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Simultaneous Factor Analysis in Several Populations

Abstract

This paper is concerned with the study of similarities and differences

in factor structures between different groups. A common situation is when

a battery of tests has been administered to samples of examinees from several

populations.

.A very general model is presented, in which any parameter in the factor

analysis models (factor loadings, factor variances, factor coTariances, and

unique variances) for the different groups may be assigned an arbitrary value

or constra:_med to be equal to some other parameter. Given such a spt,cifica-

tion, the model is estimated by the maximum likelinood method yielding a

large sample X
2

of goodness of fit. By computing several solutions under

different specifications one can test various hypotheses.

The method is capable of dealing with any degree of invariance, from

the one extreme, where nothing is invariant, to the other extreme, where

everything is invariant. Neither the number of tests nor the number of

common factors need to be the same for all groups, but to be at all

interesting, it is assumed that there is a common core of tests in each

battery that is the same or at least content-wise comparable.



Simultaneous Factor Analysis in Several Populations*

1. Introduction and Summary

This paper is concerned wdth the study of similarities and differences

in factor structures between different groups- A common situation is when a

battery of tests has been administered to saL__es of examinees from several

populations. Traditionally this type of problem has been solved by obtaining

orthogonal unrotated solutions for each group separately, rotating these to

similarity and examining various similarity indices.

Perhaps the best approach to the problem is that of Meredith [1964a,b],

who has shown that, under certain conditions, when the various populations

are derivable as subpopulations from a parent population under selection

on some external variable, there is a factor pattern that is invariant over

populations. Meredith [1964-1 gives two methods for estimating the common

factor pattern by least squares rotation of independent orthogonal solutions

for each group into a common factor pattern. If this can be achieved, the

common factor pattern may be rotated further, orthogonally or obliquely, to

a more readily interpretable solution.

The method to be presented is both more general and statistically more

optimal. It is more general in several respects. Firstly, the method may

be used regardless of whether the populations are derived by selection or

not. The only requirement is that the populations be clearly defined and

the samples independent. Secondly, the method is capable of dealing w:Ith

*This research was supported by grant NSF-GB-12959 from National
Science Foundation. My thanks are due to Marielle van Thillo who checked
the mathematical derivations and wrote and debugged the computer program
SIFASP.
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any degree of invariance, from the one extreme, where nothing is invariant,

to the other extreme, where everything is invariant. Thirdly, neither the

number of tests nor the number of common factors need to be the same for all

groups, but to be at all interesting it is assumed that there is a common core

of tests in each batter.: that is the same or at least content-wise comparable.

A very general model is presented, in which any parameter in the factor

analysis models (factor loading, factor variance, factor covariance, and

unique variance) for the different Populations may be assigned an arbitrary

value or constrained to be equal to some other parameter. Given such a speci-

fication, the model is estimated by the maximum likelihood method assuming

the observed variables to have a multinormal distribution in each population.

This yields a large sample X
2

test of the goodness of fit of the overall

model. By computing several solutions under different specifications one

can test various hypotheses. For exauple, one can test the hypothesis of an

invariant factor pattern or the hypothesis of an invariant specifi09 imple

structure factor pattern.

2. A General Model

2.1 The Model

Consider a set (J_ m popviations . These may be differe:A

nations, or culturally different groups, groups of individuals selected on the

basis of some known oT unknown selection variable, groups recetving differt

treatments, etc. In fact, tney may be any set of exclusive groups of indi'-iduals

te.t are clearly fefined. It is assumed that a battery of tes-s has been Admin-

i:tered to a sampie cf indiviluall from each population. The battery of-T..2sts

ne,2d not be the seme for each groupl, nor need the nuMber of tests be the same.
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However, since we shall be concerned with characteristics of the tests that

are invariant over populations, it is necessary that some of the tests in

each battery are the same or at least content-wise equivalent.

Let p be the nuMber of tests administered to group g and let x

be a vector of order p , representing the measurements obtained in group

g . We regard x as a random vector with mean vector u and variance-

covariance E It is assumed that a factor analysis model holds in each

population so that x can be accounted for by k common factors f and

p mlique factors z , as

(1) x = ±Af + z
g ggg

with C(f ) = 0 and C(z ) = 0 and A a factor pattern of order p x k .

The usual factor analy-Lic assumptions then iiix.ply that

= A 0 A' +gggg
2

iwhere 0 is the variance-covariance matrix of f and * s the diagonal

variance-covariance matrix of z .

