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STFASP : -

A General Computer Program for Simultaneous Factor

Analysis in Several Populations

1. Introduction

1.1 The General Model

We shall describe a computer program for simultaneously factor analyzing
dispersion matrices obtained from independent groups. A cowmon situation,
when this program will be useful, is when a battery of tests has been
administered tQ samples of examinees from several populations and one wants
to study similarities and differences in factor structures between the dif-
ferent populations. The most important feature of the program is that param-
eters in the factor analysis models (factor loadings, factor variances, fac-
tor covariances, and vanidque variances) for the different populations may be
assumed to be known a priori or specified to be invariant over populations.
Given such a specification, the model is estimated by the maximum Llikelihood
method yielding a large sample X2 test of goodness of fit. By computing
several solutions under different specifications one can test various hypothe-
ses. For example one can test the hypothesis of an invariant factor pattern.
The method is capable of dealing with any degree of invariance, from the one
extreme, where nothing is invariant, to the other extreme, where everything
igs invariant. A detailed account of the method, on which the program 1s
based, is given by J8reskog (1970).

Consider a set of m populations. These may be different nations, or

culturally different groups, groups of individuals selected on the basis of

‘%¥Research reported in this paper has been supported by grant NSF-GB-12959
from National Science Foundation.
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some known or unknown selection variable, groups receiving difi—=rent treat-
- ments, sve. In fact, thev may be any set of exclusive groups cf individuals

that are clearly defined. It is assumed that a battery of p tests has

been administered to a sample of individuals from each population. The

battery of tests need not be the same for ch group, but to be interesting,

it is necessary that some of the tests in each battery are the same or at

least content-wise equivalent.

Let xg be a vector of order p , representing the measurements ob-

tained in group g . We regard xg as a random vector with mean vector

ug and variance-covariance Zg . It is assumed that a factor analysis

model holds in each populacion so that xg can pe accounted for by k

common factors fg and p unique factors zg , as
(1) X =pu + AT oz 5

with e(fg) =0 and e(zg) =0 ahd Ag a factor pattern of order P, X kg .

The usual factor analytic assumptions then imply that

. 2
2 2 =AD AN +
(2) g g &g &g Wg

where ©® _ is the variance-covariance matrix of fg and WZ is the diagonal
o

variance-ccvariance matrix of Zy -

In addition to assuming that a factor analytic model holds in each

population the model may specify that certain parameters in Ag R @g 5 wg 5

g = 1,2,...,m have assigned values and that some set of unknown elements in

A o} and are the same for all . Thus arameters in A 0]
g’ g Wg & > P g’ g

and ¢ , g = 1,2,...,m are of three kinds: (i) fixed parameters whick
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have been assigned given values, (ii) constrained parameters which are unknown

but equal to one or more other parameters and (iiil) free parameters which are

unknown and not constrained to be equal to any other parameter. Equality
constraints between parameters for the same populétions may also be used
though this would be unusual in practice. The advantage of this approach
is the great generality and flexibility obtained by the various specifica-
tions that may be imposed. The most common situation is when the same
battery has been administered to each group and when the whole factor
pattern Ag is assumed to be invariant over groups. This cage will

hereafter be referred to as the standard case.

1.2 TIdentification of Parameters

Before an attempt is made to estimate a model of this kind, the iden-
tification problem must be examined. The identification problem depends
on the specification of fixed, free and constrained parameters. Under a
given specification, each Ag s @g and wg generates one and ~nly one
Zg but it is well knowm tho' - N Ag and @g generate the sacc
zg . Tt should be noted that if Ag is replaced by AgTél and @g Iy
Tg@gTé , TWhere Tg is an arbitrary nonsingular matrix of order kg ko,

o
=4

then Zg is un=shanged. Since Tg has k: independent elements, tnis

. 2 . ’ . -/
suggests taat ig indepentent conditions should be imposed on Ag 2ng ‘or
m .
@g to malie these uniquely Jefined and hence that 2 kg independen—
g=1
conditicns altogether should be imposed. However, when equality con=:raints

over groups are Gtaken into wccount, all the elements of 211 the tran  orma-

tion matricss ar=2 not independent of each other and there ore a less=-
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number of conditions need to be imposed. It is hard to give further spe-
cific rudles in the general case. To make sure that all indeterminacies
have been eliminated, one should verify that the only transformations
Tl’TE""’Tm that preserve the specification about fixed, free and con-
strained parameters are identity matrices.

In the standard case when the whole factor pattern is invariant over
groups, however, a more precise consideration of the identification problem
can be given. Suppose that the A is réplaced by N = AT-l and each @g
is replaced by @Z = T@gT' > g=12,...,m , where T is an arbitrary
nonsingular matrix of order k x kX . Then each Zg remgins the same.
Since the matrix T has k2 independent elements, this means that at
least k2 independent conditions must be imposed on the parameters in
A @l,¢2,...,®m to make these uniquely defined.

The most convenient way of doing this is to let all the @g be free
and t [ix one nonzero clement and at least kX - 1 =zeros in each column
of A . In én exploratory study one can Tfix exactly Xk - 1 =zeros in
almost arbitrary positions. For example one may choose zero loadings
where one thinks there should be "small" loadings in the factor pattern.
The resulting solution may be rotated further, if desired, to facilitate
better interpretation. In a confirﬁatory study, on the other hand, the
Positions of the fixzed zeros, which often exceed k - 1 in each column,
are given a priori by an hypothesis and the resulting solution cannot be

rotated without destroying the fixed zeros.

=

C).
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1.3 Estimation and Testing of the Model

Let NT be the number of individuals in the sample from the gth popu-~
&

lation and let ig be the usual sample mean vector and Sg the usual sample
variance-covariance matrix with ng = Ng -~ 1 degrees of freedom. The only
requirement for the sampling procedure is that it produces independent
measurements for the different groups.

If we assume that Xg has a multinormal distribution it Ffollows that
Sg has a Wishart distribution based on Zg and ng degrees of freedom.

