ED 054 952
AUTHOR
TITLE®
INSTITUTION

SPONS AGERCY
BUREAU NO
PUB DATE
GRANT

NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

24 SE 012 392
Scandura, Joseph M.
Mathematics and Structural Learning. Final Report.
Pennsylvania Univ., Philadelphia. Graduate School of
Education.
Office of Education (DHEW), Washingtomn, D.C. Bureau
of Research.
BR-9-0277
May 71
ORG-2-9-480277-1045(010)
98p.

MF-$0.65 HC-$3.29

Behavior; Creativity; Educational Psychology;
Learning Motivation; Learning Processes; *Learning
Theories; *Mathematics Education; Memory; Problem
Solving; *Teacher Education

This report contains four papers describing research
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of Mathematical Knowledge" defends the thesis that rules are the
basic building blocks of mathematical knowledge. These rules operate
~at different levels, for example: addition and subraction at one
level, the idea of inverse operations at a higher level. Mathematical
creativity then consists of combining rules to produce newvw results.
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also discussed, and experiments are described supporting the view of
the mind as an information processor with a fixed capacity- The
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SUMMARY OF

MATHEMATICS AND STRUCTURAL LEARNING

INTRODUCTION AND OBJECTIVES
This research was concerned with two basic problems.

1. The first objective can be stated as a question, '"How can mathe--
matical knowledge be characterized in a way which is at once behav-
iorally significant and compatible with what is known about mathe-
matical structures?" We were interested in pursuing this research
at two levels.

(a) We wanted to further clarify both the nature of rules and
their role in behavior. "

(b) We also wanted to explore the possibility of extending our
rule formulation to provide z basis for characterizing mcre
complex mathematical knowledge.

2. The second major objective involved the development of a psycho-
logical theory —— of operational definitions and theoretical assump-
tions which were compatible with our rule hased characterizations.
More specifically, we wanted to consider the following problems.

(a) How can one operationally define what rule an individual
is using in terms of th: behavior ciieis? We had already
plopuac” i preliminary version of such a definition and Levine
had done this for the special case of discrimination learning
but many details still needed to be worked out. :

- (b)- The learner often has available several ways of accomplishing
a.particular task and why ke uses the prozzediire he does use is

not at all clear. Building on scme experimesital research we

had already completed, we wanted to come =p with some fundamental
proposals that would be suitable for detafled experimemtzl testing.

(c) We hoped to explore the fundamental qmﬁséion of how existing
- knowledge is combined to make new behaviorr mossible.

Te; the extent that time and funds allowed , we also planned t¢
. comduct some pilot work to test our theoretical: ideas. )




RESEARCH OUTCOMES AND IMPLICATIONS

While we did not initially expect to fully achieve our aims
during the course of this short project, things progressed more
rapidly than we had datred hope.

Part 1.

An entire paper, '"Role of Rules in Behavior: Toward an Oper-
ational Definition of What (Rule) is learned," now published in
the Psycbological Review, is devoted to the first problem. In this
paper, a precise formulation of the notion of a rule in terms of
sets and functions —— the Set Function Language (SFL) -~ is proposed.,
In particular, the extension of a rule is viewed as a function, or
; set of S-R pairs. The rule itself involves a domain, an operation,
| and a range. It is argued that this molar formulation cannot be
i captured by networks of associations unless one allows associlations
to act on (other ) associations. This formulation is then used as
a basis for showing how rules are involved in decoding and enceding,
symbol and icon reference, and higher order relationships. De-
coding and encoding are shown to involve insertion irnto and ex-
traction from classes, respectively. Reference is viewed in terms
of rules which map equivalence classes of signs into the classes
of entities denoted by these signs. Symbols are shown to involve
arbitrary reference, whereas icons retain properties in ccrmmon
with the entities they denote.. Higher order relationships are
then expressed as nigher order rules on rules. This is a direct
generalization of associations on associatinne

Furthermore, a partial solution is posed to objcective (2a) -~
the vexing problem of '"what (rule) is learned." Given 2 rule-governed
class of behaviors, "what is learned" is defined as the class of
rules which provides an accurate account of test data. Empirical
evidence. is presented for a sinple performance hypothesis based on
this definition. . =

There are three major directions in which future research might
proceed. First, the rule formulation (SFL) itself undoubtedly can
be further improved. While we feel reasonably confident that the
basic ideas presented in this paper would. hold up under further anal-~
ysis, additional detail must be added -~ but only as much as is abso-~
lutely necessary to deal with behaviorally relevant aspects of the
‘rule construct. . - N : : )

. Second, the  SFL might profitably be used as -2n analytical tool
to help clarify what is involved in many kinds of structured learring
and performance. Most of the SFL-based research conducted to date
has conceutrated on an analysis.of what is being presented, the
nature of the required. outputs, what is being learned, and the inter-

relationships between them. While such analyses can, at least to-
gome extent, be undertaken without the use of the SFL, or for that
matter any othex scientific language, the SFL seems to provide a
useful framework for putting things into perspective and for helping
to clarify difficult points. "In the author's research a number of
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questions have been asked on mathematics lzarning which seem not

to have been asked previously in any Serious way. For example, we
have found that what is learned in mathematical discovery car sometimes
te identified and presented by exposition with equivalent results.
Similarly, we were led, on the basis of an earlier finding, to the
question of what in the statement of a mathematical rule leads to
extrascope transfer.

The SFL needs to be applied more systematically in studies in-
volving subject matters other than mathematics and, in particular,
we need to determine where the SFL might profitably be used to formu-
late research and where not. There is reasonm to believe that the SFL
may be applicable only to the extent that the classes of ovetrt stim-
uli and responses involved can be viewed as discre:e (i.e., nonover-
lapping) and exhaustive entities. While these requirements are met
throughout much of mathematics and other structured knowledge, this
may not be the case in such areas as social studies, poetry, and
even language, where synonymy does not necessarily imply equivalence.
It is hoped that other investigators will apply the SFL to a wider
" range of tasks and thereby help to clarify further its relative
strengths and weaknesses.

Third, theoretical assumptions need to be made and their impli-
.cations reed to be -drawn out. Although this paper is concerned pri--
marily with describing a new scientific language, it was not possible
to completely avoid reference to theoretical assumptions. Thus, the
proposad operational definition of "what is learned"” would be behav-
iorally meaningless without an application assumption. Fortunately,
there is considerable empirical support for the idea. While such
an assumption is clearly not sufficient for a theory of structural
learning, it might nonetheless come to play a central role. Whatever
form additional theoretical assumptions might take, it seems almost
certain that they would be more compatible with cognitive (rule-based)
notions than with those based on neo-associationism. Nonetheless,
any complete theory of structural learning will undoubtedly require
reference to such things as the limited capacity of human subjects
to process information. Without recourse to some such physiological
capacity, I cam see no way in which to explain memory or other aspects
of information proccssing. ' ’ : :

Part 2.

An effective answer. to objective (1b) is prowvided by a second
paper, entitled "A Theory of Mathematical Knowledge: Can Rules Account
. for Creative Behavior?" : o : :

In this paper, we proposed and defended the rather strong thesis
that rules are the basic building blocks of all mathematical knowledge.

The main purpose of the paper was to indicate how complex mathe-
matical behavior might be accounted for in terms of finite rule sets.

Every mathematical system consists of one or more basic sets
of elements, together with one or more operations and/or relations

.
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and/or distinguished elements of the basic sets. By capitalizing

on certain logical equivalences it is possible to reduce the char-
acterizing elements to one basic set and one Oor more relations.
Consider a simple example —— the system whose basic set consists

of three "undefined" elements A,B,C, denoted ZA,B,C , with A being
distinguished in the sense that it serves as an "identity," and

whose defining relation is©@ = $£(A,A)~» A, (A,B) -3, (B,A)=¥3, (A,C)
—»c, (C,A)—>¢C, (B,B)—»C, (C,0)—¥B, (B,)~>4A, {(C,B)—? AY.

What may .be called zn embodiment of a mathematical system results
on assignment of meaning to the undefined elements. Thus, in the
example just citad, the undefined terms might correspond to certain
votations with A corresponding to a rotatiomn of 5°; B, to a rotation
of 120°; and C to a rotation of 240°. 1Imn this case, the operation
would simply be "followed by." For example, a notation of 120°
followed by one of 240° resuits in the same action as a rotation of
0°. .

What kinds of behavior are implied by knowing systems and em-—
bodiments of this scrt? And, how can such behaviors be accounted
for in terms «f rules?

First, knowing a system certainly implies the ability to com-
pute within the system. Thus, for example, given the pair, A,B,
the "knower" should be able to give the "sum," B, He should also
be able to do more complex computations, like (AOBOAOC P

(BOA) OC-»BOC-?A, which involve combining individual facts

(i.e., associations). In addition, the knower should be able to
give "differences,”" i.e., given the sum and one of the "addends,"
he should be able to generate the cther addend.

If these were the only kinds of behavior to be accounted for
one could simply list the facts (rules) involved. But clearly any
reasonable interpretation of "knowing a system'" must also deal with
relationships as well. For example,. mastery of a system would
surely include the ability to gemerate the subtraction (difference)
rule from the addition rule, and vice versa. FKnowing that B+ C = A,
for example, should:be a sufficient basis for gemerating the corre-
sponding subtraction fact, A - B = C. R '

Relational rules of this sort prbvide a simple way. to.account

. £for such behaviors.. Thus, instead of listing all of the subtraction
_ facts separately it would be - sufficient to know the addition facts

together with the relational rule. That is, assuhing, as is tradi-
tioual in formal lipguistics, that individual rules. can be composed --
performed in succession. » : :

' The4obVioﬁs,way-to account. for such relationships —- the way
taken by curriculum developers of the operational objectives per-

suasion ~- .is to simply add more rules to the characterization.
. There are,. however, major problems with this approach. . For one
‘thing, listing a new rule for each kind of relationship would have

4



a post hoc flavor not likely to add much in the way of understanding
more creative behavior. For each new system (of the same type) con-
sidered, for example, ti.ere would be a new relational rule for each
one in the original system. Even granting the economy obtained by
eliminating inverses, and the like, the number of rules could grow
large very fast. This would not be bad in itself assuming that this
is the best one could do. The important question, however, is: Can
one come up with a more efficient account which is at the same time
more powerful —- and which allows for some measure of creative be-
havior?

To answer this question, first note that knowing how one or
more systems are related to a given one may provide a basis for
knowing how to compute in the new systems given how to compute in
the original. The relationships of interest will generally be
mathematical in nature, but chey need mnot be limited to morphisms.
For example, one system may be a simple generalization of another,
as with cyclic 5 and cyclic 3 groups.

Because of the way particuler relationships are defined, how-
ever, this advantage will generally be of a limited sort. With
homomorphisms, for example, the ability to compute in the new system
applies onily to the defining operations thewselves and not, say, to
their inverses or to relationships between' the operatiouns.

A far more powerful and parsimonious characterization results
by simply allowing rules to operate, not on just ordinary stimuli, ;
but on other rules. Such rules may be said to be acting in a higher - |
order capacity -- or, in short, to be higher order-rules. Although . :
functions on functions are common in various braaches of analysis,
and their formalization is routine, the idea seems mnot to have per-
vaded formal linguistics. The closest linguists have come in this : ks
regard has been to introduce the notion of a grammatical trans- ' 3
formation between phrase markers, which closely parallels what are
here called relational rules (e.g., between addition and subtraction).

ST A e

Consider what higher order rules might suggest in the present
situation. ' Suppose that a subject has learned a higher order rule
which connects each operator (rule) with its inverse. - Such a rule
would connect not only, say, addition of numbers with subtraction,
but composition of all sorts (e.g., of permutations, rotatioms,
rigid motions, etc.) with the corresponding inverse operations.
The defining operation of each system and its inverse may be
thought of as being distinct rules which are mapped one on to the
other by this higher order "inverse' rule. :Assume, in -addition,.
that the subject has learned how to add in system A, the relation-
ship (e.g., a homomorphism) between system A and system B, and
also how to form the cumposition of arbitrary rules ‘(in the rule
set). - ~ T o : .
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: . In this case, there are all sorts of behaviors that the
(idealized) subject would be capable of. For example, he would be
able to subtract, not only in system A but in system B as well. To
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see this, one need only observe that the subject can form the com-
position of the rule between systems A and B and the higher order
inverse rule. This composite (higher order) rule in turn allows
the subject first to generate an addition rule in system B and then
to generate a subtraction rule in system B. This subtraction rule,
in turn, would allow the subject to subtract. Translated into

more meaningful terms, a rule set of this sort would imply such
abilities as finding inverses with rigid motions given only the
ability to add numbers. But, then, isn't this just what is con-
sidered as creative behavior? ,

To summarize, this paper deals with what it means to know an
existing body of mathematics. Relatively little is said about
intellectual skills of the sort that must inevitably be involved
4n doing real mathematics. Nonetheless, it is shown that what
appears to be creative behavior might well be accounted for in
terms of growing rule sets. The key idea in making this a_feasible
and rather attractive possibility is that of the higher order rule.

Part 3.

The third paper, "Deterministic Theorizing in Structural
Learning: Three Levels of Empiricism,' deals in an integrated
- fashion with objectives (2a), (2b), and (2c). It also reports on
some pilot experiments designed to test the basic theoretical
hypotheses. : o

.. .The fcundations'of'thrée partial theoriesfof'structural'
learning are described and some relevant -pilot data are reported.
“First, a partial theory of ‘'structured knowledge ‘is proposed, in -
which it is argued that the knowledge had by any given subject -
may be characterized ‘in terms of a:finite set of rules. By allowing
rules to operate on:other rules*(in the set). it is shown how new
..rules ¢an be generated. Examples- are also:given to show how - -
'Gthese;ne&ﬁrules;ﬁing;urn;wcén,éc¢0unt”for“créativefbehavidr; ‘With '~
the addition of several performance assumptions, this theory is ex-
tended ‘so"as ‘to account’for, learning; performance, and motivation

‘under -idealized conditions where béhavior is unencumbered by memory.
quhallyjﬁﬁé.qutlinéﬁhqwﬁmemoryjéndfinfprmation.procéssingsmight*be_,

dealt wfth;,énd?fepdttisdﬁé’ptelimiﬁaryﬁdataﬂiﬁ‘favorJOfTour§main

“hypothesis: =

:The-theory;itselffrépresents*aASharp,depéraure,ffbmgexisting
' ‘theories: of cognitQVé7béhavidf;[although;itidoés;haveﬁéomefthings _
‘ih=qommon{withgex13tént.cdﬁpéféﬁcé;ahdfiﬁfor@atibﬁépr6Céssihg*theoriesg
vThejdffferehCes_eveﬁfheré,:hOWeVéi;*afeﬂn¢timinor,.but"havelaAfuné.
damental effect, both on theoretical ‘adequacy and oa the very, kinds

of ‘empirical ‘questions ‘one-asks. -Probably the most basic departure
 is the idea of ‘introducing different levels of empiricism,. and the
pnssibility of deterministic theorizing at each of these levels.
According to-this view, it is possible to' do behaviorally relevant
empiridaIQresearch_atfa;»leastkthreeLqditégdiStinct.1éVels§‘LAlthough
~'all competence models, such as. those proposed by Chomsky in linguistics,
purpdrtjftoudéalﬂw1ﬁh7kn0w1edge};cdﬁternytraditionally has been - °*
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limited primaiily to the so-called mature speaker or hearer who
effectively knows all there is to know. about the language. In the
present formulation, it is just as reasonable to talk about the
knowledge had by different individuals, naive ones as well as
mature. This is an extremely important characteristic in dealing
with subject matters like mathematics, science, or even ianguage,
where knowledge is not a static thing, but grows with experience.

An even more basic departure is allowing rules to act on
other rules. This seeas to us to be the only real hope we have
at present with which to account for creative behavior within an
algorithmic framework. There is a good deal more detailed work
to be done, but the main roadblocks appear to be ones of detail
and not of principle. »

The distinction between idealized theorizing and related
empiricism, on the one hand, and the more complete theory, in-
cluding memory, on the other, is equally basic... By ignoring the
effects of memory and information processing capacity, for ex-~
ample, it has been possible to deal with quite complex behavior,
such as problem solving and motivation, in a very pPrecise way --
and even more important, in near deterministic fashion.

In the memory-free theory, the main task is one of intro-
ducing mechanisms of idealized performance, learning, and moti-
vation, thereby extending the theory of knowledge so that it deals

“explicitly with the way in which available knowledge is put to use.
This more encompassing theory is still a partial theory, however,
one which applies only where subjects are unencumbered by either
memory or their intrinsically limited capacity to process-infor-
mation. It should be emphasized, however, that it is a theory
which is assumed to apply no matter what knowledge an idealized
subject has available. Thus, even though the knowledge had by
different individuals may vary greatly, the same theory of idea-
lized behavior .is assumed:to'hold;over~a11 individua1s._

© -The basic aéSdmption~on;which;this-thebry rés;s'is that
people are goal-seeking information processors. "

" “'Thetheory deals with:three basic kinds of situation: One
‘type ‘of -situation:is where ‘the . subject knows one or more rules
Which_apply'in'the.given'goalfSituatibn,T,The]sécoﬁd{is where

‘ the subject does’ not explicitly ‘know a rule which applies in
_the:goalfsituatidhg‘,Theﬂthird,is_actua11y335refinement'ofuthe'

'first,fand-dealé’with‘the;guestiqn;offWhy,NWhen.a-subjec;vhas__

‘more. than one rule available,.he selects the rule that he does.
Why not one of the others? ' These problems are closely allied with
what have ‘traditionally been. called -performance, learning, and
motivation, respectively. v ’ : : ’

E Ihelfirst.case.ié'simplest to‘deal‘wifh. We: need only
 ~assume -thatj I S » .

L (A) GivénQé goé1§sitﬁa:idﬁ:fof which a subject has.éﬁ least
" one rule available;’the subject will.apply one of the rules.




Thus, for example, if a subject's goal is to find the sum
of two numbers, and he knows how to add, then he will actually
use an addition rule.

As simple as it appears, this assumption has a number of
important implications. One is that it provides an adequate basis
for determining what might be called a subject's behavior potential,
relative to a given class of rulegoverned behaviors. . Briefly by
applying this assumption to assessing individual behavior potential
or individualized testing, we have been able to predict a subject's
second test performance on individual items with a high degree of
- accuracy. (Precisely how this was done is described in detail in
the paper.) In a total of 204 cases, utilizing a variety of tasks
and subjects of greatly differing abilities and grade levels (from
the preschool through graduate school), we have been able to
predict second test performance 197 times or with 97% accuracy.

The results of this research could be particularly useful for
constructing refined diagnostic tests in many areas of psycholog-
ical and educational testing.

In the second case, the subject has not explicitly learned
a rule for achieving a given goal. He has a problem in the classical
sense —— a problem situation, a goal, and a barrier betweenn them.

- The major theoretical problem is to explain what happens
when a‘subject is confronted with such a situation.

As a first approkimétion at least, it again appears that
‘a very simple mechanism may suffice. This mechanism may be framed
as a hypothesis as follows: ' K s -

(B) Given a 'goal situation for which the sﬁbject does not
~ have "a‘'learned rule irmediately available, control temporarily -
_'shifts to the higher order goal of deriving a procedure which

vdoes'satisfy';he’driginal'goglicondition. Lo

With the higher—~order goal ‘in force;-the subject presumably-
selects: from among the available and relevant higher order rules
"in the same way as he would ‘with any other goal. Furthermore,
where no such higher order rulés are availsble; we'assume that o
COntrblzrevérQS';o'stilI”higher’order“gdaISr.tThéorétically,'this _ o .
‘process could continue indefinitely. . - R IR w e ' '
. To complete things, 'a third hypothesis is needed which allows =

control to revert back to the original.goal orce the higher order

goal has been satisfied. We-can state;ﬁhiS'as.follhwsw

- (C) If the highér order. goal has been satisfied; éontrol re-
verts back to the original goal. o C ' '

', The$e assumptioﬁs;pfovidéfaﬁ:édéﬁuaté basis for generating
- predictions in a wide variety of problem solving situations. Sup-
poSe,_f0r~exémp1e;;tha£vthe'problem~p03ed to a subject is to con-

vert a given}numbertof‘yafdsfinto inches. ﬂHé:e,;we'assume-;hat




the subject has mastered one rule for converting yards into feet,
and another for converting feet into inches. The subject is also
assumed to have mastered a higher order rule which allows him to
combine learned rules (in which the output of one matches the in-
_ put of the other, as is the case, for example, with rules for con-
- verting yards into feet and feet into inches ) into single com-
posite rules. '

In a situation of this sort, the subject does not have an
applicable rule which is immediately available, and, hence, ac-
cording to hypothesis (B), he automatically adopts the higher
order goal of deriving such a procedure. Then, according to the
simple performance hypothesis (A), the subject selects the higher
order composition rule and applies it to the rules for converting
yards into feet and feet into inches. This yields a new composite
rule for converting yards into inches. Next, control reverts to
the original goal by hypothesis (C) and, finally, the subject
applies % newly derived composite rule by hypothesis (A) to
genexrzte the desired response. .

Preiiminary empirical support for these hypotheses is re-
ported in the paper. ‘ o

The important point of all this is that learning can be
viewed as-a problem-solving process. Subjects learn as a result
. of being exposed to problem situations which require that they
combine available rules in new ways. Once a problem has been
solved, however, no further learning is assumed to take place
upon repeated presentations of similar. problems. -In that case,
the subject simply applies the newly learned rule.

On the basis of .these assumptiomns, it would Be possible to
derive all kinds of implications about.1earning”and‘performanCe.
In particular, highly specific predictions might be made‘about’ .

individuals who‘enter the learning situation with given’sets of
rules and who are then subjected to particulsr sequences of problem
situations. . Such analyses would have ‘obvious implications for .
instructional theory. =~ & o o a0 e e

. The third:case.is=concerhed“%ith”what'happenS'where a: subject -
has more’ than  one way of:achievingﬂa'given-goal»and we: want' to -
. know which way he will chcose. It was -assumed . inthis case that
- the. subject would use one of the available rules (Hypothesis (A)),
- but' nothing was said about which one. It is our contention that.
the.answer to this question of '"which one" lies at the base of
what we normally think of as motivation, especially as it is
realized in structural learning and performance.

We :worked on this problem for sometime, and at first we were
‘not particularly pleased with our results. To be sure, our pilot
data almost always'supportedfourﬂhypotheses in a gross' probabilistic
sense, but they could hardly be called deterministic. -By using past
selections as a guide, we have been able to-do much-better and . . .

.
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have recently been able to determine what rules or parts of rules
a subject selected with an accuracy rate of about 85%.

To recapitulate, it should be re-emphasized that everything
which has been said so far about learning, performance, and moti-
vation only applies in situations where memory and the limited
capacity of human subjects to process information do not enter.
The proposed mechanisms have all ass:mad an information processor
with an essentially unlimited ability to process information, and
with perfect memory for previously acquired knowledge.

This definitel, '~~s not imply that the theorizing is of
little value. That conciusion would be wrong on at least two
counts. First, there awe mmny practical situations im structural
learning where memory s cf minimal concern. In problem solving,
for example, the subject iz almmsmt always given all oF the paper,
pencils, and other memnry =ids t¥at he needs. Typiczlly, we @also
do our best to insure =fat the necessary lower-order rules are
readily available, evem to> the emxtent of making textbooks avadilable.
The concern is generally with woether or not the individual can
integrate available knowladge to isolve problems. Considerations
such as whether he can do if in #is head or not, time to solutionm,
and so on, are of secomdazy comcern. Second, questions of memory
can usually be eliminatec In experimentation by insuring that
relevant rules and memnrry aids zre available to the subiect. This

_can qormally be accomplfshed by training.

The mechaniswms of -memory and information processing proposed
in the paper are speculative and subject to revision. Nonetheless,
they are simpler and potentially more precise than those of existing
information processing theories. Furthermore, the theory is de-
signed primarily to apply to memory and information processing
with complex structured materiale. and not just with the short-term
memory of lists of nonsense syllables; simple words, or sentences,

'as“hasﬁbeenwtheécaée4with:most‘mdﬁepnjmemory;research.

Finally, we mention some of the¢ most promising areas of ap—

“plication of this work in education. Insofar as curriculum con-
“struction is concerned, it is-sufficient to simply reemphasize
“that. it :is-a small-conceptua1 step5from»charaCterizing knowledge

of individual subjects in-terms of rules to characterizing cur-

ricula in terms of operational objectives. Unlike the current

1ist type of curricula, however, explicit attention might be given

- to the»identification;ofﬁhigher-order:rélationships. As simple
as thkis change may seem, its importance cannot be overemphasized.

It makes it possible not only to. build a good deal of transfer

_potential directly into a curriculum, but also to capture, we

think, what subject matter specialists almost uniformly feel

has been missing in current. curricula of the operatlonal,bbjectiVes_
variety ~~ the creative element.g‘We;have'a‘pilot‘project‘under—
way_ at Penn at this-time, in which we -are attempting to apply

“these ideas to teaching mathematics to elementary school teachers.
It is too soon to say how things will actually ture out, but so
° 3
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far things have been going extremely well and we hope that we
will be able to teach more sophisticated mathematics in this
way, and to teach it more effectively.

A second major implication has to do with testing, particu-
larly that sort of testing used to determine mastery on the ocb-
jectives which go to make up curricula of the sort indicated.
Here, the groundwork has been all but completed, and application
would seem to be a rather straightforward .peration. In fact,
we are actually utilizing these ideas in another small-scale
developmental project aimed at diagnosing difficulties urban
youngsters are having with the basic ari- imetical skills. Another
phase of this project has to do with ren..?iation of these dif-
ficulties. In this regard, we are using cur own home—~grown
version of hierarchy construction. What we do, in effect, is :
simply to identify the particular algorithm (rule) we want to i
teach the child, and break it down into atomic sub-rules. Each :
sub~rule, in turn, is broken down in the same way, until we
reach a level where we can be sure that all of our subjects have
all of the necessary competencies. This breakdown coxresponds
directly to the hierarchies obtained in the usual wmanner by
asking Gagne's often quoted question, i"What must the learmner
be able tc do in order to do such-and-such?" Unlike the tra-
ditional approach, however, ours provides a natural basis for :
constructing alternative hierarchies (since any- number of pro- . i
cedures may be used to generate the same class of behaviors). :
Possibilities also exist in such areas as teaching problem
solving, but our work to date has been limited to testing basic
hypotheses.

