to guarantee that the user is permitted only instances of theorems
which he has already proven. Attached to a theorem name are the attributes VAL,
CLOSED, dummy PATTERN, REQUEST list, and TYPE list. These attribut-s are
computed and used Jjust as for the axioms.
Specifying a Theorem in the System. The format of the command to specify

a theorem if the user is in the TEACHER mode is:

THEOREM

NUMBER:: <positive integer>

WFF:: <well-formed formula>

The formula is processed exactly as that for an axiom. The name of the theorem
automatically becomes !'TH<positive integer>.'

Formulas proven by the user while in STUDENT mode are named &t the
completion of the proof (see page 68, Requesting Problems at Run Time).

PART III. THE COMMAND LANGUAGE

1. Introduction

The result of using the language M to specify an axiomatic system is to
build the command language C. The instructional program interprets a sequence
of well-formed commands Ci belonging to C as an algorithm for constructing a
derivation or proof of a formula in the specified system,

Two commands have already been given: {a) the name of an axiom or of an
established theorem, and (b) the procedure PS. If the command takes the form of
a simple mneumonic that was defined. as the name of an axiom or theorem, the
program carries out the procedure previously presented (page 22). These cC
as well as those for the rules of inference and the special procedures (1ike
PS), are "executed" by the program with the result that the program generates
new lines of a derivation or proof. ILine by line, the user types commands
until the desired formula has been generated.

The command language consists of code for the rules governing substitution
(as already explained), sentential rules and gquantifier rules that reflect. the
basic logical system (see especially Appendix II for a summary of these
sentential rules), laws of identity, and rules for definite descriptions.

§necifically these are:

2 33

U P SN

[

1. Proof procedures: conditional proof (cp), indirect proof (IP), and

universal derivation (UG);

2, Six primitive rules of inference: modus ponens (AA), three rules

for quantification (US, ES, EG), two rules for the logic of
jidentity (IDC, IDS), as well as two interchange rules to Permit
the replacement of a well-formed formula or term by an equivalent
formula or term within a line of a derivation or proof;

3. Generalized interchange ruleg: these permit an interchange on

the basis of an axiom of theorem. that has the form of a
generalized identity or material bi-conditional;

4. Derived rules of inference; and

5. Miscellaneous rules: delete the last line (DLIL), enter a line

(ENT), INITiative to request problems is given to the student,
SHOW that a line is a valid inference to make, and HELP the
user complete his proof.
The general syntax for the command language is:
<command> . += <line references> <commard neme> <occurrence references>:
<other information> $l <line references> <command name>

<occurrence references> $
<line references> 1:= <line number> | <sequence of line numbers> | @

<sequence of line numbers>

::= <sequence of line numbers> . <line number>| <line number>

<occurrence references>

. 1= <occurrence number> | <sequence of occurrence numbers> I¢

<sequence of occurrence numbers>
::= <sequence of occurrence numbers> . <occurrence number> |

<occurrence number>

<line number>

nonnegative integer (the number of a line already

generated and not closed off)
<occurrence number> ::= nonnegative integer

<command name> : 1= <axiom name> |TH-<nonnegative integer> |PS]WP IGEn\Tl
<proof procedure> |<primitive rule of inference> |

<derived rule of inference> <miscellaneous codes>

3@ 27

<proof procedure> CP[IPI UG

<primitive rule of inference>

=RE|RQ|AAiIDc|IDs|Es|UleG

<miscellaneous codes> ::= DLL | ENT | INIT | SHOW | HELP

<derived rule of inference> string of alphabetic characters (other

than those already reserved)
<other information> ti= <well-formed expression>-f<hame>¢ <variable>

If the execution of a command code requires one or more further responses
from the user, the interpreter always types a double colon to indicate that it
is ready to accept the response.

After the user types a command, the interpreter performs a syntactic
analysis of it. If any syntax error is located, the command is ignored and an
appropriate error message‘is printed. DetectingVSYntax errors is straightforward,
and the benefit of concise error messages'should be clear. These messages can
reteach a particular command's format. By typing the command name and then
successively making corrections in the syntax as directed by the error messages,
the user could learn to prbperly format the command.

This initial analysis of a command is sufficiently standard so that message
forms can be stored and retrieved from a peripheral device and the interpreter
can compute appropriate insertions. Three main syntactic analysis routines
make use of these messages. They serve to

1. read in tie command; ‘

2. dispatch the command to the appropriate processing routine; and

3, check the syntax of the command in terms of the line and

occurrence references. ' '
These three routines are presented as block diagrams in Figure 6. Bach circled
number designates an error return from the routine: the error message (as

nunbered in Figure 7) is completed and printed.

The rest of this section contains a detailed description of each of the
five elements of the command language listed above. Included in each discussion
are definitions, program procedures for learning and carrying out the commands,

QO together with some examples.

8 95

Form the list of line references error, cannot —@

Get the command name error, there is no name —@

Form the list of occurrence references — ——— €YTOT, cannot ——@

Is there anything else in the user's

response? no { done)

yes

Is the first character a colon? error, no——@

yes

Store the rest of the response as

tother information' error, there is

nothing after the

@ cton ———()

Figure 6. Syntax Analysis--
(a) Read in the Command

29

b RS DA

!
:
{
i
1

Does the command belong

Process as a general rule-=check

to the student's rulelist? ____EEEL,.the syntax; all other errors are
no application errors
Does command belong to the yes Check the syntax
—_’ .
student?!s axiom list? Any line of occurrence references?
no no yes

TIs the command *TH'?

no

yes

for each variable
on the request list

the response may be:

Has the student

proven this

theorem?

no

An escape 1rom the

command?

no yes

Short form:

find distance
of left-hand
side of axiom

in the line

error, cannot

Command € curriculum rules? The term? ———————— error
e

no

Command € curriculum axioms?

—@
yes

3
no

Command &€ special rules?

nL_@

Evaluate the command:

no

checklsyntax

wff expression required? yes, but not there
N

deleté the last line?

guantification rules

Figure 6.

Check the type of the term —error

errors —— 25—2?
errors -27-39

AN

Syntax Analysis--
(b) Dispatch the Command to the
Appropriate Processing Routine

30 :377

error @

Check the number of

line references

For each line reference, do:

Is the line number a

non-negative integer?

Does the line exist in

the proof?

Is the line within the
_body of a completed

subsidiary derivation?

ok
Check the number of

occurrence references

For each occurrence reference,

is it a non-negative number?

Is any other information required?

no l . yes

Does any other
information exist?

no yes, |error

Figure 6.

no,

error

error, not the right number-——<:::>

no, error

no, error —@

yes, error —-'

error, not the right number
error, no————<::>

Does any other

information exist?

yes

Syntax Analysis--
Check the Syntax of the Command

()

31

38

i ente s te A S

1 +FW N

[9))

O\ O~

11.
12.
15.
14,

15.
16.

17.
18.
19.
20.
21,
o2,
23.
=)
25.
26.
o7.

8.

29.
30.
31,
32,
33.

35.
36.

37.
38.

39.

<command name>> REQUIRES ONE LINE NUMEER.

<command name> REQUIRES <number of nremises> LINE NUMEER.

THE LINE REFERENCE MUST BE A NUMEER.

THERE IS NO LINE <line number>.

YOU MAY NOT USE LINE <line number>. LINE <line number> DEPENDS ON
THE WORKING PREMISE LINE <line at which the working premise was
introduced> WHICH IS NO LONGER AVAILABLE.

YOU MAY NOT USE LINE <line number>, LINE <line number> DEPENDS ON
THE ASSUMPTION FOR UNIVERSAT, GENERALIZATION MADE AT LINE <the gen
command precedes this line>.

<command name> REQUIRES AN OCCURRENCE NUMEER.

<command name> REQUIRES <number of occurrences> OCCURRENCE NUMBERS.
THE OCCURRENCE NUMEER MUST BE A NUMEER.

<command name> DOES NOT EXPECT A COLON WITH AN EXPRESSION OR SYMBOL
TO FOLLOW.

A NUMBER MUST FOLLOW A PERIOD.

NO COMMAND REQUESTED?

AN EXPRESSION, SYMBOL OR NAME MUST FOLLOW A COLON IN THE COMMAND.

THE FORMAT IS INCORRECT. AN OCCURRENCE NUMEBER OR A COLON MUST

FOLLLOW THE COMMAND NAME.

THERE IS NO OCCURRENCE IN LINE <line number> OF A TERM TO WHICH

THE RULE <command name> CAN BE APPLIED.

THERE ARE NOT <number of occurrences> OCCURRENCES IN LINE <line
number> OF A TERM TO WHICH THE RULE <command name> CAN BE APPLIED.
TRY AGAIN. '

NOT A WELL-FORMED TERM.

THE TYPE OF THE TERM MUST BE <type name>,

YOU HAVE NOT PROVEN THEOREM <theorem number>.

YOU MAY NOT USE RULE <command name> IN THIS PROBLEM.

YOU MAY NOT USE THE <command name> AXTOM.

<command name> IS NOT A RULE.

<usert!s response> IS NOT A WELL-FORMED EXPRESSION:

THERE IS NO LINE TO DELETE.

LINE <line number> IS A PREMISE AND CANNOT BE DELETED.

<term of instantiation> CANNOT BE USED AS A VARTABLE OF INSTANTIATION.
YOU ALREADY KNOW SOMETHING ABOUT <term of instantiation>.

<variable> WAS INTRODUCED AS AN ARBITRARY INDIVIDUAL FOR THE PURPOSE
OF UNIVERSAL DERIVATION.

<variable> IS ALREADY MENTIONED IN LINE <line number>.

<term> IS NOT A VARIABLE OF INSTANTIATION.

<term> IS NOT A VARIABLE OF GENERALIZATION.

<term> OCCURS FREE IN TINE <line number>.

LINE <line number> DOES NOT OCCUR AFTER THE LAST GEN WAS REQUESTED.
<variable> WAS THE LAST VARIABLE OF GENERALIZATION REQUESTED.

THERE IS NOT A FREE OCCURRENCE OF <term> IN LINE <line number>.
THERE ARE NOT <number of occurrences> FREE OCCURRENCES OF <term> 3
IN LINE <line number>.
THE VARTABLE OF GENERALIZATION MUST NOT OCCUR FREE IN THE TERM. |
AT IEAST ONE OF THE OCCURRENCES OF <alpha> ON WHICH YOU ARE
GENERALIZING IS BOUND IN LINE <line number>, !
IMPROPER APPLICATION OF <command name>. :

Figure 7. Syntactic Error Message Forms.

32

39

2. Proof Procedures

To facilitate the construction of proofs and derivations three derivation
or proof procedures are available. They constitute the heart of a natural
deduction formulation of first-order logic. Two of these, the conditional

proof (CP) and indirect proof (IP), depend on the introduction of a working

et Yt e

premise (WP). The third is universal derivation {UG) in which the user establishes

a universal statement. UG (for "Universal Generalization") depends (as explained

below) on the user's announcing his intention to generalize a particular individual
variable (this is done with the command GEN).

The command language is similar to a programming language; each command
is an instruction to the interpretive system. A well-formed command, executed
by that system, constitutes an application of a rule to construct an expression
in the first-order theory. This defines the construction in terms of purely
mechanical manipulations of expressions.

Associated with the notion of executing a sequential 1list of instructions

that belong to a (programming) language is the concept of subroutines. A
subroutine is a complicated command that has a name, a possibly empty set of
formal parameters and a body. The body is a sequence of commands that
manipulate the formal parameters. Moreover, each routine is delimited by
identifiers that indicate the beginning and end of the subroutine. Such routines
illustrate the idea of block structuring, or grouping, of comrands. In the
usual sense, a block structure is a means of defining the scope of identifiers.
Variables, arrays and definitions may be declared at the head of a block and
have no significance outside this block. The importance of a block comes from i
the fact that blocks may be nested, i.e., the beginning of a new block may be i
declared within the body of another block. Definitions at the head of a block
have meaning only within that block and any that it encloses.

Clearly the command sequences for obtaining instances of axioms and
previously proved theorems may be viewed as a block or subsidiary routine.
The command name is the name of the routine as well as the beginning delimitor,

the substitutable variables are the parameters and ALTMODE is the ending

delimitor. But this might be carrying an analogy too far. The three proof
procedures described below serve as sharper analogies to programming with
subroutines. In the sequel, consider the command mneumonics CP, IP and UG
?s the names of subroutines of a programming language. i
¢
« \
ERIC 33 |
PR st i, . ‘;{) %

WP. For CP and IP, the beginning of a block is denoted by the simple
command WP. WP itself is an instruction to the program, first, to set up
the mechanisms for specifying the beginning of a proof procedure, and second,
to allow the user to enter a premise of his own into the derivation. This is
a working premise; the lines of the derivation are conditional upon it. The
new premise can be thought of as a formal parameter since it only has meaning
within the block. Once the block is closed (boxed off or completed) by the
ending delimitor (in this case; the command containing the name of the proof
procedure), the premise entered by the WP rule can no longer be referenced as
a line of the proof.

The body of the block is a segquence of arbitrary but finite-length lines
that occur between the delimiting lines, i.e., those generated by the WP and the
CP or IP commands. Once a procedure is completed, the block is closed off and
no line in the body may be referenced as a line of the proof.

Analogous to the notion of the nesting of subroutines, several working
premises may be regquested in (not necessarily contiguous) succession. The
program retains the order of this series of WP reguests so that only the last
WP entered may be closed; i.e., referenced in a CP or IP command. Moreover,
although the user may be able to generate the correct expression for solving
the derivation problem, he has not solved the problem unless all the WP's have
been closed. In other words, like a well-formed computer program, every beginning
of a routine must have a well~defined end. To help the user keep track of the
block structure, the program indents several spaces for each open WP (each level
of incompleted nesting).