The logarithm of the likelihood for the g'P sample is
(3) log L_ = A [log|z | + tx(S Z—l)] .
g 2 g g g 8

Since the samples are independent, the log~likelihood for all the samples

m
¢S] log L = ¥ log L .
g=1 &

Meximum likelihood estimates of the, unknown elements in Ag 5 @g 3 wg 5

g = 1,2,...,m , W2y be cbtained by maximizing log L . However, it is
slightly more convenient to minimize
(5) F = % g n [1og|z | + tr(s z"l) - 10gls | - 7]

g=1 g g g8 g
instead. At the minimum, F equals minus the logarithm of tkhe likelihood
ratio for testing the hypothesis implied by the model against the general

{

alternative that each Zg ig unconstrained. Therefore, twice the winimum

value of F is approximately distributed, in large samples, as X? with

degrees of freedom equal to
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(6) d = %-p(p + 1) - %

where t is the total number of independent parameters estimated in the
model.

The minimization of F with respect to the independent parameters 1is
done by means of a modification of the iterative method of Fletcher and Powell
(1963) described by Gruvaeus and JYreskog (1970). The minimization method
makes use of the first-order derivatives and approximations to the second-~
order derivatives of ¥ and converges rapidly from an arbitrary starting
point 4o a local minimum of ¥ . IFf thére are several minima of F there
is no guarantee that the method will converge to the absolute minimum.

The adaptation of the problem of minimizing F to the Fletcher-

Powell method is described by J8reskog (1970, section 2.4).

1.4 Scaling of Observed Variables

When the units of measurements in the different tests are arbitrary,
it is usually convenient, though not necessary, to rescale the observed

variables, before the factor analysis. Let

m
(1) S =(l/n) £ n8 )
g=1 8 g

m
with n= 2 n and let

g=1 &

-1/2

(8) b - (aiag 8)Y

Then the variance-covariance matrices for the rescaled variables are

¥
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) §% = DS.D g = 1,2,000,m «

The weighted average of the SZ is a correlation matrix. The advantage of
this rescaling is that, when combined with the rescaling of the factors as de-
seribed in the next section, %the factor loadings are of the same oxrder of magni-
tude as usucl when correlation matrices are analyzed and when factors are stan-
dardized to unit variances. This makes it easier to choose start values for
the minimization (see JBreskog, 1970, section 3.5) and interpret the results.

Tt should be pointed out that it is not permissible to standardize the
variables in each group and to analyze the correlation matrices instead of
the variance-covariance matrices. This violates the likelihood function ()

which is based on the distribution of the observed variances and covariances.

1.5 Scaling of Factors

The fixed nonzero loading in each column of A can have any value.
This is only used‘to fix a scale for each factor which is common to all
groups. In the standard case, when the maximum likelihood solution has
been obtained, the factors mey be rescaled so that their average variance

is unity. This rescaling is obtained as follows. Let

m
(10) 8 =(1/n) = nd s
g1 B8
L
m
with n= Z n_, as before, and
g=1 &
(11) D = (aing 8) Y2 .

Then the rescaled solution is




(12) A* =

i
>
o)

(13) 8; = D3 D

The matrix A* has
in A have changed

correlation matrix.

Zeros waerever

their values.

g =1,2,000,m .

A

A has zeros but the fixed nonzeros

The welghted average of

’~

oF
g

is

a
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2. The Program

In this section we describe briefly what the program does. Details

about the input and output are given in sections 3 and 4 respectively.

2.1 What the Program Does

The input data may be correlation matrices with standard deviations
or dispersion matrices. From these input matrices, variables may be
selected to be included in the analysis, so that the matrices to be
analyzed may be of smaller order than the input matrices. Variables may
also be interchanged with one another. The matrices to be analyzed may be
dispersion matrices or dispersion matrices scaled by the program (see 1.k4).

The user can request an accuréte or an approximate solution. If an
accurate solution is requested, the iterations of the minimization method
are continued until the minimum of the function is found, the convergence

criterion being that the magnitude of all derivatives be less than .OO005N,

m
where N = (1/m) = n, - The solution is then usually correct to three
g=1

significant digits. If an approximate solution is fequested, the iterations
terminate when the decrease in function values is less than 5%- The approxi-
mate solution may be useless but the residuals and the value of X2 will
usually give an indication of how reasonable the hypothesirzed model is. The
option of an approximate solution has been included in the program for the
purpose of saving computer time in exploratory studies where the primary

purpose is to find a reasonable model. Once such a model has been found,

an accurate solution may be computed.
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A variety of options for the printed output is available. Residuals
for each pqpuléfion may be printed. These‘are defined as the differences
between observed (Sg) and estimated (Zg) varlances and covariances, which
are useful for Jjudging the goodness of fit of the model to the data. X2 is
printed as an overall goodness of fit test statistic and, in one versidn of

the program, standard errors for the estimated parameters may be requested

{see 2.3).

2.2 How Fixed, Free and Constralned Parameters Are Specified

The elements of the parameter matrices are ordered as follows. The

matrices are assumed to be in the order Al’AQ""’Am s @l,ée,--.,® 3

m
Wl:Wé,...,Wm and within each matrix, the elements are ordered row-wise.
Only the lower half including the diagonal of the symmetric matrices
®1,®2,...,®m are stored. The diagonal matrices wl,we,...,wm are treated
as row-vectors.

For each of the parameter matrices, a pattern matrix is defined, with
elements O, 1, 2 and 3 depending on whether the corresponding element in
“the parameter matrix is Fixed, free, constrained follower and constrained
leader, respectively. A constrained parameter is called a constrained
leader the first time it .appears in the sequence. The parameters, appearing
later in the sequence and assumed to be equal to the constrained leader are
called constrained followers.

The above technique defines uniquely the positions of the fixed, free
and constrained leader parameters. It does not define, however, which
followers go with which leaders, if there is more than one leader. To do

so one must specify all the followers assoclated with a glven leader. This

is done by assigning to each leader and follower a four-digit number MCCC,

11
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where M defines the matrix in which the constrained parameter appears.
M=1 for A, 2 for ® and 5 for V¥ , where A 1is Al’AE""’Am reading
row-wise one matrix after the other, & is @l,®2,...,®m and V¥ 1s
$l,w2,.c?j¢m . The position of the parameter in the matrix is described by
CCC . For example,

1001 1005 2003

defines the first element in A, A, ., to be equal to the fifth element in

L
A, A, as well as the Ghiru elem=rs I- @ ¢ where 7. is the
2 7 7302 Z
leader and %5 and $5 are the followers.

