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Simultaneous Factor Analysis in Several Populations
Abstract

This paper is concerned with the study of similarities and differences
in factor structures between different groups. A common situation is when
a battery of tests has been administered to samples of examinees from several
populations.

-A very general model is presented, in which any parameter in the factor
analysis models (factor loadings, factor varilances, factor covarilancss, and
unique variances) for the different groups may be assigned an arbitrary wvalue
or coastralned to be equal to some othe? parameter. Given such a specifica-
tion, the model is estimated by the maximum iikeli.1ood method yielding a
large sample X“ of goodness of fit. By computing several solutions under
different specifications one can test various hypotheses.

The method is capable of dealing with any degree of invariance, from
the one extreme, where nothing is invariant, to the other extreme, where
everything is invariant. Neither the number of tests nor the number of
common factors need to be the same for all groups, but to be at all
interesting, it is assumed that there is a common core of tests in each

battery that is the same or at least content-wise comparable.




Simultaneous Factor Analysis in Several Populations*

1. Introduction and Summary

This paper is concerned with the study of similarities and differences
in factor structures between different groups- A common situation is when a
battery of tests has been administered to san__es of examinees from several
populations. Traditionally this type of problem has been solved by obtaining
orthogonal unrotated solutions for each group separately, rotating these to
similarity and examining various similarity indices.

Perhaps the best approach to the problem is that of Meredith [196ka,bl],
who has shown that, under certain conditions, when the varilous populations
are derivable as subpopulations from a parent population under selecticn
on some externsl variable, there is a factor pattern that is invariant over
populations. Meredith [1964 ] gives two methods for estimating the common
factor pattern by least squares rotation of independent orthogonal solutions
for each group into a common factor pattern. If this can be achieved, the
common factor pattern may be rotated further, orthogonally or obliguely, to
a more readily interpretable solution.

The method to be presented is both more general and statistically more
optimal. It is more general in several respects. Firstly, the method may
be used regardless of whether the populations are derived by selection or
not. The only requirement is that the populations be clearly defined and

the samples independent. Secondly, the method is capable of dealing with

*¥This research was supported by grant NSF-GB-12959 from National
Science Foundation. My thanks are due to Marielle van Thillo who checked

the mathematical derivations and wrote and debugged the computer program
SIFASP.
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any degree of invariance, from the one extreme, where nothing 1s invariant,
to the other extreme, where everything is invariant. Thirdly, neither the
number of tests nor the number of common factors need to be the same for all

’ groups, but to be at all interesting it i1s assumed that there is a common core
of tests in each batter,- that 1s the same or at least content-wise comparable.

A very general model is presented, in which any parameter in the factor

analysis models (factor loading, factor variance, factor covariance, and
unique variance) for the different populations may be assigned an arbitrary
value or constrained to be equal to some other parameter. Given such a specil-
filcation, the model 1s estimated by the maximum likelihood method assuming
the observed variables to have a multinormal distribution in each population.
This yields a large sample X2 test of the goodness of £it of the overall
model.. By computing several solutions under different specifications one
can test various hypotheses. TFor example, one can test the hypothesis of an
invariant factor pattern or the hypothesis of an invariant specified imple

structure factor pattern.

2. A General Model

2.1 The Model

Consider & set ¢ m popu.ations Hl’HE""’nﬁ « These may be differe:t
aations, or culturally different groups, groups of individuals selected or. The
basis of some ¥nown or unknown seleciion variable, groups receilving differ=.t
treatments, etc. In fach, they may be any set of exclusive groups of indiiduals
t .at are clearly Zefiped. IT is assumed that a battery of tes s has been .dmin-
i-tered to a sample of indiviiuals from each population. The battery of —asts

ne=3 not be the same for eech group, nor need the number of tests be the same.
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However, since we shall be concerned with characteristics of the tests that
are invariant over populations, it is necessary that some of the tests in
each battery are the same or at least content-wise equivalent.

Let pg be the number of tests administered to group g =znd let x

be a vector of order pg , representing the measurements obtained in group

g - We regard xg as a random vector with mean vector ug and variance-
covariance Zg . It is assumed that a factor analysis model holds in each
population so that xg can be accounted for by kg common factors fg and
raique factors as
Pg q ZgJ
1 X =n +AF + 3z
(1) g g g g g ’

with S(fg) =0 and e(zg) =0 and Ag a factor pattern of order Py X kg .
The usual factor analytlic assumptions then imply that

) N I
/ g g 88 g

wnere @g is the wvariance-covariance matrix of fg and wz 1s the diagonal
variance-~covariance matrix of zg .
In addition to assumlng that a factor analytic model holds in each

population the model may specify that certain parameters in A_, @, ¥

g 8 g’
g =1,2,...,m have assigned values and that some set of unknown elements in
Ag , @g and wg are the same for all g . The most common situation is

when the same battery has been administered to each group and when the
whole factor pattern Ag is assumed to be invariant over groups. This

case will be considered separately in section 3.




