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ABSTRACT
This report contains four papers describing research

based on the view of mathematical knowledge as a hierarchy of
"rules." The first paper: "The Role of Rules in Behavior" was
abstracted in ED 040 036 (October 1970). The second paper: "A Theory
of Mathematical Knowledge" defends the thesis that rules are the
basic building blocks of mathematical knowledge. These rules operate
at different levels, for example: addition and subraction at one
level, the idea of inverse operations at a higher level. Mathematical
creativity then consists of combining rules to produce new results.
The third paper: "Deterministic Theorizing in Structural Learning"
describes experiments based on this hypothesis, in which a subject's
performance on certain tasks is predicted with virtual certainty from
his performance on the component rules. The role of the memory is
also discussed, and experiments are described supporting the view of
the mind as an information processor with a fixed capacity- The

fourth paper: "A Research Basis for Teacher Education" 'hat
teachers need to know more of the aims of the mathematic:.- t' 7 teach,

more of the way mathematical knowledge is structured, and more of the
way students learn. The author's research ,on structural learning (as
described in the second and third papers) is then summarized, and
possible developments are outlined. (MM)
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SUMMARY OF

MATHEMATICS AND STRUCTURAL LEARNING

INTRODUCTION AND OBJECTIVES

This research was concerned with two basic problems.

1. The first objective can be stated as a question, "How can mathe-
matical knowledge be characterized in a way which is at once behav-

iorally significant and compatible with what is.known about mathe-

matical st-ructures?" We ware interested in pursuing this research
at two levels.

(a) We wanted to further clarify both the nature of rules and

their role in behavior.

(b) We also wanted to explore the possibility of extending our
rule formulation to provide a basis for characterizing more
complex mathematical knowledge.

2. The second major objective involved the development of a psycho-

logical theory -- of operational definitions and theoretical assump-
tions which were compatible with our rule based characterizations.

More specifically, we'wanted to consider the following problems.

(a) How can .one operationally define Waat rule an individual

is using in terns of tti behav:or had already

ptopulic' A preliminary version of such a .definition and Levine

had done this for the special case of discrimination learning

bUt many details still-needed_to be worked. out..

(b) The learner often hae available: seVerali. tways of accomplishing
a-particular task and why he Usea:the pronere he does use Is

not at all clearBuilding,on some expertmeatal research. We .

had already completed,we wanted to come p rith some fundamental
proposals that would be suitable for detaflea experimental testing.

(c) We hoped to explore the fundamental qii..estion of how existing

knowledge is combined to make new behaviorrTlossible.

To the extent that time and funds allowed,we also planned to

comduct same pilot work to test our theoretica:lideas.



RESEARCH OUTCOMES AND IMPLICATIONS

While we did not initially expect to fully achieve our aims

during the course of this short project, things progressed more
rapidly than we had dared hope.

Part 1.

An entire paper, "Role of Rules in Behavior: Toward an Oper-

ational Definition of What (Rule) is learned," now published in
the Psychological Review, is devoted to the first problem. In this

paper, a precise formulation of the notion of a rule in terms of
sets and functions -- the Set Function Language (SFL) -- is proposed.
In particular, the extension of a rule is viewed as a function, or

set of S-R pairs. The rule itself involves a domain, an operation,

and a range. It is argued that this molar formulation cannot be
captured by networks of associations unless one.allows associations

to act on (other ) associations. This formulation is then used as
a basis for showing how rules are involved in decoding and encoding,
symbol and icon reference, and higher order relationships. De-

coding and encoding are shown to involve insertion into and ex-

traction from classes, respectively. Reference is viewed in terms
of rules which map equivalence classes of signs into the classes

of entities denoted by these signs. Symbols are shown to involve
arbitrary reference, whereas icons retain properties in common
with the entities they denote. Higher order relationships are
then expressed as nigher order rules on rules. This is a direct

generalization of associations on associatI,NT,

Furthermore, a partial solution is posed to obj,active (2a) --

th vexing problem of ''what (rule) is learned." Given a rule-governed

class of behaviors, "what is, learned" is defined as the class of
rules which provides an accurate account of test data. Empirical

evidence. is presented for a simple performance hypothesis based on

this definition.

There are three majoi'directions in which future research might

proceed'. First, the rule formulation (SFL) itself undoubtedly can

be,further.improved. While we feel reasonably confident that the
basic ideas presented in this paper would. hold up under further anal-

ysis, additional detail must be added--- but only as much as is abso-

lutely necessary to deal with behaviorally relevant aspects of the

.ruleoonstruct.

Second, the SFL might profitably be used as en analytical tool

to help clarify what is involved in many kinds of structured learning

and performance. Most of the SFL-based research conducted to date

has conceatrated on an analysis of what is being presented, the

nature of the required outputs, what is being learned, and the inter-

relationships between them. While such analyses can, at least to

some extent, be undertaken without the use of the SFL, or for that

matter any other scientific language, the SFL seems to provide a

useful framework for putting things into perspective and for helping

to clarify difficult points. In the author's research a number of



questions have been asked on mathematics learning which seem not

to have been asked previously in any serious way. For example, we
have found that what is learned in mathematical discovery can sometimes

be identified and presented by exposition with equivalent results.

Similarly, we were led, on the basis of an earlier finding, to the
question of what in the statement of a mathematical rule leads to
extrascope transfer.

The SFL needs to be applied more systematically in studies in-

volving subject matters other than mathematics and, in particular,
we need to determilie where the SFL might profitably be used to formu-
late research and where not. There is reason to believe that tha SFL
may be applicable only to the extent that the classes of overt stim-

uli and responses involved can be viewed as. discra.te (i.e., nonover-
lapping) and exhaustive entities. While these requirements are met
throughout much of mathematics and other structured knowledge, this
may not be the case in such areas as social studies, poetry, and

even language, where synonymy does not necessarily imply equivalence.
It is hoped that other investigators will apply the SFL to a wider
range of tasks and thereby help to clarify further its relative

strengths and weaknesses.

Third, theoretical assumptions need to be made and their impli-
cations need to be drawn out. Although this paper is concerned pri-
marily with describing a new scientific language, it was not possible
to completely avoid reference to theoretical assumptions. Thus, the
proposed operational definition of "what is learned" would be behav-
iorally meaningless without an application assumption. Fortunately,
there is considerable empirical support for the idea. While such

an assumption is clearly not sufficient for a theory of structural
learning, it -alight nonetheless come to play a central role. Whatever
form additional theoretical assumptions might take, it seems almost

certain that they would be more compatible with c6gnitive (rule-based)

notions than with those based on neo-associationism. Nonetheless,

any complete theory of structural learning will undoubtedly require
reference to such things as the limited capacity of human subjects
to process information. Without recourse to some such physiological
capacity, I can see no way in which to explain memory or other aspects
of information processing.

Part 2.

An effective answer to objective (lb) is provided by a second
paper, entitled "A Theory Of Mathematical Knowledge: Can Rules Account

-for CreatiVe Behavior?"

In this paper, we proposed and defended the rather strong thesis

that rules are the basic building blocks of all mathematical knowledge.

The main purpose of the paper was to Indicate how complex mathe-

matical behavior might be:accounted for in terms of finite rule Sets.

Every mathematical system consists'of one or more basic sets

of elements, together with one or more operations and/or relations
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and/or distinguished elements of the basic sets. By capitalizing

on certain logical equivalences it is possible to reduce the char-
acterizing elements to one basic set and one or more relations.

Consider a simple example -- the system whose basic set consists

of three "undefined" elements A,B,C, denoted iA,B,C3, with A being
distinguished in the sense that it serves as an "identity," and

whose defining relation is0 = 1(A,A)---) A, (A,B) (B,A)--)B, (A,C)
(C,C)-1.B, (B,C)-1A, (C,B)---)

What may.be called an embodiment of a mathematical system results

on assignment of meaning to the undefined elements. Thus, in the

example just cited, the undefined terms might correspond to certain

rotations with A corresponding to a rotation of 0'; B, to a rotation

of 120°; and C to a rotation of 240°. In this ctase, the operation

would simply be "followed by." For example, a rotation of 120°

followed by one of 240° results in the same action as a rotation of

0°.

What kinds of behavior are implied by knowing systems and em-

bodiments of this scrt?- And, how can such behaviors be accounted

for in terns a rules?

First, knowing a system certainly implies the ability to com-

pute within the system. Thus, for example, given the pair, A,B,
the "knower" should be able to give the "sum," B. He should also

be able to do more complex computations, like ((a.)B)CDA) 0C -a)

(B CD A) dC -*BO C-3'A, which involve combining individual facts

(i.e., associations). In addition, the knower should be able to
give "differences," i.e., given the sum and one of the "addends,"

he should be able to generate the other addend.

If these were the only kinds of behavior to be accounted for

one could simply list the facts (rules) involved. But clearly any

reasonable interpretation of "knowing a system" must also deal with

relationships as well. For example, mastery of a system would

surely include the ability to generate the subtraction (difference)

rule from the addition rule, and vice versa. Knowing that B C A,

for example, should be a sufficient basis for generating the corre-
sponding subtraction fact, A - B -= C.

Relational rules of this sort provide a simple way to account

for such behaviors.. Thus, instead of listing all of the subtraction

facts separately it would be sufficient to know the addition facts

together with the relational rule. That is, assuting, as is tradi-

tiolLal in formal linguistics, that individual rules can be composed --

performed in succession.

The.obvious, way to account for such relationships -- the way

taken by 'curriculum:developers of the operational objectives per-.

suasion --is to simply add more rules to the characterization.

There are however, major problems with this approach. For one

'thing, listing a new rule for each kind of relationship would have

4



a post hoc flavor not likely to add much in the way of understanding

more creative behavior. For each new system (of the same type) con-
sidered, for example, tk.ere would be a new relational rule for each

one in the original system. Even granting the economy obtained by
eliminating inverses, and the like, the number of rules could grow

large very fast. This would not be bad In itself assuming that this
is the best one could do. The important question, however, is: Can
one come up with a more efficient account which is at the same time
more powf.xful -- and which allows for some measure of creative be-

havior?

To answer this question, first note that knowing how one or
more systems are related to a given one may provide a basis for
knowing how to compute in the new systems given how to compute in

the original. The relationships of interest will generally be
mathematical in nature, but :they need not be limited to morphisms.

For example, one system may be a simple generalization of another,

as with cyclic 5 and cyclic 3 groups.

Because of the way particular relationships are defined, how-
ever, this advantage will generally be of a limited sort. With

homomorphisms, for example, the ability to compute in the new system

applies only to the definiug operations themselves and not, say, to

their inverses or to relationships between'the operations.

A far more powerful and parsimonious characterization results

by simply allowing rules to operate, not on just ordinary stimuli,

but on other rule6. Such rules may be said to be acting in a higher
order capacity -- or, in short, to be higher order rules. Although

functions on functions are common in various branches of analysis,

and their formalization is routine, the idea seems not to have per-

vaded formal linguistics. The closest linguists have come in this
regard has been to introduce the notion of a grammatical trans-

formation between phrase markers, which closely parallels what are

here called relational rules (e.g., between addition and subtraction).

Consider what higher order rules might_suggest in the present

situation.' Supposethat a subject has learned a higher order rule
which conneets each.operator (rule) with its inverse. Such a rule

would connect not only, aay, addition of nuMbers with subtraction,

but composition of all sorts (e.g., of permutations, rotations,

rigidimotions, etc.) with the corresponding inverse Operations.
The defining'operation of each system and its inverse may be
thought of as being distinct ruleSmhich arethapped one on to the .

other by this higher order "inveraen rule. ,Assume, in addition, .

that the subject has learned how to add in system A, the relation-
ship (e.g., a homomorphism) between system A and syStem B, and

also how to form the composition of arbitrary rules (in the rule

set).

In this case, there are all sorts of behaviors that the

(idealized) subject would be capable of: For example, he would be

able to subtract, not only in system A but'in system B as well. To



see this, one need only observe that the subject can form the com-
position of the rule between systems A and B and the higher order

inverse rule. This composite (higher order) rule in turn allows
the subject first to generate an addition rule in system B and then

to generate a subtraction rule in system B. This subtraction rule,

in turn, would allow the subject to subtract. Translated into
more meaningful terms, a rule set of this sort would imply such
abilities as finding inverses with rigid motions given only the

ability to add numbers. But, then, isn't this just what is con-

sidered as creative behavior?

To summarize, this paper deals with what it means to know an
existing body of mathematics. Relatively little is said about
intellectual skills of the sort that must inevitably be involved
in doing real mathematics. Nonetheless, it is shown that what
appears to be creative behavior might well be accounted for in

terms of growing rule sets. The key idea in making this a.feasible
and rather attractive possibility is that of the higher order rule.

Part 3.

The third paper, "Deterministic Theorizing in Structural
Learning: Three Levels of Empiricism," deals in an integrated
fashion with objectives (2a), (2b), and (2c). It also reports on

some pilot experiments designed to test the basic theoretical

hypotheses.

The Toundations of three partial theories of structural
learning are described and some relevant pilot data are reported.

First, a partial theory of structured knowledge is proposed, in

which it is argued that the knowledge had by any given subject

may be characterized in terms of a finite set of tules. By allowing

rules to operate on other rules (in the set) it is shown how new

rules can be generated. Examples are also given to show how
these new rules, in turn, can account for creative behavior. With

the addition of several performance assumptions, this theory is ex-

tended so as to account for learning, performance, and motivation
under idealized conditions where behavior is unencumbered by memory.

Finally; we outline how memory and information processing might be

dealt with, and report some preliminary data in favor of our main

hypothesis.

The theory itself represents a sharp deparLure from existing
theories of cognitive behavior, although it does have some things

in common with existent competence and information-processing theories.

The differences even here, however, are not minor, but have a fun-
damental effect, both on theoretical adequacy and on the very kinds

of empirical questions one asks. Probably the most basic dep.arture

is the idea of introducing different levels of empiricism, and the
possibility of deterministic theorizing at each of these levels.

According to this view, it is possible to do behaviorally relevant

empirical research at at least three quite distinct levels. Although
all competence models, such as those proposed by Chomsky in linguistics,

purport to deal with knowledge, concern traditionally has been



limited primayily to the so-called mature speaker or hearer who
effectively knows all there is to know about the language. In the

present formulation, it Is just as reasonable to talk about the

knowledge had by different individuals, naive ones as well as

mature. This is an extremely Jmportant characteristic in dealing

with subject matters like mathematics, science, or even language,

where knowledge is not a static thing, but grows with experience.

An even more basic departure is allowing rules to act on

other rules. This see.as to us to be the only real hope we have

at present with which to account for creative behavior 'within an

algorithmic framework. There is a good deal more detailed work

to be done, but the main roadblocks appear to be ones of detail

and not of principle.

The distinction between idealized theorizing and related

empiricism, on the one hand, and the more complete theory, in-
cluding memory, on the other, is equally basic.. By ignoring the

effects of memory and information processing capacity, for ex-

ample, it has been possible to deal with quite complex behavior,
such as problem solving and motivation, in a very precise way --

and even more important, in near deterministic fashion.

In the memory-free theory, the main task is one of intro-

ducing mechanisms of idealized performance, learning, and moti-

vation, thereby extending the theory of knowledge so that it deals

explicitly with the way in which available knowledge is put to use.

This more encompassing theory is still a partial theory, however,

one which applies only where subjects are unencumbered by either

memory or their intrinsically limited capacity to process-infor-

mation. It should be emphasized, however, that it is a theory

which is assumed to apply no matter what knowledge an idealized

subject has available. Thus, even though the knowledge had by
different individuals may vary greatly, the same theory of idea-

lized behavior is assumed to hold over all individuals.

-.:The basic assumpionfon whichthis .theory reSts,is that
people are goalseeking:InformationprOcessos.

The theory deals with three basic kinds of situation: One

type of situation is where the subject knows one or more rules

which apply in the given goal situation. The second is where

the subject does not explicitly know a rule which applies in

the goal situation. The third is actually a refinement of the

first, and deals with the question of why, when a.subject has

more than one rule available, he selects the rule that he does.

Why not one of the others? These problems are closely allied with

what have traditionally been called performance, learning, and

motivation, respectively.

Thefirst
astUme-that;

,(A) Ziven:,a goaL,situatiOn for which.a subject has at least

one rule available; the subject Will_apply one of the rules .

case is siMplest to deal with. We.need only



Thus, for example, if a subject's goal is to find the sum

of two numbers, and he knows how to add, then he will actually

use an addition rule.

As simple as it appears, this assumption has a number of

important implications. One is that it provides an adequate basis
for determining what might be called a subject's behavior potential,

relative to a given class of rulegoverned behaviors. Briefly by

applying this assumption to assessing individual behavior potential

or individualized testing, we have been able to predict a subject's

second test performance on individual items with a high degree of

accuracy. (Precisely how this was done is described in detail in

the paper.) In a total of 204 cases, utilizing a variety of tasks

and subjects of greatly differing abilities and grade levels (from

the preschool through graduate school), we have been able to

predict second test performance 197 times or with 97% accuracy.

The results of this research could be particularly useful for
constructing refined diagnostic tests in many areas of psycholog-

ical and educational testing.

In the second case, the subject has not explicitly learned

a rule for achieving a given goal. He has a problem in the classical
senSe -- a problem situation, a goal, and a barrier between them.

The major theoretical problem is to explain what happens

when a.subject is confronted with such a situation.

As a first approximation at least, it again appears that

a very simple mechanism may suffice. This mechanism may be framed

as a hypothesis as follows:

(B) Given a goal situation for which the subject does not

have a learned rule immediately available, control temporarily
shifts to the higher order goal of deriving a procedure which

does satisfy the original goal condition.

With the higher-order goal in force, the subject presumably

selects from among the available and relevant higher order rules

in the same way as he would with any other goal. Furthermore,

where no such higher order rules are available, we assume that

control reverts to still higher order goals. Theoretically, this

process could continue indefinitely.

To complete things, a third hypothesis is needed which allows

control to revert back to the original goal once the higher order

goal has been satisfied. We can state this as follows.

(C) If the higher order goal has been satisfied, control re-

verts back to the original goal.

These assumptions provide an adequate basis for generating

predictions in a vAde variety of problem solving situations. Sup-

pose, for example, that the problem posed to a subject is to con-

vert a given number of yards into inches. Bere, we assume that



the subject has mastered one rule for converting yards into feet,

and another for converting feet into inches. The subject is also

assumed to have mastered a higher order rule which allows him to

combine learned rules (in which the output of one matches the in-

put of the other, as is the case, for example, with rules for con-

verting yards into feet and feet into inches ) into single com-

posite rules.

In a situation of this sort, the subject does not have an

applicable rule which is immediately available, and, hence, ac-

cording to hypothesis (B), he automatically adopts the higher

order goal of deriving such a procedure. Then, according to the

simple performance hypothesis (A), the subject selects the higher

order composition rule and applies it to the rules for converting

yards into feet and feet into inches. This yields a new composite

rule for converting yards into inches. Next, control reverts to

the original goal by hypothesis (C) and, finally, the subject

appLls ± newly derived composite rule by hypothesis (A) to

generne Che desired response.

Preliminary empirical support for these hypotheses is re-

ported in_ the paper.

The important point of all this is that learnzng can be

viewed as a problem-solv4mg process. Subjects learn as a result

of being exposed to problem situations which require that they

combine available rules in new ways. Once a problem has been

solved, however, no further learning is assumed to take place

upon repeated presentations of similar problems. In that case,

the subject simply applies the newly learned rule.

On the basis of these assumptions, it would be possible to

derive all kinds of implications about learning and performance.

In particular, highly specific predictions might be made about

individuals who enter the learning situation with given sets of

rules and who are then subjected to particular sequences of problem

situations. Such analyses would have obvious implications for .

instructional theory.

The third case is concerned With what happens where a subject

has.more than one way of achieving a given goal and we want to

know which way he will choose. It was assumed in this case that

the subject would.use one of the available rules (Hypothesis (A)),

but nothing was said about which one. It is our contention that

the answer to this question of "which one" lies at the base of

what we normally think of as motivation, especially as it is

realized in structural learning and performance.

We worked on this problem for sometime, and at first we were

not particularly pleased with our results. To be sure, our pilot

data almost always supported our hypotheses in a gross probabilistic

sense, but they could hardly be called deterministic. By using past

selections as a guide, we have been able to do much h.f-r.y. and



have recently been able to determine what rules or parts of rules

a subject selected with an accuracy rate of about 85%.

To recapitu2.ate, it should be re-emphasized that everything

which has been said so far about learning, performance, and moti-

vation only applies in situations where memory and the limited
capacity of human subjects to process information do not enter.

The proposed mechanisms have all ass'med an information processor

with an essentially unlimited ability to process information, and

with perfect memory for previously acquired knowledge.

This definitel, 1--s not imply that the theorizIng is of

little value. That ccmcllo.:5;ion would be wrong on at least two

counts. First, there axe =any nractical situations lm structural

learning where memory -Is c mini-mal concern. In problem solving,
for example, the subject Lt alma:t always given all c.:27 the paper,

pencils, and other memory aids tizat he needs. Typically, we also

do our best to insure _Liar the mecessary lower-order rules are
readily available, evem to- the en-tent of making textbooks available.

The concern is generall-ylw!-Th W.Otther or not the individual can

integrate available knewl-e tisolve problems. Considerations
such as whether he can :do it in his head or not, time to solution,

and so on, are of secon6ar.-y coz.cern. Second, questions of memory

can usually be eliminatec in experimentatiOn by insuring that
relevant rulen and memil-m-,, aids are available to the subiect. This

can normally be accomplfished by training.

The mechanisms of memory and information processing proposed

in the paper are speculative and subject to revision. Nonetheless,

they are simpler and potentially more precise than those of existing

information processing theories. Furthermore, the theory is de-

signed primarily to apply to memory and information processing

with complex structured materials; and not just with the short-term

memory of lists of nonsense syllables, simple words, or sentences,

as has been the case with most modern memory research.

Finally, we mention some of the most promising areas of ap7

plication of this work in education. Insofar as curriculum con-
struction is concerned, it is sufficient to simply reemphasize

that it is a small conceptual step from characterizing knowledge
of individual subjects in terms of rules to characterizing cur-

ricula in terms of operational objectives. Unlike the current

list type of curricula, however, explicit attention might be given

to the identification of higher order relationships. As simple

as this change may seem, its importance cannot be overemphasized.
It makes it possible not only to build a, good deal of transfer
potential directly into a curriculum, but also to capture, we
think, what subject matter specialists almost uniformly feel

has been missing in current curriclla of the operational objectives

variety -- the creative element. We have a pilot project under-
way, at Penn at this time, in which we are attempting to apply
these ideas to teaching mathematics to elementary school teachers.

/t is too soon to say hor4 thangs will actually turn out, but so

10



far things have been going extremely well and we hope that we

will be able to teach more sophisticaied mathematics in this

way, and to teach it more effectively.

A second major implication has to do with testing, particu-

larly that sort of testing used to determine mastery on the ob-

jectives which go to make up curricula of the sort indicated.
Here, the groundwork has been all but completed, and application

would seem to be a rather straightforward Aperation. In fact,

we arc actually utilizing these ideas in another small-scale
developmental project aimed at diagnosing difficulties urban

youngsters are having with the basic ari- lmetical skills. Another

phase of this project has to do with ret..21ation of these dif-

ficulties. In this regard, we are using cur own home-grown

version of hierarchy construction. What we do, in effect, is

simply to identify the particular algorithm (rule) we want to

teach the child, and break it down into atomic sub-rules. Each

sub-rule, in turn, is broken down in the same way, until we

reach a levca where we can be sure that aLl of our subjects have

all of the necessary competencies. This breakdown corresponds
directly to the hierarchies obtained in the usual manner by

asking Gagne's often quoted question, "What must the learner

be able to do in order to do such-and-such?" Unlike the tra-
ditional approach, however, ours provides a natural basis for

constructing alternative hierarchies (since any-number of pro-

cedures may be used to generate the same class of behaviors).
Possibilities also exist in such areas as teaching problem

solving, but our work to date has been limited to testing basic

hypotheses.

Part 4.

A final paper, "A Research Basis for Teacher Education," goes

beyond the immediate scope of the proposed research: It is directed

' to professional educators and attempts to provide a broader per-
spective concerning the problems and their possible resolutions.

More specifically, the purpose of this paper is to (1) indicate

why basic research in mathematics (and subject matter) education

is badly needed (2) to identify some of the kinds of information

which every good mathematics teacher needs (3) to describe some

of the basic research which we have under way and also to mention

some of the implications of this research for further development

in mathematics education and behavioral research generally, and

(4) to describe some of our current developmental.activities in

teacher education in mathematics.