The command format for WP is simply the mneiwmonic:

wp (i) <well-formed formula>

The program types the number of the new line and the user enters a well-formed
formula as a premise.

CP. The user can construct or generate a conditional statement by
introducing the antecedent of that statement as a working premise, by working
out a derivation of the consequent in the usual manner, but making it conditional
upcon the entered premise, and by then using the CP rule to finally derive the
conditional statement. The format for the command is

<line a>, <line b> CP

where <line a> refers to the last working premise introduced and <line b> refers

ERIC % 41

to any line of the derivation. Of course, <line a> and <line b> can refer to

the same line. The formula on <line a> becomes the antecedent and thsat on <line b>
the consequent of theconditional statement formed. CP indicates that the

particular WP is now closed. The delimiting line is <line b>. If <line b>

comes before <line a> in the derivation sequence, then the body of the block

is empty and only <line a> becomes unavailable.

As an example, a proof of R — (R OR P) is provided in Figure 8.

Insert Figure 8 about here

IP. In order to derive a formula @, the user may introduce the negation of
@ as a working premise (WP). He then attempts to construct ¥ and (NOT V¥) as two
lines of the proof or derivation, thus establishing the logical truth of the

negation of the working premise. This is known as a proof by contfadiction,

or reductio gg absurdum.

The IP command requires a sequence of three line numbers to precede it as
follows:

<line a> . <line P> . <line c> IP

where <line a> refers to the last wcrking premise entered and <line b> is the
denial of <line ¢>. The program gelerates as a new line the denial of the
premise on <line a>. An example of a prosf using the indirect derivation

procedure is given in Figure 9.

GEN and UG. Universal derivation, or generalization (ua), permits the
user to establish a universal statement, i.e., one of the form Ya o, as a line
of the derivation or proof. The beginning of the sequence of commands for
obtaining this universal statement is denoted by the command GEN. 1In using this
command, the user indicates which variable, @, he wants to introduce &s an
arbitrary individual for the purpose of universal derivation. The command format
is:

GEN: <g>

ERIC - 42 5

B TR

O

DERIVL R ->(R OFK B>

txWwPS$ (@ B
t*1FDS
t3xFS t2)

3%1.2CP8 «3

t2242:5IP% (6)

t*6FDS
t3%RS €7>
t*x7CDL S «8)

txlele8IPS ()

CORRECTe « o

sH$

R Ok P

R -»(K OK P)

CORRECTese
Fig. 8.

‘DERIVE R ORC(NOT R)
tabPS (3} *NOT ¢R OR ¢(NOT R))$
t*wFS) ®*KS
=] 3 *RS
t*3FD$
vt4#NOT RS (¢4) R ORCNOT R)
t*3¢4. 1IPS ¢5) NUI R

NOT R

¢(NOT RIOR R

R OR(NOT R).

R OR(NO1 K»

Pig. 9.

DERIVE A YCF Y => F Y)

t*P% 1y =F X$
3 *GENtXS

X CANNOT BE USED A

S A VARIABLE-OF

Conditional prodf.

Indirect proof.

GENERALIZATIONG 11 15 NOT AN ARBITRARY INDIVILUAL.

t*GENIYS
oK

s*WES)

t22.2CP% <33

*F Y$

F Y-> F Y

t*3UG3YS €4) A YCF Y => F Y)

CORRECT. .« .

Fig. 10.

Universal derivation.

36

43

The notion of nesting CfN's is like that of the WP's so the discussion on block
structures will not be repeated except to note that GEN's and WP's can be

nested within one another, i.e., one Or more working premises may be entered
after the GEN command is accepted. However, the universal derivation introduced
by a GEN request cannot be completed unless all such working premises are
closed. Conversely, GEN commands that occur after a working premise is entered
must be closed before the external WP can be.

This derivation procedure is intended to capture the proof technique in
which one demonstrates that every object has a certain property by showing that
an arbitrary object from the universe of discourse has the property. Consequently,
the interpreter must ensure that the object & indicated for this purpose is
actually an arbitrary one. This is done by determining if & occurs free in any
antecedent line @, (FREEANYWHEREE!@E]). An "antecedent line" is defined as any
line occurring in the proof which has not already been closed off by one of the
pairs WP-CP, WP-IP, or GEN-UG. If the o is accepted, the program types oK',

GEN does not generate a line. The main reason for its use in the
generalization procedure is to prevent the user from performing a number of
unnecessary steps; for example, without GEN, the user may discover several
steps later that he cannot generalize over a variable as he had intended.
Furthermore, by introducing & into the proof, the user is prevented from using
a as a variable of specification in ES (existential specification rule, page 40),
which violates the restriction on the latter rule. This GEN announcement is
one method used to reduce the amount of irrelevant work and at the same time
emphasizes the care needed in introducing new variables.

After the user has constructed the matrix ¥ of the desired universally
quantified formula, he types the command |

<line a> ‘t.ii <a>

where <line a> refers to the line containing ¥. This line must occur after the
last GEN and the <o> must be the last variable of generalization specified.

Thus, the new line is formed. A simple example of GEN-UG is given in Figure 10.

e e e L e T R R el o

- . - e e B G W e WD e omt omt B WA WS e e S S WS e

Note thet GEN serves as a delimitor so that if the user types an improper UG

Q command an appropriate error messSage is given.

4 44

3. Primitive Rules of Inference

Modus Ponendo Ponens (AA). By the classical rule of modus ponens, a

symbolic sentence ¢ may be inferred from the symbolic sentence ¥V — @ and V.
If a derivation consists of lines

(1) P-Q

(2) P
then, the command 1.2AA generates the new line: (5) Q. The mneumonic AA
stands for "affirm the antecedent,”" which suggests the semantical analysis of
the rule.

The AA command is processed in the same manner as a derived rule of
inference. This procedure is discussed in detail in the section on derived
rules of inference (page 47ff.). Rules of inference for sentential logic
include Form a Conjunct (FC), Form a Disjunct (FD), Double Negation (DN),
and Deny the Consequent (DC), to name a few familiar ones.

Rule of Universal Specification (US). The implementation of the three

rules for quantification theory reflect the standard characterizations of these
rules. In the following, let & be a variable, B a term, and ¢ and ¥ formulas. .
The principle of specification permits the deduction of some symbolic
formula ¥ from a universal statement VO. The rule of universal specification
US (sometimes referred to as universal instantiation) states that ¥ comes from

@ by PSVAR[B @ ¢] for some term B. The term of instantiation is B.

The intuitive content of this rule may be expressed in the slogan "what
is true of everything is true of any given thing." The only restriction on B
45 that it can be properly substituted for the indicated universal guantification
varizble. The procedure for carrying out the rule must also ensure that the
computed type for B is consistent with that for @. The command format for US is
<line number> US
<> 1 B>

where the line reference must contain a universal statement. The interpreter
types the variable of generalization & found on the line and then a double
colon to request the user enter B. The new line is ¥ where ¥ = PSVAR[B O ¢].

A gimple example of this command is:

45

38

(1) V X(F X »3 X(6(X,Y)))
1 US

i —

X::z (2) F(z)-3 x(e(X,Y))

Rule of Existential Generalization (EG). The rule of existential generalization

(EG) permits an inference from some expression ¥ to an existentially quantified
statement 3a @, where, for some term B, B contained in ¥, ¥ = PSVARIo B o]

The formulia ¥ may contain more than one occurrence of B and it may not be
the case that the user wants to generalize over all such occurrences. in
typing the command, the user must specify a sequence of occurrence references
for each occurrence of a B in v that is to be considered.

Tn order to apply this generalization process FREE[BV 0CC] must equal T for
each referenced occurrence ocC of B. Moreover, O cennot occur free in V(FREEANYWHERE
oy = NIL). Otherwise, in substituting o for B in ¥ to obtain @ and in forming
the existential statement 3@, ¥ will not be obtainable by PSVARB a o).

The format for the EG command 1s

<line number> EG <sequence of occurrence references>
<> L P>

The user states on which line to find the ¥ and specifies each occurrence of B

to be considered in the generalization procedure. The program then requests
the user to type the variable of generalization Q followed by a colon followed
by the term g. For example:

(1) &{X,Y) »F Y

'_l
g
e
M

i Z:Y (2) 3z(a(X,2) - F(2))

c.ozey (3) 3z(a(x,2z) - F(1))]
but the request

1 EG 1.2

1 XiY could not be carried out since thig would generate the
expression 3x(6(X,X) - F(X)) in which the second occurrence of X is no longer
free. Consequently, substituting Y for X in this expression does not yield the

|
original formula of line 1.

46

39

Rule of Existential Specification (ES). 1In order to infer that what is

true of something is true of a particular thing, the user calls on the rule
of existential specification (or instantiation) ES. This rule lets us deduce
from the existential statement 3 @ ¢ the formula V¥, where V = PSVAR[B o p] . for
some variable B. Since it is possible to generate fallacies in identifying
variables, a restriction is placed on the variable B: P must be new to the
derivation; it must not have occurred in any previous line. (This includes
nonantecedent lines and is somewhat overly cautious.) Included in the meaning
of "occurred in any previous line" is the restriction that tie user must not
have stated an intent to universally generalize over f. liike the US rule, the
interpreter must ensure that the computed type for B is consistent with that
for ®. The command format for ES is

<line number> ES

<a> 1 B>

where the line referenced must contain an existential statement. The program

types the variable of generalization & on the next line and requests the
user type . If f has occurred in any previous line, an error message is
printed. Otherwise, ¥ is computed from @ by PSVAR[B o &].
An example of the command sequence is:
(1) 3YX(F ¥ -G X)

(2) 3y(c Y)
(3) ¢x
2 ES
Y::Z (4) Gz (z does not occur in lines 1, 2, or 3.)
2 E8 .
Y::X (The error message tells where X was

first encountered.)
X CANNOT BE USED AS A VARIABLE OF INSTANTTATION.
YOU ALREADY KNOW SOMETHING ABOUT X.
X IS ALREADY MENTIONED IN LINE 1.

a7

Lo

The Logic of Identity (IDC and IDS). Two new primitive rules of inference

are needed to obtain a formulation of the f:rst-order predicate calculus with
identity. (These rules occur in Kalish and Montague, 1864, p. 220.) No
attempt is made here to justify the choice of these two primitive rules from
among the several possible ones other than to demonstrate that, with these two
rules at our ‘disposal, the interchange laws (RE and RQ), the law of symmetry
(CE), the law of reflexivity (LT) and tb= transitivity of identity (TR) are
derivable as rules of inference. Of these five rules, only RE and RQ are
described in detail. Use of CE as a rule of inference should be i:lear from
the discussion on derived rules of inference and the property lists given in
Appendix II.

The rules have been named IDC and IDS, with the tID' part standing for
tidentity'. As shown below, the command format for the first rule, IDC, is
similar to that for EG and represents a form of conditionalizing for identity.
Likewise, IDS is a form of specification where the term of instantiation is
already specified within the formula itself.

The command format for IDC is:

<line number> IDC <seguence of occurrence references>
1 <0> 1 B>

where <line number> points to the formula ¥. In order to apply this rule for

each occurrence reference OCC, FREE[B ¥:0CC]must equal T. The user specifies
the variable of generalization & and the term B such that & is not contained
in B. Then ¢ is derived from ¥ by replacing each referenced free occurrence
of B by the variable a. Since ¥V must be obtainable by PSVAR[B @ @], the rule
can be used only if o does not occur free anywhere in V.

IDC permits the following possible sequence of lines to occur as part of

a possible derivation.

P (1) F(A4) premise
P (2) X=X premise
1 IDC 1

: B:A (3) VB(B=A - F(B))
2 IDC 2
A (4) VZ(Z=X - X=2)

The command formet for IDS is

o<line a> IDS
O
41

where <line a> points to a formula of the form Vu(o=B —»®). The new line
generated is ¥ where ¥ comes from @ by proper substitution of B for .
Figures 11, 12, and 13 establish that the interpreter, with IDS and IDC as

primitive rules of inference, captures first-order legic with identity.

The proof of the law of reflexivity (V X(X=X)) is shown in Figure 11. If this
law is named as a theorem, say LT, then it may be used to prove CE, the
symmetry law (Figure 12). And that identity obeys the transitivity law, TR,
is proved in Figure 13. The three formulas (LT, CE, and TR) are the first-
order axioms sometimes taken as definitive of identity.

Replace Equals Rule (RE). It can be shown from the rules of identity that

X=Y-(F(X)=F(Y)) _

where F is any l-place operation symbol (see Figure 14). This is Euclid's

postulate that corresponds to saying, if equals are substituted for equals,
the result is equal. As a derived rule of inference, we named this pattern RE.
Let o,8 be terms, and let @ be a well-formed formula of the theory. Let
line 1 of a derivation contain the formula ¢, and let line 2 have a formula
of the form a=B. Then the replace equals rule (RE) says that if there is an
occurrence of & in @ then ¥ (& new line of the derivation) is obtainable from
¢ by replacing the occurrence of & by B.
For example, if the derivation has lines
(1) ¢+ (0+A)=4a+¢C
(2) O+A=A+0
then, by the RE rule, where @ = O+A, replacing & by B = A+O generates the
new line: C + (A +0) = A + C.
Suppose there is more than one occurrence of o in‘Q. Les n = the number
of such occurrences and 1 < k < n. The kth occurrence of @ in @ is determined
0y scanning ¢ from left to right searching for exact pattern matches with &,

and counting until the kth such paitern match is found. Then the gereral RE

Yo ‘153

FROVE A XX =2 XD

;tGEN:XS

UK

tRGhisY S

OK

RS] (S B *Y=X$

sl 1CHYE 2> (Y = X)=>(Y = XD
1 xPULLIY S 3 A YCCY = X) ->(¥Y = X))
13106 ca) X = X

twqUGE XS €95 A XX = X)

COKRRECTaee
NAME: *1.1€

Fig. 11. Reflexivity of identity.