2.2 Identification of Parameters

Before an atbtempt is made to estimate a model of this kind, the iden-
tificaticn problem must be examined. The identification problem cepends
on the specification of fixed, free and constrained parameters. Under =
given spescification, each A_, ®g and Wg generates one and only one
Zg but it is well ¥known that different Ag and @g can generate the same
Z, . Tt chould be noted that if A, is replaced by A.gT; and @ by
T & T' , where Tg is an arbitrary nonsingular matrix of order kg x k_,

g 88 g
then Zg is unchanged. Since T has k: independent el=aments, this

g
suggests that ki independent conditions should be imposed on Ag and/or
Qg to make these uniquely defined and hence that g%l ké independent condi-
tions altngether should be imposed. However, when equality constraints over
groups are taken into account, all the elements of all the transforwation
matrices are not independent of each other and therefore a lesser humber of
conditions need to be imposed. It is hard to give further specific rules in
the general casé. TFor the special case when the whole factor pattern is
invariant over groups, however, a more precise consideration of the iden-
tification problem is given in section 3.2. In-other cases one should
verify that the only transformations Tl’TE""’Tm that preserve the

specification about fixed, free and constrained parameters are identity

matricese.

2.% TEstimation and Testing of the Model

Let Ng be the number of individuals in the sample from the gth bopu-

lation and let ig be the usual sample mean vector and Sg the usual sample
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vgriance—covariance-matrix with ng = Ng - 1 degrees of freedom. The only
requirement for the sampling procedure is that it produces independent
measurements for the different groups.

If we assume that x has a multinormal distributicn it follows that
Sg has z Wishart distribution based on Zg and ng degrees of freedom.

th

The logarithm of the likelihood for the g sample is

1 -1
(3) log L, = -5 ng[loglzgl v tr(s )] .
Since the samples are independent, the log-likelihocd for all the samples is
m

(L) log L = % log L .
g=1 &

Maximum likelihood estimates of the unknow:n elements in ./\.g 3 ®g P Wg P)
g =1,2,...,m , may be obtained by maximizing log L . However, it is

slightly more convenient to minimize

(3) F o=

e I

m

-1

£ n_[log|Z | + tr(s = - logls | -
2 gl 2| (847 alsgl - vyl

g= .

instead. At the minimum, F equals minus the logarithm of the likelihood
ratio for testing the hypothesis implied by the model against the general

alternative that each Zg is unconstrained. Therefore, twice the minimum

2

value of F is approximately distributed, in large samples, as X  with

degrees of freedom equal to

7
9




m 1
6 a = = +1) -t
(6) - py(p, + 1)

where t 1is the total nunber of independent parameters estimated in the

model.

2.4 Minimization Procedure

The function F will be minimized numerically with respect to the
independent parameters using 2 modification of the method of Fletcher
and Powell [1963]. The application of this method makes use of exact
expressions for first-order derivatives and approximate expressions for
second~order derivatives of F .

Let

(7) Q == s g =1,2,...,m .

Then it follows from the corresponding results for a single population

see e.g., Lawley & Maxwell, 1963, Chapter 6 or J8reskog, 1969) that
2 J

for g = 1,2,...,m,

(8a) BF/BAg = ngQgAgQg s
p — ' - J—_ s e
(8b) BF/GQg = ngAgQgAg 5, dlag(AgQgAg) )
7 _ .
{8c) aF/aq:g = n, dlag(agwg) .

We shall also need expressions for S(BEF/BQiBGJ) > where 6. and Gj

are any ‘two parameters. If @6, is an element of A , @ or and @,
1 g g g J

gtn, S(BEF/BQiaej) is zero.

is an element of Ah , @ or wh s

h
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Otherwise, if both Gi and ej are elements of Ag P Qg er V¥ _, the
5 =

required second-order derivatives can be e:xpressed in terms of the elements

of

(92) £ = n A

(9b) n=3"1h - &0

(9c) o= AstA s arg

(94) B =aenn” = o

(Se) y = on's e < po

as

(10a) e(agF/a‘Airaxjs) = n(«:rijyrs + nisnjr) |

(10b) S(BQF/BAir8¢St) = (n/2)(2 - B_ )&, B, + E;B. )
(10¢) e(agp/axirawsj) - 2n0ijnjrwsj

(104) e(d%F/d0, 30, ) = (a/4)(2 - B_)(2 - 8, )@ 0 o o)
(10e)  e(3%F/30 3%, ) = n(2 - B e 6 ¥

(10£) e(agp/awiiawjj) - En(dij)EWiiwjj .

Here we have omitted the subscript g for simplicity of notation.
The function F is regarded as a function of the elements of Ag R

Qg s Wg » &=1,2,...,m , and is to be minimized with respect to these

o
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taking into account that some elements may be fixed and some may be con-
strained to be equal to others. Such a minimization problem may be solved
as follows.