Part 4.

A final paper, "A Research Basis for Teacher Education,'" goes
beyond the immediate scope of the proposed research: It is directed
to professional educators and attempts to provide a broader per-
spective concerning the problems and their possible resolutions.
More specifically, the purpose of this paper is to (1) indicate
why basic research in mathematics (and subjéct matter) education
is badly needed (2) to identify some of the kinds of information

.'which every good mathematics teacher needs (3) to describe some
of the basic research which we have under way and also to mention
. some of the implications of this research for further development
‘in° mathematics education and behavioral research generally, and
-'(4) to describe some of our current developmental activities in’
teacher education in mathematics.

e
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ROLE OF RULES IN BEHAVIOR:

TOWARD AN OPERATIONAL DEFINITION OF
WHAT (RULE) IS LEARNED®

JOSEPH M. SCANDURA

University of Pennsylvanic

A precise formulation of the notion of:a rule in terms of sets and functions
is proposed. 1t is argued that this motar formulation cunnot be captured by

networks of associaiions unless one allows associations %o act on (other)
issociations. ‘This formulation is them wused as a basiz for showing how
rules are involved in decoding and encoding, symbol and icon reference, and
higher order relationships. Decoding~and encoding are shown to invoive
insertion into and extraction from -classes, sespectively. Reference is
viewed in terms of rules which map :equivalence classes of signs into the
classes of entities denoted by these signs. Symbols are shown to involve
arbitrary reference, whereas icons refain properties in- common with the

entities they denote. Higher order

higher order rules on rules. This is

relationships are then expressed as
a direct generalization of associations

on associations. Finally, a partial solution is posed to the vexing problem
of “what (rule) is learned.” Given a rule-governe:] class of behaviors,
#yhat is learned” is defined as the class of rules which provides an accurate
account of test data. Empirical evidence:is presented for a simple per-
formance hypothesis based on this definition,

During the past few years there has been
a gradual shift of emphasis in psychology
from the study of simple to complex learn-

working primarily with simple tasks, such

....as the learning of paired-associate lists, the:

questions being asked seera to have broader
_significance. ° T ‘
This shift has not come, however, without

attendant difficulties. - While existing theo- -

ries are clearly inadequate for dealing with
complex structural learning, there arz other,
even more basic, problems whick have not

.yet been adequately resolved. In particular,
there has been no scientific. language with

which ‘éven to talk abont many of the prob-

" lems. | The general guestion of the relative

efficacy of discovery and expository learning

_ .1 Portionis of this article were presented at the.
‘meeting - of ..the - American Psychological Associa-
tion, Washington, D. C, September 1967. The
author” would like to thank John H. Durnin for

~his ‘general assistance in: the -preparation of -this

article. . .
An unabridged version of the present paper can
be obtained on request from the ’author.

. ,___.their...j,..theo_r.ies.-..and __basic ... formulations ‘:
grounded in empirical data. “They have a*

(e.g., Gagné & Brown, 1961; Wittrock,
1963) provides a ready example. The re-
search has not only been confounded by dif~

ing.-—Even_—where. investigators_are_.still __ferences in. terminology, but also by the fre-

quent use of ‘multiple dependent measures
_and vagueness as to what is being taught
and discovered -. (Roughead & Scandura,
1968).  Similar statements may be made
about arguments for and against specific
versus general training (e.g., see Scandura,
Woodward, & lee, 1967). .

In trying to add precision to their formu-
lations, most investigators to date have taken
‘one of two.paths. . Some have - chosen. to
elaborate on or to extend the S-R. media-
tional language (e.g., Berlyne, 1965 ; Staats
& Staats, 1963).. Others have, shamelessly
preferred more cognitive, or rule-based, for-
mulations (Bartlett, 1932, 1958; Mandler,

~1962, 1965 ; "Miller,” Galanter, & Pribram, .

1960). VR ‘
Which approach is to be -preferred is
perhaps based more on a philosophy of sci-
ence than on psychology per se. The fermer
approach appeéals more to those who ‘want

precise language now, which relates spe-
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cifically to behavier, and do not want to
give it up without good reason. Presuma-
bly, they would rather improve it as to
detail than to discard the whole idez, Cog-
nitive formulations generally conform more
closely to intuition about psycho!~gical
processes, but they too have major dis-
advantages. On the one hand, more cradi-
tional cognitive theories (e.g., Bartlett,
1958; Flavell, 1963; Tolman, 1949) have
been extremely vague as to their relation-
ships to behavior. Precise languages have
been almost nonexistent. Modern informa-
tion processing theories (e.g., Hunt, 1962;
Newell, Shaw, & Simon, 1958; Reitman,
1965), on the other hand, which use the
computer as a mode!, have been formulated
in precise terms (computer programs). The
problem here is that it is not at all clear
how specific aspects of programs relate to
human behavior—if indeed they do at all.
Most of what has gone into such programs
exists as much for programming convenience
as for modeling human behavior, and it is
anyone’s guess what are the really important
ingredients.. In order for a language to be
maximally useful, it must be pruned of
excess and . possibly mlsleadmg notatmnal
baggage.®

Over the past several years, a precise

" formulation of the notion of a rule has

evolved. " Since . this formulation -involves
sets'and- functtons, and since these charaéter-
izing notions have been used by the anthor
and some of his students in formulating re-

search, the label - Set-Function . Language

(SFL) has been used.. The SFIL. retains.

mauy - basic tenets of ‘cognitive formulations,
but like all scientific languages, ‘is free of -
In. addi- .
tion, the SFL..is based on extremely basic,

specific: theoretical assumptions.

and highly general, notions: (sets and func-

tions), so.that. it:deals only ‘with essential -

aspects of the constructs and empmcal phe—
nomena mvolved :

3In this regard, Shaw (1970) has recently pre-
sented cogent arguments to the effect that under-
standing computer programs, which model human
behavior, . is ‘likely -to .be just as dlfﬁcult as under-
standing ‘the human ‘behavior itself. - Computer

simulation, .in_effect, is not an ‘adequate substitute -

for thaory constructlon in psychology.

'::0«
Spigms

SCANDURA

The purp. = of this paper is to describe
this fc\rmulc”’ sn (of w: rule) and to show
how it prow-des for a. number of features
involved ir ‘e learnimg of complex struc-
tured knowiwdge: decoding and encoding
processses, (=5 i) reference, and higher erder
relationships. Finally, with the addition of
an extremely weak theoretical assumption
about how siijects (Ss) perform, a partial
solution: to tiele important problem of “what
(rule) is learrzed” is proposed.

THE SET-FwNcTion Lawcuace (SFL)
Two Prelimitary Observations

During the summer of 1962, Greeno and
Scandura (1966) found in a verbal con-
cept learning situation that transfer oc-
curred on th.: first presentation of a new
item or not =t -all. Specifically, they had
their §s learn cemmon responses (non-
sense syllable :) to each stimulus exemplar
(nouns) of Tzying concepts. After each

S-R pair hac. been learned, a transfer list
was presentect containing’ one new instance
of each concept from the first list together
with a paired control. The Ss either gave
the correct nesponses to new concept exem-
plars on the first learmng trial, or they
learned the items at the same rate as. their
controls. The data were consistent with the
hypotheses of:all-or-none transfer.

It later occurred to Scandura that Ss
might also transfer on an all-or-none basis
to new instances of rules in wrhich the
stimuli may be paired with different re-
sponses. ‘In this case, one nzw. instance of
a rule could be used as a test to determine
whether the rule is learned, thereby making
‘it possible to predict. the responses to other
(new) stimuli associated with the rule.

" To test this point, a number of pilot studies
were conducted during 1963 (Scandura,

1966, -1967a, 1969a); in. ‘one experiment
(Scandura, 1969a), a-total of 15 (highly
educated) .Ss overlearned the list shown in
Figure 1. Prior to learning the Tist, hoth the
Ss and the .experimenter agre~t on e rele-
vant dimensions and values—sicc (large--
small), color (black-white), and shape (gir--
cle-triangle). The Ss were told to learn the
pairs as efficiently as they could, since this

b
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ﬁ‘@ ~  BLACK
O ~  LARGE
A — WHITE-
9 —~  SMALL

TEST ONE TEST THO

A

o o -

Fic. 1. Sample learning, assessment (Test One), and prediction
(Test Two) stimuli and responses.

might make it possible for them to respond
appropriately *o the transfer stimuli. After
learning, the Test 1 stimuli were presented
and the Ss were instructed to respond on the
basis of what they had just learned. Posi-
tive reinforcement was given no matter what
the response. Then, the Test 2 stimuli were
presented in the same manner. The results
were clear-cut. All but three of these Ss
gave the responses “black” and “large,”
respectively, to the Test 1 stimuli (see Fig-
ure 1) and also responded with “white” and
“small” to the Test 2 stimuli.

On what basis could this happen? It was
surely not a simple case of stitnulus generali-
zation; the responses did not depend solely
on commeon stimulus properties. The first
Test 1 stimulus, for example, is as much like

the fourth leatning stimulus as the first, .

Perhaps the simplest interpretatioii- of the
obtained results is that most of the S's dis-
covered the two underlying principles dur-
ing List 1 learning and later applied them to,
the test stimuli. These principles might ‘be
stated; “If (the stimulus is a) triangle, then
(the response is the name of the) color” and
“if circle, then size.” In effect, whenever

an S responded to the first test stimulus in

accordance with one of these principles, ‘he -
almost invariably responded in the same way.
to the second. = Since this study was con-
ducted, a relatively large amount of relevant
data has been collected with essentially the
same results (Roughead & Scandura, 1968;
Scandura, 1967b, 1969k ;. Scaridura: & Dur-
nin, 1968; Scandura et al., 1967).

The second observation was that each of
Gagné’s (1965) eight types of learning could
be represented by a set of ordered stimulus-
response pairs (Scandura, 1966, 19672,
1968) in which each stimulus was paired
with a unique response. That is, each type
conformed precisely to the set-theoretic defi-
niiion of the mathematical nction of a func-
tion. To see this, first recall Gagné’s eight
types of learning: (1) signal learning—the
establishment of 2 conditioned response,
which is general, diffuse, and emoticnal, and
not under voluntary control, to some signal;
(2) S-R learning—making very precise
movements, under voluntary control to very.
specific stimuli; (3)  chaining—connecting
together in a sequence two (or more) pre-
viously learned S-R pairs; (4) verbal asso- -
ciation—a . subvariety of chaining in which
verbal stimuli: and responses are involved;
(5) multiple discrimination—learning a set
of distinct chains which-are free of inter-
ference; (6). concept learning—Ilearning to

respond  to stimuli in terms of abstracted
_properties like color, shape,and number; (7)

principle _(rule) learning #—acquiring the
idea-involved in such propositions as “If A,
then B” where A and B are concepts—that
is, a chain or relationship between concepts,

"internal representations (of concepts) rather

than observables being linked; (8) problem

solving—combining old principles so as to

form new ones.’ ‘ ,
The first four types clearly involve a

4 Gagné has not made 2 distinction between rules
and principles. ‘
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single stimulus and a single response.
(Chaining and verbal associations, of course,
may involve intermediary steps.) Multiple
discrimination simply refers to a set of dis-
crete S-R pairings (possibly with inter-
mediate steps), each of which may act
independently of the others and, hence, must
be represented as a separate entity. Know-
ing a concept, however, may involve any
number »f different stimuli (exemplars),
and each of these stimuli is paired with a
common (unique) rcsponse. In addition,
rules involve multiple responses. The stim-
uli and responses, however, are not paired
in an arbitrary way; each stimulus has a
unique response attached to it (see Figure
1, for an example).

In effect a rule can be denoted by a func-
tion whose demain is a set of stimuli and
whose range is a set of responses.” The con-
cept and the association become special cases.
A concept can be represented by a function
in which each stimulus is paired with a
common tesponse, while an association can
be viewed as a function whose deﬁmng set
consists of a single S-R pair,

What Gagné (1965) called problem solv-
ing involves a higher level of analysis. In
particular, “combmmg old principles so as to
form new ones” requires {(higher order)
rules which act on other rules. More gen-
erally, h1gher order rules may involve any
number of combinations (sets) of old rules
and any number of new ones, paired so that
there is a unique_ new rule attached to each
set of old ones. (Details are'deferred to the
section on ‘higher order rules.)

- Was this’ only a more formal way of ex-
- pressmg ‘what psychologlsts have said all
‘along—that respoiises are “functionally” de-

pendent on' stimuli? I"could not help but .

feel that there was a deeper significance.
Still, deﬁnmg rules, concepts, and associa-
tions in ferms of their denotative sets. left
me with the unsatisfactory feeling of not
knowing what they really were; or, to put
it differently, how to characterize the knowl-
edge underlying the observables. -

A Characterization of &he Rule C onstrict
A function can be defined as a set of

_two between adjacent terms”

ScCANDURA

denotation of a rule, (i.e., class of S-R be-
haviors which can be generated by a rule)
seems best characterized by tke former type
of definition, but the rule construct itself
conforms more closely to the latter type of
definition involving a set of.inputs, a set
of outputs, and a connecting operation,

Consider, for example, the task of sum-
ming arithmetic series (e.g., 14+3+5+7
-+ 9). In this case, any one of an equiva-
lence class® of overt stimuli (like the sign,
“143+4+5+7+49’) may represent the
same number series (i, 1+34+54+7
+ 9). Each such equivalence class serves
as an effective ‘(functionally distinct) stimui-
lus. Effective responses (sums) may simi-
larly be thought of as equivalence classes of
overt responses (e.g., “25”’). The denota-
tion of the rule, ti:en, consists of the set of
ordered pairs whose first elements are
equivalence classes of representations of
number _series, and whose second elements’
are equivalence classes of representations of
their respective sums.

Underlying rules are, however, probably
more naturally thought of not as acting on
effective stimuli (responses) themselves but
on properties of the entities denoted by these
effective stimuli. Thus for example, the
property of having “a common difference of
refers to the

number series, 1 + 345, and not to its
name, “] 4 3 -+ 5.”. Note that a distinction
is being made between the entity (e.g., num-
ber -series) and the equivalence class of

5 By an equivalence class of overt stimuli (re-
sponses) -or an effective stimulus is meant a class

of overt stimuli, each of which has the same set
of - defining - properties. - The term “effective” is

. used 'to. emphasize that we are talking about the
_stxmulx and . responses

“effectively” operating in
the situation rather than the overt stimuli and
responses themselves. Thus,. for ‘example, the
stimuli “5” and “five” would, for most purposes,
count as the same effective stimulus since they. both
represent the same number. The stimuli “5” and
“6” on the other hand, would correspond to dif-
ferent effective stimuli. In previous papers, Scan~
dura (1966, 1967a) used the term “functionally
distinct.”

The distinction between an entity and the sign
used to represent it will also play a role iin the
present analysis. This distinction is first referred
to in the followmg paragraphs and is explained

ordered pairs or.as an ordered triple. The more fully in the section on reference.
-‘ " |
| ERIC |
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representations of that entity. However,
since tiiere is a one-to-one relation between
equivalence classes of overt stimuli (the
signs) and the abstract entities denoted, we
can ignore the distinction, except in the sec-

tion on reference, where it plays a central

role. These properties, in turn, determine
(via the rule) other properties (of the re-
sponses). One rule for summing arithmetic
series, for example, may be represented by
the expression, [(4 + L)/2]N, where A4
refers to the first term, L 1o the last term,
and N to the number of terms of the arith-
metic series in question. The critical inputs
associated with this rule are triples of values
of the dimensions, 4, L, and N (eg., A =
1, L=7, N=4). These triples may be
viewed as {composite) properties of the
entities denoted by the stimuli. We may
refer to these critical properties as response

determining (D) properties. The set of out- -

puts consists of response properties (num-
bers) derived from the properties in D.
These properties (numbers) determine
equivalence classes of number names (e.g.

the number property, 16, which is the sum
of the series, 1+ 3+ 5+ 7, defines the

. equivalence class of all signs of the form-

“16"). (Notice, however, that these num-
ber properties may also be viewed as prop-
erties of the series themiselves. - In this role,

“ the number properties are called  sums;

which Just happen to be properties of arith-

metic series which can be derived from other’
presumably more- easily ‘determined proper-’
ties, like the ﬁrst term ’llld the number of

terms.)

“In’ effect, a rule may be defmed as an.

ordered trlple (D, O, R). where D refers
ta the determining propertxes of the’ stimuli,

and O to_the combining’ operation or trans-

fofnlation: by _Which the derived properties
(of the responses, R} are derived from the
properties in D.

i

Parenthetically, note that accounting for

such behaviors as adding arithmetic series
in terms of rules is not the same as intro-
ducing mediating responses and response-

produced stimuli. In the latter case, the

basic idea is to provide a detailed account of

the interrelationships involved in terms of
(possibly complex) networks of associations.
Rules treat such relationships at a more
molar level. That is, rules by their very
nature act on classes of effective stimuli and
not on particular stimuli.

The basic question, of course, is which of
these two alternatives better captures the
essential characteristics of behavior on struc-
tured tasks. = The first observation cited
above, taken together with the relatively
large amount of available data (e.g., Scan-
dura, 1969a), indicates the behavioral re-
ality of rules. Scandura found repeatediy
that performance on any one instance of
most structured tasks is directly related to
performance on any other instance of the
respective tasks. Behavior strongly tends
to be either uniformly good or bad. (There
is more that can be said on this point, but
going into this here would detract from the
main point.) Accordingly, it would seem
that when an investigator is interested in
working with structured tasks, the rule
would seein to provide ‘the more natural
conceptual basis. Mediational accounts of
such behavior tend to be ad hoc as well as
complex and cumbersome. (In working
with nonsense materials, on the other hand,
where it is unclear as to what, if any, rela-
tionships exist among the instances, some
resort to associations :md their related the—
ory may be more fruitful.)

This- madequ'lcy of mediational accounts
becomes- one of principle unless one takes
a more “general view of stimulus and re-

sponse than has generally. been the case. In

particular, no medxatwn theorist. to the au-
thor’s knowledge has explxc:tly considered
as stimuli what amount; in a related context,

to S-R pairs -(ie., associations). (Note:.
Any given entity may seve as either a stimu-

“lus or a response.. What the entity is called

in any particular situation depends solely

~on the role it is playing—Hocutt, 1967.)

To see this, it is sufficient to consider the
associative connectlons involved in gener-
ating sums and’ differences in ar:thrnetxc,,
together -with those connections which relate?
addition and subfraction. In this case, we
would have as 2 minimum such connections

.
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as
4+5—9

9—~5-—4

where the vertical arrow acts neither on the
stanuli, 4 + 5 and 9 —35, nor on the re-
sponses, 9 and 4, but rather on the associa-
tions themselves. ]

As a second and somewhat more subtle
example, consider the task of adding “4” and
“3” in column addition. If embedded in a

41
problem like +32, the tens digit in the sum

is “7.” However, if the problem involves

47
carrying, like +35, then the tens digit in the

sum is “8.” In effect, the response given
to the complex “4, 3" depends on the con-
text, in particular on the previous response.
(In the first problem, the units digits “1”
and “2” sum to “3” which does not involve
carrying, whereas, in the second problem,
the sum “12” of “7” and “5” does.) This
implies that the effective stimulus in cclumn
addition includes not just the digits in a
particular column but the previous response
as well, specifically “carry” or “no carry.”
In effect, the stimulus in this case is a pair

" consisting of either “carry” or “no carry”

paired with the tens digits “4” and “3.”

Thus, “carry, 4, 3” -elicits the response "8,_’;"

whereas ‘“‘no carry, 4, 3" elicits “7.”- To see
how these S-R pairs may be viewed as asso-
ciations on associations, we need. only ob-
serve that mediation theorists have no ditfi-

_culty in talking about stimulus properties of-

responses (or, “equivalently, in" saying "that
the source of a given stimulus is the previous

response).  Hence, in this case, the. stimu--
lus properties of the response “carry,” for’
. exaniple, may be thought of as eliciting the
_compound " entity “4” and “3” as ‘the re- :

sponse; it is the association “carry’’—>*‘4, 3,”
then, that serves as' the stimulus (in the
second. problem) for the response “8.”

As unfamiliar ‘as this view.may scem, this
is precisely the ‘sort of 'assumption that

Suppes (1969) had to make in proving that .

given any finite connected automaton (which
for present purposes amounts essentially to

a rule), there is a stimulus-response model
-4at asymptotically becomes isomorphic to it.
In order to account for rule-governed be-
havior, then, mediation theorists of neces-
sity wiil have to generalize what to date has
been the traditional view. The section that
follows on higher order rules represents an
important generalization of this idea. In
particular, the view is taken here that “asso-
ciations on associations” are nothing more
than a special case of “rules on rules,” such
as those commonly involved in problem solv-
ing.

Decoding and Encoding Processes

The distinction we have made between
overt stimuli and responses, on the one
hand, and properties (of the entities denoted
by these stimuli), on the other, raises the
question of how the decoding and encod-
ing “gaps”. are to be filled. In particular,
rules operate on properties of stimuli and
not directly on overt stimuli (or, more accu-
ratcly, on properties of the entities these
stimuli denote). Similarly, they generate
properties (of responses), but not the re-’
sponses themselves. The rule, N?, for ex-
ample, operates on the “riumber of terms”
(a property of number series) and (with
certain number series) generates a number °
(a property of sets) called the sum. The
question essentially is one of how to repre-
sent the process by which stimulus' proper-
ties are determined from overt stimuli and
how overt responses are determined ‘from
derived. (response) properties. .

Fortunately, this can be accomplished-

‘quite naturally. - Each stimulus property de- -

fines a class. of overt stimuli. (i.e., the class
consisting of those overt stimuli which de-
note entities having that property). Hence, -
decoding may be viewed as a process or
mapping which assigns overt stimuli to par-
ticular classes. ' The result of decoding an .
overt stimulus, ther, can be viewed as a
class of overt stimuli. For example, one
decoding process involved in “perceiving”
representations of arithmetic series is the
map which assigns given (representatigns”
of) series to classes in.a way that leaves! all-~
of the “essential” properties invariant  (in--
cluding, but not limited. to, the first, last,
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and number of terms). For example, “I + ™
3+ 547" and “one plus three plus five’

plus seven” would be assigned to a comnion
class, since they both represent precisely the
same arithmetic series. Similarly, the stim-

uli
af: c
- and (24 4 16) = 17,

would almost certainly be viewed by edu-

. cated adults as equivalent to

el \o )
and (24 4+ 16)/17,
a

respectively, but not to

d

: ' 1
c 2
a and (38 + 17)16.
= .

- A similar mechanism is required on the

‘response side for encoding. Once the de-

rived response properties have been deter-
mined, the question .remains-as’to- how the
result is to be made observable. Consider a
situation in which an S, after having deter-

‘fnined the solution to a problem, is expected
. to.write it' down on paper.. For simplicity,
let: the solution be the:number. five (a prop--
erty of sets) and'let the desired response.be -
the ‘numeral. #5.” - Clearly, ‘there are many.

- variations in the ‘way. this'numeral’.could: be
‘written ‘which” would have no efféct. whatso- +
_ever. onthe referent.’ Each"of the allowed"
variations:in. sign -refers-to- the number five.
..The encoding process . simply “amounts to -
constructing-or identifying one of these signs. -
* In-effect, since each derived ‘property in R
defiries “a’ class® of - observables : (i.e., overt
responses); it would appear that the: encod- -
ing process might be thought of as “select- "

ing” one of the functionally equivalent overt

Normally the processes involved in Per_

* ception “(decoding) and 'e'r\l_c"odingva‘re.ﬁ_very.

’

Vo (e

complex.® It is important to note, however,
that the difficulties involved are of a practi-
cal nature and are not of principle. In prin-
ciple, it is always possible to increase the
depth of analysis further by introducing ad-
ditional rules at the beginning of the initially
given rules (for decoding) or at the end
(for encoding). An initial rule, for exam-
ple, may be used to derive a property used
in a given rule from still more primitive
properties. Thus, for example, the prop-
erty, N, the number of terms in an arith-~
metic number series, which is used in the

rule
A+ L
( : )N,

may be derived from the more primitive
properties, 4, L, and D (the common dif-
ference) by means of the (initial) rule

(L;4)+L

The notion of a composite rule provides
a ready means for representing multistage
rules of this sort. Thus, if the rules, ry, 1o,
- - -, r, represent z simple rules, such that

)

‘the outputs of r; may serve as inputs of iy

(=1, 2, ---, n—1), then the ‘rule
g=r, - I,ry represents the composite
rule. Complex procedures (e.g., see Groen,

© 1967 ; Suppes & Groen, 1967), which in-
-volve branching, can be handled in a similar

fashion, but -discussion’ here would be an:
unwarranted ~digression - (for. details, see

Scandura, in press). -

:BIt“‘ is worth 'noting: that this complexity. -is
intrinsic; and is ‘not unique.to the present formula~.

tion. . Thus, in S-R mediation language, decoding -

“corresponds to  S(overt) —rm'and encoding, ‘to,

sm — R(overt).’ In eéffect, both" formulations make

-a -distinction. betiveen overt:and efféctive  stimuli, -

on-the one haiid, and overt-and ‘effective responses- -

to ‘i18e  asenciations both - for - connections between
the observable world and internal events and be-
tween internal events. . In the present formulation,.