In addition to assuming that a factor analytic model holds in each

population the model may specify that certain parameters in Ag , _Og , lfg ,

g = 1,2,...,m have assigned values and that some set of unknown elements in

A , 0 and * are the same for all g . The most common situation is

when the same battery has been administered to each group and when the

whole factor pattern A is assumed to be invariant over groups. This

case will be considered separately in section 3.
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2.2 Identification of Parameters

Before an attempt is made to estimate a model of this kind, th iden-

tification problem must be examined. The identification problem depends

on the specification of fixed, free and constrained parameters. Under a

given specjfication, each A , (I) and IV generates one and only one

E, but it is well known that different A and 0 can generate the same

It should be noted that if A is replaced by A. T
-1

and 0 by
g g

T Tt , where T is an arbitrary nonsingular matrix of order kg x kg ,
g g g

then E
g

is unchanged. Since T
g

has k
2 independent elements, this
g

2
suggests that k independent conditions should be imposed on A

g
and/or

'7
,--,

m 2 .

to make these uniquely defined and hence that E, k Independent condi-
g=1 g

tions alt-)gether should be imposed. However, when equality constraints over

groups are taken into account, all the elements of all the transformation

matrices are not independent of each other and therefore a lesser number of

conditions need to be imposed. It is hard to give further specific rules in

the general case. For the special case when the whole factor pattern is

invariant over groups, however, a more precise consideration of the iden-

tification problem is given in section 3.2. In other cases one should

verify that the only transformations Tl,T2,...,Tm that preserve the

specification about fixed, free and constrained parameters are identity

matrices.

2.3 Estimation and Testing of the Model

Let N
g

be the number of individuals in the sample from the g
th

popu-

lation and let X be the usual sample mean vector and S the usual sample
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variance-covariance matrix with n = N - 1 degrees of freedom. The only

requirement for the sampling procedure is that it produces independent

measurements for the different groups.

If we assume that x has a multinormal distribution it follows that

S has a Wishart distribution based on E and n degrees of freedom.

The logarithm of the likelihood for the gth sample is

(3) 1
log L = n [loglE + tr(S E-1)] .

g 2 g g g

Since the samples are independent, the log-likelihood for all the samples is

(4) log L E log L
g=1

Maximum likelihood estimates of the unknown elements in A , 0 , * ,

g = 1,2,...,m , may be obtained by maximizing log L . However, it is

slightly more convenient to minimize

(5)
m

1 .
F = E n [loglE 1 + tr(S E

-1)
log1S 1 P ]2 g g g g g gg=1

instead. At the minimum, F equals minus the logarithm of the likelihood

ratio for testing the hypothesis implied by the model against the general

alternative that each E is unconstrained. Therefore, twice the minimum

value of F is approximately distributed, in large samples, as X
2

with

degrees of freedom equal to



(6)
1

d = E p
g
(p

g
+ 1) - t

2
g=1

-6-

where t is the total number of independent parameters estimated in the

model.

2.4 Minimization Procedure

The function F will be minimized numerically with respect to the

independent parameters using a modification of the method of Fletcher

and Powell [1963]. The application of this method makes use of exact

expressions for first-order derivatives and approximate expressions for

second-order derivatives of F .

Let

(7) 1(z - s )-1zggggg g

Then it follows from the corresponding results for a single population

(see e.g., Lawley & Maxwell, 1963, Chapter 6 or JiBreskog, 1969) that

for g =

(8a) aF/aA =nRA0
g gggg

(8b) aF/60 = n. A'n A - n diag(A'Cl A )g g g g g 2 g g g g

(8c) aF/a* = n diag( r )g g g g

, 2 /We shall also need expressions for gka F/a6.a19.) , where 0, and 6.
I J

are any two parameters. If 6. is an element of A , 0 or * and 0
g g g i

is an element of A
-h Y

0
h

or If
h '

g h , g(a
2
F/aI e.ja0 ) is zero.
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Otherwise,ifboth0.arid O. are elements of A , or , the1

required second-order derivatives can be e;Tressed in terms of the elements

of

(9a)
-1E A

-1(9b) =

(9c) cx = AtriA =

(9d)

(9e) y = 0A'E-1.
AO

as

(10a)
(a2F/aAira'N js) n(aijYrs Ilisiljr)

(10b)
(a2F/aAiraci)st) (n/2)(2 3st)(isPrt giOrs)

(10c) g(a
2
FiaA.

1r jj jr 00

(10d)
(a2F/a4)rsa(1)tu) (n/4)(2 3rs)(2 3tu)(artasu 4- aruast)

(10e) aa2F/30 64r..) n(2- 3 1,$)
jj

jrgjs7Pjj
rs

(10f) g(a2F/a*..a* ) = 2n(aij)2*..*.
II jj II jj

Here we have omitted the subscript g for simplicity of notation.

The function F is regarded as a function of the elements of A ,

0 , , g = 1,2,...,m , and is to be minimized with respect to these

5
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taking into account that some elements may be fixed and some may be con-

strained to be equal to others. Such a minimization problem may be solved

as follows.