Pattern meirices have to be providel for ecach mstrix containing both
fixed and free parameters and for each uztrix containing constrained param~
eters. Patilerns for matrices whose elements are all fixed or all free are
set up by the program.

We give a simple example to 1llustrate the above specifications.

Suppose we have two populations and

7\1 07 ?Lrl O 0 ©
0 1 o %. 0 o0
Al = 7\5 (I)l = ‘Llfl = 2
0 7‘6 0, 1 0O O ?L% 0
9 7‘8_ _o 0O © ?‘“4_
EN [ ]
7\9 ?Lr5 0O ©
. 7\11 . 1 ’ 0 ?Lré 0
2 o0 A 2" o_ 1 2" o o v
1k 5 7
0 7‘16 | _O 0O 0 ?FB_
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1 7\ = = )\ = = = = = =
with A %3 9 All > My, Al6 s wl we w5 g and wT = Ug -
The pattern matrices for Al s Ny O, O, v

E
2

>
I
H = O O
-e:ﬁ
l_l
1
e |
= O
S
é"d
I_J
Il
N
o)

Ao

o o mw m
N WO O
o

N
I
Lo
e
T
N
I
iy
N
N
fu

and the specifications of leaders and followers are

1001 1003 1009 1011

1014 1016

3001 3002 3005 3006

3007 3008 '
In this model teﬁ independent parametérs will be cstiméted. This is the number
of. 7's and 1's in the pattern matrices.

In addition to the above specifications for fixed, free and constrained

barameters, start values have to be given for all parameters, except when
one or more of the parameter matrices are of standard form, i.e., Ag =1,
@g =1, wg =0, g=1,2,s0.,m « The start values define the fixed param-
eters and initial values for the minimization procedure for the other param-
eters. Constrained parameters which are assumed to be equal must be given
the same values. Otherwise, initial values may be chosen arbitrarily but
the closer they are to the final solution the less computer time it will

take to reach this so.ution (see J8reskog, 1970, secticn 5-5).

19
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2.3 Limitations

The program is written in FORTRAN IV-G and has been tested out on the
IBM 360/65 at Educational Testing Service. Double precision -. used in
floating-point arithme’ic throughout the entire program. Witk minor changes
the program should run on any coumputer with a FORTRAN IV comp.i r. In
computers with a single word length of 36 bits or more, single :“recision
is probably sufficient.

Three versions of the program are available: SIFASP, SFASPL and_SFASPF.
Their limitations as to the maximum number of populations, variables, factors
and independent and nonfixed parameters they can handle as well as their
storage requirements on the IBM 360/65 are given in the following table.

The given storage requirements assume the programs are overlayed.

SIFASP SFASPL SFASPTE
Max. no. of populations (m) 10 10 10
Max. no. of variables (p) before selection 120 - 200 120
Max. no. of variables (p) after selection 2L 40 2l
Max. no. of factors (k) 12 20 12
Max. (%jp(p + 1)) 312 820 312
Max. (mpk) 288 800 288
Max. (mp) _ 48 80 48
Max. (T-g- k(k + 1)) 78 210 78
Max. no. of independent parameters 120 200 120
Max. no. of nonfixed parameters 150 300 120
Storage requirements (K = 1024 bytes) 14hK 280K 146K

SIFASP and SFASPL.sre identical except for dimensions. Weither of
these programs use expressions for second-order derivatives; instead the
(1)

matrix E of the Fletcher and Powell procedure is an identity matrix

(see Fletcher & Powell, 1963; Jﬁreskog, 1970; or Gruvaeus & J8reskog,

14
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1970). SFASPF, on the other hand, makes use of such expressions and the
speed of convergence is therefore somewhat faster. Standard errors for

the estimated parameters can only be obtained with SFASPF.

2.4  Availability

A copy of the program may de obtained by writing to one of the authors.
The user must provide a tape on which the program will be loaded. The program
will be written on the tape with 80 characters per record. The tape will be
unlabelzd. The user must specify whether he wants the tape blocked or un-
blocked, on T7~track or 9-track, in EBCDIC or BCD mode, as well as the density
and parity required. Test data will be at the end of the program. The test
data are described in the Appendix. Anyone using the program for the Ffirst

time should make sure that the test data run correctly.

2.5 Disclaimer

Although the program has been working satisfactorily for all data
analyzed so far, no claim is made that it is free of error and no warranty

is given as to the accuracy and functioning of the program.



E _‘_&)'_

3. Input Data

For each data to be analyzed, the input consists of the fillowing-
1. Title card

« Parameter cards (2}

. BSelection of variables from the input matrix

« Input matrices

2
3
)1y
5. Pattern matrices for the parameter matrices
6. Equalities

T. Initial wvalues for the parameter matrices

8. New data set or a STOP card

Sections 3.1 through 3.8 describe in general terms the function and setup
of each of the above gquantities. Illustrative examples are given in the
Appendizx.

Whenever a matrix or vector for m populations is read in it is pre-
ceded by a format card, containing at wmost 80 columns, beginning with a left
parenthesis and ending with a right parenfhesis. The format must skecify
floating point numbers foé the input and parameter matrices, and fixed
point numbers for the pattern matrices, consistent with the way in which
the elements of the matrix are punched on the following cards. Users who

are unfamiliar with FORTRAN are referred to a FORTRAN Manual, where format

rules are given. Matrices are punched as one long vector, reading row-

wise, each population beginning on a new card. For the symmetric matrices

only the lower half of the matrix including the diagonal should be punched.
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3.1 Title Card

Whatever appears on this card will appear on the first page of the

printed output. All 80 columns of the card are available to the user.