_each.kind of connection is treated differently. The
~former involve “inserting observables. into classes” '
‘or “extracting entities from them.” Internal events
are connected by rules. . .. . : v :

‘sw’s. which elicit -overt . responses), -on. the’ .
* other. The difference is simply in how-the indicated
‘“gaps” are to be filled." ~Mediation theorists prefer .
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Reference

Although I avoided going into details
above, the nature of the discussion forced
a. recognition of the distinction hetween
equivalence classes of signs, on the one hand,
and the entities denoted by these equivalence
classes, on the other. This distinction came
up both in discussing the rule construct itself
and in discussing the decoding process. In
the latter regard, we saw that there are two
distinct senses in which (meaningful) stim-
uli may be viewed. (@) Signs may be inter-
preted in terms of what they represent.
Thus, signs may be held equ1va1ent if they
have the same meaning. This view was
emphasized, as it seems most appropriate in
dealing with meaningful behavior. (In fact,
one might possibly define “meaningful”
stimuli to be stimuli which have clear refer-
ents.) (&) Signs, however, may also be
thought of as (meaningless) entities in their
own right (w1th properties of their own).
In this case, signs are held equivalent ac-
cordlng to whether or not they have certain
properties in common. Even signs like “X
P Z” and “* o +4” which have no well-
defined referents, for example, might be

‘taken as equivalent, since each has three

perceptua.lly distinct - parts. ‘
‘The problem of reference, then, in the

* present view, is one of explicating the rela-

tionship ‘between signs and . their referents.
As can read11y be appreciated, this general
question is extremely complex. Al ‘we can

- do here is to touch on two important aspects‘

of the - problem - Specifically, _nothing i
said about signs ‘with’ amb1guous meanlngs

‘First, if the meaning of signs is defined 'in-
“terms-of denoted entities,” how are’ we to -
_know when" an" S has’ acqulred partxcular'-
: meanmgs? There seem to ‘be at least two.
_ways in which this might be done: (a) by -

,determxnmg whether or not the subject can -
N paraphrase ‘or. otherwise descnbe the" in-
tended meaning, and (b) by seeing whéther
" or_not-he can: perform in accordance with
the -underlying meaning. The referent of -

(equivalence classes of signs like) “snake,”

for example, is defined as the class of (all)'»
snakes. "An-S might. demonstrate his aware-

ness of the intended meaning, then, by de-

ScANDURA

scribing what a snake is—*“a hideous, long,
thin, squirming animal, with no legs, which
moves by . . . and whose bite is sometimes
poisonous. . . .” He might also do this by
reacting appropriately to a statement (sign
complex) in which “snake” is embedded.
Thus, if someone shouts “Snake!” during a
hike in the outback, the listener is likely to
evidence through his behavior an awareness
of imminent danger. He knows the mean-
ing! The meaning of the relational symbol
“run,” which refers to the class of all acts
of running, might be determined in generally
the same way. Apparently, this approach is
in some ways similar to Osgood’s (1953)
S-R formulation, in which responses are
viewed essent1a11y as indicators that s1gns
have certain referents. The present view is
potentially more precise, however, in that
with signs having highly structured mean-
ings, the indicators of meaning can be made
highly specific and unambiguous.. Consider,
for example, the rule statement “[(A4 +
L)/Z]N" In this case one can test for
the meaning (a rule) by presenting particu-
lar arithmetic number. series and seeing if
the § can apply the rule so as to give the
indicated sum (see below). (For more de-
tails, also see Scandura, in press.).

The second question is perhaps more cen-
tral to the present discussion and deals spe-
cifically with the nature of the connection
between equivalence classes of signs and
their meanings.’ Specifically, is this connec-
tion rulelike—or would associative .connec-

_ tions be adequate in all cases? A .positive -

answer- to this question would lend consid- -

_.erable additional support . for ‘adopting the

rule as the basic unit of behavioral. analysis.
A negative answer would be a-serious blow
to any such conception.

To provide an answer, first note that the'
connection between signs and their referents
can be represented as rules which map prop;

- erties of signs into (other) _properties.
‘These latter . properties, - in .turn, define

classes of entities called referents. Thus,
for example, “snake” or any other equiva-
lent sign has certain propert1es whi_ch Qis-
tinguish it from other signs.. These invari- .
ant properties are prec1sely those which are

mapped onto the properties which' character-
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ize (real) snakes (i.e., the latter properties
are what define the class of snakes). The
class of symbols equivalent to “run” is as-
signed to its meaning in precisely the same
way.

Of course, we could also represent this
type of connection directly in terms of asso-
ciations. The real question, therefore, is
whether or not connections exist which re-
quire for their characterization nondegener-
ate rules.
such rules in terms of associations in the
manner described by Suppes (1969) would
be cumbersome and, in addition, would re-
quire a generalization of the notion of asso-
ciation—to include associations on associa-
tions.) .

As it turns out, there are two funda-
mentally different kinds of reference in
which nondegenerate rules are involved.
One type involves signs that are abstract
symbols, ‘and the other, icons.

Before taking a look at symbol reference
generally, first consider what might be called
elemental symbols, symbols which are mini-
mal indicators of meaning. (In the language
of automata theory and formal systems, such
symbols are called “letters of the alphabet.”) -
Probably the single most important charac-
" teristic of elemental ' symbols is that -they
denote arbitrarily. The arbitrary nature of
symbol- reference ‘has both  limitations:‘and
advantages. Perhaps its most important

limitation- is that :symbol reference ‘is non- .
Thus; for example, there is. "

generallzable
no common way -in which the numerals “5”
and “6” refer. The meaniiig of each symbol -
- must be. learned ‘separately ;' knowing that’
“5».denotes - the.. ‘number . of -elements in

{00000} . does. not help:in. learmng that “6”

denotes the number of elements in {000000}. -
“Any other symbol would be an equally va11d
candidate. ; R
On the ‘other hand because symbols may
- be assigned arb1trary meanings, they can
be used to represent highly abstract notions
in a precise way. Thus, “five apples” refers
to the class of all sets of five apples, whereas

“five” refers to the class of all sets of five -
elements ;- but there is no loss of ‘precision’
" associated with the.increasing degree of-ab-.

straction. For example, the symbol, “N”

(Presumably, representation of,

~'formed tens-digit.”
"-rule properly, note-the following : () Know-
" ing’ the’ meanings of the digits O through

9 is basic to using the rule.

(the set of natural numbers), refers un-
ambiguously to a still higher order collec-
tion. Abstract relations may be denoted by
symbols with equal ease. Thus, the terms
“taller than,” “greater than,” and “relation-
ship between” refer to progressively more
abstract relations with equal precision.
Obviously, ‘not all reference is of this
simple form. If it were, S's could learn the
meaning of, at most, a finite number of dif-
ferent symbols and this clearly runs counter
to what is known about language. In par-
ticular, there is no upper bound on the
number of new statements in English (say)
which can be understood by a  mature
knower of the language. What is needed,

.therefore, is some mechanism which is suffi-

ciently rich to provide for this sort of capa-
bility.

Rules would satisfy this requirement, of
course, but it remains to be shown exactly
how they might be involved. To make the
dlscussmn deﬁnlte, consider the task of

“generating” .the meaning of arbitrary nu-
merals like “35,” “278,” and so ou. Clearly,
composite numerals of this set have mean-

" ings, just as do simple .numerals, like “5”

and “6.” * But individuals do not have to
learn each meaning independently, They
presumably have rules available for figuring
out the meanings of even new numerals
which they have never seen before.

It is possible to construct a rule for inter-
preting numerals of arbitrary" size, but we
can make essentially the same point, and

.more simply, by considering numerals with

‘ng moare than two digits.. In this case, the
following rule will work: “Give meaning to
the un1ts-d1glt (1&, ‘the first digit on the
r1ght) ‘then give meamng to the tens-digit ;
next, “multiply” the meaning of the tens-d1g1t

by 10 finally, combine the meaning of the

units-digit. with the meaning  of the trans-
“'In order to interpret this

(&) “Multiply
by 10” may be interpreted to mean “Replace

-each element in each set in the denotation of
. the tens digit ‘with 10 elements of the same
‘kind.” "

For example, consider the numeral,
In this case, we first give meaning to.

"35.'” .

P
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“57 a5 above. The same is then done for
“3” In carrying out the next step, we take
into account sets in the second meaning class.
Thus, -corresponding to the set,

(il

we construct the set,

QT IS S,

where each of the three bundles contains

_ precisely 10 vertical lines. For details on

how such interpretative rulesare constructed,
the reader is referred to Scandura (in press).

In general, then, it would appear that
compound symbols may acquire meaning by
referral to the meanings of the constituent
symbols, together with a “meaning gram-
mar” by which such meanings are combined
to form rules for interpretation. General
support for this contention was found in a
recent study by Scandura (1967b). It was
shown that where the “grammar” necessary

“for combining the meanings of constituent

(minimal) symbols has been mastered,
knowing the meaning of particular constitu-
ent symbols is both a necessary and also
(essentially) a sufficient condition for apply-
ing 2 rule statement involving these par-
ticular symbols. In‘this case, the ‘“‘gram-
mar” involved.the use of parentheses (i.e.,
swork from the inside out”). The originally
naive Ss were trained with neutral materials

feg, 3(5+4 (3+2))] until they could

reliably work with parentheses. Then, half .
of the Ss were trained on the meaning of -

“unfamiliar . signs, like' [X], “the largest
_integer in.X.” . Training  continued until -

they .could reliably give the “meaning” - of

~ arbitrary signs.of the form [X] (e.g., [66],
~[7.0], [89]; €tc.).  These Ss could almost
invariably apply rules; like: [ ([X] + [¥])/
" [Z]], toinstances once statements of these

rules had ‘been committed to memory. The -

- 'Ss who “were ‘not given this training on .
'meaning were uniformly unable to apply the

tule. Presumably, the ability to work with

" parentheses can be viewed as a highly en-.

compassing . rule of - grammar, one, which

- 'makes it possible to integrate’ the .meanings
of a wide variety of kinds of symbols. Once:

the meaning of the: constituent symbols in

10

a rule statement (involving parentheses) is
made clear and is available to the S (in
memory), the “grammar” combines these
meanings into a unified whole. The state-
ment, “name the color,” provides a similar
example.  “Name” is a verb phrase which
refers to a large number of acts of maming.
“Color” simply indicates what is to be
named. Intuitive semantics tells us how
these meaniiigs are to be combined. A task
for the future will be to make such intuitions
public. .

In contrast to symbols, icons * have prop-
erties in common with the entities they de-
note; they denote in a nonarbitrary way.
This characteristic way in which icons de-
note has important implications. TIn the
first place, some relations seem exsier to
denote using icons than others. Thus, prox-
imity and relative size can be handled quite
easily, but; as an example, the relationship
between parents and children can orly be

-dealt with indirectly. Insofar as mathe-

matics is concerned, icons seem to be par-
ticularly well suited to representing geo-
metric ideas where the relationships involved
tend to vary continuously.

Second, and this is most important here,
icon reference involves "(nondegenerate)
rules. The icons, “1,” “11,” “111,” “1111,”
etc., for example, can all be mapped onto
their meanings by a common rule. This is
possible . just because each icon can be put

“into one-to-one correspondence with the ele-
sments of the sets in the corresponding de-

notative class of sets. (That is, each set in
the given denotative class contains the cor-

_responding number of -elements.) For a .
second example, it is sufficient to note that
" particular properties of relief maps corre-
. spond to features of the terrain they .repre-
_sent. These corresponding features provide
‘a sufficient basis for constructing - general

rules for interpretation. : ,
This ability of icons to refer-in a gener-

- alizable way, however, is bought at a price.

Because ‘they ‘are referentlike, icons retain

7 Here, “icon” is used to refer to any still or
moving picturelike representation. While still pic-
tures may refer to “things” and ‘certain Kinds of

“relations,” moving pictures are required fo. repre-

sent actinn.



Rz oF RULES IN BEHAVIOR

progressively inore irrelevant information
when used to represent iucreasingly abstract
ideas. Thus, it is easy to find an icon that
<an be used to represent a pariicular finite
arithmetic sequence ©f numbers in which
the successive numbers increase by a com-
mon amount. The sequ:nce 1, 3, 5, 7, for
example, can be represented by the icon,

¢
1
P
i
]
7
%
i
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. However, withouwt the introductizw of sym-
bols of one sort- or another, Taeas are not
capable of representing arithmetir . sequences
in- general. In:this case, the Itom would

i have to indicate that there iy a&n common
difference between successive ermrss and that
. both the re“tive size of the firstiiterm and
\ the (common) difference between terms and
\ the number of terms are irrelevant. Ab-
’ stracting from the icon above, we observe

that

, Loy

‘it did not specify a relative size between the
first jump and the successive jumps as well
as a’ specific number of terms (i.e.; 4). This
information is 1rre1¢vanc and; worse, mis-
leadmg
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* yards into feet and how to convert feet into
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Higher Order Rules

It has already been commented that rules
can be represented in terms of associative
networks, but only if we allow associations
to act on other associations (viewed as
stimuli) (cf. Suppes, 1969). Since associa-
tions in the present view are nothing more
than special cases of rules, it seems reason-
able to also ask whether there is any natural
rule counterpart to associations on associa-
tions. In particular, if rules are as basic to
compiex learning as has been suggested,
then one would suspect that there ought
to be (nondegenerate) rules which act on
classes of associations (rather than on single

associations), or, even better, rules which
act: on classes of rules.

Notice that this observation proyvides us
with another imdependent check of whe power
of the formulation. We have just seen how

zules are involwed in reference, arid now

wez ask whether they zre also inrmlved in

higher order relationships, which == analo-
rous-to associations on associations.

To prove the:point, we need only:demon-
strmate the existence of one such. higl=r order
rute. As a simple example, consider the
rules involved in traislating from one unit
of mecasurement into another: yards into
feet, gallons into quarts, quarts into pints,
weeks into days, and so on. Clearly, there
are close . relationships among many such
rules which obviate the need to learn all of
Knowing how to convert

inches, for example,. is often a sufficient
basis for converting yards into inches. Fur-
thermore, for-most adults, it makes no dif-

8 It should also be apparent that signs evident in

. the ““réal ‘world” are. like icons, only more so.

Rtuer than being two dimensional, however, these
.slgns have -three dimensions. Because of this, the
signs and their ireferents must have even more
things. in common. . The rules . defining reference,
therefore, are even more general than with icons.
Stlll, it should be emphasized that “real world”
signs need not refer to identity. To the contrary,
such signs almost invariably refer to broad classes.
Thus,. young - children let blocks refer to. zuto-
moblles, bulldmgs, boxes, and so on. Even “Johy
Smith,” at a given instant in' time, does not refer
to ldent:ty-but ‘typically, to John Sm:th irrespec-
tive. of when.
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ference what the particular units are. If
told that tliere are five “apps” in a “blug”
and two “blugs” in a “mugg,”’ it would be
a simple task to also convert “muggs” into
“apps” (i.e., ﬁrst multiply by two and then
by five).

The point is that mary people appear able
to combine pairs of given rules into corre-
spondlng composite rules. Thus, for exam-
ple, given rules like, “x yards—>3x feet,”
and “y feet — 12y inches,” many Ss can
combine them to form composite -rules, like
“x yards—> 3x feet—> 12(3#) inchies.” (Us-
ing arrows is a convenient way to represent
the denotation of rules. Thus, for exampie,
x yards —> 3x feet is interpreted to meam
{(x yards, 3z fect)|s is a number}.)

One can account for this type of ability
by introducing a higher order rule, which
says, in effect, “combine the rules so that the
output of the first serves as the input of the
second.” More specifically, the hizher order
rule can be characterized by the triple, D =
a set of pairs of actions (more accurately, &
set of properties’ which define: equivalencs
classes of pairs of actions), O = the higher

order action of combining. pairs- of lower

order : actions, and R = the corresponding
set of composite actions.. The denotation of

.such a ‘rule, then, can be represented:

{(Ry, R;), R|R, and R2 are (equivalence
classes of) rules, and R is the rule formed
from R, and R, by composition}.

Ackler and Scandura are presently. per-
forming a study in the University of Penn-

~ sylvania laboratory which demonstrates, con-

clusively  in the .author’s’ opinion, . -the - ‘be-
havioral reality of such higher order rules -
(Scandura, '1970). - Given -the necessary
constituent rules, as above, Ss, ranging in
educational level from kindergarten to post-

~graduate work, were able to solve problems
‘involving the composite rule if and only if

they also had available the necessary higher
order rule for combmmg pairs of such rules.

Specifically, if they had already mastered-
the higher -order rule, or could be experi-
mentally trained ‘in its use, as judged by-
their ability to use it on neutral tasks (i.e.,-
nieutral rule pairs) to form composite rules;

then they -were able to solve the composite
problems; otherwise, they were not. The

12
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amazing thing about these results is that
they held up with essentially every S. It
was not a question of averaging over indi-
viduals or tasks.

- T'wo earlier studies also bear on this issue.
The first (Scandura, 1967b) has already
been discussed in the section on reference.
Suffice it to say here that the rule by which
the constituent meaning rules (ie., rules
which assign meanings to minimal symbols)
were combined is a Iigher order rule.

In a second study, Roughead and Scan~
dura ({1968) were able to identify a higher
order rule, of the sort Gagné and Bzown
(1961} had alluded to earlier, for discover-
ing other rules. Tlhis higher order rule
can be stated,

. formulas for the sum of the first # terms of a
series {Z") :may be written as the product. of an
expression involving # (ie, f(#)) and n itseli.
The required expression in » can be obtained by
constructing a three-columned table showing: (@)
the first few sums, =", (b) the correspondimg
values .of #, and (¢) a column of numbers,  fi(n)
= Z%/%, which when .multiplied by #» yields the
corr=sponding values of =", Next, determine the

-expresston f(n)=2Z"/n by comparing the numbers
‘in the columns labeled » and ="/x, and .uncovering

the (linear) relatlons}up béetween thern. The re-
quired formula is simply Z"=g- f(n) [Roughead
& Scandura, 1968, p. 285].

This rule can also be analyzed in the same
general way, but the analysis is not as sim-
ple as the examples given above. The main
ideas are sketched and the reader is referred
as before to Scandura (in press) for mora
details. (@) The inputs of the higher order
rule are n-tuples of associations (1e, de-
generate rules) between particular series of
a'given form and their respective sums (e.g.,
1+3+5+7 is mapped . into 16). (b)
The output rules are also assoclatlons, this
time between classes of series (eg., 1+ 3
454+ (272—1)) and formulas in
n (eg, #n?) by which sums of particular
series of the given form may be determined."
In effect, the higher order rule maps n-tuples
of speciﬁc number series-sum pairs of a
given formi (eg, 1+3—>4, 14+3+5—
9, 1+3+5+7-—>16,---) into output

- associations (eg 1+3+5+---+ (2"

— 1) = n?). -
As a final example note that the inverse
relation between addition (i.e., the rule) and

@Y
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subtraction is but ane ‘instance of a higher
order rule by which any binary operation
(e.g., multiplicatior) can be mapped onto
its respective inverse (e.g., division).

In each case, Lurher order rules are in
some sense orthogomal to the lower order
rules on which they operate. Lower order
rules act on classes of stimuli and map them
onto classes of responses, Higher order
rules map classes of rules (or #=-tuples
thereof) onto other classes of rules. Of
course, there s no reason to stop at this
second level, and wone can easily envision
rules which act on rules which act on rules
...,and so on.

AN OPERATIONAL DEFINITION OF
Wuat (Ruie) Is LEARNED

The guestion af “what is learned” is tied
inextricadly to the question of transfer (e.g.,
Smedslund, 1953).. In rule interpretations,
the tendency has been to explain transfer in
terms of “what (rule) is learned.” Such
interpretations, hewever, have been rightly
criticized as lacking operational definition.
On strictly logical grounds it is effectively
impossible to define in terins of performance
“what (rule) is learned” in any unique
sense. There are typically many different
routes to the same end. For another thing,
rules frequently have an infinite number of
instances; it is practically impossible in such
cases to test for the acquisition of all but a
relatively few.

On the positive side of the ledge, it does

not appear necessary to know everytling
that an' S knows .in order to predict what
- he.will do in a given situation. Much of the
'§’s knowledge becomes irrelevant once a
goal is specified.’ Even the lowliest rodent

has a large number of behavioral capabilities -

(rules). What rules may be applied du-
pends on what the organism is trying to
do.
(whether it is based on neo-associationistic
or more cognitive notions), there is at least
the implicit recognition that goals, as well as
the stimulus context, are crucial to exneri-
mental outcomes. | When an" S fails to do
what is expected of him, he is branded as
ancooperative. Specifically, knowing an S’s
goal in any given stimulus situation is tanta-

i v
[y

In almost all ' experimental research-

mount to specifying a class of rule-governed
behaviors, that is, a class of bebaviors which:
can be generarzzd by a rule. (There may be
more than eme such rule for any given
class.) Thus, for example, knowing that an
S is trying to mdd (a given pair of rumbers)
defines the (rulie-governed) class of all pairs
consisting of (pairs of) numbers and their
siems, denoted {[(#2, #), (m~+n)]|n, n
are numbers). This class effectively parti-
tions the set-of rules an S has learned into
two mutually exclusive subsets, one includ-
ing those rules which <an be used for adding
pairs of numbers and the other including
those rules witiich cannot be.so used.
Equally important, an increasing amount
of evidence /‘Levine, 1966; Levine, Leiten-
berg, & Riziater, 1964; Scandura, 1966,
1967a, 196%) suggests that thc relevant

. Jmowledge witich underlies mathematical and

other meaninziful behavior can often be speci-
fied with a:izr degree of precision.

These observations place important re-
strictions om the form a truly adequate
operational definition of “what (rule) is
learned” might take. First, it is essentially
impossible to define “what 7ule is learned”
in any unique sense. Second, an operational
definition of what is learned must be formu-
lated relative to a given class of rule-gov-
erned behaviors. Third, any such definition
must be based on performance on a small,
finite number of instances, and, if possible,
should be applicable no matter how many
test instances are employed.

In view of these restrictions, any attempt
to define operationally what particular fule

"is.learned seems a priori doomed to failure.
“What appears to be needed is a definition
‘which takes into account all feasible under-

lying rules; Such a definition can be given
by specifying what is learned up to a class
of rules. Thus, given a class of rule-gov-
erned behaviors and that a particular stimu-’
lus in that class elicits the corresponding
response, “what is learned” can be defined

. as that class of rules whose denotations all

include the given S-R pair. This definition

~ may be interpreted to mean that at least ore

of the rules in the class has been used in
responding to the test item.
The problem remains of adapting the
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definition to include any number of test
instances. Fortunately, this can be accom-
plished directly. Given a particular rule-
governed class, # test instances, and = per-
formance  capability summarized by success
on  of the-n test instances (m < ) and
failure on # — #2 of these test instances (and
assuming that no learning takes place during
test'ng), then “what (rule) is learned” is.
defined as that class of rules which provides
an adequate account of the test data. I
particular, a rule is included in the class i
and only if its denotation (i.e., set of S-R
instances) includes all of the test instances
on which success is obtained, but none of
those involving failure. That is, the charac-
terization of “what is learned” includes all
of the rules which might possibly account
for the fact that S succeeded on some of the
items but not others.

The definition says nothing, however,
about which rules S may have used to gen-
erate his failures. It is also worth noting
that if a given rule is in the class “what is
fearned,” and is equivalent in generating
power to some finite connected automaton,
then there is a way of determining whether
or not the S can actually use that particular
rule: (i.e., whether or not the rule is really
learned). This can be seen at once by re-
calling that any such rule can be represented
in terms of a finite set of associations. ‘While
the total number may be large, it is possible
in principle, at least, to test for the .acquisi-
tion of each and every constituent associa-
tion.?2: - S w

“To see how this definition. applies, con-
sider the, (rule-governed). class consisting of
the - arithmetic number series' and their re-

* spective sums.  Let us first suppose that an
S has demonstrated “his ability to find the -

sum (2,500) of the arithmetic series 1+ 3
4+« - +99. The definition tells us that
the class “what is learned” includes all and-

9 In practice, it is usuallyk not "necessary to go

to this extreme. The only essential thing is that -

the rule in question be represented in terms of a
(finite) set of operating .and decision rules, each
of which has a finite domain . (cf. Scandura, in
press). Although' this point:is implicit in what
has been said, it is perhaps not cbvious, and I
would like to thank Gerald Goldin for raising the
question.- ‘ )

SCANDURA

only those rules which provide am adequate
account of this behawvior. In this case, the
class would include, among possibly other
rules, each of the following : Sequential addi-
tion (applied to mithimetic number series) ;
the general rule: for summing arithmetic

series, denoted (%E)N. the rule N2,
N

which applies ‘to. =i arithmetic series of the
form 1+ 3+~ - -+ (2N — 1) ; the direct
“association” betwesm the series, 1+ 3+
+ + « 499, and its.sm, 2,500. Thus, “what
is learned” might be-denoted by the class,

{direct association, N2,
427
k( — )N J
! 4 A

n

-

sequential addition, + - -},

As more test information is obtained about
an S’s performance: capability, it will be pos-
sible generally to efiminate rules from this
class. Suppose, fior example, that an § is
successful in determining the sum not only
of the original test series, but also (say) of
the series, 1+ 3+ - - -+47. Then the
size of the class “what is learned” is reduced
accordingly to

2

{Nz;' (A tL )N, sequential

addition, --- }.‘

According to the definition, the direct asso-

- ciation would no longer be allowed, since it

does not apply to the second series. If the
S is ‘successful on still another test instance,
say, on the series 2+ 44+ « + + 100, then

the class “what is learned” is further re-

duced to the set .

{(A -2{- L )N, sequential addition, - - }

The rule NZ'is eliminated since it is not
applicable to the third test series (ie., 2+
44 ---+100). Suppose, on the other
hand, that the S is successful on the first two
test stimuli (ie, 1+3+---+99 and
143+ - - -+ 47), but not the third (ie,

2+4+ -+ +100). Then, according to
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‘the definition, not only would the direct asso-
ciation be eliminated as a feasible rule, but

so would the more general rules (j—l-:zti )N

and sequemtial addition. In effect, the class
«what is Iearned” would include only N?
together with possible other unidentified
rufes which also provide an adequate account
of the behavior.