ROLE OF RULES IN BEHAVIOR :
TOWARD AN OPERATIONAL DEFINITION OF

WHAT (RULE) IS LEARNED 1

JOSEPH M. SCANDURA
University of ennsylvania

A precise formulation of the notion of:a rule in terms of sets and functions
is proposed. It is argued that this molar formulation cannot be captured by
networks of associations unless one allowi associations to act on (other)
associations. This formulation is then used as a basis for showing how
rules are involved in decoding and encoding, symbol and icon reference, and
higher order relationships. Decodingand encoding are shown to involve
insertion into and extraction from classes, respectively. Reference is
viewed in terms of rules which map equivalence classes of signs into the
classes of entities denoted by these signs. Symbols are shown to involve
arbitrary reference, whereas icons retain properties in- common with the
entities they denote. Higher order relationships are then expressed as
higher order rules on rules. This is a direct generalization of associations
on associations. Finally, a partial solution is posed to the vexing problem
of "what (rule) is learned." Given a rule-governed class of behaviors,
"what is learned" is defined as the class of rules which provides an accurate
account of test data. Empirical evidence-is presented for a simple per-
forrnance hypothesis based on this definition.

During the past few years there has been
a gradual shift of emphasis in psychology
from the study of simple to complex learn-
ing.---Evenwhere_ investigators_ _are still
working primarily with simple tasks, such

. _as the learning of paired-associate lists, the
questions being asked seem to have broader
significance.

This shift has not come, however, without
attendant difficulties. While existing theo-
ries are clearly inadequate for dealing with
complex structural learning, there are other,
even more basic, problems which have not

yet been adequately resolved. In particular,
there has been no scientific language- with
which even to talk about many of the prob-
lems. The general question of the relative
efficacy of discovery and expository learning

Portions of this article were presented at the
meeting of the American Psychological Associa-
tion, Washington, D. C., September 1967. The
author would like to thank John H. Durnin for
his general assistance in the preparation of this
article.

An unabridged version of the present paper can
be obtained on request from the author.

(e.g., Gagné & Brown, 1961; Wittrock,
1963) provides a ready example. The re-
search has not only been confounded by dif-

___ferences in., terminolou, butalso by the fre-
quent use of multiple dependent measures
and vaiyeness as to what is being taught
and discovered (Roughead & Scandura,
1968). Similar, statements may be made
about arguments for and against specific
versus general training (e.g., see Scandura,
Woodward, & Lee, 1967).

In trying to add precision to their formu-
lations, most investigators to date have taken
one of two paths. Sotne have chosen to
elaborate on or to extend the S-R media-
tional language (e.g., Berlyne, 1965; Staats
& Staats, 1963). Others have shamelessly
preferred more cognitive, or rule-based, for-
mulations (Bartlett, 1932, 1958; Mandler,
1962; 196.5; -Miller, Galanter, -& Pribram,
1960).

Which approach is to be preferred is
perhaps based more on a philosophy of sci-
ence than on psychology per se. The former
approach appeals more to those who want

- theories - -and basic _formulations
grounded in empirical data. They have a
precise language now, which relates spe-

1
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ducally to behavior, and do not want to
give it up without good reason. Presuma-
bly, they would rather improve it as to
detail than to discard the whole idea. Cog-
nitive formulations generally conform more
closely to intuition about psycho7-Igkal
processes, but they too have major dis-
advantages. On the one hand, more Lradi-
tional cognitive theories (e.g., Balt lett,
1958; Flavell, 1963; Tolman, 1949) have
been extremely vague as to their relation-
ships to behavior. Precise languages have
been almost nonexistent. Modern informa-
tion processing theories (e.g., Hunt, 1962 ;
Newell, Shaw, & Simon, 1958; Reitman,
1965), on the other hand, which use the
computer as a model, have been formulated
in precise terms (computer programs). The
problem here is that it is not at all clear
how specific aspects of programs relate to
human behaviorif indeed they do at all.
Most of what has gone into such programs
exists as much for programming convenience
as for modeling human behavior, and it is
anyone's guess what are the really important
ingredients. In order for a language to be
maximally useful, it must be pruned of
excess and possibly misleading notational
baggage.3

Over the past several years, a precise
formulation of tlie notion of a rule has
evolved. Since this formulation involves
sets and functions, and since these charadter-
izing notions have been used by the anthor
and some of his students in formulating re-
search, the label Set-Function Language
(SFL) has been used. The SFL retains
many basic tenets of cognitive formulations,
but like all scientific languages, is free of
specific theoretical assumptions. In addi-
tion, the SFL is based on extremely basic,
and highly general, notions (sets and func-
tions), so that it deals only with essential
aspects of the constructs and empirical phe-
nomena involved.

31n this regard, Shaw (1M) has recently pre-
sented cogent arguments to the effect that under-
standing computer programs, which model human
behavior, is likely to be just as difficult as under-
standing the human behavior itself. Computer
simulation, in effect, is not an adequate substitute
for theory construction in psychology.
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The purpo of this paper is to describe
this formuk --)n (of z% rule) and to show
how it pro-, for a number of features
involved ir learnimg of complex struc-
turcfl knovA'tclge : decoding and encoding
proceases, reference, and higher order
relationships. Finally., with the addition of
an e&vemely weal- theoretical assumption
about blow S!'....14.jects (Ss) perform, a partial
solution_ to tit,,k? important problem of "what
(rule) is 1earrfled" is proposed.

THE SET-IFLINCTION LANGUAGE (SFL)

Two Earelimitlary Oh.vervations
During the summer of 1962, Greeno and

Scandura (19)66) found in a verbal con-
cept learning situatiom that transfer oc-
curred on th first presentation of a new
item or not t -alL Specifically, they had
their Ss learn common responses (non-
sense syllablts) to each stimulus exemplar
(nouns) of 'ying concepts. After each
S-R pair hat., been learned, a transfer list
was presented containing one new instance
of each concept from the first list together
with a paired control. The Ss either gave
the correct responses to new concept exem-
plars on the first learning trial, or they
learned the items at the same rate as their
controls. The data were consistent with the
hypotheses of :all-or-none transfer.

It later occurred to Scandura that Ss
might also transfer on an all-or-none basis
to new instances of rules in which the
stimuli may be paired with different re-
sponses. In this case, one ii.Zw instance of
a rule could be used as a test to determine
whether the rule is learned, therebY making
it possible to predict the responses to other
(new) stimuli associated with the rule.

To test this point, a number of pilot studiet
were conducted during 1963 (Scandura,
1966, 1967a, 1969a) ; in one experiment
(Scandura, 1969a); a total of 15 (highly
educated) Ss overlearned the list shown in
Figure 1. Prior to learning the liqt, both the
Ss and the.experimenter agre-,1 on Cie rele-
vant dimensions and values-- (large-
small), color (black-white), and shape (.r-
cle-triangle). The Ss were told to learn the
pairs as efficiently as they could, since this
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A
BLACK

0 LARGE

A WHITE

TEST ONE TEST TWO

SHALL

Fro. 1. Sample learning, assessment (Test One), and prediction
(Test Two) stimuli and responses.

might make it possible for them to respond
appropriately .I:o the transfer stimuli. After
learning, the Test 1 stimuli were presented
and the Ss were instructed to respond on the
basis of what they had just learned. Posi-
tive reinforcement was given no matter what
the response. Then, the Test 2 stimuli were
presented in the same manner. The results
were clear-cut All but three of these Ss
gave the responses "black" and "large,"
respectively, to the Test 1 stimuli (see Fig-
ure 1) and also responded with "white" and
"small" to the Test 2 stimuli.

On what basis could this happen? It was
surely not a simple case of stitnuluts generali-
zation; the responses did not depend solely
on common stimulus properties. The first
Test 1 stimulus, for example, is as much like
the fourth lemming stimulus as the first.
Perhaps the simplest interpretation of the
obtained results is that most of the Ss dis-
covered the two underlying principles dur-
ing List 1 learning and later applied them to
the test stimuli. These principles might be
seated, "If (the stimulus is a) triangle, then
(the response is the name of the) color" and
"if circle, then size." In effect, whenever
an S responded to the first test stimulus in
accordance with one of these principles, 'he
almost invariably responded in the same way
to the second. Since this study was con-
ducted, a relatively large amount of relevant
data has been collected with essentially the
same results (Roughead & Scandura, 1968;
Scandura, 1967b, 1969b ; Scandura & Dur-
nin, 1968 ; Scandura et aL, 1967).

The second observation was that each of
Gagne's (1965) eight types of learning could
be represented by a set of ordered stimulus-
response pairs (Scandura, 1966, 1967a,
1968) in which each stimulus was paired
with a unique response. That is, each type
conformed precisely to the set-theoretic defi-
nition of the mathematical notion of a func-
tion. To see this, first recall Gagne's eight
types of learning: (1) signal learningthe
establishment of a conditioned response,
which is general, diffuse, and emotional, and
not under voluntary control, to some signal ;
(2) S-R learningmaking very precise
movements, under voluntary control to very
specific stimuli ; (3) chainingconnecting
together in a sequence two (or more) pre-
viously learned S-R pairs ; (4) verbal asso-
ciationa subvariety of chaining in which
verbal stimuli and responses are involved;
(5) multiple discriminationlearning a set
of distinct chains which are free of inter-
ference ; (6) concept learninglearning to
respond to stimuli in terms of abstracted
properties like color, shape, and number ; (7)
principle (rule) learning 4acquiring the
idea involved in such propositions as "If A,
then B" where A. and B are conceptsthat
is, a chain or relationship between concepts,
internal representations (of concepts) rather
than observables being linked; (8) problem
solvingcombining old principles so as to
form new ones.

The first four types cleaey involve a
4 Gagne has not made a distinction between rules

and pi inciples.
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single stimulus and a single response.
(Chaining and verbal associations, of course,
may involve intermediary steps.) Multiple
discrimination simply refers to a set of dis-
crete S-R pairings (possibly with inter-
mediate steps), each of which may act
independently of the others and, hence, must
be represented as a separate entity. Know-
ing a concept, however, may involve any
number ,-)f different stimuli (exemplars),
and each of these stimuli is paired with a
common (unique) response. In addition,
rules involve multiple responses. The stim-
uli and responses, however, are not paired
in an arbitrary way; each stimulus has a
unique response attached to it (see Figure
I, for an example).

In effect a rule can be denoted by a func-
tion whose domain is a set of stimuli and
whose range is a set of responses. The con-
cept and the association become special cases.
A concept can be represented by a function
in whkh each stimulus is paired with a
common response, while an association can
be yiewed as a function whose defining set
consists of a single S-R pair.

What Gagne (1965) called problem solv-
ing involves a higher level of analysis. In
particular, "combining old principles so as to
form new ones" requires (higher order)
rules which act on other rules. More gen-
erally, higher order rules may involve any
number of combinations (sets) of old rules
and any number of new ones, paired so that
there is a unique new rule attached to each
set of old ones. (Details are deferred to the
section on higher order rules.)

Was this only a more formal way of ex-
pressing what psychologists have said all
alongthat responses are "functionally" de-
pendent on stimuli? I' could not help but
feel that there was a deeper significance.
Still, defining rules, concepts, and associa-
tions in terms of their denotative sets left
me with the unsatisfactory feeling of not
knowing what they really were ; or, to put
it differently, how to characterize the knowl-
edge underlying the observables.
A Characterization of the Rule Constrvct

A function can be defined as a set of
ordered pairs or as an ordered triple. The
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denotation of a rule, (i.e., class of S-R be-
haviors which can be generated by a rule)
seems best characterized by the former type
of definition, but the rule construct itself
conforms more closely to the latter type of
definition involving a set of inputs, a set
of outputs, and a connecting operation.

Consider, for example, the task of sum-
ming arithmetic series (e.g., 1 + 3 + 5 + 7
+ 9). In this case, any one of an equiva-
lence class5 of overt stimuli (like the sign,
"1 + 3 + 5 + 7 + 9") may represent the
same number series (i.e., 1 + 3 + 5 + 7
+ 9). Each such equivalence class serves
as an effective (functionally distinct) stimu-
lus. Effective responses (sums) may simi-
larly be thought of as equivalence classes of
overt responses (e.g., "25"). The denota-
tion of the rule, ti:en, consists of the set of
ordered pairs whose first elements are
equivalence classes of representations of
number, series, and whose second elements
are equivalence classes of representations of
their respective sums.

Underlying rules are, however, probably
more naturally thought of not as acting on
effective stimuli (responses) themselves but
on properties of the entities denoted by these
effective stimuli. Thus, for example, the
property of having "a common difference of
two between adjacent terms" refers to the
number series, 1 + 3 + 5, and not to its
name, "1 + 3 + 5." Note that a distinction
is being made between the entity (e.g, num-
ber series) and the equivalence class of

5 By an equivalence class of overt stimuli (re-
sponses) or an effective stimulus is meant a class
of overt stimuli, each pf which has the same set
of defining properties. The term "effective" is
used to emphasize that we are talking about the
stimuli and responses l'effectively" operating in
the situation rather than the overt stimuli and
responses themselves. Thus, for example, the
stimuli "5" and "five" would, for most purposes,
count as the same effective stimulus since they both
represent the same number. The stimuli "5" and
"6," on the other hand, would correspond to dif-
ferent effective stimuli. In previous papers, Scan-
dura (1966, 1967a) used the term "functionally
distinct."

The distinction between an entity and the sign
used to represent it wiff also play a role :in the
present analysis. W., distinction is first referred
to in the following paragraphs and is explained
more fully in the section on reference.
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representations of that entity. However,
since Clue is a one-to-one relation between
equivalence classes of overt stimuli (the
signs) and the abstract entities denoted, we
can ignore the distinction, except in the sec-
tion on reference, where it plays a central
role. These properties, in turn, determine
(via the rule) other properties (of the re-
sponses). One rule for summing arithmetic
series, for example, may be represented by
the expression, [(A + L)/2].N, where A
refers to the first term, L to the last term,
and N to tbe number of terms of the arith-
metic series in question. The critical inputs
associated with this rule are triples of values
of the dimensions. A, L, and N (e.g., A
1, L=7, N = 4). These triples may be
viewed as (composite) properties of the
entities denoted by the stimuli. We may
refer to these clitical properties as response
determining (D) prOperties. The set of out-
puts consists of response properties (num-
bers) derived from the properties in D.
These properties (numbers) determine
equivalence classes of number names (e.g.,
the number property, 16, which is the sum
of the series, 1 4 3 + 5 + 7, defines the

. equivalence class of all signs of the form
"16"). (Notice, however, that these num-
ber properties may also be viewed as prop-
erties of the series themselves. In this role,
the number properties are called sums,.
-Which just happen to be properties of arith-
metic series whkh cart be derived from, other
presumably more easily determined proper-
ties, like the first term and the number of
terms.)

In effect, a. rule may 'be defined as an
ordered triple (D, 0, 'R) :where D refers
to the'determining properties of the stimuli,
and 0 to the combining operation or trans-
formation by which the derived properties
(of the respOnses, R) are derived from the
properties in D. ,

Parenthetically, note that accounting for
such behaviors aS adding arithmetic series
in terms of rules is not the same as intro-
ducing mediating responses and response-
produced stimuli. In the latter case, the
basic idea is to provide a:detailed account of

the interrelationships involved in terms of
(possibly complex) networks of associations.
Rules treat such relationships at a more
molar level. That is, rules by their very
nature act on classes of effective stimuli and
not on particular stimuli.

The basic question, of course, is which of
these two alternatives better captures the
essential characteristics of behavior on struc-
tured tasks. The first observation cited
above, taken together with the relatively
large amount of available data (e.g., Scan-
dura, 1969a), indicates the behavioral re-
ality of rules. Scandura found repeatedly
that performance on any one instance of
most structured tasks is directly related to
performance on any other instance of the
respective tasks. Behavior strongly tends
to be either uniformly good or bad. (There
is more that can be said on this point, but
going into this here would detract from the
main point.) Accordingly, it would seem
that when an investigator is interested in
working with structured tasks, the rule
would seem to provide the more natural
conceptual basis. Mediational accounts of
such behavior tend to be ad hoc as well as
complex and cumbersome. (In working
with nonsense materials, on the other hand,
where it is unclear as ,to what, if any, rela-
tionships exist among the instances, some
resort to associations and their related the-
ory may be more fruitful.)

This inadequacy of mediational accounts
becomes one of principle unless one takes
a more general view of stimulus and re-
sponse than has generally been the case. In
particular, no mediation theorist to the au-
thor's knowledge has explicitly considered
as stimuli what amount, in a related context,
to S-R pairs, (i.e., associations). (Note :
Any given enthy may seve as either a stimu-
lus or a response. What the entity is called
in any particular situation depends solely
.on the role it is playing--Hocutt, 1967.)
To see this, it is sufficient to consider the
associative connections involved in gener-
ating sums and' differences in arithmetic,:,
together with those connections which rOate
addition and subtraction. In this case, we
would have as a minimum such connections
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4 + 5 9

9 5 4
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where the vertical arrow acts neither on the
stimuli, 4 + 5 and 9 5, nor on the re-
sponses, 9 and 4, but rather on the associa-
tions themselves.

As a second and somewhat more subtle
example, consider the task of adding "4" and
"3" in column addition. If embedded in a

41
problem like +32, the tens digit in the sum
is "7." However, if the problem involves

47
carrying, like +35, then the tens digit in the
sum is "8." In effect, the response given
to the complex "4, 3" depends on the con-
text, in particular on the previous response.
(In the first problem, the units digits "1"
and "2" sum to "3" which does not involve
carrying, whereas, in the second problem,
the sum "12" of "7" and "5" does.) This
implies that the effective stimulus in cclumn
addition includes not just the digits in a
particular column but the previous response
as well, specifically "carry" or "no carry."
In effect, the stimulus in this case is a pair
consisting of either "carry" or "no carry"
paired with the tens digits "4" and "3."
Thus, "carry, 4, 3" elicits the response "8,"
whereas "no carry, 4, 3" elicits "7." To see
how these S-R pairs may be viewed as asso-
ciations on associations, we need, only ob-
serve that mediation theorists have no diffi-

.culty in talking about stimulus properties of
responses (or, eqUivalently, in saying that
the source of a given stimulus is the previous
response). Hence, in this case, the stimu-
lus properties of the response "carry," for
example, may be thought of as eliciting the
compound entity "4" and "3" as the re-
sponse; it is the association "carry">"4, 3,"
then, that serves as the stimulus (in the
second problem) for the response "8."

As unfamiliar as this view may s_N::rn, this
is precisely the sort of assumption that
Suppes (1969) had to make in proving that
given any finite connected automaton (which
for present purposes amounts essentially to

a rule), there is a stimulus-response model
1-iat asymptotically becomes isomorphic to it.
In order to account for nile-governed be-
havior, then, mediation theorists of neces-
sity will have to generalize what to date has
been the traditional view. The section that
follows on higher orde.,- rules represents an
itnportant generalization of this idea. In
particular, the view is taken here that "asso-
ciations on associations" are nothing more
than a special case of "rules on rules," such
as those commonly involved in problem solv-
ing.

Decoding and Encoding Processes
The distinction' we have made between

overt stimuli and responses, on the one
hand, and properties (of the entities denoted
by these stimuli), on the other, raises the
question of how the decoding and encod-
ing "gaps", are to be filled. In particular,
rules operate on properties of stimuli and
not directly on overt stimuli (or, more accu-
rately, on properties of the entities these
stimuli denote). Similarly, they generate
properties (of responses), but not the re-
sponses themselves. The rule, N2, for ex-
ample, operates on the "number of terms"
(a property of number series) and (with
certain number series) generates a number
(a property of sets) called the sum. The
question essentially is one of how to repre-
sent the process by which stimulus proper-
ties are determined from overt stimuli and
how overt responses are determined from
derived (response) properties.

Fortunately, this can be accomplished
quite naturally. Each stimulus property de-
fines a class of overt stimuli (i.e., the class
consisting of those overt stimuli which de-
note entities having that property). Hence,
decoding may be viewed as a process or
mapping which assigns overt stimuli to par-
ticular 'classes. The result of decoding an
overt stimulus, theti, can be viewed as a
class of overt stimuli. For example, one
decoding process involved in "perceiving"
representations of arithmetic series is the
map which assigns given (representations
of) series to classes in a way that leaves! all
of the "essential" properties invariant (in-
cluding, but not limited to, the first, last,
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and number of terms). For example, "1 +
3 + 5 + 7" and "one plus three plus five
plus seven" would be assigned to a common
class, since they both represent precisely the
same arithmetic series. Similarly, the stim-
uli

a. c

and (24 + 16) -4- 17,

would almost certainly be viewed by edu-
cated adults as equivalent to

and (24 + 16)/17,
a

respectively, but not to

d

a 1c and (38 + 17)
16.

A similar mechanism is required on the
response thde for encoding. Once the de-
rived response properties have been deter-
mined, the question remains as to how the
result is to be .made observable. Consider a
situation in which an S, after having deter-
mined the solution to a problem, is expected
to .write it down on paper. For simplicity,
let the solution be the number five (a prop-
erty of sets) and let the desired response be
the numeral "5: Clearly, there are many
variations in the 'way this numeral could be
written which would have no effect whatso-
ever on the referent. Each of the allowed
variations in sign refers to the number five.
The encoding process simply amounts to
constructing or identifying one of these signs.
In effect, since each derived property in R
defines a class of observables (i.e., overt
responses), it would appear that the encod-
ing process might be thought of as "select-
ing" one of the functionally equivalent overt
responses in the defined class.

Normally the processes involved in per-
ception (decoding) and encoding are very

'complex.6 It is important to note, however,
that the difficulties involved are of a practi-
cal nature and are not of principle. In prin-
ciple, it is always possible to increase the
depth of analysis further by introducing ad-
ditional rules at the beginning of the initially
given rules (for decoding) or at the end
(for encoding). An initial rule, for exam-
ple, may be used to derive a property used
in a given rule from still more primitive
properties. Thus, for example, the prop-
erty, N, the number of terms in an arith-
metk number series, which is used in the
rule

.(A
+

N,
2

may be derived from the more primitive
properties, A, L, and D (the common dif-
ference) by means of the (initial) rule

(L A ) + 1.

The notion of a composite rule provides
a ready means for representing multistage
rules of this sort. Thus, if the rules, 1.1, r2,

-, I-. represent n simple rules, such that
the outputs of r, may serve as inputs of rj4.1
(i = 1, 2, - , n 1), then the rule
g = r. r2r1 represents the composite
rule. Complex procedures (e.g., see Groen,
1967; SuPpes & Groen, 1967), which in-
volve branching, can be handled in a similar
fashion, but discussion here would be an
unwarranted digression . (for details, see
Scanclura, in press).

61t is worth noting that this complexity is
intrinsic and is not unique to the present formula-
tion. Thus, in S-R mediation language, decoding
corresponds to S(overt) rm and encoding, to
s. R(overt). In effect, both formulations make
a distinction between overt and effective stimuli,
on the one hand, and overt and effective responses
(i.e., sm's which elicit overt responses), on the ,

other. The difference is simply in how the indicated
"gaps" are to be filled. Mediation theorists prefer
to use associations both for connections between
the observable world and internal events and be-
tween internal events. In the present formulation,
each kind of connection is treated differently. The
former involve "inserting observables into classes"
or "extracting entities from them." Internal events
are connected by rules.
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Reference

Although I avoided going into details
above, the nature of the discussion forced
a recognition of the distinction between
equivalence classes of signs, on the one hand,
and the entities denoted by these equivalence
classes, on the other. This distinction came
up both in discussing the rule construct itself
and in discussing the decoding process. In
the latter regard, we saw that there are two
distinct senses in which (meaningful) stim-
uli may be viewed. (a) Signs may be inter-
preted in terms of what they represent.
Thus, signs may be held equivalent if they
have the same meaning. This view was
emphasized, as it seems most appropriate in
dealing with meaningful behavior. (In fact,
one might possibly define "meaningful"
stimuli to be stimuli which have clear refer-
ents.) (b) Signs, however, may also be
thought of as (meaningless) entities in their
own right (with properties of their own).
In this case, signs are held equivalent ac-
cording to whether or not they have certain
properties in common. Even signs like "X
P Z" and "* o -I-" which have no well-
defired referents, for example, might be
taken as equivalent, since each has three
perceptually distinct parts.

The problem of reference, then, in the
present view, is one of explicating the rela-
tionship between signs and their referents.
As can readily be appreciated, this general
question is extremely complex. All we can
do here is tO touch on two important aspects
of the problem. Specifically, nothing is
said about signs with ambiguous meanings.