Let Gg be a vector of all the elements in Ag 5 @g and wg ar-
ranged in a prescribed order. Since @g is symmetric, only the elements in
the lower half and the diagonal are counted. Then eg is of order rg =

l_- o ] — 4 4 s
pgkg + 5 kg(kg + 1) + P, - Let o' = (6 ,92,...,6m) . Then 6 consists

of 211 the elements of all the parameter matrices and is of order r = Ty +
ry + ««. +r . The function ¥ may now be regarded as a function f(6)
of 91’92""’9r , which is continuous and has continuous derivatives
OF/0e, and BzF/BeiBQj of first and second order, except where any Zg
is singular. The totality of these derivatives is represented by a gradient
vector OF/d6 and a symmetric second order derivative matrix B2F/8959'

The vector OF/d06 of order r is formed by arranging the elements of
the derivative matrices (8a)-(8c) in the same order as the elements of A, ,

@g and Wg , £=1,2,...,m , in 6 . As an approximation to the r X I

matrix 'BzF/BeBQ' we use S(BzF/BQBQ') which is of the form

e(3°r/30,6.) 0 . 0 -
2 1
(11) S(BQF/aeae') _ . ? e(d F/?egaeg) e ?
0 o vee e(azF/éemaeé)

where 6(52F/59g39é) is a symmetric matrix of order rg x T, formed by
computing (10a2)-(10f) and arranging these so that the order of rows and

columns corresponds to the order of the parameters in eg .

buck
-
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Now let some r - s of the 0's be fixed and denote the remaining 6's
by ﬁl,ﬁz,.-.,ﬁs ; 8 <r . The function F 1is now regarded as a funetion
G(x) of %y, Tps e e, - Derivatives oG /on  and 8(82G/5ﬁ8ﬁ') are ob-
tained from OF/d¢ and 8(82F/5989') by omitting rows and columns cor-
responding to the fixed 8's. Among Ty 5 Ty v e ey Mg let there be some t

distinct and independent parameters denoted cees Ry s t <s , so

Kqs Koo
that each T is equal to one and only one nj but possibly several =n's
equal the same &k . Let K = (kij) be a matrix of order s x t with
elements k.. =1 1f =xn, = vk, and k.. = 0 otherwise. The function

i3 i J ij
G (or F ) is now a function H(k) of the independent arguments

Kyl e, by and we have
(12) OH/Ok = K'(3G/ox)
(13) - 8(82H/8n8n') = K'e(azc;/anan')}_{ .

Thus, the first-order and expected second-order derivatives of H are simple
sums of the corresponding derivatives of G .

For the minimization of H(k) we use a modification of the method éf
Fletcher and Powell [1963} for which a computer program has been written by
Gruvaeus and Jdreskog [1970]. This method makes use of a symmetric matrix
E of order t x t , which is evaluated in each iteration. Initially E
is any positive definite matrix approximating the inverse of 82H/Bn8n' .

In subsequent iterations E is improved, using information built up about
the function so that ultimately E converges to an approximation of the

inverse of BQH/BRBR' at the minimum. If t is large, the number of
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iterations may be excessive but can be considerably decreased by the pro-~
vision of a good starting point for &k and a good initial estimate of E .
In principle, a good initial estimate of E may be obtained by com-
puting 62H/Bn8n' at the starting point and then inverting this matrix.
However, in our problem, the second-order derivatives are rather complicated
and time-consuming to compute. Instead, we therefore use estimates of the

second-order derivatives provids 1 by a1e informaticn matri:
2, e
(14) 2(0 H,'0kdk ") = &(SH/Or o= k') .

In addition <o being more easily eve’ iated, this matrix also yields other
valusble information. The inverse of 8(62H/5m6n') evaluated at the minimum
minimum of H 1s an estimate of the variance-covariance of the estimated
parameters El,ﬁg,...,ﬁt . This may be used to obtain standard errors of

the estimated parameters.

The starting point k may be chosen arbitrarily but the closer it is to
the final solution the fewer iterations will be required to find the solution.
The minimization method converges quadratically from an arbitrary starting
point to a local minimum of the function. If several local minima exist

there is no guarantee that the method will converge to the absolute minimum.

2.5 Computer Program

A computer program, SIFASP, that performs all the computations described
in the previous sections has been written in FORTRAN IV and a write-up for
this is available [van Thillo & J8reskog, 1970]. This program reads aa ob-
served covariance matrix or a correlation matrix and a vector of standard

deviations for each group, a set of pattern matrices specifying the fixed,




~11-~

free and constrained parameters and a set of matrices of start wvalues for
the minimization. It then minimizes the function F as described in the
previous section to obtain the maximum likelihood solution for each group.
These are then printed together with residvals, i.c , differences between
observed and reproduced variances and covarlances, znd X? measure of
overall fit.

The computer program assumes that the number o. wvzriables and the number
of common Ffactors are the same for each group. This i: 20 lczs of generality,
since it can always be achieved by the introduction »>f pueudcvariables and
pseudofactors in some groups as follows. Each pseudcw . ruable nas unit ob-
served variance, zero observed covariances with everr other variable, zero
factor loadings on each factor including the pseudofazctors and unit unique
variance. Rach pseudofactor has unit variance and zero covariance with
every other factor and pseudofactor. It is readily verified that such
pseudovariables and pseudofactors have no effect on the likelihood function
whatsoever.

The observed variables may be rescaled initially as described in
section 3.4. This is sometimes convenient when the observed variables have
arbitrary units of measurements. In the special case of an invarilant factor
pattern, as described in the next section, the factors in the maximum likeli-~
hood solutions may be rescaled as shown.in section 3.3.

