I O fies 128 “2 5

. m = ===

R IE |I“% I=‘
1=

1 IS

I
I

I=

I

i< |

|

)

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



DOCUMENT RESUME

ED 054 941 SE 012 334

TITLE Historical Topics in Algebra.

INSTITUTION National Council of Teachers of Mathematics, Inc.,
WHashington, D.C.

PUB DATE 77

NOTE 81p.; Reprint from Thirty~first Yearbook of the NCTH,
p233-332

AVAILABLE FPROM National Council of Teachers of Mathematics, 1201
Sixteenth Street, N.W., Washingtion, D.C. 20036

($1.00)
EDRS PRICE MF-%50.65 HC Not Available from EDRS.
DESCRIPTORS *Algebra; Enrichment; *History; *Instructional

Materials; *Mathematical Concepts; Mathematics;
*Secondary School Mathematics

ABSTRACT

This is a reprint of the historical capsules dealing
with algebra from the 31st Yearbook of NCTM,"Historical Topics for
the Mathematics Classroom." Included are such themes as the change
from a geometric to an algebraic solution of problems, the
development of algebraic symbolism, the algebraic contributions of
different countries, the origin and development of topics in algebra,
and the search for generality and abstract structures. (Author/JG)




R L L r
e , '







_ — - = - — — — _ — — _
- - _ — — —_ - - _ — - — —
- —_— —_— —_— - - — — — —_— —




Mainstreams in the Flow of Algebra

- 500
-~ 300

4

GREECE |
Pythagoreans

Euciid
Archimedes
Apollonius

Z 3
GREECE I

Diophantus
Pappus

628 9 INDIA

é ARABIAN Brahmagupta
825 EMPIRE

, al-Khowarizmi

1100 | ¢ )

r EUROPE I | } Bhaskara
1202 | Fibonacal’s Liber abaci | i
1450} Printing = |
1494] Paciol’s Suma” | :
1545} Ferrari, Tartagla, Cardano | I
1572} Bombelli | 1
1600| Viéte - l I
1700]  Newton = : I

]

q‘ . Khwanzm

“BABYLONIA p

“Alexandria Q. -

i
] PERMISSION T0 REPRODUCE

The special contents of this book are

copynght © 1971 by “The National Council of Teachers of Mathematics, Inc.
it All mghts reserved. Printed in the United States of America.

THIS copvlmary of 00"07‘638 Catalog C’ard Number 79—171459

* |'RIGHTED MATERIAL BY MICROFICHE ONLY
’ \HAS BEEN GRANTED BY )

NeTm

.|IT0 ERIC AND. ORGANIZATIONS OPERATING | - , &

"I'UNDER AGREEMENTS WITH THE U.S. OFFICE, . = i

|;OF EDUCATION, FURTHER REPRODUCTION , L .

“ || OUTSIDE THE ERIC SYSTEM REQUIRES PER-{ = - . - S . ‘ _

b )FTHECOPYRIGHTOWNER L c T S N o o




Preface

This booklet is a separate presentation of the “capsules” dealing
with algebra in the Thirty-first Yearbook of the National Council of
Teachers of Mathematics, Historical Topics for the Mathematics
Classroom. Paperback publication makes this material available in an
economical and flexible form for use in algebra classrooms or by in-
dividuals whose mathematical interest at the moment is p'rimarily in
algebra.

“What is new today becomes old tomorrow,” even in mathematlcs
The “new math” of a few years ago is' now commonplace in many

elementary and secondary schools across the country. Cf course such

terms as “llew math” and “traditional math” still carry meaning for
those’ professmnally involved in the teaching of mathematics, although
these terms may not carry exactly the same’ meaning for all persons.
But such designations are related to chronological intervals and com-
ceptual patterns that encompa=s only a small patt o1 the overal] hts-
'~ tory and dev elopment of i ihe .. ies.

‘The Thlrty—ﬁrst Yearbook of the NCTM is a constant reminder
to its readers that. mathematlcs does" 1ndeed have a hlstory and that
“there‘are values to be derived frorn usmg some of this hlstory in the

_"'_present day classroom. As. stated in its preface, the’ primary objective

of that. yearbook is .“to mnke ava1lable to mathematics < classes im-

portant material from the: h1story and “development; of mathematlox.

with the hope that this will increase. the interest: of students in mathe-
‘matics and their appreclatlon for the cultural aspects of the subject.”
~ In .the “overview” of the. h1story of algebra given in the yearhoolk,

John K. Baumgart states: “Although originally ‘algebra’ referred to
equations, the word today has a much broader meaning, and a satis-
factory definition requires a two-phase approach: (1) Early (ele-
‘mentary) algebra is the study of equations and methods for selving
them. (2) Modern (abstract) algebra is the study of ‘mathematical

~ structures such as groups, rings, and ﬁelds—to mention. only a few.
Indeed, 1t 1is convenlent to trace the development of algebra 1n terms'
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PREFACE

of these two phases, since the division is botix chronological and con-
ceptual.”

The accompanying algebra capsules give brief sketches of some of
the individual topics that are part of each of these developments. A
glance at the table of contents readily reveals that no attempt has
been made to separate them intc these two groups nor to give them in
any sort of chronological order. Included are such themes as the
change from a geometric to an aigebraic solution of problems, the de-
velopment of algebraic symbolism, the algebraic contributions of dif-
ferent countries at different times, the origin and development of cer-
tain special topics in algebra, the search for generality and abstract
structures.

While the capsule treatment has the advantage of permitting concen-
tration on just one topic at a time, it also limits the discussion of the
interrelationships with other algebraic topiecs and with other areas of
mathematics as well. The overview of the history of algebra in the
parent yearbook will be of help in giving the reader orientation and a
general picture of some of these develepments.

The Thirty-first Yearbook includes, in addition to the material on
algebra, overviews and capsules on the history of numbers amd
numerals, computation. ~rom *tv | trigonometry, calculus, and modern
' mathem abics, togethey w' | .., essay .n the history of mathematics
as a teaching tool. .

Those persons who contributed to the preparation of. the entire
project are acknowledged in the prefae:e of the yearbook. Now thanks
are expressed not only to them but ©— members of the Publications
Committee of the NCTM . for their eﬁemwagement and recommenda-
- tion that this. portlon be made availabiic separately as one of the
Councﬂ S supplementary pubhcat]ons

ARTHUR 15, JIALLERBEBG
Chairmen oif the Editorial Panel
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REFERENCE SYMBOLS
AND
BIBLIOGRAPHY

Cross-references within the text to related capsules are indicated

by giving the number of the capsule in boldface type within square

brackets. For cupsules with numbers outside the interval from
[661 through [90] the reader is referred to the Thirty-first Yearbook.

Complete bibliographical information for coded references appear-
ing 1n the text within slashes or indicated under “For Further Read-
ing” is given in the extensive bibliography of the yearbook.

The following selected bxbhography, though brief, may serve two
purposes here: to identify the more commonly cited refererces and
to provide school libraries with a hstmg of books of general interest
in the history of mathematics.
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Schuster 1937; paper, 1965.

Boyer, Carl B. (g). A sttor,/ of A[athematws New York: John
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Eves, Howsard (c). An Introduction to the sttory of Mathematzcs A

3d ed., rev. New York Holt, Rinehart & Winston, 1969

sttonca' Topics for the Mathematccs (,"zSSroom Washlngton,'

- D.C!: National Council’ of Teachers of Mathematlcs 1969.°

Newman, James Roy, ed. The World ‘of-. Mathematws 4 vols New

. York: Simon & Schuster, 1956, paper, 1962

k‘ Sanford, Vera (d). 4 Short- Hpstory oj I"Iathematws Boston:-

' Houghton leﬁm Co 1930

. 'Smxth David Eugene (a) sttory of Mathem\ttws 2 vols 19;.3
1925. New York: Dover Publications, 1958.

‘Van der Waerden, B. L. Science Awakenzng Translated by Amold R
Dresden. New York: Oxford U n1vers1ty Precs, 1961 John leey L
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’ al-jabr gi\res ‘L : | e

“tions.” . .

Origin of the Word “Algebra”

from the yearbook cverview by

JOHN K. BAUMGART

I N

J A xotic and intriguing is the origin of the word “algebra.’” It does
not submit to a neat etymology as does, for example, the word ‘‘arith-
metic,” which is derived from the Greek arithmos (‘“‘number’’).

Algebra is a Latin variant of the Arabic word al-jabr (sometimes
transliterated al-jebr) as employed in the title of a book, Hisab al-
jabr w’al-mugabalah, written in Baghdad about A.n. 825 by the Arab
mathematician Mohammed ibn-Musa al-Khowarizmi (Mohammed,
son of Moses, the Khowarezmite). This treatise on ulgebra is com-
monly referred to, in shortened form, as Al-jabr.

A literal translation of the book’s full title is “science of restoration

. (or reunion) and opposition,” but a’ more mathematical phrasing
would be “science of transposition and  cancellation”—or, -as Carl:

Boyer puts it /(g) : 252-53/, ‘“the transposition of subtracted ternis to
the other side of an equation” and tthe cancellation of like [equal]

terms on opposite sides'of .‘tlrie,eqtiatifpn.i-’-jThus,'l'giV'c_,-ﬁ,th’e equation

o z’+ 52 +4= 4~ éx:-'l-l 52:3, E

P+ Tet 4 =4+ 5, .

~ and ‘al—h&déabdldh gives

2+ Tz = 52
_“Perhaps the best. translation. would be simply- “‘the séienée of equa-~

. “Thilevspeékvi'n_g, of ,et&mologies and al-K'h’(‘)‘warizbmi if ‘is iﬁteresting

to note that the word “‘algorism” (or. algbritllm), which means any
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ALGEBRA

special process of calculating, is derived from the name of this same
author, al-Khowarizmi, beeause he deseribed processes for caleculating
with Hindu-Arabic nu'nerale in a book whose Latin translation is
usually referred to as Liber algorismz (“Book of al-Khowarizmi”).

Perhaps a final philological comment on the lighter side is worth-
while. The Morccean Arabs introduced the word algebrista (‘“‘restorer
[that is, reuniter] of broken bLones, bonesetter”) inte Moorisl: Spain.
Since bonesetting and bloodletting were additional fringe benefits
available at the barbershop, the local barber was known as an alge-
brista. Hence, also, the bloody barber poles!

C'apsule 66  Kenneth: Cuminins

| EQUATIONS -
AND THE WAYS THEY \V]:RE WRI FTEN

IF A student of the tlme of D1opnantus had beep confrontnd w:th an
-expression: of the now-common form Illustrated by 22 — 7z 412 = 0,
he would hayve:been utterly baﬂled tlns modem symbollc style is- of '
relatlvely recent invention. -

There is no. complete agreenlent, on “the tlme of Dlophantus ;-some

authorities ‘believe that-he lived in the. third" ceintury A.D.,'but some :

place him as. early-as: ‘the first century. Tt is known, however, that he

 ~was a Greek mathenlatlcxan working “in resldence” at the University -
‘of Alexandria, Egypt ‘and that he made a start on the use of algebraic J
' ksymbollsm ‘which’ eventuallv supplanted the writing of algebra in &'

verbal or prose style calied “rhetofical algebra.” ‘ SR

- To illustrate rhetorical algebra we- choose an example from an
Arab mathematician of a later period: al-Khowarizmi, whose book
Al-jabr (c. 825) both named and greatly influenced European algebra.

- (It.is curlous that even al-Khowarizmi used words for numbers, since
it was his book Liber algorismi [to use the Latln] that 1ntroduced
Hindu-Arabic’ numerals. into- Europe.) He states and solves ‘as fol--
, lows, the. problem glven in nlodern notatlon asx? + 21 = 101:

2
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Equations and. the Ways They Were Written Capsule 66

What must be the amount of a square, which, when twentyoone dirhems
are added to it, becomes. equal to. the equivalent of ten roots of that
square?: Solutlon Halve the number of the roots; the half is-five. Multiply
this by itself; the product is. ‘twenty-five. Subtract from- this the twenty--
one which are connected: with the square; the remainder is four. Extract

 itsr Toot;; it is' two. Subtract: this from the half of the roots, which is five;

the remainder is three This:is the root. of the-square which you required
and the:square is nine. Or you may addi the roct to:the half of the roots;
the sumis seven; this is-the root of the square whlch you sought for, and
the square 1tseIf is forty-nine.

Of course; hls solutlon amounts to our wrrtmg

:’:\/(10) — 21 =5z \/'_-

If aI-Khowarlzml s algebra seems: prosalc 1t mlght be worthwhlle
: to- comment that 1deas often precede notatlon, symbollsm is mvented
”_.asneeded B : SRETRO : "

“Syncopated algebra‘,” the use of abbrevrated words .was, mtroduced e

_ by Diophantus; and somewhat later, in. Indla, Brahmagupta (c- 628)
invented his. own system of abbrevxatlons Unfortunately, other writers

' f.*.often chose to i ignore: (or: Were unaware of) ‘existing progress in nota-

stion;, thus al-Khowarlzml used the rhetoucal style c*‘ the precedmg '
"-‘_'"example Lo R R R :
‘The orlgmal‘ of Dlophantu' ’

_ni’teen-volume work the Amthmetzca,f» S

5’.~i;~-‘1as been;_lost and ‘the- earhest exrstmg copy of: any part of. the work. ', "

' ,.jwas ma.de"lnore than ou' 'and ‘years ‘after it was: wrltten

form nd an; explanatlon of the Greek

+ 8o A (59; 4 = aa |

KT isan abbleVlatlon for I\.’I‘BOZ‘. (K UBOS “cube”) L _
s .1s an abbrevxatlon for aptep.os‘x (a: zthmos, “numbel”) PR
N is e comblnatlon of: Aand Tin AEIWZIZ (LET PSIS, “lackmg )

£ AN s an abbreviation for AYNAMEE (DUNAMIS, ‘“power”):
oML "_lS ani abbrev1at10n for '\C[ONA.AEZ (.M ONADES “umts”)

| 3

I—Iere 1s ‘an example_ __rom one; of the earhe 'Trnanuscrlpts followed;._'!" |



ALGEBRA

Equahty is expressed by éort (‘‘is equal to”) and also by lo for loos
(zsos, * equal”)

The first mne letters of the Greek alphabet, a, 3, 'y, 5, ¢ s, &, and 6,
stand for 1, 2, 3, 4, 5, 6,7, S, and 9; and ¢, «, N\, », », & o, m, and -2 (ob-
solete koppa), stand for 10, 20, 30, 40, 50, 60, 70, 80, and 90.