First, if the meaning of signs is defined in
terms of denoted entities, how are we to
know when an S has acquired particular
meanings ? There seem to be at least two
ways in which this might be done : (a) by
determining whether or not the subject can
paraphrase or otherwise describe the in-
tended meaning, and (b) by seeing whether
or not he can perform in accordance with
the underlying meaning. The referent of
(equivalence classes of signs like) "snake,"
for example, is defined as the class of (all)
snakes. An S might demonstrate his aware-
ness of the intended meaning, then, by de-
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scribing what a snake is"a hideous, long,
thin, squirming animal, with no legs, which
moves by . . and whose bite is sometimes
poisonous. . . ." He might also do this by
reacting appropriately to a statement (sign
complex) in which "snake" is embedded.
Thus, if someone shouts "Snake!" during a
hike in the outback, the listener is likely to
evidence through his behavior an awareness
of imminent danger. He knows the mean-
ing! The meaning of the relational symbol
"run," which refers to the class of all acts
of running, might be determined in generally
the same way. Apparently, this approach is
in some ways similar to Osgood's (1953)
S-R formulation, in which re'sponses are
viewed essentially as indicators that signs
have certain referents. The present view is
potentially more precise, however, in that
with signs having highly structured mean-
ings, the indicators of meaning can be made
highly specific and unambiguous. Consider,
for example, the rule statement "[ (A +
L)/2]N.1.1 In this case one can test for
the meaning (a rule) by presenting particu-
lar arithmetic number series and seeing if
the S can apply the rule so as to give the
indicated sum (see below). (For more de-
tails, also see Scandura, in press.)

The second question is perhaps more cen-
tral to the present discussion and deals spe-
cifically with the nature of the connection
between equivalence classes of signs and
their meanings. Specifically, is this connec-
tion rulelikepr would associative connec-
tions be adequate in all cases? A positive
answer to this question would lend consid-
erable additional support for adopting the
rule as the basic unit of behavioral analysis.
A. negative answer would be a serious blow
to any such conception.

To provide an answer, first note that the .
connection between signs and their referents
can be represented as rules which map prom
erties of signs into (other) properties.
These latter properties, in turn, define
classes of entities called referents. Thus,
for example, "snake" or any other equiva-
lent sign has certain properties which dis-
tinguish it from other signs. These invdti-
ant properties are precisely those which are
mapped onto the properties which character-
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ize (real) snakes (i.e., the latter properties
are what define the class of snakes). The
class of symbols equivalent to "run" is as-
signed to its meaning in precisely the same
way.

Of course, we could also represent this
type of connection directly in terms of asso-
ciations. The real question, therefore, is
whether or not connections exist which re-
quire for their characterization nondegener-
ate rules. (Presumably, representation of,
such rules in terms of associations in the
manner described by Suppes (1969) would
be cumbersome and, in addition, would re-
quire a generalization of the notion of asso-
ciationto include associations on associa-
tions.)

As it turns out, there are two funda-
mentally different kinds of reference in
which nondegenerate rules are involved.
One type involves signs that are abstract
symbols, and the other, icons.

Before taking a look at symbol reference
generally, first consider what might be called
elemental symbols, symbols which are mini-
mal indicators of meaning. (In the language
of automata theory and formal systems, such
symbols are called "letters of the alphabet.")
Probably the single most important charac-
teristic of elemental symbols is that they
denote arbitrarily. The arbitrary nature of
symbol reference has both limitations and
advantages. Perhaps its most important
limitation is that symbol reference is non-
generalizable. Thus, for example, there is
no common way in which the numerals "5"
and "6" refer. The meaning of each symbol
must be learned separately; knowing that
"5" denotes the number of elements in
{00000} does not help in learning that "6"
denotes the number of elements in {000000}.
Any other symbol would be an equally valid
candidate.

On the other hand, because symbols may
be assigned arbitrary meanings, they can
be used to represent highly abstract notions
in a precise way. Thus, "five apples" refers
to the class of all sets of five apples, whereas
"five" refers to the class of all sets of five
elements; but there is no loss of precision
associated with the increasing degree of ab-
straction. For example, the symbol, "N"

(the set of natural numbers), refers un-
ambiguously to a still higher order collec-
tion. Abstract relations may be denoted by
symbols with equal ease. Thus, the terms
"taller than," "greater than," and "relation-
ship between" refer to progressively more
abstract relations with equal precision.

Obviously, not all reference is of this
simple form. If it were, Ss could learn the
meaning of, at most, a finite number of dif-
ferent symbols and this clearly runs counter
to what is known about language. In par-
ticular, there is no upper bound on the
number of new statements in English (say)
which can be understood by a mature
knower of the language. What is needed,

, therefore, is some mechanism which is suffi-
ciently rich to provide for this sort of capa-
bility.

Rules would satisfy this requirement, of
course, but it remains to be shown exactly
how they might be involved. To make the
discussion definite, consider the task of
"generating" the meaning of arbitrary nu-
merals like "35," "278," and so on. Clearly,
composite numerals of this set have mean-
ings, just as do simple numerals, like "5"
and "6." But individuals do not have to
learn each meaning independently. They
presumably have rules available for figuring
out the meanings of even new numerals
which they have never seen before.

It is possible to construct a rule for inter-
preting numerals of arbitrary size, but we
can make essentially the same point, and
more simply, by considering numerals with
no nore than two digits. In this case, the
following rule will work: "Give meaning to
the units-digit (i.e., the first digit on the
right) ; then give meaning to the tens-digit ;
next, "multiply" the meaning of the tens-digit
by 10; finally, combine the meaning of the
units-digit with the meaning of the trans-
formed tens-digit." In order to interpret this
rule properly, note the following: (a) Know-
ing the meanings of the digits 0 through
9 is basic to using the rule. (b) "Multiply
by 10" may be interpreted to mean "Replace
each element in each set in the denotation of
the tens digit with 10 elements of the same
kind." For example, consider the numeral,
"35." In this case, we first give meaning to.



JOSEPH M. SCANDURA

"5," as above. The same is then done for
"3." In carrying out the next step, we take
into account sets in the second meaning class.
Thus, corresponding to the set,

I h
we construct the set,

CM ono,
where each of the three bundles contains
precisely 10 vertical lines. FM details on
how such interpretative rules are constructed,
the reader is referred to Scandura (in press).

In general, tben, it would appear that
compound symbols may acquire meaning by
referral to the meanings of the constituent
symbols, together with a "meaning gram-
mar" by which such meanings are combined
to form rules for interpretation. General
support for this cnntention was found in a
recent study by Scandura (1967b). It was
shown that where the "grammar" necessary
for combining the meanings of constituent
(minimal) symbols has been mastered,
knowing the meaning of particular constitu-
ent symbols is both a necessary and also
(essentially) a sufficient condition for apply-
ing a rule statement involving these par-
ticular symbols. In this case, the "gram-
mar" involved the use of parentheses (i.e.,
"work from the inside out"). The originally
naive Ss were trained with neutral materials
[e.g., 3 (5 + 4 (3 + 2))] until they could
reliably work with parentheses. Then, half
of the Ss were trained on the meaning of

unfamiliar signs, like [X], "the largest
integer in X." Training continued until
they could reliably give the "meaning" of
arbitrary signs of the form [X] (e.g., [6.6],
[7.0], [8.9], etc.). These Ss could almost
invariably apply rules, like [( [X] + [Y])/
[Z]], to instances once statements of these
rules had been committed to memory. The
Ss who were not given this training on
meaning were uniformly unable to apply the
rule. Presumably, the ability to work with
parentheses can be viewed as a highly en-
compassing rule of grammar, one which
makes it possible to integrate the meanings
of a wide variety of kinds of symbols. Once
the meaning of the constituent symbols in

10

a rule statement (involving parentheses) is
made clear and is available to the S (in
memory), the "grammar" combines these
meanings into a unified whole. The state-
ment, "name the color," provides a similar
example. "Name" is a verb phrase which
refers to a large number of acts of matning.
"Color" simply indicates what is to be
named. Intuitive semantics tells us how
these meanings are to be combined. A task
tor the future will be to make such intuitions
public.

In contrast to symbols, icons 7 have prop-
erties in common with the entities they de-
note ; they denote in a nonarbitrary way.
This characteristic way in which icons de-
note has important implications. In the
first place, some relations seem ea:sier to
denote using icons than others. Thus, prms-
imity and relative size can be handled 'quite
easily, but; as an example, the relaeonship
between parents and children can only be
dealt with indirectly. Insofar as mathe-
matics is concerned, icons seem to be- par-
ticularly well suited to representing geo-
metric ideas where the relationships involved
tend to vary continuously.

Second, and this is most important here,
icon reference involves -(nondegenerate)
rules. The icons, "1," "11," "111," "1111,"
etc., for example, can all be mapped onto
their meanings by a common rule, . This is
possible just because each icon can be put
into one-to-one correspondence with the ele-
ments of the sets in the corresponding de-
notative class of sets. (That is, each set in
the given denotative class contains the cor-
responding number of elements.) For a
second example, it is sufficient to note that
particular properties of relief maps corre-
spond to features of the terrain they repre-
sent. These corresponding features provide
a sufficient basis for constructing general
rules for interpretation.

This ability of icons to refer in a gener-
alizable way, however, is bought at a price.
Because they are referentlike, icons retain

Here, "icon" is used to refer to any still or
moving picturelike representation. While still pic-
tures may refer to "things" and certain Mnds of
"relations," moving pictures are required to. repre-
sent action.
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progressively laore irrelevant information
when used to represent hicreasingly abstract
ideas. Thus, it is easy to find an icon that
-can be used to represent a particular finite
arithmetic sequence cf numbers in which
the successive numbers increase by a com-
mon amount. The sequmce 1, 3, 5, 7, for
example, can be represented by the icon,

However, without the introdavirom of sym-
bols of one sort or another, s are not
capable of. representing arithmt sequences
in general. In s.this case, tke icon would
have to indicate that there is- z common
difference between successive reL4a and that
both the re:I-five size of the -Emr-, term and
the (common) difference between terms and
the number of terms are irrelevant. Ab-
stracting from the icon above, we observe
that

would provide an adequate representation if
it did not specify a relative size between the
first jump and the successive jumps as well
as a specific number of terms (Le., 4). This
information is irrelevant and, worse, mis-
leading.8

Higher Order Rules
It has already been commented that rules

can be represented in terms of associative
networks, but only if we allow associations
to act on other associations (viewed as
stimuli) (cf. Suppes, 1969). Since associa-
tions in the present view are nothing more
than special cases of rules, it seems reason-
able to also ask whether there is any natural
rule counterpart to associations on associa-
tions. In particular, if rules are as basic to
complex learning as has been suggested,
then one would suspect that there ought
to be (nondegenerate) rules which act on
classes of associations (rather than on single
associations), or, even better, rules which
act: on classes of rules.

Notice that this observation provides us
wah another imdependent check of 'die powe:
of the formulation. We have just seen how
roles are involved in xeference, -arid now
wm. ask whether they are also itunlved in
rh.ther order relationships, which analo-
-galls to associations on associations_

To prove the.point, we need on17- demon-
strate the existence of one such higher order
rule. As a simple exannple, consider the
rules involved in translating from one unit
of measurement into another : yards into
feet, gallons into quarts, quarts into pints,
weeks into days, and so on. Clearly, there
are clese relationships among many such
rules which obviate the need to learn all of
them separately. Knowing how to convert
yards into feet and how to convert feet into
inches, for example, is often a sufficient
basis for converting yards intn inches. Fur-
thermore, for most adults, it makes no dif-

8 It should also be apparent that signs evident in
the "real world" are like icons, only more so.
12...ther than being two dimensional, however, these
signs have three dimensions. Because of this, the
signs and their referents must have even more
things in common. The rules defining reference,
therefore, are even more 'general than with icons.
Still, it should be emphasized that "real world"
signs need not refer to identity. To the contrary,
such signs almost invariably refer to broad classes.
Thus, young children let blocks refer to vuto-
mobiles, buildings, boxes, and so on. Even "John
Smith," at a given instant in time, does not refer
to identitybut, typically, to John Smith irrespec-
tive of when.

ii
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ference what the particular units are. If
told that there are five "apps" in a "blug"
and two "blugs" in a "mugg," it would be
a simple task to also convert "muggs" into
"apps" (i.e., first multiply by two and then
by five).

The point is that many people appear able
to combine pairs of given rules into corre-
sponding composite rules. Thus, for exam-
ple, given rules like, "x yards 3x feet,"
and "y feet --> 12y inches," many Ss can
combine them to form composite rules, like
"x yards --> 3x feet ---> 12(3x) inches." (Us-
ing arrows is a convenient way to represent
the denotation of rules. Thus, for example,
x yards --> 3x feet is interpreted: to mean
{(x yards, 3x feet') (x is a number).)

One can account for this type of ability
by introducing a higher order rule, which
says, in effect, "combine the rules so that the
output of the first serves as the input of the
second." More specifically, the higher order
rule can be characterized by the triple, D =
a set of pairs of actions (more accurately, a.
set of properties which define: equivalenc .
classes of pairs of actions), 0 the higher
order action of combining pairs of lower
order actions, and R = the corresponding
set of composite actions. The denotation of
such a rule, then, can be represented :
{(R, R2), R I R, and R2 are (equivalence
classes of) rules, and R is the rule formed
from Ri and R2 by composition).

Ackler and Scandura are presently per-
forming a study in the University of Penn-
sylvania laboratory which demonstrates, con-
clusively in the author's opinion, the be-
havioral reality of such higher order rules
(Scandura, 1970). Given the necessary
constituent rules, as above, Ss, ranging in
educational level from kindergarten to post-
graduate work, were able to solve problems
involving the composite rule if and only if
they also had available the necessary higher
order rule for combining pairs of such rules.
Specifically, if they had already mastered
the higher order rule, or could be experi-
mentally trained in its use, as judged by
their ability to use it on neutral tasks (i.e.,
neutral rule pairs) to form composite rules,
then they were able to solve the composite
problems; otherwise, they were not. The

amazing thing about these results is that
they held up with essentially every S. It
was not a question of averaging over indi-
viduals or tasks.

Two earlier studies also bear on this issue.
The first (Scandura, 1967b) has already
been discussed in the section on reference.
Suffice it to say here that the rule by which
the constituent meaning rules (i.e., rules
which assign meanings to minimal symbols)
were combined is a higher order rule.

In a second study., Roughead aaid Scan-
dura (1968) were able to identify a higher
order rule, of the sort Gagne and Blown
(1961) had alluded to earlier, for discover-
ing other rules. Mis higher order rule
can be stated,
. . . formulas for the sum of the first n terms of a
series (2') may be written as the product of an
expression involving n (i.e., f(s)) and n itself.
The required expression in n can be obtained by
constructing a three-columned table showing: (o)
the first few sums, 2", (b) the corresponaurg
values of n, and (c) a column of numbers,
= rib:, which when .multiplied by n yields the
corrpondink values of V. Next, determine the
expression f(n)=rYn by comparing the numbers
in the columns labeled n and 2"/n, and uncovering
the (linear) relationship between them. The re-
quited formula is simply V= n-f(n) [Roughead
& Scandura, 1963, p. 285].
This rule can also be analyzed in the same
general way, but the analysis is not as sim-
ple as the examples given above. The main
ideas are sketched and the reader is referred
as before to Scandura (in press) for mot.
details. (a) The inputs of the higher order
rule are n-tuples of associations (i.e., de-
generate rules) between particular series of
a given form and their respective sums (e.g.,
1 + 3 + 5 -1- 7 is mapped into 16). (b)
The .output rules are also associations, this
time between classes of series (e.g., 1 +
+ 5 + + (2n 1) ) and formulas in
n (e.g., n2) by which sums of particular,
series of the given fonn may be determined.
In effezt, the higher order rule maps n-tuples
of specific number series-sum pairs of a
given forth (e.g., 1 + 3 > 4, 1 -1- 3 + 5
9, 1 ± 3 + 5 + 7 > 16, - ) into output
associations (e.g., 1 -1- 3 -1- 5 + - (2n

1) --> n2).
As a final example, note that the inverse

relation between addition (i.e., the rule) and
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subtraction is but one instance of a higher
order rule by which any binary operation
(e.g., multiplication) can be mapped onto
its respective inverse (e.g., division).

In each case, I -irher order rules are in
some sense orthogonal to the lower order
rules on which they operate. Lower order
rules act on classes of stimuli and map them
onto classes of responses. Higher order
rules map claes of rules (or u-tuples
thereof) onto other: classes of rules. Of
course, there is no reason to stop at this
second level, and ,one can easily envision
rules which act ott rules which act on rules

. . , and so on.

AN OPERATIONAL. DEFINITION OF
WHAT (RMLE) Is LEARNED

The vestimi d "what is learned" is tied
inextricably to the...-. question of transfer (e.g.,
Sraeclslund, 1955).. In rule interpretations,
the tendency has been to explain transfer in
terms of "what (rule) is learned." Such
interpretations, her:ever, have been rightly
criticized as lacking operational definition.
On strictly logical grounds it is effectively
impossible to define in terms of performance
"what (rule) is learned" in any unique
sense. There are typically many different
routes to the same end. For another thing,
rules frequently have an infinite number of
instances; it is practically impossible in such
cases to test for the acquisition of all but a
relatively few.

On the positive side of the ledger, it does
not appear necessary to know everything
that an S knows in order to predict what

do in a given situation. Much of the
S's knowledge becomes irrelevant once a
goal is specified. Even the lowliest rodent
has a large number of behavioral capabilities
(rules). What rules may be applied dt..-
pends on what the organism is trying to
do. In almost all experimental research
(whether it is based on neo-associationistic
or more cognitive notions), there is at least
the implicit recognition that goals, as well as
the stimulus context, are crucial to experi-
mental outcomes. When an S fails to do
what is expected of him, he is branded as
uncooperative. Specifically, knowing an S's
goal in any given stimulus situation is tanta-

mount to specigying a class of rule-governed
behaviors, that is, a class of behaviors which .
can be genera=d by a rule. (There al.-iay be
more than one such rule for any given
class.) Thus, Efor example, kmowing that an
S is trying to ladd (a given pair of numbers)
defines the (ruk-governed) class of all pairs
consisting of (pairs of) numbers and their
sums, denoted U n , 51. ( ;in n))
are numbers). This class effectively parti-
tions the set- of rules an S has learned into
two mutually ,exclusive subsets, one includ-
ing those rules which tan be used for adding
pairs of numbers and the other including
those rules wlifich cannot be so used.

Equally important, an increasing amount
of evidence ',Levine,. 1966; Levine, Leiten-
berg, & R.J..-bter, 1964; Scandura, 1966,
1967a, 1969-.Z.? suggests that the relevant
lotowledge rd-iich underlies mathematical and
other meaninniul behavior can often be speci-
fied with a ir degree of precision.

These observations place important re-
ztrictions On the form a truly adequate
operational definition of "what (rule) is
learned" might take. First, it is essentially
impossible to define "what rale is learned"
in any unique sense. Second, an operational
definition of what is learned must be formu-
lated relative to a given class of rule-gov-
erned behaviors. Third, any such definition
must be based on performance on a small,
finite number of instances, and, if possible,
should be applicable no matter how many
test instances afe employed.

In view of these restrictions, any attempt
to define operationally what particular rule
is learned seems a priori doomed to failure.
What appears to be needed is a definition
which takes into account all feasible under-
lying rules: Such a definition can be given
by specifying what is learned up to a class
of rules. Thus, given a class of rule-gov-
erned behaviors and that a particular stimu-
lus in that class elicits the corresponding
response, "what is learned" can be defined
as that class of rules whose denotations all
include the given S-R pair. This definition
may be interpreted to mean that at least orie
of the rules in the class has been used in
responding to the test item.

The problem remains of adapting the

1 3
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definition to include any number of test
instances. Fortunately, this" can be accom-
plished directly. Given a particular rule-
governed class, n test instances, and a per-
formance capability summarized by success
on in of the -n test instances (in < is) and
failure on 71 ^ in. of these test instances (and
assuming that no learning takes place during
test!ng), then "what (rule) is learned" is
defined as that class of rules which provideE
an adequate account of the test data_ Is:
particular, a rule is included in the class i...
and only if its denotation (i.e., set of S-R
instances) includes all of the test instances
on which success is obtained, but none of
those involving failure_ That is, the charac-
terization of "what is learned" includes all
of the rules which might possibly account
for the fact that S succeeded on some of the
items but not others.

The definition says nothing, however,
about which rules S may have used to gen-
erate his failures. It is also worth noting
that if a given rule is in the class "what is
learned," and is equivalent in generating
power to some finite connected automaton,
then there is a way of determining whether
or not the S can actually use that particular
rule (i.e., whether or not the rule is really
learned). This can be seen at once by re-
calling that any such rule can be represented
in terms of a finite set of associations. While
the total number may be large, it is possible
in principle, at least, to test for the, acquisi-
tion of each and every constituent associa-
tion.°

To see how this definition applies, con-
sider the (rule-governed) class consisting of
the arithmetic number series and their re-
spective sums. Let us first suppose that an
S has demonstrated his ability to find the
sum (2,500) of the arithmetic series 1 -I- 3
+ + 99. The definition tells us that
the class "what is learned" includes all and

In practice, it is usually not necessary to go
to this extreme. The only essential thing is that
the rule in question be represented in terms of a
(finite) set of operating .and decision rules, each
of which has a finite domain (cf. Scandura, in
press). Although this point is implicit in what
has been said, it is perhaps not obvious, and T
would like to thank Gerald Goldirt for raising the
question.
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only those rules Whisch provide am adequate
account of this behavior. In this case, the
class would include, among possibly other
rules, each of the -following: Sequential addi-
tion (applied to =:Ithunetic number series) ;
the general rule far- summing .arithmetic

.4 + L
series, denoted \ 2

)N; the rule N2,

which applies to 7-. tiLt arithmetic series of the
form 1 + 3 -I- - - 4. (21V 1) ; the direct
"association" betweem the series, 1 + 3 +

- - -I- 99, and its .swm, 2,500. Thus, "what
is learned" might "the denoted by the class,

fdirect associatiOn, .A72,
)

IV,
1, '2

seauential addition,

As more test inrommation is obtained about
an S's performan= capability, it will be pos-
sible generally to eliminate rules from this
class. Suppose, friar example, that an S is
successful in determining the sum not only
of the original test series, but also (say) of
the series, 1 + 3 ± -I- 47. Then the
size of the class "what is learned" is reduced
accordingly to

I
2,

(A + LN
2

N, sequential

addition, ...}.

According to the definition, the direct asso-
ciation would no longer be allowed, since it
does not apply .to the second series. If the
S is successful on still another test instance,
say, on the series 2 -I- 4 -I- + 100, then
the class "what is learned" is further re-
duced to the set

1(
A + L \N, sequential addition, I..

The rule .N2- is eliminated since it is not
applicable to the third test series (i.e., 2 -I-
4 + + 100). Suppose, on the other
hand, that the S is successful on the first two
test stimuli (i.e., 1 + 3 -I- + 99.; and
1 -I- 3 -I- -F 47), but not the third (i.e.,
2 -I- 4 + -I- 100). Then, according to
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the definition, not only would the direct asso-
ciation be eliminated as a feasible rule, but

4;(1 would the more general rules
(A - L')

2

'and sequential addition. In effect, the class
"what is learned" would include only N2,
together with possible other unidentified
rules which also provide an adequate account
of the behavior.

This definition provides a basis for deter-
miming the behavior potential (i.e., the class
of behaviors that an S is actually capable of)
of individual Ss relative to given rule-gov-
erned classes. To see this, we first note that
the rules in the defined dass "What is
learned" can frequently be used to generate
behaviors in the given rule-governed class,
other than the initial test instances. Know-
ing what rules are learned (i.e., in the de-
fined class), then, might well be used as a
basis for making predictions about perform-
ance on other instances in the rule-governed
class of behaviors. To make such predic-
tions, the only theoretical assumption about
performance which seems necessary is that
if an S has one or more rules available,
which apply in a given test situation, then he
will use at least one of them. As triVial as
this assumption may seem, it is an assump-
tion. There is no guarantee that just be-
cause an S wants to achieve a particular goal .
and he knows one or more rules which apply,
that he will necessarily use one of them.
Furthermore, it is an assumption which may
well prove to be fundamental to any formal,
predictive theory based on the rule construct
(d. Scandura, in press)."

The really basic question, of course, is
whetlier or not the actual behavior potential
of particular Ss is compatible with this view.
'Fortunately, Scandura and his associates
have collected a fairly substantial body of

101 originally felt that a stronger assumption of
this sort was neededin particular, that S will con-
tinue using the same rule as long as his goal
remains unchanged and feedback otherwise- indi-
cates that he is responding in an appropriate man-
ner (Scandura, 1969b). While this Einstellung-
type assumption may still have some merit, it Is
not a necesrary requisite for making predictions
about behavior potential.
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data over the past few years which suggests
that this is the case (Roughead & Scandura,
1968; Scandura, 1966, 1967b, 1969a; Scan-
dura & Durnin, 1968; Scandura et al.,
1967). Whenever the response given by an
S to one unfamiliar test stimulus was in
accord with a particular class of rules, so
was the response to a -second test stimulus
which was of the same "general type" as the
first. It was generally possible to predict
second test behavior with anywhere between
80% and 95% accuracy. It is encouraging
that other investigators have also found this
sort of assessment procedure useful. Levine
et al. (1964), for example, have used per-
formance on nonreinforcecl trials to predict
performance on reinforced trials with a high
degree of success.