The implementation of the minimization algorithm is simpler if all
matrices are stored as singly subscripted arrays. This saves space, since
only the lower halves of symmetric matrices need to be stored, and makes

the program more efficient. The program makes use «I a ses of subroutines

id
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for matrix algebra on matrices stored as singly subscripted arrays. A fur-
ther important advantage with this technigue is the flexibilivy in the choice

of m, p and k . Thus, in the same space as one can have m =4 , p = 12

3
and k=5 one can also have m =2 , p =17 and k=5 or m =1,
p =2k and k = 12.

The compuber program works with one group (m=1 ) as well ag with more
groups. When m is one the model is the same as that of JYreskog [19691]
but it is now possible to handle not only fixed parameters but alsc equality
corstraints between parameters. The new program SIFASP, therefore, makes

the o0ld program RMLFA obsolete. SIFASP can handle many types of factor

analytic solutions.

3. A Model of Factorial Invariance

5.1 The Model

Perhaps the most common application of the method just described will
be the case when the same tests have been administered in each population
and when it is hypothesized that the factor pattern A is invariant over
populations. Meredith [1964a] has shown that such a model will occur under
certain conditions, when the populations are subpopulations derived from
a parent population by selection on some external variables. Although
this model is a special case of the general model described in the previous
'section, it deserves a separate discussion.

In this case Py = Pgp = eee =P =D and kl:k2="'=km=k and

m

the matrices Zg and. Wg , &=1,2,.e.,m are all of the order D x P

and the ®g , &=1,2,...,m are all of order k x k . The common factor

pattern A is of order p x k . The regression of Xy on fg is [ec.f. (2)].

14
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(L X o= + AT + =z
(15) z = Mg 2 z

and the variance-covariance matrix Zg is
(16) z & A’ we
= /X + R
g g -z

In the special case of two populations, m = 2 , a stricter form of invariance
was considered by Lawley and Maxwell [1963, Chapter 3]. This reguires not

only the regression matrix A in (15) to be invariant but also the vari-~

' 2
ances about the regression, i.e., wi = W2 . This type of restriction

can easily be incorporated using the general approach of the preceding

section.

3.2 Tdentification of Parameters

Suppose that the A in (16) is replaced by A¥ = A1 and each @g

1s replaced by @Z = TQgT' s, &= 1,2,4ee,u1 ; vhere T 1s an arbiltrary
nonsingular matrix of order k x k . Then each Zg remains the same so
that the function F in (5) is unaltered. Since the matrix T has k?
independent elements, this means that at least k2 independent conditions
must be imposed on the parameters in A, ®l’¢2""’@m to make these
uniquely defined.

Within the framework of the general prccedure of the previous section,
the most convenient way of doing this is to let all the Qg be free and
to fix one nonzero element and at least k -~ 1 zeros in each column of
A . In an exploratory study one can fix exactly Kk - 1 =zeros in almost

arbitrary positions. For example one may choose zero loadings where one

thinks there should be "small" loadings in the factor pattern. The resulting
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solution may b .otated Ffurther, if desired, to facilitate betier inter-
pretation. In a confirmatory study, on the other hLand, the rogiticns ¢ T
the fixed zeros, which often exceed k - 1 in each column, ~re given &
priori by an hypothesis and the resulting solution cannot be rotated

without destroying the fixed zeros.

3.3 Scaling of Factors

The fixed nonzero loading in each column of A can have any value.
This is only used to fix a scale for each factor that is common to all
groups. When the maximum likelihood solution has been obtained, the factors
may be rescaled so that their average variance is unitys This reccaling is

obtained as follows. Let

(17) = (1/n) zlngg ;
' m
with n= X n_, and
g=1
(18) D = (diag 6)'1/2 )

Then the rescaled solution is

(19) & = 207t

D&:gD s g ='1,2,...,m .

I

(20) ox

The matrix 7* has zeros WwWherever X. has zeros but the fixed nonzeros in
A have changed their values. The weighted average of the 6; is a cor-

relation matrixe.

-




3.4 Scaling of Observed Variables

Waen the units of measurements in the different tests are arbiltrary,
it is usually. convenient, though not necessary, to rescale the observed

variables, before the factor analysis. Let

m
21 S = (1 > nS
( ) ( /n) .y g g )
m
with n= X n as before and let
g=1
(22) D = (aiag 8)° Y2 .

Then the variance-covariance matrices for the rescaled varilables are
23 S* = DS D .
(23) x 2

The weighted average of the S§~ is a correlation matrix. The advantage
of this rescaling is that, when combined with the rescaling of the factors of
the previous section, the factor loadings are of the same order of magnitude
as usual ﬁhen correlation matrices are analyzed and when factors are
standardized to unit variances. This makes it éasier to choose start
values for the minimization (see section 3.5) and interpret the results.

Tt should be pointed out that it is not permissible to standardize

the variables in each group and to analyze the correlation matrices

instead of the variance-covariance matrices. This violates the likelihood

funciion (4) which is based on the distribution of the observed variances

}_‘.
~
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and covariances. Invariance of factor patterns is expected to hold only

when the standardization of both tests and factors are relaxed.