This definition provides a basis for deter-
mining the behavior potential (i.e., the class
of behaviors that an S is actually capable of)
of individual S's relative to given rule-gov-
erned classes. ‘To see this, we first note that
the rules in the defined class “What is
learned” can frequently be used to generate
behaviors in the given rule-governed class,
other than the initial test instances. Know-
ing what rules are learned (i.e., in the de-
fined class), then, might well be used as a
basis for making predictions about perform-
ance on other instances in the rule-governed
class of behaviors. To make such predic-
tions, the only theoretical assumption about
performance which seems necessary is that
if an S ‘has one or more rules available,
which apply in a given test situation, then he
will use at least one of them. As trivial as
this assumption may seem, it is an assump-
tion. There is no guarantee that just be-

cause an S wants to achieve a particular goal. -

and he knows one or more rules which apply,
that he will necessarily use one of them.
Furthermore, it is an assumption which may
well prove to be fundamental to any formal,
predictive theory based on the rule construct
(cf. Scandura, in press).’® o

The really basic question, of course, is’

whetiier or not the actual behavior potential
of particular Ss is compatible with this view.
Fortunately, Scandura and: his  associates
have collected a fairly substantial body. of

10T originally felt that a stronger assuraption of
this sort was needed—in particular, that'S will con-
tinue using the same ruie as. long as his goal
remains unchanged and feedback. otherwise- indi-
cates that he is responding in an appropriate man-
ner (Scandura, 1969b). While this Einstellung-
type assumption may still have some merit, it is
not a necesraty requisite for making predictions
about behaviar potential. '

15

data over the past few years which. suggests
that this is the case (Roughead & Scaundura,
1968; Scandura, 1966, 1967b, 196%a; Scan-
dura & Durnin, 1968; Scandura et al,
1967). Whenever the response given by an
S to one unfamiliar test stimulus was in
accord with a particular class of rules, so
was the response to a ‘second test stimulus
which was of the same “general type” as the
first. It was generally possible to predict
second test behavior with anywhere between
80% and 95% accuracy. It is encouraging
that other investigators have also found this
sort of assessment procedure useful. Levine
et al. (1964), for example, have used per-
formance on nomreinforced trials to predict
performance on reinforced trials with a high
degree of success.

Furthermore, the results of the Scandura
and Durnin (1968) study suggest that
actual behavior potential can often pe deter-
mined in a systematic manner. It was found
that successful performance with two stimuli,
which differed along one or more dimen-
sions, implied successful performance with
new stimuli which differed only along; these
dimensions. In particular, success on two
instances in a rule-governed class, which
differ simultaneously along all possible di-

mensions, implied success on any other test -

instance in the rule-governed class.

This iwhole approach undoubtedly over-
simplifies what is an extremely complex
problem, but all things considered, it does
seem to provide a reasonably adequate first

.approximation.” The ultimate objective, of

course, will be to devise a systematic proce-
dure for determining behavior potential on
any class of tasks by using a finite.testing
procedure of some sort, - In fact, substantial
progress has recently been made in this

“direction (Scandura, 1970; in press; Scan~

dura & ;D'urnin,; 1970).

Summary aND NEEDED RESEARCH

A precise formulation of the notion of a
rule in terms.of sets and functions was pro-
posed. . It was argued that this molar for- .
mulation . cannot be captured by networks of
associations unless one allows associations
to act on (other) associations. This formu-

qo
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lation was then used as a basis for showing
how rules are involved in decoding and en-
coding, symbol and icon reference, and
higher order relationships. Decoding and
encoding were shown to involve insertion
into and extraction from classes, respectively.
Reference was viewerd in terms of rules
which map equivalence classes of signs into
the classes of entities denoted by these signs.
Symbols were shown to involve’ arbitrary
reference, whereas 1c0ns retain properties in
common with the entities they denote.
Higher order relatiorships were then ex-
pressed as higher order rules on rules. This
was a direct generalization of associations on
associations. Finally, a partial solution was
posed to the vexing problem of “what
(rule) is'learned.” Given a rule-governed
class of behaviors, “what is learned” was
defined as the class of rules which provides
an accurate account of test data. Empirical
evidence was presented for a simple per-
formance hypothesis based on this definition.

There are three major directions in which
future research might proceed. First, the
rule formmulation (SFL) itself undoubtedly
can “be further improved. While I feel
reascnably confident that the basic ideas pre-
sented in this paper would hold up under
further a'lalysxs additional detail must be
added—but only as much as is absolutely
necessary to deal with’ behaviorally relevant

~aspects of the rule construct. (There should

be emphasis on.this point to dissuade com-
puter enthusmsts from adopting the language
of computer science wholesale (e.g., autom-
ata theory). without careful .consideration
of which aspects are- nnportant in human
behavior and which are not.) Work in this
direction is currently underway and will be
reported in Scandura (in press).

Second, the SFL might profitably be used ‘

as an analytical tool to help clarify what is
involved in many kinds of structured learn-
ing .and performance. Most of the SFL-
based rescarch conducted to date (Roughead
& Scandura, 1968; Scandura, 1966, 1967a,
1967b, 1969a; Scandura et al, 1967) "has
concentrated on an analysis of wha.t is being
presented, the nature of ‘the required out-

. puts, what is bemg learned, and the inter-

ScANDURA

relationships between them.'* While such
analyses can, at least to some extent, be
nndertaken without the use of the SFL, or
for that matter any other scientific language,
the SFL seems to provide a useful frame-
work for putting things into perspective and
for helping to clarify difficult points. In the
author’s research a number of questions have
been asked on mathematics learning which
seem not to have been asked previously in
any serious way. For example, Roughead
and Scandura (1968) found that what is
learned in mathematical discovery can some-
times be identified and presented by exposi-
tion with equivalent results. Similarly,
Scandura and Durnin (1968) were led, on
the basis of an earlier finding (Scandura et
al,, 1967), to the question of what in the
statement of a mathematical rule leads to
extrascope transfer.

The SFL needs to be applied more sys-
tematically in studies involving subject mat-
ters other than mathematics and, in particu-~
lar, we need to determine where the SFL,
might profitably be used to formulate re-
search and where not. - There is reason to
believe that the SFL may be applicable only
to the extent that the classes of overt
stimu'i and responses involved can be viewed
as discrete. (i.e., nonoverlapping) and ex-

11T am of the opmlon that insofar as structural
lIearning is concerned, it may be p0551b1c, in fact,
desirable, to first concentrate on understandmg
what kinds of behaviors might be involved and to
give a distinctly subordinate role to such.things as
latency and exposure time. Precious little is
known about what an S might be able to do when
placed in a mathematical situation. without compli-
cating the matter further by trying to predict how
rapidly he can do it or to determine the precise
exposure time needed to bring the behavior about.
In -effect; what I am proposing is that ecologxca]
thinking needs. to be brought more directly into

theory construction in psychology. .
This . general type of approach has proved use-

" ful in other sciences. In the early development of

chemistry, for example, it was of considerable
interest to know what kinds of compounds one
might expect to get by mixing various combmatxons
of elements. Questions as to the precise values of
the boundary conditions of temperature, pressure,
and the like needed for such reactions to take
place were something which could reasonably be’
postponcd The first step in theory construction
in structural learning might well follow this path
(see Scandura, 1970).

3t
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haustive entities. While these requirements
are met throughout much of mathematics and
other structured knowledge, this may not be
the case in such areas as social studies,
poetry, and even language, where synonymy
does not necessarily imply equivalence. It is
hoped that other investigators will apply the
SFL to a wider range of tasks and thereby
help to clarify further its relative strengths
and weaknesses.

Third, theoretical assumptions need to be
made and their implications need to be
drawn out. Although this paper was con-
cerned primarily with describing a new
scientific language, it was not possible to
completely avoid reference to theoretical as-
sumptions. Thus, the proposed operational
definition of “what is learned” would be
behaviorally meaningless without the appli-
cation assumption. Fortunately, there is
considerable empirical support for the idea.
While this assumption is clearly riot suffi-
cient for a theory of structural learning, it
might nonetheless come to play a central
role. Whatever form additional theoretical
assumptions might take, it seems almost
certain that they would be more compatible
with cognitive (rule-based) mnotions than
with those based on mneo-associationism.
Nonetheless, any complete theory of struc-
tural learning will undoubtedly require ref-
erence to such things as the limited capacity
of human Ss to process information (Miller,
1956). Without recourse to some such
physiological capacity, T can see no way in
which to explain memory or other ‘aspects
of information processing. (For elaboration,
see Scandura, in- press.) ‘
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A THIGRY OF MATHEMATICAL .KNQWLEDGE:

CAN FULES ACCOUNT FOR CREATIVE BEHAVIOR?

"JOSEPH M. SCANDURA!

Assaciate Professor of Education
Uriversity of Pennsylvania
Philadelphia, Pennsyivania

Pﬁ athem:tics is perhaps the most highly organized body of knowledge
known to man. Yet, in spite of its clzrity of structure, most of the research
done on 1nathematics learning and behavior has been strictly empirical in
nature. Ty be sure, there has been a fair amount of research in the area
and the a nount seems to be growing rapidly, but there has been no super-
structure, no framework within which to view mathematical knowiedge
and math¢ matical behavior in a psychologically meaningful way.

A number of psychologists feel that the mechanisms involved in 1an-
guage, m: thematical, and other subject-matter behavior may be accounted
for within the confines of S-R mediation theory. This may be possible in
principle .e.g., see Millenson, 1967; Suppes, 19692), but the networks of
S-R assoc ations required to do the job would almost certainly be so com-
plex as to provide little intuitive guidance in formulating research on com-
plex math :matical learning. For arguments pro and con, see Arbib (1969),
Scandura (1968, 1970b, 1970d), and Suppes (1969b)..

As a ‘vay around these problems, linguists, like Chomsky (1957
1°65), hiwve -introduced rules and other generative mechanisms to ac-

‘count for (idealized) language behavior. Although many details still need -
“to be woked out, most generally agree that some sort of analysis in .

terms of n les will prove adequate to acrount for most language behavior.?

During the past few years, the author has ‘been attempting to deveiop

a similar approach to mathematics’ learning (Scandura, 1966,  1967a,
1968, 191:9b). No comprehensxve scheme for class:fymg mathematlcal

. This piper'is s based on.a talk given at' a Symposxum on Structural Lcammg in the

Subject Mat 2r Disciplines at the AERA Convention in Los Angeles, Thursday, February 6,

3"50 The & sthor would like to thank Leon Henkin, Henry Hiz, Dag Prawitz, Marshall
€ "z, and Yatrick Suppes for their hclpful comments on an carlier draft and John Durmn

for his gener d assistance in the preparation of this paper.

2. Noneth less, some lmguxsts {e.g., Hiz, 1967) do not feel that all xmporumt upects
of language » an be dealt with in this wny
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behaviors has been proposed, however, and most- (but not all) of the
experimental research has been based on relatively simple mathematical
tasks (cf. Scandura, 1969b). The basic supposition has been that an un-
derstanding of what is involved in such tasks will provide a better position
for explaining more complex mathematical leatning. While there has been
increasing support for this contention among behavioral scientists (e.g.,
Bartlett, 1958; Gagné, 1965; Miller, Galanter, & Pribram, 1960), some

-mathematics educators have been skeptical. Presumably, the position is

thati any interpretation of complex mathematical learning in terms of
simple rules will surely be inadequate.

In reaction, the author proposes and defends the ratlier strong _thesis
that rules are the basic building block of all mathematical knowledge and
that, if looked at in the right way, al! mathematical behavior is rule-
governed. More specifically, it is proposed that the mathematical be-
havior any given individual is potentially capabic of, uidar 1deal condi-
tions of performance, can be accounted for precisely in terms of a finite
set of rules.

This statement is clearly meant to imply.morc'than just a post hoc
account of a given finite corpus of behaviors, If limited to this, the claim
would be trivially true since any given subject during his lifetime is nec-

" essarily limited to a finit¢ number of behaviors. (A finite number of be-

haviors can obviously be generated by a finite number of rules.)
Furthermore, this is not a thesis to be proved since it is basically ems

..pirical in nature. The problem is that there is no operational way of de-
_termining the behavior potential of a subject independently of the rules
. used to characterize his knowledge.® Unfortunately, it would be extremely

difficult and time-consuming to obtain an adequate sample of mathemat-
ice! behaviors -to work with under the ideal conditions envisioned—that
is, where the subject is unencumbered by memory or his limited-’capacity
to process information.

' To compensate -for  this dlﬂ‘xculty, the author suggests ‘the proposal

‘and evaluation of alternatxve characterizations of given finite corpora of

behavxor in terms of their ‘relative powers and/or parsxmony That is,

».ngen a large class of behaviors, such as those-associated -with mastery of

a given school curnculum, the idea is not only to come up with a finite set
of rules which charactenzes the curricnlum but to come up with the best

~ .peasible set. (Loosely speaking, power refers to the diversity of behaviors
~ which the charactenzanon accounts for; parsxmony refers to the number

3. If therc was some way of knowmg, then Chiurch’s thesis would provxde a natural basis
for. deciding whether or not the behavior (potential) is rule-governed. Church’s thesis
(Rogers, 1967, 20-21) is that partia® recursive functions (which can be defined formally)
are precisely those which can be computid by algonthm (which is an informal notion).
Thus, the proposal would be true or false dependmg on whelher the class of potenual be-
haviors is or is not partial recursive.

T e




FullToxt Provided by Exic I8

and jntuitive simplicity of the rules in the characterizing set.) Such cri-
teria, Of course, have been an essential part of for; al linguistics ever
since Chomsky’s (1957) influential Syntactic Structures was published..

Tn Order {01 a characterization to have maximal relevance to psychology,
however, these criteria alone are not suffcient. It is also important
that 4 theory of kpowledge (ie, a characterization) be compatible
with the mechanisms which govern human learning and performance.
Specifically, it is important, in addition to specifying finite rule sets,

_to also specify how the constituent rules may be combined to generate

behgvior, It is these “rules of combinatior,” which must find parallels in
the way learned rules are put to vse in particular situations. This ques~
tion Of reJationships between different leveis of theorizing is an extremely
impottant one. For fyrther discussion, sez Scandura (1970c). -

The basis of the present argument is that, given suitable rules of com-
bingtion, sauch of what normally goes under the rubric of creative behav-
jor con be accounted for in terms of finite rule sets. In order to limit the
scop®, this Paper will deal primearily with: those kinds of rules’ which are
mor€ properly associated with mathematical or logical content—specifi-
cally> with mathematical systems and axiomatic theories. In each case,
one begins With a2 mathematical characterization and then shows what it
means to know the upderlying mathematics in a behavioral sense. S

Relatively litile attention is given to so-called mathematical processes.*’
Thys: for example, inference rules are discussed, but relatively little is
said about heuristics 'and other higher order. rules by which inference
rule$ may be combined in cuisiructing proofs. This does not imply, how- -
evel» that such processing skiils cannot be formulated in terms of rules.
To the contrary, it is basically & simple matter. to formulate such heu-
ristics a§ “organize (arrange) the data” and “work backward from the
unkfiowy” (cf. Polys, 1962) as rules. What is hard is to show' explicitly
how these Tules may be combined with -other rules to solve probleras.

-Even thjs problem js not insurmountatle, however, and some jllustrative

analVses of this soft have been worked out (Scanduira, 1970b).
: | " What is a_‘Ru?.e? ‘

_ Pefore continving, it is nccessary’ to define what is meant by a rule. In

_ spit® of an increasing amount oi research on the subject, it is perhaps sur-
pi g ] ;

prising that the term has no clearly Jefined meaning among behavioral

scjeNtists. L ' ' TP

. A8 a first step it js necessary to make a shetp distiaction between under-

lyieg rules-—or genmerative procedures composed of rTules and rmvle-
4. For a taxomomy éf such proussés and an intraductory discussion, see the author’s

furihComing book, Magkematies: Concrete-Behavioral Foundations (M:CBF). New York:
MgrPer & ROW; 1971, (ia press).
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governed (RG) behavior. Intuitively speaking, a class of behaviors is
said to be RG if the behavior can be generated by a common algorithmic
(generative) procedure of some sort. This means, in effect, that a person
who has mastered any underlying procedure should, ideally speaking, be
able to genersic each and every response, given any particular stimulus
in the class of stimuli. : .
More specifically, RG behavior involves the ability to give the appro-
priate response in a class of functionally distinct responses to each stim-
ulus in a class of functionally distinct stimuli. (The term “functionally dis-
tinct” refers to the fact that each effective (i, functionally distinct)

stimulus (response) corresponds to a class of overt and “functionally

equivalent” stimuli (responses).) The class of S-R pairs, defined in this
way, are called S-R instances. To see what this means, consider simple
addition. The proposed definition says that the behavior is RG if- each
pair of numbers is attached to a unique number called the sum. Thus, for
example, any overt representation of the number pair (5, 4) can be
pzired with any overt representation of the number 9 but not with any
representation, say, for the number 6. ,

Ideally, then, RG behavior corresponds precisely. to the notion of a. )
function in the mathematical sense. That is, every stimulus is paired with
a unique response.® When looked at in this way it is clear that what psy-
chologists call coicepts and associations can be viewed as special cases of

" rules {Scandura, 1968, 1969a, 1969b). Concepts are simply rules in

which each stimmilus in a class is paired with a.common response. Asso-
¢lations are further restricted to a single stimulus-response pair. .

In its simplest form, a rule can be viewed as an ordered triple, (D,
0, R), where D is the set of (a-tuples of stimulus properties which de-
termine the responses, and O is the operation or generative procedure

$. As indicated above, of course, the bchavior of human beings is not always ldeal. Peo-
plo make. mistakes. There are.two conceptually different ways in which errors may occur.
First, the rule(s) learned by.a subject may only apply to a subclass of S-R instances (of
ihe given RG class). Thus, for example, young children are frcquently unable to add num-
bers which - involve “carrying” although they can' perform perfectly well on.those that do
not. In this case, following thc notion of ‘partial function in recursion theory, one may refer
to such hehavior as partial RG behavior. Partial RG bchavior is rulc-governed but not
(necessarily) by rules associated with the given RG class. The other way in which errors
may arise is due to the limited capacity of human subjects to process information (Miller,
1956). There is, in effect, an important difference between knowing a rule and being able
to use it- (Chomsky & Milter, 1963). Thus, 8 person may know how to add any pair of
numbers but be quitc unable to perform thc necessary operations mentally when the num-

- bers are large, In the present discussion, the author assumes throughout that all rules can

be used perfectly. .

Note (parenthetically) that the abstract notion of a functor is sufficiently fiexible to
capture either or both senses of incomplcteness. (Roughly, a functor is a structure preserv-
ing function betwecn two categories, the catcgorics being analogous.to classes of func-
tionally distinct stimuli and responses.) Whether there is any real significance to this fact
or not, however, the author cannot say {cf. Scandura, f_orthcoming). -



by which the responses in R arc derived from the critical properties in
D (Scandura, 1966, 19672, 1968). More of the detail involved can be
represented by adopting ideas taken from recursion theory. In particular,
a generative procedure is a sequence consisting of at most four kinds of
rules:-

1. decoding rules by which essential properties of stimuli are put into
store, ' .

2. transforming rules by which things in store are transformed into
something else in store,

3. encoding rules by which things are taken out of store and made
observable, o

4. rules for sclecting other rules given the desired goal and the output
(which is in store) of some previous rule. :

Chirch (1936) has proposed that any set of behaviors which mathemati~
cians would be willing to classify as partial recursive can be generated by
a procedure composed of just these four types of rules. In general, this
would include just about all of the mathematical behaviors one normally
expects of the school-age child, the ability to perform arithmetic com-
putations, to construct geometric figures with ruler and compass, etc.

Characierization of Mathematical Knowledge

The main purpose of this paper is to indicate how complex mathemat-
jcal behavior might possibly be atcounted forin  1ms of finite rule sets.

Mathematical systems. Every mathematical system consists of one or
more basic sets of «lements, together with one or more operations and/or
relations and/or distinguished clements of the basic sets. 3y capitalizing
on certain logical equivalences it is possible to reduce the characterizing
elements to one basic set and one or more relations. Consider a simple
example—the system whose basic set consists of three “undefined” ele-
ments A, B, C, denoted {4, B, G}, with 4 being distinguished in the sense
that it serves as an “jdentity,” and whose defining relation isO= {44
— A, (4, B) = B, (B, 4) —'B, (4, C) = C, (C, 4) = C, (B, B)
- C, (C,C) B, (B;C) > 4, (C, B) - A). This is a system in which
‘the distinguished element A “maps” every element it is paired with into

itself. When B is combined with B, the result is C and when C is combined

with C, the result is B. Finally, B combined with C in either order results
in A. Notice that no meaning is specified for either the elements 4, B, C,
or the operation, They are “undefined terms.” -

What may be called an embodiment of a mathematical system results on
assignment of meaning to the undefined elements. Thus, in the example
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just cited, the undefined terms might carrespond to certain rotations with
A corresponding to a rotation of 0°; B, to a rotation of 120°; and C to a
rotation of 240°. In this case, the operation would simply be “followed
by.” That is, the result of combining two rotations is that single rotation
which results in the same action as first doing one rotation and then the
other. For example, a rotaticn of 120° followed by one of 240° Tesults in
the same action as a rotation of 0°. . .

These definitions of systems and embodiments say soraething about the
nature of the objects we are studying and in that sense they are ex-
tremely important. They do not, however, tell very much about their psy-’
chological nature.

*What kinds of behavior are implied by knowing systems and em-
bodiments of this sort? And, how can such behaviors be accounted for in
terms of rules? '

First, knowing a system certainly implies the ability to compute within
the system. Thus, for example, given the pair, 4, B, the “knower* should
be ableé to give the “sum,” B. He should also be able to do more complex
computations, like ((4 OB) OA) OC—~ (B QAYOC»BOC—A,
which involve combining individual facts (i.c., associations).® In addition,
the knower should be able to give “differences,” i..,. given the sum and
one of the “addends,” he should be able to generate the other addead.

If these were the only kinds of behavior to be accovsied for one
could simply list the facts (rules) jnvolved. But clearly any reasonable
interpretation of “knowing a system” must also deal with relationships
as well. For example, mastery of a system would surely include the ability
to generate the subtraction (difference) rule from the addition rule, and
vice versa. Knowing that B + C = 4, for example, should be a sufficient

‘basis for generating the corresponding subtraction fact, 4 — B ='C.

Relational rules of this sort provide a simple way to account for such
behaviors. 'Thus, instead of listing all of the subtraction facts separately it

“6. These facts correspond o non-degenerate rules in the various embodiments' of the
system. For example, in the illustrative embodiment, the fact, B © T = A, corresponds to
& rotation of 120° “followed by" one of 240°. The rule (operator) of doing cne and then
the other applies to al! pairs of rotations, not just one (pair). 1In addition, knowing a con-
crete display corresponding to this embodiment involves being able to perform the various
rotations on whatever concrcte objects (e.g., an equilateral triangle) might be involved and
whatever its position or orientation, As anyone who has worked with young children knows,
this is: not something which can wutomatically be-assumed. (One-thing which can easily be
overlocked in analyzing behaviors, for example, is that these “rotations” are attuelly equiv-
alenice - classes of rotations, and that these equivalence classes . mey be different for child
and observer.) While such things may not be important in mathematics, strictly speak’ng,
they are relevant in science and, in the opinion of the author, ought to be dealt with as an

~.jntegral part of the clementary school mathematics cussiculum.

In an important sense, then, knowing a concrete embodiment (or a corrésponding dis-
play) may involve a different type of knowledge than knowing the same amount sbout a
_corresponding System., This olscrvation could have relevance to a2 number of recent results
(Dicnes & Jeeves, :1965; Scandura & Welis, 1967; Suppes, 1965) and should be tuken ex-
p_liciﬂy into account in designing future studies.

s
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would be sufficient to know the addition facts together with the rclational
rule. That is, assuming, as is traditional in formatl linguistics, that individual
rules can be composed—performed in succession. )

The obvious way to account for such relationships—the way taken by
curriculam developers of the opcrational objectives persvasion—is to
simply add more rules to the charuacterization. There arc, howcever, major
problems with this apprcach (Scandura, 1970u). For onc thing, listing a
new rule for cach kind of rclationship would have a post hoc flavor not
likely to add much in the way of understanding more creative bchavior.
For cach new system (of the same type) considered, for example, there
would be a new relational rule for each one in the original system. Even
grunting the economy obtained by eliminating inverses, and the like, the
number of rules could grow large very fast. This would not be bad in
itsclf assuming that this is thc best one could do. Thc important gucs-
tion, however, is: Can one come up with a more cfficient acegunt which
is at the same time morc powerful—and which alows for some measure
of creative behavior? .

To answer this question, first note that knowing how onc or more sys-
tems arc related to a given onc may provide a basis for knowing how to
compute in the new systems given how to compute in the original. The
relationships of interest will gencrally be miathcmatical in nature, but they

. need not be limited to morphisms. For ¢xample, onc system may be a
simple generalization of another, as with cyclic 5 and cyclic 3 groups.

Because of the way particular relationships are defined. howevey, this
advantage will generally be of a limited sort. With homomorphismis, for ex-
ample, the ability to compute in the new system applics only to the de-
fining opecrations themsclves and not, say, to their inverses or to rela-
tionships . between the opcrations. It is worth noting, noncthelcss, that
knowing cven a relatively simple sct of interrelated rulzs such as this
would make possible a certain degree of creative bchavior—what might
be called “analogical reasoning.” For example, suppose that a subject
has learned how to add in system A and that he knows tiic homomorphism
which connccts A to system B (i.c., that he can generate the elements in
B which correspond to thosc in A). Then, the subject should be able to
add in system B without cver being told how. Consider the homomeorphism
to be onc-to-one (i,e.. an isomorphism), system A to be the embodiment
of the illustrative 3 group above, and system B to be the illustrative sys-
terw itsclf, then one might gemerate o sum in the abstract system B by
(a) using the isomorphism to determine the corresponding clements in
A, (b) adding in A, and (c) using the isomorphism in reverse direction to
determinc the element in B corresponding to the sum (in A). Notice
that this follows only if our rules of combination allow for combination
(of rules).