FHOVE A XCA Y(CX = Y)Y =~>(Y = X))

t*GENSX$
OK

"t *GEN:YS
0K

s *L1S .
33xYY (8 B4 Y

1]
<

¢x1I1EC2% . .
32X Y$ 2 A XX = Y)Y =->(Y = X))

T #2USS
Xi*XE 3 (X = Yi=>(Y = X)

1 #3UG2YS [P A Y((X = Y) =>C(Y = X))
s xqUGE XS €9) A XCA Y((X = YY) ->C(Y = X))
CORKECTeee
NAME: *CLS

Fig. 12. Law of symmetry for identity.

FPHUVE A XCA Y(A ZC(C(X = Y)Y &CY = Z)) =>(X = Z)¥)
t #GENIX$
OK
31%xGEN:YS
0K
s #GENIZE
UK
Wil (@ B *(XaY) & (Y=7)1
v I1*1RCE «2) Y = 7
T¥ILCE 3> X =Y
s#23LCIE . :
s X2 YS (Ep] N KX = YY) =>(X 3 2))
s x4Liss .
XtxXE (4] (X = Y)=>(X = 7)
145 3NAS 6) X = 7
1%]le6Crd (&R (X = Y)Y BCY = 2))=>C¥ = 7))
T+ 7UGIZS 2y A ZCCCX = Y)Y RCY = 7)) =>(X = Z))
$a8UGIYY 9 A YCA ZCCCX = Y)Y RCY = 7)) =>(X = 7))

t*9UGIXT «<1m A XCA YA 7ZCCCX = ¥ &C(Y = 7)) =>(X = 7))))
CURHKECTes o
- NAdE: »Txs
O

ERIC ~ Fig. 13. Law of transitivity for identity.
k3 o0

O

ERIC

Aruitoxt provided by Eic:

PROVE
t*GEN1XS
OK
1*GEN:YS
oK
19UPS
TIPS

1+21DC1S
$1eY2XS

143USS
YizsYS

t*1CEIS
t1#4.5AAS
132 +6CPS
1 &JPS

1+81DC1S
11eX1YS

se9U°SS
X33eXS

1*101AAS
teB+11CPS
197 «18FCS
=1 3LBS

t1*]l . 14CPS
1*15UG1YS
1*1606 1 XS

CORRECT ee

A XCA Y((X = Y) =>(N X IFF N Y)))

(494
[£:2]

(3]

a)
5)
(6)’
"

8
(-2

Qo)
an
gy
ad)
(14)
(s
(16)

(17>

NAME: *LEIBNIZS

*XaY$S

sNCX)S
A Y(CY = X) => N Y)

(Y = X0-> N Y
Y = X
NY

N X=> N Y

*NC(Y)S
A X((* = Y) =-» N X)

(X = Y)=> N X
N X
N ¥=> N X
(NX->NYINY => N XD
N XIFF 8 Y
(X = Y>=>¢N X IFF N >
A Y((X = ¥> ->(N X IFF N ¥))

A XCA Y((X = Y) =>¢(N X IFF N Y2)»)

DERIVE A ZGA Y((Z = Y) =>(F Z n F Y>))
t*GENIZS
o
19GEN1YS
o
1eUPs T%) *Znys
seTHAS A XCX » X)
X1zoF(Z)sS (R) FZsF z
sePSILEIBNIZS A XCA Y((X = Y) =>(N X IFF N ¥)))
18eNI(F(Z)=F (A))S
t198
3 A XCA Y(CX » Y) =>(C(F Z = F X> IFF(F Z
. = F Y>> :)
193USS . :
Xs1eZ$ cay A Y((Z = ¥ =>C(F Z = F Z) IFF(F Z = F
v» :
$8aUSS
YiieYs$ 5 €Z = Y)=>((F Z = F Z) IFF(F Z = F Y))
15.1ARS (6 (FzZ=F 2)IFF(FZ = F Y)
1+6LBS @ ((F Z = FZ)~>F Z=F YNDW(FZ=F
¥) =>(F Z = F Z))
1+7LCS 8 (FZ=F Z)->FZ=FY)
188.24A8 (9) FzZaF Y
1#1.9CPS (10) CZ = Y)e3(F Z = F Y)
1eya 1YS an AY((Z = Y) =>(F Z = F Y})
_$eUG 1ZS C12) A Z(A Y((Z = Y) ~>(F Z = F ¥)))
CORRECT. s

Fig. 14. Euclid's Postulate. We first prove Leibniz$

Indiscernability of Identicals and give it the

name LEIBNIZ. A form of LEIBNIZ can be taken as
definitive of identity within second-order logic.
The second derivation is a proof of Buclid's
Postulate. THA is th- reflexitivity of the identity.
Note the use of the PS procedure. A

[o
s 51

rule says that ¥ is obtainable from @ by replacing the kth occurrznce of & in
P by B.
The format for the RE rule is

<line a> . <line b> RE <occurrence reference>

In other words, <line b> must refer to a line on which there is an identity
formula, and <line a> must have at least k occurrences of the left-hand side
of this iden%ity formula. Then the kth occurrence, K car. be replaced by the
right-hand side of the identity only if (a) FREE[a ¢ K] = T; and (b) FREE[P PSVAR
[B o @] =T. This, of course, amounts to PSVAR[P @ <line a>].
In the first example, <occurrence reference> = 1. The command is 1.2REl.
As another example, let the two lines of a derivation be:
(2) A+ (B+C) (A+(B+C)) + 0
(4) A+(B+C) = 6.
Then, 2.4RE2 generates the new line: (5) A+ (B+C) = 6+0. If the command

n

had been 2.4RE3 (if <occurrence reference> >2), then the rule would not apply

and an error message would be typed.

Replace Equivalents Bule (RQ). The replace equivalents rule, RQ, the

second of the interchange rules, is similar to RE. TLet line 1 of £ derivation
contain the formula ¥, and let line 2 have the formula of the form ¢ IFF o'.
The RQ rule may be described as follows: if there is an occurrence of @ in ¥,
then ¥' (a new line) may be inferred from ¥ by replacing the occurrence of @
by ¢'. Furthermore, like RE, the RQ rule must consider which occurrence of @
to replace. The format for the RQ rules is:

<lipne a> . <line b> RQ <occurrence reference>

For example,
(1) (XFX& 3YGY) > VXFX
(2) (VX F X) IFF (VY F Y)
1.2RQ2
(3) (VXFX& 3YGY) > VIFY
The second line referenced must contain a material bi-conditional, otherwise

an error message is printed.

", Generalized Interchange Rules

"he interpreter accepts special commands as shortcuts for using an axiom
or theorem if that axiom or theorem is of the form a=p or ® IFF ¥. The

interpretation is based on the RE and RQ rules. The format for all such short

55

forms is:

<line number> <name of axiom or established theorem> <occurrence reference>

Suppose a derivation in é€elementary algebra contains the line:

(1) A+B=A+((-C)+ (B+C))

Frequently in proof constructions requiring pattern manipulations, the student
may want to alter a term or a formula contained in a iine of the derivation.
In the example above, he may want to replace the occurrence of the term)
(-Cc) +(B+C) with the term (B+C)+ (-C). This requires an app.ication of the
CA axiom: A+B=B+A, followed by the RE rule. The steps of the derivation
would be:

CA A+ B=B+A

A::=C ‘

Bi:B+C (2) (=C) +(B+C) = (B +C) +(-C)

1.2RE1l (3) A+B=A+((B+C)+ (-C))

The shortcut method for obtaining the formula on line 3 is to use the
command: 1CA3. Since the command name is an axiom of established theorem, and
since the formula associated with the name is either an identity or a material
biconditional, the program automatically carries out the two-step procedure
shown above. HNote that the program, not the user, determines the substitution
sequence 8 for obtaining the proper instantiation of the axiom CA.

To illustrate the procedure further, and especially to show why the
occurrence reference is 3, consider-again line (1) above. There are four
different possible applications of the CA axiom, i.e., instances of the left-
hand side of the pattern for CA. Scamning left to right, they are

1. A+B=B+A

2. A+((-c)+(B+C)) = ((-C)+(B+C))+A

3. (-c)+(B+C) = (B+C) +(-C)

4. B+C =C+B
Since line 2 of the example corresponds to application 3, the occurrence number
must be 3.

In summary, this shortcut use of axioms and theorems is always permitted
if the formula associated with the axiom or theorem is of the form @=8 or- o
@ IFF V. In using the shortcut, the student must, of course, determine the

correct occurrence reference.

U6 . 53

5. Derived Rules of Inference

Methods have been provided for specifying the formal system. Axioms
when specified, and lemmas and theorems when proved, are automatically entered
into the command language with instantiatior procedures and with shortcut
applications (as explained in Section 4). An even more flexible framework
is achieved by providing a meanc for deriving rew rules of inference-=-the
so-called "derived rules.”

To every theorem of logic there is a corresponding derived rule which is
indispensible from the standpoint of decreasing the number of steps necessary
for a proof or derivation. The use of a derived rule is effectively an
iteration of proper substitution, application of the rules to form a conjunction
(FC) and affirm the antecedent (AA). The instructional program contains two
algorithms'. for deriving new rules: one for theorems of the form ¢-V, and the
other for theorems and axioms of the form o=Pp and ¢ IFF v,

The second kind of derived rule is merely a commuted form of the shortcut
commands we presented in Section 4. Here, instead of replacing an instance
of @ by B (or @ by ¥), the program searches for the proper occurrence of B
(or ¥) and replaces it with the corresponding instance of @ (or ®). As an
example, take the associate axiom AS for an additive group: (A+B)+C = A+(B+C).
The shortform is usually called AR (associate right). A new rule, AL (associate
left) is obtained by requesting a derived rule of inference based on AS.
Associating left means to replace the instance of the schema (+%A%(+%B% %C%))
by the corresponding instance of (+ (+ %% %B%)%C%). Observe the derivation:

DERIVE L+ (3+2) = (4 +2) + 3
As (A+B) +C = A+(B+C)
A.:h

B::j

c::z (1) (B+3)+2 =k +(3+2)

1AR1 (2) +(3+2) = h+(3+2)
ooy (3) h+(3+2) =Lk +(2+3)
sare oo (W) b+ (34 2) = (B +2) +3

o0& 7

To process the rule, the program computes the information
PREMISE ((+ %A%(+ #B% %C%)))
CONCL (+ (+ %A% %B%) %C%)
NCP 1
OCCUR 1
These attribute-value pairs are stored on the property list of AL.

In the first type of derived rule, the pattern of the theorem is transformed
into a conditional statement P such that the consequent is not a conditional.
Then the premises, i.e., the patterns of thé conjunc*s of the antecedent of P,
are patterns for the lines which the rule must reference. The number of line
references is the number of conjuncts. The result of using the rule of
inference is the proper instance of the pattern of the consequent of P. The
algorithm for obtaining P is as follows.

Let the theorem be of the form 9 where ® is a string of universal
quantifiers with their variables, namely, of the form Vbi,---,vun where each
ai,i=l,...,n, is an individual variable; @ is a conditional statement. Then
a rule is derived from the (cloaure of the) theorem by the following algorithm:

1. mﬁ is obtained from @ by iterated proper substitution of

Gi by %ai% in ¢, for i=1,...,n.

2. @' is obtained from @' by replacing each occurrence of a
predicate letter by its dummy. By this replacement process,
the predicates are recognizable as substitutable elements of
the expression.

3. 't i3 now & pattern for the theorem. Any symbols not
replaced by dummies are constants that musﬁ appear in the
lines referenced in the rule command.

4. @'t is in the form A—-V¥, where ¥ itself may be a conditional.
In order to compute attribute~-value pairs used in processing
the rule, @' must be in the form of a conditional whose
consequent is not a conditional statement.

By repeated application of the Deduction Theorem (Mendelson,
1664, p. 61), if 1 —» (€—5B) then p (n &&) -d, @', is
transformed into the desired form, *X—P, where P is not a

conditional.
59

L8

5. Let N denote the name of the new rule. Then B is placed
on the property list of N under the attribute name CONCL.

6. The list of rremises is formed from the conjuncts of the
antecedent . The premises are placed on N*s property
list under the attribute PREMJISE. Each element of the
list is a pattern which, in processing the rule, will be
matched with a line in the derivation ("Matched” in the
sense of determining how to instantiate the pattern in
order to obtain the line.)

7. NOP is the number of corjuncts (or the length) of the
PREMISE list. It is, specificalily, the number of

reference lines which will be expected in the command.

The command format is:

<sequence of NOP line numpers> <rule name>

Each line number refers to a line of the derivation that must match a
corresponding pattern on the PREMISE list. There are, of course, NUP of these
("match" here means "is an instance of"). The sequence of line references
must be ordered with respect to the order of the elements on the PREMISE list.

In simary, the theorem is transformed into a conditional statement such
that the consequent is not a conditional. Then three attributes are placed on
the property list associated with the rule name:

PREMISE <list of the conjuncts of the antecedent

in their dummy PATTZRN notation>
NOP <the number of conjuncts>
CONCL <the consequent in its dummy PATTERN notation>
Two examples are offered in order to illug’ rate the derived rule procedure.