Let 0 be a vector of all the eleme.ats in A , 0 and * ar-

ranged in a prescribed order. Since 0 is symmetric, only the elements in

the lower half and the diagonal are counted. Then 0 is of order r =

1
p gkg

+ k
g
(k
g

+ 1) + p Let 0' = (0' 0'
'
0') Then 0 consists

2 l' 2' m

of all the elements of all the parameter matrices and is of order r = r
1

+

r
2

+ + r
m The function F may now be regarded as a function f(e)

of 01,02,...,0r , which is continuous and has continuous derivatives

.2
6F/60. and 0 F/00100. of first and second order, except where any E

is singular. The totality of these derivatives is represented by a gradient

,2
vector 6F/60 and a symmetric second order derivative matrix

The vector OF/60 of order r is formed by arranging the elements of

the derivative matrices (8a)-(8c) in the same order as the elements of A g

and * , g = 1,2,...,m , in e . As an approximation to the r x r

2 ,

matrix 6 F/6efoe' we use g(6
2
F/6e6e') which is of the form

(11) go2F/aeae,) =

c(62F0e16ei)
MN.

0 . . 0

0 g(62F/6e26e0 0

0 0 c(6
2Fpe 6e')m m

.where go2F/60
g
6e9 is a symmetric matrix of order r x r formed by

g

computing (10a)-(10f) and arranging these so that the order of rows and

columns corresponds to the order of the parameters in 0 .
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Now let some r - s of the e's be fixed and denote the remaining G's

by 7c1,7c2,...,Tcs , s < r . The function F is now regarded as a function

G(70 of :;r1,7c2,...,Tcs . Derivatives aG/Tc and e(6
2
GPTcaTC) are ob-

tained from aFPO and g(62FPeae1) by omitting rows and columns cor-

responding to the fixed O's. Among 7c1,7c2,...,Tcs let there be some t

distinct and independent parameter denoted K1
,K

2 t , t < s so

that each Tc. isequaltooneandonlyoneK.but possibly several Tc's

equal the same K . Let ic ..) be a matrix of order s x t with
io

elementskii=1ifTc.=Kandkij=0 otherwise. The function

G (or F ) is now a function H(K) of the independent arguments

K K .

1 2' "Kt and we have

(12) aH/6K = K'OG/670

(13) e(6211/6K6K?) = Ive(62G/67c67c)K

Thus, the first-order and expected second-order derivatives of H are simple

sums of the corresponding derivatives of G

For the minimization of H(K) we use a modification of the method of

Fletcher and Powell L1963) for which a computer program has been written by

Gruvaeus and J6reskog [1070]. This method makes use of a symmetric matrix

E of order t x t , which is evaluated in each iteration. Initially E

,2
is any positive definite matrix approximating the inverse of d H/OKOKI .

In subsequent iterations E is improved, using information built up about

the function so that ultimately E converges to an approximation of the

inverse of elipKaK, at the minimum. If t is large, the number of
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iterations may be excessive but can be considerably decreased by the pro-

vision of a good starting point for K and a good initial estimate of E .

In principle, a good initial estimate of E may be obtained by com-

,2
puting 0 Hpolatf at the starting point and then inverting this matrix.

However, in our problem, the second-order derivatives are rather complicated

and time-consuming to compute. Instead, we therefore use estimates of the

second-order derivatives providel by _le inforination matri:

(14) s.(6211/6K6K,) = gall/6r 67:

In addition to being more easily evaTaated, this matrix also yields other

,2
valuable information. The inverse of S(40 11/0K6KT) evaluated at the minimum

minimum of H is an estimate of the variance-covariance of the estimated

parameters . This may be used to obtain standard errors of

the estimated parameters.

The starting point K may be chosen arbitrarily but the closer it is to

the final solution the fewer iterations will be required to find the solution.

The minimization method converges quadratically from an arbitrary starting

point to a local minimum of the function. If several local minima exist

there is no guarantee that the method will converge to the absolute minimum.

2.5 Computer Program

A computer program, SIFASP, that performs all the computations described

in the previous sections has been written in FORTRAN IV and a write-up for

this is available [van Thillo & J8reskog, 1970]. This program reads a_a ob-

served covariance matrix or a correlation matrix and a vector of standard

deviations for each group, a set of pattern matrices specifying the fixed,



free and constrained parameters and a set of matrices of start values for

the minimization. It then minimizes the function F as described in the

previous section to obtain the maximum likelihood solution for each group.

These are then printed together with residuals, i. , differences between

observed and reproduced variances and cuvariances, and X
2

measul:e of

overall fit.

The computer program assumes that the number (:)_ vraable,_ and the number

of common factors are the same for each group. This lo lc a-s. of generality,

since it can always be achieved by the introduction -if TrJeudc-variables and

pseudofactors in some groups as follows. Each pseudcT. aable llas unit ob-

served variance, zero observed covariances with ever:- other variable, zero

factor loadings on each factor including the pseudofactors and unit unique

variance. Each pseudofactor has unit variance and zero covariance with

every other factor and pseudofactor. It is readily verified that such

pseudovariables and pseudofactors have no effect on the likelihood function

whatsoever.

The observed variables may be rescaled initially as described in

section 3.4. This is sometimes convenient when the observed variables have

arbitrary units of measurements. In the special case cf an invariant factor

pattern, as described in the next section, the factors in the maximum likeli-

hood solutions may be rescaled as shown_in section 3.3.