3.2 Parameter Cards (2)

ggrd 1l: All quantities on this card,; eXcept for the logical indicators,

must be punched as integers right adjusted within the field.

cols. 1-5 Number of populations m

cols. 6-10 Order of the input matrix ( p ), before selection of
variables

cols. 11-15 Number of columns in A (k)

cols. 16-25 Total estimated execution time in seconds for all

stacked data (SEC). This should be a number slightly
less than the time requested on the control cards so
the program will have time to print and/or punch results
up to that point. (Note: SEC should be read in for
each data set and should be the same for all data sets
in the stack.)

cols. 31-37 Iogical indicators (see below)

cols. 45-46 Integer output indicators (see below)

Logical Indicators (cols. 31-37): The logical indicators control the

input and output as described below.
Column 31 determines whether dispersion matrices, or correlation matrices
and vectors of standard deviations, are read in as input to determine the

matrices to be analyzed.
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col. 31: =T , if a dispersion matrix with diagonal is read in for
each population
col. 31: = F , 1if correlation matrices without diagonal, followed by

vectors of standard deviations are read in for each
pepulation
Column 32 deterwines whether the matrices Sg , g&=12,.4.,m to be

analyzed are different from the matrices analyzed in the previous data set.

col. 32: =T , if new matrices are to be analyzed (note: this is
always true for the first data set)
col. 32: = F , same matrices as for previous data set are analyzed

Column 33 determines whether the matrices to be analyzed are scaled

or not.
col. 33: =T , matrices to be analyzed are scaled by the program tc
Sz = DSgD , &=1,2,...,m where D = (diag S)_l/2 ,
, @ m
S:HZHS,H=ZH
g=1 €8 g=1 &
col. 33: = F , analysis performed on the unscaled S g =1,2,cea,m

g 2
Column 34 determines whether selection of variables from the input

matrices is desired.

col. 34k: =T , if selection of varicbles is wanted
col. 34: =T, 1if no selection of variables is wanted

Column 35 determines whether we are considering the standard case or
not.
ccl. 35: =T , +the standard case is considered (i.e., A, 1 =23,000m

are constrained to be equal to Al 5 1n this case the

P
)
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pattern matrix and starting matrix for £~ will be
read in for the first population only)
col. 35: = F , we are not considering the standard case (pattern
matrices and starting values for all m populations
will be read in)
Column 36 determines whether the starting values for ®g , £ = 1,2,..0,m
are dispersion matrices or correlation matrices with standard deviations from

which the dispersion matrices will be computed.

col. 36:

it

T , starting @'s are dispersion matrices
col. 36: = F , starting d's are correlation matrices without diagonal
and with standard deviations

Column 37 determines whether an accurate or an approximate solution

T

is required.
cole 37: =T , 1if an approximate solution is required

col. 37: =TF , if an accurate solution is required

Integer Output Indicators (cols. W5-46)

Column 45 determines the type of printed output wanted. This can be
standard output (s ), the matrices to be gnalyzed and parameter specifica-~
tions ( R ), residuals and X for each population ( ¢ ), and technical output

from minimization ( T )-

col. 45: =0, for &

col. 45: =1, for S + R.
cole 45: =2 , for 8 +C
col. 45: =3, for S + R + C
col. 45: =4 , for S + T

A
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col. 45: =5, for S + R+ T
col. 45: =6, for S +C+ T
col. 45: =7, for S+ R+ C+ T

Column 46 determines certain extra printed or punched output. This
can be standard errors ( F ) which is only applicable to SFASFF, punched

solution ( P ), and a scaled solution ( G )

col. 46: =0, if no extra output is wanted

col. 46: =1, for F (never set to 1 for SIFASP or SFASPL)
col. 46: =2, for P

col. 46: =3, for F + P

col. 46: =4 , for G

col. k6: =5, for F + G

col. 46: =6, for P+ G

col. 46: =7, for F + P+ G

Card 2: This card will specify the number of observations or sample
size for each population. Thus there will be m integer numbers punched,
right-adjusted in five column fields.

caution: When specifying m , Pp , k on card 1 of the e rameter

cards be sure you have read the limitations imposed on them (see 2.3).

3.3 Selection of Variables

These cards will be read in only if the parameter card has a T in
column 32 and a T in column 34. Omit otherwvise.

The first card will have an integer value Phew punched in columns

1-5, right adjusted within the field. This integer will specify the order

<p).

of the Sg , g=12,...,m after selection (pnew <

Do




=20 -

The next card will contain integers, right-adjusted in five column
fields, (i.e., sixteen such values will fit on one card) specifying which
Pad

columns (rows) are to be included. For example: if p=56, p_ . =3

and the lst, 2nd and 5th columns (rows) are to be excluded. This card
would have a 3% punched in column 95, a 4 punched in column 10 and a 6
punchc . in column 15.

Note that if Prew.= P there will be no reduction in the size of

the Sg but columns (rows) can be irterchanged.

3.4 Input Matrices

Omit if columi 32 of the parameter card is F . Otherwise read in a
format card fcllowed on subsequent cards by the input matrices, starting a
new card for each population.

If column 31 of the parameter card is F , the input matrix for the
first population, preceded by a format card, is read in without the diagonal.
This is immediately followed by a format card and the vector of standard
deviations for the first population. Subsequent cards are input matrices
without diagonal for the remaining populations each followed on a new card
by iﬁé vector of standard deviations, and starting a new card for each
population. The formats for the first population will apply to subsequent

populations.

3.5 Pattern Matrices

The pattern matrices are preceded by a data card with entries in columns

1-3, the column defining the matrix in question, 1 for A, 2 for & and

3 for v .

AN
}ml.'




cols. 1-3: CCC where C =0 , if the matrix is fixed

il

c 1, if the matrix is free

C =2, if the matrix has mixed values
A pattern matrix should be provided only when C = 2 (see 2.2).
For example, if columns 1-3 are punched 201,.the matrix A (i.e.,
Ay s & =12..0,m ) contains mixed values, & (i.e., oy >

is all fixed and V¥ (i.e., v, &= 1,2,...,m ) ig all free. In this case

only pattern matrices for A.g , g=12,...,m are read in.

g =1,2,..0,m )

The pattern matrix consists of a format card specifying an I-format
and subsequent cards with the integer entries of the parameter matrix,

teginning a new card for each population.