The example given above uses some capltal lettels some lowercase.
Later manuscripts use only lowercase letters.’

To illustrate the syncopated style of Br ahmagupta we give the fol-
lowing example, with an interpretation into modern notation:

ya ka 7 bha k(a)12 ru 8 Txy + V12 — 8
ya v(a) 3 ya 10 = 3z° 4+ 10zx.

It will be quickly noted that ‘equality is expressed by writing the
left-hand member of the equation above the right-hand member (to

use modern ternunology) ‘The shortened form ya- stands- for yavatta— o

- vat, the ﬁrst unknown “ka for: Icalaka (“black”), ‘a second unknown,
- bha for bhavzta (“product”) k(a) for karana, (“1rrat10nal”.or
“root”) “The - dot’ placed above a namber, as it is: here placed over
‘the . 8, 1nd1cates a negatlve number ru- stands for rupd, (“pure 'or
“plain” number) v(a) for var ga, (“square number”) ‘Additional un—
" knowns would" have been" expressed by uslng abbrev1atlons for addl—
,tlonal colors thus ‘ni for” mlaca (“blue”) pr. for pztaca (“yellow”),
”--pca for, pandu (“Whlte”) .and:lo for. lohzta (“red”) I :
: The accompanymg llst of: .,xamples w111 give' soine" 1nd1cat10n of the

- ways in- Whlch":’algebralc notatlon gradually progressed from ‘the: lhe- o

: ;gi-‘_toncal stage‘:,.t the ymbollc (See also-?ithe examples in‘the" ove1v1ew,

; din [ 8¢ [0 he ’the reader: decipher some of
,fthe abbrev1at10ns e ‘the follo : .;-1ntroductory",comments

A pure number is: often ollowed by_,N ,’numen, or qb (analagous toour ..

' iwrltrng 7z° for 7) Abbrevratlons for.z are ‘many, lncludmg Pn for'v'

‘_.'pnmo (“first”), n° for’ numewo (“number, 'Jrunknown”), P for res:

. o6t

(“thlng,” “unknow ”), and N for numerus -number, unknown”)

"_',The square (of :1;) is® wrltten in many Vvays, lncludlnb Se. for secundof'“'

" (“second’’). Addnuon ‘and subtractlon are often ‘indicated by 7] for piu
- (“more”) and 77 for meno (“Iess”) * ‘ o

1494 Trouame -Ifné._che‘ g_loto arsuofadr’_a@ zf_acia 1z .
,,"Pacloh‘* TRy LR e
L1514
L Vande1 Hoecke i

i
[FCRATH T I e
Sty ,;;)-g




Equations and the Ways They Were Written Capsule 66

1521 IO e 32C° — 320 numeri.
Ghaligai zz -+ 32z = 320.

1525 Sit I3 aequatus 122¢ — 36..
Rudolff x? = 122 — 36.

1545 cubus § 6 rebus aequalis 20.

Cardzno z3 -+ 6z : = 20.

1553 2 24 A—23. aequata. 4335.

Stifel 2z A+ 22 = 4,335.

1557 1220, + 154 =—="71.9.
“Recorde 14z + 16 = 7L

1550 1O P 6P 9] IOP 3pP 24
. Buteo z* 4+ 6z + 9= z* _+ 3z + 24.

'_,_".:1572 I p _‘8 Egualeé,20 B

.--vr,:,-"Bombelh a:°+ B3 ,__:_-.;'=,>_}.,;‘-;20. .

1585 3@ + 4 egales 3 20 4.

S Stevm 3:::2 + 4 2:1: + 4.

. "".1591 I QC ~15 QQ +85C — 225Q + 274N aequatur 120.
., Vitte ;~_,_—v 151:4 i o 851:3 -—.2251,-2 + 274.@ = 120.,
1631  aaa — 3 bba 42ccc. REREIE TS

B "_Harrxot 1:3 — 3b2x '—_f? _‘2(’:3.‘; -

. if’_f_'lb37 yy » cy — b y + ay —.ac:
:’_:"fDescartes SRR : o

‘j_»;._*‘_v_1693 ot + b:z:" + c:z::z: _.|- da; —-}- e = 0 S
r‘:.‘.‘Walhs

Fm Furthev Readzng

Cajort (d) I, 712400 D.E. SMITH (a) 11 421-35,':f'.*f'f:"
- SanForp (d) 153—59 : »

e e ataae T A e i p—ze e by e LTI



Capsule 67 Wade Ellis

THE BINOMIAL THEOREM

Txwe “arithmetic triangle’ is often associated with the name of Blaise
Pascal, who in 1653 discussed many of its properties and applied it to
th2 expansion of (2 + b)", with n a positive integer. He did not
clmim to have invented the “triangle” or the binomial theorem, but
he -was probably unaware that the Hindus and Arabs kmad worked
with these ideas as early as the beginning of the twelith century, when
.Omar Khayyarn ciaimed to know the binomial expansion for degrees
four, ﬁve, six, and higher (and for particulars referred the reader to

- another of h1s WOI‘kS———WhICh has smce been Iost)
. The. Hmdus and Arabs used the - expanslons of (a + b)2 and of -
(a + b)3 in. ﬁndmg square roots and cube’ -roots. If ‘they were given a
B posmlve number N and’ requlred to - ﬁnd 1ts ‘square root, : they .would

choose a- nearby perfect square number, say s, and. let d be another
number such that 32 +'d = N. The correctlon on' s so that (s + cor-

.".-.jrec’cmn)2 =" N was all: that ‘was. requlred Contlnulng to use modern
~ notation . here we can descrlbe thelr square root process as follows. -

; 'Let.:z: be the requlred correctlon then Co o
S : ,.i __' s + d (s + m) e séf.-t"l" 28:1: + a: g

23 + z

: ”"'By dlscardmg the z on the rlght We obtam a ﬁrst appromma,tlon to \/—ﬁ P

A machme program for thls Wlll be easy to wrlte Usmg N = 5 as an’ -

: lllustratlon we have

5 = 2° + d = (2 'l'_.kr“_’)z._
o T T2 T 22 -0'525.
S s=2+o0m=225




Capsule 67

The Binomia teovom

Repeating this ~rueess. we have
5 = (&= 25)“+d1 = (225-{—:1:,)

B0, T 2(2.25)
so =5 + z = 2.23611
d, =5 — (2.23611)" = 0.00019;

and so on, until &, (which does; in'fa.ct, converge to zero) is as close

o
e
=
-4
o
|
K1
2y

to zero as requiredi. § |
For cube roots & smmilar terative procedure results from letting

N = §3 + d. Them
o oode _
| T 38 4 38z + 2°

R o 4 2" - te
o 88T

"It is 1nterestmg to- observe that the correctlon term, z, which gave
a/23 and d/3s? for square and cube roots remmds one of Newtnn 8

:method in the caleculus. . .
In 1676 Isaac Newton wrote tv,u letters to Henry Oldenburg m _

“ - Whlch Newton sta.ted w1thout pro(f’.,the bmomlal formula

(P+ PQ)"—' P* +~— AQ+

. _"""Where A ﬁrst term_ = P" B = second term '.j‘-— AQ, and 80 forth .

C ; and the exponent K wa.s a. ra,tlona.l fra.ctlon (posntlve or nega,tlve) The -

- form of the theorem more fa,mlha.r to the modern rea,der 1s obta.med 1f; |
~one makes the mdlca.ted substltutlon for A, B C’, S L S

(PQHH(*-I)
NEEE G .

1-2-3°

m
n

(P + PQ)




ALGEBR-

The first proof (not up to modern stardards of rigor) for arbitrary
positive integral power {i.e., m/n = posit .:ve integer) seems to be that
given by Jakob (or Jacques) Bernoulli in his Ars conjectandi, which
was published in 1713, eight years after kis death. In 1826 the twenty-
four-year-old Niels Henrik Abel, povertw-stricken and suffering from
Iumbar tuberculosis but already a famoms mathematician, published
the first general proof of the formula for arbitrary complex exponents.
This appeared in the Journal fiir die reine und angewandte Mathe-
snatik, customarily referred to as Crelle’s Journal.

It might be stated that in the expansion of (1 4+ z)¢, the successive
‘terms form a sequence that is finite only if « is a nonnegative integer.
In case « is fractional or negative, the question of convergence—both
of the sequence of successive terms and of the series, which is itself
the general binomial expansion—immediately arises..

“We do not often think .of the ‘binomial ‘theorem, even in its general

form, as opening doors to more advanced mathematlcs yet a discus-

f s1on of the two followmg expressmns L
i llm (1 +-1—) i
J s - ' ns/

and _ e
llm (1 -I— a:?/ V" '

. y—oo o

. P o :l:fn.cd »‘,: - . i .

“leads to the deﬁmtmn of ‘the transcendental number e and the trans-
cendental functlon e”. With. this - in mmd it is'no longer mysterious

. that. the Maclaurm serles expansmn fnr e looks hke a: modlﬁcatlon of
o the bmomlal expansmn of (1. + xJ)l/U TR : :

" Ore (b) SO R

i g B et

=t




Capsule 68 Elaine J. Tatham

CONTINUEDL FRACTIONS

THE equality 318 1
318 _ 4+
76 5 +
2 +

shows that the common fraction 318/76 can be written as a continued
fraction. 1f all the numerators in a continued fraction are 1’s (as in
the above example) it is called a simple continued fraction.

Perhaps the most interesting elementary property of continued
fractions is their close relationship with the Euclidean algorlthm for
ﬁndmg the greatest common divisor of two integers: -

318 = 76(4) - 14 : - 318 1
| | Je =ttt 1
- 76 = 14(5) + 6 o o 5 -4 I

2+
14_=6(2)+2 |

‘Rema.rks : IR U '-Rema.rk

318 = 76 glves a quotlent of 4 and f To obtalh the a.bove, erte ‘ ’
: ;a. rema.mder of 14, and so forth.. Voo e =
*~The .last nouzero- remamder, _' 2,008 R T 318 -
the GOD.of318and 76. . . . ':76 _ 4 + e
» anri tnen repla.ce -l—f—i by 5» -+ _1111_ , and
: 6

. , | s0 forth B . : b

The striking s1mllar1ty of the expressmns in the parallel columns

above (espec1ally with respect to the digits 4, 5, 2, and 3) leads some

. writers to. say that continued fractions were already known to the
Greeks, “though not'in our present notation.” ..

Rafael Bombelh seems to have been the first to make explrclt use of

" (infinite) - continued fractions when he Wrote the followmg in 1572'
(modern notatlon is used here) T : :
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V13 = 3 + £ —-

6 + e
6+r+j‘f

and he probably recognized the above as a speecial case of

V@& T b =a+ S
2a + ,

2a + s—"——
2a -

- o o

The above expression for \/13 is called an ‘i :inite «continued frac-
tion”” and can be obtained by equatmg it to 3 4+ Ii/a; t‘hen ‘
1_ \/13-—3 N ST T a4 4

-
b

hence

'_now Just keep replacmg 1/:1: by 4/ (6 + (I/x))

This process for ﬁndlng an infinite sequencé of successwe appro‘:ama—_‘

txons for \/, 3 glves the ﬁrst. three convergents as follows e
Cr=343 =3

4
S+ 5

-,'03\-3+

- ’:_}These converge to \/ 13, osclllatlng back and fortth across \/ 13 as _sh_divni-

in Fi 1gure [bS]-

C% C%
Ci 1L
3 35 T 3 3.83.9 a
o ‘;amﬁ.;g [681-1
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John Wallis (¢. 1685) found many properties of these convergents,
including recurrence (or recursion) formulas that express a particular
convergent, Cx = N/D;, in terms of the preceding two sets of N’s
and D’s. One of the interesting examples discussed by Wallis is the
one discovered by William Brouncker (1658):

12
% =1+ 3
2+ 2
2 4+ e
2 A
T2

A modern form of symbolism was introduced by Chrnstlaan Huygens
(1629-1695j, who expressed the ratlo 77, 708 431 /2 640,858 in this form:

2g++2_*:_1'f

+"]+4,--

This ratio actually arose in the solution of a practical problem which

" Huygens attacked in 1680, in designing the toothed wheels of his
planetarium. In 265 days the annual movement of the earth is

- 359°45740731’”, while that of Saturn is 12°13’34718"". Convertmg to .
~ units of sixtieths of a second 177,708,431 is to 2,60,858 ds the period

of Saturn is to the perxoa “of time during which the ‘earth makes its

,1evolut1on around the sun. The correspondmg snrnple contlnued frac-

tion given above is: sometlmes expressed today in the more" conven—
: 1ent form (29;2,2,1, 5,1,4,.% ) 1ntroduced by D1r1chlet in- 1854

- Huygens w1shed to ﬁnd two smaller 1ntegers Wlth almost the same j"
1at1o, 'So that no palr of" smaller 1ntegers would y1eld a closer ap-
‘proxuna tion.. Denotmg the slmple contmued fract10n in the ‘modern
- form - (a.o, d;, as; Ga, L Huygens approxlmatlon was made by at-
_tempting to determlne a, so that both. | ai— a,v,,l I and’ | v — aw-1|

S ag- 1) ‘as his approx1—A

mation. Hence he chose (29; 2, 2, 1) = 206/7 his wheel of Saturn’

were max1mlzed ‘He’ then ‘used’ (ao, ‘ai, a>,

had 206 teeth’ wlule its motor wheel had 7 teeth. Usmg these numbers
made ' it necessary to advance the wheel of Saturn by one tooth every

1,346 years

It was Pletio Cata1d1 ( 1613) who began Workxng on the theory of

i Bologna on ﬁndmg the square roots ‘of numbers———the motlvatlon

B for the notatlon that-was to be used. later by Huygens |
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ALGEBRA

Leorhard Euler (1737) secured the foundation of the modern theory
and showed that any quadratic irrational (like /13, above) can be
represented by a simple repeating (or periodic) continued fraction; thus
4/13 can also be written in the following form:

1

3 +

1+

1 4 1

1
6+ ...