The implementation of the minimization algorithm is simpler if all

matrices are stored as singly subscripted arrays. This saves space, since

only the lower halves of symmetric matrices need to be stored, and makes

the program more efficient. The program makes use yf a se-, of subroutines
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for matrix algebra on matrices stored as singly subscripted arrays. A fur-

ther important advantage with this technique is the flexibility in the choice

of m , p and k . Thus, in the same space as one can have m = 4 , p = 12

and k = 5 one can also have m = 2 , p = 17 and k = 5 or ir = 1 ,

p = 24 and k = 1P.

The computer program works with one group ( m = 1 ) as well az with more

groups. When m is one the model is the same as that of J8reskog [1969]

but it is now possible to handle not only fixed parameters but alsc equality

constraints between parameters. The new program SIFASP, therefore, makes

the old prqgram RMIFA obsolete. SIFASP can handle many types of factor

analytic solutions.

3. A Model of Factorial Invariance

3.1 The Model

Perhaps the most common application of the method just described will

be the case when the same tests have been administered in each population

and when it is hypothesized that the factor pattern A is invariant over

populations. Meredith [1964a] has shown that such a model will occur under

certain conditions, when the populations-are subpopulations derived from

a parent population by selection on some external variables. Although

-hhis model is a special case of the general model described in the previous

section, it deserves a separate discussion.

In this case pl = p2 = = Pm = p and kl = k2 = = km = k and

the matrices Eg and * , g = 1,2,...,m are all of the order p x p

and the 0 , g = 1,2,...,m are all of order k x k The common factor

pattern A is of order p x k The regression of x on f is [c.f. (1)].

iIi



(15) x = + Af + z
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and the variance-covariance matrix E is

(16) E = AO A' + VT

In the special case of two populations, m = 2 , a stricter form of invariance

was considered by Lawley and Maxwell [1963, Chapter 8]. Thi8 requires not

only the regression matrix A in (15) to be invariant but also the vari-

2 2
ances about the regression, i.e., = *2 . This tyloe of restriction

can easily be incorporated using the general approach of the preceding

section.

3.2 Identification of Parameters

Suppose that the A in (16) is replaced by Arm- = AT-1 and each 0

is replaced by 0* = TO T' , g = where T is an arbitrary

nonsingular matrix of order k x k . Then each Z remains the same so

that the function F in (5) is unaltered. Since the matrix T has k2

.

independent elements, this means that at least k
2 Independent conditions

must be imposed on the parameters in A, to make these

uniquely defined.

Within the framework of the general procedure of the previous section,

the most convenient way of doing this is to let all the 0 be free and

to fix one nonzero element and at least k - 1 zeros in each column of

A . In an exploratory study one can fix exactly k - 1 zeros in almost

arbitrary positions. For example one may choose zero loadings where one

thinks there should be "small" loadings in the factor pattern. The resulting



solution may b. _otated further, if desired, to facilitate better inter-

pretation. In a confirmatory study, on the other Land, the rositions cf

the fixed zeros, which often exeeed k - 1 in each column, -re given a

priori by an hypothesis and the resulting solution cannot be rotated

without destroying the fixed zeros.

3.3 Scaling of Factors

The fixed nonzero loading in each column of A can have any value.

This is only used to fix a scale for each factor that is common to all

groups. When the maximum likelihood solution has been obtained, the factors

may be resealed so that their average variance is unity. This reccaling is

obtained as follows. Let

m
(17) $ = (1/n) E n 0

g=1 g g
in

with n = E n , and
g=1 g

(18) D = (diag

Then the resealed solution is

( 19 )

(20) $* = D$ D g .

^
The matrix 2of has zeros wherever A has zeros but the fixed nonzeros in

A have changed their values. The weighted average of the $* is a cor-

relation matrix.
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5.4 Scaling of Observed Variables

Waen the units of measurements in the different tests are arbitrary,

it is usually.convenient, though not necessary, to rescale the observed

variables, before the factor analysis. Let

(21) S (1/n) E n S
g=1 g g

In

with n = E n as before and let
g=1 g

(22) D = (diag S)-11'2 .

Then the variance-covariance matrices for the rescaled variables are

(23) S* = DS D

The weighted average of the S* is a correlation matrix. The advantage

of this rescaling is that, when combined with the rescaling of the factors of

the previous section, the factor loadings are of the same order of magnitude

as usual when correlation matrices are analyzed and when factors are

standardized to unit variances. This makes it easier to choose start

values for the minimization (see section 3.5) and interpret the results.

It should be pointed out that it is not permissible to standardize

the variables in each group and to analyze the correlation matrices

instead of the variance-covariance matrices. This violates the likelihood

funcLion (4) which is based on the distribution of the observed variances
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and covariances. Invariance of factor patterns is ezoected to hold only

when the standardization of both tests and factors are relaxed.