Furthermore, the results of the Scandura
and Durnin (1968) study suggest that
actual behavior potential can often 'oc deter-
mined in a systematic manner. It was found
that successful performance with two stimuli,
which differed along one or more dimen-
sions, implied successful performance with
new stimuli which differed only alcing these
dimensions. In particular, success on two
instances in a rule-governed class, which
differ simultaneously along all possible di-
mensions, implied success on any other test
instance in the rule-governed class.

This whole approach undoubtedly over-
simplifies what is an extremely complex
problem, but all things considered, it does
seem to provide a reasonably adequate first
approximation. The ultimate objective, of
course, Ivill be to devise a systematic proce-
dure for determining behavior potential on
any class of tasks by using a finite, testing
procedure of some sort. In fact, substantial
progress has recently been made in this
direction (Scandura, 1970 ; in press; Scan-
dura & Durnin, 1970).

SUMMARY AND NEEDED RESEARCH

A precise formulation of the notion of a
rule in terms .of sets and functions was pro-
posed. It was argued that this molar for-
mulation cannot be captured by networks of
associations unless one allows associations
to act on (other) associations. This formu-
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lation was then used as a basis for showing
how rules are involved in decoding and en-
coding, symbol and icon reference, and
higher order relationships. Decoding and
encoding were shown to involve insertion
into and extraction from classes, respectively.
Reference was viewed in terms of rules
which map equivalence classes of signs into
the classes of entities denoted by these signs.
Symbols were shown to involve- arbitrary
reference, whereas icons retain properties in
common with the entities they denote.
Higher order relatiorships were then ex-
pressed as higher order rules on rules. This
was a direct generalization of associations on
associations. Finally, a partial solution was
posed to the vexing problem of "what
(rule) is learned." Given a rule-governed
class of behaviors, "what is learned" was
defined as the class of rules which provides
an accurate account of test data. Empirical
evidence was presented for a simple per-
formance hypothesis based on this definition.

There are three major directions in which
future research might proceed. First, the
rule formulation (SFL) itself undoubtedly
can be further improved. While I feel
reasonably confident that the basic ideas pre-
sented in this paper would hold tip under
further analysis, additional detail must be
added----but only' as much as is absolutely
necessary to deal with behaviorally relevant
aspects of the rule construct. (There should
be emphasis on this point to dissuade corn-
putef enthnsiasts from adopting the language
of computer sdence wholesale (e.g., autom-
ata theory) without careful' .consideration
of which aspects are important in human
behavior and whkh are not.) Work in this
direction is currently underway and will be
reported in Scandura (in press).

Second, the SFL tnight profitably be. used
as an analytical tool to help clarify what is
involved in many kinds of structured learn-
ing .and performance. Most of the SFL-
based research conducted to date (Roughead
& Scandura, 1968; Scandura, 1966, I967a,
1967b, 1969a; Scandura et al., 1967) has
concentrated on an analysis of what is being
presented, the nature of the required out-
puts, what is being learned, and the inter-
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relationships between thern.11 While such
analyses can, at least to some extent, be
undertaken without the use of the SFL, or
for that matter any other scientific language,
the SFL seems to provide a useful frame-
work for putting things into perspective and
for helping to clarify difficult points. In the
author's research a number of questions have
been asked on mathematics learning which
seem not to have been asked previously in
any serious way. For example, Roughead
and Scandura (1968) found that what is
learned in mathematical discovery can some-
times be identified and presented by exposi-
tion with equivalent results. Similarly,
Scandura and Durnin (1968) were led, on
the basis of an earlier finding (Scandura et
al., 1967), to the question of what in the
statement of a mathematical rule leads to
extrascope transfer.

The SFL needs to be applied more sys-
tematically in studies involving subject mat-
ters other than mathematics and, in particu-
lar, we need to determine where the SFL
might profitably be used to formulate re-
search and where not. There is reason to
believe that the SFL may be applicable only
to the extent that the daises of overt
stimu'i and responses involved can be viewed
as discrete . (i.e., nonoverlapping) and ex-

it I am of the opinion that insofar as structural
learning is concerned, it may be possible, in fact,
desirable to first concentrate on understanding
what kinds of behaviors might be involved and to
give a distinctly subordinate role to such things as
latency and exposure time. Precious little is
known about what an S might be able to do when
placed in a mathematical situation without compli-
cating the matter further by trying to predict how
rapidly he can do it or to determine the precise
exposure time needed to bring the behavior about.
In .effect, what I am proposing is that ecological
thinking needs to be brought more directly into
theory construction in psychology.

This .general type of approach has proved use-
ful in other sciences. In the early development of
chemistry, for example, it was of considerable
interest to knoW what kinds of compounds one
might expect to get by mixing various combinations
of elementi. Questions as to the precise values of
the boundary conditions of temperature, pressure,
and the like needed for such reactions to 1ake
place were something which could reasonably be'
postponed.. The first step in theory construction
in structural learning might well follow this path
(see Scandura, 1970).
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haustive entities. While these requirements
are met throughout much of mathematics and
other structured knowledge, this may not be
the case in such areas as social studies,
poetry, and even language, where synonymy
does not necessarily imply equivalence. It is
hoped that other investigators will apply the
SFL to a wider range of tasks and thereby
help to clarify further its relative strengths
and weaknesses.

Third, theoretical assumptions need to be
made and their implications need to be
drawn out. Although this paper was con-
cerned primarily with describing a new
scientific language, it was not possible to
completely avoid reference to theoretical as-
sumptions. Thus, the proposed operational
definition of "what is learned" would be
behaviorally meaningless without the appli-
cation assumption. Fortunately, there is
considerable empirical support for the idea.
While this assumption is clearly riot suffi-
cient for a theory of structural learning, it
might nonetheless come to play a central
role. Whatever form additional theoretical
assumptions might take, it seems almost
certain that they would be more compatible
with cognitive (rule-based) notions than
with those based on neo-associationism.
Nonetheless, any complete theory of struc-
tural learning will undoubtedly require ref-
erence to such things as the limited capacity
of human Ss to process information (Miller,
1956). Without recourse to some such
physiological capacity, I can see no way in
which to explain memory or other aspects
of information processing. (For elaboration,
see Scandura, in 'press.)

REFERENCES
BARTLETT, F. C. Remembering: A study in. ex-

perimental and social Psychology. New York:
. Macmillan, 1932.

BAirrtzrr, F. C. Thinking: *An experimental and
social study. New York: Basic Books, 1958.

BERLVNE, D. E. Structure and direction in think-
ing. New' York: Wiley, 1965.

FLAVELL, J. H. The developmental psychology of
jean Piaget. Princeton, N. J.: Van. Nostrand,
1963.

GAGNi, R. M. The conditions of learning. New
York: Holt, Rinehart & Winston, 1965.

GAGNk, R. M., & Bnowx, L. T. Some factors in
the programming of conceptual learning. Jour-

17

nal of Experimental Psychology, 1961, 62, 313-
321.

GREENO, J. G., & SCA:cm-EA, J. M. All-or-none
transfer based on verbally mediated concepts.
Journal of Mathematical Psychology, 1966, 3,
388-411.

GROEN, G. J. An investigation of some counting
algorithms for simple addition problems. (Tech.
Rep. No. 118) Stanford, Calif.: Institute for
Mathematical Studies in the Social Sciences,
1967.

Hoctrrr, M. On the alleged circularity of Skin-
ner's concept of stimulus. Psychological Review,
1967, 74, 530-532.

HUNT, E. B. Concept learning: An information
processing problem. New York: Wiley, 1962.

LEVINE, M. Hypothesis behavior by humans tit:r-
ing discrimination learning. Journal of Experi-
mental Psychology, 1966, 71, 331-338.

LEVINE, M., LEITENRERG, H., & Pacwrsa, M. The
blank trials law: The equivalenze of positive
reinforcement and non-reinforcement. Psycho-
logical Review, 1964, 71, 94-103.

MANnrce., G. From association to structure. Psy-
chological Review, 1962, 69, 415-427.

MANDLER, G. Subjects do think: A reply to Jung's
comments. Psychological Review, 1965, 72, 323--
326.

MILLER, G. A. The *magical number seven, plus
or minus two: Some limits on our capacity for
processing information. Psychological Review,
1956, 63, 81-97.

MILLER, G. A., GALANTER, E., & PRIDRAM, K. H.
Plans and the structure of behavior...New York:
Holt, Rinehart & Winston, 1960.

NEWELL, A., Slimy, J. C., & SIMON, H. A. Ele-
ments of a theory of human problem solving.
Psychological Review, 1958, 65, 151-166.

OSGOOD, C. E. Method and theory in experimental
psychology. New York: Oxford University
Press, 1953.

REITMAN, W. R. Cognition and thought: An
information-processing approach. New York:
Wiley, 1965.

ROUGIIEAD, W. G., & SCANDVRA, J. M. "What is
learned" in mathematical discovery. Journal of
Educational Psychology, 1968, 59, 288-289.

ScANDInta, J. M. Precision in research on mathe-
matics learning: The emerging field of psycho-
mathematics. Journal of Research in Science
Teaching, 1966, 4, 253-274.

SCANDURA, J. M. The basic unit in meaningful
learningassociation or principle? The Scl;:.;;:
Review, 1967, 75, 329-341. (a)

SCANDURA, J. M. Learning verbal and symbolic
statements of mathematical ruks. Journal of
Educational Psychology, 1967, 58, 356-364. (b)

SCANDURA, 3. M. New directions for research
and theory on rule learning: I. A set-functiort
language. Acta Psychologica, 1968, 28, 301-;
321.

SCANDURA, J. M. New directions for research
and theory on rule learning: IL Empirical re-



JOSEPH M. SCANDLTRA

search. Acta Psychologica, 1969, 29, 101-133.
(a)

ScArtnum, J. M. New directions for research
and theory en rule learning: III. Analyses and
theoretical direction. Acta Psychologica, 1969,
29, 205-227. (b)

SCANDURA, 3. M. Deterministic theorizing in struc-
tural learning: Three levels of empiricism.
(Rep. No. 55) Philadelphia: University of
Pennsylvania, Mathematics Education Research
Group, 1970.

SCANDURA, 3. M. Mathematics and structural
learning. Englewood Cliffs: Prentice-Hall, in
press.

ScArrausA, J. M., & Dtnusnx, J. Extra-scope
transfer in learning mathematical rules. Journal
of Educational P.sychology, 1968, 54, 350-354.

ScAtioue.A, J. M., & Mucus, J. Assessing be-
havior potential. Paper presented at the Struc-
tural Learning Meeting, sponsored by the Mathe-
matics Education Research Group, Philadelphia,
April 1970.

Sc Alumna, J. M., WoonwAan, E., & LEE, F.
Rule generality and consistency in mathematics
learning. American Educational Research Jour-
nal, 1967, 4, 303-320.

SHAW, R. Cognition, simulation, and the problem
of complexity. In J. M. Scandura (Ed.), Spe-
cial Issue of Journal for Structural Learning,
1970, in press.

SMEDSLUND, J. The problem of "What is
learned?" Psychological Review, 1953, 60, 157-
158.

STAATS, A. W., & STAA:rs, C. IC. Complex human
behavior: A systematic extension of learning
principles. New York: Holt, Rinehart & Win-
ston, 1963.

Sums, P. Stimulus-response theory of finite
automata. Journal of Mathematical Psychology,
1969, 6, 327-355.

Sums, P., & Guotx, G. Some counting models
for first-grade performance data on simple addi-
tion facts. In j. M. Scandura (Ed.), Research
in mathematics. education. Wathington: Na-
tional Council of Teachers of Mathcznatics, 1967.

TOLMAN, E. C. Is there more than one kinci
learning. Psychological Review, 1949, 56 144-
155.

Wrrrnocr, M. Verbal stimuli in concept forma-
tion: Learning by discovery. Journal of Edu-
cational Psychology, 1963, 54, 183-190.





A THEORY OF MATHEMATICAL KNOWLEDGE:

CAN F ULES ACCOUNT FOR CREATIVE BEHAVIOR?

JOSEPH M. SCANDURA1
Associate Professor of Education
University of Pennsylvania
Philadelphia, Pennsylvania

Matherm Ltics is perhaps the most highly organized body of knowledge
known to man. Yet, in spite of its clarity of structure, most of the research
done on mathematics learning and behavior has been strictly empirical in
nature. T ) be sure, there has been a fair amount of research in the area
and the a nount seems to be growing rapidly, but there has been no super-
structure, no framework within which to view mathematical knowledge
and math( matical behavior in a psychologkally meaningful way.

A num ber of psychologists feel that the mechanisms involved in lan-
guage, ME thematical, and other subject-matter behavior may be accounted
for within the confines of S-R mediation theory. This may be possible in
principle ;e.g., see Millenson, 1967; Suppes, 1969a), but the networks of
S-R. assoc ations required to do the job would almost certainly be so com-
plex as to provide little intuitive guidance in formulating research on com-
plex math matical learning. For arguments pro and con, see Arbib (1969),
Scandura :1968, 1970b, 1970d), and Suppes (1969b).

As a tray around these problems, linguists, like Chomsky (1957,
1965), h; we introduced rules and other generative mechanisms to ac-
count for (idealized) language behavior. Although many details still need
to be wo iced out, most generally agree that some sort of analysis in
terms of rt les will prove adequate to account for most language behavior.;

During the past few years, the author has been attempting to develop
a similar approach to mathematics learning (Scandura, 1966,. 1967a,
1968, 1969b). No comprehensive scheme for classifying mathematical

1. This in per is based on a talk giver? at a Symposium on Structural Learning itt the
Subject Mat :r Disciplines at the AERA Convention in Los Angeles, Thursday, February 6,

The a ithor would like to thank Leon Henkin, Henry Hiz, Dag Prawitz, Marshall
and I atrick Suppes for their helpful cOmments on an earlier draft and John Durnin

for-his gener ii assistance in the preparation of this paper.
2. Noneth less, some linguists (e.g., Hiz, 1967) do not feel that all important aspects

of language t an be dealt with in this way. .



behaviors has been proposed, however, and most (but not all) of the
experimental research has been based on relatively simple mathematical
tasks (cf. Scandura, 1969b). The basic supposition has been that an un-
derstanding of what is involved in such tasks will provide a better position
for explaining more complex mathematical learning. While there has been
increasing support for this contention among behavioral scientists (e.g.,
Bartlett, 1958; Gagné, 1965; Miller, Galanter, & Pribram, 1960), some
mathematics educators have been skeptical. Presumably, the position is
that any interpretation of complex mathematical learning in terms of
simple rules will surely be inadequate.

In reaction, the author proposes and defends the rather strong.thesis
that rules are the basic building block of all mathematical knowledge and
that, if looked at in the right way, all mathematical behavior is rule-
governed. More specifically, it is proposed that the mathematical be-
havior any given individual is potentially capable of, .uneztr ideal condi-
tions of performance, can be accounted for precisely in terms ?.): a finite
set of rules.

This statement is clearly meant to imply more than just a post hoc
account of a 'given finite corpus of behaviors, If limited to this, the claim
would be trivially true since any given subject during his lifetime is nec-
essarily limited to a finite number of behaviors. .(A finite number of be-
haviors can obviously be generated by a finite number of rules.)

Furthermore, this is not a thesis to bp proved since it is basically em-
pirical in natnre. The problem is that there is no operational way of de-
termining the behavior potential of a subject independently of the rules
used to characterize his knowledge.8 Unfortunately, it would be extremely
difficult and time-consuming to obtain -an adequate sample of mathemat-
ical behaviors to work with under the ideal conditions envisionedthat
is, where the subject is unencumbered by memory or his limited- capacity
to process Information.

To compensate for this difficulty, the author suggests the proposal
and evaluation of .alter native characterizations of given finite corpora of
behavior in terms of their relative powers and/or parsimony. That is,
given a large class of behaviors, such as those associated -with mastery of
a given school curriculum, the idea is not only to come up with a fmite set
of rules which .chaincterizes the curriculum but to come up with the best
pe-tsible set. (Loosely speaking, power refers to the diversity of behaviors
whkh the characterization accounts for; parsimony refers to the number

3. If there was some way of knowing, then Church's thesis would provide a natural basis
for deciding whether or not the behavior (potential) is rule-golerned. Church's thesis
(Rogers, 1967, 20-21) is that partie recursive functions (which can be defined formally)
are precisely those which can be computi.c1 by algorithm (which is an informal notion).
Thus, the proposal would be true or false depending on whether the class of potential be-
haviors Zs or is not partial recursive.

.
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and ifituitive simplicity of the rules Ln the characterizing set.) Such cri-
teria, of course, have been an essential part of fon 31 linguistics ever
since Chows lcrs (1951) influential Syntactic Structures was published.

In Order for a characterization to have maximal relevance to psychology,
however, these criteria alone are not sufficient. It is also important
that a theory of knowledge (i.e., a characterization) be compatible
with the raechanisrus which govern human learning and performance.
Specifically, it is itnportant, in addition to specifying finite rule sets,
to alSo specify how the constituent rules :nay be combined to generate
behavior. It is these `rules of combination" which must find parallels in
the -Way learned rules are put to use in particular situations. This ques-
tion a relationships between different levets of theorizing is an extremely
important one. For further discussion, see Scandura (1970c).

The basis of the present argument is that, given suitable rules of com-
bination, iituch of what normally goes under the rubric of creative behav-
ior crqt. be accounted for in terms of finite rule sets. In order to limit the
scope, this paper will dear primarily with those kinds of rules' which are
more properly associated with mathematical or logical contentspecifi-
cally, with matheMatical systems and axiomatic theories. In each case,
One begins with a mathematical characterization and then shows what it
mewls to know the underlying mathematics in a behavioral sense.

izelatively little attention is given to so-called mathematical processes.4

'rhos, for example, inference rules are discussed, but relatively little is
saki about heuristics and other higher order rules by which inference
ruleS may be combined in cv,.structing proofs. This does not imply, how-

ever that such processing skills cannot be formulated in terms of rules.

To the contrary, it is basically 8 simple matter. to formulate sucb hen-

ristics a's "organize (arrange) the data" and "work backward from the
unKnown" (cf. Polyc.., 1962) as rules. What is hard is to show explicitly

hoof these rules May he combined with other rules to solve problems.
Even this problem is not insurmountable, however, and some illustrative

analyses of this sort have been worked out (Searkkira, 1970b).

What is a Rule?

13efore COrititnling, it is necessary to define what is meant by a rule. In

spite of an increasing amount of research on the subject, it is perhaps sur-

priSing that the terra has no clearly defined meaning among behavioral

sciatists.
As a first step it is necessary to make a sharp distinction between under-

lying rulesor &Iterative procedures composed of rules 'and rule-

4. r or a, taxononlY of sti:-h proc,..sses and an introductory discussion, see the author's.

foralcoming boo Mather:macs: Concrete-Behavioral ronndation's (M:CBF), New York:
HarPer ROw, 1971, press).



governed (RG) behavior. Intuitively speaking, a class of behaviors is
said to be RG if the behavior can be generated by a common algorithmic
(generative) procedure of some sort. This means, in effect, that a person
who has mastered any underlying procedure should, ideally speaking, be
able to generate each and every response, given any particular stimulus
hi the class of stimuli.

More specifically, RG behavior involves the ability to give the appro-
priate response in a class of functionally distinct responses to each stim-
ulus in a class of functionally distinct semuli. (The term "functionally dis-
tinct" refers to the fact that each effective (i.e., functionally distinct)
stimulus (response) corresponds to a class of Overt and "functionally
equivalent" stimuli (responses).) The class of S-R pairs, defined in this
way, are called S-R instances. To see what this means, consider simple
addition. The proposed definition says that the behavior is RG if- each
pair of numbers is attached to a unique number called the sum. Thus, for
example, any overt representation of the nurriber pair (5, 4) can be
paired Avith any overt representation of the number 9 but not with any
representation, say, for the nuMber 6.

Ideally, then, RG behavior corresponds precisely. to- the notion of a
function in the mathematical sense. That is, every stimulus is paired with
a unique response.5 When looked at in this way it is clear that what psy-
chologists call concepts and associations can be viewed as special cases of
rules (Scandura, 1968, I969a, 1969b). Concepts are simply rules in
which each stimullus in a class is paired with a common response. Asso-
dations are further restricted to a single stimulus-response pair.

In its simplest form, a rule can be viewed as an ordered triple, (D,
0, R), where D is the set of (n-tuples of) stimulus properties which de-
termine the responses,. and 0 is the operation or generative protedure

S. As indicated above, of course, the behavior of human beings is not always !decd. Peo-
ple make-mistakes. There are.two conceptually different ways in which errors may occur:
First, the rule(s) learned by a subject may only apply to a subclass of S-R instances (of
the given RG class). Thus, for example, young children aro frequently unable te add num-
bers which involve "carrying" although they can perform perfectly well on those that do
not. In this case, following the notion of partial function in recursion theory, one may refer
to such behavior as partial RG behavior. Partial RG behavior is rule-governed but not
(necessarily) by rules associated with the given RG class. The other way in which errors
may arise is due to the limited capacity of human subjects to process information (Miller,
1956). There is, in effect, an important difference between knowing a rule and being able
to use it- (Chomsky & Miller, 1963). Thus, a person may know how to add any pair of
numbers but be quite unable to perform thc necessary operations mentally when the num-
bers are large. In the Present discussion, the author assumes throughout that all rules can
be used perfectly.

Note (parenthetically) that the abstract nodon of a funcror is sufficiently flexible to
capture either or both senses of incompleteness. (Roughly, a functor is a structure preserv-
ing function between two categories, the categories being analogous .to classes of func-
tionally distinct stimuli and responses.) Whether there is any real significance to this fact
or not, however, the author cannot say (cf. Seandura, forthcoming).
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by which the responses in R arc derived from the critical properties in

D (Scandura, 1966, 1967a, 1968). More of the detail involved can be

represented by adopting ideas taken from recursion. theory. In particular,

a generative procedure is a sequence consisting of at most four kinds of

rules:

1. decoding rules by which essential properties of stimuli are put into

store,
2. transforming rules by whirh things in store are transformed into

something else in store,
3. encoding rules by which things are taken out of store and made

obserVable,
4. rules for selecting other rules given the desired goal and the output

(which is in store) of sonic preNious rule.

Church (1936) has proposed that any set of behaviors which mathemati-

cians would be willing to classify as partial recursive can be generated by

a procedure composed of just these four types of rules. In general, this
would include just about all of the mathematical behaviors one normally

expects of the school-age child, the ability to perform arithmetic COM-

putations, to construct geometric figures with ruler and compass, etc.

Charvoterization of Mathematkal Knowledge

The main purpose of this paper is to indicate how complex mathemat-

ical behavior might possibly be accounted for in :ms of finite rule sets.

Mathematical systems. Every mathematical system consists of one or

more basic sets of elements, together with one or more operations and/or
relations and/or distinguished elements of the basic sets. 1:3y capitalizing

on certain logical equivalences it is possible to reduce the characterizing

elements to one basic set and one or more relations. Consider a simple
examplethe system whose basic set consists of three "undefined" ele-

ments A, B, C, denoted (A, B, C), with A being distinguished in the sense

that it serves as an "identity," and whose defining relation is 0 = ((A, A)

A, (A, B) B, (B, A) -4.13, (A, C) C, (C, A) -4 C, (B, B)
C, (C, C) B, (B;- C) -4 A, (C, B) --> A). This is a system in which

the distinguished element A "maps" every element it is paired with into

itself. When B is combined with B, the result is C and when C is combined

with C, the result is B. Finally, B combined with C in either order results

in A. Notice that no meaning is specified for either the elements A, B, C,

or the operation. They are "undefined terms."
What may be called an embodiment of a mathematical system results on

assignment of meaning to the undefined elements. Thus, in the example

5



just cited, the 'undefined terms might correspond to certain rotations with
A corresponding to a rotation of 0'; B, to a rotation of 1200; and C to a
rotation of 240°. In this case, the operation would simply be "followed
by." That is, the result of combining two rotations is that single rotation
which results in the same action as first doing one rotation and then the
other. For example, a rotation of 120° followed by one of 240° -results in
the same action as a rotation of 0°.

These definitions of systems and embodiments say something about the
nature of the objects we are studying and in that sense they are ex-
tremely important. Thzy do not, however, tell very much about their psy-
chological nature.

What kinds of behavior are implied by knowing systems and em-
bodiments of this sort? And, how can such behaviors be accounted for in
terms of rules?