NAME: FC
Torm a conjunction is a rule of logic that lets us combine two lines of a
derivation or proof into a conjunction. Given the formulas P and @, we can
infer the expression (P& Q). Tie theorem is P — (Q - (P & Q)). The first premise
is ¥. The consequent of this thecrem, a conditional statement, is replaced by
its consequent P& § and @ hecomes the second premise of the derived rule
pattern. Now the conseg.=nt is not a conditional and is stored as the conclusion

(CONCL). On the nroperty list of FC, where %P% and %Q% are dummy names for the

formulas P and {, respectively, we store:

PREMISE (%P %Q%)

NOP 2

CONCL (& %P% %Q%)
Now, if a derivation has lines

(1) A=B

(2) A+B=¢C
then the command 1.2FC generates the line (A=3B) & (A+B=C). The command has
the correct number of line references and nr occurrence numbers, which is
characteristic of all rules of this nature. The new line is obtained by
forming a conjunction with the lines 1, 2 as the conjuncis.

The second example is the rule AA which, as was mentioned earlier, is

processed the same as the derived rule of inference although it is a primitive

cule in the system. The theorem is ({» 5R)&P) - R. By the above algorithm,

the computed attributes are:
PREMISE ((- %P% %R%) %P%)
NOP 2
CONCL %R%

Commands that call for the application of a rule of inference are ex=scuted
by a matching process that attempts to determine whether each line referenced in
the command is an instance of a corresponding dummy pattern on tie PREMISE list,
For each line referenced, a routine initially receives the formula on that line.
the corresponding dummy pattern from the PREMISE list, and the message (LINE
<line number>). By recursive calls, with the elements of each expression as
arguments, i.e., the lists or atoms within the expression lists (Ti’vi)’ the
routine builds a message that is the name of the location of the Ti in the initial
formula. The routine examines the atomic element (variable or predicate), or
the first element (main connective of a term or a formula) of the list if it is
nonatomic, .in order to form a sequence of substitutions by which the referenced
lines of the acrivation may be obtained from the premises. Once this sequence
s computed, the corresponding instance of the conclusion pattern (CONCL) is
generated as a new line of the derivation.

For example, if the derivation contains lines:

50

(1) A=B - B=C

(2) A=B
(3) B=A
and the user types
1.2AA
then the interg r will call on the checking or matching routine with the first

premise in the PREMISE list associated with AA and the formula on the first line
referenced. Below is a trace of this procedure:
1. T: (- %P% BR%) Vv: (- (=AB)(=BC)) M: (LINE 1)
At this point, the main connective of T, the pattern of the
first premise, is the same as V, the line of the derivation.

M describes V.

2. T1: %P% vli: (=A B) M1: (ANTECEDENT OF
%p% is paired with (= A B) and ML. LINE 1)

3, T2: %RF ve: (=B C) M2: (CONSEQUENT OF
LINE 2)

%R% is paired with (=B C) and the message M2.
Saving the above two pairs, the program continues the process with
the second premise and references the formula on the second line.

L. T3: %P% V3: (= A B) M3: (LINE 2)

%P% was already paired with (=A B) which is identical with V3, so no
ineonsistent pairing has been located. There are no more line references. By
substituting into the value of CONCL with respect to the substitution pairs
determined in 1-4, the new line: (B=C) is generated.

The command 1.3AA is processed as above except, in 3, V3 1is (=B A).
Since this is not identical with the Talue already paired with %P%, an error
message is formed from M1 and M3:

LINE 2 MUST BE THE ANTECEDENT OF LINE 1.

The derivation in Figure 15 demonstrates other message types. The teaching
sequence that we can provide for all derived rules of inference, using the same
matching routine traced above, show explicitly how messages %are recursively
computed.

Insert Figure 15 about here

pggm T

-ogenSueT puBwmod sy} Suiydesy 4T -3Td

***1034H0D

g, (5. 042
STVIGH2

9 . 93 nn.um_du

SN#LTLWIXT W ANIT NOA ATNON
4dAL N0OA FONZLNAS V A TTIA ANIT AIN JHL 40 LoNNrgia LHOJY
) 4NIT 39 T1IA INIT MIN THL 40 (ONAPSIC L4971
MIILONAMS{Q ¥ 38 TTIn INIT MIN THL

$A%LTHON

a4 1 1P WXT NV S IHTH
*NIAWIN ANIT I SANINGIH a4

$iddst
0 AS 3AIAIC LON AW NOA

sO%31

$3as+t

sd=us 3 sdnst

d 441 0 338 QN0 ANIT MIN FHL

a7y

$ST QNYWWOD LO03HYO0D V

*NOILYA 1430 HOO0A 40 SANIT FhL NI 37NH 87 IKL 4C 2UdRYNT NY ST FJUIHL
2 404 HO04

(5 <= HITY <= §)
139 TIIM ANIT AIN THL ANY

a1s

38 4IN0A ONYWWOD LOTHHO0D ¥V NIHL -
N ¥ 441 € (S)
$5INIT SNIVINOD NOILYAIMIQ dnOA 41
1 W04 dod

‘SA*ATIWXT AW INLT N0A TINOF
SN LIUOW
¢LYKI04 1DIHY0D FHL QIdAL NOA ‘¢ LNOHLIA

$ENEw

*TUNL 80218 ¥ 38 LSNW 1 INIT
HO TYNOILIGNOD v 3 1SOK | INIT 40 LOMOINOD Ls3T
TYFHLIF ASNYIIT QFI4SILYS FUIM 3NON
*SHHOA @ SYH €7 1M
EE- 1t 2]

< > = 340 INO 38 LS0W @ INIT 40 INILDINNOD NIVW JHL
$3Y3at

N4 ¥ LON SE IV
sAYast

3 <= d 339 QINOM INIT AW JHL

SHE*Y

1ST QAWHND 12IHHOD Y

$A% 13 TAWYNT HIHLONY IUIT NOA amnoa
B <~ 0 332 QIN0A INIT AN FHL

SHY*E

11 aNIWH0D LD3HHO0D V

$A#23EWKT YTHLOW IAIT noA aInom
: o <« ¥ 379 0700M INIT AIN AHL

SHr*2
1S1 ANVHROD L0TUHOD VY

+NOILYATHIG HNOA 40 SINIT FHL NI 3IH SH qHL 40 NI NV ST IHIHL
. . SAsIIEWLS BV INIT N0A Q7N0A

¢ ANI7T 40 LNINDISNOD FHL 38 T7Ia INIT AIN 3HL 40 LNINDISNOD
1 INI7 40 LNIGI0ILAW THL 38 TTIA INIT 43N 3HY 40 LNZQIDILWW
’ TYNOILIGNDD ¥ 38 TTIA INIT AIN FHL

I INIS 40 LN3NGISNOD IHL F8 15nW @ INIT 40 LNIATIZLNY
o ¥KNILIANOY V 38 1SN 2 NI
Av4C1LIgNod ¥ 38 LSOW T INIT .
. SAeiqHan

SH 2°1 3WWYXT NV S.AYTH
«SHIEMIN INIT @ STHINGIY SH

$SH*
LHLIM 4731 33N NOA Od ANTHW0D HOTHA
’ .Sist
2 INIT 20 LN3COITH0D IHL mm..—w.an ¢ Zpi~ 10 LNAQADILNY
) ’ . §SHE 2%t
~yNoILIGNNY ¥V 3C LSGK t aNI1
§SHe 13
3 <= d% (M) sdet
tde= O (€D 3dst
$4 <= e (22 sde?
s v d¢ (DD gde¢
] IAIY3A

O

IC

E

52

Aruitoxt provided by Eic:

Optional Attributes for Derived Rules. Several other attributes may

optionally appear on the property list of a rule. As vet, they are not entered
via the above algorithm, but rather by dirsct editing of the property list.
They are:
1. REQ and TYPE. A rule may require the student to enter a
particular type of well-formed term (or formula). If a
new rule is derived from an expression containing a free
variable (or predicate), the free variable (or predicate)
can be replaced by a well-formed term (or formula). (The
inclusion of bound predicates, of course, transcends first-
order logic.) An example is the Add Equals rule (AE), whickh
may be obtained from the open formula:
VAVB (A=B - A+C = B+C).
The property 1iist of AE contains

PREMISE ((= %A% %B%))

NOP 1

REQ T (for 'term')

TYPE ATGEBRA

CONCL = (+%A% REQ){ + %B% REQ)).

2. OR. The main connective of the single premise of AE can also be
one of the inequality signs. The options, =, <, and =, are
specified by listing each premise on a PREMISE list that
begins with the atom OR. CONCL must be a list of patteras
corresponding to each optional set of premises. Whichever
set matches the referenced lines generates the desired
substitution list. For AE the change is:

PREMISE ((OR ((= %a% %B%))((<%Aa% %B%))((%A% #B%)))
concn ((= (+ %A% REQ)(+ $Bb REQ))(<(+ %A% REQ)(+ Bk R¥Q))
(>(+ %A% REQ)(+ %B% REQ))). |
Observe the error message and the teaching sequence for the
IB 1ule in Figure 15 for a sample of how the OR ortion affects

the analysis routines.

ERIC 60

53

3. fﬁﬁ. As long as the only difference between sets of
premises is the main connective, the special character
%%% in a premise indicates the optional list of main
connectives. Then %%% is stored on the property list
as the attribute whose value is the list of main
connectives. Again, observe the handling of the AE rule
in Figure 15.

PREMISE ((%%% %A% %B%))
Fhb (=> <)
CONCL (%%% (+ %A% REQ)(+%Bh LEQ))

4. RESTRICT. This attribute is used when special restrictions
on the use of a rule must be specified. The value of
RESTRICT is an executable LISP S-expression. As an
example, take the Divide Equals rule (DE) in which the
user may not divide by zero. The property list of DE

might be:
PREMISE ((= %A% %B%))
NOP 1
REQ T
TYPE ATLGEBRA

CONCL (= (/%A% REQ)(/%B% REQ))

RESTRICT (COND ((EQ REQ O)(ERR (QUOTE "YOU MAY NOT)
DIVIDE BY ZERO"))))

(TT)) .
Note that if the main connective were changed to %%% so as
to include the inequalities RESTRICT would have to be

extended to account for negative values of REQ.

How to Specify New Rules of Inference. Derived rules of inference whose

property lists require only a list of PREMISES (no options) and a CONCL are
easily generated by the interpreter. The user, in either STUDENT or TEACHER
modes types

RULE
The program first requests

NAME: <name of the new rule>, then

FROM: <axiom or theorem from which to derive the rule>.

ERIC ;
— " 61

The name cannot be a reserved name, i.e., one of the procedure names Or a
primitive rule of inference. Tt mus-> be an alphabetic string of characters
with arbitrary length greater than one. The axiom or the theorem referenced
must be a (possibly quantified) conditional statement, an identity statement,
or a bi-conditional as described above. After che derivation of the rule is
completed, the program will type fOK!'. In what follows, let B be a string of
universal gquantifiers with the corresponding variables of generalization.
Algorithmically what takes Pplace is the following.
1. Determine if the user is allowed to reference the axiom
or theorem. 1In TEACHER mode, this only requires checking
to see whether the axiom or theorem exists. In STUDE1ITT
mode, as defined later, it requires seeing whether the
student actually knows the axiom or the theorem.
2. Let ® be the vaiue of .CLOSED. Is the main connective
of the matrix of ¢ an identity or a bi-conditional

statement? If neither, go to step 4.

\N

Commands of the form <line><name><occurrence> are automatically'
generated for axioms and theorems with matrices of the form
a=f and ¢ IFF ¥. Procedure completed.
4. If the matrix of @ is not a conditional, no rule can

be derived. Procedure completed with an error message.
5. Otherwise, carry out the procedure cutlined on page 48

for deriving rules of inference.
.

Figurc 16 is the second in the series of dialogues that began with Figure 3.
Here, the teacher adds the axioms, two theorems, and some of the rules to be
used in constructing derivations of expressions of glementary algebra. Figure 17
1ists the properties of these newlyAspecified axioms and theorems. It ends with
two derivations for the same formulé, one using the specified theorem and one
using the rule derived from that theorem. A complete list of derived rules of

inference for the sentential calculus is given in Appendix II.

O

ERIC

Aruitoxt provided by Eic:

#(S1ART)
wHO AHE YOU ¢IYPE S OR 7
(2%

PLEASE TYFE YOUR NUMEER.

*3%

DO YOU WANT 10 CHEATE OR ALTER A THEORYZ(IYFE C OR A)
*AS

THEORY NAME?

»EXS

Hisoo

N SETTING UP A F1KST-ORLER TWEORY T0U MUST SPECIFY
THE VOCARULAKY AND THE AX10MS. THEN YUU CAN CHOOSE:
A SET UF WELL-FORMED FORMULAS AS THEOREMS, AND DERIVE
NEwW RULES OF INFERENCY FROM THESE THEORFMS. 1HE
COMMANDS AREs VOCAE: AXIOM, THEOR:M, ANL RULE. TYVFE
FIN WHEN YOU ARE THROUGH.

1 sAXIOMS
NAME: *AXAS
LFF1 #7B(XYaX))=>(X=YIH

t*AA<A>XTOMS
NfFik: sAXBS
WFFt #B(XsYsZ) => R(Z,Y¥s)) ¥

t*AXIONS
NAME: ®#AXCSE
WEFt #(BCXaYo¥) & BCYsZ,W)) =2> RIX2YL708

IHAXINME
NAMEs »AXDY
WEF: #{F(XaYaZ) OH E(YsZs¥)) UR M(7,X2YDE

3 *AXIOMS ’ -
NAME: #AXES

WEF: ¥CC(NOT (Y=Z)) & BCXaYaZ)) & E(YsZ,W)) =3 PCX270W)6

1+ THEOREMS
THEOREM NUMPER: #1%
WFFs #FCH,YYa<sY>57) o> ((FCY:¥,73)=> (¥aY))S

t#RULES
NAMES #SFY
FhOM: #THIY

t#FINS
1
L 4

Fig. 16. Specifying

56

axioms.