3.5 Choice of Start Values

In a medium-sized study of say 4 groups, 20 variables and 5 factors,
the number of free parameters to estimate may well exceed 200. To obtain
the maximum likelihood estimates, a function of over 200 variables has to
be minimized. This is not an easy task even on today's large computers.
To reduce the computer +time as much as possible it is necessary to choose
good start values for the minimization. This can be done by doing some
preliminary runs with the same compute:'program before the overall esti-
mation is attempted.

1. Using m= 1 ana the pooled correlstion matrix R = DSU ,

where D is given by (22), obtain an oblique maximum likelihood
solution with the fixed zeros in A ani the diagonal elements
of @& equal to unity. Let the estimate of A so obtained

be denoted .K(O) .

2. TFor each group separately, using m = l and Sg » Obtain an
oblique maximum likelihood solution with the whole A fixed
equal to K(O) and with @g and yg free. Let the resulting
estimates be denoted 820) and @(O) s, &= 1;,2,¢0.,m .

3. vThen ?\(O) 5 8](_0),8éo),...,8rﬁo) 5 {[\r](_o),{[\réo),...,{l\rélo) provide
good start values for the overail nminimization witk the largest

(0)

element in each column of A fixed, in addition to the fixed

ZEXOS .

L
-~
¥
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If the model also specifies that the Wg should be invariant over
groups, one uses as start values @(O) for the common V¥ , the estimate

~{0
obtained in step 1 and step 2 is done with V¥ fixed at W( ) .

Suppose HO and Hl represent two models under different specifica-
tions of fixed, free and constrained parameters, both models fitting the
general framework of section 2.1. Then it is Possible, in large samples,
to test the model Hb against the model H, , by estimating each of them
separately and comparing their X2 goodness of fit values. The difference
in X2 is asymptotically a X2 with degrees of freedom equal to the cor-A
responding difference in degrees of freedom.

In an exploratory study there are variou- hypotheses that may be

tested and it seems best to pProceed stepwise in a certain order.

One begins by testing the hypothesis of equality of covariance matrices,

i.e.,
ek) Het I, =3, = ... =X .

This may be tested by using the test statistic

m
(25) M=n log'SI - = n_ logls | R
g:l g g

where S 1is given by (21). Uander the hypothesis, M is distributed

. 2
approximately as X~ with ds, = % (m - 1)p(p + 1) degrees of freedom. As

shown by Box [194G], the approximation to the X2 distribution is improved

19
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if M is multiplied by a certain constant. When P or m is larger than
4, Box suggests a transformation to an F distribution.

Tt should be noted that the test statistic (25) may be obtained in SIFASP
by specifying kg =P, Ag =TI, wg =0, g=1,2,...,m and @l = @2 = eee =
Qm « The maximum likelihood estimate of the common ¢ will then be the pooled
S as defined in (21). If the tests are scaled originally as described in
section %.4, this 8 is a correlation matrix R .

If the hypothesis 1s found to be tenable every characteristic common to
all groups can be obtainea from the pooled covariance matrix S or the cor-
relation matrix R and there is no need to analyze each group separately or
simultaneously.

If, on the other hand, the hypothesis of equality of covariance matrices
is untenable, one may want to invesfigate similarities and difference in fac-
tor structures. For this purpose, a sequence of hypotheses, such that each

hypothesis is a special case of the preceding, will now be considered. The

first hypothesis is the hypothesis of equality of number of common Factors,

i.e.,
(26) Hk: k, =k; = ... =k = o specified number k .

This may be tested by doing an unrestricted factor analysis [JBreskog, 1969]
on each Sg (or SE or the corresponding correlation matrix) separately,
using the same number of common factors for each group. The analyses may
be done by J8reskog's [1967a,b] method UMLFA but can also bc done with the
computer program SIFASP. In SIFASP one uses m = 1 and fixes k2 elements

in Ag and/or @g ; Tor example, to obtain an orthogonal solution one can

PAY
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choose @ = I and % k(k - 1) =zeros in Ag and to obtain an oblique solu-
g

tion one can choose diag @g = I and k(k - 1) =zeros in Ag . Fach analysis

gives a X®  with %-[(p - k)2 - (p + k)] degrees of freedom. Since these
. 2 2
X2's are independent they may be added for each group to obtain a X~ , X_

koY

say, with q_ = % ml (p - k)2 - (p + k)] degrees cf freedom, which may be

used to test the overall hypothesis.
If the hypothesis of & common nunber of factors is found tenable, one

may proceed to test the hypothesis of an invariant factor pattern, i.e.,

(27) Hy: A =Dy = e =A -

The common factor pattern A may either be completely unspecified or be
specified to have zeros in certain positions. If A 1is unspecified, one
fixes Xk - 1 =zeros and one nonzero value in each column almost arbitrarily-
If A is specified to have zerosg in certain positions, one fixes an arbitrary
nonzero element in each column in addition. There will then be k? fixed
elements in A 1in the unspecified case and q > k2 in the specified case.