3.6 Equalities

Omit if the pattern matrices do not contain any elements 2 or 3. Other-
wise starting in column 1 punch the four-digit numbers MCCC as described
in section 2.2. For each new constrained leader start a new card. The last
entry on each "equality" card is a zero indicating more "equality" cards

follow, or a four indicating it is the last one (see Appendix for examples).

3.7 ZInitial Values for the Parameter Matrices

The initial values are preceded by a data card with entries in columns
1-3, the column defining the matrix in question.
cols. 1l-3: CCC where C =0 , if the matrix is of standard form
(see 2.2)
C =1, if the matrix is nonstandard
This card is then followed by the necessary start values (see 2.2) for matrices

with C = 1 . That is, each nonstandard watrix of m populations is read in
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with its own format card, starting a new card for each population. If column
36 of the parameter card is F , @l , Preceded by a format card, is read in
without the diagonal. This is immediately followed by a format card and the
vector of standard deviations for the first population. Subsequent cards are
@i , 1 =2,3,...,m without diagonal each followed on a new card by its vec-

tor of standard deviations, and starting a new card for each population. The

formats for the first population will apply to subsequent populations.

3.8 Stacked Data

In sections 3.1 to 3.7 we have described how each set of data should
be set up. Any number of such sets of data may be stacked together and

analyzed in one run. After the last set of data in the stack, there must

be a card with the word STOP punchud in columns 1-k.
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4, Printed and Punched Output

The output consists of a series of printed and punched tables as described

in section 4.1-k.7. Examples of printed output are given in the Appendix.

4.1 Standard Output (S)

The standard output is always obtained, regardless of the value punched
in columns 45 and 46 of the parameter card (see 3.2). The standard output
consists of the title with parameter listing, the final solution and the
result of the test of goodness of fit.

The parameter listing gives the information supplied on the parameter
card.

The final solution consists of the thrge matrices A, ¢ and vV ,
printed'for each population.

The test of goodness of fit gives the wvalue of X2 and the corresponding
degrees of freedom. The probability level is also given. This is defined
as the probability of getting a X2 value larger than that actually obtained,
given that the hypothesized.structure is true.

Just above the table giviné the final solution, the following message is

printed
" IN-.D = X" .

Usually X = O , but if, for some reason, it has not been possible to determine
the final solution, X will be 1, 2, 3, b or 5. If IND is 1, 2 or 3, "seri-
ous problems" have been encountered and the minimization of the function

cannot continue. One reason for this may be erroneous input data. Another
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reason may be that a point has been found, where one of the matrices Zg is
not positive definite. A third reason may be that insufficient arithmetic pre-
cision is used. TIf IND is 4, the number of iterations has exceeded 250. If
IND is 5, the time limit SEC has been exceeded (see %.2). If IND £ O,

the solution obtained so far is automatically punched on cards in such a

way as to be Ilmmediately available as initial estimates for a new run with

the same data. Thus there is little loss of information when execution is

terminated with IND £ O .

4.2 Matrices Sg and Parameter Specifications (R)

If column 45 of the parameter card is 1, 3, 5 or 7T (§4> =.2), the
matrices to be analyzed, Sg s & = 1l,2,.ce,m , 23 obtainsd " ter exclusion
of variables‘and/br scaling (see 1.4), if any, are printed. These matrices
are printed row-wise with four decimals. Al 0 a table of p&rameter speci-~
fications, containing the information provided by the pattern matrices (see
2.2), is printed. For each population, three integer matrices are printed
corresponding to A, & and V¥ . In each matrix an element is an integer
equal to the index of the corresponding parameter in the sequence of inde~
pendent parameters. Rlements corresponding to fixed parameters are O
and elements corresponding to the same constrained parameter have the same

value. Examples are given in the Appendix.

4.3 Technical Output (T)

If coiumn 45 of the parameter card is 4, 5, 6 or 7 (see 3.2), the
technical output is printed. This consists of a series of tables which

describe the behavior of the iterative procedure and give various measures

29
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of the accuracy of the final sclution. Ordinary users will have little
interest in these tables.

The first table of the technical output gives the initial estimates for
A, @, Wg > 8 =1,2,0e.,m .

The next two tables show the behavior of the iterative procedure undex
the steepest descent iterations and under the following iter=z=tions by the
Fletcher and Powell method. For interpretation of these tables the reader
is reZerred to Gruvaeus and J8reskog (1970). If something gces wror.g, so
that IND is 1, 2 or 3 (see 4.1), these tables may contain valuable

izformatione.

~

k.t Matrices Zg and Residuals (C)

If column 45 of the parameter card is 2, 3, 6 or 7 (see 5.2), the
. -~ AN A A2 . . ~
matrices Zg = AgQgAé + Wg and the residual matrices Sg - Zg s> &=1,2,.0.,m,

~

are printed. The matrices Zg are computed from the final solution. IT
the fit is good, Zg should agree well with Sg and the residual matrices
should be small. Elements of the residual matrices may suggest how the

hypothesized structure should be modified to obtain a better fit. The

Y matrices are printed row-wise, each element with four decimals.

1 4.5 Scaled Solution (G)

It column 46 of the parameter card is 4, 5, 6 or 7 (see 3.2), a scaled

solution is printed. (See 1.5 on scaling of factors.)
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4.6 Standard Errors (F)

Tf column 46 of the parameter card is 1, 3. 5 or T (ses 3.2), large
sample approximations to the standard errors of the estimat=3 parametars
are printed. These are y;rinted row-wise in matrix form and each number
<5 printed with three de=imals. The reader is —aferred to The DPaper by

J8reskog (1970) for infomation about how the standard errcrs are osbtailned.

The standard errors are “or the parameters of the unscaled solution.