63

SUSTJBATLIP oTdwexd pue 9T

»
1
$NIdss

ANIWWOD TNE HO IAOES “IAIY3A v IHAL

o s+ LOHHHDD

Z = A (E) 5dSBIs!

$(XIAZITE (D) sdet

S (XXX 20y (D) Sde3
Z = A aIni¥ia

$2wA tINIHIASE

ANYWWOD 1IN HO 3A0Hd «3nIYAad ¥V IdAL
v e s 1 JTHHOD

Z = A (S) YV et

(2 = Ade=(XASIE () YUY *ERl

({Z = A)<= (X*A2IAI<=(X2NE (€ gX#832
§2#352

" . $Ass X

(A l.xvnv»nn-xwrvmvuAl»N«>-xvm SIHL#*?
FCX*AZe>8l)d® (3) $ds?

§(Xe2ZA8» (1) gd i

2= 3n143a

$Z=A $IATYIAST
ANYRHOZ TNH HO TA0Hd “INIYIT ¥ 3dAL

Azmqmmmava

‘814 UT SWOTXe X0J S3ETT Lixadoag)T “91d

(ZAZ ZXZ =) NND
¢ AON
C2y4 Y3 EAE H)(ZYE 2AZ iX& D ISTRAA
(€13 15 TIALHAAONd) *
1
LNIOd LNIOd LNIOd adAlL
. : Z A X 15IN07H
CCUSAE ¥X% =) (378 EXE EAS 9)<=)(22% 2A% XXX d)e-) NWILIYA
et
ZAL IXZ =)(ZE LXZ TAL B)<5)E%%8 ZA3 ZXE ©)<=)Z7 ¥IA $IX 1) 115012
(K = XD<=CCZXIRITIIC=C(ZA T ™A

(THL LSTTALNAAOHA) *
L

LNIO4 INTOZ LNIOd LNIOd AAAL
ZAXN 1SANOAH
: Lo ¢CEM3 XZ& IXZ
g)CCEAL $28 2A2 G)((223.3A% XL 3)((X2Z8 TA% =)LONIRIRI<-) HILLYd
: CLCCCCEAs 225 3XE €)CCIAX 222 At
g)C(3Z% AT IXX)¢(B2Z ZAE =)LONIZIFI<=)A YIX W2 WA W) aiaseni
(ReZ°X)IT «~((AZ2°A)8 FLLZANIT (2 = AXLOND)2 ™

(aXY LSITALHALON e
L

INIOd LNIOd LNIOd AdAL”
: Z A X 1STn0IW
CCIAT XXZ 224 H)C(EXE 22T TAZ RI(ZZE A2 X3 3IHOIHO: NHALIVA
. CCCLCTAT X3
274 ©)C(ZXE 323 BAL €){$2F BAT IXE 8IHONH0)Z YIA VIX V) a3so12
CAX 229 YOCKX Z A)E HOLZANIE) A

(axy 1SITALHIdONd)»
t

LNIOd LNIO4 LNIO4 LNIOH 3dAL

ZAXA 1S3IM0IN
C(3ZZ AL BXZ G)((ZME 322 A J)(IME AL ZXE €IPI<) NH3LIVd
. Cececgzs LA
X3 AICCEAY 325 ZAE BY(3AL AL EXT T T)€w)Z VM VIA VIX v a3Isoy
(ZEACKIT <=((MZ7X)E TAAID) NA
(OXV LSITALHILOHd) »
1
LNIOd INIODd LNIOd . 3dAL
- Z A X 1S30N03H
C(CIXT AT 323 S)(328 ZAZ XX aGre=) 2=u~w<m
LCCCTEXT TAZ 328 d)(X28 3AZ LXZ @)e¢=)Z VIA VIX V) a3so1l
. (XfA*2)E <=~(2°A°X08 ™A
(gxy 151TALEIdOHd) s
. L
1Niod INTOd 3dAL
AX 153n03Y
C(CLAL BX3 #)C(IXT %A% XS d@)r<=) N3ILLYd
CCCCEAZ IXT =) (IXZ AT X3 g)<=2A VIX W) aison
CA ® X)e=((XAXID) ™A

(uxy 1S177ALHIdOHd)®

57

64

O

IC

IE

Aruitoxt provided by Eic:

6. Miscellaneous Commands

Five mneumonics are reserved as special commands of the command language.
Each will be mentioned, although not alwayrs elaborated on. The description of
the instructiounal program will be compie- el with a section on defining problems.

Enter a Line (ENT). This rule shou.d usually not be available to a student.

Like WP, ENT expects the user to type a well-formed formula. Unlike WP, nothing
is being asserted. No proof procedure is beginning sc¢ no procedure must be
closed. If the line typed is the problem expression itself, then the program
thinks the problemn is solved.

While the ENT rule may be used to type in expressions to determine whether
they are well formed, it usually is used to debug the curriculum without
constructing an entire proof, or to quickly finish a problem that has given the
user too much trouble. By requesting this problem at another time, he can
retry it when he feels better prepared to do so. At line n., the format is

ENT (n.) <well-formed formula>

Delete the Last Line (DLL). The user conceivably could request a working

premise or a GEN to indicate the beginning of a derivation procedure and then
could decide, any number of lines later, that the strategy he chose was
incorrect. By the rules of construction, however, he either must close off
the procedure or delete the command that denoted tie beginning. The delete~the-
last~13ige rule (DLL) lets the user delete the last line from consideration.
Another use for DLL is to delete a sequence of irrelevant lines that are only
confusing the user's perception of the problem.

DLL alone permits the deletion of the last line of the derivation or proof.
If the last lire is a working premise, then the line is removed as a conditional
premise. If a GEN request occurs after the last line, then ‘vhat request is
eliminated.

The format is <line numbevr> DLL -

The DLL rule lets the user delete more than one line at a time. All the lines
of the derivatior. or proof, beginning with <line numbér>, are deleted. If the
derivation already has n lines and the command>given is DLL where j‘f n,
then *the lines J,J+l,...,n are delzted. The derivation under consideration is
now j-1 lines long. The only rescriction on this rule is that no premise

entered as part of the statement of the problem can be deleted.

58 69

INIT. The INI command, if permitted by the curriculum writer Tor the DERIVE
or PFOVE proble.” heing presented, defers solution of the problem until the
student decides he is ready to continue. By typing INIT, the student announces
his desire for the initiative to request his own DERIVE or PROVE problems, or
to derive a new RULE of inference {see page 10 on defining problems).

When the student types the usual terminating command, FIN, the system
returns to the problem originally interrupted. The problem is presented anew.
If the student, while he had the initiative, specified lemmas or rules, he could
now use them to solve his current and future problems. Appendix IV, problem

5, contains an example of the INIT command.

7. Inferfacing Mechanical Theorem Provers to the Instructicnal System

SHOW. The instructional system under discussion was designed primarily
for teaching the construction of derivations and proofs. The system's command
language leaves most of the typing of rewly generated lines to the computer
and reiieves sore of the tediousnesz in the student's work. Supposedly, this
only leaves him with the task of itihinking out the stages of the proef. But
trivia is also tedious. No mathematician, when constructing a complex prcof,
relishes trifling with the laws of commutativity, or simple term eliminations,
i.e., obtaining those results normally introduced by ?!obviously! or !'clearly!
in mathematical discourse. As students of mathematics are introduced to more
intricate problems, they too tend to produce less rigorous proofs, yet ones
clearly valid o the trained eye. We would like to emulate this behavior--to
provide some mechanism by which a studsant can say to the computer "This line is
obviously a valid inference from the work which I have already done, z-:7 from
instances of such and such axioms and theorems.”

We simulate the ability of the 'trained eye' by giving the student access
to a SHOW command by which he commuricates with a mechanical theoren-prover.
The theorem-prover decides whether a new desired line is in fact a travial
deduction Tfrom the set of formulas cited. Before revealing how the simula*ion
was carried out and whether our initial results seem promising, we offer an
iilustration.

In the proof in Figure 18, B is a three-place predicate denoting "betweenness,"

o o o e O e D e e O6 SN e e G W ea G .

PROVE CCCMOT ¥ = Z& B(XsY»Z))& BCYsZsW))=» BIXsZ:¥9)

sWIP <1 CCNOT Y = 2)& BEXs:-7Z3)& BLY2ZsW)
t#1RC) . B(YsZoW)

s *AXB BCXsYsZ)=>B(ZsYsX)

XsseY

Y32

Zss oy 3 BCY»ZsWl=> B(W-Z>Y)

su3 «2AA (-] BW»sZ,Y)

s*SHOJ [$-3] CCNOT ZmY)& B(\bZ:’{))i BCZsYsX)
FROM LINES OF THE DERIVATION?

ts%] »4

FROM AXIOMS OR THEOREMS?

s 3 3AXB, BCXoYs2Z) => BCZsY. X}

XzssX .

YsaeY

ZetZ

ts

KT »Y R

LINE 5 IS K

sSAKE CCENOT Y u 208 BCNsYsZ2»)& BYsZs¥W))=> B(XsYs¥W)
vsseX .

Xs vy

Yssa?

ZsLyY €6) CCCNOT Z = Y& B(WrZ,rY)D& BCZsYsX))=> BCWsZrX)
146 «SAA <7 B(Ys2Z5X)

S RAXB BXsYs2Z)~> BCZsYsX)

Xssay

Yi1Z

ZisesYy - 8 BCWsZsX)=> B(X,Z,W)

t#8.TAA [32) B(XsZsW)

132} .9CPl C10) CCCNOT Y = K& B(X»Y»s22)& BCYsZsW))~> B(XsZsW)
CORRZCTee e

Fig. 18. A ,proof using the SHOW command.

. Q -~
ERIC | 5

60

where B(X,Y,Z) states that point Y stands between points X and Z on the straight
line they define. The axioms were listed earlier (page 22). The problem
rendered below was given to a number of coll.ge students. Those who solved it
came up with proofs ranging somewhere between 40 and 70 lines. One student
discovered a 17-line solution that was shortened to 10 by using & SHOW command
to skip trivial sequences and commands for forming and separating conjunctions.
The student makes the claim that line 5 is a trivial deduction from lines
1 and 4, and from a particular instance of axiom AXB. The theorem-prover
decides the claim is justified, and the new line is accepted. The fact that
the formula on line 5 might not be proved by the theorem-prover does not
necessarily imply that it is not derivable. It only suggests that the formula
does not answer our criterion for triviality. Note that the student,; not the
theorem-prover, is required to specify the proper substitution sequence for the
axiom. Contrary to the usua_ aims of development and use of mechanical theorem-
provers, the prover does not have to perform complex analyses. That is left
to the student. While the theorem-prover is used only to remove trivial
manipulations, the determination of proper instantiation often is not trivial.
For the SHOW routine, the instructional system was connected to a theorem-

prover based upon the Resolution Principle [Robinson, 1965 and J. Allen & -D.

Luckman, 1970], a refutation scheme by which a statement is proved true by
showing that the conjuction of its negation wath all known true statements

in the logical system at hand is inconsistent. Successful interface of the
prover with the instructional system requires computation of the set ol clauses
on which the theorem-prover performs its resolutions. In order to cormnute these
clauses, the program must form the Skolem transformation of each line of the
derivation and of each instance of an axiom or theorem which the student claims
should be considered by the prover in its deduction process. Computation of the
Skolem transformation requires obtaining the prenex normal form of the formula
by a routine that is also used in determining the closure for a formula.
(Appendix I containé an algorithm for computing the Skolem transformation of a
formula.) The set of clauses for the above problem is exhibited in Figure 19

as axioms 1-5, the negation of the problem statement as axiom 6, and the solution

is given as the tree of resolvants.

Q Insert Figure 19 about here

o b
61

Axioms

1. -E(Y,Z)

2. B(X,Y,Z)

3. B(Y,Z,W)

k. B(W,2,Y)

5. =B(X,Y,Z) B(Z,Y,X)

6. E(Z,Y) -B(W,2.Y) -B(Z,Y,X)

Resolution Tree

1 6 2 ;) 5
-B(W,Z,Y) -B(Z,Y,X) 4 B(Z,Y,X)
-B(2,Y,X)
NIL

L ¥ig. 19. Proof Based on the Resolution Principle.

3
¥
{
2
3
M

693

62

Although theoretically one might expect this approach to the SHCOW command
to work, numerous difficulties were encountered in experimental endeavors.

Some difficulties are apparently due to the interactive nature of the theorem-
prover used and to the strategies required to improve the efficiency of the
search for a proof [Luckham, 1970]. For the most part, published results seem
to indicate a high dependency on the part of the program for human intervention
in order to add new clauses (lemmas) or to change the set of strategies. This
need for intervention, while often suitable for research, is not acceptable for
teaching purposes. The stumbling block seems to be the determination of those
settings of the search-stresitegies which will, in fact, permit a solution to be
found within the time and space constraints. There is no obvious way, either
from the structure of the expression, or from some interpretation of it, to
determine which strategies to use. Since the student should not be required

to interact with the theorem-prover, one set of strategies anticipating the
kinds of problems the students will think of must be used for a given group of
problems. The problem given in Figure 18 was not solvable by the theorem-prover.
Apparently the program got confused because the search-space consisted entirely
of ground clauses. Trouble also arose with theegquality strategy (paramodulation)
which would not substitute a constant for a constant;* As a result, many simple
problems in group fheory were not solvable. Tt would seem that, to implement

a satisfactory SHOW command, the development of new strategies for resolution,
or of theorem-provers with heuristic devices more closely linked to a particular
range of problems, would fare better.