More compactly, v'13 = 3;11116 11116 ... .
Johann Heinrich Lambert (1761) showed that the following simple
continued fraction for =, ’

1+

1+

3+

7 4 —
- 15 + -
AR 1+

___i._;n_
292 +

Was not. perlodlc and hence not a quadra.tlc 1rrat10na.l (a + ‘\/‘ , a, b
ra.tlonal") s

- Jose] h Louls La.gra.nge (1798) proved tha.t perlodlc srmple contmued
'fra.ctlo represent solutlons of qua.dra.tlc equatlons with: ratlonal coef- -
) ﬁclents Thus V13— 1 =:2;11116.11116 ... is a root of x* + 2a; —

12 = 0. Lagra.nge a.lso ga,ve the ﬁrst complete expos1t10n of- convergence :
of convergents ‘He showed that in: general (see Fig.’ [68]—1) every odd

convergent is" less tha,n ~all followmg convergents (in - the: .sequence.

. Gy, Gy Gy C.,, C’s, .) and every even convergent is grea.ter than all
w _.,i-follow1ng convergents From this (a.nd the fact that the C’s. approat'h’_
A/138) it follows tha,t for exa.mple, C’,; dlﬂ’ers from \/ by less. tha.n'

(1/2)-1C5 — C4l.

Adrien Marie I.egendle (1794) pr oved that every 1nﬁn1te contmued_

fraction is irr atlonal
~ Thomas Joannes StleltJes (1894) found .a 1elatlonshlp between di-
- vergent series and conver gent continued fractions which made it pos-

;s1ble to define mtegratlon for the series; Stleltges 1ntegrals were to

- some extent a: 1esult of ms work w1th contmued fractlons

12
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Qughtred and the Slide Rule Capsule 69
For Further Reading .
BeLL (3): 298-99, 476-78 Niwven (a): 51-67 ]
Cagorr (d): II, 48-57 D. E. SmitH (a): 1T, 418-21
CouraNT and ROBBINS: 49-51, (¢): 1, 80-84
301-3 Struik (e): 111-15

Dantzic (b): 155-57, 312-16
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Capsule 69 Richard M. Park

OUGHTRED AND THE SLIDE RULE o

WisLiaMm Oughtred (1574-1660); the vicar of Shalford and rector of
Alpury, Surrey, was one of the most influential mathematicians of his
titge. He was in great demand as a teacher, since the universities of
that time offered little instruction in mathematics. A systematic treat-
mepnt of much of the then-known work in arithmetic and algebra was
published in his Clavis mathematicae. (1631), which ran through six
edjtions. BT R B -
Oughtred placed unusual emphasis on mathematical symbols, de-
. Veloping or fostering many symbols in’ use today. Major examples are

‘% for multiplication, :: for proportion, and — for difference.

' Today, hewever, Oughtred is best remembered for his invention of

both the circuiar and the rectilinear slide rules. His circular slide rule
is described in his Circles of Proportion (1632) as eight fixed circles

oy one side of-iiie instrument with an index operating much like a

compas: - (Fig. -[69]-1). Calling the outermost (largest) circle the first

and the innermost circle the éighth, the scales on each of the eight
circles'are as shown below. =~ = .
~ 1. Sines from 5°45 to 90°

2.. Tangents from 5°45" .10 45° = S ‘
- 3. Tangents from 45° to 84°15" .~ ' S : o

‘4 Logarithmically spaced integers 2,3, 4, 5,6,7,8,9,1
.5 Equally spaced integers 1, 2, 3,4: 5,6,7,8,9,0
- 6. Tangents from 84° to 89°24" . v S




ALGEBRA

{o)d |o'o'

G Fiaurs . [69]1-1 -

: 7 '. Tangentsfrom 35’ tq 66 S
8 Smes from 35’ to 6° ‘

An example of 1ts u=e To ﬁnd the value for sm 30° (see pomb A:

in Fig. [69]- 1) one leg of the mdex (or compass) is placed at 30° on
the first cirele; the corresponding number on the fourth circle, 5, gives
0.5000 as the sine of 30°. Similarly, to find tan’' 30° refer to point B,

- 30° ‘on.the second circle, and read the correspondmp‘ .answer, 05774

on the fourth circle. (Oughtred could get accuracy to four places )i

_ ~The fourth circle is-used: for- multlphcauon For 2.3 (see- Flgs’ |
[69]-2 and —3) open and turn the two legs of 'the mdex so: that.- theyr “
pomt to 1 and 2 then thh the ang]e a between the two legs held_"

200 S 28
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© aan invented the circular slide rule independently. |

Capsule 69

FIGURE _[69]-2 L - FIGURE“.[G.Q]-3

conSta’nﬁ;, r dtaté‘ the-ir_idex sd that 'or_ie leg pomtsto 3. Th_gn th’re”orther v

lég points to 6, the desired product.

~Around 1622 Oughtred invented his rectllmear ”s'lide"r:iilé,l which con- .

 sisted of two logarithmically calibrated rulers, one sliding along the
other (without. a fixed track or groove). He gave full credit to Ed-

‘mund. Gunter for the latter’s inventior in 1620 of a single rectilinear

logarithmic scale, .used “to “multiply numbers by ‘adding_the corres-

' ponding segments ;"I_nec‘hahica.lly_l with the aid of a pair of ‘dividers.

-+ In 1630, two years before Oughtred published his Circles of Propor- .

' _’tion',,-One‘»dfi’his_.’_fo_rfnérst,tidé'rﬁts;-f‘Ric_}iard.Délé;ma_in',*publi_s'hed_.Gram;' R

“'melogia. This, also, ‘contained a description’ of "a’circular: slide rule. = -

" Fach man accus d the other of havmgstolen his ihiehtibn,bi;t;@ﬁjbri‘5 o
[, 160/ think it probable that each: . .

' /(e): 158/ and D. E. Smith /(c

1,

~

L U QANFORD (d)-343—47 2

(e): 158-59

et S L
SRR RN

 (d):187-99 .7 D.E.Smira (¢): I, 160-64°




Capsule 70  Richard M. Park

HORNER'S METHOD

WuaT we know today as Horner’s method (for approximating real
roots of polynomial equations with real, numerical coefficients) was
" known in an equivalent form by the Chlnese for many centuries be-
fore it was ‘published by Chhin Chiu-shao in 1247. It was called the
“celestlal element method”, and it appears also, though in more primi-
a t1ve form, in the Nine Chapters written béfore the Chr1st1an era. -

It is qu1te 11ke1y that in_ his travels F1bonacc1 (Leonardo of Pisa)
’ learned of this method, Whlch in 1225 he described rather well up to a-

: certam pomt after Whlch he stopped explaining the method and
merely gave the answer; to an: excellent degree of accuracy To solve
(We use. modern notat1on here) ' S

+ 2:1: + 10:5 = 20, =

'._he wr1tes the equatlon 1n the form

a: —I— :ox +

L *,from Whmh it 18’ clear that <2 The"orlgmal equatlon shows that .
> 1 since 174+ 2 '+ 10 < 20. ‘Then’ he shows that z cannot equal a
@ratlonal fractlon a/b because (a/b) + (a3/10b3) 4 (a2/5b2) is: not
+ ‘an-integer; hernice z is’ irrational. Further, # is not the square root of a

pos1t1ve 1nteger, a, because the glven equatlon 1mpl1es that :

90 — 247

@ = 10 + =* *

which for z = \/— becomes the 1mposs1ble statement that

- 20— 2a
W_ 10 +a

Then Flbonaccl abruptly glves ‘the answer (m base sixty) as
: . T = 1022/7114_2111331v4 40v,
',th'at is; as . ‘ - T

16
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Horner’'s Method : Capaule 70

22 7 42 33 4 40
1+ 507807 T 603+604+605+606,

as it had probably been given to him during his travels.

Frangois Viéte (1600), apparently unaware of earlier results, gave a
systeinatic process that showed a new insight into the general theory
of equations, but the process becomes very laborious for equations of
high degree.

Isaac Newton (1669) simplified Vitte’s method, the simplification
being essentially like that found in texts in college algebra or theory
of equations (not the Newton’s method found in books on the calculus).

Paolo Ruffini (1803) and William George Horner (1819) indepen-
dently worked out and ‘published very similar methods for finding
_approximations of real roots of numerical polynomial ‘equations. They
both thought of ‘their methods as better ways to find cube roots, fourth
roots, and so.on. At first they explained their methods in terms of the -
‘calculus, but“later each of them was able to ‘use only elementary
 Ruffini’s later method is- actually closer than is Horner’s to what
present-day texts c¢all “Horner’s method.” - .~ "~

.. Although Horner did not attend ‘a university, he became a master in’

' 1-School “of Bristol :at the age of nineteen. He was not,

the Kingswood S

 however, a great mathemsatician. Tt was a stroke of good fortune that

_“this roathematical ‘accomplishment—his only one—was published in

. the_ Philosophical actions of ] _ _ .
*" . without ‘some :obj ections because “of the ‘elementary’ nature of ‘his
‘ -f:p'ap':p'e:r) ; the ‘intrieate style of-his exposition made the work seem more’ '

‘impressive than it '1_',_ea'l“_ly_was.‘_ ’

- _ For Purther Reading . S
- BerL (a) :-108-14 - ' D. E. SmrrH (a): II, 471-72
~ CooLipGE (c): 18694 . AR

(c) 232—,-52

a7

-— v o (R R R g sy e e (TS s TR Y £ T e

‘Transactions of the Royal Society (although not



.

e S e g . TN AT A TR N IO
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SOLUTION OF POLYNOMIAL EQUATIONS
OF THIRD AND HIGHER DEGREES

THE first records of man’s iuterest in cublc equatxons date from ‘the
t1me of the Old Babylonlan c1v1hzat10n, about 1800-1600. B.C. Among

‘the mathematlcal materials that survive are tables of cubes and cube
~ _roots, as well as tables.of values of n2 + n3. Such tables could be used
- to. solve cublcs of speclal types '

For. example, to solve the equatlon 29:3 + 3x2 = 540 the Babylomans

“might have first multlphed by 4 and made the substltutlon y = 2z,
giving ¥ + 3y2 = 2,160. Letting y .= 3z, this becomes 2%+ 22 = 80.

From the tables, one solutlon is found to be z —,.4 and hence 6 is a*“root__

~ of the orlglnal equatlon

In the ‘Greek’ period con‘cern thh volumes of geometrlca.l sohds led
easxly to, problems that in: modern form. mvolve cubic equatlons The’

_ ‘well-known problem of duphcatlng the cube is essentla.lly one of -
\ _solvmg the equatlon :1:3 =2.-This" problem, 1mposs1ble of solut1on by“
“ruler” a.nd ‘compasses alone Was solved in" an’ mgemous manner by

g Archytas of Tarentum (c 400 ‘B. c) usmg the 1nt.ersect10ns of a cone,’
“a cyhnder and a, degenerate torus (obtamed by revolvmg a. c1rcle'
.about its tangent) /GRAESSER/. ' » o

The well-known Persian poet and mathematlclan Omar Khayyam

" (A.p. 1100) -advanced the study of the - cubic by essentially Greek

methods. He found solutions: through the use of conies. It is typical of
the state of algebra in his day that he distinguished thirteen special
types of cubics thel have positive roots. For example, he solved equa-
tions of the type 23 + b2z = b2c (where b and c are pos1t1ve numbers)'
by finding intersections of the parabola z2 = by and the circle y* =
z(c — x), where the circle is tangent to the axis of the parabols at its

- vertex. The po~,1t1ve root of Omar K hayyam S equa.tlon is represented'
. by ‘the dlstance from the ax:s of the parabola to a. pomt or 1ntersect10n _

of the curves. e - :
The next maj or advance Was the algebralc solutlo'x of the cublc Thls

. e 113 bt bt e = < e



' ‘betrayed ' C g S S
- Although couched An: geometrlcal language, %he metnod 1tse1{ is
algebralc and the sty]e syncopated. Cardano gives ag’an example the.
equation 23 + 6z ;=20 and seeks two unknown ~aantities; p-and q;.
whose dlﬁ'erence 1s the constant term 20 and.: whose product is the *
cube of 1/3 the: coefficient of .z, 8. A" solutlor‘ is then furnished by the .
: dlfference of the cube roots of P and q.. Fo' thls example the solutlon 1s L

Equations of Third and Higher Degrees Capsule 71

discovery, a product of the Italian Renaissance, is surrounded by an
atmosphere of mystery; the story is still not entirely clear /CARDANO
ix—xii; FELDMAN (a)/. The method appeared in print in 1545 in the
Ars magna of Girolamo Cardano of Milan, a physician, astrologer,
mathematician, prolific writer, and suspected heretic, altogether one
of the most colorful figures of his time.

The method has wained curremey as ‘“Cardan’s formule,” Cardam
being the English ‘om of the name. According to Cardano- himselfZ,
however, the creditis idue to Sciptome del Ferro, a professor of mathe:-
matics at the Univesity of Bologna, who in 1515 discovered how to
solve cubics of the type 3 4+ bx = ©. As was customary among rnathe-

maticians of thattire, he kept hiszmmethoods seeret:in orderto use thems.
for mersonal advamitage in mathemmtical duels and tournaments. When:

he died:in 1526, the-waly persons fiamiliar with his: work were a son-im—
,la.*v -and. one of his siiuilents, Antonio Maria Fior: of Venice..:

"In 1535 Fior c<hallenged the pmmlnent mathematicizn Niccolo
Tartaglia of Bresciax (then teaching in Venice) to a contest ‘because

fior did not believe Tartaglia’s claim of having found a solution for

cubics of the type x® + bx? = c. A few days before the contest Tarta-

glla managed to discover also, how to solve:cubics of the type =2 .+
. axr =, a discovery (so he relates) that came to. .him in a flash- during
the nlght of February 12/13, 15635. ‘Needless to say, since. Tartagha-

_ could. ‘solve. two: types of cublcs Whereas FlOI‘ could solve only one
4 type, Tartagha -won the. contest P LT

Cardano hearlng of Tartagllas v1ctory, was eager to iearn hls- b'
method Tartagha kept putiing him off, however, and-it - was not until

four years later ‘that s meeting was- arranged between them At this

: .meetlng Tartaglia dlvulged his methods, swearing C Cardano to secrecy -

~ and particularly: forbidding hkim.to publlsh it. This: oath must have been =
. galhng to :Cardano. On: a’ visit to Bologna snveral years later. he met‘;
. Ferro’s son-in-law: and learned. of Ferro’s prior :solution. Feeling, pez-.