First, knowing a system certainly implies the ability to compute within

the system. Thus, for example, given the pair, A, B, the "knower" should
be able to give the "sum," B. He should also be able to do more complex
computations, like ((A 0 B)0A) 0 C (BOA)0C-B0C--->A,
which involve combining individual facts (i.e., associations).6 In addition,
the knower should be able to give "differences," i.e.,. given the sum and

one of the "addends," he should be able to generate the other addend.
If these were the only kinds of behavio!r to be accounted fOr one

could simply list the facts (rules) involved. But clearly any reasonable
interpretation of "knowing a system" must also deal with relationships
as well. For example, mastery of a system would surely include the ability

to generate the subtraction (difference) rule from the addition rule, and
vice versa. Knowing that B + C = A, for example, should be a sufficient
basis for generating the corresponding subtraction fact, A B

Relational rules of this sort provide a simple way to account for such
behaviors. Thus, instead of listing all of the subtraction facts separately it

6. These facts correspond to non-degenerate rules in the various embodiments, of the
system. For exanipIe, in the illustrative embodiment, the fact, B 0 C = A, corresponds to
a rotation of 120° "followed by" one of 240°. The rule (operator) of doing one and then
the other applies to all pairs of rotations, not just one (pair). In addition, knowing a con-
crete display corresponding to this embodiment involves being able to perform the various
rotations on whatever concrete objects (e.g., an equilateral triangle) might be involved and
whatever its position or orient:A:on. As anyone who has worked with young children knows,
thh is not Something which can automatically beassumed. (One thing which can easily be
overlooked in analyzing behaviors, for example, is that these "rotations" arc actually equiv.
alenceclasses of rotations, and that these equivalence classes may be different for child
and observer.) While such things may not be important in mathematics strictly speang,
they are relevant in science and, in the opinion of the author, ought to be

le
dealt with as an

.integral part of the elementary school mathematics curriculum.
In an important sense, then, knowing a concrete embodiment (or a corresponding dis-

play) may involve a different type of knowledge than knowing the same amount about a
corresponding system. This et-sensation could have relevance to a number of recent results
(Dienes & leaves, .1965; Scandura & Webs, 1967; Suppes, 1965) and should be taken ex-
plicitly into account in designing future studies.



would be sufficient to know the addition facts together with the relational
rule. That is, assuming, as is traditional in formal linguistics, that individual
rules can be composedperformed in succession.

The obvious way to account for such relationshipsthe way taken by
curriculum developers of the operational objectives persuasionis to
simply add more rules to the characterization. There arc, however, major
problems with this approach (Scandura, 1970a). For one thing, listing a
new rule for each kind of relationship would have a post hoc flavor not

likely to add much in the way of understanding more creative behavior.
For each new system (of the same type) conside.red, for example, there
would be a new relational rule for each one in the original system. Even
granting the economy obtained by eliminating inverses, and the like, the
number of rules could grow large Very fast. This would not be bad in
itself assuming that this is 'the best one could do. The important ques-
tion, however, is: Can one come up with a more efficient account which
is at the same time more powerfuland which allows for some measure
of creative behavior?

To answer this question, first note that knowing how .one or more sys-

tems are related tO a given one may provide a basis for knowing how to
compute in the new systems given how to compute in the original. The
relatiOnships of interest will generally be mathematical in nature, but they
need not- be limited to morphisms. For example, one .system may be a
simple generalization of anothet., as with cyclic 5 and cyclic 3 groups.

Because of the way particular relationships are defined, however, this
advantage will generally be of a limited sort. With hontomorphisms, for ex-
ampie, the ability to compute in thc new system applies only to the de-
fining operations themselves and not, say, to their inverses or to rela-
tionships ..between the operations. It is worth noting, nonetheless, that
knowing even a relatively simple set of interrelated rut'ls such as this
would make possible a certain degree of creative behaviorwhat might

.
be. Called "analogical reasoning..!- For example, suppose that a subject
has learned how to add in system A and that he knows the bomomorphism
which connects A to system B (i:c.,that he can generate the elements in
B .which correspond to these in A). Then, the subject should be able to
add in system B. without ever being told how. Consider the homoMorphism
to be one-to-one (i,e., an isomorphism), system A 'to be the embodiment
of the illustrative .3 group above, and system. B tb be the illustrative sys-
tem itself, then one might generate a sum in the abstract system B by
(a) using the isomorphism to determine the corresponding elements in
A, (h) adding in .A, and (c) using the isomorphism in reverse direction to
determine the element in B corresponding to the sum (in A). Notice
that this follows only if our rules of combination allow for combination
(of rUles).

7



A far more powerful and parsimonious characterizatio. results by simply
lIoWin rules to operate, not on just ordinary stimuli, but on other rules.

Such rules may be said to be acting in a higher order capacityor, in
short, tO be higher order rules. Although functions on functions are com-
mon in various branches of analysis, and their formalization is routine,
thc idea seems not to have pervaded formal linguistics. The closest lin-
guists have come in this regard has been to introdace the notion of a
grammatical transformation' between- phrase markers (Chornsky, 1957 ),
which closely parallels what are here called relational rules (e.g., between
addition and subtraction).

There are two reasons why this has probably not been done in the
past. First, grammatical transformations have so far resisted mathematical
treatment (Nelson, 1968) insr.far as this relates to computer science and,
second, no existing approach to psychology (known to the author) pro-
vides any real motivation for introducing them.

This is unfortunate since there is a very simple and intuitively sound
reason for including higher rder rules. The main one is just this: The
idea of allowing rules (in rule sets) to operate on other rules is compatible
with the following intuitively appealing hypothesis concerning perform-
ance. If a subject does not have a rule available for achieving, a desired
goal, then he typically will try to construct a 'rule which does work .(cf.
Seandura, .1970c). There is a good deal .of introspective evidence in
favor of this hypothesis, and some empirieal support for it has been col-
leeted, In a recent study (Scandura, 19676), it was found that 'the ability
to "use parentheses" was a sufficient basis for Combining learned rules so
as to solve thc given tasks which involved interpreting new statements
of mathematical rules. Later analysis of these tasks showed that use of
parenthesis may be viewed as a higher order rule (Scandura, 1970b).
The author is currently involved in research in which success in general-
izing this result to a number of different .kinds of sltuations'pnd popu-
lationg has been. achieved (Scandura, 1970c).

Allowing rule sets..to. act in 'this way makes it possible for them to
"grow" in ways. not -possible by just forming simple. compositiOns (of
rules). Thus, (higher ordcr) ruleS may generate completely- new kinds
of rules; and these rules, in turn, may bc used to generate. gill other
rules.

Consider.what higher order rules might suggest in the present situation.
Suppose that a subject has learned a higher .order rulc which connects
each operator (rule) with its-inverse. Such a rule would connect not only,
say, addition.of nurnber::,..with subtraCtion:, but composition of all sorts
(e.g.,. of permutations, rotations, rigid motions, etc.) with the correspond-
ing inverse operations. The defining operation of each system and its
inverse may be thought of as being distinct rules which are nmpped one

8



on to the other by this higher order "inverse" rule. Assume, in addition,

that the subject has learned how to add in system A, the relationship (e.g..

a homomorphism) between system A and system B, and also how to form

the composition of arbitrary ruIes (in the rule set).
In this case, there are all sorts of behaviors that the (idealized) subject

would be capable of. For example, he would be able to subtract, not only

in system A but in system B as well. To see this, one need only observe

that the subject can form the composition of the rule between systems A

and B and the higher order inverse rule. This composite (higher order)

rule in turn allows the subject first to generate an addition Tule in system

B and then to generate a subtraction rule in system B. This subtraction

rule, in turn, would allow the subject to subtract. Translated into more

meaningful terms, a rule set of this sort would imply such abilities as

finding inverses with rigid motions given only the ability to add num-
bers. But, then, isn't this just what is considered as creative behavior?

Axiomatic theories. There is clearly more to knowing systems than

simply knowing the rules and interrelationships within these systems. This

amounts to internal knowledge of the systems but it says nothing about

the systems in the descriptive sense.
. Axiomatic theories are concerned with properties of systems. As an

example of one such property, notice that in the illustrative system it does

not make any difference in which order two elements are combined. Thc

system satisfies the commutative property; in fact, it satisfies all of the

axioms (i.e., properties) of a commutative group of order three. .

In order to define precisely what is meant by an axiomatic theory, the

next thing to observe is that a set of axioms o: properties defines a family

of systems, namely that family consisting of all, and only, those systems

which have each of the given properties. Therefore, an axiomatic theory

may be defined to be the set of properties which holds in the family of sys-

tems defined by a given set of axioms. The set of axioms, of course, be-

longs to the set of properties.
Paralleling the .discussion of systems, consider thc question: "What

kinds of behavior are involved in knowing axiomatic theories and what

kinds of rules are needed to account for these kinds of behaviors?" Due

to the complexities involved, the discussion will be restricted largely to

lower order rules.
The sine qua non of mastering a theory is to know the axioms and the-

orems of that theory. In behavioral terms, this ability may be thought of

as being able to give on demand the conclusions associated with each

set of premises. Thus, as with knowing the particular "addition" facts of

the illustrative system, one might be tempted to characterize knowledge

of particular theories as sets of discrete associations. This would be

wrong, however, on two counts. First, the number of theorems associated

9
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with any given theory (including trivial ones) is infinitely large, so that
they could not all be learned in this way. (Of course, the number of im-
portant theorems is usually much smaller.) Second, and more basic, such
a characterization, while feasible in part, would not be very parsimonious
or powerful. Many more rules would bc needed than might be desired and
important relationships would simply bc ignored

One problem has to do with not knowing proofs of the theorems but
there is more to it than just that. Proofs can be learned in a. strictly rotc
fashion and being able to eencrate one may signify little more than simply
knowing the theorem itself.

The kind of rule in mind may act not only in any given theory, or even
in any class of theories, but these rules may act in any thcory whatsoever
indeed, in any situation at all. They arc closely related to inference
rules of formai logic but thcy do not act on strines of symbols nor do they
generate strings of symbols. Ncithcr do they all map properties of sys-
tems into properties of systems as one might suspect in view of the rela-
tionship between formal systcms and axiomatic theories. (Strings of sym-
bols of formal systems corrcspond to properties of mathematical
systems.)

. Some inference rules are Of an entirely different sort. Instead of opera-
ting on properties of systems and generating ncw properties, what have
been called suppositional inference rules map logical arguments into prop-
erties. Somc work has been donc in this arca under the label "natural
deductive systems," e.g., sec Kalish & Montague (1964), Prawitz (1965),
but little has been done with behavioral questions in mind. In present termi-
nology, the suppositional inference rules correspond to rules which map
instances of other inference rules, or combinations thereof, into properties.
For example, from any specific argument, in which property B follows
directly front property A. one can infer the property, A B. In an impoi-
tant sense, then, suppositional inference rules correspond to what is referred
to above as relational rules, and transformations, and not to hieher order
rulessinco they do not operate on other rules, but on instances of other
rules.

The stimuli of RG behavior may be viewed as families of sYstems and
the responses as derived properties of these families, called theoremS.
Thus the RG behavior associated with any particular logical procedure
involves a class of families of systems and a class of corresponding the-
orerns of these various families. If.the procedares are sufficiently unique,
e.g., as in proving many non-trivial theorems, the class of RG behaviors
may be quite small, indeed it could include only one instance.

In effect, a logical procedure r 1..y act on corresponding properties of
different families of systems, and produce other properties of the re-
spective families, called theorems. Some idea .of the way complex logical
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procedures operate can be obtained by considering familiar rules of in-

ference. Modus poncns provides a simple illustration. Suppose that the

statements "If G is a finite group and S is a subgroup of G, then the order

of S divides the order of G" and "G is a finite group and S is a subgroup
of G" arc properties of one family of systems (actually, of pairs of sys-
tems) and "If a function is continuous over a closed interval of the real

line, then it is uniformly continuous" and "The function is continuous over

a closed interval of the real line" arc properties of another family. Then

application of thc logical rule (of inference) modus ponens tells us that

"the order of S divides the order of G" and "thc function is uniformly
continuous" arc also properties of the respective families. Thc corre-
sponding premises and conclusions arc quite different but the (logical)
rule of inference by which they are related is identical.1

The same eeneral idca may be cxtended to more complex logical pro-
cedures. In this case, decoding rules involve accepting, or rejectine, prop-
erties, axioms and theorems, of families as appropriate to eiven goals the
subject mieht have. Rules of inference correspond to transforming rules
(type two rules) and stating theorems, to encoding (type three). Branch-
ing rules (type four) may also be involved in logical procedures, as, for
example, when repeated applications of a rule of inference is required.
For example, the conclusion "D" can bc infcrred from the premises
"A D (B D (C D D) )," "A," "B," and "C" by repeated application of

modus ponens.
Since inference rules and the generative procedures which may be

constructed from them apply in all conceivable situations (i.e., to prop-
erties of situations), it may bc that they might bc discovered at an eariy
age from instancesin the same way as many other rules. That is, (learn-
ing) deduction may be viewed as induction on a logical rule. If this is truc,

it could have important implications both for the study of mathematical
reasoning and for teaching it.

Of course, no onc individual has mastered, or ever will, all of the log-
ical procedures that might .be constructed. Such knowledge constitutes

an ideal which can only be approached. The behavior involved in proving
any non-trivial class of 'theorems is necessarily partial. According to

7. Notc, thc proposed definition of RG behavior as a function, has been questioned. The
comment has been made that "the futilily of trying to think of rules of inference (even)
as functions is already evident oncc ono considers substitution of equals." If, wever, careful
thought should convince one that the inpat of such an inference rule maps pairs of the form
y = h, P(b) K intb elements of the form P(y) K where y is allowed to vary. Thus, the
form corresponds to a class of functionally distinct stimuli (e.g., a, b, P(&) = K; a2 = b,
P(6) K; - ) and so it is not surprising that one can generate any nurhber of different

responses (e.g., P(a,) = K; P(a) K; - ).

11
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Church (1936), there exist classes of theorems for which no generative
procedure can possibly exist: This docs not necessarily mean, however,
that theorems which belong to such classes can never be proved. Some
procedure might exist for deriving any particular theorem; Church's the-
sis is simply that no one procedure will do for the entire-class.

Nonetheless, many logical procedures, even reasonably complex ones,
are apt to be common to a number of different theories. The number of

more or less unique procedures in any particular theory is likely, accord-

ing to the present view, to be relatively small. Hence, assuming prior
mastery of most "standard" logical procedures, a skilled mathematician
may gain mastery of a new theory in relatively short order by concen-
trating on those procedures associated with some of the deeper theorems
of the theory. Note that logical procedures correspond roughly to proof
schemasthat is, to classes of proofs of the same general form.

In ordcr to prove most theorems, indeed to successfully engage in com-
plex deductive reasoning of any sort, a subject must know more than just
rules of inference, or even a large number of relatively complex logical
procedures. The subject must also have higher order rules available by
which he can combine known inference rules and other logical proce-
dures into new formsthat is, so that he can create.. One type of higher
order rule that is frequently used in constructing proofs is closely asso-
ciated with the heuristic: "Work backward from the conclusion." In this
case, the learner attempts to derive a procedure for generating the con-
clusion from the premises, i.e., to construct a ptoof, by first selecting an
inference rule which yields the conclusion and then trying to derive a
logical procedure, by using this or other higher order rules, which yields
the input of the first rule selected. Presumably, the subject continues in
this way until he either succeeds or the whole approach breaks down.
The widely used technique of proving theorems indirectly by assu'ming
that the conclusion is false provides a particular example of a higher order
rule generated by application of this heuristic (a still higher order rvle).
In this case, the problem reduces to one of constructing a proof of from

--B. The final step in constructing such a proof just amounts to selecting
what might be called the contrapositive inference rule by which the
theorem A B, can be inferred from the argument from B to

More could be said" about such things as formal systems and meta-
mathematics but space does not permit. In the first case, it suffices to say
that formal systemic are easier to work with than axiomatic systems. Noth-
ing new is requirA, except that the allOwable inference rules are spe-
cified, and no decoding rules are needed. The axioms and theorems are
themselves the stimuli and responses. Metamathematics turns out to be
nothing more than an axiomatic type of theory in which only non-contro-
versial rules of inference are allowed.
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Concluding Comments

In conclusion, this paper has dealt primarily with what it means to
know an existing body of mathematics. Relatively little has been said
about intellectual skills of the sort that must inevitably be im ,-'1c1 in

doing real mathematics. Nonetheless, it has been shown that N ap-

pears to be creative behavior mi2ht well be accounted for in terms of

growing rule sets. The key idea in makina this a feasible and rather at-
tractive possibility is that of the higher order rule, Although space lirnita-
tions have made it necessary to ignore many details, and there obviously
are still a good - many important questions left unanswered, the authOr
feels that enough has been said to convince the reader that the basic
conjecture must be taken seriously: all mathematical behavior is a rule-
governed activity and the basic underlying constructs arerules.
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Deterministic Theorizing in Structural Learning:

Three Levels of Empiricism

Joseph M. Scandura

MERG and Graduate SchooL of Education

University of Pennsylvania

In spite of the diversity which presently exists in behavioral theorizing,
reference to probabilistic notions is all-pervasive. Even support at the .05
level of significance is often enough to elicit whoops of glee from most cogni-
tive theorists. Given ehis milieu, it is not too surprising that (aside
perhaps from computer simulation types and a few competence theorists (e.g. ,
Miller and Chomsky, l961)), no one seems to have seriously pursued the possi-
bility that deterministic thaorizing about complex human learning may actually
be easier than stochastic theoriing. And yet, this is precisely what in my
own work I have found to be the k.Ase.

The purpose of this article is to describe the "rudiments" of a poten-
tially powerful and internally consistent deterministic partial theory of
structural learning, which could make it possible to explain, and hopefully
also to predict, certain critical aspects of the behavior of individual sub-
jects in specific situations. The term "rudiments" is used because at the
present time relatively few implications of the theory have been drawn out.
The emphasis so far has been on establishing a fit between behavioral reality
and the basic constructs and hypotheses of the theory.

As suggested by thc, title, there are really three different partial
theories, each of which must be tested in a different way. First, there is a
theory of structured knowledge -- or, more accurately as we shall see below,
theories of structured knowledge. These theories deal with the problem of how
to characterize knowledge. (The knowledge had-by any given individual consti-
tutes theory in its own right.) Second, there is a theory of idealized
behavior which tells how knowledge is selected for use, and how it is learned.
This theory applies only where the subject is unencumbered by memory or by
his finite capacity to process information. The third theory is still more
general and tells what happens whcn memory and information processing capacity
are taken into account. These three theories are not indePendent of one.
another, although, as we shall see, research on any one can progress inde-
pendently of the others and this inr:ludes empirical testing. '
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Preliminary Cbservations

Before describing these partial theories, some general background may

be helpful.

There are three main ideas which my title conveys. The label "struc-

tural learning" sets the whole tone for the title, so we consider that first.

Structural learning refers to the knowledge a perSon may have and the be-

havior (and learning) which this knowledge makes possible. More specifically,

structural learning is concerned with complex human learning and behavior which

cannot naturally be studied without giving explicit attentioiCto what the

subject knows before he enters the learning or.behaving situation. Any attempt

to study mathematics learning, for example, with reference only to the stimu-

lus situation would be folly to the nth degree. Individual differences in

prior knowledge and other intellectual skills in mathematics may be very

great indeed, and Cz(se differences must be taken explicitly into account in

any thedry that is to provide a viable account of complex mathematics learning.

It should be noted parenthetically that one of the primary requisites for

selecting tasks in most traditional studies has been thlt prior learning be

of minimal importance. The reference here, of course, is to experiments on

serial and paired-associate learning, classical conditioning,- and the like.

Wpendence on prior knowledge, then, is important to my conception of

structui:al learning. But this alone is not sufficient. The knowledge in-

volved must also have, a7reasonably clear strucn r. In this 'Sense, bathe-

matics, for example, tends to have a clearer structure than, Say, the social

studies or the humanities. The fact that grammarins, like Harris and Chomsky,

hav51 been able to make as much progress as they have in lingnistics attests

to a good deal of structure in language as well.

The second dominating phrase in my title is "deterministic theorizing."

In view of the tradition in psychology against this type of theorizing, it .

is instructive to consider the paradigm most typically used in testing

behavioral theories. First, assumptions are made about how individuals

learn or behave. When stated in their clearest form, as in the stochastic

theories of mathematical psychology, the basic assumptions are stated ih

terms probabilities. Second, inferences are drawn from these assumpt-ions

yielding predictions about group statistics -- that is, about characteristics

of tIle distributions of responses made by the experimental sdbjects. Third,

on fhe basis of the experimental results obtained, inferences are made about

the basic assumptions.

Of course, there is no harm in this as long as it is recc lized that

the initial assumptions deal with probabilitie- and not with iLAividual processes.

But this fact has not always been made as explicit by theorists as might be

desirable. What needs to be madi.: clear with such probabilistic theories is

that what any given subject does on a given occasion may have little or

nothing to do with the particular assumptions made. For example, in stochastic



models of paired-associate learning it is usually assumed that each suLject

has the same probability of learning on each trial. Even ehe most super-

ficial analysis of relevant data, however, indicates clearly that the pro-

bability of success for different subjects may vary greatly. And one

cannot attribute this to the fact that the probability of learning is a

random variable. This would still not explain the fundamental fact that

the probability of success of many subjects tends to be either uniformly

high, or low, over different trials.

How much better it would be to have a theory which would tell us

explicitly what a given subject win eo on specific occasions -- a t'Aeory

which leaves errors in prediction to inadequacie5 in observation and

measurement, and does not make these errors an it part of the theory

itself. Ideally, such a theory would satisfy et... -lassical conditions for

a detexministic theory in the hard sciences -- theories which sily, in effect,

that given such and such basic hypotheses and these initial conditions, this

is what should happen. Given a theory of this sort, probability would

enter only where one wanted to make predictions In relatively complex situations

wIdere the experimenter practically speaking could not, or did not wish to,

find out everything he would need to know and ppecify in order to make deter-

ministic predictions. In effect, a truly adequate determnistic theory would

make it possible to generate any number of stochastic theories by loosening

one or another of various conditions which must be satisfied in order for

the deterministic theory to apply. (In this regard, see the Comments below

on levels of empiricism and conditional hypotheses.)

In order to be completely honest, I must mention one further rewa why
deterministic theorizing appeals to me. I am basically lazy. I have done a

good deal of traditional behavioral research, but I dislike with a passion

poring over reams of raw data or computer printouts, especially when I know

that, no matter what statistics are used to summarize the data, I am losing

much, if not most, of what is important. It is perhaps this distaste as much

as anything else which has moved me to search for a new and better T.cly to do

empirical research on complex human learning. How much nicer to have data

ich is clearcut, no means or verlances to compute, no analyses of variance,

or canonical correlation" or factor analyses -- just looking. In this

regard, I can't resist the temptation to repeat a little story about an

experience I had as a post-coctoral student being initiated into mathemat-cal

psychology at Indiana University. The time was the stimmer of 1962, and the

field was bright and promSsing. As part of my orientation, I was routed

about to visit a number of the more prominent names on campus, including one

very fine physiologist. Crught up by the emphasis on mathematics given03y

the psychologists, I asked him what kinds of mathematics he found moSt use-

ful in his work, and how he used it. His answer waz, "We count." After
getting over my initial shock, T began to see ehe logic of his answer,.and

have bean trying to meet his io ..:ver since.

Finally, let us consider what is "levels of empiricism."

Recall first that any theory is but a partial model of reality. It deals

adequately with certain phenomena in the sense of providing an adequate

explanation for them, but not others. Theories do not apply universally. To

make the point in its most trivial sense, we need only note that existing
4,1
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theories of thermodynamics, for example, are not likely to be very useful
in explaining paired-associate learning -- or vice-versa. As a more
realistic example, learning theories such as Hull's provide a far bettr-r
account of certain simple behavioral phenomena than they do, for example,
of tbe learning of complex mathematical structures. (Partial theories must
not be confused with so-called miniature theories of mathematical psy-
chology. Partial theories deal with only certain phenomena of given,
broad-based realities. Miniature theories deal intensively with highly
restrictive phenomena such as paired-associate learning.)

The general difficulty with most theory construction psychology,
today, is that very little attention has been given to specifying conditi.ons
under which theories are not presumed to hold. To date, the-sole approach
to this problem has been an ad hoc empirical one in which experimental
evidence is gradually accumulated over relatively long periods of time.

It is my feeling that much can be done along these lines, while

theories are actually being constructed. This does not obviate the need
for empirical testing, of course. No one believes that we can ever do away

with that. But I do think that we can do away with a good deal of it, if
theorists would give more explicit attention in their work to identifying

these negative conditions.

In constructing a.theory, whether it be a mathematical -theory or a
scientific theory, ehe theorist has some model, or models, in mind at the

time. These models arise basically from particular segments.of reality --
but more important here, they usually deal with only certain-aspects of'
that reality. The rest is simply ignored.

This approach may be a viable one in mathematics, where one aims for
abstraction. One never knows where mathematical theories may ultimately
prove useful (i.e., be applied), and it would undoubtedly be ,a mistake

to tie them in too closely to any particular model, by specifying aspects
of these particular models with which the theory does not deal.