HELP. As mentioned in the introductior. to this report, one of the important
analysis problems faced in an instructional system for teaching the notion of
mathematical proof is to help the student when he encounters difficulty in
completing a proof or derivation. If the computer is to simulate the human
tutor's ability to show the student how to proceed, the computer must be able
to analyze and respori to the details of the student's work. It should not
merely produce prestored answers to anticipated questions, or hints to '
anticipated difficulties. If the computer is to be able to adapt to the
immediate needs of each student, it must be able to extract information from
each student's responses, especially when they are only partial or erroneous,

so as to initiate a dialogue relevant to what the student has been doing-

o *nis is an error in the program made available to us, not with the paramodulation
ARJ!:*strategy itself.

70 63

Tn order to sustain an informative dialogue, and thereby to realize a
mechanized tutor, & heuristic theorem-prover was written. Ideally, a theorem-
prover knows how tc do the proofs the students are required to do. The
theorem-prover can find solutions to protlems that have premises. If one
assumes that the lines the student has already requested are premise lines,
then the theorem-pirover can take them into account when it tries to discover a
derivation. In this manner, the computer tutor is able to deduce what the
student has already done in terms of what lines of his work can actually enter
into a complete derivastion. Using the information obtained by the theorem-prover,
the computer can initiate a dialogue that will direct the student towards a
successful solution of the problem.

To test this idea, a heuristically-based theorem-prover was written that
solves problems of an Abelian group. The theorem-prover was interfaced to the
instructional system via the command HELP. Any time the student feels the
need for advice on how to continue, he types this command. The theorem-prover
then attempts to find one or more solutions that take into account lines already
generated in the derivation. The information so gained is given to a dialogue
routine that proceeds to tutor the student. The precise details of how the
theorem-prover operates, especially of how it is able to select several possible
solution paths, as well as a description of the dialogue itself, will be given

in a subsequent report [Goldberg].

PART IV. DEFINING PROBLEMS

The basic intent of this instructional program is to provide an interpretive
system under which a user can explore the notion of mathematical proof. The
emphasis is on self-exploration, not on the working through of a predetermined,
linearly organized set of problems. Thus; two forms of curriculum specification
are described: the syntax for problems that are stored on some peripheral
device (such as the disk), and the commands the student has available for
requesting problems at runtime. Recall that the command INIT (page 59) gives the
student the option to interrupt the prestored curriculum on which he may be

working and to switch to the second form of problem specification.

71

6l -

1. Prespecified Curriculum-TEACHER Mode

The syntax for curriculum stored on a peripheral file is given below.
There are three types of problems:

1. A guestion that requires as an answer, & string of
characters representing a letter, word, or number;

o. A derive problem, with a sequence of premises, for
which the user constructs a derivation; and

3. A prcve problem, i.e., a derive problem with no
premises, for which the user is required to construct a
procf. The eXpression SO proved will have a name
associated with it. The name labels the expression as
either a theorem or a lemma. All theorem names have the
form TH<positive integer>; names for lemmas are strings
of one or more alphabetic characters.

The syntax presented is not true in the sense that all possible strings
that can be generated from the grammer do not have meaning in the interpretive
system. The acceptable groupings of the commands, including those which are
optional, follow. Notice that it is necessary to enclose each problem within
matched pairs of parentheses for the convenience of the LISP input function
READ. 1In general, the entire problem, as wcll as any arguments to a command
element are delimited by paired parentheses. The exception is COMMENT, which
requires quotation marks to enclose the actual text to be printed. An
illustration of problems for dlementary algebra is offered in Appendix IIT.
Appendix IV Is the interaction of a student presented with these problems.

Syntax for Problems on the Curriculum File.

<problem> ::= [<problem number>{ <problem type> <problem statement>
<restrictions> <answer>]

<problem number> ::= a decimal number used for sequencing the provlems

<problem type> ::= DERIVE | PROVE | QUESTION | @
<problem statement> 1= (<Well-forn@d.expression>ﬂ

PREMISE (<well-formed formula>) | P (<wff>)
COMMENT "<text of the comment or guestion>” | com
NAME (<positive integer>) |

NAME (<string of aiphabetic charascters>) |

72 65

<restrictions> ::= RESTRICT (<possible restrictions>)

(YES<list of code names>)<possible restrictions> |

<possible restrictions> ::
(NO<list of code names>)<possible restrictions> l
(ADD<axiom or theorem name>)<possible restrictions> l

(BLOCK) (possible restrictions) |

¢

<answer> ::= ANS (<string for the exact match>) | ANSWER (<string>)
RANGE (<lower bound> <upper bound>) |
ALIST (<list of possible answers>) |

FROOF Note: If an answer is more than one
item long, it is enclosed in
parentheses in the ALIST.

= integer number I NIL

<lower bound> :
<upper bound.> ::= integer number I NIL

Acceptable Groupings of Problem Commands.

Question problems
1. [<number> (QUESTION COMMENT "the text of the question”
ANSWER (an atomic answer]
2. [<number> (g COM "the question text"
RANGE (<lower bound> <upper hound>]
3, [<number> (Q COM "text" ALIST (list of possible answers)
Note: Q, COM, and ANS are abbreviations for QUESTION; COMMENT, and
ANSWER, respectively. In 2., the answer 1s a number N such
that <lower bound> < N < <upper bourd>. In 3., the list of
answers is (al a2 (a2 alt)), i.e., a 1list of atoms and sublists.

Derive problems
[<humber>
(DERIVE (<well-formed formula>)
COMMENT "text of something the teacher may want to say about the problem”
PREMTSE (<well-formed formula>) |
PREMISE (<well~formed formula>)
RESTRICT ((YES list of rules)(NO list of rules)(ADD name of an axiom,
rule, or theorem)(BLOCK))
PROOF]
] Note: COMMENT, RESTRICT, and PREMISES are optional. Any number of
;iERJ!:« premises, including none, may be included.

66 73

Prove problems
[<number>
(PROVE (<well-formed formula>)
NAME (<positive integer or an alphabetic string of characters>)
COM "text" RESTRICT ((YES list of rules)(NO list of rules)(BLOCK))
PROCF]
Note: If the name is a positive integer, then the name becomes
TH<positive integer>. After the problem is solved, the
name becomes part of the command language. NAME, COM, and
RESTRICT are optional.
The RESTRICT option gives the curriculum writer special control over the
command language. There are four possible control devices.
1. In order to add new commands (axiom names, theorems, and
rules) to a student's command language, the optional list:
(ADD <list of one or more names of axioms, rules, or theorems>)
is included as one of the arguments following the word RESTRICT.
. The writer may not want the student to interrupt the particular
problem to be presented, i.e., use the INIT command. (Perhaps
the curriculum is organized so that problems reference one
another and the writer prefers to have a group of probiems
worked on in succession.) The interruption can be blocked
with the argument (BLOCK). This option must appear in the
specification of each derive or prove problem which the
student may not interrupt.
3.. The curriculum writer can also take special control over thc
actual solution to the derive or prove problem. He can
insist that the student use one or more rules. These rules are
included as an argument list beginning with the word PYES.
4. Or, he can insist that the student find a soelution without
; using certain commands. This is the list beginning with the
: word PNO. The student is allowed to complete a solution
before the interpreter checks to see if that solution meets
the restrictions. If a command is incorrectly used, the

i

£

|

i student will be asked to work the problem again.
£

1

ERIC 4,

67

i
i
i
i
i
|
}
i
s
i

"Using a command" should be carefully defined since a student can request
a command and then, without deleting it, not really have that command enter
into the generation of the problem formula. The exact protocol of commands
the student typed does not indicate if the student solved the problem within
the restrictions set by the curriculum writer. Instead, a computed list of
"pelevant" coumands, i.e., commands which materially entered into the generation
of the problem formula must be examined. The algorithm for computing the list

of relevant commands is _.iven in Figure 20.

2. Commands for Requesting Problems in the STUDENT Mode

The student requests only the derive and prove problems, not the questions.
This give him a chance to rework his proof techniques, repeat problems he may
have had trouble solving, try some easier problems if he feels he is not ready
for the ones he is being given, or try more challenging ones. Any lemmas he
proves become part of his command language and are thus available to him for
later derivations. The syntax for requesting problems is compatible with the
command language.

1. To request a derive problem, the student types:

DERIVE: <well-formed formuls>

P (1) <well-formed formula>
P (2) <well-formed formula>
The P command stapds for "premise."” It is similar to

entering a fermula for a working premise, but this line cannot
be deleted by the DLL rule. Once the student starts typing

commands other than P, he can no longer type the P command.

75

68

n « last line of the derivation
commandlist « (n®
creckl « first element of (coM n)

—{—rxs checkl equal to (NIL), P, or WP?J

No l . .§ Yes
check +
gl;eﬁ:ezﬁended . ~Ts check empty? . Yes
No
Remove the :
first element Here, commandlist is a list of line
crom check numbers. The command names al each
line are relevant to generating the
: : solution formula. Now search for
Yes the command names:
Is the first element -
of check a member Of [saiemm—e—= comsands - NIL
commandiist? *
No ‘ : y Fs commar.dlist empty‘ZJ
i « first element of check o ‘ - ‘ Yes -
commandlist = add 4 %o 1 - first element of | reETURN
: commandlist : . | commands
checkl = féasdtic)alemgnt of commandlist « rest of
. cotmandlist

‘commands < append to -
commands the
second elemont
of (CoM 1)

Fig. 20. Aligorithm for computing the solution string--the lisf
of commands used in generating the problem formula.

Notationally, the 1ist of commands is saved in an array named (coM i),
where i is the line number. (coM i) has the form:

(<list of line numbers> (command'name) <1ist of occurrence references>
(<information following the_colon>))

~J
ah)

Q
ERIC
69

}
'

To reguest a prove problem, the student types:
PROVE: <well-formed formula>

After the student completes the prcof, the program
will ask him for a

NAME: <string of alphabetic characters>

The student's response. an alphabetic string, names
the formuls as a lemma which now becomes part of his command
language -
The student may also derive a new rule of inference if he
feels it will help aim in constructing new derivations.
The format is:
RULE: <name for the new rule--an alphabetic string>

FROM: <name of an axiom or theorem in the student's
command language>

The same information has been reguested here as was reguested
in the TEACHER mode version of deriving a rule of inference

(page 54) and the identical processing algorithm is carried out.

PART V. SUMMARY OF THE COMMAND LANGUAGE

The convention is to underline items typed by the user; all other information

is typed by the program. Each user command is terminated by ar ATTMODE (Enter Key)

which appears as a dollar sign ($). In most cases, the ALTMODE is not shown.

Mote that the aser can type ALIMODE in order to escape from any command seguence.

In the following, @ is an individual variable, B a term, and @, ¥, ¥', are
well-formed formulas (WFF).

Instances of ﬁxioms and Established Theorems

1.

Proper Substitution of a Term for a Variable.

<axiom, lemma, or theorem name>

<variable>:: <term of instantiation>

°

<variable>:: <term of instantiatiog?

The supstitution sequence continues for each universally
quantified variable (whose scope is the entire formula) of the
closed formula &ssociated with the axiom, lemma, or theorem.

Substitution is carried out simﬁltaneously.

T 77

v i e ks

Proper Substitution for Predicate Letters and of Terms for Variables.

PS : <name of axiom, lemma, or theorem>

<yvariable> : <well-formed verm>

<predicate letter> : <WFF>

The substitution sequence continues until the user types the
ALTMODE key without one of the two possible substitution pairs.

The substitution procedures are carried out iteratively.

Proof Procedures

1.

2.

.

WP Working Premise
WP (1) <e>
CP Conditional Prcof
WP (1) o
(3) ¥
i.jcp (n) o -V
IP Indirect Proof {reductio ad absurdum)
WP (1) @
(3) v
(x) NOT ¥

i.j.kIP (n) NOT @

Introduce a variable of universal generalization

GEN: <variable>

OK If the variable does not occur free in any
antecedent lines, the program types 'OK';

otherwise, an error message is given.

78
71

e

5. UG Universal Generalization

GEN: & or, alternatively:
OK

(1) o) (i) ofx)
iUG: o (n) Voog(a) iUG: o (n) Voap(a)
This version of UG need This version of UG requires
only check the last GEN checking for & free in any
introduced. antecedent lines.

Primitive Rules of Inference

1. AA Affirm the Antecedent (modus ponens)
(1) o -V
(3) o
i.3AA (n) V¥

2. Quantification Rules (and UG above)

ES Existential Specification
(1) Jag(a)
iES
o :: B (n) o@(B) where B must be new to the derivation.
EG Existential Generalization
(1) o(B))
iEG <sequence 'of occurrence numbers>
a: B (n) Bopia) where substitute & for each occurrence

of B referenced.

Us Universal Specification
(1) Voap(a)
iUsS ‘

o B (n) o(B)

f?EB

72

|
|
i
i

3, Logic of Identity IDS and IDC

(1) o(B)
iIDC <sequence of occurrence numbers>
o B (m) Va(o=p - ¢(q)) whers substitute @ for each
m_IDS (n) o(B) occurrence of B referenced.