" haps, that this knowledge 1eleased bim from" his oath to Tartagliz,

‘Cardano published his version of tbr method in Ars magne. This accion
evoked, bitter. attack from Tarta,glla ‘who.. cla1med that,ne had been

. e
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V4108 + 10 — VvV V108 — 10.

This procedure easily applies to the general cubic after izeing trans-
formed ic remove the term in x>

This discovery left unanswered such questions as these: What should
be done with negative amd imaginary roots, and (a related question)
do three roots always exiist? What should be done (inthe so-called ir-
reducible case) when Cardano’s method produced apparently imag-
inary expressions like

V81 + 30v —3 + V8L — 30/ —3
for the real root, —6, of the cubic 3 — 63z — 162 = 0? These questions
~ were not, fully settled until 1732, when Leonhkard Euler found a solution.
" The general quartic equation yielided tormethods of similar character;
and its solutlon, also, mppeared in Ars magna. Cardano’s pupil Ludo-
vico Ferrari was respot\s1b1e for this result. Ferrari, while still in his
teens (1540), solved a challengmg problem that h1s teacher r'ould not

. solve.

- His solutlon can be descrlbed &s follows Flrr,t reduce the general
_ quartic ‘to one ‘in: ‘which the z3 term’ is ‘missing, then rearrange. the
“terms and’ a(iu su1table ‘quantity (Wlth undetermined. coefficient) to
both:sides so that” ihe left-hand member-is a perfect square. The un-

determmed coeﬂiclenus are then determined so that the r1ght-hand' :
"~ member is also'a square by requiring that its determmant be zero. This

eond1tlon leads to.a: cublc whlch can now be solved—the quart1c can
_then be easﬂy handled L , ,

-Liater efforts to solve the. qu1nt1c and other equatlons were fore-.
“doomed- to- failure, but not until the n1neteenth century - ‘wea this.

,,ﬁnally recognlzed Cari Friedrich: Gauss had" proved in 1799 that
every:: algebralc equation - of degree n over the real field ‘has ‘a root
(and hence n roots) in'the complex field. The problem was to express
these roots in terms of the coefficients by radicals. Paolo Ruffini, an
Italian teacher of mathematics and medicine at Modena, is' considered
to have given -(in 1813).-an essentially satisfactory - proof of the.im-
~ possibility of doing this for equations of degree higher than four. Bet-
‘ter . known is the Work of 'a brilliant young: Norweglan mathematician,
Niels  Henrik.-'Abel.. After first ‘thinking - he had soived the general

_ qulntxc, Abel found his error; and in.1824 he pub11shed ‘at his own

_expense (in- Chr1st1an1a ‘now. Oslo) hzs proof of its Jrnposslblht.y His

‘ kresult appeared also; two years later, in -the: first" volume . of Crelle’s

’ Journal (Berhn) thus helpmg to 1naugura.te at a hlgh level one of the

i e
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Vecttors Capsuie 72

great mathemaiical periodicals of the world. Abel’s work in turn stim-
ulated the youmg Frenchman Evariste Galois (1811-1832), who before
his early deatih in a duel showed that every equation could be assc-
ciated with a mharacteristic group and that the properties of this group
could be used to determine whether the eguation could:.be solved by
radicals.

For Further Reading

BovEer: () : 310-17 MmoNICcK: 58348
CARDANO: vii-xxii WEUGEBAUER (a).: 44, 51
- CooLInGE (¢): 1929 ‘ On= (a)

Eves (¢) _ (b)

[3d ed. 217-21] = D. E. SMiTH (a): 11, 454~-70
FELDMAN (a) SrrUIK (e): 62-73 - '
GRAESSER ‘ Jacos Youna: 213-21

Capsule 72 Leonard E. Fuller =~

~ VECTORS

THE roots of vector algebra go:'baqli»_tb the geometric concept of di-
rected line segments in space. The composition of forces by the paral-
Jelogram law led to the idea of addition of vectors. Their representation
as ordered sets of real numbers occurred only after the extension of
number systems beyond the complex numbers. L S

Hermann Grassmann, in his monumental Ausdehnungslechre, pub-
lished in 1844, freed his thinking ' from three-dimensional ‘Buclidean
space. He discussed manifolds of n dimensions and developed- algebras

for these systems. This enabled him to consider an extension of complex

numbers to hypercomplex numbers. He made a significant stride when
" he found that he:had to give up the property of commutativity of mul- -

tipliéat.idnz.' This was the .major stumbling block in the extension. His

21
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work included also the theory of tensor caltviius, which was destined
to play a key role in the theory of relativivy: Unfortunately, Grass-
mann’s work was not properly understood iy .others, so its true sig-
nificance had to wait for the passage of time. In 1862 he published a
second edition of his wcrk, in which he attempted to clarify the first
and to add to it; but agzin he met with little suwcess.

The year before Grassmann published ithe fiirst edition: of his Aus-
dehnungslehre, William Rowan Hamilton Adiscewered the basic idea for
quaternions. He, too, was bold enough to sacrifice the commutative
property of multiplication. In 1853 he publistwd Lectures on Quater-
nions, a work that was better understood antiappreciated than Grass-
mann’s, perhaps because it was not so general. Hamilton devoted the
rest of his career to developing the theory of guaternions. He seemed
convinced that this theory held the key to many ideas.. . '

There was opposition to Hamilton’s ideas, perhaps because of the
complexity of the algebra involved. As a result, others tried to de-

- velop their own substitutes for it.
A disciple of Hamilton, Peter Guthrie Tait, devoted his life to

quaternions. He stirred up a fight between mathematicians that ex- .

tended over fifty years. His chief opponent was Josiah Willard Gibbs,
who developed an excellent departure from quaternions with his

- vector analysis. A student of Glbbs, Edwin Bidwell Wilson, put the -

‘theory of vector analySIS in: book form:in 1901. It is ironic that the

"~ idea that could have: resolved the conflict much earlier was in Grass—

mann'’s Ausdehnungslehre Actually, it was resolved by Grassmann’s
~ tensor calculus, which was further developed by C. G. Ricci, who pub-

“lished a work on it in 1888. At first;: little attention was pald to this
work; it was only after Einstein used it in his theory of relativity that
it gained genex ‘al acceptance. This theory of relativity vindicated the

work of Grassmann and shOWed that he had been more than fifty years‘

ahead in his thinking.
Today vectors are studled from thu geometric point of view as di-
rected line segments in three dlmenswns largely as a result of Gibbs’s

work, and from the algebralc pomt of v1eW as n-dlmensmnal manlfolds, _

largely as a result of Grassmann s.
Fo'r Further Readmg

' Bew (a) 182—211 \TEWMZAN I 162-63, 607-98"
-+ CaJorr'(e): 33445 'i v DUE, SMITH (c): 11, 677-96
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Capsule 73 Leonard E. Fuller

DETERMINANTS AND MATRICES

Tue Japanese mathematician Seki Kowa (1683) systematized an old
Chinese method of solving simultaneous linear equations whose coeffi-
cients were represented by calculating sticks—bamboo rods placed in
squares on a table, with the positions of the different squares cor-
responding to the coefficients. In the process of working out his system,
Kowa rearranged the rods in a way similar to that used in our
simplification of determinants; thus it is thought that he had the idea
of a determinant. - = - '

Ten years later in Europe Gottfried Wilhelm von Leibniz formally
originated determinants and gave a written notation for them. In a

letter to Marquis de L’Hospital Leibniz gave a discussion of a system

of three:linear equations in two unknowns. /D. E. Smxta (e): I,
268-69/. A translation appears in the left-hand column, below, with a

more modern version in the right-hand column.

1 suppbseb th‘a.t '

10 + 11:v+ '12‘y =0 7;_ L dxo + anx +'012y = 0.

204212+ 22y =0 . @t anztamy =0 ()
30 +31:v+ 32y =0 | a0 + amz 7I-iaé:zy = 0. |
where . . . 'elirriinating'y first from . -
the first and second equations, we
shall have ' :
10.22 + 11.22z _ 0-', R (al;)razz‘.“‘ 812G30)
—12.20 — 12.21... 4 (811822 — @12a21)7 = O.
and A:frbﬁx.;thé‘_'ﬁrst‘and third I o
1082411820 _ | (Gwowm = amew) .
- —12.30 — 12.31... : , : "f}—'(a‘,,aa? — ayaz)z = 0.
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ALGEBRA
It remains now to eliminate the let-
ter z . . . and as the result we shall
have
10.2:.3> 1,.2,.3, a1oqz1 Az ad10q22a31
11 .22-30 = 11.20.32. +alla22a30 = +a11a20‘;32
12.24.3, 1:.2,.30 “+a,za50a3, -+ a,2821aa,

or, moving all terms to the left side
of the equation,

"aloazxas? — Q10Q22a31
+@11@22830 — @11G20032 = 0,

- a12@30031 — @12@2:1Q30
or '
» Gi1p Q411 Glz
! G20 @21 Q2| = 0. (2)
. . o [aso :dal' asz 7

(The reader may recall, or eas 1ly verlfy, that (2) is the condit;ion
for the three straight lines represented by (1) to -pass through a
common  point.) The now-standard ‘vertical line. notation used in
(2) above was given in 1841 by Arthur Cayley.

Determinants were invented independently by Gabrlel Cramer
whose now well- known rule for solving linear systems was publlehed
in 1750, although- not in present-day notation. :

- Many other mathematlclans also made contributions to deterrnmant
theory—among them Alexavdre Théophi ile Vandermonde, Pierre Simon
Laplace, Josef Maria Wronski, and Augustin Louis Cauchy. It is

Cauchy who applied the word “determmant” to the subject; in 1812 he
introduced the multiplication theorem.

Although the idea of a matlix was unphcxt in the quatermons,

7(4 tuples) of. W1111am Rowan Hamilton and also in the “extended
: magmtudes” (n- tuples) .of Hermann Grassmann [72] the‘ credit for
inventing matrices is usually given to Cayley, with a date of 1857 even

though Hamilton obtained one or two isolated results in 1852. Cayley

says that he got the 1dea of a matrlx‘ “either dlrectly from that of a
-dctermmant ‘or ‘as’'a’ convement mode of expressmn of the equatlons
~"x"-—a:c+by,1/—-cx+dy s
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Determinants and Malrices Capsule 78

It was shown by Hamilton in his theory of quaternions [77] that
one could have a logical system in which the multiplication is not
commutative. This result was undoubtedly, of great help to Cayley in
working out his matrix calculus because matrix multiplication, also,
is noncommutative.

Cayley’s theory of matrices grew out of his interest in linear trans-
formations and algebraic invariants, an interest he shared with James
Joseph Sylvester. They investigated algebraic expressions that re-
mained invariant (unchanged except, possibly, for a constant factor)
when the variables were transformed by substitutions representing
translations, rotations, dilatations (“stretchings” from the origin), re-

flections about an axis, and so forth. Thus, for example, if one trans-
forms the conic '

(1) Ay’ + Bxy + Cy* = K
by applying the substitution
T = L z’ __.._1___ v’
IR SR S
v=pT By
which is a linear ‘tranéforhi&t_ion. representing a rotation of axes
through 45°, this becomes ‘ o o ‘ ‘

@ A’ + B'a'y’ + C'y" = K,
where o ' | | | 7
A":‘=- —4A+cC, _B"li'.—_ 1A +.'B'+ C’), c’ =-§ (A—-B +C)

It is easily checked that the “discriminant” B2 — 4A4C of (1) is equal
to the discriminant B’? — ¢ A’C’ of (2), no matter what values are

~used for A4, B, C. Hence this discriminant, B — 4AC, is called an

invariant (under the rotation). Under ’thé 45° rotation, 3z* + 2xy
+ 8y2 = 5 becomes 42’ + Ox’y’ + 2y’2 = 5. The discriminants are,

respectively, 22 — 4 - 3 - 3 and 02 — 4 - 4 - 2 (both equal to —32). -

Today, matrix theory is usually 'éqrisl_idere;’d: part of the broader
subject of linear algebra, and it is a mathematical tool of the social

scientist, geneticist, slatistician, engineer, and physical scientist. ..~
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For Further Reading

BeLL (a): 182-89, 42427 FeLpyvax (b)
(d): 378405 MiponNick: 196-211
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Capsule 74  Adnice Seybold
BOOLEAN ALGEBRA

THE idea of laying down postulates for the manipulation of abstract
symbols (not necessarily numbers) seems to have occurred first in

- England and at about the time of George Boole' (1815-1864). Boole
- published his basic ideas in 1847 in a pamphlet entitled- 37 athematical

Analysis of Logic. In 1854, in An Investzgatzon of the Laws of Thought
on Which Are Founded the M athematical ‘Theories of Logic and Proba-
bilities, he, presented a more thorough expos1t10n of his work. ‘“Boolean
algebra” is a term often apphed to the algebra: of sets, although it can
also be 1nterpreted so ‘as to yield what we now call 4the propos1t10nal
calculus” or “truth—functlon Ioglc,” which is studled largely by means of

" truth tables.