This is po;- true in science, hcwever, where the ultimate aim may be to
devise theories which deal with more of the particular reality In question.
A theorist may have many more kinds of phenomena in mind in attempting to
construct a theory than he can possibly handle at one time. To get around

,this ptoblem, he may purposefully ignore for a time certain of these
phenomena to facilitate constructing what might oe called a partial theory

-- a theory which deals with part of the reality but not all of it.

In constructing such a partial theory, it is critically importart
that the theOrist do so in a way which is compatible with the broader realitY.

Thus, for example, the ultimate aim of competence theorists such aa Chomsky

(1968) and Miller and Chomsky (1963) is not just to characterize the knowledge

had by an idealized human subject -- that in itself might be attemptea in

any number of different ways. What these theorists want- is a theory of kuuwieage

which is likely to be compatible with a more encompassing behavior theory

once one is developed (e.g., see biller and Chomsky, 1963, 483-488). In

such cases, will ,v,..nerally be ,in the theorist's interest to ui,:lw just

what aspects of reality his present theory does not consider. Stated differ-

ently, he must know what boundary conditions must be satisfied in orier for

4



his partial theory to apply. Theoretical predictions based on partial
theories are necessarily dependent (on such conditions).

In order to test a partial theory, then, the empirical situation must

accurately reflect these boundary conditions. Otherwise, the partial theory

will simply not be applicable -- by definition. Perhaps the best known
example has to do with linguistics, where grammarians, such as Chomsky (1957),

.assume an idealize:1 knower -- a knower who can use whatever rules are
attributed to him without error, and wherever they might be needed. This

type of theory seems to be having increasingliimportant implications for
psychology, but lc must be remembered that a competence theory of this

sort applies only in those situatiorx where the idealized performer assumption

is reasonable to make. (There is a close relationship between these ideas
and the so-called ecological approach to behavioral science (4ohlwill, 1970),

which is becoming increasingly popular of late. In fact, the partial
theories described below provide good examples of the kind of theories for

which this approach seems to call.)

5
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Foundations of a Theory of Knowledge

The first level of theorizing is concerned with ehe problem of how to

account for the behavior of idealized subjects. More.particularly, glven

a finite class or corpus of behaviors, the problem is one of how to
characterize the knowledge underlying the corpus a way which accouni.s

as well for the other behaviors of which an ideal' cd knower of that corpus

may be capable Carr approach to this problem involveS the invention of a

finite set of ructs of one sort or another which can be used to generate not
only the behaviors in the given corpus, although this is an absolute minimum,

but also the other behaviors one might wish to attribute to the knower
(Scaadura, 1970a, for an earlier but closely related version of this goal

ee Chomsky, 1957). (A :cule may be said to account for a class of behaviors

if, given any stimulus input associated with the class, the corresponding
response may be generated by applization of the rule (Scandura, 1968, 1970b):)

As one might suspect, there are any number of different ways in which

to characterize the same given corpus. The theoretical problem is one of

evaluating these various characterizations to determine which best accounts

for the other behaviors one might wish to attribute to the knower (Chomsky,

1957; Scandura, 1970a, forthcoming). These additional behaviors constitute

the predictions.

Consider some of the alternatives. Undoubtedly, the simplest way to

account for a given finite corpus is just to list the behaviors involved.

Thus, for example, a list of paired-associates might be characterized as a

finite set of degenerate rules (Scandura, 1968) or, equivalently, as a finite

set of associations. Clearly, lists of paired associates are not the sort of

corpora we usually have in mind in talking about mathematical and other complex

behavior, and characterizations which consist of simple lists,or associations

would be essentially sterile in content. If this were all a person c,'J1d-

learn, it would be impossible even to learn how to add numbers, additioi;

fact by addition fact. A person could learn at most a finite number of sums,

since each addition fact (e.g., 3 + 5 = 8, 27 4-47 = 72, ana -o on) would have

to be learned separately.

A somewhat more realistic characterization of a corpus of behaviors

derives from recent attempts in educational circles to define school curri-

cula in terms of a finite number of operational objectives (e.g., Lipson,

19W). Each of the objectives of these curriculn amounts to a class of he-

haviors which -an be generated by a rule; ehe abilities to add, to multiply,

to find areas of triangles, and so on, provide obvious examples. It is pos-

sible to account for the behaviors reprfsented by such a corpus, then, by simply

listing a fini,,e set of rules. In fact, this is essentially what has been chine

'by curriculum constructors who have followed this approach. The curricula

consist essentially of long lists of rules for achieving the (operational)

objectives, one rule for each objective.

6
%.:,



Clearly, exactly the same idea might be applied in eharacterizing the
knowledge had by individual subjects. A list type of characterization
of this sort would have the major advantage-of requiring a very simple perior-
mance mechanism. Thus, if knowledge is characterized as a list of discrete
rules, which operate independently of one another, then a more general theory
of performance would need to tell only how such rules are put to use. Since
the rules are discrete, no interactive mechanisms need be postulatel.

This advantage, however, is also its major disadvantage. Because the
characterizing rules are discrete, they cannot account for behaviors which
go beyond the given corpus, excel the most trivial sense. For exarnle,

euppose the characterization only luded rules for adding, subtracting,
nv;."..tiplying, and dividing. In this case, the sobject would be unable to
even generate the addition fact corresponding to a given subtraction fact
although one might reasonably expect this type of behavior from a person who

was well versed in arithnetic. One might counter, of course, that it woCed
be a small thing simply to add a new rule to the original list.

c-a=boa+b=c
We might even use the distinguishing label "relational rule" since It
operates on the elements of a binary relation. Indeed, this :le preeinely

the sort of reply one might expect from curriculum constructors of the.

operational objectives persuasion. When confronted with the criticism thet
their objectives do not constitute a mathematicall- (or otherwise) viable
curriculum, they would simply say we can add more elective;

The trouble with this sort of argument is that it missee the point

entirely. Not only would such an approach be ad hoc -- which really says
nothing by itself except to convey some ill-defined dissatisfaction -- but it
would be completely inZeasible where one is striving for completeness. To

see this, it is suffizient to note that a new rule would have to be introduced
for every conceivable interrelationship, and that the number of such inter-

relationships is 5:ndefinitely large. One could easily envision a number of

rules so large that no human being could possibly learn all of them. There

would not be sufficient time in a single lifetime. The sum total ci all
mallematical knowledge which is presently in pzint, for example, is so vast
that no one has, or could, possibly acquire ail of it. As vast as this know-

ledge is, however, a really good mathematician is capable of generating any

amnunt of new mathematics which coes not appear in print anywhere. That is,

he can create. Much of the new mathematics might be utterly trivial, of

course, but the very fact that it exists at all strongly suggests that any

characterizat5on euch as that dereribed above would almost certainly:miss

much that is important.

We can get a far more powerful and simple characterization by allowing'

rules to operate, not just on ordinary stimuli, but on other (lowe'e order)

rules as well.' More specificary, allowing rules.to operate in this way.

7



makes it possible to generate new rules and ehese rules, in turn, may make

it possible to generate what might appear to be completely different kines

of behavior. Por example, suppose that an idealized knower-has mastered

the two rules:

(1) a, b a 4- b.

(2) (x, y x o y} =0 (x, y -1 x o' y),

where (1) represents a rule for generating sums of pairs of, say, integers

and (2) represents a (higher order) rule which, given a rule of the form

(1) for any binary operation, generates a rule for performing the correspond-

ing inverse operation (denoted o'). Such a rule would connect, for example,

not only addition of numbers with subtraction, but composition of all sorts

with the corresponding inverse operations, whether these operations involved

permutations, rotations, rigid motions, or -4hatever. In this case, applica-

tion of ru7.e (2) to rule (1) yields rule,

(3) a, b a - b,

where " " is the inverse of " " . Application of rule (3), in turn,

makes it possible to generate differences between any given pair of integers

a and b where a >b. ''ut, then, isn't this just a simple instance of the

sort of thing we have i And when we think of creative L2havior?

:f the extrapolation involved Seems too tame to qualifY for this dis-

tinguished label, consider the following example in whidh we add another

level to the analysis. In this case, we assume in addition to rules (1)

and (2) that the idealized knower has also mastere" 'uies,

(4) (x, y x o y) so (4,2 x o.v3 (Note: x, y, o are different

from x, o, residectively)

(5) [(z Y), (Y z)) [x z)

Rule (4) may be thought of as denoting knowledge c,f generalized

homomorphic relationships between pairs of systems such as the syotem (A)

of integers under addition and, say, ths system of (B) rational numbers

undcz addition. Rule (5) is extremely general and makes it possir..e to

generate the composite (rule) of any pair of given rules such that the

output of one of the rules serves as the input of the other.

Knowing these rules would make all kinds of behaviors possible. For

example, ,the :.dealized knower would be able to subtract, not only in the

first system (A) but in the sedond system'(B) at well. To see this, we

need only pbserve that application of rule (5) to rules (4) and (2) yields

rule



(6) [x, y 7* x o y) 1-42 (x, 4'x o1.

Application of rule (6) to rule (1), then, yields rule

(1) a, b or a, b - b where +' =

Rule (7) is the subtraction rule for system B. The basic relationships

are represented schematically in Figure 1. Nore details and further examples'

may be found in Scandura (1970, forthcoming).

In summary, the essentials of the theory of knowledge as outlined

are just these. (1) the knowledge of anyn indivict,1 at any given

stage of learning can be characterized in terms of a finite set of rules.

This implles among other things th_lt there may be as many different theories

of knowledge as there are individuals -- or, equivalently, as many theories

as there are conceivable curricula to be mastered. (2) Rules may act on

classes of rules as well as on simple stimuli. Allowing rules to act in

this way amounts to a simple but conceptually major revision of existent

competence theories. (3) For purposes of the theory, it is assumed that

the rules may be combined at will and without error as needed. Stated

differently, the idealized knower is assumed to have mechanisms available

for putting the rules attributed to him to use.2
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Foundations of an Idealized Theory of

Structural Learning

The third point above is a critical boundary condition of the theory

of knowledge. The theory applies only at the analytical level in the

sense that generative grammars account for language behavior. The relevance

of the theory to actual human behavior is dependent on our ability to spell

out mechanisms which are both adequate to account for how rules may be

combined and which are reflected in the actual behavior of human subjects.

It is to this task that we now turn -- the Lask of introducing mechanisms

of idealized performance, learning, and motivation into our formulation.

The purpose of adding such mechanisms to the theory of knowledge is to obtain

an extended theory which deals explicitly with the way in which available

knowledge is put o use. This more encompassing theory is still a partial

fheory, however, one which applies only where subjects are unencumbered by

either memory or their intrinsically limited capacity to process information.

It should be emphasized, however, that it is-a theory which is assumed to

apply no matter what knowledge an idealized subject has available. Thus,

ever though the knowledge had by different individuals may vary greatly,

the same theory of idealized behavior is assumed to hold over all individuals.

The basic assumption on which this theory rests is that people are goal-

seeking information procossors. In this case; much of what a subject knows
becomes irrelevant once a goal situation is specified. Thus, at any given

point in time, only a small fraction of the rules available to a knower may

be applicable -- namely, those rules which may be used directly or indirectly

in satisfying the given goal.

There are three basic kinds of situation with which any viable theory

must deal., One type of situation is where the subject-knows one or more
rules which apply in the given goal situation. The second is where the subject

does not explicitly know a rule which applies in the goal situation. The

third is actually a refinement of the first, and deals with the question of

why, when a subject has more than one rule available, he selects the rule that

he does. Why not one of the others? As we shall see, fhese problems are

closely allied with what have traditionally been called performance, iearning,

and motivation, respectively.

The first case is simplest to deal with. We need only assume that:

(A) Given a goal situation for which a subject has at least oile iule

available, the subject will apply one of the rules.

Thus, for ekample, if a subject's goal is to find the sum of two numbers,

ail(' he knows how to add, then he will actually use an addition rule.



As trivial an assumption as this may appear, it is an assumption. It
does not follow logically that just because a subject wants to achieve a
certain goal and has one or more rules available for achieving it, that he
will necessarily use one of them.

Furthermore, the assumption has a number of important implications.
One of these is that it provides an adequate basis for determining what might
be called a subject's behavior potential, relative to a given class of rule.

governed (RG) behaviors. It may be noted in this regard that it is one thing
to devise a procedure (rule) which accounts for a given class of RG behaviors
and quite another to identify that subclass of behaviors of which a given
subject is capable. The first problem is an analytical one and involves
inventing a procedure which accounts for the given class of RG behaviors.
No psychological assumptions are involved.

Determining a subject's behavior potential, however, necessarily depends
on what can be assumed about the mechanisms which govern human behavior. The

basic idea goes like this: Given any familiar class of RG behaviors, like
the class of addition tasks, we can usually identify those rules (algorithms)
which the subjects in question are likely to use in solving the problems.
We do not automatically know which aspects of.these algorithms any given
subject is capable of, however. To find out, we must test the subject. But

on which instances is he to be tested -- how are they determined? The
standard approach, of course, is just to select a random sample of test
instances and then make probabilistic predictions about future performance
on other instances in the class.

This apprcach is rejected in favor of systematic selection of test
instances and deterministic prediction on individual items. To see how this

can be accomplished, we first note that every algorithm for solving a given
class of.(RG) tasks can be represented by a directed graph (see Scandura,

forthcoming). For example, the task of generating the next numeral in Base

Three Arithmetic can be represented as in Figure 2.

In Figure 2, the arcs correspond to rules which are assumed to act in

atomic fashion. That is, success on any one instance of such a rule is

tantamount to success on any other, and similarly for failure. We have
obtained sufficient empirical evidence over the past seven years to demonstrate

..the existence of such rules in a wide variety of situations (e.g., Scandura,

1966, 1969). The points correspond to branching rule's, that is, decisions

which must be made in carrying out the algorithM on particular test instances.

The subgraphs at the bottom of Figure 2 correspond to the four possible

paths througfi this procedure which may be used in solving particular problemi.

Since the constituent rules are all atomic, it follows that each of these

paths also acts in atomic fashion. Hence, to determine.the behavior _potential
of a giv8n suWject With respect to thls algoritera, we'need'only geleceone

test instance for each path. In this case, the base-three stimulus (response

numerals 101 (102), 2 (10), 112 (120), and 222 (1000), correspond respecivety

to the four possible paths. Accordingly, the behavior potential of a given

subject on this class of tasks can be uniquely specified by his performance

(*IC=
-12

59



cftn1Die

StimuLi Responses

0 1

1

10

10> 11

4*

^

Paths (Sulociralihs)

Total Graph

2/(

,

Figure 2: Sample stimuli and responses for the task of generátiiig
the next numeral in Base Three arithmetic, together.with the (total) graph
of a procedure for generating the behavior, and four graphs representing
the four behaviorally.distinguishable paths through this procedure.



on just these four test Instances -- as long as the atomic assumption is

valid. (Hence, the assessment is conditional.) Any other set of four
stimulus representatives of these paths, of course, would do equally well.

Although its role was hidden in describing this method of assessing behaviGr
potential, the methods validity depends directly on the simple performance

mechanism. According to this mechanism, if a subject has a particular path
avcilable for solving a given task, then he will use it and use it consistently

on all instances to which it applies. That is, of dourse, assuming that the
subject's goal remains the same.

None of this is idle theoretical speculation. Over the past several
months one of my students, John Durnin; has collected a good deal of evidence
which provides support which goes far beyond the bounds of what is normally

'considered sufficient evidence. In a total of 204 predictions, utilizing

a variety of tasks and subjects of greatly differing abilities and grade levels
(from the preschool through graduate school), we have had a grand total of

seven errors in prediction. A sample of this data is given in Table 1 for a

procedure involving eight paths.

Table 1

College
Student

Paths A

Test

College High School High School

Student Student Student

Test

A

Test Test

1 2 1 2 1 2 1 2

1

2

4

5

6

7

+ +

+

+ +

+ +

+ +

+ +

+

+ +
+ +
+ +
4 +

+ +
+ +
+ +

+ +
+ +
11.

+ +
V

+ +
+ +

eV,

VIM

+ INV

Note: "71-" indicates correct respense.
"-" indicates incorrect response.
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Let us next consider what happens when a subject has not explicitly
learned a rule for achieving a given goal. In this case, the subject has
a problem in the classical sense -- a problem situation, a goal, and a

barrier between them.

The major theoretical problem is to explain what happens when a subject

is confronted with such a situation. If the problem can be formulated in

a way that lends itself to prediction, so much the better. Why certain
people are able to solve some problems for which they have never learned a
specific rule, whereas others cannot, is a question of paramount interest.

We want to know exactly what is involved, and why subjects perform as they

do.

As a first apprcocimation at least, it again appears that a very simple

mechanism may suffice. This mechanism may be framed as a hypothesis as

follows:

(B). Given a goal situation for which the subject does not have a learrted

rule immediately available, control temporarily shifts to the higher order

goal of deriving a procedure which does satisfy the original goal condition.

With the higher-order goal in force, the subject presumably selects from

among the available and relevant higher order rules in the same way as he

would with any other goal. Furthermore, where no such higher order rules

are available, one might suppose that control would revert to still higher

order goals. Theoretically, this process could continue indefinitely,

but I suspect that a subject would tire of it, or run out of higher order

rules, as quickly as would theorist attempting to describe what is happening,

To complete things, we .
d a third hypothesis which allows control to

revert back to-the originr ,;oal once thehigher order goal has been satisfied.

We can state this as follc s.

(C) If the higher ord, goal has been satisfied, control reverts back

to the original goal.

When we say that a higher-order goal has been satisfied, of courses whaL

we mean is that some new rule has been derived, such that that rule, when

applied to the stimulus situation, satisfies the original goal criterion.

Although implicit in what has been said, it is important to note chat each

of the hypothesized mechanism is assumed to work at all levels. For ez:ample,

hypothesis (A) applies in higher order goal situations as well as in rimple

ones.

These assumptions provide an adequate basis for generating pred:Ictions in

a wide variety of problem solving situations. Suppose, for example, that the

problem posed to a subject is to convert a given number of yards into inches.

Consider two possible ways in which a subject might solve the problem. Tue

first is to simply know, and have available, a rule for converting yards



directly into inches: "Multiply the number of yards by thirty-six.' In

this case, the subject need only apply the rule according to hypothesis (A).

The other way is more interesting, and involves all the mechanisms described

above. Here, we assume that the subject-has mastered one rule for converting

yards into feet, and another for converting feet into inches. The subject

is also assumed to have mastered a higher order rule which allows him to

combine learned rules (in which the output of one matches the input of the

other, as is the case, far example, with rules for converting yards into

feet and feet into inches) into single composite rules.

In a situation of this sort, the subject does not have an applicable

rule which is immediately available, and, hence, according to. hypothesis (B),

he automatically adopts the higher order goal of deriving such a procedure.

Then, according to the simple performance hypothesis (A), the subject selects

the higher order composition rule and applies it to the rules for converting

yards into feet and feet into inches. 2his yields a new eowposite rule for

converting yards into inches. Next, control reverts to the original goal

by hypothesis (C) and, finally, the subject applies the newly derived composite

rule by hypothesis (A) to generate the desired response. This sequence of

events is depicted in Figure 3.

Although we are still in the process of refining our procedures and

collecting more data, Lou Ackler and Chris Toy have run enough subjects

under one condition to suggest that we are on the right track. What we did

was to teach each S how to use two simple rules, comparable:to those described

above (e.g., for converting yards into feet). These rules Are denoted ril

and R12 in Table 2. As shown in the table we were successful in teaching

these rules to all of the children in the sense that they could apply them

uniformly well to all instances (of the respective rules). Then, each

subject was tested to see if he could solve a problem requiring for its

solution the composite rule, denoted r11r12. As shown, only one of the

subjects was initially successful on this type of problem. Next, we taught

the subjects with neutral materials how to combine pairs of simple rules

such as the ones ehey had been taught. This time we were successful with

all but one subject. (To accomOlish this we-also had to teach many of the

subjects what it was they were trying to do -- that is, find a rule which

could be used to solve problems such as that'requiring r r2_ above.
1

In short, we taught them a decision making capability fel- determining whether

or not they haa achieved the higher order goal. More details on this are

given in Scandura, forthcoming).

-At this point, we taught each subject a new pair of rules (iv.dirated

by r21 and r2 and then tested him to see if he could solve the corresponding

composite pro lem, which required r21r22 for its solution. As can be seen

in 'Table 2, all but one af the tubjedts succeeded on &be test problem whereas

only one of them had before. Furthermore, the one subject who failed was

the same subject who had previously failed to learn the higher order rule

when it was taught. This same pattern of teaching and testing Was repeated

two more times as shown, with precisely fhe same results.
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Figure 3.: A sChematic representation of hypothesized seiluences
involved In problem solving. RI and R2 represent rules for converting yards

intO feet and feet into inches, respectively. HR refers to, the higher order
rule for:generating. Composite rules.
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Table 2

Summary of Experimental Procedure and Results..

Age of Subject

6 7 8 5 8 7 6 8 6 6 8

r
11

+ + + + + + + + +

112
:4

+ + + + + + + + + + +

0 r.11r12
+ - - - -

HR

r22.

r22

+

+

-

+

+

+

+

+

+ +

+

+

+

1-

+ .

+

+

,+

+

+

+

21r22
+ - + + + + +

..

+ +

r31
+ + + + + -1- + + ; + + +

r
32

+ + + + + + + + +

r r
31 32

r41

r

P r41 42

Note: "+" indicates S reached criterion..
"-" indicates S did not reach criterion.
"0".indicates that S was tested only (without training).
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While no empirical data are available, it has been possible to analyze

a number of other, more complicated problem situations in very much the same

way (Scandura,-forthcoming), including problems taken from Polya's (1962)

pioneering yet atheoretical discussion of mathematical problem-solving.

This includes taking into account the role of heuristics. A very similar

type of analysis can also be applied to discovery learning, and, indeed,

even to simple association learning (Scandura, forthcoming). The situation .

is very much like prcblem solving in which there are a number of simple problems

presented in sequence, rather than just one. It would be misleading to

imply, however, that this is a routine undertaking. To the contrary, it seems

to require a good deal of experience, familiarity with the subject matter,

and good intuition about how Ss actually do things'. Host important, it usually

takes time to come up with a viable analysis. Nonetheless, I am satisfied

that this can be done in principle; what remains is to test these analyses

empirically to see if the three hypotheses introduced above are s2fficient

to account for the performance of actual Ss (under the idealized conditions

required by the theory).

The important point of all this is that learning can be viewed as a

problem-solving process. Subjects learn as a result of being exposed to

problem situations which require that they combine available rules in new

ways. Once a problem has been solved, however, no further learning is assumed

to take place upon repeated presentations of similar problems. In that case,

the subject simply applies the newly learned rule.

By systematic application of our simple principles (of performance),

then, it would be possible to derive all kinds of implications about learning

and performance. In particular, highly specific predictions might be made

about individuals who enter the learning situation with given sets of rules

and who.are then subjected to particular sequences of problem situations. Such

analyses would have obvious implications for instructional theory. (It must

be remembered, of course, that all such predictions would necessarily be

limited to empirical situations which satisfy the conditions of level two

theorizing.)

Suppose ncw that a S has more than one way of achieving a given goal

and that we want to know which way he will choose. As suggested above, this

problem of rule selection is basically one of motivation. To see this, we ask

what theorizing about motivation involves, and hqw this relates to our earlier

discussion. We might be tempted to define the task of motivation theory as

one of explaining and/or predicting which goals subjects will adopt in given

situations and let it go at that. This would not be sufficient, howevpr, for

that would not tell us where such goals come from in the first plac, nor haw

they relate to the situation at hand.

In any given situation, the observer almost always has some idea of what

a given S is trying to accomplish. Thus, for example, he may not know what

sort of building an architect will design, but he can be quite sure that it
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will be a building, under certain circumstances at least. Similarly, he
can usually be 2airly certain that the next move made by a chess master will
be a good one, although he may not know what the specific move will be. He

can also be reasonably conf.",dent that, faced with a simple theorem, a competent
mathematician will come up with a valid proof, but generally speaking, he will

not know what kind of proof it will be. An analogous statement may be made

about a competent fifth-grader on simple addition problems. The observer

may not know, say, how quickly the sums will be given, but he will generally
know that they will be correct (cf. Suppes and Groen, 1967).

Looked at in this way, the motivation theorist's task is to say some-

thing additional about what a S will actually do in any given.situation, whether

this involves explaining why the architect designed the building he did, why

the chess master made his particular move, or why the mathematician used an

indirect proof, or the child, a certain shortcut in addition. More generally,

the key question for motivation theory is to explain (and/or predict) why

the S took (Twill take) the path he did (does). (In retrospect, it appears

that we have already proposed an answer to this questien in that special

case where the S has no rule immediately available for achieving the initial

goal. In that case, it was hypothesized (B) that Ss adopt the higher-order

goal of deriving a procedure which does satisfy the initial goal.)

The problem comes, in where the S has more than one rule available for

achieving the initial goal. It was assumed in this case thax the S would

use one of the available rules (Rypothesis (A)), but nothing was said about

which one. It is my contention that the answer to this ques:tion of "which

one" lies at the base of what we normally think of as motivation, especially

as it is realized in structural learning and performance.