Teo obtain a X2 for this hypothesis, one estimates A , ®l’®2""’®m R

wl,wg,...,vm from Sl’SQ"'°’Sm simultaneously, yielding a minimum value of

2

the function F . Twice this minimum value is a X2 5 XA say, with degrees
of freedom

1 1

Zwp(p +1) -pk +q - 3uk(k +1) ~mp ,
where ¢ = k? in the unspecified case. To test the hypothesis HA , &iven

2 2 2 .

that Hk holds, one uses XA-k = XA - Xk with dA-k = dA dk degrees of

frezdom.
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If this hypothesis is found tenable one may proceed to test the hypothesis

(28) H/\\lf: [\1=A2=...=Am; \|Il=\I!2=...=\I!m .
‘ To do so one has to estimate A, ®1’®2""’®m.’ ¥ under HAw « This again
e o . 2 R
, gives a minimum value of F which when multiplied by two gives Xﬂw with
d, =%:mp(p+1) - pk+q-5umk(k+ 1) -p
Ay 2 2
a £ freed To test H ainst H, one uses Xo., = Xo -0
egrees o reedom. o te Ay agains [, one s yen = Fay T FA
with dW'A.= dAw - dA'degrees of freedom.
If the hypothesis HAw is found tenable one may want to test the
hypothesis
M = = ese = H =9 = esee = H = = ees =
(29) Hpgy? 1= 72 bt %1 2 ®m 3 V1= W2 Vi

This hypothesis is included in HZ but is stronger than Hﬁ since HZ

includes also the cases when the common X 18 not of the form
[»]
(30) S o= AN+ YT

This hypothesis H can be tested direétly on the basis of the Pooled S

ADY

in (21). The test of HA@W against H; uses a X2 with

1 1
dA@w-Z =3 p(p + 1) - pk + q - 5 k(k + 1) -p

degrees of freedom.
Various other types of hypotheses may also be tested. TFor example,
one may assume that some factors are orthogonal and some are oblique (see

J8reskog, 1969).

J
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It should be emphasized that even if a X? is significant, there may
still be reasons to consider the modei. After all, the basic model with its
assumptions of linearity and normality is only regarded as an approximation
to reality. The true population covariance matrix will not in general be
exactly of the form specified by the hypothesis, but there will be discrep-
ancies between the true population covariance matrix and the formal model
postulated. These discrepancies will not get smaller when the sample size
increases but will tend to give large X? values. Therefore, a model may
well be accepted even though X? is large. Whether to accept or reject a
model cannot be decided on a purely statistical basis. This 1s largely a
matter of the experimenter's interpretations of the data, based on sub-
stantive theoretical and conceptual considerations. Ultimately the criteria

for goodness of the model depends on the usefulness of it and the results

it produces.

5.7 A Numerical Illustration

To illustrate the methods previously discussed we use the same data as
Meredith [1964b] used to illustrate his rotational procedure. The data con-
sist of nine tests selected from a battery of 26 psychological tests de-
seribed by Holzinger and Swineford [1939]. The tests were administered to
Tth and 8th‘grade children in two schools, the Pasteur and the Grant-White
Schools in the Chicago area. The nine tests were selected so that each of

the three factors--gpace, verbal and memory--would be represented by three

tests. The nine tests used, with their origilnal code numbers in parentheses,
were: Visual Perception (1), Cubes (2), Paper Form Board (3), General

Information (5), Sentence Completion (7), Word Classification (8), Figure

o3
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Recognition (16), Object Number (17) and Number-Figure (18). On the basis

of a speeded addition test, Meredith divided each of the samples from the

two schools into two approximately equal groups by splitting at the median
score within each school. This yilelded four groups that will be used for
this illustration. The correlation matrices taken from Meredith's table 2
are shown in Table la with unscaled and scaled standard deviations in

Table 1b. The sample sizes are: Group l: Pasteur Iow Nl = 77 , Group 2:
Pasteur High N, = 79 , Group 3: Grant-White Low N3 = T4 and Group Y4:
Grant-White High Nh = Tl . Because of the way the two groups within schools
were selected, it is doubtful that the assumption of multinormality is wvalid.
This departure from multinormality will have no great effect on the estimates
but may be more serious for the X2 values. In particular, the X? test of
HZ is known to be sensitive to departures from multinormality. For this
reason and also because the sample sizes are relatively small, the X2 values
that will be reported should be interpreted very cautiously. It should be
emphasized that these data have been chosen merely to illustrate the proce-
dures of this paper. Another application, with more substantive interest

and with larger and widely varying sample sizes, are given by McGaw and
J8reskog [1970].

We begin by testing the hypothesis Hﬁ that X =% = Zu . This

1= % 3
gives the test statistic M = 146.95 with 135 degrees of freedom. Trans-

formation to Box's F -statistic gives = 1.05 . In view of the

F135,0
remark just made, this wvalue 1s inconclusive. However, for the purpose of
illustrating a simultaneous analysis of all four scaled dispersion matrices,

we shall follow the procedure of section 3.6 and test various hypotheses

of interest. The results are summarized in Table 2.
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The first hypothesis, Hkv5 , 1s that three faectors adequately reproduce
the correlation in.each population. This gives X2 = W7.73 with 48 degrees

of freedom. This X2 is the sum of four X2'S one from each population and
each with 12 degrees of freedom. These are Xi = 15.33 , Xg = 10.hh 5