Boole usad lo“erca,se lette S such as :z:, Y, 2, to denote sets, whereas
we often use uppercase A, B, C, and so on. It is assumed that we can
tell w ‘hether a given thing does or does not belong to a glven set. A set
can be described by saying it conslsts of all items having a given property
or charactel istic. The set contalnlng no elements is called the null set—

T in Boole s notatlon w r1tten as the number 0, in. modern notation wr1tten
as @ or O upperca.se letter oh. The set of all elements under consideration

(containing all sets under con51deratlon and’ perhaps more, tco) is the
unlversa,l set—l in - Boole s nota,tlon and now frequently I, uppercase

“ letter eye. If we take the set of all human belngs for the universal set,

v then all human males, all. people over ﬁfty years old, all blue—eyed people,

A and all brown~eyed people are four dlﬁ’erents sets uhat are subsets. of the -
- universal one.. The set of all two -headed people is the null set (we hope).
Sets can be comblned to form new sets in t\\o basw ways ‘The logical -
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Boolean Algebra Capsule 74

product or intersection of two sets x and ¥ {or A and B)—denoted by
Boole as zy or z-y (now frequently as 4 M B, called “A cap B”)—
consists of all elements that are in both sets. If 4 is the set of all human
males and B is the set of all blue-eyed people, then 4 M B is the set of
all blue-eyed men. If C is the set of all brown-eyed people, then we have
B M C = @, where = is used to connect two different symbols for the
same set {in this case, the null set). By the meaning of logical product
we must have X M X = X. Boole wrote this as z° = z. When this
equation is regarded as a condition on unknown numbers rather than
as a set-theoretic statement, it has only O and 1 as roots. This iled Boole
to search out his set-theoretic interpretations for 0 and 1 which we have
already observed. . - R ' : .

By logical sum of two .sets 4 and. B—denoted 4 \J B and called
“4 cup B’’—we mean the set whose members-are members of the set
A or the set B or both. Using A and B as in the last paragraph, the
set A \U B would consist of all people who are males or who have blue °
eyes, including, of course, all-blue-eyed men. ,

Boole’s ‘‘logical sum’” was a little different. His logical sum of sets x
and y—denoted =z + ¥, read “a plus y’’—consisted of elements in =
or y but not in both. J ust as we agreed with Boole that x* = z, we might
have expected him to agree with us that 1 +1=1landz + z = =
But his logical sum z -+ z is difficult to interpret. “‘Whenever it occurred

~ he gave it the formal designatibn 2z; this caused him complications that
- need not concern us here.” . o e

The analogues of certain laws in ordinary algebra are seen to hold in

) Boolean algebra. For instance, 4 M B = B.(\ A is the commutative

law for logical prbdimts. Also, * ,

S An@BUO=@AnBhYMUNe |
is an analogue of the distributive law. Thé correspondence of this law
to the distributive law of ordinary algebra is especially obvious when we
use Boole’s symbols: —'

Another way .o'fr:conﬁt.ructing.' a new set comes, nét,_‘from.*-:‘:cﬁ)'mfr)}i;?',_pg* B
two sets, but from complementation. If we remove from the universal
set I all members of the set 4, the remaining elements constitute a set

called the complement of A and variously denoted by I — 4, — A, A’,
and A. By definition, 4 \U A" = I, and'4 M A= 0. L

_In the propositional calculus, letters stand for.st'atements.-that_m‘ay _
be true or false instead of for numbers (as in high school and college

27
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algebra) or for sets (as in Boolean algebra). To give some indication of
the relation between Boolean algebra and the propositional caiculus,
we mention only that if A is ‘“‘Roses are red’’ and B is ‘‘Violeis are blue,”’
then A A B is ‘“Roses are red and viclets are blue,”” and 4 Vv B is
‘““Either roses are red or violets are blue or both siatements are true.”

John Venn (1834-1923), a contemporary oi Boole’s and also an
Englishman, invented a way of representing clearly such Roolean ex-
pressions as the right and left members of the distributive law. Similar
diagrams had been invented independently by I.eonhard Euler (these
were called Euler circles) and by Augustus De Morgan and o%hers
/SisTER STEPHANIE/. In Venn diagrams we draw a fence around all
members of a set so as to exclude all nonmembers. Then the ‘“‘area’
common to the regions representing the two sets, the shaded area in
Figure [74]-1, represents their logical product. Figure {74]-2 represents
the case where A N\ B = @. S S '

o Ficure [74]1-2

FIGI_I&E [741-3 -~ FIGURE (7414 Ficure [741-5 a

The logical sum as defined by modern msthematicians would be
represented by the sh.ded area in Iigure {74]-3. However, according to -
- Boole, the logical sum wculd be represented by the shaded area in

- Figure {74]-4. In order to find the Venn representation of 4 M (B \U.C),
the left member of our distributive law, we shade first the logical sum
B \U C, then its logical product with A, obtaining the doubly shaded
area in Figure [74]-5. : I : R '

Similar anaiysis of the right member of the distributive law yields
the same set. Hence the two members are merely different. names for
the same set. (The reader might like to apply Venn diagrams to the

'j28
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other distributive law of Boolean algebra, 4 \JU (I M C)=UU BN
A4av o) |

The most interesting recent development in connection with Boolean
algebra. is its application to the design of electronic computers through
the interpretation of Boolean combinations of sets as switching circuits.
The logical product of two sets corresponds to a circuit with two switches
in series. Electricity flows in such a circuit only if both the first and
second switches are closed. The logical sum of two sets corresponds to a
cirenit with two switzhes in parallel. Electricity flows in such a circuit
if either one or the other or both switches are closed.

ANB » A B

aase — s >

- B . P

AN(BUOC) ’——+¥ﬁ:f<i;__+zéb_;>>*
B

(ANBYU (ANC) ;f<<i 4 ’;4;;>>%

FIGURE [741-6 'v N

" In the last diagram of FiGURE [74]-6 the two A switches must be

linked mechanically so that they.are always both open or both closed.
The last two circuits are equivalent (they correspond to identical sets
by the distributive law); but the hardware for the first of these, A M\,
(B U (C), is simpler.

For Further Eeading _
" BeLn (d): 433-47 ' MibpoNICK: 147-65, 774-85

. Booie (a) o - Newwman: III, 1852-1931
- (b) S : . SIsTER STEPHANIE

Cagort (d): II, 290
| .29
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Capsule 75 Sam Perlis

CONGRUENCE (Mod m)

LeT m be a fixed, positive integer. For arbitrary integers x and y we
write £ = vy (mod m), read “z is congruent to y, modulo m,” in case
the integer z — y is divisible by the integer m. The concept and no-
tation were introduced by Carl Friedrich Gauss in 1801, when he was
twenty-four years old. The integer m is called the modulus.

The property described above means that there exists an integer g
such that + — y = gm, or (what is the same) =z = ¥ + gm. For
every integer z, the long-=division process guarantees the existence of
integers g and » such that z = gm + r, 0 < r < m. Since z is thus
congruernt to 7, meduls 7, it follows that {(modulo m) each integer x
is congruent to one and only one of the integers 0, 1, - - - , m — 1;
this integer 13 called ‘the ‘““least residue” of x, modulo m.

From the definition one can readily prove that—

1. If x y (mod m), y = z (mod m}, then x = 2z (mod m).

2. If x = y (mod m), then y = = (mod. m).
3. Ifx = y (mod m), ¢ = b (inod m), then
a) x + a =y 4+ b (mod m). .

b) £ — a =y — b (mod m).
c) za b (mod m).

d) ¢ = y* (mod m), k any positive 1nteger.‘ :
e) kx = ky (mod m), k wiiy integer.

It foliows that if

f(®) = ap 2" + @y 2" 4+ -0+ aa,

where z and all the coefﬁments a; are integers, and 1f x = y and every
a; = b;, modulo m, then :

f(x) = | "‘ + -+ b (mod m).

Although congruences form a vital tool . in the theory of mtegers
Gauss recogmzed their utility, also, in showmg certain - polynormal
equations to ‘have no rational roots. Consider the equation
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Congruence (Mod m) Capsule ?5

f(2) = 2" + awr &7+ oo - 4 a0 = 0,
where all a; are integers. All rational roots of f(x) are known to be
integers dividing the constant term, au; call the integral divisors of
ao “potential roots” of f(z} = 0.

If r is actually an integral root of f(x) = 0, then f () = 0, whence
f(r) = 0 (mod m) for every choice of the modulus m. In considering
a potential root r, if in some manner we find a positive integer m
such that f(r) == 0 (mmod m), then we are assured that r is not a

root of f(z) = 0. The value of this method for eliminating potential
roots lies in the fact that calculating f(r) to determine whether
f{(r) = O is often far more difficult than “caleulating f(7), modulo

m.” The latter phrase refers to the determination of the least residue
of f(r), modulo m; if this residue is not 0, then f(r) == 0 (mod m)
and f(r) < 0. _ S

It is convenient to use the same m~ulus m in checking all potential
roots =, but this is not essential. 1., selecting m, one will never gain
any knowledge from an m that is a factor of ao and of r, for then we
always find f(») = 0 (mod m).
- An example is shown below.

@ =2ttt — &+ =zt 6=0.
Potential reots are =6, =3, =2 and =1. We try the modulus m
= 5, since this is the smallest positive integer not dividing 6. Note that
in any congruence mcdulo 5, the term 6 may be replaced by 1. Thus

1y =14+1 '—_.'1 41 +1=3 (m“olcl 5)
f(—1 =1 — 1—1—14+1=—1=4 (mod5
(2)=2"+3—4+2+1=2"+2 (mod 5).

!

il

Since_
ot
it follows that

1 (‘mod 5),

I

o' = 2.2' = 2" = 2" = 2° (mod 5)
(2 = 4 + 2 =1 (mod 5) o B |
(e2) =2 —8—4—2+1 (mod5)
__ 54_3-__4_'2-,1.1§1 (mod 5)
B =

L 34 42— 4+ 34 1=3"+.2 (mod5).
Then . - . Lo
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3*=9-9=4-4=1 (mod 5)
3*= 3%= 3°= 3= 4 (mod 5)
f(83 =44+ 2=1 (mod5)
f(—3) =38""—2—4—~341 (mod 5)
= 3" =4—3=1 (mod 5).
Since
6 =1 (mod 5)

it follows that

6° = 1° (mod 5);
f(6) = f(1) = 3 (mod 5).
Similarly,
| —6 = —1 (mod 5);
f(—6) = f(—1) = 4 (mod 5).

In every case the least residue fails to be 0. Thus no potential root
is an actual root, whence f(zx) = 0 ha.s no rational roots.

.~ For Further Reading

‘MiponNicK: 380-86 . - STrUIK (e): 49-54
Ore (c): 209-33 '

Capsule 76 Eugene W. Hellmich

COMPLEX NUMBERS
(THE STORY OF /=)

History shows the necessity for the invention of new numbers in the
orderly progress of civilization and in the evolution of mathematics.
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Complexz Numbers (The Story of ~-1) Capsule 76

The story of v/ —1, the imaginary unit, and of x 4+ ¥, the complex num-~
ber, originates in the logical development of algebraic theory.

Deploring the use of the word “imaginary’’ by calling it ‘““the great
algebraic calamity’’ but ‘“too well established for mathematicians to
eradicate’” is quite proper from the modern point of view; but the use of
this word reflects the elusive nature of the concept for distinguished
mathematicians who lived centuries ago.

Early consideration of the square rcot of a negative number brought
unvarying rejection. It seemed obvious that a negative number is not a
square, and hence it was concluded that such square roots had no mean-
ing. This attitude prevailed for a long time. ' ’

Perhaps the earliest encounter with the square root of a negutive
number is in the expression /81 — 144, which appears in the Stereo-
metrice of Heron of Alexandria (c. a.p. 50); the next known encounter is
in Diophantus’ attempt to solve the equation 336x° + 24 = 172z (as we
would now write it), in whose solution the quantity +1,849 — 2,016
appears (again using modern notation).

The first clear statement of difficulty witl the square root of a nega-
tive number was given in India by Mahavira (c. 850), who wrote: “As in
the nature of things, a negative is not a square, it has no square root.”
Nicolas Chuquet (1484) and Luca Pacioli {1494) in Europe were among
those who continued to reject imaginaries. ‘

" Girolamo Cardano (1545), who is also known as Jerome Cardan, is
credited with some progress in introducing complex numbers in his solu-~
tion of the cubic equation, even though he regarded them as ‘‘fictitious.”
' He is credited also with the first use of the square root of a negative
number in solving the now-famous problem, “Divide 14 into two parts
such that the product --- is 40,”” which Cardano first says is ‘“mani~
festly impossible’’; but then he goes on to say, in a properly adventurous
spirit, ‘“Nevertheless, we will operate.”” (This was due, no doubt, to his
medical training!) Thus he found 5 + V' —15 and 5 — v —15 and
showed that they did indeed have a sum of 10 and a product of 40.

Cardano concludes by saying that these quantities are “truly so-
phisticated” and that to continue working with them would be ‘“as
subtle as it would be useless.” o

Cardano did not use the symbol A/ — 15. His designation was “R.,.m,)”’
that is, ‘“radix minus,” for the square root of a negative number. Rafazl
Bombelli (¢. 1550) used ‘‘d.m’’ for our v —1. Albert Girard (1629) in-
cluded symbolism such as “ /' —2.”” René Descartes (1637) contributed
the terms ‘“‘real’’ and ‘‘imaginary.”” Leonhard Euler (1748) used e’

for v —1. Caspar Wessel (1797) used “V —1 = e” Carl Friedrich
| .33
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Gauss (1832) introduced the term ‘‘complex number.” William Rowan
Hamilton (1832) expressed the complex number in the form of a num-
ber-couple.

Bombelli continued Cardano’s work. From the equation z° + a = 0,
he spoke of “+ v/ -« and *“— 4/ —a.”” The special case of this equa-
tion, z° 4 1 = 0, affords an excellent approach to 7 and 4%, as follows

Ifz? +1=0,thenz®* = —1landz = &=V —1. Now, 1f1,— v —1,
then 2 4+ 1 = 0 when z is replaced by 2, and 7 = .—1. From this it
follows as a good exercise that ©° = — v/ —1,7' = 1,4° = '\,f-:—l, cee,
7 = —+/—1, and so forth.