4.7 Punched Output (P)

If column 46 of the parameter card is 2, 5, 6 or 7 (see 3.2), tke
final solution is punched on cards. The matrices are punched on cards in
vector form, reading row-wise, beginning a new card for each population
and each matrix. FEach of the three matrices A , & , V are preceded
by a format card where by A we mean Ag , g =1,2,.4.,m , By @ we mean
¢ , g=1,2,...,m and by V¥ we mean wg s & =1,2,«04,m « 1In the

g
standard case only one A is punched regardless of the number of populations.
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£PFENDIX

.= shall illustwsa -~ Ly izEun data are seb up and what the printout
looixs _dke by mearns Of TWo srall sets of data. These data also serve as test
data tc be run when the Jrogram has been compiled on a different computer.

Both sets of data =vz analyzed in one run with SFASPF. Pages AL-B5
show card by card hc: tiz: ipPut data are punched. One line corresponds to
one card. Pages B6-A77 ghow the corresponding printout obtailned.

Tre first set of &ztz., 'Holzinger-Swineford Data,” consists of four
9 x 9 correlation matrizes without diagonal each with a set of standard de-
viations. All variables are included in the analysis, and the input matrices
are to be scaled by the program before being analyzed. The following model

is assumed:

. 798 © o 7
%u 0 0
0]
%7 0
0 796 O
AL (9 = 3) =0y = by =2y, = | O Ay O s
0] %17 0]
0 0 <597
0 C %Eu
’0 0] %27_
d>l
@l = ¢2 ¢5 5



A2~

o, = | B ,
TSR 7]

Oz = % s >
|_¢1,, 7 %18
¢

(bil- = rbE! & >
[*2 23 ¢2lh

and the Vy's are constrained to be equal,

\lfl = \lf2 = Wé_: = ‘\lf)_L = (wl:w2:w5:w)+:w5:w6:w ,?If ,'df'9) .

Initial values for Ag 3 @g and wg were obtained from preliminary analyses
of each population serarately. All printed output is requested.

The second set o ' data, "Artificial Data for Illustrative Purposes, "
consists of two 10 = 10 cispersion matrices with the lOth variable excluded

and with the 9th var_sble moved to the first position. Tae following model

is assumed:

>
il
4
OI
>
i
O 4

~J

Az

5

0]
0]
%54 0]
0]
1

o O O
>
=
-

>~ B O O O O O O
.
~
1
O
>
=
=
> B O O O O O O

6 0000 > » p O

o7 o O 5).
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1 T
° %5 %g ®10 %11 %12

h

vy = LU, U, U U L Y, YT

6) 7’ 8’

Vo = [wio’wil’wie’wia’wiu’f15’wi6’wi7’w18] :

In this analysis we impose the constraints X7 = mBh B mlO = %57 R Kl7 = %hh

A Initial values have been chosen as 0.9 for all nonfixed A\'s

o0 = th .

except Ke and m54 which have an initial value of O.4. All ¥'s have

T
initial values of 0.8. The @g are read in as correlation matrices, each
followed by its vector of standard deviations. Only the standard output,
the matrices to be analyzed and the parameter specifications and the standard
errors are requested as printed output.

At various places in the output, time estimates are printed. The time
shown 1s the time taken to compute the gsolution that follows the time esti-

mate. This time includes only the iterations and not the time for printing,

except possibly the technical printout.
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HOLZINGER — SWINEFORD DATA
&4 9 3 220
77 79 74 71
(16F5.0)
-32 «34 «18 «31 24 .31
«31 32 .18 «20 «29 -20
<07 «18 «35 44
(16F5.0)
Te2 440 3.0 1l1.5 4.5 5.5
«34 -4l -21 -38 «32 .31
27 «30 17 .20 «31 =16
27 27 .38 =28
666 GeB 2.6 11.3 47 5.0
24 .23 .22 -32 «05 «23
«01l ~.07 09 .11 «12 ~.02
-02 «12 -15 «29
6e7 4.0 2.8 1l. 5.2 5.3
«32 «48 33 .28 <01 =06
«32 .22 +15 -07 - 26 «12
«1l0 «24 W19 .38
Ted 56 2.9 1llel 5.2 5.2
212
(goll)
000100100000010010000001001
(8011)
333333333
222222222
222222222
222222222
30013010301930280
30023011302030290
30033012302130300
30043013302230310
30053014302330320
30063015302430330
30073016302530340
30083017302630350
30093018302730364
111
(5D15.7)
0.7976910L 00 0.0
0.0 0.46470470 00
0.7960486D0 00 0.0
0.0 U.75044760 00
0.5974687D0 00 0.0
0.0 0.53825610 (0O
(5015.7)
014481730 01 0V.47051360 00
»11165070 01
0.65231210 00 0.4931¢34D 00
0« 7169219D 00
0.9559079D 00 0.58233900 00
0. 84520140 00
0.8782915D 00 0.4827060D 00
(e 13302460 01
(5D15.7)
06 4395305D 00 0.1l1ll6168D 0Ol
0.6637218L 00 0.95949160 00
(Je 43953050 00 0O.l1l161l68D 01
Ue6637218L 00 0.95949160 00

-ah-

FITFTTE
.22 .16
.01 .15
T4 4e9
40 «16
01 «09
6.1 3.9
.35 .23
-e01 —¢13
7.6 5.2
.26 .01
.05 .03 ~
H.8 Ge7
0.0
0.0
0.0
0.0
0.0
0.11268130

0.10373300
0493265440
0.88009350
0.87226420
0.86047580D

087226420
0486047580

75

«29
- 06

4.7
24
«31

3.9
-18

-05
bGe &

=01
-08

o1
01
00
00
[01¢]
00

00
00

. 62 27 - 20
19 15 «36
69 42 el3
- 30 ¢34 31
68 .36 <10
- 08 «03 .19
.75 40 «26
- 06 .19 .29

0.39462980
0.0
0.84890680L

0.0
0.47674170L

0.6770839D
0. 1060768L
0. 55997130
0.99860060L
026505790
0.89531960L

0.5650579L
0. 89531960

oo

00

[o1¢]

o0

00

(o]0}

00

(o1¢]

00

[o1¢]
00
00

e32 .57 .61
«42 28 .40
«35 «55 .65
.35 .27 .09
.11 +59 .66
«09 —.14 —-.06
.10 +60 .63
.23 —.04 <01
0.0