L. Interchange Rules RE and RQ

(1) o(a)
(3) a=p
i.jRE <occurrence number>
(n) o(B} where replace B for the free occurrence
(o) o(¥) of o referenced.
(p) Vo'

i.JRQ <occurrence number>
(a) o(¥') where replace ¥ for the occurrence

of V' referenced.

5. Generalized Interchange Rules--short forms of axioms and theorems

<line number> <axiom, lemma, or theorem name> <occurrence number>

Miscellaneous Commands

1. Delete the last line DLL
&Jline numbex> DLL
All lines other than premises, beginning with <ine number>

and continuing to the last line generated, are deleted. If IP and
CP lines are deleted, the subsidiary derivation is no longer

considered.closed.

2. Erter a line ENT
BT (1) <EE>
This commend is useful for testing expressions for well-
formedness or for debugging the curriculum without having to
do the proofs. '

80

%3, Use of Mechanical Theorem~Provers SHOW and HELP
SHOW 1is described in Part II, Section 5.
HELP is explained in Parts III and IV.

L. Obtain the initiative to request problems at runtime.
INIT

a. Derive problems

DERIVE: <WFF>

(1) <WFF> The student can enter any number of
(2) <WFF> premise lines, continuing until he

« g i

enters a command different from P
or DLL.

b. Prove Problems
PROVE: <WFF>
NAME: : <alphabetic string>

After the proof is completed, the student may assign a
name to be associated with the WFF. This name becomes

part of the student's available command language.

¢. Derive a new rule of Inference.

RULE: <name of a new rule>

FROM:: <axiom, lemma, or theorem name>

The new rule results from the algorithm presented in
Part III, Section 5. i)

Derived Rules of Inference

The general format for a derived rule of 1nf°renc° is:

<sequence of NOP line numbers> <name of the rule>

The line numbers refer to lines of the derivation or proof which must match
the corresponding premlses of the rule. The premises are patternéf(under
the name PATTERN) on the property 1list of each rule listed in Appendix II.
Note that the logical connectives are written as variable names (e g,
"ARROW" , "ORSGN") After the teacher has specified the vocabulary, the
variables in the rules are replaced by the corresponding logical constants.

The RESTRICT options are written as LISP S-expressions. The procedure that

7” 81

processes derived rules evalugtes these S-expressions in order to check
for restrictions on the values of the dummy variables or the requested

expressions (REQ), or to (re)compute substitution pairs for the substitution
list.

82
75

References

Allen, J., & Luckham, D. An Interactive Theorem-Proving Program.
In B. Meltzer & D. Michie (Eds.), Machine Intelligence 5.
New York: American Elsevier, 1970. Pp. 321-336.

Goldberg, A. Ph.D. dissertation (in preparation).

Kalish, D., & Montague, R. Lo- .c: Technigues of Formal Reasoning.
New York: Harcourt, Brace & World, 1964.

Tuckhem, D. Refinement Theorems in Resoluticn. In M. Laudet (Ed.),

Proceedings IRIA Symposium on Automatic Demonstrations.

Springer-Verlag, 1970.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., & Levin, M. T.
LISP 1.5 Programmer's Manual. Cambridge, Massachusetts: The MIT
Press, 1962.

Mendelson, E. Introduction to Mathematical Logic. Princeton, New Jersey:
D. Van Nostrand, 1964.

Robinson, J. A. A Machine Oriented Logic Based on The revolution
¢ Priaciple. Journal of the ACM, 1965, 12, 23-41.

Suppes, P. Computer-Assisted Instruction at Stanford. Technical Report
No. 174, Institute for Mathematical Studies in the Social Sciences,
May 19, 1971.

Suppes, P., & Binford, F. Experimental Teaching of Mathematical Logic
in the Elementary School. The Arithmetic Teacher, March, 1965,
187-195.

Suppes, P., Jerman, M., & Brian, D. Computer-Assisted Instruction:
Stanford!s 1965-66 Arithmetic Program. New York: Academic Press,
1968.

Suppes, P., & Ihrke, C. Accelerated Program in Elementary-School
Mathematics-=The Fourth Year. Psychology in the Schools, 1970, 7,
111-126.

ERIC . 83

Appendix I

Forming Clauses for the Formal Theorem-~Prover

1. SKOLEM TRANSFORMATION routine ‘
Below is a sketch of the seven func'tioné used to form the Skolem

transformation of a formula @.

input string n <« @

!
v
CLOSURE n — 1 Ensure that the formula n is a closed formula.

ELIMARROW n > 1 Eliminate the implicetions signs.
So all occurrences of the pattera
(—» A B) become (OR(-A)B). Any more

occurrences of (-» A B)?

. |
: , , NO YES

NEGSCOFE n —» 1 Reduce the scope of the negations signs.
Each negation sign (=) should apply to at

most one predicate letter. So all the

, : occurrences of : become:
| (~(&AB)) (OR(~A) (~B))
(~(ORA B)) (&(=A)(~B))
| (~(~8)) | A
| (+@ x &) (v x(~A))
{ (v %), @ x(~4))
! | | NO B
I
DISTR n — 1 - Distribution laws for the quantifiers 3 and V
| are applied. All the occurre.nces
of : . -become:
(or@ x &)@ x B)) @ x(0R A B))
(&(vy x AV x B) (¥ x(&AB)
e el
\j

PRENEX 1 — 0 Standardize the variables--rename variables

to ensure that each quantifier has a unique

n is nov in the dummy variable. This is done while moving all

form b@ where the quantifiers to the front of 7, preserving

® is a string of order. If @ is a variable of generalization,

quantifiers and renamed as ', the @ is within the scope of

¢ is the matrix. the quantifier, then any Q contained in ¢ is .
renamed as @'. In order to ensure that the
actual binding operator still binds the
original variables within its scope,
variables of generalization which occur in

a @ are also renamed as above. When a
variable of generalization is found which has
already been renamed, it is renamed again.
Thus, order and the scope of binding

operators are preserved.

CNF n —n : Conjunctive Normal form:

The matrix @ resulting from PRENEX 1 is put

n is now in the into an equivalent form which is the

03
form 5! where conjunction of a finite set of disjunctions.

1 s .

¢’ is ¢ in (OR A (&B C)) becomes (&(OR A B)(OR A C))
conjunctive normal

form.
SKOLEM 7. —» M Eliminate the existential quantifiers.

The usual skolemization is carried out
with 'the skolem functions represented
" as f<i>, i=1,2,.... The universal

quéntifiers are dropped .

- A

|
i
i
{
i
H

2., TIs a formula ¥ CLOSED?

¥ - ELIMARROW ¥ — n —> NEGSCOPE n - n < DISTR n —n ——> PRENEX

Variables in ¢ have been
< standardized with numeric .
terms. VARS « list of

nonnumeric variables still

no yes in @
¥ CLOSED ¥ NOT
CLOSED

3, FOEM a CLAUSE from @

n->"n
of form
S

v

matrix « @
QVAR <« variables
of generalization

in 7

A clause for the theorem~-prover is a disjunction of literals where a

literal isg either an atomic formula or its negation.

P - SKOLEM TRANSFORMATION © — 7

s I, « eliminate the conjunction sign.
CONJLIST

I is a list of all the conjuncts; essentially
Ll all occurrences of (& A B) becomes the list (A B).
All terms which are constants must be nested, in
DISTLIST 1ist form, one list deeper. All disjunctions are
n -1 eliminated so that a clause becomes a list of the

conjuncts which in turn are a 1ist of the disjuncts.

86

[

O

ERIC

Aruitoxt provided by Eic
Y

]

Appendix IT

The Rules of Logic

AR *AFFIRM THE ANTECEDEMNT

PazAl3E ((ARROW ZPZ Z6&%). 2P 2)

CoWCL
NOP

WQZ

2

X »CONMUTE CONJUNCTIONM

PREwISE C((ANDSGR 2532 ZP2))

CONCL
NoP
OCCuR

(ARDSGN 2P 2 257)
1

O *COMMUTE DISJSUNCTION

PREMISE ((ORSSK ZS2 ZP 7))

QNCL
NOP
OCCuRK

(ORSGN ZPZ ZS57)
13
1

& »COMMYTE EQUALS

PHEMISE (LEQSIGN ZAZ 4B2))

QONCL
NOP
0CCuk

(EWSIGN 2B2Z ZA D)
1
1

i *DENY THE CONSEQUENT

PREMISE
CONCL
NOP

(CARROW ZQ % ZR2) CNEGSGN ZK 7))
(NEGSGN %@ 2)

2

© *DENY THE DISJuNCT
PHEMISE ((ORS3N Z5%Z 7P2) ZR2)

CONCL ZQzZ
AOP "2
(DEFPF« 0P R ESTRICT

CoN § .
((DENIAL (CADR (ASSOC (QUOTE Z%ZS7%) MAluSULB))
(CAD!

R (ASSOC - (RUOTE ZRZ) MAINSUB)))

(SETQ MAlNSUB (SUBST (QUOTE 26%) (QUOTE 2Z522) ‘ﬂAlNSUB)))
((DENIAL (CADR (ASSOC (QUOTE ZP7) MAINSUB))

(SETQ

(CADR (ASSOC (RUOTE ZRZ) MAINSUB)))

WALNSUB (SUBST (QUOTE %Q%) (QUOTE %SZ) MAINSUB)))

(T (ERRMSG 56)))

EXPR)

i *DEMORGAN'S LAWS

PREMISE

waCL

(OR .
C(CANDSGN 2@ % ZR 2))
C(CORSGN 2@ Z ¥R4)) :
C(NEGSGN (ANDSGM 287 ZR 2)))
(CHEGSBN CORSGN %8 % ZR’D)))
(0K
(WEGSGE CORS3N ZPZ Z37)) -
(NEGSGN (ANUSGK 2P% 2S4Y)
(OR3GN ZPZ 2S5 %)
(AM)SeN Pz ZSZ))

1
(DEFPNOP RLSTHICT
(AND (SETQ MAIASUZ

(APPEND (LIST
~ (LIST (QUOTE ZP2)
(COND

CCAND
(NOT
CATON
(CADH (ASSOC (QUOTF 2Z8%2) MAINSUB))))

(ER
(CAADK (ASSOC (QUOTE 7Z37) MAINSUS))
NEGSGN))-

(CﬁDﬁDR (AS50C (RUOTE ZGZ) MAINSUE) D)

(usr NEGSGN

-(CADK ,

: (ASSOC "(RUOTE 28 2). MATNSUE))I)IIN}
MA1NSUE))

it i r b

DR P St i g

O

ERIC

Aruntoxt provided by Eic
B

b

(SLTL AAlnsuL
(APPEMCG (LIST
(LIST (WUOTE 32
{CONL
[XE LY
(aGT
(ATO
(Caph (A850C (LubTh i)
(g
(Caairn (ABSDE (Bu0OTo %R0
NEGSAN))
(CALADR (ASD0C (QUOTE #R)
(W}
(LIGT NeGuad
2L ADNK
(AS3OL CuubTr A
LALNS UL D)
APR)

we *u0uLLE NZGATION
PEENILL (CGF
CHEGSGN (SEASGN X5W)))
(22722
wrCL (Ot
nice H

3 *D13JURCTIVE SYLLOGISH

SAM LI)
R Liwudd)

WU 2D

MAINS)00

PREMISE ((ORSGN 2PZ Z& %) (ARKOW 2P TS (MKROY 2071 ZRA))

MNCL (ORSGK 282 ZRE),
No? 3

FC *FOR# A COBJuLCTIOM
FRERISE (WX W)

CINCL CANDSGN 2572 28 %)
WoP 2

Fu SFORM A DISJULCTION

Fhenlaf (35%)

Wiwil (OR33H 257 RLQW)
b t

WG H]

HO *AYPOTHETICAL. S5YLL.OGLIS!H

PLENISE C(CARROW ZP7% %271 (ARKOW 262 kD)
COHCL (ARFOd ZP2 2R 70 -

_NDP &

w LAY OF THE bICONDITIONAL

PREMISE (O .
((BICOND ZPT TR X))

(CANDSGE C(ARRGW 2P 2423) (AKROW 70 Z %P7))))

WiCL (0K
(ANDSGN CARKOW ZPZ 23 2) (ARKOd %¢7 ZP 1Y)

(cICOBL ZP 2 20 %))
NOP 1 .
c »LEFT CONJUNCT

PLEMISE CCAPLSEN 28572 ¥R
COAGL 257
(v d 1

L1 #L0OGICAL TRuTH

WalL (z RER RED
NOP)

nel | T

™PE T

& $HI3nT CONJUNGT
PREMISE ((ANLSGN %52 ZR%)

WNCL b s
ner 1

T

*»

\V]

23

Appendix III

‘Sample Curricuvlum File

UESTION
(8 u cCA” MEANS “COMMUTE ADDITION®. <CA ALLOWS
YOU TO SWITCH THE TERMS AROUND THE...
Ai *=* SICN
B * SIGM
[¢ SIGH. "
ALIST (B /+]
[ﬂ

Cﬂ‘l =COMMUTE ADDTION 1S AN AXIQOM WHEREAS |
COMNUTE EQUALS IS A...
A PREMISE ‘
PR NITION
num(% INFERENGE.*

[jcéu “HERE IS THE CA AXIoM: A,
THE CA AXIOK IS A TRUE FQUALLCL LG
MATIER ARAL NOUEERS. ° “B’ ARE.
WHICH GF THESE IS Ak mum OF CA...
A) 5H=5t4

B 5+4=4+5

c 4+5=,],

DERIVE 4 =4
[4 S (5Lé+ 41.]:1 OF HCW TO USE THE
A)CIG!:

DERIVE: 5+4=4+45

CAS A+B=bB+A

A::59

B::4% (1) 5+4=4+5

nssmim PR0aED cA))
[mxvx (3./+42=2 /+ 13)

(6 (BRNE it Bz ..-Héﬁ![g&'ﬂ- CF THE CA AXIOM."