3.5 Choice of Start Values

In a medium-sized_ study of say 4 groups, 20 variables and 5 factors,

the number of free parameters to estimate may well exceed 200. To obtain

the maximum likelihood estimates, a function of aver 200 variables has to

be minimized. This is not an easy task even on today's large computers.

To reduce the computer time as much as possible it is necessary to choose

good start values for the minimization. This can be done by doing some

preliminary runs with the same compute:. Program before the overall esti-

mation is attempted.

1. Using m = 1 ana the pooled correlation matrix R = DSD ,

where D is given by (22), obtain an oblique max.imum likelihood

solution with the fixed zeros in A anl the diagonal elements

of 0 equal to unity. Let the estimate of A so obtained

be denoted P) .

2. For each group separately, using m = 1 and S* , obtain an

oblique maximum likelihood solution with the whole A fixed

(0)
equal to A and with 0 and q free. Let the resulting

estimates be denoted $(0) and iir(o) 1 2, g - ... .

3. Then '11(o)
$(0) $(0) $(0) (0) .,z(0) ;;,(0)

provide

good start values for the overall minimization with the largest

^(0)element in each column of A fixed, in addition to the fixed

zeros.
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If the model also specifies that the * should be invariant over

^(0groups, one uses as start values * ) for the common * , the estimate

-(0)obtained in step 1 and step 2 is done with W fixed at *

3.6 Testin5 of Hootheses and Strategy of Analysis_ _

Suppose Ho and HI represent two models under different specifica-

tions of fixed, free and constrained parameters, both models fitting the

general framework of section 2.1. Then it is possible, in large samples,

to test the model H
0 against the model H

1 ' by estimating each of them

separately and comparing their X2 goodness of fit values. The difference
2in X is asymptotically a X

2
with degrees of freedom equal to the cor-

responding difference in degrees of freedom.

In an exploratory study there are variour hypotheses that may be

tested and it seems best to proceed stepwise in a certain order.

One begins by testing the hypothesis of equality of covariance matrices,

(24)
HE: El E2 E

This may be tested by using the test statistic

(25) M = n logISI - E n logIS
g=1 g

where S is given by (21). Under the hypothesis, M is distributed

1approximately as X
2

with d
E

= (m - 1)p(p + 1) degrees of freedom. As2

shown by Box [1949], the approximation to the X
2

distribution is improved

iJ



if M is multiplied by a certain constant. When p or m is larger than

4, Box suggests a transformation to an F distribution.

It should be noted that the test statistic (25) may be obtained in SIFASP

by specifying kg = p , Ag = I , = 0 g = 1,2,...,m and 01 = 02 = =

0m . The maximum likelihood estimate of the common 0 will then be the pooled

S as defined in (21). If the tests are scaled originally as described in

section 3.4, this S is a correlation matrix R .

If the hypothesis is found to be tenable every characteristic common to

all groups can be obtained from the pooled covariance matrix S or the cor-

relation matrix R and there is no need to analyze each group separately or

simultaneously.

If, on the other hand, the hypothesis of equality of covariance matrices

is untenable, one may want to investigate similarities and difference in fac-

tor structures. For this purpose, a sequence of hypotheses, such that each

hypothesis is a special case of the preceding, will now be considered. The

first hypothesis is the hypothesis of equality of number of common factors,

i.e.,

(26) Hk: k
1
= k2 = = km = a specified number

This may be tested by doing an unrestricted factor analysis [J8reskog, 1969]

on each S (or S* or the corresponding correlation matrix) separately,

using the same number of common factors for each group. The analyses may

be done by J8reskog's [1967a,b] method UMLFA but can also be done with the

computer program SIFASP. In SIFASP one uses m = 1 and fixes k
2

elements

in A and/or 0 ; for example,to obtain an orthogonal solution one can
,



1 ,
choose 0 = I and 7 kkk - 1)

tion one can choose diag 0 I

1 , ,2
gives a X2 with 7 [kp - k) -

X
2
's are independent they may be

1 ,2
say, with dk = m[(p - k) (p + k)] degrees of freedom, which may be

-19-

zeros in A and to obtain an oblique solu-
g

and k(k - 1) zeros in A . Each analysis

(p + k)] degrees of freedom. Since these

2
added for each group to obtain a X2 X,

used to test the overall hypothesis.

If the hypothesis of a common nuMber of factors is found tenable, one

may proceed to test the hypothesis of an invariant factor pattern, i.e.,

(27) HA:

The common factor pattern A may either be completely unspecified or be

specified to have zeros in certain positions. If A is unspecified, one

fixes k - 1 zeros and one nonzero value in each column almost aXbitrarily.

If A is specified to have zeros in certain positions, one fixes an axbitrary

nonzero element in each column in addition. There will then be k
2

fixed

elements in A in the unspecified case and q >k2 in the specified case.