EI{IC S S ,H
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A far more powerful and parsimonious characterizatio: results by simply
allowing rulcs to operate, not on just ordinary stimuli, but on other rules.
Such rules may be said to be acting in a higher order capacity—or, in -
short, to be higher order rules. Although functions on functions are com-
mon in various branches of analysis, und their formalization is routine,
the idea secms not to have pervaded formal linguistics. The closest lin-
guists have come in this regard has been to 'introduce the notion of a
grammatical transformation batween- phrase markers (Chomsky, 1957).
which closely parallels what are herc called relational rules (e.g., between
addition and subtraction).

There are two reasons why this has probably not been done in the
past. First, grammatical transformations have so far resisted mathematical
treatment (Nelson, 1968) insrfar as this refatcs to computer science and,
sccond, no cxisting approuch to psychology (known to the author) pro-
vides any real motivation for introducing them.

This is unfortunate since there is a very simple and intuitively sound
reason for ircluding higher .order rules. The main one is just this: The
idea of allowing rulcs (in rule sets) to operatc on other rules is compatible
with the following intuitively appcaling hypothesis concerning perform-
ance. Jf a subject does not have a rulc available for achicving a desired
goal, then he typically will try to construct a rule which docs work (cf.
Scandura, .1970c). There is a good dcal of introspective cvidence in
favor of this hypothesis, and some empirical support for it has been coi-
lected. In a recent study (Scandura, 1967b), it was found that the ability
to “use parentheses” was a suflicient basis for combining lcarned rules so
as to solve thc given tasks which involved interpreting new statemcnts
of mathcmatical rules. Later analysis of these tasks -showed that use of
parenthcsis may be viewed as a higher ordcr rule (Scandura, 1970b).
The author js currently involved in rescarch in which success in gencral-
izing this result to a number of different kinds of situations and popw-
lations has been achieved (Scandura, 1970c). '

AIIOng rule sets to act in this way makes it possible for them to
“grow” in ways not possxblc by just forming simple compositions (of
rules),. Thus, {higher order) rules 'may gencrate completely new kinds
of rules, and these rules, in turn, may bc used to gencerate. still other
rules.

Considcr what higher ordur rules might suggest in the prcsent sntu'mon
Supposc that a subject has learncd a higher order rule which connects
each operator (rule) with its inverse. Such a rule would connect not only,
say, additiorr of numbers with subtraction, but composition of all sorts
(e.g., of permutations, rotations, rigid motions, cte.) with the correspond-
ing inverse operations. The defining operation of cach system and its
inverse may be thought of as being distinct rules which arc mapped one




Aruitoxt provided by Eic:

on to the other by this higher order “inverse” rule. Assume, in addition,
that the subject has learned how to add in system A, the relationship (e.g..
2 homomorphism) between system A and system B, and also how to form
the composition of arbitrary rules {in the rule set).

In this case, there arc all sorts of behaviors that the (idealized) subject
would be capable of. For example, he would be able to subtract, not only
in system A but in system B as well. To sec this, one need only observe
that the subject can form the composition of the rule between systems A
and B and the higher order inverse rule. This composite (higher order)
rule in turn allows the subject first to gencrate an addition rule in system
B and then to generate a subtraction rule in system B. This subtraction
rule, in turn, would allow the subject to subtract. Translated into more
meaningful terms, a rule sct of this sort would imply such abilities as
finding inverses with rigid motions given only the ability to add num-
bers. But, then, isn’t this just what 1s considered as creative behavior?

Axiomatic theories. Therc is clearly more to knowing systems than
simply knowiang the rules and interrelationships within these systems. This
amounts to internal knowledge of the systems but it says nothing about
the systems in the descriptive sensc.

Axiomatic theories arc concerned with propertics of systems. As an
example of one such property, notice that in the illustrative system it does
not make any difference in which order two elements are combined. The
system satisfies the commutative property; in fact, it satisfics all of the
axioms (i.e., properties) of a commutative group of order three.

In order to define preciscly what is meant by an axiomatic thcory, the
next thing to observe is that a set of axioms o: propertics defines a family
of systcms, namely that family consisting of all, and only, thosc systems
which have each of the given properties. Thercfore, an axiomatic theory
may be defined to be the set of properties which holds in the family of sys-
tems defined by a given set of axioms. The sct of axioms, of course, be-

. longs to the set of propertics.

Paralleling the discussion of syétcms, consider the question: “What
kinds of behavior are involved in knowing axiomatic theorics and what
kinds of rules are nceded to account fer these kinds of behaviors?”’ Due
to the compiexities involved, the discussion will be restricted largely to
lower order rules. '

The sine qua non of mastering a theory is to know the axioms and the-
orems of that thcory. In behavioral terms, this ability may be thought of
as being able to give on demand the conclusions associated with cach
sot of premises. Thus, as ‘with knowing the particular «addition” facts of
the illustrative system, one might be tempted to characterize knowledge
of particular thcorics as scts of discrete associations. This would be
wrong, however, on two counts. First, the number of thcorems associated
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with any given thcory (including trivial ones) is infinitely lurge, so that
they could not all be lcarncd in this way. (Of course, the number of im-
portant theorents is usually much smaller.) Second, and more basic, such
a charactcrization, whilc feasible in part, would not be very parsimonious
or powerful. Many more rules would be needed than mlght be dcsired and
important relationships would simply be ignored

Onc problem has to do with not knowmo proofs of the theorems but
there is more to it than just that. Proofs can be lcarned in a_strictly rotc
fashion and being able to gencrate one may signify little mere thnn simiply
knowing the theorem itsclf.

The kind of rulc in mind may act not only in any given theory, or cven

-in any class of theories, but these rules may act in any thcory whatsocver—

indeed, in any situation at ali. They arc closcly related to inference
rulcs of formai logic but they do not act on sirings of symbols nor do they
gencrate strings of symbols. Ncither do they all map propertics of sys-
tems into properties of systems as onc might suspect in view of thc rcla-
tionship between formal systcms and axiomatic theorics, (Strings of sym-
bols of formal systems corrcspond to propertics of mathematical
systems.)

Some infercnce rules are of an entirely different sort. Instead of opera-
ting on propertics of systems and gencrating ncw properties, what have
been called suppositional infcrence rules map logical arguments into prop-
ertics. Somc work has been donc in this arca under thce label “natural
deductive systems,” ¢.g., sec Kalish & Montaguc (1964), Prawitz (1965),
but litde has been donc with behavioral questions in mind. In present termi-
nology, the suppositional inference rules corrcspond to rules which map

" instances of other inference rules, or combinations thercof, into propertics.

For example, from any specific argument, in which property B foliows
directly from property A, one can infer the property, A 5 B. [n an impor-
tant sense, then, suppositional inference rules correspond to what is referred

. to above as rclational rulcs, and transformations, and not to higher order

rules—since-they do not opcrate on other rula,s but on instances of other
rules.

The stimuli of RG behavior may be vicwed as families of systems and
the responses as derived propertics of thesc familics, called theorems.
Thus the RG behavior associated with any particular Jogical procedurc
involves a class of families of systems and u class of corresponding the-
orems of thesc various familics. If the procedures are sufficicntly unique,
c.g., as in proving many non- -trivial thcorcms, the class of RG behaviors
may be quitc small, indeed it could include only one instance.

In cffect, a logical procedurc r iy act on corresponding propertics of
different families of systems, and producc other properties -of -the re-
spective families, called thcorcms. Some idca of the way complex logical

10
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procedures operate can be obtained by considering familiar rules of in-
ference. Modus ponens provides a simple illustration. Suppose that the
statements “If G is a finite group and S is a subgroup of G, then the order
of S divides the order of G and G is a finitc group and S is a subgroup
of G” arc properties of onc family of systems (actually, of pairs of sys-

tems) and “If a function is continuous over a closed interval of the real -

linc, then it is uniformly continuous” and “The function is continuous over
a closed interval of the real line” arc properties of another family. Then
application of the logical rule (of inference) modus ponens tells us that
“the order of S divides the order of G” and “the function is uniformly
continuous” arc also properties of the rcspective familics. The corre-
sponding premises @nd conclusions arc quite different but the (logical)
rule of inference by which they are related is identical.?

The same general idca may be cxtended to more complex logical pro-
cedures. In this case, decoding rules involve accepting, or rejecting, prop-
ertics, axioms and theorems, of families as appropriatc to given goals the
subject might have. Rules of inference correspond to transforming rules
(type two rulcs) and stating theorems, to encoding (lype three). Branch-
ing rules (tvpe four) may also be involved in logical procedures, as, for
example, when repeated applications of a rule of inference is required.
For example, the conclusion “D” can be inferred from the premises
“4 25 (B> (C>DD))”"“A” “B,” and “C” by repcntdd application of
modus ponens. ' ‘ ’

Since inference rules and the generative procedures which may be
constructed from them apply in all conceivable situations (i.e., to prop-
erties of situations), it may be that they might be discovered at an early
age from instances—in the same way as many other rules. That is, (lcarn-
ing) deduction may be viewed as induction on a logical rule. If this is truc,
it could have important implications both for the study of mathematical
reasoning and for teaching it. ) _

Of course, no onc individual kas mastered, or ever will, all of the log-

“jcal procedurcs that might.be constructed. Such knowledge constitutes

an ideal which can only be approached. The behavior involved in proving
any non-trivial class of “theorems is necessarily partial. According to

7. Note, the proposed definition of RG behavior as a function, has been questioned. The

comment has been made that “the futility of trying to_think of rules of inference (even)
as functions is alrcady cvident once one Tonsiders substitution of cquals.” H- wever, carcful
thought should convince one that the input of such an inference rule maps pairs of the form
y = b, P(b) = K into clements of the form P(y) = K where ¥ is allowed to vary. Thus, the
form corresponds to a <lnss of functionally distinct stimuli (c.g., a, = b, P(b) = K; a, = b,
Pib) = K; -.-) and so it is not surprising that one can generate any nurmber of dJifferent
responses (e.8, P(ay) = K P(ay) = K --+) .

11
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Church (1936), there cxist classes of theorems for which no generative
procedure can possibly exist. This docs not necessarily mean, howcever,
that theorems which belong to such classes can never be proved. Somc
procedure might exist for deriving any particular thecrem; Church’s the-
sis is simply that no one procedure will do for the entire-class.

Nonetheless, many logicul procedures, even reasonably complex onecs,
arz apt to be common to a number of dificrent theories. The numbér of
more or less unique procedures in any particular theory is likely, accord-
ing to-th¢ present view, to be relatively small. Hence, assuming prior
mastery of most “stzndard” logical procedurcs, a skilled mathematician
may gain smiastery of a new theory in relatively short order by concen-
trating on those procedures associated with some of the deeper theorcms
of the theory. Note that logical procedures correspond roughly to prooi
schemas—that is, to classes of proofs of the same general form. 3

In ordcr to prove most theorems, indzec to successfully engage in com-
plex deductive reasoning of any sort, a subjcct must know more than just
rules of inference, or even a large number of relatively complex logical
procedures. The subject must also have higher order rules available by
which he can combine known infercnce rules and other logical proce-
dures into new forms—that is, so that he can creat¢. Onc type of higher
order rule that is frequently used in constructing proofs is closcly asso-
ciated with the heuristic: “Work backward from the conclusion.” In this
case, the lcarner attempts to derive a procedurc for gencrating the con-
clusion from the premises, i.c., to construct & ptoof, by first selecting an
inference rule which yiclds the conclusion and then trying to derive a
logical proccduré, by using this or other higher order rules, which yiclds
the input of the first rule sclected. Presumably, the subject continues in
this way until he cither succceds or the whole approach breaks down.
The widely used technique of proving theorems indirectly by assuiming
that the conclusion is false provides a particular example of a higher order
rule gencrated by application of this heuristic (a still higher order ttle).
In this case, the problem reduces to one of constructing a proof of —~4 from
~B. The final step in constructing such a proof just amounts to selecting

" what might be called the contrapositive inference rule by which the

theorem A O B, can be inferred from the argument from ~B to ~A.

More could be said about such things as formal systems and meta-
mathematics but space does not permit. In the first case, it suffices to say
that formal system< are easier to work with than axiomatic systems. Noth-
ing new is requircd, except that the allowable inference rules are spe-
cified, and no decoding. rules arc nceded. The axioms and thcorgms are
themselves the stimuli and responses. Mctamathematics turns out to be
nothing more than an axiomatic type of theory in which only non-contro-
versial rules of inference are allowed. :

12
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Concluding Comments

In conclusion, this paper has dealt primarily with what it means to
know an cxisting body of mathematics. Relatively little has bcen said
about intellectual skills of the sort that must inevitably be inv *+2d in
doing real mathematics. Nonethelcss, it has been shown that v ai ap-
pears to be ereative behavior might well be accounted for in terms of
growing rule scts. The key idca in making this a feasible and rather at-
tractive possibility is that of the higher order rule. Although space limita-
tions have made it necessary to ignore many details, and there obviously
are still a good.many important questions left unanswered, the author
feels that cnough has been said to convince the reader that the basic
conjecture must be taken seriously: all mathematical behavior is a rule-
governed activity and the basic underlying constructs are rules.
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Deterministic Theorizing in Structural Learning:

Three Levels of Empiricism

Joseph M. Scandura
MERG and Graduate Schoci ¢of Education

University of Pennsylvania

In spite of the diversity which presently exists in behavioral theorizing,
reference to probabilistic notions is all-pervasive. 'Even support at the .05
level of significance is often enough to elicit whoops of glee from most cogni-
tive theorists. Given this milieu, it is not too .surprising that (aside
perhaps from computer simulation types and a few competence theorists (e.g..
Miller and Chomsky, 1963)), no one seems to have seriously pursued the possi-
bility that deterministic theorizing about complex human learning may actually
be easier than stochastic theorizing. And yet, this is precisely what in my
ovn work I have found to be the uase.

-The purpose of this article is te describe the 'rudiments' of a poten-
tially powerful and internzlly consistent deterministic partial theory of
structural learning, which could make it possible to explain, and hopefully
also to predict, certain critical aspects of the behavior of individual sub-
jects in specific situations. The term 'rudiments' is used because ‘at the
present time relatively few implications.of the theory have been drawn oOut.
The emphasis so far has been on establishing a fit between behavioral realitry
and the basic constructs and bypotheses of the theory.

As suggested by thr‘tltle, there are rezally three different partial
theories, each of which must be tested in a different way. First, there is a
theory of structured knowledge -~ or, more accurately as we shall see below,
theories of structured knowledge. These theories deal with the problem of how
to characterize knoWledge. (The knowledge had by any given individual consti-
tutes 7 theory in its own right.) Second, there is a theory of idealized
bebavior which tells how knowledge is selected for use, and how it is learned.
This theory applies only where the subject is unencumbered by memory or by
his finite Lapaclty to process information. The third theory is still more
general and tells what happens wh¢n memory and information processing capacity

"are taken into account. These three theories are not independent of one.

another, although, as we shall see, research on any one can progress lnde-
pendently of the others and this includes emplrlcal testlng.
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Preliminary Chservations

Before describing these partial theories, some geﬁeral background may
be helpful.

There are three main ideas which my title conveys. The label ''struc-
tural learning" sets the whole tone for the title, so we consider that first..
Structural learning refers to the knowledge a person may have and the be-
havior (and learning) which this knowledge makes possible. More specifically,
structural learning is concerned with complex human learning and behavior which
cannot naturally be studied withcut giving explicit attention’ to what the
subject knows before he enters the learning or behaving situation. Any attempt
to study mathematics learning, for example, with reference only to the stimu-
Jjus situation would be folly to the nth degree. Individual differences in
prior knowledge and other intellectual skills in mathematics may be very
great indeed, and th:cse differences must be taken explicitly into account in
any theory that is to provide a viable account of ccmplex mathematics learning.
It should be noted parenthetically that one of the primary requisites for
selecting tasks in most traditional studies has been thit prior learning be
of minimal ‘importance. The reference here, of course, is to experiments on
serial and paired-associate iearning, classical conditioning,” and the like.

Diependence on prior knowledge, then, is important to my conception of
struciural learning. But this alone is not sufficient. The knowledge in-
volved must also have darreasonably clear struct = In this ‘dense, nathe~
matics, for example, tands to have a clearer structure than, 5ay, the social
Studies or the humanities. The fact that grammari-ns, like Harris and Chomsky,
have been able to make as much progress as they have in linguistics attests
to a goocd deal of structure in language as well. '

The second dominating phrase in my title is "deterministic theorizing."
In view of the tradition in psychology against this type of theorizing, it
is instructive to consider the paradigm most typically used in testing
behavioral theories. First, assumptions are made about how individuals
learn or behave. When stated in their clearest form, as in the stochastic

_theories of mathematical psychology, the basic assumptions are stated ‘in

-

terms ~- probabilities. Second, inferences are drawn from these assumpiions
yielding predictions about_groupastatistics -~ that is, about characteristics
of the distributions of responses made by the experimental subjects. Third,

on the basis of the experimentai results obtained, inferences are made about
the basic assumptions. '

Of course, there is no harm in this as long as it is recc tized that
"the initial assumptions deal with probabilitie~ and not with i iividual processes.
But this fact has not always been made as explicit by theorists as might be
desirable. What needs to be madi clear with such probabilistic theories is
that what any given subject does on a given occasion may have 1little ox
nothing to do with the particular assumptions made. TFor example, in stochastic

oh
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‘explanation for them, but not others.’ Theories do.not apply universally. To

models of paired-associate learning it is usually assumed that each sulject
has the same probability of learning on each trial. Even the most super~
ficial analysis of relevant data, however, indicates clearly that the pro-
bability of success for different subjects may vary greatly. And one
.cannot attribute this to the fact that the probability of learning is a
random variable. This wouid still not explain the fundamental fact that
the probability of success of many subjects tends to be either uniformly
high, or low, over different trials.

How much better it would be to have a theory which would tell us v
explicitly what a given subject will do on specific occasions -- a theory
which leaves errors in prediction to inadequacies in observation and
measurement, and does not make these errors an ., .i3cit part of the theory
itself. 1Ideally, such a theory would satisfy tis .lassical conditions for
a deterministic theory in the hard sciences ~~ theories which sc¢y, in effect,
that given such and such basic hypotheses and these initial conditions, this

is what should happen. Given a theory of this sort, probability would

enter only where one wanted to make predictions in relatively complex situations
wilere the experimenter practically speaking could not, or did not wish to,

find out everything he would nced to know and specify in order to make deter-
ministic predictions. In effect, a truly adequate determnistic theory would
make it possible to generate any nunber of stochastic theories by loosening

one or another of various couditions which must be satisfied in order for

the deterministic theory to apply. (In this regard, see the comments below

on levels of empiricism and conditional hypotheses.)

In order to be completely honest, I must wmention one further reacun why
deterministic theorizing appeals to me. I am basically lazy. I have done a
good deal of traditional behavioral research, but I dislike with a passion
poring over reams of raw data or computer printouts, especially when I know

that, no matter what statisties are used to summarize the data, I am losing

much, if not most, of what is important. It is perhaps this distaste as much
as anything else which has moved me to search for a new and better way to do
enpirical research on complex human learning. How much nicer to have data
which is clearcut, nt means or variances to compucle, no analyses of variance,
or canonical correlations, or factor analyses -~ just looking. In this
regard, I can't resist the temptation to xepeat a little story about an
experience I had as a post-coctoral student being initiated into mathematical
psychology at Indiana University. The time was the summer of 1962, and the
field was bright and promising. As part of my orientation, I was routed
about to visit a number of the more prominent names oOn Campus, including one
very fine physfologist. Crught up by the emphasis on mathematics given:by
the psvchologists, I asked him what kinds of mathematics he found most use-
ful in his work, and how he used it. His answer waz, e count." After
gectting over wy initial shock, T began to see the *ogic of his answer, and
have bean trying to meet his ‘ie. ' .Uver since.

Finally, !et»us‘donsider_what is merny by “levels of empiricism."

Recall first that any theory is but a partial model of reality. It deals
sdequately with certain phenomena in the semse of providing an adequate

make the point in its most trivial sense, we need- only-note that existing ;.0
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theories of thermodynamics, for example, are not likely to be very useful
in explaining paired~associate learning -- Or vice-versa. As a more
realistic example, learning theories such as Hull's provide a far better
account of certain simple behavioral phenomena than they do, for exampie,
of thbe learning of complex mathematical structures. (Partial theories must
not be confused with so-called miniature theories of mathematical psy-~
.chology. Partial theories deal with only certain phenomena of given,
broad-bzsed realities. Miniature theories deal intensively with highly
restrictive phenomena such as paired-associate learning.)

The general difficulty with most theory construction psychology,
today, is that very little attention has been given to specifying conditions
under which theories are not presumed to hold. To date, the sole approach
to this problem has been an ad hoc empirical one in which experimental
evidence is gradually accumulated over relatively long periods of time.

It is my feeling that much can be done along these lines, while
theories are actually being constructed. This does not obviate the need
for empirical testing, of course. No one believes that we can ever do away
with that. But I do think that we can do away with a good deal of it, if
theorists would give more explicit attention in their work to identifying
these negative conditions. '

In constructing a.theory, whether it be a mathematical ‘theory or a
scientific theory, the theorist has some wodel, or models, in mind at the
time. These models arise basically from particular segments of reality --
but more important here, they usually deal with only certaiﬁ;aspects of’
that r2ality. The rest is simply ignored. '

This approach may be a viable one in mathematics, where one aims for
abstraction. One never knows where mathematical theories may ultimately
prove useful. (i.e., be applied), and it would undoubtedly be a mistake
to tie them in too clousely to any particular model, by specifying aspects
of these particular models with which the theory does not deal.

This is pci true in science, hcowever, where the ultimate aim may be to
devise theories which deal with more of the particular reality in question.
A theorist may have many more kinds of phenOmena in mind in attempting to
construct a theory than he can possibly handle at one time. To get around

. this problem, he may purposefully ignore for a. time certain of these
phenomena to facilitate cons tructing what might be called a partial theory
-- a theory which deals with part of the reality but not all of it.

In constructing such a partial theory, it is critically importanrt )

that the theorist do so in a way which is compatible with the broader rezlity.
Thus, for example, the ultimate aim of competence theorists such as Chomsky
(1968) and Miller and Chomsky (1963) is not just to characterize the knowledge
had by an idealized human subject =-- that in itself might be attemptea in
any nunber of different ways: What these theorists want'is a theory of kuowieage
which is likely to be compatible with a more encompassing behavior theory
once one is developed (e.g., see Miller and Chomsky, 1963, 483-488). 1In
such cases, it will generally-be ,in the theorist's interest to iwiw just

Q : what aspects of reality his present theory does pot consider. Staved differ-

E [C51 ently, he must know what boundary conditions must be satisfied in order for
P v | v - 4




his partial theory to apply. Theoxetical predictions based on partial
theories are necessarily dependent (on such conditions).

In order to test a partial theory, then, the empirical situation must
accurately reflect these boundary conditions. Otherwise, the partial theory
will simply not be applicable ~- by definition, Perhaps the best known
example has to do with linguisties, where grammarians, such as Chomsky (1957),

_assume an idealizc3 knower ~- a knower who can use whatever rules are
attributed to him without error, and wherever they might be needed. This
type of theory seems to be having increasingly important implications for
psychology, but ic must be remembered that a competence theory of this o
sort applies only in those situations where the idealized performer assumption
is reasonable to make. (There is a close relatinnship between these ideas
and the so-called ecological approach to behavioral science (Wohlwill, 1970),
which is becoming increasingly popular of late. 1In fact, the partial
theories described below provide good examples of the kind of theories for
which this approach seems to call.)

'El{lC
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Foundations of a Theory of Knowledge

The first level of theorizing is concerned with the problem of how to
account for the behavior of idealized subjects. More particularly, given
a finite ciass or corpus of behaviors, the problem is one of how to
characterize the kuowledge underlying the corpus ir a way which accounts
as well for the other behaviors of which an ideal:rzd knower of that corpus
may be capable. Cur approach to thics problem involves the invention of a
finite set of ruies of one sort or another which can be used to generate not
only the behaviors in the given corpus, although this is an absolute minimum,
but also the other behaviors one might wish to attribute to the knower
(Scaadura, 1970a, for an earlier but closely related version of this goal
see Chomsky, 1957). (A wule may be said to account for a class of behaviors
if, given any stimulus input associated with the class, the corresponding
response may be generated by application of the rule (Scandura, 1968, 1970b).)