In his Algebra (1673, republished in 1693 in Opera mathemalica; see
/D. E. SmrtH (¢): I, 48/) John Wallis associated ‘“—1600 square perches’’
with a loss and then supposed this to be in the form of a square with a
side [160 square perches =1 English acre]:

What shall this side be? We cannot say it is 40, nor that it is
~40. (Because either of these multnplled into itself, will make —1600;
not —1600). But thus rather, that it is 4/ =1600 1600, (the Supposed Root
of a Negative Square ) or (which is equivalent thereunto) 104/° - 16, or

. 20‘\/ —4, or 40\/

- Wallis, Wessel (1798) Jean Robert Argand (1806), Gauss (1813),
and others made significant contributions to the understanding of
complex numbers ‘through graphlcal representation, and in 1831 Guuss
defined cornplmc numbers as ordered pairs of real numbers for which
(a, b) « (¢, d) = (ac — bd, ad + be), and so forth. Wessel’s represen-
tation is given as follows /D E. SmiTH (c): I 60/

" '_ Let_—l—l designate the positiVe rectilinear unit and ¢ a certain other
unit perpendicular to the positive unit and having the same origin; then
the direction angle of 41 will be equal to 0°, that of —1 to 180°, that of
-+ ¢ to 90°, and that of —e to —90° or 270°. By the rule that the direction
angle of the product shall equal the sum of the angles of the factors, we
have: (+1)(+1) = +1; (+1)(—1) = —1; (= D)(=1) = +1; (+-D(+ ¢ =
te; (F1)(—6) = —¢ (—1)(—e = +e; (FA(+e) = —1; (+e(=) =
+1; (—e)(—e) = --1. From this it is seen that e is equal to 4/ =1, and
the divergence of the product is determined such that not any of the
common rules of ¢ peratlon are contravened :

Of a 31m11ar representatlon 1t has been said /BELL (d) 234/:

-All thls»of course proves nothmg. There is nothing to be proved; we assign

34
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to the symbols and operations of algebra any meanings whatever that will
lead to consistency. Although the interpretation - - - proves nothing, it may
suggest that there is no occasion for anyone to muddle himself into a state
of mystic wonderment over nothing about the grossly misnamed ‘““imag-
inaries.”

A geometric representation credited to Wessel and Argand inde-
pendently is based on the geometric principle that the altitude to the
hypotenuse of a right triangle is a mean proportional between the seg-
ments into which the altitude divides the hypotenuse. In Figure [76]-1,

OD, = d, = +1,0D, =d, = —1. £D;RD:. is a right angle, and OR = d.
Thend, :d = d :dp. Nowd = Vdid, = V+1-—1 = V—~1 = 1.
R
d
Dz 0 D,
dz d;

F1guRe [76].-1

B

C! -'é-( a+bn}

o 10} Alal
Ficure [76]1-2

Some interesting geometric proofs can result from the representa-
tion of the complex number a + bi py the point in the plane v-ith
rectangular coordinates a and b. An example is the proof that the
midpoint of the hypotenuse of a right triangle is equidistant from
the three vertices. In Tigure [76]-2 O is the vertex of the right angle
of right triangle AOB, and C is the midpoint of the hypotenuse AB.
Using the coordinates in the figure,

0C = |t(a+ i) — 0] = 3 (a + bi)| = ;3 V& + ¥,

and
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ALGEBRA

AB = |a — bil = V" + b°.
Hence
OC = 3 AB = BC = CA.

Lastly, among the more valuable relations involving the imaginary,
is that suggested by Abrakam De Moivre (1730):

(cos 8 4+ isin )" = cos nf -+ % sin n6.

An illustration of De Mogivre’s relation in the development of trig-
onometric identities follows /JoNEs (¢)/:

@)) (cos @ 4 Zsin 8)° = cos 3¢ + <sin 36.
But by the binomial theorem we have
2 (cos 8 + isin 6)7
= cos® 8@ 4+ 8i cos® 0 sin 8 + 3i° cos 0 sin® 8 4 7 sin® 6.

Equating the right-hand members of (1) and (2), we hawve

cos 30 + isin 30 = cos® 8 — 3 cos 0 sin® 6 + (3 cos® 0 sin 6 — sin” 6).
Equating the real parts gives
cos 80 = cos® § — 3 cos §sin” 4
= 4 cos’ 6 — 3 cos 0.
Equating the imaginary parts gives
sin 30 = 3 cos® 6 sin @ -- sin® @

= —-t_’cAsin3 6 + 3 sin 4.

For Further Reading

BeLL (d): 233-34 . D. E. Smirr (a): II, 261-67
JonEs (c) : (c): I, 46-66
MipoNICK: 804~14
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Capsule 77 Sam Perlis

QUATERNIONS

VecrTors are objects that can be added or suhtracted, and multiplied
amongst themselves; they can also be multiplied by real numbers. In
each case the result is another vector.

William Rowan Hamilton (who was bern in Dublin in 1805 and
was appointed professor of astronomy at Trinity College, Dublin, in
1827) was disturbed by the lack of any concept of quotient of vectors.
That is, for any two vectors » and v, with v == 0, he wanted to find
a unique vector g such that the vector product qv was equal to w.
His investigations showed the system of vectors to be too small for
this purpose and led him to an enlarged system whose members he
called “quaternions.” His work stirred up considerable disputation
throughout the Western world on the question whether quaternions
should replace vectors as an everyday tool in physics and mathematics,
and it resulted in the formulation of an international association to
study the question. We shall look briefly at the way in which Hamilton
was led to quaternions. : _

Consider a rectangular coordinate system with axes X, ¥V, and Z
and with unit vectors 7, j, and &k drawn on these respective axes. All
vectors used herein emanate from the origin, whence the vector ter-
minating in the point (x, v, 2) is 7 + yj + zl. et ©w and v be two
vectors; ©w = ai + bj + ck, and v = dz + ¢j + fk % 0. We shall
consider a process for converting v into u, meanwhile countin;, how
many real numbers are needed to specify the process completely in
the general case.

First, vectors v and u determine a plane =. Imagine a movable vector
vo, which initially lies on top of v. In the plane = we rotate vo until
it lies on the ray containing vector =, the angle of rotation being
designated as 8.

This number 8 does not determine our rotation, since we are not
content to rotate v, through any angle equal to g, but only through
an angle 8§ lying in the appropriate plane. We therefore consider what
numbers may serve to specify the particular plane = through the
origin. If a movable plane mo is pictured initially as coinciding with
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ALGEBRA

the XZ plane, we may rotate =, about the Z-axis until it includes v;
next, we rotate = about v until it contains the vector u. In tkis final
position the plane =, coincides with =; and if y and B are the two
angles employed, the triple (8, y, 8) determines the contemplated
rotation carrying the ray of vector v to that of wu.

The length of v may very well differ from that of u», so we now
multiply the former length by some constant « to convert it to that of
u. Altogether four constants, «, 2, v, and §, serve to convert v to wu.
To express this “fourness’” Hamilton coined the name ‘“quaternion”
for whatever algebraie object he could find to accomphsh the desired
conversion.

It turned out that his purposes were selved admirably by the
notation

(1) w = &y + ali + a2j + aak,

where o, @1, a2, and a3 are arbitrary real numbers. These symbols are
to be combined under addition and subtraction by the usual rules. For
example, if w’ is given by

2 W = Bo 4 Bii - Baj + Bk,

then both w + w” and v + w are equal to

(@ + Bo) + (en + B)i+ (@2 + B2)j + (s + Bk

The product ww’ is defined by use of the usual distributive laws of

algebra together with the following stipulations: 7j = k; ji = —k;
jk =i, k) = —i; ki = j; ik = —j; and 2 = j2 == k2 = —1. Thus, for

(3 : w =1+ 27 4 3j 4 4k; w = 2+ 7+ 5k,
weﬁndtha‘t ' '
ww' = 2 + 4i+ 6j + 8k
+ 7 — 2 + 35 + 4kt
+ 5k + 10tk -+ 15j& — 20

= —20 4+ 207 4+ 10k.

A similar computation shows that ww = —20 — 10: + i2j + 16k.

Since ww’ 7= w’w in the computations above, the commutative law
of multiplication is not wvalid for quaternions Another instance is
given by the equations ¢j = k, ji = —k. ¥or special pairs w and w’,
however, the product may be commutatwe_ This is the case, for ex-
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Quaternions Capsule 77

ample, if w is arbitrary and w’ = Bo + 0z + 0j + 0k = Bo; ww’ =
ww = Bow.

The system of gnraternions so constructed includes the familiar
vectors ai + bj -+ ck; and when the laws of quaternion addition and
multiplication are applied to these vectors, the usual results are ob-
tained except that products now consist of a real term plus the usual
vector product. But now we shall demonstrate that an additional fea-
ture is present: Every nonzero vector—also every nonzero quaternion
— has an inverse in the system of quaternions.

The quaternion w in (1) is 0 if and only if all of its coefficients are
0. Let w % 0, whence the number

C)) p=ao’ + o + " + o’

is a real, positive number. If we write w as
w =: ao"l"'l), V= a1i+a2j+a3k,
then v is called the ‘“vector part” of w; and % = ao — v is called the

“conjugate’’ of w. Note that the conjugate of b is w. The norm of w is
defined to be wib. A short computation shows that both w and 1 have
norm equal to the number p in (4): wb = p = ww. It follows that
w((1/p)w) = 1 = ((1/p)®)w, whence (1/2)w is the inverse of w. For the

quaternion w in (3) the inverse is (1/30)(1 — 27 — 3j — 4k). _

As a standard device for everyday use in physics, quaternions have dis-

- appeared entirely. They are, however, very much alive now with a differ-

ent raison d’étre. Today mathematicians are interested in studying

‘pumber systems in their entirety, in learning their properties, and in

learning how to construct new ones. One prominent type is called an

associative division algebra over a field. It is known that there are only -

three such algebras over the real field: (1) the real number system, (2) -

_ the complex number system, and (2) the syste'm-qf quaternions. Thus the -
- system of quaternions may be designated as the only noncommutative

associative division algebra over the real field. |

The noncommutativity of quaternion multiplication gives rise to a
curious property. An equation of degrze n can no longer be said to have
at most 7 distinct roots, at least not if quaternion solutions are admitted.
For ‘example, the quadratic equation:w® + 1 = O has:thrze: obvious

- quaternion solutions: w =7, w = j, and w = k. In actuality there are

infinitely many. It is easy to verify that w = a0 + a;t + aj - oask
satisfies the condition %® -+ 1 = 0it'and only if &, = 0 and o;® + ;" +

CP.'32. ’1—'-—‘ 1.‘
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For Further Reading

BeLL (a): 182-211 Bover {g): 624-26
{d): 340-61 D. E. Smrre (c¢): II, 677-83

Capsule 78 Gertrude V. Pratt

EARLY GREEK ALGEBRA

Tugr algebra of the carly Greeks (of the Pythagoreans and Eucld,
Archimedes, and Apollonius, 500-200 B.Cc.) was geometric because of
their logical difficuities with irrational and even fractional numbers
and their practical difficulties with Greek numerals [4], which were
somewhat similar to Roman numerals and just as clumsy. It was nat-
ural for the Greek mathematicians of this peuod to use a geometllc
style f01 whicl they had both taste and skill.

The Greeks of Euchd s day thought of the product ab (as we wrlte
it) as a 1ectangle of base b and altitude a, and they referred to it
as “the lectangle contamed by - C’D and DE” (Flg [78] 1) ‘

o “FIG‘URE‘_[78.:_|-_1' .

To illustrate the style.and method of Greek geometric algebra we
show how they solved a. particular kind of quadratic equation.: T'he
- theorem-—in - this case, really a.problem. to be solved—-is -given: in
Euclid’s own words /I, 402/; and the “pr oof” (a construction of the
positive root of the equation, followed by a verlﬁcatlon) is almost,
step by step the: same as that ngen by Evelid. Book 1I, P10p051t10n
11 1s as follows: : _ ;
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To cut a given straight line so that the rectangle contained by the whole
and one of the segments is equal to the square on the remaining segment.
[Find H so that a(a — ) = z?; in other words, find the positive root x
(or AH) of the quadratic equation x* -+ ax — @® = 0.]

F G
X
Al X a-x B
L H ~
~—
a
FE a

FIGURE [78]-2'«

\ A8, or a, is the given segment (Flg [78]-2) Construc’o square
ABDC Bisect AC at E. Draw EB. Extend CA to F so that EF = EB.
Construct square FGHA. Then H is the u,qulred point (so that xz =

. AH is the positive root of 22 + ax — a2 = 0).

Ve"lﬁcatlon follows, modern notatlon belng used in the llght-hand
column. : :

By an earlier proposition (IIE‘, Prop. 11, 6 is a form of the
6) 1denm y
CF-FG -+ AE® = EF*. e+ _B)(a —8)+p =2 (1)
or

@+ B —B) =a* — F,

where, in the preseht- context
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a ) a
o = + 2 and ﬂ == > ;
so that i
By construction F = FEB; atB=atz and a=f=z
hence ¥ence (1) gives
'\ 2 2 ;
CF-FG + AE® = EB®. (e + (=) + (g) = (a: -+ 'g) .
By the Pythagorean theorem, By the Pythagorean theorem, ‘
: 'a\z a 2 f:
CF-FG+ AE® = AB®> -+ AE® (e + (=) + (5/ = a® + (5) ]
- - - |
— AE —= — AFE —\3) = —\5 s
CF-FG = AB® (e + »)(z) = g°
_ AHEC = — AHKC . —ax = — am
AIT? . = DB-HB ‘ _ x> = a(a — ).
or . : |
AH* = AB-HB 2 :
& i
B ;
o \w\-\
o) ¥4 2
£
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Hence H is the required point (so that AH, or z, satisfies the con-
dition (2)).
As an example, see Figure [78]-3. Let AB = a = 2 to get the gquadratic

equation ¥* + 2z — 4 == 0. Carryving through the above construction
we find that AHF = z =~ 1.236, which agress with the positive root ob~
tained from the quadratic formula, z = - . +/5.