PREMISE (A /+ B= 6 /+ 3
Rmm}c'r (Gio RE))

”c&‘i uWHAT NUMBER CAN A EE II “A < 6°°1s
; A THUE STA jpn :

| RANGE (NIL S

: [8 (GERIVE (8 <) '

{ P FA§+ -5) THEN (A < 6))

P mA]/+ B=5)
£9 (DERIVE (A=B)

oM. sum:sronmr:zmomou. AHO=A"

ﬁrﬁnﬁ&"(‘&é és) ATD z)
Hoaor (o se))
u?m(mova (C /A =A)

NOW KNOW FIVE AXIOMS TG USE IN PROOFS.®
nmnfc'i ((zi0CK) (YES €A 2))

H ([.CH SHE WILL CALL BQUATION GA=h, THEOREM 1%
COM “SINCE YOU HAVE PLCVED ‘UIEOFEM 1, YOU CAN
USE IT IN CIHER PROCFC. SIWDY GHIS...

DERIVE 0O+46=6

TH . Oth=h , .. -

Az (1) O+6=6

“TH1” STANDS FOH, ..

i A) MHECREM 1

:

R o
ST (A (IFECREM 1)

Lz OB T2 B cor. -
]:l{[lc %im (o ca 2)) 8 Hiock

i
'

i 1

O

ERIC

Aruitoxt provided by Eic

Appendix IV

Using the Curriculum of Appendix III

» ¢ START)
wHO ARE YOU (1YFE S OR T)?

*5% t
PLEASE TYPE YOUR NUMBER.
*6%

ADELE GOLDBERG

OK?

*Y$

1
CA® MEANS *COMMUTE ADDITION®. CA ALLOWS
YOU 10 SWITCH THE TERMS AROUND THE.-.

A) ‘'=°* SIGN
B) °*#° SIGN
C) °*<°® SIGN.
«B%
CORRECTe« =

e

CUMMUTE ADDTION 1S AN AXIOI.‘l WHEREAS
COMMUTE EQUALS I8 Ae-=

A)Y PREMISE
E) DEFINITION
C)> RULE OF INFERENCE.

»B%

. TRY AGAIN
*C$ ’
CORRECT==» .

3

HERE 15 THE CA AXIOM: A+BoB+A.

THE CA AXIOM 1S A TBUE EQUATION NO
MATTER WHAT NUMBERS °*A* AND °B° ARE.
WHICH OF THESE 1S AN EXAMFLE OF CAs-e

‘A) S¥a= 5S4
BY S5+4m4+s
C) 4+5=9,

*BS
CORRECTe e

a

HERE 1S5 AN EXAMPLE OF HOW 10 USE THE®
CA AXIOM: . R

DERIVE: S+4=4+5

CAS © A+E=B+A
A1tS5S | .
Bi:as (1) S+ 4= 4+5

TRY THE PROOF.-

DERIVE (S ¢ Qe+ S
"y#CA$ -A+ B= B+ A

A11#58 - .
Bits&s L1y (5 ¢+ #=(4 +)
CORRECTess

.

DERIVE €13 + 2)=¢2 + 1)
1%INITS

YOU CAN NOw REQUEST A DERIVE. OR PROVE
PROBLEM, OR DEKIVE A NEw RULE OF INFERENCE.

1HE INTERRUPTED PROBLEM WILL BE RESTARTEQ
1F _YOU TYPE FIN .

T1YFE A DERIVE, FROVE OR‘RUI;E COMMANO

1 *DERIYE: 243=2+3%

. DERIVE (2 2 JIm(2 + 3B

1%CAS A+ B=B+A

Arte2s .
Biis3s 1) <5 ¢+ 3= & 2)
JEWICEIS (2) (3 + 2>=(2 + 3>

ta1-2REIS (3) (2 + 3)=(2 + 3)
CURKREC1..-

TYPE A DERIVE, PROVE OR RULEL COMMAND

b INS

NOw REDO THE FROBLEM 'YOU INTERRUFTRD

L] .

DERIVE €13 + 2¥=¢2 + 13)

1t #CNS A+ B= B+ A

Az*13s ’

Biie2$ 1) - 13 + 2=l2 + 1D

CORRECT-« e

90

O

FRIC

Aruitoxt provided by Eic:

6 .
TRY USING THE SHORTFORM OF THE CA AXIOM.

DERIVE CA + BI=(3 + 6)

P : (13 €A + BIoC6 + 3D
taCAS A+ Bw B+ A

Asse6s : -
Bris3s (2) (6 + 3I=C(3 + 6)

$#1.2RE1S (3> (A + BIn(3 + 6)

CORRECTees ~
YOU MAY NOT USE RULE .RE IN THIS PROBLEM
TRY AGAIN

DERIVE CA + BY=(3 + 6>

P (@ B <A + BY=(6 + 3)

s#1CACS €2) (A + BI)=(3 + &)

CORRECT.e.

7

WHAT NUMBEER CAN *A' BE IF 'A < 6' IS

. A TRUE STATEMENT?

*48

CURRECT. ..

8

DERIVE A< 6 -

P [B (CA ¢+ 3) = S)=>CA < 6)
4 (’8) B = 3

. P {3) (A + Bya S

t#3.2RE1S (4) (A ¢ 3d)m S,
t*#1e4AASE (S) A < 6 '

CORRECTe o0

9 ' .
*2® STANDS FOR THE ZERO AXIOM: A+(=A

‘DERIVE A= B
P

T1), (B + 0¥w¢A + O
tt.
NO COMMAND REQUESTED?

$182% A+ 0=_A
Az3sBY (2) (B + 0)» B

I¥ZS A+ 0= A)
ALseAS | €3> (A + 0)= p

s#1«2REIS (4) B =(A + O

$#4.3RE1$S (53 B = A

3*CElS t6) A= B

CORRECTee s

10
YOU NOW KNOW FIVE AXIOMS TO USE IN PROOFS5.

FHOVE 0+ A= A

T*INITS . L
YOU MAY NO1 REGUEST YOUR OWN PROBLEMS NOW!

$*ZS A+ 0= A

Att*A% (1) (A + 0)= A
t*1CARCA>1 S (2) (0 + A= A
CORNECTees

11 - .
WE WILL CALL EQUATION 0+A=A, THEOREM 1

' SINCE YOU HAVE PROVED THEOREM 1, YOU CAN

USE IT IN OTHER PROOFS. STUDY THISee.
DERIVE 0+6=6

THI 0+A=A

AT36 (1) -0+626

*TH1' STANDS FOR..s

A> THEOREM 1

B) AXIOM 1

C) RWE 1.

* THEOREM 1§
CORHECTeee-

12
USE THEOREM 1 IN THIS PROUF

DERIVE €0 + 7= 7

1»THIS 0+ A= A ' .
At3s*T % €1> 0+ = 7

CUHRECTeee .
LESSON OVEReso

. GOODBYLss «ADELE

i
-

Appendix V

Some Sample Proof's

z
;
‘e
|
i
|
;
!
[
i
{
s
{
t
|
|
i
i
i
i

The first proof given is of a theorem of logic which is motiveted by
Russells'! paradox. Simply let *F' be interpreted as the membership relation
of set theory; then, the sentence to be proved asserts that there is no set
which consists of exactly those sets which are not members of themselves.

Special attention should be paid to the fact that some of the lines of the proof
are justified on the basis of either universal specification or existential
specification. Both of these rules involve proper substitution of a term A for
a variable X.

The second theorem of first-order logic for which a proof is provided is a
variant of Russell's paradox (again, for 'F! read 'et). The antecedent of the
theorem is an instance of the well-known Aussonddrung: axiom due to Zermelo
(thus, sometimes referred to as 1Z7ermelo's Axiom'); it asserts the existence
of those sets which are a subset of some given set as def ined by some well-formed
formula of the language. It is expected that from this axiom one can prove
the non-existence of the troublesome universal class and this is what the
consequent of the theorem asserts. Note that instances of previously proved
theorems are needed for the proof. Of special significance is the fact that in
obtaining these instances substitution for predicates is needed; for example,
the formula ‘F(v,v)' is substituted for the O-place predicate 'Q'.

The third example is an alternative derivation of the fact that the universal
class is not & set. Premise (1) asserts that every set is such that the cardinal
number of the class of all subsets of it is greater than the cardinal number of
the set itself; this is, of course, Cantor's theorem. Premise (2) asserts that
the class of all subsets of a given set is itself a set; this is the Power Set
axiom of axiomatic set theory. Premise (3) asserts that for sets X,y such that
y contains x, it is not the case that the cardinal number of x is greater than
the cardinal number of y. The final premise asserts that the universal c¢lass

contains every set.

32

e w AR MY

O

ERIC

Aruitoxt provided by Eic:

DEKIVE NOTCF. YCA X(F(X,¥) TFRCNOT FCXsXI?))

1eUPS [$%) *E YCA XCFCX,¥) IFF CNOTCH(XsX)IIIIE

ltll<|>h§! . : .

Yi1:8Z$ 2 A XCF(Xs2) 1FFNOT FC(XsX)))

t#2USS

Xr1eZ$ [§}) FC2sZ)1FF(NOT F(Z,2))

1+3LES cay CF(Zs2) =>(NOT F(ZsZ)IIECINOT F(Zp7)) => F(7s7))
1+4LCS (3] FCZ,2)~>(NDT FCZ,2))

1+ 4RCS 6y CNOT FC252))=> F(ZaZ)

14WPs Cen eNO1 FeZszdE

1%6.7AAS B)
157.7+41F8 (D
seWwPS 1|
t%5.108A8 (11D

1%10.10-111F%
o2y

t*1e9¢121P$C13)

CORRECT. - .

FC(2Zp2)
FCZ22)
tF(ZsZ) %

NOT F(ZaZ)

NOT F(2,2)

NOTC(E Y(A ¥C(F(X,Y¥) IFFC(NOT FC(X,X))3))

DERIVE (A ZCE Y(A XCF(X,Y) !FF(F(X-Z) 2(NOT F(XsX))33)))=~>(NOTCE

- 1% WPS o
3% o
1 e WhS -2y
19 2ESS
FARE L 1 «3)
te1USS
Zis*WS)
14k SY
Yitevs 5)
te5USE
Xt1aVs 6)
1 #PSsTHAS

112QeF(VLVUIS
11sRIF(X, WS
t3eX1VS
1883

«H

t1*7.6AA% (R)
tabSs THBS

11eRIF(V,VIS
tews

2¢A X F(X»23)))

A Z(E Y (A XCF(Xa¥) 1FF (F(Xs238CNOT F(¥,%3))3))
E 70A X F(XaZ))$ »
A X F(XaW) .
£ YA xrftﬁ.v) IFF(F(X, W) &CNOT FCH¥3I)D)

A XC¢F(XpV) IFFCF(XoW) &CNOT FCXoX))))

FCUpVITFR(F(Vs W) 2(NOY F(Vavi))

(@ IFFC(R &CNOT ©)))~>"ii IFF(C &(NOT C)))

(F(Vs V) IFFCFCV, W) SCNOT F(Vs4)I3)=>(FIUsW)
IFFCF(VLV) RCNOT FCV, VI3

FCV,WITFFC(F (Vs V) 2(NOT FCVLUVII)

NOTCE &CNOT ©))

U

i
b
!
i

O

Aruitoxt provided by Eic:

ERIC

9
1»8LES 1o
$*10LCS a1

1%11.9DCS (12)

1%3USE
Xeravs (13

t#2e 12 131P%
i

1#1e 1ACFS (15)

CORRECTees

DERIVE NOT S
toPS . (S B]
3PS @
s oPS [$<}]
»

t+PS)

1 WIPS [£-%)
t*RUSS '
X1%US [£-3]

136 «SAAS 1)
1%3USS
XsgsBCUIS (B
t*BUSS

Y3:9US)
1¥7 JSFCS 10>
t%9.10AAS C11)

334USS
XteeBCUIS (12D

tel2.7AAS (12Y
s#11.13AAS (14)

31%1USS
XrzauUs 153

1%15.5AA8 (16)

3%5.14.1681P3
€17

CORRECT e

NOTCF(VsUY 2CNDT FeLVvI))

(FEU, W) =>CF(Val) SCNOT FCVsV)IIIIECCFIVs V)
L& (NOT F(V,v))) => FeVswd)

FCUsWI=> (FCU,YY RCNOT FCU,UI))

NOT F(V,W)
FCVsWw)

SULCE ZCA X F(XaZ3D)

(A ZCE YCA X(F(XsY) IFF(F(X.Z) ZCNUT FEXaX)332))0~>C

NOTCF Z¢Aa X FIXs2)1))

u

#A X(SEX)=> BCACBCXIIALXIIIS
A X(S(XI=>S(BEXIIS

A XA YU(SX) & SCY)I~>(C(YsXDI=>
(HOT BLACX)ISA(Y)IIINIS

*A KISCXI->C(U2XIOS

T &5CUI8

SU=>» 5BUY

sBU

AY(CSBUZ2 SY) e3> (CCYsB 1) ~2(MOT S5(A B UsA Y
LR R .

¢S BUS S U=>(CCUsB U ->(NOT G(A B U.A D3
s Bus s U

CCu.B UI-»CNOT G(A B 0,4 w

s B U-> CU.B W)
ctu.8 W

NOT GCA B UoA U2

S tj=> GLA B Usd U

G¢a B UsAa U

NoT s U

94

ET)

s
Ui

I
T

iatl
A

i