As one might suspect, there are any number of different ways in which
to characterize the same given corpus. The theorcztical problem is one of
evaluating these various characterizations to determine wnich best accounts
for the other behaviors one might wish to attribute to the knower (Chomsky,
1957; Scandura, 1970a, forthcoming). These additional behaviors constitute
the predictions. g )

Consider some of the alternatives. Undoubtedly, the simplest way to
account for a given finite corpus is just to list the behaviors involved.
Thus, for example, a list of paired-associates might be characterized as a
finite set of depenerate rules (Scandura, 1968) or, equivalently, as a finite
set of associations. Clearly, lists of paired associates are not the sort of
corpora we usually have in mind in talking about mathematical and other complex
behavior, and characterizations which consist of simple lists.oi associations
would be essentially sterile in content. If this were all a personm ¢nuld-
learn, it would be impossible even to learn how to add numbers, additio:s
fact by addition fact. A person could learn at most a finite number of sums,
since each addition fact (e.g., 3 +5 =8, 27 + 47 =72, ana .0 on) would have
to be learned separately. ’ ' .
. A somewhat wore realistic characterization of a corpus of behaviors
derives from recent attempts in educational circles to define school curri-
cula in terms of a finite number of operational objectives (e.g., Lipson,
1957). Each of the objectives of these curricula amounts to a class of te-
haviors which r~an be generated-by a rule; the abilities to add, to mulriply,
to find areas of triangles, and so on, provide obvious examples. It is pos-

sible to account for the behaviors repr: sented by such a corpus, then, by simply-

listing a finiie set of rules. In fact, this is essentially what has been dune

‘by curriculum constructors who have followed this approach. The curricula

consist essentially of long lists of rules for achieving the (operaticnal)
objectives, ore rule for each objectiva. o
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Clearly, exactly the same idea might be applied in characterizing the
knowledge had by individual subjects. A list type of characterization
of this sort would have the major advantage of requiring a very simpl:s perior-
mance mechanism. Thus, if knowledge iz characterized as a list of discrete
rules, which operate independently of one another, then a more general theory
of performance would need to tell only how such rules are put to use. Since
the rules are discrete, no interactive mechanisms need be postulatci,

This advantage, however, is also its major disadvantage. Because the
characterizing rules are discrete, they cannot account for behaviors which >
20 beyond the given corpus, excei’ ‘n the most trivial sense. For exar~le,
suppose the characterization only ivded rules for adding, subtracting,

muitiplying, and dividing. In this case, the sabject would be unable to

even generate the addition fact corresponding tc a given subtraction fact,
although one might reasonably expect this type of behavior from a person who
was well versed in aritlinetic. One might counter, of course, that it would
be a small thing simply to add a new rule to the originmal list.

c-a=b=->atb=c

We might even use the distinguishing label "relational rule" since it
operates on the elements of a binary relation. Indeed, this s precisely
the sort of reply one might expect from curriculum constructors of thz
operational objectives persuasion. When confronted with the criticism thet
their objectives do not constitute a mathematicall:’ (or otherwise) viable
curriculum, they would simply say we can adé more .u:jactives

The trouble with this sort of argument is that it misses the point
entirely. Not only would such an approach be ad hoc ~- which really says
nothing by itself except to convey some ill-defined dissatisfaction -~ but it
would be completely infeasible where one is striving for completeness. To
see this, it is sufficient to note that a new rule would have to be introduced
for every conceivable interrelationship, and that the number of such inter~
relationships is indefinitely large. One could easily envision a nunber of
rules so large that no human being could possibly learn all of them. There
would not be sufficient time in a single lifetime. Tbhe sum total c¢f all
mathematical knowledge wiiich is presently in piint, for example, is s0 vast
that no one has, or could, possibly acquire ail ef it. As vast as this know-
ledge is, however, a really good mathematician is capable of generating any
amount of new mathematics which does not appear in print anywhere, That is,
he.can create. Much of the nev mathematics might be utterly trivial, of
course, but the very fact that it exists at all strongly suggests that any
characterization such as that described above would almost certainly}m%?s
much that is important. ‘ ;

. We can get a far more powerful and simple characterization by allowing
rules to operate, mot just on ordinary stimuli, but on other (lowex oxder)
rules as well.l More specifically, allowing rules.to operate in this way.

-
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makes it possible to generate new rules and these rules, in turn, may nake
it possible to generate what might appear to be completaly different kinas
of behavior. ¥or example, suppose that an idealized knower.-has mastered
the two rules:

(Ly a, b =+a +0b.
@ {x, y—xoyl={x,y—==xo'vyl

whezre (1) represents a rule for generating sums of pairs of, say, integers
and (2) represents a (higher order) rule which, given a rule of the form

(1) for any binary operation, generates a rule for performing the correspond-
"ing inverse operation (denoted o'). Such a rule would connect, for example,
not only addition of numbers Wwith subtraction, but composition of all sorts
with the corresponding inverse operations, whether these operations involved
permutations, rotatienms, rigid motions, OX whatever. In this case, applica-
tion of rule (2) to rule (1) yields rule,

(3) a, b —a ~b,
where " - " is the inverse of Wt Application of rule (3), in turn,
makes it possible to generate differences between any given pair of integers
a and b where a >b. Tut, then, isp't this just a simple inmstance of the
sort of thing we have iu wind when we think of creative i 2havior?

7f the extrapolation involved seems too tame to qualif§ for this dis-
tinguished label, consider the following example in which we add another
level to the analysis. In this case, we assume in addition to rules (1)
and (2) that the idealized knower has also mastere” “ules, '

&) {x, vy =+xoy}=> {x, y ~ 2 o y} (Note: x, vy, ‘6 are different
from X, Y» 9O, respectively)

G) (=¥, ¢=2)}=> {x‘-%*'z}

Rule (4) may be thought of as denotiug knowledge of generalized
homomorphic relationships between pairs of systems such as the system (A)
of integers under addition and, say, the system of (B) rational numbers
unde > addition. Rule (5) is extremely general and makes it possitle to
generate the composite (rule) of any vair of, given rules such that the
output of one of the rules serves as the input of the other.

. Kriowing these rules would make all kinds of behaviors possible. For
example, .the. idealized knower would be able to subtract, not only in the
first system (A) but in the sedond system’ (B) as well. To see this, we

need only cbserve that application of rule (5) to rules (4) and (2) yields
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(6) {x,y:—}xoy}—_:.{:i,_y_—}io'l}.
Application of rule (5} to rule (1), then, yields rule

(77 a, b “}Q+'i_b or _g.,ﬂ_b;-'f:sé__ b where 4 = -,
Rule (7) is the subtraction rule for system B. The basic relationships

are represented schematically in Figure 1. More details and further examples’
may be found in Scandura (1970, forthcoming).

In summary, the essentials of the theory of knowledge as outlined
are just these. (1) the knowledge of any given individunl at any given
stage of learning can be characterized in terms of a finite set of rules.
This implies among other things that there may be as many different theories
of knowledge as there are individuals -~ or, equivalently, as many theories
as there are conceivable curricula to be mastered. (2) Rules may act on
classes of rules as well as on simple stimuli. Allowing rules to act in
this way amounts to a simple but conceptually major revision of existent
competence theories. (3) For purposes of the theory, it is assumed that
the rules way be combined at will and without error as needed. Stated
differently, the idealized knover 1is assumed to have mechanisms available
for putting the rules attributed to him to use.2
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Figure 'l: A schematic yepresentation of the basic relationships
described in the text. Solid arrows refer to {prea)learned rules and
dotted arrows to derivable rules. Rule {5) by.which rules (4) and (2) are
combined %o give (6) is not represented since this would require a
third dimension and wouId complicate the diagram without adding any
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Foundations of an Idealized Theory of

Structural Learning

The third point above is a critical bLoundary condition of the theory

. of knowledge. The theory applies only at the analytical level in the .
sense that generative grammars account for language behavior. The relevance
of the theory to actual human behavior is dependent on our ability to spell
out mechanisms which are both adequate to account for how rules may be
combined and which are reflected in the actual behavior of human sub jects.

Yt is to this task that we now turn -- the task of introducing mechanisms
of idealized performance, learning, and motivation into our formulation.
The purpose: of adding such mechanisms to the theory of knowledge is to obtain
an extended theory which deals explicitly with the way in which available
knowledge is put fo use. This more encompassing theory is still a partial
theory, however, one which applies only where subjects are unencumbered by
either memory or their intrinsically limited capacity to process information.
it should be emphasized, however, that it is-a theory which is assumed to
apply no matter what knowledge an idealized subject has available. Thus,
ever though the knowledge had by different individuals may vary greatly,
the same theory of idealized behavior is assumed to hold over gll individuals.

The basic assumption on which this theory rests is that people are goal-
seeking information processors. In this case, much of what a subject knows
becomes irrelevant once a goal situation is specified. Thus, at any given
point in time, only a small fraction of the rules available to a knower may
be applicable ~~ namely, those rules which may be used directly or indirectly
in satisfying the given goal. ' -

There are three basic kinds of situation with which any viable theory
mus¢ deal. One type of situation is where the subject- knows one or more
rules which apply in the given goal situation. The secoﬁd is where the subject
does not explicitly know a rule which applies in the goal situation. -The
third is actually a refinement of the first, 'and deals with the question of
why, when a subject has more than one rule available, he selects the rule that
‘he does. Why not one of the others? As we shall see, these problems are
~closely allied with what have traditionally been called_perfOrmance,‘learning,
and motivation, respectively. o ’ I

The first case is simplest to deal with. We need only assume that:

(A) Given a goal situation for which a subject has at least onie rule
available, the subject . will .apply one of the rules.

VThué; for example, if a subject‘s.géal»is to find the sum of two nuwbers,
and he knows how to add, then he will actually use an addition rule. -

11

58




As trivial an assumption as this may appear, it is an assumption. It
does not follow logically that just because a subject wants to achieve a
certain goal and has one or more rules available for achieving it, that he
will necessarily use one of them. ' .

Furthermore, the assumption has a number of iwportant implications.
One of these is that it provides an adequate basis for determining what might
be called a subject's behavior potential, relative to a given class of rule
governed (RG) behaviers. It may be noted in this regard that it is ome thing
to devise a procedure (rule) which accounts for a given class of RG behaviors
and quite another to identify that subclass of behaviors of which a given
subject is capable. The first problem is an analytical one and involves
inventing a procedure which accounts for the given 'class of RG behaviors.
No psychological assumptions are involved.

Determining a subject's behavior potential, however, necessarily depends
on what can be assumed about the mechanizsms which govern human behavior. The
basic idea goes like this: Given any familiar class of RG behaviors, 1like
the class of addition tasks, we can usually identify those rules (algorithms)
which the subjects in question are likely to use in solving the problems.

We do not automatically know which aspects of  these algorithms any given
subject is capable of, however. To find out, wve must test the subject. But
on which instances is he to be tested -=- how are they determined? The
standard approach, of course, is just to select a random sample of test
instances and then make probabilistic predictions zbout future performance

on other instances in the class. ’; )

This apprcach is rejected in favor of systematic selection of test
instances and deterministic prediction on individual items. To see how this
can be accomplished, we first note that every algorithm for solving a given
class of.(RG) tasks can be represented by a directed graph (see Scandura,
forthcoming). For example; the task of generating the next numeral in Base
Three Arithmetic can be represented as in Figure 2. '

A 'In Figure 2, the arcs correspond to rules which are assumed to act in
atomic fashion. That is, success on any .one instance of such a rule is
tantamount to success &n any other, and similarly for failure. We have

_obtained sufficient empirical evidengefOVer the past seven years to demonstrate
. the existence of such rules in a wide variety of situations (e.g., Scandura,
1966, 1969). The points correzspond to branching rules,. that is, decisions

which must be made in carrying out the algorithim on particular test instavces.

The subgraphs at the bottom of Figure 2 correspond to the four possible
paths through this procedure which may be used in solving particular problems.
Since the constituent rules are all atomic, it follows that each of these
. paths also acts in atomic fashion. Hence, to determine . the behavior potential
3 #  of “a' givén subject with respect to this alforitim, we’need %only Select®one
: tésﬁ-ins;anCe‘for'eACh path. . In this case, .the base-three stimulus (response
numerals 101 ¢102), 2 (10), 112 (120), and 222 (1000), correspond respeciivery
to the four possible paths. Accordingly, the behavior potential of a given
subject on this class of tasks can be uniquely specified by his performance
Q . o e e ) '
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Figure 2: aample stlmuli and responses for the task of generarlng
the next numeral in Base Three arithmetic, together with the (total) graph

. of a procedure for generating the behavicr, and four graphs representing
the four behav:Lorally dist:nguishable paths through this procedure. ’




on just these four test instances =- as long as the atomic assumption is
valid. (Hence, the assessment is conditional.) Any other set of four
stimulus representatives of these paths, of course, would do equally well.
Although its role was hidden in describing this method of assessing behavior
potential, the methods validity depends directly on the simple performance

" mechanism. According to this mechanism, if a subject has a particular path
avecilable for solving a -given task, then he will use it and use it consistently
on all instances to which it applies. That is, of course, assuming that the
subject's goal remains the same.

None of this is idle theoretical speculation. Over the past several
months one of my students, John Durnin, has collected a good deal of evidence
which provides support which goes far beyond the bounds of what is normally
‘considered sufficient evidence. In a total of 204 predictions, utilizing
a variety of tasks and subjects of greatly differing abilities and grade levels
(from the pxreschool through graduate scnool), we have had a grand total of
seven errors in prediction. A sample of this data is given in Table 1 for a
procedure involving eight paths. '

Table 1
College " College . High School : High School
Student Student Student : Student
Paths A | B e A _'3 B
Test Test Test L Test
1 2 1 2 1 2 1 2
1 + + + + + o+ + +
2 + + v-i-—t— + + + +
3 + + L+ o+ - - - -
4 + o+ o+ + + -
5 4+ + + + 5+ - -
6 + o+ T - - - -
7 +or + + - - - -
+ 4+ -+ . - - - = P

& s

Note: "+ indicates correct response.
W-" jindicates incorrect response.
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Let us next consider what happens when a subject has not explicitly
Jearned a rule for achieving a given goal. In this case, the subject has
a2 problem in the classical sense -- a problem situation, a goal, and a
barrier between them.

The major theoretical problem is tc explain what happens when a subject
js confronted with such a situation. If the problem can be formulated in
a way that lends itself to prediction, so much the better. Why certain
people are able io solve some problems for which they have never learned a
specific rule, whereas others cannot, is a question of paramount interest.
We want to know exactly what is involved, and why subjects perform 2s they
do.

As a first approximation at least, it again appears that a very simple
mechanism may suffice. This mechanism may be framed as a hypothesis as
follows:

(B) ' Given a goal situation for which the subject does not have a learned
rule immediately available, control temporarily shifts to the higher order
goal of deriving a procedure which does satisfy the original goal condition.

With the higher-ordex goal in force, the subject presumably selects from
among the available and relevant higher order rules in the same way as he
would with any other goal. Furthermore, where no such higher order rules
are available, one might suppose that contrel would revert to still higher
order goals. Theoretically, this process could continue indefinitely,
but I suspect that a subject would tire of it, or run out of higher order
rules, as quickly as would - theorist attempting to describe what is happening.

" To complete things, we = d a third hypothesis which allows control to
revert back to-the origins ;0al once the higher order goal has been satisfied.
We can state this as follc s. - '

(C} If the higher ordc . goal has been‘éatisfied, control reverts back
_to the original goal. ‘ ’

_When we séy thét a higher—order goal has been satisfied, of course; wha:i
we mean is that some new rule has been derived, such that that rule, when
applied to the stimulus situation, satisfies the original goal criterjon.

Althuugh'implicit‘in what has been said,:it is importaﬁt to note that each
~of the hypothesized mechanisms is assumed to work at all levels. For euxample,
hypothesis (A) applies in higher order goal situations as well as in simple
ones. ) ‘ : v

These assumptions provide an adequate basis for generating predictions in
a wide variety of problem solving situations. Suppose, for example, that the
problem posed to a subject is to convert a given number of yards into inches.
Consider two possible ways in which a subject might solve the problem. Tue
first is to simply know, and have available, a rule for converting yards
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directly into inches: 'Multiply the number of yards by thirty-six." 1In

this case, the subject need only apply the rule according to hypothesis (A).
The other way is more interesting. and involves all the mechanisms described
above. Here, we assume that the sub ject -has mastered one rule for converting
vards _into feet, and another for converting feet into inches. The subject

is also assumed to have mastered a higher order rule which allows him to

~ combine leaarned rules (in which the output of one matches the input of the
other, as is the case, for example, with rules for converting yards into

feect and feet into inches) into single compesite rules.

in a situation of this sort, the subject dces not have an applicable
rule which is immediately available, and, hence, according to hypothesis (B),
he automatically adopts the higher order goal of deriving such a procedure.
Then, according to the simple performance hypothesis (A), the subject selects
the higher order cemposition rule and applies it to the rules for converting
yards intvo feet and feet into inches. shis yields a new cowposite rule for
converting yards into irches. Next, control reverts to the original goal
by hypothesis (C) and, finally, the subject applies the newly derived composite
cule by hypothesis {A) to generate the desired response. This sequence of
events 1is depicted im Figure 3. - :

Although we are still in the process of refining our procedures and
collecting more data, Lou Ackler and Chris Toy have zun erough subjects
_under one condition to suggest that we are on the right track. What we did
was to teach each S how to use two simple rules, comparable to those described
above (e.g., for converting yards into feet). These rules dre denoted ryj
and Ry in Table 2. As shown in the table we were successful in téaching
these rules te all of the children in the sense that they could apply them
eniformly well to all instances {of the respective rules). - Then, each
subject was tested to-see if he could solve a problem requixing for its
solution the composite rule, denoted Ty9T32- - As shown, only one of the
subjects was initially successful on this type of problem. Next, we taught
the subjects with neutral materials how to combine pairs of simple-rules
such as the ones they had been taught. This time we were successful with’
all but one subject. (To accomplish this we-also had to teach many of the
subjects what it was they were trying to do == that is, find a rule which
could be used to solve problems such as that requiring T,,T;, above.
In short, we taught them a decision making capability for %eﬁermining whether
or not they had achieved the higher ordex goal. More details on this are
given in Scandura, forthcoming).. - :

- At this point, we taught each subject a new pair of rules (indirated

by r21&and Xy ) and then tested him to see if he could solve the corresponding
. composite p:o%lem, which required TY91¥99p for its solution. 'As can be seen
in ‘Table®2, all but one of the &subjedts succeedad on the test problem wheregas
only one of them had before. Furthermore, the one subject who tailed was

the same subject who had previously failed to learn the higher order rule
when it was taught. This same pattern of teaching and testing was repeated
two more times as shown, with precisely the same results. '
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Figure 3: A schcmatlo representation of hypothesized séquences'
in:olved in problem solving Ri and Ry represent rules for converting yards

into feet and feet into. inches, respectively HR refers to the- higher order
_ rule for generat ug. composite. rules . .
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Tabie 2

Summary of Experimental Procedure and Results.

Age of Subject

6 7 8 5 8 7 6 8 6 6 8
Ty + + + + + + + + + + +
Ty, + + + + + + + + + + +

Orpifyy, 7F - - = - - - - - - -
HR + - + + + + + + + + + .
ry1 + + + + + + + + + + +
5y + + + + + + + + + + +
OxyTyy, ¥ - 4 + + o+ + o+ + +
sy + + + + + + + +° o+ + +
T3y + + + + + + + + +
Or, .r + - + + O+ + + + + + +
3132 e
T + + + + + + + + + + +
: + + +
Ty + + + + + + + +
C -
Crpgr,, + + + + o+ + + + + +

" Note: "' indicates S reached criterion.
: “_" jndicates S did not reach criteriom. :
"CM.indicates that S was tested cnly (without training).
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While no empirical data are available, it has been possible to analyze

a number of other, more complicated problem situationus in very much the zame
way (Scandura,- forthcoming), including problems taken from Polya's (1962)
pioneering yet atheoretical discussion of mathematical prqblem-solving.'
 This includes taking into account the role of heuristics. A very similar

type of analysis can also be applied to discovery learning, and, indeed,

even to simple association learning (Scaundura, forthcoming). The situation

is very much like prcblem solving in which there are a number of simple problems
presented in sequence, rather than just one. It would be misleading to

imply, however, that this is a routine undertaking. To the contrary, it seems’
to require a good deal of experience, familiarity with the subject matter,

and good intuition about how Ss actually do things. Most important, it usually
‘takes time to come up with a viable analysis. Nonetheless, I am satisfied

that this can be done in principle; what remains is to test these analyses
empirically to see if the three hypotheses introduced above are sufficient

to account for the performance of actual Ss (under the idealized conditions
required by the theory).

the important point of all this is that learning can be viewed as a
problem-solving process. Subjects learn as a result of being exposed to
problem situations which require that they cowbine available rules in new
ways. Once a problem has been solved, however, no further learning is assumed
to take place upon repeated presentations of similar problems. In that case,
the subject simply applies the mewly learned rule. '

By systematic application of our simple principles (of performance),
then, it would be possible to dexive all kinds of implications about learning
and performance. In particular, highly specific predictions mizht be made
about individuals who enter the learning situation with given sets of rules
and who -are then subjected’to particular sequences of problem situations. Such
analyses would have obvious implications for inStructional'theory. {It must
be remembered, of course, that all such predictions would necessarily be
1limited to empirical situations which satisfy the conditions of level two
theorizing.)

Suppose now that a S has more than one way of achieving a given goal
and that we want to know which way he will choose. As suggested above, this
problem of rule selection is basically one of motivation. To see this, we ask
" what theorizing about motivatiocn involves, and how this relates to our earlier
discussion. We might be tempted to define the task of motivation theory as
one of explaining and/or predicting which. goals subjects will adopt in given
situations and let it go at that. This would not be sufficient, however, for
that would not tell us where such goals come from in the first place, nor how
they relate to the situation at hand. :

In any given situation, the observer élmost.always has some idea of what
a given S is trying to accomplish. Thus, for example, he may not kncw what
sort of building an architect will design, but he can be quite. sure that it
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will be a building, under certain circumstances at least. Similarly, he

can usually be Zairly certain that the next move made by a chess master will

be a good one, although he may not know what the specific move will be. He

can also be reasownably confident that, faced with a simple theorem, a competent
mathematician will come up with a valid proof, but generally speaking, he will
not know what kind of proof it will be. An analogous statement may be made
about a competent fifth-grader on simple addition problems. The observer

" may not know, say, how quickly the sums will be given, but he will generally
know that they will be correct (cf. Suppes and Groen, 1967).

Looked at in this way, the motivation theorist's task is to say some~
thing additional about what a $ will actually do in any given situation, whether
this involves explaining why the architect designed the building he did, why
the chess master made his particular move, or why the mathematician used an
indirect proof, or the child, a certain shortcut in addition. More generally,
the key question for motivation theory is to explain (and/or predict) why :
the S took (will take) the path he did (does). -(In retrospect, it appears
that we have already proposed an answer to this questicn in that special
case where the § has no rule immediately available for achieving the initial
goal. 1In that case, it was hypothesized (B) that Ss adopt the higher-order
goal of deriving a procedure which does satisfy -the initial goal.)

The problem comes in where the S has more than ome rule available for
achieving the initial goal. It was assumed in this case that the S would
‘use one of the available rules (Hypothesis (A)), but nothing was said about
which one. It is my contention that the answer to this question of "which
one" lies at the base of what we normally think of as motivation, especially
as it is realized in structural learning and performance.

Unfortunately, space does not permit anything approaching the discussion
which this problem warrants. (The problem is discussed at length in Scandura
(forthcoming) and will be the subject of subsequent papers.)’ For present )
purposes, it is sufficient to assume that Ss are systematic in their selections.
I do not believe that people are intrinsically unpiedictable, even in so

complex a field as motivationm.

‘ If this is true, it would seem that perhaps one could gain insight
into what a person might do in the future on the basis of what he has done
in the past. -But, then, do nnt we do just this almost every day? With
experience, we begin to sense the way in which partic¢ular people are likely
to behave. in given situations, and may therefore tend to act accordingly.
We frequently know ahead of time, for example, how the boss will react to a
request for a raise, or what kind of activity Janie will engage in duvring free
play, or what kind of homework will be left undone until last.

The task of the motivation theorist is to translate such intuitions into
empirically testable hypothesés. A doctoral student, Francine Endicott, and
I have been working on this problem for several months now, and at first ve
were not particularly pleased with our results. To be sure, the data *alwmost
always supported our hypotheses in a gross probabilistic sense, but they

&




could hardiy be called deterministic. By using past selections as a guide,

we have been able to do much better and have recently obtained an accuracy
rate of about 857, correct predictions. What we did in these experiments

was to provide.each S with an opportunity to learn two distinct procedures
(Rules A and B) in the same manner as was done in the assessment (of behavior
. potential) study. The stimuli were identical but the responses generated by
the two procedures could easily be discriminated. After learning both
procedures, each S waes presented with a general goal, which could be satisfied
by using a path of either procedure. For testing purposes, stimuli on which ‘
S had precisely the same choice to make between paths were viewed as’ '
equivalent. As in the assessment study, S was tested twice on each equi-
valence class. According to our assumption, it was hypothesized that £
would select the same paths on corresponding Test 1 and Test 2 stimuli.

v .

The results are summarized in Table 3.

Table 3

Results of Rule Selection Study

T . - Test 2
Rule A - Rule B
"Rule A ' 52 2
Tést,l |
| Rale B | R \ . 64

-;.This.table”shows;that ﬁhéﬁéver,3»§;se1ected;a;pa;h‘of7Rule A on Test 1; he
. R almost invariably. (52 times out' of 54) selected a path of Rule A on Test 2.
o g - Rule' B selectian'Wgre'consi§tent with the hypothesis ‘64 times out of’77.

. T0'recapitulate,'it'shbuld be re-emphasized that everything which hae
been said so far about learning, performance, and motivation only applies in
situations where. memory and the limited capacity of human subjects to process
information do not enter. - The proposed mechanisms have all assumedian:infor-
mation processor with an essentially unlimited ability to process information,
‘and withfpérfect;memoryifdrﬁﬁfevibusly‘acquired»kndyledgé. P :
i This definitely does not imply that the theorizing so far-is of iittle
* .value. * That conclusion would be wrong on at least two counts. ' First, there
' are many: practical situations in structural learning wheré memory is of .. =
o minimaljconcern;.;1ﬁfﬁﬁ6b ém;sblviﬁg,_f@rgéxample,_the S-is almost always
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given all of the paper, pencils, and other memory aids that he needs.
Typically, we also do our best to insure that 'the necessary lower-ordex rules
are readily available, even to the extent of making textbooks available. The
concern is generaily with whether or not ' the individual can integrate avail-
able knowledge to solve problems. Considerations such as whether he can do it
in his head or not, time to solution, and so omn, are of secondary concern

(cf. Scandura, 1967). Second, questions of memory can usually be eliminated
in experimentation by insuring that relevant rules and memory aids are
available to the subject. This can normally be ‘accomplished by training.




Toward a Theory of Memory and Information Processing

Any fully adequate theory of structural learning, of course, must deal
with more than just idealized behavior. In particular, such a theory must
as a minimum take both (long-term) memory and information processing into
account. Insofar as memory is concerned, there must be mechanisms for storing
and retrieving information in long-term memory. In addition,
hypotheses are needed to deal with the processing of information, and par-
ticularly -the limited amount of information which human beings can process at
any given time. Thus, for examsle, an adequate theory should make it possible
to account for the differential ability of human subjects to perform mental ‘-
arithmetic, even where the Ss know perfectly well how to compute.