To obtain a X
2

for this hypothesis, one estimates A , 01,02,...,0m ,

Ilra,11/2,...,Arm from S1,S2,...,Sm simultaneously, yielding a minimum value of

2 2
the function F . Twice this minimum value is a X , XA say, with degrees

of freedom

1 mp(p + 1) - pk + q - mk(k + 1) - mp

where q = k
2

in the unspecified case. To test the hypothesis HA , given

2 2 2
that Hk holds, one uses XA.k = XA - Xk with dA.k = dA - dk degrees of

fredom.

21
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If this hypothesis is found tenable one may proceed to test the hypothesis

(28) HAN: Al = A2 = = A * = * =
m ' 1 2

To do so one has to estimate A, , * under HA This again
l' 2'

2
gives a minimum value of F which when multiplied by two gives XA* with

1
d
A*

= 1 mp(p + 1) - pk + q - mkkk + 1) - p
2 2

degrees of freedom. To test H against HA one uses X
2 = X

2
- X

2

Aair **A A* A

with d A = d
Al

- dA degrees of freedom.*-lf
If the hypothesis HA*

is found tenable one may want to test the

hypothesis

(29) HAto*: AI = A2 = = ; 01 = 02 = = ; *1 , *2 = . = *ym

This hypothesis is included in HZ but is stronger than Hz since Hz

includes also the cases when the common E is not of the form

(30) E =. A0A' +

This hypothesis Hmlf can be tested direCtly on the basis of the pooled S

2
in (21). The test of H against HZ uses a X with

A0*

dA0*E
= 1 p(p + I) - pk + q - k(k + 1) - p

. 2 2

degrees of freedom.

Various other types of hypotheses may also be tested. For example,

one may assume that some factors are orthogonal and some are oblique (see

Jöreskog, 1969).

22
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It should be emphasized that even if a X
2 is significant, there may

still be reasons to consider the model. After all, the basic model with its

assumptions of linearity and normality is only regarded as an approximation

to reality. The true population covariance matrix will not in general be

exactly of the form specified by the hypothesis, but there will be discrep-

ancies between the true population covariance matrix and the formal model

postulated. These discrepancies will not get smaller when the sample size

increases but will tend to give large X2 values. Therefore, a model may

well be accepted even though X
2

is large. Whether to accept or reject a

model cannot be decided on a purely statistical basis. This is largely a

matter of the experimenter's interpretations of the data, based on sub-

stantive theoretical and conceptual considerations. Ultimately "uhe criteria

for goodness of the model depends on the usefulness of it and the results

it produces.

3.7 A Numerical Illustration

To illustrate the methods previously discussed we use the same data as

Meredith [l964b] used to illustrate his rotational procedure. The data con-

sist of nine tests selected from a battery of 26 psychological tests de-

scribed by Holzinger and Swineford [1939]. The tests were administered to

7th and 8th grade children in two schools, the Pasteur and the Grant-White

Schools in the Chicago area. The nine tests were selected so that each of

the three factors--space, verbal and memory--would be represented by three

tests. The nine tests used, with their original code numbers in parentheses,

were: Visual Perception (1), Cubes (2), Paper Form Board (3), General

Information (5), Sentence Completion (7), Word Classification (8), Figure
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Recognition (16), Object Number (17) and Number-Figure (18). On the basis

of a speeded addition test, Meredith divided each of the samples from the

two schools into two approximately equal groups by splitting at the median

score within each school. This yielded four groups that will be used for

this illustration. The correlation matrices taken from Meredith's table 2

are shown in Table la with unscaled and scaled standard deviations in

Table lb. The sample sizes are: Group 1: Pasteur Low N1 = 77 , Group 2:

Pasteur High N
2

= 79 , Group 3: Grant-White Low N
3
. 74 and Group 4:

Grant-White High N4 . 71 . Because of the way the two groups within schools

were selected, it is doubtful that the assumption of multinormality is valid.

This departure from multinormality will have no great effect on the estimates

but may be more serious for the X
2

values. In particular, the X
2

test of

HE
is known to be sensitive to departures from multinormality. For this

reason and also because the sample sizes are relatively small, the X
2

values

that will be reported should be interpreted very cautiously. It should be

emphasized that these data have been chosen merely to illustrate the proce-

dures of this paper. Another application, with more substantive interest

and with larger and widely varying sample sizes, are given by McGaw and

J8reskog [1970].

We begin by testing the hypothesis Hz that El = E2 = Z3 . E4 . This

gives the test statistic M = 146.95 with 135 degrees of freedom. Trans-

formation to Box's F -statistic gives F
135,0,

= 1.03 . In view of the

remark just made, this value is inconclusive. However, for the purpose of

illustrating a simultaneous analysis of all four scaled dispersion matrices,

we shall follow the procedure of section 3.6 and test various hypotheses

of interest. The results are summarized in Table 2.

ar, :d
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The first hypothesis, H. is that three factors adequately reproduce

the correlation in.each population. This gives X2 = 47.73 with 48 degrees

2
of freed iom. This X s the sum of four X2's one from each population and

2 2
each with 12 degrees of freedom. These are Xi = 15.33 X2 = 10.44 ,

2 2
X
3

14.40 and X
4

= 7.56 . Thus we cannot reject the hypothesis that the

number of factors is three for each population. We therefore proceed by

investigating whether there is an invariant factor pattern or not.