For Further Reading

AaBoE (b): 61-63 Eves (c): G469
EucLip [3d ed. 61-67]
Evans : VAN DER WAERDEN: 11826

Capsule 79 Ferna E. Wrestler

HINDU ALGEBRA

Tue Hindu work on astronomy Swrya Siddhanta (“Knowledge from

the Sun’), writtcn. around A.p. 500, provided the motivation for a re-

markable development. of arithmetic and zlgebra in India as shown

by the works of Aryabhbata (c. 5253 ,-Brahmagupta (628), Mahavira

(c. 850), and Bhaskara (1150). After Bhaskara, Hindu mathematics
showed no progrress until modern times. o : -

- Brahmagupta gave an interesting rule for finding onc of the two
positive roots of the quadratic equation 2* — 10x = —9 (using modern

notation), which in the original is written as shown here:

yav l ya 10

ru 9

In this, ya is the uv~'"nown; v means “squarce:’’; the dot above a num-

ber indicates that : . negative nuniber. ‘The left-hand member of
the equation (as we would describe it) s wiiticn on one linc and the
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ALGEBRA

:ight-hand member beneath; ru means ‘“‘absolute’” (‘“plain’) number.

The three columns below give the solution as translated /D. E.
SMmita (a): 11, 445/, then in modern notation and with a generaliza-
tion for az® + bx = c.

2 — 10z = —9. axr® + bxr = c.
nge_ absolute number (Si)
palipiied by' 1) e loost  (—o)()==9  @a)=ca
and added to the square of half —10)\?2 b\
the [coefficient of the] middle —9-{-(-—2—) =16 ca+(~2-)

term, 25, makes 16;

of which the square root 4, less S _ 2
half the [coeflicient of ’ the] ‘\/ 16—(———19 =9 ‘\/ ca—+ (‘Q) _Q

Y is G- 2 2 2
unknown (&), is 9;

and divided by the [coefficient \/ca+ (2)2 2

of the] square (1) yields the 2] T o
value of the unknown 9. p

or
— b+ V' 8+ dac
: 2a

|
{
©

=

The metheod used in the above example is essentially the same as cur
present method of “completing the square” and consists of adding
the shaded area (b/2)2 of Figure {79]-1 to the unshaded area

(@®2® + abx) + (é) ,

2
> ' 2
-2-abx ) / C
Z
atx? *abx
ax + L‘b ’
2

Ficure [791-1

44

e Akt o o At O e A P A A s | gt e £



SRk e Lty | Erutone
SPAREARE [

X e AR
St

Hindu Algebra Capsule 79

which gives the whole area:

gm0 ()

ca

Since it was given that ax® + bx = ¢, put ca for a®2® + abx; add

(b/2)2 to equal
(e ).

Hence the side, ax + (b/2), of the large (completed) square is

Finally, divide by a to obtain z.

The example given shows that Hindu algebra was largely verbal
(rhétorical). although in th.: statement of the problem: use is made of
abbreviations, illustrating the so-called syncopated style. Fspecially
noteworthy is the correct use of negative numbers, written by placing
a dot above the number. Imaginary numbezrs escaped the Hindus, who,
however, at least recognized them as rating 2 comment: ‘“as in the
nature of things, a negative is not a square, it has therefore no square
root” (Mahavira). They operated freely with irrational numbe:rs and
used the identity that would be written in modern notation as

SN ERvE \/a_\ng:“b.

and azx is b/2 less than

Va

&
\ 2 =+

They realized that a quadratic equation with real roots would have
two roots, but they did not always bother to find both roots, as we
have seen. Negative roots were discarded us “inadequste.”’

The Hindus worked with arithmetic and geometric progressions,
permutations, and linear equations; and they could solve some equa-
tions of degree higher than two. : S

The Hindus made their greatest progress in indeterminate analysis.
For an equation ax + by = c (a, b, and’ ¢ integers) with an integral
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solution, they could determine the sclution by continued iractions, a
method that is still used. After finding one solution, * = p, ¥y = g, they
found others by using x = p + bt, y = g — at for any integer . Like-
wise, if one pair of integers p and g could be found to satisfy a so-
called Pell equation, 42 = ax? + 1 (@ an integer that is not a square),
they could find more by using the following prcperty /Cajorr (e):
95/: “If p and ¢ is one set of values of z and ». and p” and ¢’ is the
samie or a different set, then gp” + pq” and app” + qq’ is another solu-
tion.” A problem from Bhaskara’s works is this: ‘“What square number
multiplied by 8 and having 1 added shall be a square?’”” One solution
of the equation 822 + 1 = y?2isz = 6, ¥y = 17, from which it is readily
seen that x = 204, y = 577 is another.

Of interest is Bhaskara’s solution of a problem on right triangles.
The problera is given as follows /Scorr: 73/: “The hypotenuse being
85, say, learned men, what upright sides will be rational?” (In mod-
ern symbolism, “Find rational values of x and y if x® + y? = h2.")
The solution is given below, with zodern symbolism at the right.

Double the hypotenuse. 170 . 2h
Multiply by an arbitrary '
number, say 2. 340 2ah
Divide by the square of
the arbitrary number in- 340 2ah
creased by 1. ‘ 5 a +1
This gl*fes one side. ‘ ‘ . 68
‘ Multlply by the’ arbltrary | e 2a%h
number, 2. ' 136 Y e+ 1
" o 2a°h
Subtract the hypotenuse. 136 — 85 —3 — h
a + 1
This gives the other side. ‘ 51 h(a — 1)
@+ 1

This is equivalent to saying that the three sides of a right triangle are
proportional te a® + 1, 2a, a® — 1; and the values are not unique
but depend on the c™oice of the aroitrary number a.

The following problem is typical of this period: ‘“The horses be-
longing to four persons are 5, 3, 6, 8, respectively. The camels pertain-
ing to the samc are 2, 7, 4, 1. The mules belonging to them are 8, 2,
1, 3, and the cxen 7, 1, 2, 1. All four pe:.cns being equally rich, tell
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Arabic Algebra, 820-1250 Capsule 89

me the price of each horse and the rest.” (One soluticn is horses, 85;
camels, 76; mules, 31; oxen, 4.)

- » Further Reading

CaYori (e): 83-98 Scorr: 66-80
Eves (c): 181-91 D. E. Syt (a): I, 152-64,
[3d ~d. 780-89] 274-81

Miponick: 116-40, 166-80

Capsule 80 Cecil B. Read

ARABIC ALGEBRA, 820-1250

LiTTLe is known about Arabian aistory before the time ot :»-oham:aed
(570-632) . Mohammed was instiumental in forming a powerful na-
tion that eventually extended over parts of India, Persia, Africa, and
Spain. Baghdad was the Eastern intellectnal center, and Cordova, in
- Spain, the Western. ' L

e

] The rulers, czlled caliphs, supported scientific research. The Arabs,
conquering Egypt, acquired some Greek masterpieces from the Alex-
L - andrian library. Conquering pari of India, they came in contact with
the Hindus. Works of Hindu mathematicians were translated, and
Hindu numerals entered Arabia. Greek mathematical works, includ-
ing Buclid’s Zlements and the writings of Archimedes, Heron, Ptolemy,
Apollonius, and Diophantus, were also tvanslated into Arabic. Often
Arabic translutions . f Hindu and Greek works are the only known
: copies. :
Arabic algebra came from both the Hiadus and the Greeks. The
Arabs treated algebra numerically like the Hindus and geometrically
iike the Greeks. -

The early Arabs wrote out problems entirely in words. After con-
5 ~tact with other peoples, symbols and Hindu numerals were gradually
B introduced; but later Arabian writers reverted to writing out prob-
lems ‘completély, showing perhaps the influence of Greek methods.
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ALGEBRA

Possibly the greatest of the Arabic mathematical writers was al-
Khowarizmi (c¢. 825), although some think his algebra shows little
originality. He used a type of “transposition” that is not found in
Hindu or Greek works, and he secems to have been the first to coilect
like powers of the unknown. These may be his original ideas. He
solved linear and quadratic equations, both numerically and geo-
metrically. He recognized the existence of negativ. roots (as the
Hindus also did) but consciously rejected them.

The original Arabic edition of al-Khowarizmi’s best-known work,
Hisab al-jabr w’al mugabalakh, is lost, b .% a Latin translation exists
(dating from the twelth century). One translation of the title is “The
Science of Transposition and Cancellation.” The book became known
as Al-jabr, from which we get our word “algebra.” Subsequent Arabic
and medicval algebras were based on al-Khowarizmi’s work.

The following example shows, in al-KKhowarizmi’s own words (as
translated /D. E. SmitH (a): II, 447/), how he found the positive root
of the nusdratic equation that we would write as z* + 10x = 39. The
second coiumn shows this in numerical values, and the third gives a
generajization for 22 + pr = q.

z° + 10z = 39. 2+ px=y.

You halve the number of ,
roots, which in the present %(10) =. 5
instance yields five. i
This you multiply by itself; the » 2
product is twoniy-five. ‘ 5:-5=25 (—2-)
Add this to thirty- mne, the ‘ {p 2
sum is sixty-four. 254-39:=64 \2 +q

. . N AY
Now take the root of this, : . o 'ro\2
which is eight, . - Vei=s  4/(Z) +¢

2
and subtract from in half the 10 2
number of the roots, which is 8——=3 (ﬁ) F-g--T=x
five; the remainder is threc. 2 \2
or )

This is the root of the square — 2
which you sought fm, the x= p+ ‘\/p —{-4(].
square itself is nine. : 2

The method used is essentially the same as our present-day method
of “completing the square” and consists literally of adding the shaded
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x2 ipx
[N - A V—J
x + D
K

Ficure 180]1-1

area (p/2)2 of Figure [80]-1 to the unshaded area (z? 4+ pzx) to com-
plete the square of side (z 4 (p/2)). That is,

&) + e - (43

but since it was given that (2 + px) = @, (p/2)%> + g = (r + p/2)2.
Hence the side (x + (p/2)) of the completed square is equal to

\/(22’-)2 + a;

and z is p/2 less than that quantity. ~

Notice that the other root, —13, of the equation z* 4 10x = 39 was
ignored because it is negative. If both roots had been positive they
would probably have both been found.

Abu Kamil (c. 900) wrote a more extensive treatise on algebra. It
was so good that later writers used n.ach of it, although witheat men-
tioning kis name. The methods were well known and considered to be
common property. He used both the termns “square’ and “root.” The
Grecks thought of 5 as the side of a square with area 25; the Arabs,
following th - Hindus, thought of 25 as growing, like a tree, out of the
number 5 as a root. Both concepts appear in ‘‘square root.” The Latin
word for “root” is radiz; from it comes our word “radical.”

Like others, Abu Kamil solved equations algebraically and geo-
me’rically. He classified quadratic equatious-into six types, presenting
no general method. To give a single example indicating that he did
work of more than clementary difficulty: he showed, without using the
modern notation employed here, the equality
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V12 £ 2420 = 10 &= V2.

One of the best Arabic algebraists was Omar Khayyam (c. 1100),
known usually only as the author of the Rubatyai. He used gecmetric
algebl a, solving cubic equations by finding the intersections of conics.

Thme think that this was the greatest achievement in Arabic algebra.
b.udr Khayyam thought the cubic was insolvable by purely algebraic
means.

His method of solving 22 + 10x = 39 (as we write it) was really the
same as al-Khowarizmi’s, but we state 1t because of its historical
interest: “Multiply half of the root by itself; add the product to the
number and from the square root of this sum subtract half the root.
The remainder is the root [side] of the square.” /D. E. Smrta (a): II,
447./ It is not  cvincidence that the same numbers (10 and 39) appear
in the two examples. This particular problem was a favorite in the
Arab schools of that time.

Note especially that Arab mathematicians would not have thought of
the above example in our customary form, 22 + 10z — 39 = O, because
they simply did not grasp negative numbers; this difficulty with nega-.
tive numbers and the subtleties of zero products prebably explains why
solution by factoring came rather late (in the time of Thomas Harriot,
1631). :

Some work was done with indeterminate equations by al -Karkhi
(c. 1020), who tended to follow the style of the Greek mathematician
Diophantus. As one problem he proposes this: “Find ratlonal numbers
z, 9, and z such that x® 4 y3 = 22.”

Arabic algebra used the rules of false position arnd of double false
position [90]. They explained the rule of three, which today we call
proportion.. The Hindu mathematicians had used the terms, and the
Arabs translated directly.

Some historians think the Arabs added little that was new, but all
agree that throughout the Dark Ages the Arabs preserved the Greel:
and Hindu works for posterity. Without their traunslations, most of
this prior work would be lost.

It was principally through the Arabs that algebra entered T_‘uxope
Hindu influence dominated, hence algebra came to Eurcpe with little
axiomatic foundation. Perbaps this axplains why, until quite recently,
geometry was based on postulates and theorems while elementary
algebra emphasized method rather tr\an logical ‘{oundations.
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For Further Reading

Borer (g): 249-69 (e)

Carorr {e): 99-112 KEOWARIZMI

CarNAHAN (3a) Mmonick: 418-34

- ConoLipGe (c¢): 19-29 Omar KaAvYya™m

Eves (c): 191-95 D. E. Syare (a): 11, 446-48
[8d ed. 190-93] StrUIE (e): 55-60

Capsule 81  Sister M. Stephkanie Sloyen

ALGEBRA IN EUROPE, 1206-1850

EUuROPEAN algebra was based directly upon Arabic algebra and de-
veloped rather slowly from what might be termed its beginning,
around 1200, until the nineteenth century, when discoveries followed
closely upon one another.