Unfortunately, space does not permit anything approaching the discussion

which this problem warrants. (The problem is disc-assed at length in Scandura

(forthcoming) and will be the subject of subsequent papers.)' For present

purposes, it is sufficient to assume that Ss are systematic in their selections.

I do not believe that people are intrinsically unix:edictable, even in so

complex a field as motivation.

If this is true, it would seem that perhaps one could gain insight

into what a person might do in the future on the basis of what he has done

in the past. But, then, do not we do just this almost every day? With

experience, we begin to sense the way in which partieular people are likely

to behave in given situations, and may therefore tend to act accordingly.

We frequently know ahead of time, for example, how the boss will react to a

request for a raise, or what kind of activity Janie will engage in during free .

play, or whit ki*.d of homework will be left undone until last.

The task of the motivation theorist is to translate such intuitions into

empirically testable hypotheses. A doctoral student, Francine Endicott, and

have been working on this problem for several months now, and at first we

were not particularly pleased with our results. To be sure, the data 'L.1most

always supported our hypotheses in a gross probabilistic sense, but they
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could hardly be called deterministic. By using past selections as a guide,
we have been able to do much better and have recently obtained an accuracy
rate of about 8 correct predictions. What we did in these experiments
was to provide.each S with an opportunity to learn two distinct procedures
(Rules A and B) in the same manner as was done in the assessment (of behavior

potential) study. The stimuli were identical but the responses generated by
the two procedures could easily be discriminated. After learning both
procedures, each S was presented with a general goal, which could be satisfied

by using a path of either procedure. For testing purposes, stimuli on which
S had precisely the same choice to make between paths were viewed as'

equivalent. As in the assessment study, S was tested twice on each equi-

valence class. According to our assumption, it was hypothesized that S
would select the same paths on corresponding Test 1 and Test 2 stimuli.

The results are summarized in Table 3.

Table 3

Results of Rule Selection Study

TeSt 2

Rule A Rule B

Rule A

Rule B 64

.This table shows that whenever a S selected a path of Rule A on Test 1, he
almost invariably (52 tines out of 54) selected a path of Rule A on Test 2.

Rule B selections were consistent with the hypothesis 64 times out of'77.

To recapitulate, it should be re-emphasized that everything which has

been said so far about learning, performance, and motivation only applies in

situations where nemory and the limited capacity of human subjects to process

information do not enter. The proposed mechanisms have all assumed:an:infor-

mation processor with an essentially unlimited ability to process information,

and with perfect memory for previously acquired knowledge.

This definitely .does not xmPly that the theorizing so far.is of little

valu. That cPnclusion would be 'wrong on at least two.counts.-.First, there

are many-praCtidal situations in structural learning where memory is of

minimal concern. In problem solving, for example,, the S is almost always



given all of the paper, pencils, and other memory aids that he needs.
Typically, we also do our best to insure that the necessary lower-ordei- rules

are readily available, even to the extent of making textbooks available. The

concern is generally with whether or not'the individual can-integrate avail-

able knowledge to solve problems. Considerations such as whether he can do it

in his head or not, time to solution, and so on, are of secondary concern

(cf. Scandura, 1967). Second, questions of memory can usually be eliminated

in experimentation by insuring that relevant rules and memory aids are

available to the subject. This can normally be accomplished by training.



Toward a Theory of Memory and Information Processing

Any fully adequate theory of structural learning, of course, must deal

with more than just idealized behavior. In particular, such a theory must
as a minimum take both (long-term) memory and information processing into
account. Insofar as memory is concerned, there must be mechanisms for storing
and retrieving information in long-term memory. In addition,
hypotheses are needed to deal with the processing of information, and par-
ticularly the limited amount of information which human beings can process at
any giVen time. Thus, for examsle, an adequate theory should make it possible
to account for the differential ability of human subjects to perform mental -
arithmetic, even where the Ss know perfectly well how to compute.

In most theorizing about memory, there has been an unfortunate tendency

to confound these two kinds of problem. Much of the more recent work, for
example, has been heavily influenced by a new technique zor measuring reten-
tion, which was introduced by Peterson and Peterson (1959). The basic idea
of their experiment was (1) to present CCC nonsense syllables, (2) have the
S count backward by threes or fours, and (3) test him to see if he could
remember the given nonsense syllable after some intervening period ranging
from about 0 to 30 seconds. Contrary to the then prevailing expectation of
most psychologists, they found that retention decreased rapidly over this
short period, and psychologists had a new gamc .! to play. The basic paradigm

is still in wide use today.

The difficulty with this type of study is thgt it does not distinguish
operationally between mechanisms associated vith the storage arl retrieval
of information from long-term store, on the one hand, and the limited ability

of. human Ss to process information, ork the other, Thus, in a Peterson and
Peterson type experiment, a S may attempt to retain a nonsense syllable, say,
either by continuing to process the information, by a process typically referred
to as rehearsal, or by storing it in long-term memory. Und,- these circum-

stances, it is difficult to say anything definitive abour eit type of

mechanism as a result of ehe experimental data obtained.

For present purposes, it would obviously be desirable to have a theory

of structural learning which deals with the two kinds of problems rais'ed

above, and which at the same time is compatible with our earlier theorizing.
Specifically, we need to ask how the memory-free theory may be supplemented

so as to take both (long-term) memory and information processing into account.
No hard answers, unfortunately, are available at the present time, particularly

insofar as memory is concerned. All that can be done here is to sketch one
approach to the problem which seems to hold some promise.

%

Insofar as long-term memory is concerned, nothing basically new seems

to be required; the basic mechanisms of the idealized theory appear to be ade-

quate_as they are. What does need to be done is to increase the domain of
applicability of these mechanisms. Specifically, rules are needed for storing

and for retrieving information. Storing rules act on observables, as c.:.o

other rules, but the outputs of such rules are strictly internal. Retrieving

rules, on the other hand, act on stores (internal) units of knowledge (which



serve as stimuli) and generate observables.

What these rules do is to relate new knowledge with knowledge which has
been acquired previously. For example, in order to store (i.e., give meaning
to) the statement, any function continuous on a closed interval is uniformly.
continuous, S must clearly know ahead of time what continuous functions, closed
intervals, and uniformly continuous functions are. The storing rule combines
these meanings into a new meaning which corresponds to the statement, taken
as a whole (Scandura, 1970b). This has the effect of tying in (i.e., locating)
the desired meaning with previously acquired knowledge.

Retrieval rules, on the other hand, provide the subject with a basis
for regenerating knowledge from the recall cues -- for example, from a
statement like "what can be said about functions which are continuous on

.closed intervals?"

Difficulties in recall are explained either in terms of what is (or is-not)

stored or the availability Or lack) of appropriate retrieval rules. For

example, if a S memorizes a statement like that given above, without under-
standing it, and is asked at recall to explain the id(,a in his own words,
then no one would reasonably expect the S to succeed. Similarly, if the S
stored the meaning and was asked to repeat the statement verbatim, he would
not likely be able to do more than come up with a rough paraPhrase. Without
adequate'storing rules,in the first place, of course, recall would be completely
lacking according to this view. Even where a S has definitely learned
(stored) something, ha may still not be able to "recall" it because he lacks
the necessary retrieval rules. Young children-, for example;:are frequently
able to-do things, like solVe arithmetic problems, indicating ,that they have
learned how,. but_be quite incapable of describing what they did. Although we
cannot._go into the problem here, this sort of afialysis appears to provide
xelatiVelYlaiMple:explanations fora number of well-known phenomena,_Such
aaxetroactive inhibition and reminiscence. (Details are given in Scandura,

forthcoming.)

It should be emphasized, howevel L jieory is essentially
deterministic, and applies only where one is dealing with highly structured
materials, where one can make reasonable assumptions about the kinds of rules

used in storage and retrieval. The theory is not designed to handle data from
typical short-term memory experiments. (Even here, however, it can be

suggestive (Scandura, forthcoming).) Rather, the theory calls for quite a

different kind of memory experimentation -- experimentation with relatively

complex and more highly structured materials, where explicit attention is
given to the goal conditions imposed on the S and the kinds of storage and

retrieval capabilities with which he enters the situation.

The only fundamentally nera hypothesis involves information processing.
The basic assumption is that each individual subject has a fixed finite cape-,

city for processing information. While this capacity may vary somewhat over
individuals, it is assumed to be of the order, 7 4-2 units of information.

(The term-bits of information is avoided since it implies a connection wica



information theory which is not intended.) The classic work of Miller (1956)
is obviously related, but his results were based largely oa averages and
relatively simple tasks. (It is not clear just how (or whether) Miller's
work on card sorting is related to information processing in the sense
described.) It is important that these results be extended to individuals
and generalized to more complex tasks. We assume that this capacity remains
constant for individuals, whether one is adding numbers, storing information,
or solving problems -- as well as in repeating strings of digits, as Miller,

had his subjects do.

Demonstrating this to be the case, however, is not a trivial prob3em.
Another student, Donald Voorhies, and I have been working on the problem trying
to refine our experimental procedures to the point where we can get a fair
test of the hypothesis. We still have soma way to go but the results of our
pilot data were reasonably good almost from the beginning and this, in
retrospect, is probably what kept us going. In each case, after a certain
degree of complexity was reached there was a sharp "drop off" in perfor-
mance; Even this, however, required meticulous attention to detail.
First, the procedure in question lad to be broken down into its basic states
and operators. Space does not 1-.:rmit going into details (this will be done
elsewhere), but the basic idea is closely related to Suppes' (1969) S-R
characterization of finite automata and my reinterpretation in terms of
rules (Scandura, 1970b). Second, we had to get each S to use this procedure
exactly as prescribQd. The smallest of deviations could materially affect
the results.

Another major :oadblock was that we could not tell ahead of time
with a new task whire. the "dropoff" would occur. Whaz was needed was a
general scheme for calculating memory load for any given rule k"-but
developing one did not prove to be a simple task. We have recently come up
with something which seems quite promising: however, and about a week or
so ago, our data reached about the 80% level of predictability, which may be
about as good as can reasonably be expected with this type of task.

Unfortunately, we have so far been unable to test any of our volunteei
Ss (graduate students) on all of the tasks we have devised. The data
available at the time of this writing are sumnarized in Figure 4.
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Figure 4: The performance of four subjects pAthe indicated tasks with percentage of perfect
responses plotted against memory load. For comparative purposes, repeating n digits had a
calculated memory load of n; repeating n digits -end then saying "1" had a memory load of n + 1;
repeating n digits after saying "1" had a memory load of n + 2; addition of two 2, 3, and 4 digit
numbers without carrying had memory loads of 7, 8, and 9, respectively; with carrying, the
memory loads were 8, 9, and 10 . .



Concluding Comments and Implications

The foundations of three partial theories of structural learning have

been described and some relevant data have been rerarted. First, a partial

theory of structured knowledge was proposed, in which it was argued that the

knowledge had by any given S may be characterized in terms of a finite set

of rules. By allowing rules to operate on othex rules (in the set), it was

shown how new rulc could be generated. Examples were also given to show how .

these new rules, in Irn, could account for creative behavior. With the addi-

tion of'several performance assumptions, this theory was extended so as to

account for learninq, performance, and motivation under idealized conditions

where behavior is unencumbered by memory. Finally, we outlined how memory and

information processing might be dealt with, and reported some preliminary data

in favor of our main hypothesis. Even the most encompassing theory, however,

does not deal with a number of behavioral phenomena, specifically the ultra

short-term after images reported by Sperling (1960), Averbach and Coriell (1961),

and others. Whether the theory might be extended further to account for these

phenomena is difficult to say. But, in any case, this might well be left until

later given the large number of questions raised by the theory as it presently

exists.-

The theory itseli represents a sharp departure from existing theories

of cognitive behavior, although it does have some things in common with existent

competence and informatlon-processing theories. The differences even .here,

however, are not minor, but have a fundamental effect, both on theoretical

adequacy and on the very kinds of empirical questions one asks. Probably the

most basic departure is the idea of introducing different levels of empiricism,

and the possibility of deterministic theorizing at each of these levels.

According to this view, it is possible to do behav'Lorally relevant empirical

research at at least three quite distinct levels. Although all competence

models, such as those proposed by Chomsky in linguistics, purport to deal with

knowledge, concern traditionally has been limited prinarity to the so-called

mature speaker or hearer who efE, 44e-J klows all there xs MM know about the

language. In the present formulation, it is just as reasonable to talk about

the knowledge had by different individuals, naive ones as wel/ as mature.

This is an extremely important characteristic in dealing with subject matters

like mathematics, science, or even language, where knowledge is not a static

thing, but grows with experience.

An even more basic departure is allowing rules to act on other rules.

This seems to me to be the only real hope we have at present with which to

account for creative behavior within an algorithmic framework. There is a

good deal more detailed work to be done, but so far the main roadblocksappear

to be ones of detail and not of principle. -
)

The distinction between idealized theorizing and related empiricism, on

the one hand, and the more complete theory, including memory, on the other,

is equally basic. By ignoring the effects of memory and information piocessing

capacity, for example, it has been possible to deal with quite complex behavior,

such as problem solving and motivation, in a very precise way -- and even more



important, in near deterministic fashion. In.additizm, the proposed

mechanisms of memory and information processing ace simpler and potentially

more precise than those of existing information processing _theories. Further-

more, the theory is designed primarily to apply to memory and information

processing with complex structured materials, and not just with the short-

term memory of lists of nonsense syllables, simple words, or sentences, as has

been the case with most modern memory research.

Let me finally just mention some of the most promising areas of applica-

tion of this work in education. Insofar as curriculum construction is

concerned, it is sufficient to simply reemphasize that it is a small

conceptual step from characterizing knowledge of individual Ss in terms

of rules to characterizing curricula in terms of operational objectives.

Unlike the current list type curricula (Lipson, 1967), however, explicit atten-

tion might be given to the identification of higher order relationships. As

simple as this change may seem, its importance cannot be overemphasized. It

makes it possible not only to build a good deal of transfer potential directiv

into a curriculum, but also to capture, I think, what subject matter specialists

almost uniformly feel has been missing in current curricula of the operational

objectives variety -- the creative element. We have a pilot project underway

at Penn at this time, in which we are attempting to apply these ideas to teach-

ing mathematics to elementary school teachers. It is too soon to say how

-------t-hings will-actually:turn -out,-but_so-fat_things.have_been_going extremely

well and we hope that we will be able to teach more sophisticated mathematics

in this_way, and to teach it more effectively.

A second major implication has to do with testing,,particularly that

sort of testing used to determine maste-y on the objectives which gg to

make up curricula of ..110 tAi the groundwork has been all

ck.L.Ap: eu, and application would seem to be a rather straightforward

operation. In fact, two of. my students (Jeannine Grammick end Debra Whitely)

are actually utilizing these ideas in another small-scale developmental

project aimed at diagnosing difficulties urbmn youngsters are having with

the basic arithmetical skills. Another phagm of this project has to do with

remediation of these difficulties. In thir mjlard, we are using our own

home-grown version of hierarchy constructirn. What we do, in effect, is

simply to idritify the particular
algorithmr:(1'ule) we want to teach the

child, and break it down into atomic sub-rtiles:. Each sub-rule, in turn, is

broken down in the same way, until we reacta level.whexe we can be sure

that all of our subjects have all the neceLlsa-y'competencies. This break-

dowm corresponds directly to he hierarchie2 obtained in the usual manner

by asking Gagne's (1962) often quoted questtn, "What must the learner be

abLe to do-in order to do such-and-such?" t;71.like the traditional approach)

however, ours provides a natural basis for_4.onstructing alternative

hierarchiea (since any number of procedure.s-may be used to generate the same

class'of behaviors). Possibilities also enist in such areas as teaching'

problem solving, but our work to date has '",.e.21 limited to testing basic

hypotheses.
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Footnotes

1higher order rules on rules are common in various branches of

mathematics where they go under the label of functions on functions, but

the idea seems not to have generally pervaded either computer science or formal

linguistics. In formal linguistics, for example, where the goals closely

paiallel ours, no ene seems to have seriously proposed the use of higher order

rules. The closest linguists have come in this regard has been to introduce .

the notion of grammatical transformation between phrase markers (Chomsky, 1957).

Rather than higher order rules, transformations correspond more closely Lo

what we have hete called relational rules (see Scandura, forthcoming).

There are two good reasons why this has probably not been done in the

past. First, even grammatical transformations have so far resisted mathe-

matical treatment (ielson, 1968), and second, no existing approach to

psychology known by the writer provides any real motivation foT introducing

them. Gagne's(1965) view of problem solving as rules on rules and Miller,

Galanter, and Pribram's (1960) TOTE hierarchies come close, however.

This is unfortunate, since there is a very simple and intuitively sound

reason for allowing rules to operate on (classes of) rules. The main one

is just this: There is a very simple and intuitively compelling performance

mechanism by which higher and lower order rules may be combined so as to generate

completely new kinds of behavior. Furthermore, as shown in the next section,

some empirical support for this mechanism has already been obtained.

2 There will always be behavior, of course, which cannot be generated by

any given finite set of rules. Roughly speaking, when translated into behavioral

terms, GOdelts(1931) Incompleteness Theorem suggests that no matter how bright

an indiVidual, there will always be certain behaviors he will not be capable

of performing.

3 Basically, the technique involves calculating for each step of the given

algorithm (1) the number of states needed to determine future states, (2)

ale number of operators needed to determine future operators, and (3) the number

'of subsets of the needed states and operators which must be distinguished in

completing the procedure. Details will be.published in a future arttcle.
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A Research Basis for Teacher Education

JOSEPH M. SCANDURA*

University of Pennsylvania

FOR the past fifteen years, most of the research activity in mathe-
matics education has been concentrated in curriculum development.
During that time, only a small handful of people have been actively
engaged in bask research on mathematics learning.

Today, the situation is changing rapidly. While there are still only
a few centers actively engaged in fundamental research on mathe-
matics:learning, mathematics educators are turning, more and more,
to basic research as a basis for further development. This is, it should
be noted, in direct contradistinction to the earlier views of some of
those engaged in curriculum developmentthose who made a special
point of downgrading the importance of bask research.

In this paper, I shall : (1) attempt to explain and account for the
new interest in research in mathematics education during the 15.st few
years, (2) identify some of the kinds of information which every good
mathematics teacher needs to know, (3) describe some of the basic
research currently underway or being planrd at the Univeraity of
Pennsylvania, and (4) describe some of the teacher education materi-
als we have deVeloped which are based largely on this (basic) research.

Unfortunately, space prohibits discussion of any of these- topics
in the depth they really deserve. I do, however, hope to c.onvey two
main Points which recur repeatedly throughout 'this paper: ,(1) the
tremendous breadth and complexity of the problems whielt are
involved and (2) the great promise of current and future research as
a basis for solving these problems.

11 would like to thank Christopher Toy for his general assistance in the prepara-
tion of this paper. His partiCipation was made passible by a graduate research
training grant to the author by the U.S. Office of Education.
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(1) WHY THE INCREASED INTEREST IN BASIC RESEARCH IN
MATHEMATICS EDUCATION ?

Let us first turn to the question of why the increased interest in
basic research in mathematics education. We can answer this question
best, I think, by tracing the history of basic and developmental
research in this country over the past four decades.

It seems that sucer.ssful scientific and technological development
requires the presence of two vital ingredients : first, an adequate
scientific base usually obtained through basic research ; second, ade-
quate financial and social support, most frequently by governmental
agencies.

As a case in point, consider the space program. Here, a well
worked-out scientific base goes as far back as Newton's Theory of
Mechanics and includes, as well, Goddard's more recent work (1922)
on liquid-fuel rocket technology. Yet, in spite of the ready avail-
ability of this ground-breaking work, full-scale development of space
technology didn't come about for many years. Such -development
began only after considerable governmental pressure and concomitant
economic pressure were brought to bear. Thus, the U.S. did not move
into space seriously until the launching of. Sputnik by the Soviet
Union was coupled with the supposed "missile gap' of the 1960's.
In short, it was public pressure and continued Soviet accomplish-.
ments that prompted President Kennedy's pledge for a moon landing
before 1970.

And today, almost a decade later, after we have seen the spec-
tacular achievement of Apollo 11 , it is questionable whether the
nation is willing to commit itself singlemincleclly to landing men on
Mars in the near future, despite the technological feasibility of such
a goal. At the present time,. domestic issues have taken priority with
a large percentage of the American public and, as a result, much of
the money that would normally be earmarked for space projects will
undoubtedly be diverted to other areas.

In the late nineteen-fifties, the situation in mathematics education
was much the same as it was in space research. Sputnik also gave
realization to the American people that mathematics education in
this country was woefully inadequate.
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Furthermore, fundamental advances in mathematical research
in the previous fifty to one-hundred years did, in this instance, pro-
vide a more than adequate scientific base for revolutionizing the
content of school mathematics. (It is worth noting in this regard that
the so-called "new mathematics" was not an invention of curriculum
developers of the last decade.)

More recently, though, major improvements in mathematics
education have come more slowly; it has been much harder to come
up with new programs which are really better than what we already
have. At best, the most recent programs have simply been refinements
of other programs and, at worst, they have been unrealistic and/or
philosophically indefensible. Some educators, for example, would
have us tnach high school students the same material that is at the
present time offered in the jimior and senior year to students at our
better universities. Clearly, if one is dealing with extremely gifted
students, this idea is completely feasible and perhaps even desirable.
But, it can only be applied to the teaching of our more numerous
"top twenty percent" by overemphasizing the relative role of mathe-
matics in the high school curriculum.

One obvious reason for the slowdown is the economic pressure of
the Vietnam war. This has resulted in greatly decreased support for
research and development and has made it extremely difficult, if not
impossible, to maintain the pace of the late fifties and early sixties.
Perhaps the most fundamental reason, however, is that we lack an
adequate base in the behavioral sciences (and educational philosophy)
for making significant further improvements in curriculum develop-
ment and, more specifically, here in teacher education.

In effect, when adequate basic knowledge is available, the relative
gains from developmental activity are likely to be greater than those
from basic research. However, after develoPment has progressed for
a period of time;the payoff from basic research is likely to be much
greater. Figuratively speaking, developmental activity, without basic
research, is much like living it up on past savings without any concern
for the future. This is the situation, in which we find ourselves today
in mathematics education. We have largely exhausted our reservoir
of knowledge about mathematics teaching and must, in my opinion,
12-igin to build up a new body of knowledge before we can expect



further breakthroughs in development of the sort to which we have
become accustomed. This is particularly true, I think, in the areas of
teaching methodology and the assignment of values to various objec-
tives which might be included in a mathematics curriculum.

The situation is not unlike that in the field of atmoic energy where
on the basis of the knowledge provided by Eiristein's Theory of Rela-
tivity and the work of other pioneering physicists, like Rutherford
and Fermi, scientists and engineers were able to produce in the late
1930's the world's first sustained chain reaction. Later, given the
added impetus of World War II, scientists were able to create the
atom bomb. Later still, on the basis of the same basic know-how,
they were able to produce the hydrogen bomb and even to go on to
harness the atom for peaceful purposes. However, when it came to
harnessing hydrogen power (the fusion process) the situation was
quite different. In spite of the billions of dollars that have been spent
on development, the field is at a relative standstill and many scien-
tists believe that we will not succeed in taming hydrogen power until
we know much more about the processes operating inside the nucleus
of the atom. In other words, development, here too, is dependent
upon basic research.

(2) IDENTIFYING TILE INFORMATION A GOOD MATHEMATICS'
TEACHER. NEEDS TO KNOW

We now turn to some of the basic questions which must inevitably
he asked (and answered through research) if teacher education. in
mathematics is to progress from its present sorry state. To conserve
space, I shall not attempt to deal with the important subject of
practical experience.

I will focus, instead, on the intellectual aspects of teacher educa-
tion. This does xiot mean that I am suggesting (or feel) that practice
teaching, micro-teaching, or classroom obr rvation, for example, can
be dispensed with, but rather that, while mOrk in these areas is being
actively pursued, there is very little work going on which deals with
the conceptual aspects of teacher training. So, I will put my emphasis
there.

The basic question we want to ask here is, what is it that the
teacher needs to know ? Now, it is obvious that the teacher needs to



know something about mathematicsbut, what mathematics ? What
should the 'level be ? The emphasis ? Should we teach arithmetic or
number theory '? Geometry or topology ? Questions like these, about
which we all have intuitive feelings, have, I fear, hardly begun to be
dealt with in a systematic way.

Clearly, the teacher also needs to know something about teaching
methodology. In this case, we are even worse off, however, because it
is not merely a question of what methods to teach but whether there
is really anything now known about methods which is worth teaching.

In the recent past, we have tended to emphasize- such things as
the history of modern curriculum development in mathematics or
tended to make vacuous statements about how to motivate children
or how to use audio-visual aids. About the best we hawe been able to
do is to talk about particular approaches to the teaching of specific
topics such as the multiplication of signed numbers tr.) specific kinds
of students. The alternati ve has been to espouse rnislending doctrines
concerning discovery teaching, inquiry training and the like.