The next hypothesis, HA is that there is an irLant unsmecified

(unrestricted) factor pattern Au To test this hypotT'.1.a.a3fs we fix cne

nonzero element and two zero elements in each column of
1.1

and lea-le

4)4 and *1 , *2 , *3 , complet.- y unconstTElned.

A convenient way to choose the fixed elements in Au f. -to use a reference

variables solution as, for example,

(31) Au =

1

x

x

0

x

x

0

x

x

0

x

x

1

x

x

0

x

x

0

x

x

0

x

X

1

x

x

Here the zeros and ones stand for fixed values and x's for parameters to be

estimated. Tests 1, 4 and 7 have been chosen to be pure in their respective

factors. The test of HA gives X
2

= 90.57 with 102 degrees of freedom,

which is not significant. Thus, we cannot reject the hypothesis that there
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is an invariant factor pattern with three factors. To strengthen the model

we now make use of our knowledge about the tests and hypothesize that the

invariant factor pattern has a specific form, namely

(32) A =

1

x

x

0

0

0

0

0

0

0

0

0

1

x

x

0

0

0

0

0

0

0

0

0

1

x

x

i.e., we assume that A has a nonoverlapping group structure, where the first

three tests are loaded on the first factor only, the next three tests on the

second factor only and the last three tests on the third factor only. As

before, we put no constraints on the O's and the V's. A test of this hypothesis

gives X
2
= 131.24 with 114 degrees of freedom. This has a probability level

of about 0.13. Thus we cannot reject the hypothesis that the invariant factor

pattern is of the specified form. An examination of the *'s, in relation to

their standard errors in the solution under H
A ' revealed that many of these

were not sufficiently different to be considered different. This suggests

that one should also examine the hypothesis HAl, , that a stricter form of

invariance holds, namely where also the V's are the same for all populations.

A test of HAV gives X
2
. 172.14 with 141 degrees of freedom. This is just

significant at the 5% level. The maximum likelihood solution under HAlif is

shown in Table 3. Finally, to complete the sequence of hypotheses we consider
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the nypothesis HA(14 , that the whole factor structure is invariant, with the

same factor pattern A as before. This gives X2 . 212.80 with 159 degrees

of f_Teedom which is highly aignificant. This would seem to contradict tne test

of Hz . This is not so, however, sf_nce 3:m1f is a Imzch more restrictive

hypothesis than Hz . The ?ripothesis HAI)* requi2es that the common E has

a factor structure with thre common factors with a factor pattern of the

restricted type (32), but tv'ere may be many other possible representations of

the common E . In fact, iJ E is represented by the unrestricted factor pat-

tern A in (31) instead, ..vie obtains X = with 147 degrees of freedom,

so that HA. cannot be Lejected although HA01. was rejected.

Altogether these results suggest two alternative descriptions of the

data. One is that the whole factor structure is invariant over populations

with a three-factor solution of a fairly complex form. The other is to

represent the tests in each population by three factors of a particularly

simple form, but these factors have different variance-covariance matrices

in the different populations. Additional studies with larger sample sizes

are needed to discriminate statistically between the two models. Perhaps,

the second alternative has the most intuitive appeal. Inspecting the factor

variances in Table 4, it is seen that for the Pasteur school they tend to be

higher for the Law group than for the High group, whereas for the Grant-

White school generally the opposite holds. Also for the two High groups

the variances are generally lower for the Pasteur school than for the Grant-

White school. Note also the low covariance of 0.08 between S and M for

the Low Grant-White group and the corresponding high covariance 1.03 for the

Low Pasteur group. This seems to indicate that the Low Pasteur group cannot

411y discriminate between the spacial and the memory tasks whereas the Law

Grant-White group can do so clearly.
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4. Lmation of Factor Means

A stricter form of invarfLance than (15) is obtained if in (1) we require

that not only the factor matrfx A but also the vector U. be invariant

over populations. Then

(33) = Af + z

In ts case it is not reasonable to assume, as before, that CU_ = 0 for

all g since this implies that C(x
g

b) = g for all g . Instea. we assume

that each f
g

has its own mean C(f
g
) = v

g
and propose to estimate these

v . g = 1,2,...,m . However, since each f may be replaced by f -I- b.

g g .

if g is replaced by g - Ab , without changing x
g

in (33), some rule is

necessary for fixing the origin of the f . It seems most convenient to
g

fix the origin such that

(34) E N v = 0
g=1 g g

To estimate g and v
g g

we assume that A , 0 , *
g

, and hence also

, are known and equal to their estimates 'A $g , IT

g
and Eg . Letg

R , as before, be the sample mean vector in group g and let 51 be theg

overall mean, i.e.,

(35) K . (1/N) N
g=1 g g

with N = E N . We take Tc to be an estimator of g . Then e,ch of the
g=1 g

following three estimators of v seem reasonable:



(36)

(37)

(38)

x

g a
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-V ArE
c

(5>
g

X)

Folc....ula (36) is obta.a. by fitting the theoretical means u + Av to

the observed means = 1,2,...,m , by least squares. The advantage of

this fo=ula is that the 77-sighting matrix in front of R R is independent

of g .