. In most theorizing about memory, there has been an unfortunate tendency
to confound these two kinds of problewm. Much of the more recent work, for
example, has been heavily influenced by a new technique ror measuring reten-

. tion, which was introduced by Peterson and Peterson (1959). The basic idea

: of their experiment was (1) to present CCC nonsense syllables, (2) have the

-8 count backward by threes or fours, and (3) test him to see if he couid
remember the given nonsense syllable after some intervening period ranging
from about O to 30 seconds. Contrary to the then prevailing expectation of
most psychologists, they found that retention decreased rapidly over this

[ ‘ " short. period, and psychologists had a new gamc to play. The basic paradigm

is still in wide use today.

PRy

The difficulty with this type of study is thgt it does not distinguish

operationally between mechanisms associated vwith the storage ard retrieval
. of information from long-term store, c¢n the one hand, and the limited ability
‘of human 8s to process information, on the other. Thus, in a Peterson and
Peterson type experiment, a S may attempt to retain a nonsense syllable, say,
either by continuing to process the information, by a process typically referred
to as rehearsal, or by storing it in long-térm memory. Und~ <hese circum-
stances, it is difficult to say anything definitive abouf eir . type of
mechanism as a result of the experimental data obtained. o

. " For present purposes, it would obviously be ‘desirable to have a theory
’ of structural learning which deals with the two kinds of problems raised
, above, and which at the same ‘time is compatible with. our earlierx theorizing.
. ' - Specifically, we mneed to -ask how the memory-free theory may be supplemented
50 as to take both (long-term) memory and information processing into account.
No hard answers, uafortunately, are available at the present time, particularly
insofar as memory is concerned. All that can be done here is <o sketch one
~approach to the problem»whichfseems to hold some promise. 3
v . Insofar as long-term memory is, concerned, nothing.basically net; seems
_ . to befreqﬁiréd;rﬁHEQbasiCVmechanismS'bfAthe;idealizedﬂtheqry,appearjto,be ade~
quate.as. they are. What does need .to be . done is to increase the domain. of
- applicability of these mechanisms. - Specifically, rules are needed for storing
and ‘for retrieving information. . Storing rules act on: observables, as co

other rules, but’the outputs- of such rules are striétly:interhal.‘ Retrieving
» rules, .on. the other hand, act on stores (internal) units of knowledge (which
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serve as stimuli) and generate observables.

What these rules do is to relate new knowledge with knowledge which has
been acquired previously. For example, in order to store (i.e., give meaning
to) the statement, any functicn continuous on a closed interval is uniformly
continuous, S must clearly know ahead of time what continuous functions, cloced
intervals, and vniformly continuous functions are. The storing rule combines
these meanings into a new meaning which corresponds to the statement, taken
as a whole (Scandura, 1970b). This has the effect of tying in (i.e., locating)
the desired meaning with previously acquired knowledge.

Retrieval rules, on the other hand, provide the subject with a basis
for regenerating knowledge from the recall cues -~ for example, from a
statement like 'what can be said about functions which are continuous on
.closed intexvals?".

Difficulties in recall are explained either in terms of what is (or is -mot)
stored or the availability {or lack) of appropriate retrieval rules. For
examplé, if a S memorizes a statement like that given above, without under~
standing it, and is asked at recall to explain the idra in his own words,
then no one would reasonably expect the S to succeed. Similarly, if the S
stored the meaning and was asked to repeat the statement verbatim, he would
not likely be able to do more than come up with a rough paraphrase. Without
adequate storing rules. in the first place, of course, recall would be completely
lacking according to this view. Even where a § has definitely learned
{stored) something, he may still not be able to '"recall it because he lacks
the necessary retrieval rules. . Young children, for example;. are frequently
able to'do things, like solve arithmetic problems, indicating that they have
learned how, but be quite incapable of describing what they did. -Although we
_cannot go into the problem here, this sort of analysis appears to provide
vréiatiVelyfSimpléfexplanations-foriavnumbEr-of>we11-knoanphenomena,‘Such
as retroactive inhibition and reminiscence. (Details are given in Scandura,

. forthcoming.) = - .- B - S : ROE :

-~ It should be emphasized, howeve: . cheory is‘essentially
deterministic, and applies only where one is dealing with highly structured
materials, where one can:make reasonable assumptions- about the kinds of rules
used in storage and retrieval. . The theory is not designed to handle data from
_typical short-term memory experiments. - {Even-here, however, it can be
suggestive (Scandura, forthcoming).) Rather, the theory calls for quite a
different kind of memory experimentation -- experimentation with relatively
complex and more highly structured materials, where explicit attention is
given to the goal conditions imposed on the § and the kinds of storage and
retrieval capabilities with which he enters the situation..

The only fundamentally new hypothesis involves information precessing.
' The basic ‘assumption isfthat'éacp”individUal §ubjgct;has“é%fixéd'finite capa=
| city for processing information. While this capacity may vary somewhat over
individuals, it is assumed .to be of the order, 7 + 2 units of information.
(The term:bits of information is ‘avoided since it implies.a connection wicn
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information theory which is not intended.) The classic work &i } iller (1956)
is obviously related, but his results were based largely ou averages and
relatively simple tasks., (It is not clear just how (or whether) Miller's
work on card sorting is related to information processing in the sense
described.) It is important that these results be extended to.individuals
and generalized to more complex tasks. We assume that this capacity remains
constant for individuals, whether one is adding numbers, storing information,
or solving problems -~ as well as in repeating strings of digits, as Miller-
had his subjects do. ) .
Demons trating this to be the case, however, is not a trivial problem. '’
Another student, Donald Voorhies, and I have becn working on the problem trying
to refine our experimental procedures to the point where we can get a fair '
test of the hypothesis. We still have some way to go but the results of cur
pilot data wecre reasonably gouod almost from the beginning and this, in
retrospect, is probably what kept us going. In each case, after a certain
degree of complexity was reached there was a sharp 'drop off' in perfor~
mance: Even this, however, required meticulous attention to detail.
First, the procedure in question l'ad to be broken down into its basic states
and operaztors. Space does not permit going into details (this will be done
elscwhere), but the basic idea is closely related to Suppes' (1969) S-R
characterization of finite automata and my reinterpretation in terms of
rules (Scandura, 1970b). Second, we had to get each S to use this procedure
exactly as prescribed.. The smallest of deviations could materially affect
the results. ‘ : '

Another major roadblock was that we could not tell ahead of time
with a new task wheve: the 'dropoff" would occur. Whal was needed was a
general scheme for calculating memory load for any given rule ¢-~but
developing one did mot prove to be a simple_task. We have recently come up
with . sowethlng which seems fguite promlslng,J howaver, and about a week or
s o agc, our data reached about the 80% level of predictability, which may be . -
about as good as can reasonably be expected with this type of tasxv R

Unfortunately, we have so far ‘been unable to test any of our voluntee;~v

Ss (graduate students) on a11 of the tasks we have devised. The data
available at the time. of ‘this wrltlng are summar1zed in Figure 4.

.25




o TR e ... 73 100 [‘ M .
= Subject A - Subject B
B~ . = x 8O~
. neE

n\m) I
[+,
?

A

T T T L S T TG

AU U O T u o

=7 I
: _- . =1/ - ~ - B )
20~ ad 20 = n—l
H : | . H ;4// -. E ‘
o .
0 L2 : =L

7.8.,9 10 e ;

, Memory Load 3

i o i&:%mzj“u .
6

i g - .'.:f\f‘{er'nory loud
Subject C HSubject D

RS,

win 38

i '}r\ﬁr» ) \“%\;ﬁ?ﬁ\?& "}E}f

=~
J

i
\

L

‘-ts_  'i."- . T;:jgwﬁ?;'.. ;Ej? {  i l”}c;;.‘:“;g;;a&§gémﬁ¥%égkﬂy g h._ |
5:-6 7 8 910 56 7 8 9

oo o _Memory toud Memory Load

Repeating 'bigifs _ ' . T = Additien ~ no cf:xny"

!

\ .t . . S B ) ..' e
.Re.pe‘_vd-‘.mg Digits ~ “T" ‘f’.ﬂe'_' AEREPRE g /Z; Addition —.-carry

‘s

r Repeaﬁng Digits ~ P before

-

l Figure 4: The performance of four subjects @ﬂkhe indicated tasks with percentage of perfect
responses plotted against memory load. For comparative purposes, repeating n digits had a
calculated memory lead of n; repeating n digits and then saying "1" had a memory load of n + 1;
repeating n digits after saying "1" had a memory load of n-+ 23 addition of two 2, 3, and 4 digit
numbers without carrying had memory loads of 7,.8, and 9, respectively; with carrying, the

) iyl . N
Y :loads were 8,




Concluding Comments and Implications

The foundations of three partial theories of structural learning have
been described and some relevant data have been reported. First, a partial )
theory of structured knowledge was proposed, in which it was argued that the
knowledge had by any given S may be characterized in terms of a finite set
of rules. By allowing rules to operate on other rules (in the set), it was
shown how new rule could be generated. Examples were also given to show how .
these new rules, in irn, could account for creative behavior. With the addi-
tion of several performance assumptions, this theory was extended so as to
account for learnire, performance, and motivation under idealized conditions
where behavior is unencumbered by memory. Finally, we outlined how memory and
information processing might be dealt with, and reported some preliminary data
in favor of our main hypothesis. Even the wost encompassing theory, however,
does not deal with a number of behavioral phenomena, specifically the ultra
short-term after images reported by Sperling (1960), Averbach and Coriell (1961),
and others. Whether the theory might be extended further to account for these
phenomeria is difficult to say. But, in any case, this might well be left until
later given the large number of questions raised by the theory as it presently
exists..

The theory itself represents a sharp departure from existing theories

of cognitive behavior, although it does have some things in common with exisitent

competence and infirmation~processing theories. . The differences even - here,

however, are not minor, but have a fundamental effect, both on theoretical

‘ ' adequacy and on the very kinds of empirical questions one asks. Probably the
most basic departure is the idea of introducing different levels of empiricism,
and the possibility of deterministic theorizing at each of these levels.
According to this view, it is possible to do behaviorally relevant empirical
research at at least three quite distinct levels. Although all competence
‘models, such as those proposed by Chomsky'inilinguisticS, purport to deal with

1‘know1edge;'¢onCernvtraditionally'has been limited primarily to the so-called

_ mature speaker or hearer who effu: Tye.y kisows all theve is tm know about the

" language. In the present formulation, it is;just”és reasonab¥e to talk about
the knowledge had by different individuals, naive ones as well ‘as mature.

'This is an extremely important characteristic in dealing with subject matters
like mathematics, science, or even language, where knowledge is mot a static

thing, but grows with experience. .
An even more basic departure is allowing rules té act onm other rules.
This seems to me to be the only real hope we have at presemt with which to
account for creative behavior within an algorithmic frawework. There iz a
good deal more detailed work to be done, but so far the main Toadblocks.app=ar
to be ones of detail and not of principle. : N
 The distinction between idealized theorizing and related empiricism, om
‘the one hand, and the more complete theory, including memory, on the other,
is equally basic. By ignoring the effects of memory and.information processing
capacity, for example, it has been possible to deal with quite complex behavior,
such as problem solving and motivation, in a very precise way -~ and even more
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important, in near deterministic fashion. In addition, the proposed
mechanisms of memory and information processing zre simpler and potentially
more precise than those of existing information processing theories. Further=
more, the theory is designed primarily to apply to memory and information
processing with complex structured materials, and not just with the short-
term memory of lists of nonseiise syllables, simple words, or sentences, as has
been the case with most modern memory research.

Let me finally just mention some of the most promising areas of applica-
t ijon of this work in education. Insofar as curriculum construction is
concerned, it is sufficient to simply reemphasize that it is a small
conceptual step from characterizing knowledge of individual Ss in terms
of rules to characterizing curricula in terms of operational objectives.
Unlike the current list type curricula (Lipson, 1967), however, explicit atten=-
- tion might be given to the identification of higher order relationships. As
simple as this change may seem, its importance cannot be overemphasized. It .
makes it possible not only to buiid a good deal of transfer potential directly
jinto a curriculum, but alsoc to capture, I thiuk, what subject matter specialists :
almost uniformly feel has been missing in current curricula of the operational -
_objectives variety -- the creative element. We have a pilot project underway
at Penn at this time, in which we are attempting to apply these ideas to teack=~
ing mathematics to elementary school teachers. It is too soon to say how
e e —things willvactuallyiturnmout,mbutmsoffar_rhingsmhaveﬂbeen_going extremely
- well and we hope that we will be able to teach more sophisticated mathematics ;
in this_way, and to teach it more effectively.

‘A second major implication has to do with testing,. particularly that
sort of testing used to determine maste™y on the objectives which go to
make up curricula of the _ort izdi . .. H:ore, the grouvndwork has been all
Wi eoupl. ed, and application would seem to be a rather straightforward

~operation. In fact, two.of. my students (Jeamnine Grammick and Debra Whitely) ‘ i
‘are actually utilizing.these ideas in arother small-scale developmental
project aimed a;'diagnOSing'difficulties urb=n youmgsters are having with
the basic arithmetical skills. Another phage of this project has to do with i
remediation of these difficulties. In thir rezard, we are using our own
home-grown version of hierarchy constructimm. What we do, in effect, is
simply to identify -the particular algorithm (*ule) we want to teach the ,
child, and break it down into atomic sub-rilesi. . Each sub-rule, in turn, is .
broken down in the same way, until we reactk a level where we can be sure
that all of ouxr subjects have all the neceusa-y ‘competencies. This breal-
down corresponds directly to the hierarchies: obtained in the usual manver
by asking Gagné's (1962) often quoted: questiion, 'What must the learner be
able to do-in order to do such-and-such?" Enlike the traditicnal approach,
however, ours provides a matural basis for .sonstructing alternative
hierarchies.. (since any number of procedures @y be used to generaté the same
.class’ of behaviors). Possibilities also exsist in such areas as teaching
-problem solving, but our work to date has Zeen limited to testing basic
hysotheses. = . ’ ‘ o
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Footnotes

Bigher order rules on rules are common in various branches of
mathematics where they go under the label of functions on functions, but
- the idea seems not to have generally pervaded either computer science or formal’
linguistics. . In formal linguistics, for example, where the goals closely
parallel ours, no cne seems to have seriously proposed the use of higher order
rules. The closest linguists have come in this regard has been to introduce
the notion of grammatical transformation between phrase markers (Chomsky, 1957).
Rather than higher order rules, transformations correspond more closely tec '’
what we have hefe called relational rules (see Scandura, for thcoming) .

There are two good reasons why this has probably not been done in the
past. First, aven gramnatical transformations have so far resisted mathe-
matical treatment (Nelson, 1968), and second, no existing approach to
psychology knowa by the writer provides any real motivation fox introducing
them. Gagne's {1965) view of problem solving as rules on rules and Miller,
Galanter, and Pribram's (1960) TOTE hierarchies come closz, however.

This is unfortunate, since there is a very simple and intuitively sound
reason for allowing rules to operate on (classes of) rules. The main one
is just this: There is a very simple and intuitively compelling performance
mechanism by which higher and lower order rules may be combined so as to generate
completely new kinds of behavior. Furthermore, as shown in the next section,
some empirical support for this mechanism has already been obtained.

2There will always be behavior, of course, which cannot be generated by
any given finite set of rules. Roughly speaking, when translated into behavioral
terms, G8del's (1931) Incompleteness Theorem suggests that no matter how bright

an individual, there will always be certain behaviors he will not be capable
of performing.

3Basically, the technique involves calculating for each step of the given

" algorithm (1) the number of states needed to determine future states, (z)

~he numbexr of operators needed to determine future operators, and (3) the number
* of subsets of the needed states and operators which must be distinguished in
completing the procedure. Details will be  published in a future article. ’
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A Rescarch Basis for Teacher Education
JOSEPH M. SCANDURA*
University of Pennsylvania

For the past fifteen yeais, most of the research activity in mathe-
matics education has been eoncentrated in curriculum development.
During that time, only a small handful of people have been actively
engaged in basic research on mathematics learning.

Today, the situation is changing rapidly. While there axe still only
a few centers actively engaged in fundamental research on mathe-
matics learning, mathemastics educators are turning, more and more,
to basic research as a basis for further developrent. This is, it should
be noted, in direct contradistinction to the earlier views of some of
those engaged in curriculum development—those who made a specml
point of downgrading the importance of basic research.

In this paper, I shall: (1) attempt to explain and account for the
new interest in research in mathematics education during the last few
years, (2) identify some of the kinds of information which every good
mathematics teacher needs to know, (3) describe some of the basic
research cu.mently underway or being planred at the University of
Pennsylvama, and {(4) describe some of the teacher education materi-
als we have developed which are based lar gely on this (basic) researck..

Unfortunately, space prohibits discussion of any of these topics
in the depth they really deserve. I do, however, hope to wnvey two
main points which recur repeatedly throughout this' paper (1) the
tremendous breadth and complexity of the problems which are
involved and (2) the great promise of current and future research as
a bams for solvmg these problems.

*1 would like to thank Chnstopher Toy for his general assistance in the prepara-
tion of this paper. His participation was made possible by a graduate research
training grant to the author by the U.S. Office of Education.







. "before 1970

(1) WBY THE INCREASED INTEREST IN BASIC RESEARCH IN
MATHEMATICS EDUCATION ?

Let us first turn to the question of why the increased interest in
basic research in mathematics education. We can answer this question
best, I think, by tracing the history of basic and developmental
research in this country over the past four decades.

It seems that sucerssful scientific and technological development
requires the presence of two vital ingredients: first, an adequate
scientific base usually obtained through basic research; second, ade-
quate financial and social support, most frequently by governmental
agencies.

As a case in point, consider the space program. Here, a well
worked-out scientific base goes as far back as Newton’s Theory of
Mechanics and includes, as well, Goddard’s more recent work (1922)
on liquid-fuel rocket, technology. Yet, in spite of the ready avail-
ability of this ground—breakmg work, full-scale development of space
technology dldn’t come. about for many: years.. Such+development

-began on]y after consxderable governmental pressure and concomitant -

economic pressure were brought to bear.. Thus, the U.S. did not move
“into space seriously until the launching: of Sputnik by the Sovxet'
Union. was- coupled with the supposed “missile gap’” of the 1960°s.

In. short it was pubhc pressure and continued Soviet accomplish-
ments that prompt;ed Presxdent Kennedy 8 pledge for a:moon landmg' .

And uoday, _@lmost a decade later, after we have seen the spec-

In the late mnet;een-ﬁftles, the smuatlon in mathematucs educatxon )
was much ‘the same - as:-it was in space research: Sputnik also gave
" realization to the American people that mathematlcs education in

o thls count;ry Wa,s woefully madequabe : '

ie ement of Apollo 11, 1t is: questuonable whether the”-'



Furthermore, fundamental advances in mathematical research
in the previous fifty to one-hundred years did, in this instance, pro-
vide a more than adequate scientific base for revolutionizing the
content of school mathematies. (It is worth noting in this regard that
the go-called “new mathematics’ was nof an invention of curriculum
developers of the last decade.)

More recently, though, major improvements in mathematics
education have come more slowly; it has beeir much harder to come
up with new programs which are really better than what we already
have. At best, the most recent programs have simply been refinements
of other programs and, at worst, they have been unrealistic and/or
philosophically indefensible. Some educators, for example, would
have us teach high school students the same material that is at the
present time offered in the junior and senior year to students at our
better universities. Clearly, if one is dealing with extremely gifted
students, this idea is completely feasible and perhaps even desirable.
But, it can only be applied to the teaching of our more numerous
“top twenty percent” by overemphasizing the relatlve role of mathe-

‘matics in the high school curriculum. :

One obvious reason for the slowdown is the economic pressure of
the Vietnam war.-This has resulted in greatly decreased support for
research and development and has'made it extremely difficult, if not
1mpossﬂ)le to-maintain the pace of the late fifties and early sixties.

' Perhaps the most fundamenta; reason,; howeve1 is that we lack an
adequate base'in the behaworal'sclences (and educatlonal phllosophy)
for makmg mgmﬁcant‘fmther 'mplovements in curr1culum develop-,
ment and, more speclﬁcally, here n"teacher educatlon :

. Ineffect when adequato (bas1c knowledge is ava)lable the 1elat1ve :
gains from: developmenta 'vlty are likely to be greater than those
from basxc research, However, aftel development has: proglessed for
a perlod of time, the payoﬂ' from. basm research is hkely to be much
'greater Flguratlvely speaklng, developmental act1v1ty, v1thout basic

. -research is much like. llvmg it up on past savmgs without any concern

for the future. This is the sxtuatlon in which we find ourselves today
in mathematios education. We have largely’ e\hausted our reservoir
of knowledge about mathematics teaching: and must, in my opinion,
b ngn to bulld up a new body of knowledoe before we can e\pect

3.
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further breakthroughs in development. of the sort to which we have
become accustomed. This is particularly true, I think, in the areas of
teaching methodology and the assignment of values to various objec-
tives which might be included in a mathematics curriculum.

The situation is not unlike that in the field of atmoic energy where
on the basis of the knowledge provided by Einstein’s Theory of Rela-
tivity and the work of other pioneering physicists, like Rutherford
and Fermi, scientists and engineers were able to produce in the late
1930°s the world’s first sustained chain reaction. Later, given the
added impetus of World War II, scientists were able to oreate the
atom bomb. Later still; on the basis of the same basic know-how,
they were able to produce the hydrogen bomb and even to go on to
harness the atomn for peaceful purposes. However, when it came to
harnessing hydrogen power (the fusion process) the situation was
quite different. In spite of the billions of dollars that have been spent
on development, the field is at a relative standstill and many scien-
tlsts believe that we will not succeed in taming hydrogen povwer until
we know much more about the Processes operating inside the nuclens
: of the atom. In other words, development, here too, is dependent
: upon ba.s:c resea.rch : o

.

(2) IDENTI{FYING THE INI‘ORMATION A GOOD MA'I‘HEMATICS
TEACHER m:rps TO KNOW Yo

We now turn to some of the ba.suc questlons wluch must mev1tably _
be asked (a.nd a.nsweled through resea.rch) 1f tca.cher education in
= 'ma.thema.tlcs is‘to plogress from its plesent son y: state: To conserve -
. spa.ce, I sha.ll not’ a.ttempt to dea.l w1th the 1mp01tant sub]ect of

1 will focus; 1nstea.d on tn‘e mtcllectual aspects of tea.chel educa.- -

‘ 3 tlon “This does not mean- tha,t Iam: suggestmg (or feel) that pla.ctlce'
"tea.chmg, mlcro-teachlng, or'classroom obscrvation, for exa.mple can
be dispensed : with, but rather that; while “OI‘k in these areas is bemg'
E a.otlvely pm‘sued there is'very little work ; going on whlch deals with’
. the conceptual a.spects oi' teacher. l:ra.mlng So I wﬂl put my empha.sxs
there. ‘ BRI :
The basic questlon we want to ask he1e is, wha.t is it that the
- teacher needs to kknow? Now, it is'obvious that the teacher needs to
4




know something about mathematics—but, what raathematics 2 What
should the level be? The emphasis? Should we teach arithmetic or
number theory ? Geometry or topology ? Questions like these, about
which we all have intuitive feelings, have, I fear, hardly begun to be
dealt with in a systematic way.

Clearly, the teacher also necds to know something about teaching
methodology. In this case, we are even worse off, however, because it
is not merely a question of what methods to tcach but whether there
is really anything now known about methods which is worth teaching.

In the recent past, we have tended to emphzmze such things as
she history of modern curriculuin development in mathematics or
sended to make vacuous sttements about how to motivate children
or how to use audio-visual zids. About the best we have been able to
do is to talk about particular approaches to the teaching of specific
topies such as the multiplication of signed numbers to specific kinds
of students. The alternative has been to espouse mislexding doctrines
concerning discovery teaching, inquiry training and the like.

. While I do not quarrel with most of these ideas themselves, I do
question whether this sort of approach really helps teachers to under-
stand what mathematics education is all about. I have observcd far

too many classroom teachers who talk about such things as commu--

" tative and associative laws without having the foggiest notion of what
all of this might mean in the broader context of mathematlcs educa-

_ tion. Many of our more recent. gra,duates—even our so-called better
-trained elementaly school tea,chers, ‘are. merely replamng one set of

termmology with a,nother And thls is certamly not mathematlcs

teachmg at lts best. I feel that we must do better if we are ever going -
to prowde our chﬂdren w1th the kmd of educatmn we would all hke :

i them to have

To do thls, the ﬁrst thmg we, must do in my op1mon is to a,v01d k

: the archam and artlﬁcla,l d.whotomy Whlch separa'oes mstructlon in
ma,thematms per se, from the methods one might use to tea,(,h ‘mathe-

Zv matncs (Thls dlchotomy ongm:»lly developed because of poor ‘com-

munications between departments of mathematics a.nd departzments.
of education at our umversntles and colleges Too freouently neither
department has been willinig or qua,hﬁed to do the work of the other.

However, I am happy to sa,y that as more and more well—tramed '
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mathematics educators enter the field, this commumcatlon gap is
slowly closing.) . -

It is of as little value, to give elementary school teachers empty
statements about nonexistent theories of instruction as it is to teach
them .. .. ‘ovel mathematics which they cannot fathom. And it is
still worse t@ separate the mathematics $hat.teachers learn from the
methods ey i1l useto teach: others. For one thimg, teachers who
learn matfiemssiics in . solation from methodology frequently have
considerakve diffficulty translating the material into:a form which can
be taught=ncizidren.

Furthermaswes, there: is simply not much that ome can say, at
present, about: . zetho&swhich do not includs specific content. Even
if general prin.ciples aze found—and I think that some will be—the
teacher nrwst still learn. how to apply those principles to specific
mathematical+iepics.