2
X5 = 14,40 and Xi = 7.56 . Thus we cannot reject the hypothesis that the

number of factors is three for each population. We therefore proceed by
investigating whether there is an invariant factor pattern or not.
The next hypothesis, Hy is that there is an iruriant unsdecified

u
(unrestricted) factor pattern Au « To test this hypoth=sis we fix one

nonzero element and two zero elements in eack column o \u and lesaie

| ST e .
@l R @2 R @5 5 ¢4 and wl ; Vo o Wa s Wn complete .y unconstreined
A convenient way to choose the fixed elements in Au i: to use a reference

variakles solution as, for example,

i

G 4

H K O K X M XK X O
K oW H MK K O K K O

"M M O X X O K % 1)

Here the zeros and ones stand for fixed values and x's for parameters to be

estimated. Tests 1, h and 7 have been chosen to be pure in their respective
2 . -

factors. The test of HA gives X = 90.57 with 102 degrees of freedom,

u
which is not significant. Thus, we cannot reject the hypothesls that there

2%
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is an invariant factor pattern with three factors. To strengbthen the model
we now make use of our knowledge about the tests and hypothesize that the

invariant factor pattern has a specific form, namely

(32) A =

"o o oo o0 o % w7
O O ONX X I O O O

(X ¥ H O O O O O Oy
“

i.e., we assume that A has a nonoverlapping group structure, where the first
three tests are loaded on the first factor only, the next three tests on the
second factor only and the last three tests on the third factor only. As
before, we put no constraints on the ®'s and the V¥'s. A test of this hypothesis
gives X2 = 131.2L with 114% degrees of freedom. This has a probability level
of about O-l5; Thus we cannot reject the hypothesis that the invariant factor

pattern is of the specified form. An examination of the ¥'s, in relation to
their standard errors in the solution under HA »

were not sufficiently different to be considered different. This suggests

revealed that many of these

that one should also examine the hypothesis H that a stricter form of

Ay
invariance holds, namely where also the ¥'s are the same for all populations.
A test of HAw gives XE = 172.1% with 241 degrees of freedom. This is Just
significant at the 5% level. The méximum.likelihood solution under HA is

4

shown in Table 3. Finally, to complete the sequence of hypotheses we consider

1
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I il
the Lypothesis HA@

same factor pattern A as kefore. This gives X% = 212.80 +with 159 degrees

_ that the whole factor struciure is inveriant, with the

of freedom which is highly zignificant. This would seem to contradict tine test

of H. . This is nrot so, however, since Bﬁ¢w is 2 much more restristiwve

hypothesis than H The i.ypothesis H requires that the common = has

s ADY
a factor structure.with thr=e common factors with = factor pattern of tke
restricted type (32), but trere may be many other Possible rerresentations of
the common 5 . 1In fact, 3. X is reprezented bv the unrestricted factor pat-
tern A in (31) instead, ne obtains x& - 36.22  with 147 degrees o freedom,
so that HAu®W oy

Altogether these results suggess two alternative descriptions of +he

cannot be :ejected although HA was rejected.

data. One is that the whole factor structure is invariant over Populations
with a three~factor solution of a fairly complex form. The other is to
represent the tests in each population by three factors of a particularly
simple form, but these factors have different variance-covariance matrices
in the different populations. Additional studies with larger sample sizes
are needed to discriminate statistically between the two models. Perhaps,
the second alternative has the most intuitive appeal. Inspecting thé faétor
variances in Table 4,'it is seen that for the Pasteur school they tend to be
higher for the ILow group than for the High group, whereas for the Grant-
White school generally the opposite holds. Also for the two High groups

the varlances are generally lower for the Pasteur school than for the Grant-
White school. ©Note also the low covariance of 0.08 between & and M for
the Low Grant-White group and the corresponding high covariance 1.03 for the
Low Pasteur group. This seems to indicate that the TLow Pasteur group cannot
~2ily discriminate between the spacial and the memory tasks whereas the Low

Grant-White group can do so clearly.

27
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7

4. 2 ‘mation of Factor Means

A stricter form of invariance than (15) is obtained if in (1) we require
that mot only the factor matrix Ag but also the vector ug be invariant

over populations. Then

(33 X =Mn +AF + g .
g g g

In tiis case it is not reasonsble to assume, as before, that &(f ) = O for
all g , since this implies that S(Xg) = p for all g . Insteaé we assume
that each fg has its own mean S(fg) = vg and propose to estimste these
vg s &= 1,2,4e.,m . Howeve?, since each fg may be replaced by fg -+ b.
if p is replaced by p - Ab , without changing x, in (3%), some rule is

necessary for fixing the origin of the fg . It seems most converient to

fix the origin such that

m
1 Z Nv =0 .
(34) Z N
g._
To estimate KM and vg we assume that A , @g 5 wg > and hence also
Zg » are known and equal to their estimates R , @g 5 $g and ﬁg . TLet

ig R as before, be the sample mean vector in group g and let X be the

overall mean, i.e.,

m
(35) Xx= (/) = Nz
g:l g g
m ' N .
with N = X WN_ . We take ¥ %o be an estimator of p . Then each of the
g=1
following three estimators of v seem reasonable:

g
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(36) v = (RA) Rz - %)
(37) b= 0 AEE - R)
~ PR TN ) . gy =
{38 = (A'Z TN AL z - .
(38) b= RIS RNz - F)