Formula (37) is obtafned if one applies the mean vectors to the regression

formula for correlated factor scores.

Formula (38) is the maximum likelihood estimator of v for given
^

= A , Eg = Eg g = 1,2,...,m and u = X . The latter is obtained from

the minimization of

m Ng^-=
E (x x - Av ) E

g
1
(xa - - Av )ag

g=1 a=1 g g

where x is the vector of observed test scores for person a in group gag

Formula (36) satisfies (34) for the estimates, but (37) and (38) have

to be scaled afterwards so that (34) holds.
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TABLE la-b

Intercorrelation Matrices (a)

Group 1 Above Main Diagonal
Group 2 Below Main Diagonal

1 2 3 4 5 6 7 8 9

Visual Perception -- .32 .48 .28 .26 .40 .42 .12 .23

Cubes .24 -- .33 .01 .01 .26 .32 .05 -.04
Paper Form Board .23 .22 -- .06 .01 .10 .22 .03 .01
General Information .32 .05 .23 -- .75 .60 .15 -.08 -.05
Sentence Completion .35 .23 .18 .68 -- .63 .07 .06 .10
Word Classification .36 .10 .11 .59 .66 ...... .36 .19 .24
Figure Recognition .22 .01 -.07 .09 .11 .12 -- .29 .19
Object-Number -.02 -.01 -.13 .05 .08 .03 .19 -- .38
Number-Figure ,09 -.14 -.06 .16 .02 .12 .15 .29
*ft

Group 3 Above Main Diagonal
Group 4 Below Main Diagonal

1 2 3 4 5 6 7 8 9

Visual Perception -34 -41 .38 .40 .42 .35 .16 .35
CUbes .32 -- .21 .32 .16 .13 .27 .01 .27

Paper Form Board .34 .18 -- .31 .24 .35 .30 .og .09
General Information .31 .24 .31 -- .69 .55 .17 .31 .34
Sentence Campletion .22 .16 .29 .62 -- .65 .20 .30 .27

Word Classification .27 .20 .32 .57 .61 __ .31 34 .27

Figure Recognition .48 .31 .32 .18 .20 .29 ..... .31 .38
Object-Number .20 .01 .15 .06 .19 .15 .36 -- .38
Number-Figure .42 .28 .40 .11 .07 .18 .35 .44

Standard Deviations (b)

1

Unscaled

2 3 4 1

Scaled

2 3 4

Visual Perception 7.4 6.7 6.6 7.2 1.06 0.96 0.95 1.03

Cubes 5.6 4.o 4.8 4.o 1.20 0.86 1.03 0.86
Paper Form Board 2.9 2.8 2.6 3.0 1.02 0.99 0.92 1.06
General Information 11.8 11.0 11.3 11.5 1.03 0.96 0.99 1.01
Sentence Completion 5.2 5.2 4.7 4.5 1.08 1.06 0.96 0.91
Word Classification 5.2 ,.:-,n3 5.0 5.5 0.99 1.01 0.95 1.05

Figure Recognition 8.8 7.6 6.1 7.4 1.17 1.01 0.81 0.98
Object-NuMber 4.7 5.2 3.9 4.9 1.00 1l0 0.83 1.04

Number-Figure 4.6 4.4 3.9 4.7 1.0'... 1.00 0.88 1.07

31
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TABLE 2

Summary of Analyses

Hypothesis X
2

No. par. d.f.

HE

Hk=3

HA
HAu

HA*
H
A 0*

0A *

146.95

47.73

90.57

131.24

172.14

212.80

36.20

45

132

78

66

39

21

33

135

48

102

114

141

159

147

0.23

0.47

0.78

0.13

0.04

0.00

1.00



Maximum Likelihood Solution under
Altr

(Asterisks Denote Parameter Values Specified by Hypothesis)

Visual Perception .72 0* 0* .69
Cubes .43 0* 0* .90
Paper Form Board .51 0* 0* .86
General Information 0* .80 o* .60
Sentence Completion 0* .85 0* .53
Word Classification 0* .75 0* .67
Figure Recognition 0* 0* .58 .81
Object-Number 0* o* .48 .88
Number-Figure 0* 0* .57 .83

0, = V 0.53 0.91
M 1.03 0.36 1.30

3
= v 0.52
M 0.08

1.06
0.20 0.90

= V 0.62 0.93
M0.59 0.50 0.58

0
4
= v 0.42 1.12
M 0.71 0.27 1.25