0.0

0.0

0.0

0.0

0.24899620L 00
0.20846210L 00
0.4851271L 00
0.36341570 00
0.5271286L 00
0.52712860L 00

o4l
-11

«35
34

22
-16

42
-.05
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Q. 43953050 Q0
U.6637218D 00
043953050 00
0.6637218D 0C
ARTIFICIAL DATA

2 10 3

61 184

9

9 1 2
(5D015.7)

0.1123817D0 01
0.1052065D O1
0.2912128D 00
0s41993840D 0O
U« 980743350 00
0.86176420D0-01
0.3072833D-01
0.9972245D0 00
0.11021850 00
0.3443672D 00
0.7856332D0 00
0.92125890D0 00
0. 98075950 00
0.3549346( 00
0.34877370L 00
0.1018827D 0l
Ua1l169537D0 00
~0.1422410D OO
0.1220686D 01
0.2108527D0-01
0.1231236D 00
0.4556783D-01

211

(8011)

0.11161685 01
0.95949160 00
0.1116168D 01
0.9594916D0 00

A5~

0.8722642D 00
0.8604758D 0O
0.8722642D 00
O0-8604758D 00

FOR ITLLDSTRATIVE PURPUSES

220

3 4 5

0.4081763D 00
0.3472397D0 00
0.1271275D-01
2.3098141D 00
0.5187977D0 00
0.4154142D0 00
~-0.8269096D-01
0.2543552D0 00
024794420 00
0.42003820-01
0.4556322D0 00
0.19798130D 00
0.29632624D 090
0.20885230 00
C.8675057D-01
0.2124934D 00
0.1218887D0 00
0.5330332p-01
0.8619720D-01
0.12086240 00
0.4456757D 00
0.2123452D 0O

001000300300000030030000001]
001000200200000020020000001

100710340
101010370
101710440
102010474
111

(40F2.1)

0 0 9l 009
0o 0 91 009
(16F5.0)
«471 677
(8F.0.0)
1.203
2106
«.807
(40F2.1)

8 8 8 8 8
8 8 8 8 8
STOP

«493

o]

la062 1.057

019 «.847
8 8
8 8

TTETFFF 1

6 1 8

0.1447772D0 01
0.12454370-01
0.20837040-01
0.1015779D 00
0.4486431D 00
0.13576940D 01
0.6330487D-01
~0.50208240-01
0.2309508D 00
0-1781234D-01
0.7753222D 00
0.7386590D0 00
0.4146429D0-01
U.18834030L o¢C
0.1099574D 00
U.86487610D~-02
0.10126600 01
0e.9338531D-01
=0.1200632D 00
0.1506201D QO
U.5563245D 00
U.4425136D 00

co
e
Cc
cc
L ¢
cc
oo

1

CcCc

0.5650579D 00
0.89531960L 00
0.56505790 00
0.89531960L 00

0.52192760 00
0.6370068D-01
0.8202047D 00
0.61503610 00
0.26293290 00
0.12703560 00
0.1879005D 00
0. 1070006D-01
0.39586310 00
0. 14425670-01
0.1233565L 00
0.2186251D 00
0.21978l6D 00
0.6932352D 00
0.57462510 00
~0.69760760-01
-0.21209130b-01
0.3345596U-01
-0.59291480-01
0.31971260 00
0.2244535D 00
0.2135788U 00

= -
(e} =]
co
IS

0.52712860L 00

0.5271286DL 00

0.4072726D 00
0.1071379D 01
0.11162950 01
0.6591857D 00
0.1809105b oOC
0.60078140-01
0.33743910 00
—-0.53989160L-01
0.1088253D 01
0.12248890L 00
0.9885641L 00
0.1872518UL 00
0.9310318D 00
0.11162950L 01
0.7038558D 00
0.8738898D-01
—0.94956340-02
0.2112455u 00
0.1540501D 00
0.9956796L 00
0.11224570 00
0.99256350L 00
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SIMULTANIDUS FACTOR ANALYSIS IN SEVERAL POPULATIONS

HOLZ INGER — SWINEFORD DATA

NPE1)= 77

NP(2)= 79

NP(3)= T4 —_—
NP(4)= 71

M= a -

P= ) i -
K= 3

LO0GICAL INDICATORS(COLUMNS 51-57):FTTFTTF

OUTPUYT INDICATORS= 7 5

ESTIMATED TIME IN SECONDS= 22Q.
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POPULATION 1

3
1 2 3 4 5 & 7 8
1 1.066
2 0.285 0e 745 I
3 0.373 0.165 1.127
4 0.323 0,209 0.332 1.018
5 . 0.209 0,127 0,283 04575 04844 . o
6 0e292 Oe181 00356 04602 0.587¢ 1.097
7 0.489 0e 264 0.335 0.179 G.181 04300 0.974
a 0.216 0..009 0,166 0063 0.182 0s16% 0371 _ 1.092
9 0.463 0.258 0.453 0.118 0,069 0. 201 0a369 0. 491
POPULATION 2 .
S
- 1 2 = 3 4 5 6 7 8
1 0.895
2 00333 1,073 e
3 0.357 Ce 200 D.846
4 0.356 0. 329 0.283 0.933
o 5 04363 0.159 0,212 06656 Qe920 ,
& 00378 Ce 128 04307 0,519 0594 Ue906
7 0269 e 228 J.225 00137 0.156 0.240 0.662
. 8 06126 0. 009 0069 0.256 0.239 04269 0.210 00692
9 0.293 0. 248 0.073 0.298 04229 0.228 0e274 0e 280
POPULATION 3 .
3
— i > 3 % 5 6 7 e
1 0.923
- 2 04199 0. 745 e .
3 0.219 0.188 0.982
4 0.297 0e 042 0.220 0931
s 0,357 Qe211 0,189 0698 1127 e _
& 0.349 0. 087 0.110 0.575 0.707 l1.018
7 0.214 0+ 009 -0.070 0.08B 0.118 0.123 1.027
R LB -0.021 -0, 010 -0 Qe0%4 0,094 04034 04214 . .1e230C
9 0.086 -0.121 -0.059 0.154 0.021 00121 0e152 0.321
LA S
S
’ - 1 2 3 4 5 6 7 R
1 1.126
.2 Ne410 1.461 e .
3 0.523 0.409 1.053%
4 0.308 0.013 0.064 1.072
e S 0e293 0. 013 0.011 0.824 1.127 N
& 06420 0e311 0.102 0.615 06662 0.980
7 0.523 Ne 454 00265 0.182 0.087 Ce%18 1.377
e B 0.128 0, 061 0,031 ~0,083 0,064 0.189 04341 ___  1a004_.
9 D.255 —0. 050 0.011 ~0.054 Ne.111 04248 04233 Ge 398
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PARAMETER SPECIFICATIONS