What weueed to &o is to conceive of the teacher’s job in more
operational' terms tham we have in ths past We should, in fact,
reformulate our question of what the teacher should know to read,
“What areithe capabxhtles which the teacher needs in order to’ teach
mathematics eﬂ'ectlvely 2

In thls context, consider the sub]ect matter. In my opinion, the
teacher must know, in fairly explicit terms, what kinds of miathe-
matical behavior to exnect of her students. She needs to know, too,
somethmg about the com, petencles requ1red to elicit these behaviors.
“This will mvolve such thmgs"as “the ability to compute (in anthmetw), ;
the ablhty to make 31mp1e d eowferles and, even the ability to prove
‘a simple’ theorem: ‘At the pfes ent t1me there is relatlvely httle that"
is known about these thmgs ‘ , ‘

‘For m.stance, the questlon of how best; to characterlze the know -
: ledge which unde111es some given u_mverse of behawors associated
- with a partlcular sub]ecb matter like’ mathematics. has hardly been'
-agked. Tt is true. that some plomlsmg beglnmngs have been made in
the: ﬁeld of. formal llngmstlcs but, agam ‘almost nothmg has been '
done m mathematms orin any of the other school sub]ects b

In addition to knowmg somethlng about the general nature of
‘ mathematlcal knowledge and mathemamcal behavxor, 1 feel that the

- ' . . [



skilled elementary school teacher : ° 5 needs to know the objectives
of elementary school mathematics and to know how they relate to
the rest of the curriculum. For another thing, the teacher should have
some rationale or general set of or :eria for selecting and modifying
the objectives in any given cwric.urm. The goals for a good mathe-
matical education in affluent suburb: may be very different from the
objectives in the inner city slums 6i our metropolitan centers or in
farm communities across the country. In short, what might be a
sound cwrriculum in Palo Alto, California, or Scarsdale, New York
could be untenable in North Philadelphia or Zap, North Dakota.
The basic question is how and why these objectives should change.
We need a general philosophical framework within which to make
such changes and modifications in curriculum. Without such a frame-
work, we can only state opinions and are unable to subject those
opinions to the scrutiny of others.

Teachers also need to know more than a grab- ba,g of teaching
techniques and interest-getting devices. They need to acquire abilities
which pertain to the teaching and the learning of mathematics
generally. And, they need practice in the appllcatlon of thcse prm-
ciples to a wide variety of mathematical topics.

For example, teachers should know something ‘about how to
identify operationally the objectives'in text materials and exercises.
Many textbooks simply ‘do not coordinate. their content with the
exercises they offer. While they may talk a good deal about teachmg
students how to d]scover, for. example, thelr exereises often amount
to little more than simple applications of what is dn:covered ’ B

Another ability which all. teachers- should have is the a,blhty to
identify. the pre1eq1us1tes for learmng ‘any paltlcu]ar task The ,
~teacher should be able to determme in loglcal systematlc steps what
it is that the student needs to’ know before he.can.be" expected- to
learn or perform the desn'ed task; Flgm atlvely speakmg, the teacher -
ought. to. be able. to: answer ‘the questlon of ‘‘why Johnny: can’t

multiply”. What'we want, ‘then, is a superdlagnostlcxan ‘whe ca,n -

identify the source dlfﬁcultles under any and all circumstaiices. -

In addition, teachers should have the ability to assess (determme)
the knowledge that a given student has. Unless the teacher is able to
consgtruct - test: items which will- get precisely at what particular

7




children know, she can never determine for sure whetier he: students
have the necessary requisites for achieving what she srants them to
achieve. Indeed, she will be unable to determine whether, in fact,
they have learned what she intended to teach them.

The final:ability we shall consider is the ability to motivate, the
basic requisite for all learning. To date, the best we Lkz=ve been able
to do in this area is to give the teacher specific techniques for teaching
specific topics or, more specifically for motivating children to learn
these topics. Sometimes e give the teacher general acivice like, put
the mathemadtics in the context of a game or, make up problems which
deal with things in which the child has an interest. Althovugh advice
like this sometimes succeeds, it fails as often.

There is a real need, I think; to talk more about basic principles
and, even more important, to provide the teacher with a general
frame of reference for thinking about motivation. Hopefully, the
" teacher will then be in a better position to make up her own mind

and to evaluate her own techniques for motivating children to learn
in the variety of situations which confront her everyday. .

' On too many occasions, I have heard professionals (like myseli')
shrow up their hands in dismay and say something like, what we need
in mathematics education is to develop ‘‘teacher proof” texts. This
is nonsensc, ‘of course. Good teachers can save even the worst texts
and poor teachers frequently render the best texts incomprehensible.

. Since we are a long way off from replacmg the teacher—if, indeed,
we ever should——-we must train teachers to.use textbooks eﬂ?ectlvely
- 80 that the textboo ot do not use uhem '

(3) NEW DIRECTIONS FOR BASIC RESEARCH m‘
R MATHEMATICS EDUCATION E ’

Obvxously, we do not have all of the necessary mformatlon There
is much we need to know. I'am happy to'szy, however, that progress
is being. ma.de and that the future looks quite promising indeed.

_ Rather than ‘attempt to review all of the research which bears
directly or indirectly on mathematics education, T will limit myself
in this paper to the research in which I have taken part. I have dis-

cussed elsewhere my completed research on the learning of mathe-
" Iatical rules, the ability treatment-interaction'question and problem

8
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solving so there is no need to go imto thwt here.* Tnstead, what 1
would like to de is te¢ Jdescribe some of the- things that we are now
doing and plan to do as part of our new re earch project in mathe-
matics and structural learning.*¥ While I .==n do no more here than
simply scratch the surface, I would iitke t«  rall particular attention
to the new directions we plan to follow-.

One of the major concerns of the projeciiis the prroblem of how to
characterize.mathematical knowledge. By fthat I mcan that we want
to know how to account for the bethaviors: whick knowing mathe-
matics makes possible. And, we want to @ceount for these behaviors
in & way which is both (1) mathematically vitable—that is, compatible
with the way mathematicians think about their subject—and (2)
behavioral in nature.

While very little research has been done ‘on this prcblem directly,
there is mnch to be learnsd, I think, in this regard by considering

-some of the limitations of related research. “inrrent work on opera-

tionalizing objectives, for example, obviously deals with behaviors,
but the research has a distinctly post hoc flavor and <oes not provide
a viable characterization of contemporary mathematics. This is true
not only because of the almost exclusive emphasis on what might be
called “rote rules’’—but, als¢ because:very little attention has been
given to such questions as how to characterize the higher order -
intellectual skills. involved in actually doing mathematics or even
how to characterize knowledge of the obvious relationships which we
know exist between different mathematical rules. I shall say more on
this below. I‘ulthermOLe, no distinction has been made between the
béhaviors ‘a subject might elicit, and the .mowledge which. might

- account for that behavior: This is an extremely lmportant d.xstmctlon

in planning a curriculum’because - there are. many different ways in

- which a person might learn to ehclt any given class of behavmls The
‘ spemﬁc ‘form of the curnculum “itself will depend; for example,

on Whether we want to teach chudren to subtract say, by borrowmg

-

"‘ -For' a -summary - oi much of -Jhls rcsearch 8eo my recent art;xcles in Acta.

.Psychologlca New Directions’ /for Theory and . Research. on Role Leammg

1. A Set-Function Language.’ 1908, 28, 301-321. II. Empirical Respnrch 1969, 29,
101-133. . III Anelysos and Theoretical Dircetion: 1969, 29, 205-227. :
*#This research is being supported through a gramt from the U.S. Office of Fruca-

ticn to a commlttee of the Na.tlonul Acadcmy of Sclences for basie 2:3warei in
oducation. :
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or by the method of equal additions. Simjlarly, we can teach the
so-called three cases of percentage separately or as simple variants
on a common theme. . ‘ '

A second line of research related to the problem of characterizing

‘mathematical knowledge, is associated with formal linguistics. The

methods that linguists use to analyze language, that is, to identify
the competencies underlying language behavior, are very similar
to the kind of methodologies we need to use to identify the com-
petences underlying mathematical behavior. The specific kinds of
competencies which are most eritically involved in language behavior,
however, are simply not the same as those associated with mathe-
matics. For example, although linguists such as Chomsky have argued
the need for higher order competencies, which deal with relationships
like that between passive and interrogative forms of a sentence, there
is by no means uniform agreement on the point. One could hardly
find a mathematician on the other hand, who did not feel that such

higher order relationships form the very essence of mathematics—

not to even mention what appear to be important differences in-the
nature of these higher order competencies.

To ma.ke‘ma.tteréwbrse, linguists'haveiexpended most of their
research efforts at the syntactic level, that is, with grammatical

‘relationships between, for example, words and sentences trea.te'(j as
_entities themselves, and have almost disregarded the level of seman-

tics or meaning. In ordinary mathematics, one can hardly get started
without having to deal with both levels.. ’

' ‘Thus, while. it, is-true _t_haﬁ we can gain many valuable insights-
into our problem from the methods of research used in formal linguist-
jos; it is equally clear that we must be ready to extend and even

* “depart from thattfalditidn ‘where necessary. -

-~ There is also much t6 be learned fréhl Work in ﬂhle‘foundé.tioné of_v ‘_

" mathematics but, bere, ‘we must be even more careful. Specifically,
*ju the foundations of mathematics the basic problem is one of clari-

fying the nature -of the’ relationships between diffevent ‘kinds of

‘mathematical _injg_cf;s.;_The~Sz'né”qita non of Tesearch in: the area is a

formal and precise characterization of the mathematical objects in-

‘question. Now, this characterization, as it is usually expressed, is
~ designed primarily to 'make (doing) the (meta-) mathematics easier

-
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and has little to tell us about the way in which one might charac-
terize mathematical knowledge.

Although I have been working in this area for a number of years,”
it is only recently that I have begun to feel that we are finally begin-
ning to get at the heart of the problem. Stated simply. it is how can
we, account for complex mathematical behaviors; more directly to

- the point, kow can we evaluate alternative characterizations of the

same behaviors? The truth of the matter is that there may be any
number of ways of accounting for the same behaviors. The important
thing is that cert.in accounts are undoubtedly better than others,
and our goal, obviously, is to come up with the best one possible.
For example, one might conceivably characterize a given mathe-
matical curriculum by listing all of the separate compstencies which
can be identified. One competency, for example, might malke it poss-

" ijble to add and, another, to find the areas of certain geometric figures.

This is basically the approach taken by those who would reduce
curricula to sets of discrete operational objectives. There may be other
ways of accounting for the same behaviors, however, which are in
some sense both more powerful and/or more parsimonious. By “more
powerful”, ¥ mean that the set of competencies makes it possible to
generate more of the desired behaviors than the original (set). Even
where two different sets of competencies account for all of the initial
behaviors, one of them may be more powerful .in the sense that it
accounts, in addition, for behaviors outside the initial class. And by
“‘parsimonious™, I mean that the. characterizing list of competencies
is in some way shorter or more hlghly orgamzed and interrelated.

Suppose, for example, our orlgmd.l aim was to account for the
ability to add and the ability to subtract. In this case, one might
simply ldentlfy one  competence whlch accounts for addltlon and .
another for subtraction. Another way “of deahng with the ‘same:
behaviors, however, mlght be to introduce the same competency for
addition and a higher order competency which déals with the relation- -

.ship between.any. bmary operation of which ‘addition is just one

anmple, and its inverse. Here, we would get subtraction “free”, soto
spealk, since it can be generated by applylng the higher order compe-
tency to addition. More important, given any.other binary operation

hatever, such as pcrformmg one permutatlon on a set of ob;ects

1




followed by another, one can automatically gencrate (account for)
the inverse capability as well. In effect, while each characterization
contains two competencies, the latter is far more powerful since it
allows one to generate behaviors outside the orloma.l class in a ' way
which the former never could.

Although we have hardly begun this line of research it is aiready
clear that current approaches to curriculum cevelopment, based on
operationalized objectives, are entirely too fragmented. Most such
curricula consist ¢f nothing more than long lists of discrete objectives.
While we must be careful not to underestimate the difficulty of the
task, I would contend that cwriculum development and teacher
education, to name just two areas, cannot help but gain from system-
atic research along the lines just described.

While on the subject, I might also discuss some of our work on
identifying mathematical processes. Let me first say what I mean by
a mathematical process. A mathematical process is a (usually very
" general) intellectnal skill (or competency) which whilec essential in
doing mathematics is not normally considered to be part of mathe- -
matics (content). The fact that such skills act behaviorally in very
much the same way as other competenciez. was shown in a recent
study by Roughead and Scandura.* In that study, it was shown that
the skills subjects learn by discovery can sometimes be specified in
details:and presented directly by exposition with equivalent results.
I would also like to say something about a scheme we have developed
for cla,smfymg such processing skills but space does not allow and I
must refer you to my forthcoming book which deals with the prqb-
" lem: M athematics: Congcrete Behamoml Foundations for Teachers.
Suiﬁce it to say here that it appears that all such skills may be classi-
ﬁed in one of four blchrectlona.l and mutu&lly exrluswe categories.

The first is the ablhty to detect regularities and the inverse a.blhty
of pa.rtlcula.nza.tlon The second -is the-subject’s ability to describe
what he knovs and its inverse of interpretation. The third is deductive
reasoning.. This ca.tegory involves drawing: inferences, on the one
hand, and, ¢:1 tiae ‘other, axiomatization—the ability to ldentlfy key
ideas (in some class of ideas) from which all others may be deduced.

- What. i{slearned” in Mathemutma] Dmcovory Jeurnal of Educatzonal Psycholog_/,
- 1968, Vo] 59, No. 4, 283-289.. ‘
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Finally, we consider storage and retrieval processes which are asso-
ciated with memory. We are just beginning a major project in this
area aimed at identifying and determining the utility of specific pro-
cessing skills and I hope to have more to say on the subject in the
next couple of years.

Another area in which research is badly needed concerns the
development and application of criteria for selecting from among the
large number of available topies in mathematies those which are most
appropriate for any given group of students. This is a very difficult
problem area in which to work because, in addition to raising mathe-
matical questions about internal consistency, and behavioural ques-
tions concerning feasibility, it raises some very basic questions of
priority and value. We are just beginning to explore-this problem,
but one thing has alveady become clear. There are many paradoxes

_that we are going to have to dcal with. For example, we are going to

have to resolve such dilemmas as this: Although it would obviously
be desirable to both maximize the learnability of the material we
present and, at the same time, maximize the generality of the same
material, these two goals ar< not compatible. They clash head-on
with some of eur own research findings* which tell us that in order to
maximize learnability one must increase specificity, and viee versa.
Therefore, any decisions we make along these lines will necessarily
be value deCISIOIlS Though this is still largely virgin territory, it is an .
ares of great importance and we are hoping to mterest “enllghtened”
educatlonal plulosophers in our work

All things. consldered we are plobably most deeply engaged in
work i in still a third: ma]or problem area. Slmply, the problem is.to
determme how mathematlcal knowledge is put to use and, how such .

‘knowledge is learned in the first place. Here, again, I ‘break sharply

with tradition. I do not. feel that applied educational research, for
example, while of proven value in dealmg W1th certain kinds of
problems, is going to ‘tell us ve1y ‘much- about how mathematics is
learned; no matter how well desm’ned the studiés may be. As a basis
for this statement, I can refer to my dissertation: The Teaching-
Leammg Process An Exploratory Investzgatwn of Exposztwn and

‘Scandura, J. M., Woodward E., and Les, F. Rule Gcnemhty and Consistency in

No. 3.

. Mathematics Lenrmng. Amencan Educatzonal Research Journal Vol. 4, May 1967,
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Discovery Modes of Problem Solving Instruction, Syracuse University,
1962. There, it was shown that very minor within-method differences
can hove a greater effect on experimental results than differences in
the basic methods themselves. JEven more important, the basic vari-
ables that seemed to be involved are not subject to manipulation in
the usual way. Different research methods are called for.

I reject, as well, current theorizing in so-called “academic’ psy-
chology. For one thing, the type of theory that people have been
concerned with in this area is essentially probabilistic—that is, rather
than attempting to male specific predictions about the way indivi-
duals will act in given mtuatlons, such theories talk, instead, about
‘the probablhty of occurrence of various events. While this is worth-
while mi’ormahon to have, it is not the sort of thing we need most to
know, say, in tlymg to teach students how to solve quadlatlc
equations.”

"The problem as I see it, is that theoues of this sort treat everyone
. on the same Plane. First;, assumptlons are made about how individuals
. do thmgs Then after mtroducmg random variables into the p1ctu1 e,
prcdlctxom are made concerning group statlstlcs, such as means and ,
variances. Next, experiments are run with groups aud the results are -
crnnpared w1th the pre(hctlom So far, so good. It is the last step that'

' causes the difficulty. As @ result’ of the' comparison, 1nfere11ces, are

-typlcally drawn' about how 1nd1v1dual sub]ects actually do thmgs * .

. Whlle this may be- a reasonable sort of" assumptlon to make wﬂ:h
“najve’ rodents or with- human sub]ects When dealing with 81mple'
-reﬂex behaviors, it mmply ‘does not .apply to the learnmg of more
complex material like mathematlcs What humans .do on ahy non-
trivial situation depends in a very direct sense on what they already
. know and can do. Any attempt at theori izing which i ignores or other-
wise bypasses individual differences, cannot in my opinion, hope to
‘provide a viable model for educatlon . :

My own present approach ‘goes ‘in qmte a dlﬂ'erent d]rectmn
Rather than t"reatlng individual dlﬁ'erences as unwanted or ‘uncontrol- ,
able experlmental varlables, I have, durmg the past year a.nd a half .

'Tlns basxc fa]ls,cy is wrde]y recogmsex._ in psychology, but for one reason or another,

C few psychologxsts seem suﬁ’-iclent]y ‘concerned to’ try to do anything about it. Appa.r-

. ently, it’ has been the sort of thmg whmh s much ea.sler to sweep under the rug a.nd )
‘ forget - S L . : :
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been heavily engaged in deterministic theorizing about individual
processes. Obviously, this is not the place to go into detail about such
matters but let me at least outline some of my concerns. One problem
area in which one of mmy doctoral students, John Durnin, and I have
been deeply engaged concerns assessing the behavior potential of
individual subjects. More particularly, we are attempting to deter-
mine which items in a given class a subject will be able to perform
successfully on and which he will not, on the basis of his (prior) per-
formance on a small finite number of test items. At a strictly theo-
retical level, we have been able to prove theorems about the number
of test items needed, with respect to any given class, and, even . more
important, how to go about selecting these test items. At the time
of this writing we have just begun. empirical work on the problem
but the results, so far, seem extr emely promising.

Another line of research is concerned with the problem of explain-
- ing and predicting. “what a subject will-do next’’. More particularly,
given some general. contest relative to whxch a subject has learned a
number of relevant rules, the quest)on is why does he select the rule
_ that he does use. This turns out to be a very complcx problem and,
‘oddly enough it turns out to have much in commmon with the peren-’
" nial p1oblem of motxvatlon Although our work* in the area is also
~just” begmmng, prehmmary evidence. suggests ‘that, in’ general
- ‘subjects tend . to select the path of “least’ remstance” Thc major
- problem, of course, w11] be how to cha1acter1ze a path of least
,res1stance ‘ :

The ﬁnal hne of research I W1]1 mentlon concerns the mechamsms ‘
' that people use to solve. problems ‘To date, most of my work in the
~ area has been of a theoretical nature, but by a stroke of luck, it turns
out that one of my earlier experiments** bears more or less directly
on the major hypothesxs involved. Loosely speaking, the hypothesis
is thatif a subject does not have a rule available for achlevmg a given .
goal, control automat1cally shifts to the: hloher-order goal of deﬁmng
such a rule. While it is basically a very sunple idea, this hypothesm
has prov1ded an adequate base" for analyzmg some falrly mvolved

‘ "‘ancme Dndxcott is workmg w1th me.

- “Scandu.m, J. M. Leammg vcrbal and symbohc statements o_f mathomatical ru]es
: 1967 (Journal oj Educatwnal Psychology, 1967, 48, 356—364 ).




mathematical problems, such as those discussed by Polya in his r_narly
books on ‘mathematical problem solving. Needless to say, we are
planning further work in the area. -

In doing this research, I have found it useful to distinguish
between what might be called “mcmory free theorizing”, such as that
described above, and theorizing which involves, as well, the limited
capacity of human subjects to process information. This distinction
has helped lead me to the beginning of what seems to be a rather
* gimple (but apparently adequate) theory of complex learning and
behavior, Although it is much too soon to determine the ultimate
value of such theorizing, I am hopeful that research of this kind will
‘have very important 1mphcatlons, both for the sort of future research
" that will be done in psychology and more 1mportantly, for educatlonal :
practice in our schools :

(4.-) som: MATBRIALS FOR TEACHER EDUCATION
DERIVDD mo*vr BFSEARCE

, Whlle we have balely scratched the surface in th1s research our‘
« Atheorlzmg has motlvated several very pract1cal pro;ects in teacher

~_education.: Our first proJect is a1med at content for. elcmentary school

" “teachers. The materlals we have developed are, dlﬁ‘el ent from ex1stmg

- ‘materlals in- that they-e"nphamze what mlght be called thb concrete
o behav1oral foundatmns of athematics; Furthermore, they integrate

certain aspects of methodolo v with -the content in a rather unique
- way.In partlcular, they deal vnth what nught be called mathematical
_processes or h1gher~order intellectual skills, which are mvolved in
doing mathematics, ‘but Whlch are not typlcally asse 1ated with
mathematlcal contcnt

The processes we have smgled out fall into three.of the general
~ categories mentioned above. The. first i is- the ability to detect regu-
larities. The second is the ablhty to reason dcductlvely and the third,
i the ablhty to 1nterpret verbally presented information-—or to learn
by expos1t1on "The text we have prepared develops each of these
processing skills 1nd.1v1dually in the first chapter. Then the reader is
aslked to, apply these skillsin. WorLJng Wlth the mathematlcal content
in the remamder of ue book ‘ o :
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Chapter 9 Fundamental Mathematical Ideas—sets, relations,
furctions and special cases thereof

Chapter 3 Logic and Set Operations

Chapter 4 Mathematical Systems, Theories, and Relationships
Between Systems . : :

Chapter 5 The System of Natural Numbers

Chapter 6 Systems of Numeration and Arithmetical Algorithms
Chapter 7 The System of Positive Rationals

Chapte: 8 The System of Integers :

Chapter 9 .The System of Real Numbers and Further Extensions

The final chapter ends, showing how algebra, the study of discrete
entitics, meets up with goemetry, the study of continuous variation,
‘through thé limit process. ' ‘ : S
. This text is cssentially complete and is being used in one of our
ciasses experimentally before -the final version is published - by
Prentice-Hall. We are,; at the moment, involved in fine-tuning the
text and developing exericses for it. ‘ o -
Most of the material in the book is traditional and, yet, the bool
-is not traditional jz'many ways. For one thing, it is the first attempt

that I kivow of to discuss niathematical processes in a systematic way.
* Furthermore, it is also the first attempt to apply such processes to a
- wide variety of mathematical content: The text and the céxercises-are
" designed to have the reader learn the mathematical processes which
" -are useful in the various content sections by actually identifying and
using such processes. There i in ‘the book, too, a strong emphasis
on the relationship of mathematics. to ‘the real world; an emphasis
that does niot exist in other teixts for elementary school mathematics
teachers. SO e - o ' ‘
' We have also tried to emphasize the relationship betwcen the
various mathematical topics treated in the book. That is, we have
" attempted in our pers‘ex'ita'.tion to build on the similarities and differ-
ences, between the various:topics. This, T think; 1ot only gives the
reader deeper insight into. the "x‘h'a.tieriay.l', but it also provides for con-
tinual review by encouraging :the comparison of new material o
- material which has already been {earned. . = S

It shbuld be i‘émém:bej-éd‘,'f't}}iough:, tha.tv'this. is only a;' siha.ll Beg'ih- »




BINA .17ox: Provided by eric [N

ning and cerisinly not the full lowering which I envisage in this area.
In fact, we are now planning a far more ambitious project which will
attempt to deal systematically with each of the areas I mentioned -
in section (2). In particular, we want a text which deals with the
nature of mathematical knowledge. We have already done most of

. the needed rescarch,* our problem is to translate these ideas into a

form that will be suitable for teachers. Another goal is to identify the
specific objectives of the elementary school mathematics curriculum
and to devise a sound rationale for their existence and/or modifica-
tion. Finally, we hope to identify, describe, and illustrate general
teaching principles which the teacher will be able to use in a wide
variety of situations. Tm:this work, we plan to draw heavily on our
own theorizing abei womplex strmetural learning. Since teaching:
refersto what one ditE==io promote learning, however, we shall have
to translate this theorizing (which omly tells us things about learning},
inte a practical formifaat teachers wam nse. In particular, we necd to:
ask what one mustdio.in order to gramote learning. In this sense, we

" need o look at teachifing. you miglt say, as a mirror 1magexof learn-

ing **
In outline form,, thu=n, wha,t I have: a,ttelnpted to do in tbls pa,per

.15 %o (1) indicate why ba,sm research in mathematics . .education is

badly needed (2) to identify some of the kinds of 1nform'mt10n which
every. good mathematics teache1 needs (3) to describe some of- the
basic research which we have under way and also to mention some
of the implications of this research for further development in ma,the-
matics education and behavioral 1esearch generally, and (4) to des-.
cribe some of our:current developmenta,l activities in teacher educa,- »
tion in mathematics. : e -

In conclusion, I want to emphasue tha,t our dcvelopmenta,l :
activity has been motivated by two things: first, a concern for needed
improvements in courses in teacher education and second, the con-
viction that basic research in mathematics and: structural learnlng
can and will prov1de the basis for such 1mprovements

*To be reported in a monograph I am’ editing on .Mazhema/hcs and Structural
Learning, to be published by Prentice-Hall next year. .

. **8ep niso Gage, N. Li; “ Theories of Teuchmg." Theorics of Learmm{ and !nstruc-
tion. (Ddl\.ed by Eraest R Hilgard.) Sixty- third Yearbook, Part 1, N: o.(-xonal Society -
for the Study of Education. Chicago: University. of Chicago press, 1964, . Pp- 268-285 .
and Scondura, J. M., Teachmg—-—'l‘echnology or Theory Amencan Educatwnal Re.
search J'ournal 1966, 3, pp 139 146 . .
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