While I do not quarrel with most of these ideas themselves, I do
question whether this sort of approach really helps teachers to under-
stand what mathematics education is all about. I have observed far
too many classroom teachers who talk about such things as commu-
tative and associative laws without having the foggiest notion of what
all of this might mean in the broader context of mathematics educa-
tion. Many of our more recent graduateseven our so-called better
trained elementary school teachers, are merely replacing one set of
terminology with another. And, this is certainly not mathematics
teaching at its best. I feel that we must do better if we are ever going
to provide our children with the kind of education we would all like
them to have.

To do this, the first thing we must do, in my opinion, is to avoid
the archaic and artificial dichotomy which separates instruction in
mathematics, per se, from the tnethods one might use to teach mathe-
matics. (This dichotomy originally developed because of poor corn-
mmucations between departments of mathematics and departments
of education at our universities and colleges. Too frequently neither
department has been willing or qualified to do the work of the other.
However, I am happy to say that as more and more well-trained
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mathematics educators enter the field, this commimication gap is
slowly closing.)

It is of as little value, to give elementary school teachers empty
statements about nonexistent theories of instruction as it is to teach
them A. 7,-)vel mathematics which they cannot fathom. And it is
still IVOTSC te 1.sxrarate the mathematics that.teaehers learn from the
methods Alhaey -w7:11.l use lo teach others. For one thiing, teachers who
learn mathein=tics in olation from methodology- frequently have
consideraUe (111fficult, -translating the material intir a form which.can
be taught=e7thairen.

Further_mTm them is simply not nuich that one can say, . at
present, about, ,-xetho---which do not ineludn specific content. Even
if general prin.iiples afound--and I think that some will bethe
teacher inmst still learn-, how to apply those principles to specific
mathematital±te:pics.

What me meed to do is to conceive of the teacher's job in more
operational terms than we have in the past: We should, in fact,
reformulate our question of what the teacher should know to read,
"What are-the capabilities which the teacher needs in order to teach
mathematics effectively ?"

In this context, consider the subject matter. In my opinion, the
teacher must know, in fairly explicit terms, what kinds of Mathe-
matical behavior to expect of her students. She needs to know, too,
something about the competencies required to elicit these behaviors.

-This will involve such things as the ability to compute (in arithmetic),
the ability to make simple diseoveries and, even the ability toprove
a simple theorem. At the presmit time, there is relatively little that
is known about these things.

For instance, the question of how best to characterize the know-
ledge which u.nderlies some given universe of behaviors associated
with a partiCular subject matter like mathematics has hardly been
asked. It is true that some promising beginnings have been made in
the field of forinal linguistics, but, again, almost nothing has been
done in mathematics or in any of the other school subjects.

In addition to knowing something about the general nature of
mathematical knowledge and mathematical behavior, I feel that the
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skilled elementary school teacher r J needs to know the objectives
of elementary school mathematics and to know how they relate to
the rest of the curriculum. For another thing, the teacher should have
some rationale or general set of eria for selecting and modifying
the objectives in Any given curriew-cm. The goals for a good mathe-
matical education in. affluent suburlk may be very different from the
objectives in the inner city slums ciL our metropolitan centers or in
farm communities across the country. In short, what might be a
sound curriculum in Palo Alto, California, or Scarsdale, New York
could be untenable in North Philadelphia or Zap, North Dakota.
The basic question is how and why these objectives should change.
We need a general philosophical framework within which to make
such changes and modifications in curriculum. Without such a frame-
work, we can only state opinions and are unable to subject those
opinions to the scrutiny of others.

Teachers also need to know more than a grab-bag of teaching
techthques and interest-getting devices. They need to acquire abilities
which pertain to the teaching and the learning of mathematics
generally. And, they need practice in the application of these prin-
ciples to a wide variety of mathematical topics.

For example, teachers should know something about how to
identify operationally the objectives in text materials and exercises.
Many textbooks simply do not coordinate their content with the
exercises they offer. While they may talk a good deal about teaching
students how to discover, for example, their exercises often amount
to little more than simple applications of what is discovered.

Another ability vs,hich all teachers should have is the ability to
identify the prerequisites for learning any particular task. The
teacher should be able to determine in logical, systematic steps what
it is that the student needs to know before he can be expected to
learn or perform the desired task. Figuratively speaking, the teacher
ought to be able to answer the question of "why Johnny can't
multiply". What we want, then, is a superdiagnostician who can
identify the source difficulties under any and all circumstances.

In addition, teachers should have the ability to assess (determine)
the knowledge that a given student has. Unless the teacher is able to
construct test items which will get precisely at what particular
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children know, she can never determine for sure wheti_ep he: students
have the necessary requisites for achieving what she 71-ants them to
achieve. Indeed, she will be unable to determine whether, in fact,
they have leamied what she intended to teach them.

The final Lability we shall consider is the ability to motivate, the
basic requisite for all learning. To date, the best -we 17:lc-ye been able
to do in this area is to give the teacher specific techniques for teaching
specific topics or, more specifically for motivating, children to learn
these topics. Sometimes we give the teacher general advice like, put
the mathematics in the context of a game or, make up problems which
deal with things in which the child has an. interest. Although advice
like this sometimes succeeds, it fails as often.

There is a real need, I think; to talk more about basic principles
and, even, more important, to provide the teacher with a general
frame of reference for thinking about motivation. Hopefully, the
teacher Will then be in a better position to make up her own mind
and to evaluate her own techniques for motivating children to learn
in the variety of situations which confront her everyday.

On too many occasions, I have heard professionals (like myself)
throw up their hands in dismay and say something like, what we need
in mathematics -education is to develop "teacher proof" texts: This
is nonsense, of comae. Good teachers can save even the worst fexts
and poor teachers frequently render the best texts incomprehensible.
Since We are a long 'way off from replacing the teacher-Hif, inaeed,
We ever sheukl--:-We Must train teachers to use textbooks effectively
so that the textboaa.' do not use them. ,

(3) NEW DIRECTIONS FOR BASIC RESEARCH IN
MATHEMATICS EDUCATION

Obviously, We do not have all of the necessary information. There
is much we need to know. I am happy to E E,y, however, that progress
is being made and that the future looks quite promising indeed.

Rather than attempt to review all of the research which bears
directly or indirectly on mathematics education, I will limit myself
in this paper to the research in which I have taken. part. I have dis-
cussed elsewhere my completed research on the leaniing of mathe-
inatical rules, the ability treatment-interaction question and problem



solving so there is no need to gc to thot here.* Instead, what
would like to do is th describe some of tia: things that we are now
doing and plan to do as part of our _new rc :earch project in mathe-
matics and structural learning.** Whfle In do no more here than
simply scratch the surface, I would ilike tr all particular attention
to the new directions we plan to follow.

One of the major concerns of the projes the problem of how to
eharacterizemathematical knowledge. By tklat I mean that we want
to know how to account for the beihaviors7 -which Imowing mathe-
matics makes possible. And, we want to amount for these behaviors
in a way which is both (1) mathematically vitable=that is, compatible
with the way mathematicians think aboirt fheir subjectand (2)
behavioral in nature.

While veiy little research has been done Jn.. this problem directly,
there is much to be learilod, I think, in tl-js regard by considering
some of the limitations of related research. :marrent work on opera-
tionalizing objectives, for example, obvious4y deade with behaviors,
but the research has a distinctly post hoc flawor and es not provide
a viable characterization of contemporary mathematics. This is true
not only because of the almost exclusive emphasis on what might be
called "rote rules"but, also because very little attention has been
given to such questions as how to characterize the higher order
intellectual skills involved in actually doing mathematics or even
how to characterize knowledge of the obvious relationships which we
know exist between different mathematical rules. I shall say more on
this below. Furthermore, no distinction has been made between ). the
behaviors a subject might elicit, and the knowledge which might
account for that behavior. This is an extremely important clistinction
in plaiming a curriculum because there are many different ways in
which a person might learn to elicit P.ny given class of behaviors. The
specific form of the curriculum itself will depend, for example,
on whether we want to teach children to subtract, say, by borrowing

* For a summary- of much of this research see my recent articles in Acta
Psychologica: New Directions for Thecny and Research on Role Learning.
I. A Set-Function Language. 1668, 28, 301-321. II. Empirical Research 1969, 29,
101-133. III Analyses and Theoretical Direetiom 1969, 29, 205-227.

**This research is being supported through a grant from the .U.S. Office of Virluea-
ticn to a committee of the National Academy of Sciences for basic I ?..z in
education.



or by the method, of equal addi;-ions. SimIlarly, we can teach the
so-called three cases of percentage separately or as simple variants
on a common theme.

A second line of research related to the problem of characterizing
mathematical knowledge, is associated with formal linguistics. The
methods that linguists use to analyze language, that is, to identify
the competencies underlying language behavior, are very similar
to the kind of methodologies we need to use to identify the cora-
petences underlying mathematical behavior. The specific ldnds of
competencies which are most critically involved in language behavior,
however, are simply not the same as those associated with mathe-
matics. For example, although linguists such asChomsky have argued
the need for higher order competencies, which deal with relationships
like that between passive and interrogative forms of a sentence, there
is by no means uniform agreement on the point. One could hardly
find a mathematician on the other hand, who did not feel that such
higher order relationships firm the very essence of mathematics
not -to even mention what appear to be important differences in-the
nature of these higher order competencies.

To make .1.-iatter8 worse, linguists have expended most of their
research efforts at the syntactic level, that is, with grammatical
relationships between, for example, words and sentences treated as
entities themselves, and have almost disregarded th c,.. level of seman-

tics or meaning. In ordinary mathematics, one canhardly get started
without having to deal with both levels.

Thus, while it is, true that we can gain many valuable insights
into our problem from the methods of research used in formal linguist-
ics, it is equally clear that we must be ready to extend and even
'depart from that tradition where necessary.

There is also much to be learned from work in the foundations of
mathematics but, here, we Must be even more careful. Specifically,
in the foundations of mathematics the basic problem is one of clari-
fying the nature of the relationships between different kinds of
mathematical objects. The sine qua non of research in the area is a
formal and precise charaeterization'of the mathematical objects in
question. Now, this characterization, as it is usually expressed, is
designed primarily to make (doing) the (meta-) mathematics easier



and has little to tell us about the way in which one might charac-
terize mathematical knowledge.

Although I have been working in this area for a number of years,
it is only recently that I have begun to feel that we are finally begin-
ning to get at the heart of the problem. Stated simply, it is how can
we account for complex mathematical behaviors ; more directly to
the point, how can we evaluate alternative characterizations of the
same behaviors ? The truth of the matter is that there may be any
number of ways of accounting for the same behaviors. The important
thing is that cert:in accounts are undoubtedly better than others,
and our goal, obviously, is to come up with the best one possible.
For example, one might conceivably characterize a given mathe-
matical curriculum by listing all of the separate compritencies which
can be identified. One competency, for example, might make it poss-
ible to add and, another, to find the areas of certain geometric figures.
This is basically the approach taken by those who would reduce
curricula to sets of discrete operational objectives. There may be other
ways of accounting for the same behaviors, however, which are in
some sense both more powerful andfor more parsimonious. By "more
powerful", I mean that the set of competencies makes it possible to
generate more of the desired behaviors than the original (set). Even
where two different sets of competencies account for all of the initial
behaviors, one of them may be more powerful in the sense that it
accounts, in addition, for behaviors outside the initial class. And by
"parsimonious", I mean that the characterizing list of competencies
is in some way shorter or more highly organized and interrelated.

Suppose, for example, our origimd aim was to account for the
ability -to add and the ability to subtract. In this case, one might
simply identify one competence which accounts for addition and
another for subtraction. Another way of dealing with the same
behaviors, however, might be to introduce the same competency for
addition and a higher order competency which deals with the relation-
ship between any binary operation of which addition is just one
example, and its inverse. Here, we would get subtraction "free", so to
speak, since it can be generated by applying the higher order compe-
tency to addition. More important, given any. other binary operation
whatever, such as performing one permutation on a set of objects



followed by another, one can automatically generate (account for)
the inverse capability as well. In effect, while each characterization
contains two competencies, the latter is far more powerful since it
allows one to generate behaviors outside the original class in a- way
which the former never could.

Although we have hardly begun this line of research, it is already
clear that curzent approaches to curriculum development, based on
operationalized objectives, are entirely too fragmented. Most such
curricula consist of nothing more than long lists of discrete objectives.
While we must be careful not to underestimate the difficulty of the
task, I would contend that curriculum development and teacher
education, to name just two areas, carmot help but gain from system-
atic research along the lines just described.

While on the subject, I might also discuss some of our work on
identifying mathematical processes. Let me first say what I mean by
a mathematical process. A mathematical process is a (usually very
general) intellectual skill (or competency) which while essential in
doing mathematics is not normally considered to be part of mathe-
matics (content). The fact that such skills act behaviorally in very
much the same way as other competencies was shown in a recent
study by Roughead and Scandura.* In that study, it was shown that
the skills subjects learn by discovery can sometimes be specified in
deails and presented directly by exposition with equivalent results.
I would also like to say something about a seheme we have develoPed
for claisifying such processing skills but space does not allow and I
must refer you to my forthcoming book which deals with the prob-
lem : Mathematics: Concrete BehaOioral Foundations for Teachers.
&Ace it to say here that it appears that all such skills may be classi-
fied in one Of four bidirectional and Mutually exclusive categories.

The first is the ability to detect regularities and the inverse ability
of particularization. The second -is the subject's ability to describe
what he knows and its inverse of interpretation. The third is deductive
reasoning. This category involves drawing inferences, on the one
hand, and, on Coe other, axiomatizationthe ability toldentify key
ideas On some class of ideas) from which all others may be deduced.

is learned" in Mathematical Diecovery. Journal of Educational Psychology,
19P8, Vol. 59, No. 4, 283-289.
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Finally, we consider storage and retrieval processes which are asso-
ciated with memory. We are just beginning a major project in this
area aimed at identifying and determining the utility of specific pro-
cessing skills and I hope to have more to say on the subject in the
next couple of years.

Another area in which research is badly needed concerns the
development and application of criteria for selecting from among the
large number of available topics in mathematics those which are most
appropriate for any given group of students. This is a very difficult
problem area in which to work because, in addition to raising mathe-
matical questions about internal consistency, and behavioural ques-
tions concerning feasibility, it raises some very basic questions of
priority and value. We are just beginning to explore -this problem,
but one thing has already become clear. There are many paradoxes
that we are going to have to deal with. For example, we are going to
have to resolve such dilemmas as this : Although it would obviously
be desirable to both maximize the learnability of the material we
present and, at the same time, maximize the generality of the same
material, these two goals an; not compatible. They clash head-on
with some of our own research findings* which tell us that in order to
maximize learnability one must increase specificity, and vice versa.
Therefore, any decisions we make along these lines will necessarily
be value,decisions. Though this is still largely virgin territory, it is an
area of great importance and.we are hoping to interest "enlightened"
educational philosophers in our work.

All things considered, we are probably most deeply engaged in
work in still a third major problem area. Simply, the problem is to
determine how mathernatical knowledge is, put tO use sand, howsuch .

knowledge is, learned in the first place. Here, again, I break sharply
with tradition. I do not feel that applied educational research, for
example, while of proven value in dealing, with certain kinds of
problems, is going ,to tell us Veiy much about how Mathematics is
learned; no matter hoW well designed the studies may be. As a basis
for this statement, 1 can refer to my dissertation: The Tthching-
Learning Process: An Exploratory Investigation of Exposition and

*Scandura, J. M., Woodward, E., 'and Leo, F. Rule Generality and Consistency in
Mathematics Learning. American Educational Research Journal, Vol. 4, May 1957,
No. 3.
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Discovery Modes of Problem Solving _Instruction, Syracuse University,
1962. There, it was shown that very minor within-method differences
can have a greater effect on experimental results than differences in
the basic methods themselves. Even more important, the basic vari-
ables that seemed to be involved are not subject to manipulation in
the usual way. Different research methods are ealled for.

I reject, as well, current theorizing in so-called "academic" psy-
chology. For one thing, the type of theory that people have been
concerned with in this area is essentially probabilisticthat is, rather
than attempting to make specific predictions about the way indivi-
duals will act in given situations, such theories talk, instead, about
the probability of-occurrence of various events. While this is worth-
while information to have, it is not the sort of thing we need most to
know, say, in trying to teach students how to solve quadratic
equations.

The problem, as I see it, is that theories of this sort treat everyone
en the same plane. First, assumptions are made about how individuals
do things. Then after introducing random variables into the picture,
predictions are made concerning group statistics, such as meand and
variances. Next, experiments are run with groups and the results are
compared with the predictions. So far, so good. It is the last step that
causes the difficulty. As a result of the comparison, inferences; are
typically drawn about how individual subjects actually do things.*

While this may be a reasonable sort of assumption to make with
"naive" rodents or with human subjects, when dealing with simple
reflex behaviors, it simply does not apply to the learning of more
complex material like mathematics. What humans do on any non-
trivial situation depends in a very direct sense on what they already
know and can do. Any attempt at theorizing which ignores or other-
wise bypasses individual differences, cannot, in my opithon, hope to
provide a viable model for education.

My own present approach, goes in quite a different direction.
Rather than treating individual differences as unwanted or uncontrol-
able experimental variables, I have, during the past year and a half,

*This basic fallacy is widely recognised in psychology, bu t. for one reason or another,
few psychologists seem sufficiently concerned to try to do anything about it. Appar-
ently, it has been the sort of thing which is much easier to sweep under the rug and
forget.



been heavily engaged in deterministic theorizing about individual
processes. Obviously, this is not the place to go into detail about such
matters but let me at least outline some of my concerns. One problem
area in which one of my doctoral students, ,Tohn Durnin, and I have
been deeply engaged concerns assessing the behavior potential of
individual subjects. More particularly, we are attempting to deter-
mine which items in a given class a subject will be able to perform
successfully on and which he will not, on the basis of his (prior) per-
formance on a small finite number of test items. At a strictly theo-
retical level, we have been able to prove theorems about the number
of test items needed, with respect to any given class, and, even more
important, how to go about selecting, these test items. At the time
of this writing we have just begun empirical work on the problem
but the results, so far, seem extremely promising.

Another line of research is concerned with the problem of explain-
ing and predicting "what a subject will do next". More.particularly,
given some general contest, relative to which a subject has learned a
number of relevant rules, the question is why does he select the rule
that he does use. This turns out to be a very complex problem and,
oddly enough, it turns out to have much in common with the peren-
nial problem of motivation. Although our work* in the area is also
just beginning, preliminary evidence suggests that, in general,
subjects tend to select the path of "least resistance". The major
problem, of course, will be how to characterize.' a path of least
resistance.

The final line of research I will mention concerns the mechanisms
that people use to solve problems. To date, most of my work in the
area has been of a theoretical nature, but by a stroke of luck, it turns
out that one of my earlier experiments** bears more or less directly
on the major hypothesis involved. Loosely speaking, the hypothesis
is that if a subject does not have a rule available for achieving a given
goal, control automatically shifts to the higher-order goal of defining
such a rule. While it is basically a very simple idea, this kypothesis
has provided an adequate base for analyzing some fairly involved

*FraneMe Endicott is working with me.
**Scandura, J. M., Learning verbal and symbolic stataments of mathematical rules.

1967 (Journal of _Educational Psychology, 1967, 68, 356-364.)
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mathematical problems, such as those discussed by Polya in his many
books on mathematical problem solving. Needless to say, we are
planning further work in the area.

. In doing this research, I have found it useful to distinguish
between what might be called "memory free theorizing", such as that
described above, and theorizing which involves, as well, the limited
capacity of human subjects to process information. This distinction
has helped lead me to the beginning of what seems to be a rather
simple (but apparently adequate) theory of complex learning and
behavior. Although it is much too soon to 'determine the ultimate
value of such theorizing, I am hopeful that research of this kind will
have very important implications, both for the sort of future research
that will be done in psychology and more importantly, for educational
practice in our schools.

(4) SOME MATERIALS FOR TEACHER EDUCATION
DERIVED FROM RESEARCH

While we have barely scratched the surface in this research, our
theorizing has motivated several very practical projects in teaaer
education. Our first project is aimed at content for elementary school
teachers. The materials we have developed are different from existing
materials in that they e'mphasize what might be called the concrete
behavioral foundations of wathematics. Furthermore, they integrate
certain aspects of methodology -with the content in a rather unique
way. In particular, they deal -vm:th what might be called .mathematical
processes or higher-order intellectual skills, which are involved in
doing mathematics, but which are not typically associated with
mathematical content.

The processes we have singled out fall into three of the general
categories mentioned above. The first is the ability to detect regu-
larities. The second is the ability to reason deductively and the third,
is the ability to interpret verbally presented informationor to learn
by exposition. The text we have prepared develops each of these
processing skills individually in the first chapter. Then the reader is
asked to apply these skills in working with the mathematical content
in the remainder of the book.



Chapter 2 Fundamental Mathematical Ideassets, relations,
functions and special cases thereof

Chapter 3 Logic and Set Operations
Chapter 4 Mathematical Systems, Theories, and Relationships

Between Systems
Chapter 5 The System of Natural Numbers

Chapter G Systems of Numeration and Arithmetical Algorithms

Chapter 7 Thc System of Positive Rationals

Chaptc-: 8 The System of Integers

Chapter 9 The System of Real Numbers and Further Extensions

The final chapter ends, showing how algebra, the study of discrete

entities, meets up with goemetry, the study of continuous variation,

'through the limit process.
This text is essentially complete and is being used in one of our

classes experimentally before the final version is published by
Prentice-Hall..We are, at the moment, involved in fine-tuning the

text and developing exerkses for it.
Most of the material in the book is traditional and, yet, the book

is not traditional in many ways, For one thing, it is the first attempt

that I know of to discuss reathematical processes in a systematic way.
Furthermore, it is also the first attempt to apply such processes to a

wide variety of mathematical content. The teXt and the exercises-are

designed to have the reader learn the mathematical processes which
-are Useful in the various content sections by actually identifying and

using such processes. Thcre is in the book, too, a strong einphasis

on the relationship of mathematics to thc real world, an emphasis

that does not exist in other texts for elementary school mathematics

teachers.
We have also tried to emphasize the relationship between the

various mathematical topics treated in the book That is, we have

attempted in our persentation to build on the similarities and differ-

ences between the various topics. This, I thMk, not only gives the
reader deeper insight into the material, but it also provides for con-

tinual review by encounxging ;the comparison of new material to

material which has already been learned.

It should be remembered, though, that this is dnly a small begin-
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ning and certainly not the full flowering which I envisage in this area.
In fact, we arc now planning a far more ambitious project which:will
attempt to deal systematically with each of the areas I mentioned
in section (2). In particular, we want a text which deals with the
nature of mathematical knowledge. We have already done most of

. the needed research,* our problem is to translate these ideas into a
form that will be suitable for teachers. Another goal is to identify the
specific objectives of the elementary school mathematics curriculum
and to devise a sound rationale for their existence and/or modifica-
tion. Finally, we hope to identify, describe, and illustrate general
teaching principles which the feather will be able to use in a wide
variety of situations. Try. this work, Ire plan to draw heavily-43n our-
own theorizing about-rnmplex strimtural learning. Since teaching:
refers to what one desis; to promote learning, however, we shall :have
to translate this theme=l4g (which owly tells us things about learning),
into a:II:practical forimiisatteachers cam use. In particular, we need to:
ask what .one must dielnurder to promote learning. In this sense, we
need to look at temiclibg,,, you migkt say, as a mirror image fof learn-
ing.**

In outline form thmn, what I have.attempted to do in this paper
is !:0:3 (1) indicate why-hasic research in mathematics :education is
badly needed (2) to identify some of the kinds of information which
everY good mathematics teacher needs (3) to describe some of .Ehe
basic research which we have, under way and also to mention some
of the implications of this research for further development in mathe-
matics education and .behavioral research generally, and (4) to des-
cribe some a our current developmental activities in teacher educa-
tion in mathematics.

In Conclusion, I want to emphasize that our developmental
activity has been motivated by two things : first, a concern for needed
improvements in courses in teacher education and second, the con-
viction that basic research in mathematics and- structural learning
can and will provide the basis for such improvements.

*To, be reported in a monograph I am editing on Mathematics and Structural
Learning, to be published by Prentice-Hall next year.

*See eIso Gage, N. I.:, "Theories'of Teaching.'' Tkories of Learning and Instruc-
tion. (Edited by Eraest R Ililgard.) Sixty-third Yearbook, Part 1, National Society
for the Study of Education. Chicago: University. of Chicago, press, 1964,;. pp. 268-285
and Seandura, J. M., Teachin&--Technology or Theory. American Reitcational Re-
search TOurnal; 1966, 3 , pp. 139-146;
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