POPULATION 1

LAMBDA
00 9
1 0 O
2 ©o o
Q 0 0
0 3 o
o] 3 [s]
00 _ 0
0o o 5
o o0 e
PHI
T
8 9 _
10 11 12
PS1

13 14 15 16 17 18 19 20 21
POPULATION 2

LAMBDA
Q 0 0
1 Q [¢]
2 (o} (o}
(4] 0 0
(o} 3 (o}
(o} &4 (o}
0 Q 0
0 (o} 9
G Q 6
' PHI
22
23 24

2% 26 27

PST

13 14 15 16 17 18 19 20 21
_PUSULATION 3

LARMDO4A
(o} 0 0
1 0 0
2 0 0
0 0 9
o 3 [o]
(o] 4 0
o] Q 0
o] 0 5
o] 0 ]
PHI
28
29 30 _-

31 32 33

PSI

O
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i3 14 15 16 11 18 19 20 21
POPULATIAON 4 _
L AMBDA
Q 0 Q
3 0 Q
2 [0} 0
o] [} 0 — _
o] 3 Q
o] 4 0
0 0 G . —_— —
0 0 5
0 0 6
PHI
34
35 36
37 38 39
PS1Y R P
12 14 15 16 17 18 19 20 21
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INITIAL SOLUTION

POPULATION 1

L AMBDA
i 1 2 3 T -
1 0. 798 0.0 00
- 2 0. 3295 0.0 0.0 o i
3 0. 465 0.0 0.0
. 4 0.0 0.796 0.0
5 0. 0 0s 849 0.0 e
6 0.0 0.750 0.0
7 0.0 0.0 0.597
_ ] 0.0 0.0 0e%77 O
S 0.0 0.0 0.538
PHI e
1 2 3
1 le 668 — — e
2 0,471 1.127
3 0e677 0.249 1.117
PSi T N - T
12 3 4 5 6 1 8 9
1 Ue 440 1.116 0.872 0.565 0.527 0.664 0.959 C.860 0e 395
_POPULATION 2 _ -
LAMBDA
o 1 - P) 3 T T ’
1 C. 798 0.0 0.0
2 0, 395 0.0 0,0 e B}
3 0. 465 0. 0 0.0
4 0.0 0. 796 00
e 5 0.0 0. 8649 040 e
€ 0.0 0. 750 0.0
7 0.0 0.0 0+597
. .8 0.0 0,0 0,677 o o
Q 0.0 0.0 0.538
e PHL e e 2
1 2 3
TR S Qe 657 - _ _ e
2 0.453 1.037
3 0.106 0208 04717
e g e e
e, 1 2 -3 4 5 6 7 8 a
1 04440 1.116 0.872 0565 0.527 0v664 00559 0,840 0..895
POPULATICM 3 — —
LAMBDA
e - 5 5 S S e
1 0. 768 0.0 0.0
2, . 0. 395 0.0 0e0 o e
O
WJ:EEE
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3 0a465 0.0 0.0
4 0.0 0. 796 0.0
5. 0.0 0s 849 0,0 o
6 0.0 0. 750 0.0
7 0e0 0a 0 0¢ 597
8 0.0 G. 0 0,577 7 . .
9 000 Qe 0 0.3538
_ w0 — — N e
1 2 3
1 0.556 _ i} .
2 0.582 0. 533
3 0. 560 0. 485 Oe 845
T PSI T T T
o 1 2 3 4 5 6 7 a9
1 0e440 1. 116 0.872 0:565 0.527 0.66% 0.959 0.860 0. 895
SULATION & . _ e
L AMZDA
T 1 2 3 - A - T
1 0. 798 0. C 0.0
I S 0.395 0.0 0e0 e B
3 Oe 465 0.0 0.0
4 0e 0 0. 796 0.0
I CaO 04849 0.0 e .
6 0.0 0. 750 0.0
7 0.0 0s 0 0.597
. 8 Qa0 Qe =~ 0Ou&l7 e _ ——
) 0.0 0.0 0.538
. PHI . - e L
1 2 3
JR 0,878 — e e
2 0e 483 0.880
3 00999 0.363 1.330
T . e
N 1 2 3 4 5 6 | S T
1 0e 540 1.116 0.872 0.565 . 0.527 0,664 0.959 0.860 0.895
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BEHAVIOR UNDER STEEPEST DESCENT ITERATIONS

ITER TRY ABSCISSA SLOPE FUNCTION
1 0 0.0 -0.233659170 03 04145497220 03
1 0.100C0000D 00 -0.138935780 03 0.12720243D 03
2 0.24667528D 00 —Ge 493682800 02 0.11388437D 03
3 0.39345876D 00 0. 116046440 02 0.111352380 23
2 0 Ce O -0.85863194D 02 Ge311352380 03
1 0,393658760 00 Oe21466536D 03 0, 127740180 03
2 0.155115650 00 0.134910580 01 04104407170 03
3 0 0.0 -0« 55500031D 02 0.10440717D0 03
1 0. 155115650 00 Ce3B8443661D 02 0.1037099%6D 03
2 04815778010~01 ~0p431593360-01 04102243750 03
4 0 0.0 -0.438528850 02 0102243750 03
_ 1 02816778010-01 -0.158G60530 24 _0.100315340 03 —_

G4)
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ITER TRY ABSCISSA SLGPE FUNCT ION
) 0e0 Z0.27145608D 02 (5100315340 03
1 0.100C0000D 00 -0 243450030 02 0.97741812D 02
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