‘Formula (36) is obtainac¢ by fitting the theoretical means p + Rvg to
the observed means ic . 2=1,2,...,m , by least squares. The advantage of
this formuala is that the w=ighting matrix in front of ig - X 1is independent
of g .
Formula (37) is obtained if one applies the mean vectors to the regression
formula for correlated factor scores.
Formula (38) is the maximum likelihood estimator of Ve for given

« The latter is obtained from

X

A=A, T =X
g g

the minimization of

sy & =1,2,¢c¢e,m and p =

m ¥

g
2 (x
g=1 O=1 g &

|
>

= o~ A-l =
- X ~ Ay )’Zg (xdg -x - Avg) 5

where gug is the vector of observed test scores for person & 1in group g .
Formula (36) satisfies (34) for the estimates, but (37) and (38) have

to be scaled afterwards so that (34) holds.

I\
w
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TABLE la-b

Intercorrelation Matrices (=)

Group 1 Above Main Diagonal
& Group 2 Below Main Diagonal

1 2 3 0k 5 6 7 8 9

" Visual Perception .32 A48 0 .28 .96 §iTe) Q2 .12 .23

Cubes .2k -~ .33 .01 .01 .26 .32 .05 -.0h
Paper Form Board .23 .22 -~ .06 .01 .10 .22 .03 01
General Information .32 .05 .23 - 75 .60 15 -.08 -~.05
Sentence Completion .35 .23 .18 .68 - .63 07 .06 .10
Word Classification 36 .10 <11 «59 .66 - .36 .19 .2h
Figure Recognition 22 .01 -.07 .09 11 .12 - .29 .19
Object-Numbexr ~-.02 -.01 -.13 .05 .08 .03 .19 - .38
Number-Figure W09 -.14  -.06 .16 .02 .12 .15 .29 -

Group 3 Above Main Diagonal
Group 4 Below Main Diagonal

1 2 3 L 5 6 1 8 9

Visual Perception - . 3L 41 .38 40 L2 .35 .16 .35
Cubes . 32 -~ 21 92 .16 .13 27 01 .27
Paper Form Board .3h .18 ~ 31 .2h .35 .30 .09 .09
General Information 31 24 <31 - .69 «55 17 .31 .34
Sentence Completion .22 .15 .29 .62 - .65 .20 «30 27
Word Classification 27 .20 .32 .57 .61 - .31 W3k .27
Figure Recognition .48 .31 .32 .18 .20 .29 - .31 .38
Object-Number .20 .01 .15 .06 .19 .15 .36 - .38
Nunber-Figure L2 .28 ko J11 .07 .18 .35 b -
: Standard Deviations (b)
¢ ——
Unscaled Scaled
1 2 3 L 1 2 3 i

Visual Perception T4 6.7 6.6 T.2 1.06 0.96 0.95 1.03
Cubes 5.6 4.0 k.8 }.0 1.20 0.86 1.03 0.86
Paper Form Board 2.9 2.8 2.6 3.0 1.02 0.99 0.92 1.06
General Information 11.8 11.0 11.3 11.5 1.03 0.96 0.99 1.01
Sentence Completion 5.2 5.2 h.7 h.5 1.08 1.06 0.96 0.91
Word Classification 5.2 ©,3 5.0 5.5 0.99 1.0l 0.95 1.05
Figure Recognition 8.8 7.6 6.1  T.h 1.17 1.01 0.81 0.98
Object-Number .7 5.2 3.9 L.9 1.00 1.10 0.83 1.04
Number-Figure B.6 B.h 3.9 4.7  1.0% 1.00 0.88 1.07

Y
b



-30- '

TABLE 2

Summary of Analyses

Hypothesis X2 No. par. d.T. P
H, 146.95 45 135 0.23
0 = LW7.73 132 48 0.h47
H, 90.57 78 102 0.78
H," 131.24 66 11k 0.13
Hay 172.14 39 1h1 0.04
Hagy 212.80 21 159 0.00
HAu@w 36.20 33 7 1.00
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TABLE 3

Maximum Likelihood Solution wunder HAW

(Asterisks Denote Parameter Values Specified by Hypothesis)

A ¥
S Vv M
Visual Perception .72 o¥* o%* .69
Cubes A3 o* o* .90
Paper Form Board .51 o* o* .86
General Information o* .80 ox .60
Sentence Completion o¥* .85 ox -3
Word Classification O* .75 o* .67
Figure Recognition o* o* .58 .81
Object-Number ox o% A8 .88
Number~Figure o* o% 57 .83
S Vv M S v M
. sf1.02 . sfo.89
¢, = v[{0.55 0.91 o, = V|]0.62 0.93
“ wMm[1.03 0.36 1.30 Ml0o.59 0.50 0.58
S Vv M S Vv M
. sfo.72 R s[1.38
¢, = V]|0.52 1.06 434 = V|0.42 1.12
3> wmlo.o8 0.20 0.90 mlo.71 0.27 1.25