Much of the early work was done .in Italy. There Flbonaccl_
(Leonardo of Pisa) did a great deal to popularlge Hindu-Arabic nu-.

merzals with his book on ar1thmet1c and algebra, Liber abaci (“Book
of Calculatlon”) written ir: 1202. Thls book also contains the fa.mous
-Fibonacei sequence: 1,1, 2, 3,5, 8, 13, . [22]. A

For .the next few centurles there' ‘Was: very. 11tt1e algebralc act1v1ty

in Europe however, durmg the perxod from 1515 to 1545 it was again
Italy that- produced the algebralsts Durlng that tlme many mathe-‘ v
matics’ ‘books " were pubhshed in ‘Ttaly, although mathematmlans- :

did not send thelr dlsoverles to. Journals for - publlcatlon They

_ 'preferred to use thelr new: knowledge in, order to: sh1ne in. publlc con-.
tests, challenglng one another in problem solv1ng Smplone del Ferro,-

a professor at; t"le UnlverSIty of Bologna in 1515- devised a . method of

‘s01V1ng the cubic equatlon 3 + br = C, but he . dld not clrculate his. -

- work. Nlccolo Tartagha solved the. cublc equatlon 3 a:c2»= c and
: then also the cublc z® + b:v =c (about 1535) ‘and used his mformatlon

in order to vanqulsh challengers [71]. Glrolamo Cardano, a phys1c1an S

and mathematician who was called the “gambhng scholar” by Oystein

Ore /(a)/, obtained the solution from Tartaglia and made many im-
provernents on Taltagha S solutlon solv1ng (at least for positive roots) .
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all possible cases except the ‘“irreducible” one. He then published the
complete solution of all varieties of the cubic equation (except the
irreducible case involving “imaginaries”) in his Ars magnea, giving full
credit to Tartaglia. It was Ludovico Ferrari who successfully solved
the general quartic equation. (Rafael Bombelli, a sixteenth-century
Bolognese mathematician, made progress on the irreducible case of
the cubic by recognizing in 1572 that apparently imaginary expressions
like

V81 + 30 —3 + V31 — 30 —3

were real—in this case, -—6.)

Algebraists of the seventeenth century include Thomas Harriot, an
Englishman who introduced the signs < and > /C. SmitH; Eves (a)/
and the use of aa for what we call a® and aaa for a®. While we may
think this awkward, it is an improvement over the A cubum of Francois
Viéte or even the res cubum of earlier times. William Oughtred, another
Englishman, was responsible for the slide rule, the multiplication sign
X, and the sign :: for proportion. |

Rene Descartes, a Frenchman, was one of the gleatest mathema-
ticians of this century and a prolific writer. His outstandlng contri-

bution was, of course, his- Worlf on .plane analytic geometry, but he

also. 1mproved ‘the .symbolism of algebra and introduced our present

system of positive, integral exponents. A large part of Descartes’s
La géométrie consists of what we now call “theory of equations,” and

i% contains. Descartess rule of signs for. determining the number of
pos1t1ve and negatlve roots of an’ equatlon Descartes used the letters
at the end of the aIphabet .., z, y, z, for. variables, and the early

letters, a, b, c, .« for constants Vlete, in the. Q1xteenth century, had'

used vowels for. varlables and consonants for constants
P1erre de- Fermat’s Work in the seventeenth century in- France was

o chleﬂy in number the01y, theorems in Dlophantlne analysrs (of which
‘he left no proof) are due- to him. Isaac Newton,. _genius in'many. ﬁelds _'
Cand’ mventor of the calcqus dlscovered the b1nom1al ‘theorem in 1664’

"~ when' he was twenty-two The theory ‘of symmetrlc functions of the'

~ roots of an equation, first | pe1 ceived by Viéte, was fir mly estabhshed by
‘V Newtor," ‘wkio ‘also. gave .a method for ﬁndlng approx1matlons to the
roots of. numer1cal equatlons ’ :
In' the nineteenth century- mathematlclans began 0 Work in spe-
cialized fields, but Carl Friedrich Gauss was an exception to this rule.
In his doctcral dissertation, written when ‘he was twenty and published
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Algebra in Europe, 1200-1850 Capsule 81

in 1799, he gave the first rigorous proof of the fundamental theorem of
algebra: Every algebraic equation of degree n has a root [and hence
n roots]. Later he published three more proofs of the same theorem. It
was he who called it “fundamental.” Much of the work on complex
number theory is Gauss’s. He was one of the first to represent complex
numbers as points in a plane. From 1807 until his death in 1855,
Gauss was director and professor of astronomy at the observatory in
Gottingen, Germany, where he had graduated from the university.

TEvariste Galois, killed in a duel in 1832 at the age of twenty-one,
was a genius never recognized in France during his lifetime. On the
eve of the duel he wrote to a friend /D. E. Smita (c): 285/:

Ask Jacobi or Gauss publicly to give their opirion, not as to the truth,
but as to the importance of the theorems [see below]. Subsequently there
will be, I hope, some people who will find it to their profit to decipher all
this mess.

This note was attached to what Galois thought Weie some new
theorems in the theory of equations; these turned out to contain the
essence of the theory of groups, so important today. At about the
same time. Niels Henrik Abel, in Norway, thought- he had found a
" method of sclving the general quintic equatioi:, but. later he corrected

himself and proved that a solution by means of radicals was impossible.

Finally, we take note of two English algebraists, Arthur Cayley and
~James Joseph Sylvester. As a young man Cayley practiced law in

London, and it was there that he met Sylvester, an actuary. For the
rest of their lives they worked together on-the theory of algebraic
invariants. - 0 T e
- Although he spent most of his life in England, Sylvester brought his
work to America (he taught briefly at the University of Virginia in
1841/42 and returned to the States to teach ‘at” Johns Hopkins Uni-
versity from 1877 to 1883). He established graduate study in mathe-
maties' in -this ‘country, and ‘“American ‘algebra’ might be said-to
begin with him. T DR

o 'For Further Reading: - R
Bover (g): 333-38, 367-81,  OrE (a)

54449, 629-32 - C. SMITH
" Eves (a) S STruik (e): 74-111, 115-22
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Capsule 82 Joe Kennedy and Esther Ragan

FUNCTION

Definition 1.—A function is a set of ordered pairs whose first elements
are all different.

Definition 2—When the value of one variable depends on another, the
first is said to be a function of the second.

Definition 3—1If to each permissible value of x there corresponds one
or more values of v, then ¥ is a function of z.

Definition 4—If y is a function of z, then it is equal to an algebraic ex-
pression in z.

Twe: 7Y elementary algebra texts were examined for definitions of
“f'mcmon”, eleven of these texts were publ1shed before 1959, n'ne after
- 1959. The older texts used Deﬁmtmns a, 3, 4, and others; six of the
newer ones used Definition 1.. .

" Fifteen college algebra texts were exammed seven publlshed before

1959 and. eight after 1959. None of the older texts used Deﬁnlt'on 1;-

four of the elght newer ones did.. .
‘This quite recent history of “functmn” has add1t1onal s1gn1ﬁcance
in.the context of the earlier h1st0ry of both the idea and the word..
Eric Temple Bell suggests / (a): 32/ that the Babylonians of c. 2000
B.C. m1ght be credited with a working deﬁmtlon of “functmn” because

~of- the1r use of tables like the one for nd+ n2,n=12 , 30, sug-
- gesting - the deﬁmtmn that e mmtmn is . a table or. correspondence_

“(between:n in the: left colunim and ; 22 4 n2 in the rlght column).

‘More explicit ideas of func’mon %em to:have begun about the tlme of
René Descartes ( 1637), who. may have been the first to use the term; -
‘he deﬁned a functmn to mean sny pos1t1ve mtegral power of z, such

as z2, 23, .. .7 -

Gottfried W1lhelm von Le1bn1z (1692) thought of a functlon as any
quantity. associated with a’curve, such as the coordmates of a point on
a curve, the length of a tangent to the curve, and so on. ,

Johann Bernoulli (1718) defined a functlon -to be any expressmn
involving one variable and any: constants :

Leonhard Euler (1750) called functmns in the sense of Bernoulli’s
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Mathematical Induction Capsule 83

definition “analytic functions” and used also a second definition, ac-
cording to which a f{unction was not required to have an analytic ex-
pression but could ke represented by a curve, for example. Euler also
introduced the now standard notation f(x).

Joseph Louis Lagrange (1800) restricted the meaning of function to
a power series representation. Jean Joseph Fourier (1822) stated that
an arbitrary function can be represented by a trigonometric series.
P. G. Lejeune Dirichlet (1829) said that y is a function of z if ¥
possesses one or more definite values for each of certain values that
z may take in a given interval, zo to z1.

More recently, the study of point sets by Georg Cantor and others
has led to a definition of function in terms of ordered pairs of elements,
not necessarily numbers.

For Further Reading

BeLL (a): See index , Insights into Modern Mathe-
Bover (f): 243, 276-77 matics: 55-58, 220, 241-72,
(g): 290-92 409-11 ‘

CaJor: (d): II, 267-70 F. Kuein (a): I, 200-207
Eves (c): 371-72 G. A. MiLLER (b)

[3d ed. 371-72] ; , Reap (e)
Growth of Mathematical Ideas Selected Topics: 42-56

65-110, 445-49 JouN Youwag: 192-200

Capsule 83 ,
MATHEMATICAL INDUCTION

From the mathemutical experiment

14345 =3,
14345+ 7=4,
etc., e

55



ALGEBRA

one is led to the formula

1+3+‘5+'.'+(2n—1)=n2;

and then this conjecture is proved deductively by using the principle
of mathematical induec: .ion.

B. I.. Van der Waerden /126/ points out that “in essence” the prin-
ciple of mathematical induction was known to the Pvthagoreans but
that Francesco Maurolico was the first to make fairly explicit use of
it (in his Arithmetic, 1575). Blaise Pascal (c. 1653) was the next
person to use the idea, as he did repeatedly in his work on the so-called
Pascal triangle, which he called the “arithmetic triangle.”

The inducticn proofs of Maurolico are given in a rather sketchy
style not easily followed. Pascal’s style is more nearly along modern
lines, and we present in modern notation a translation of his induction
proof that

2C, _T 4+ 1
I
where
, n!
”g’, T n— D!

and r is any “cell” from the Oth to the (n — 1)th in Figure [83]-1.

Consequence XI1I: In every arithmetic triangle, two adjoining cells on the

same line [have the property that] the lower is to the higher as the number

of cells below (and including) the lower s to the number of cells above (and
'mcludmg) the higher. :

Let E and C be any. two ad]ommg cells on the same lmp I say that

— - e A .
 lower  higher = because there are two ~ because there are three
SR cells from E to the. bot- “eells: from C to the top, .
tom, namely, E H , namely, C, R, K.

Althm o thls proposmon has an mﬁmty of caees I shall glve a very
- short demonstration based on two lemmas:
The first, which is self-evident, that this proportion is true on the second
line [of the trianglel; because it is easily seen that ¢ is to ¢ as 1 is to 1
flet n = 1; then ,Co/;C, = (0 + 1)/(1 — 0)]. '
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Mathemalical Indvction Capsule 83

| 2 3 4 5B & g 9o 10

2 3
A B C/lw 3

371 3176 1o |15 21| 28| 36
D E J\F e\ Y

a4 1 4 |10 | 20\ 35| 756|784
HA\M/ | K

5,7 | 5| 15 |35 | /70\] 126
P Q

e/ 1 6| 21| 56| 126]
14

77 | 7|28 |84

8l | 8|36

ol | 9

10, |

' FiGURE [83]—1

. The second, that if this proportion is true on any line it will necessarily
be true on the following line. [Let » = k. Then

:ka/kCr+rl = (’I’ + 1)/(k — ‘T)‘ :

implies

ol fenCoss = G F 1)/«k + 1) -9,

and hence the theorem is true for n = k + 1 i it is true for n=kl]
From which it'is apparent that it is. necebsanlv true on all the lines: for
it is true on the second line by the first lemma; therefore by the second
[lemma] it is true on the third line; therefore on the fourth, and so on.
Tt is necessary therefore only to prove the second lemma in this way:
_If the proportion is true on any line. as on the fourth D A; for example, -
"if Dis to B asi to 3, and B to 6 as 2 to 2, and 6 to A as 3 to 1,
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and so forth, T say that this.same proportion will be true on the following
line Hp and that, for example, & is to C as 2 to 3.
For D is to B as 1 to 3 by hypothesis.

Therefore D + Bisto Bas1l 4+ 3to 3
————— L S——

y toBas 4 to 3.

Likewise 3 is to 8 as 2 to 2 by hypothesis.

Therefore B - 8is to Bas2 + 2c 2

C to B 4 i 2,
But E to B as 4 to 3 [and B to C as 2 1o 4] (as was shown). Then [by mul-

tiplying these last two proportions] ¥ is to C as 2 to 3. Which it was required
to show.

One can show the same on all the rest [of the lines], since this proof is
based only on that proportion found for the preceding [line], and [the
property] that each cell is equal to its preceding [one on the left] plus
the one above it, which is true everywhere [in the triangle].

The “property” referred to is, for example,
_ E = D+ B;
or, in general,
nCr = n-—lCr-—l + n-—lCr7
which is Pascal’'s rule of formation (definition) of the arithmetic

triangle.
Fer Further Reading

MESCH_KO\YVSKIV (b): 36-43 Struik (e): 21-26
- D.E. Smrer (¢): I, 67-79 o '

"Capsule 84

FUNDAMENTAL THEOREM OF ALGEBRA

CarL Friedrich Gauss‘, at the age of twenty (1797), gave the first

satisfactory preof. of the theorem which he called fundamental and
which was the topic for his doctoral dissertation at the University of

58

JE e N T SR




e R L e RS !

B e L L

A Clt ok AR RO

Fundamental Theorem cf Algebra Capsule 84

Helmstidt, A New Preof that Every Rational Integral Function of. ‘One
Variable Can Be Resolved into Real Factors of the First or Second
Degree. (Equivalent statements are ‘‘Every algebraic equation of:de-
gree n has n roots,” and “Every algebraic equation of degree n: has a
root of the form a + bi, where a and b are real.””) Actually, Gauss gave
four proofs for the theorem, the last when he was seventy; in thefirst
three proofs he assumes the coefficients of the polynomial equation
are real, but in the fourth proof the coefficients are any complex:
numbers.

The words “new proof” in Gauss’s title indicate that the ideas sum-
marized in the statement of the theorem had been considered by earlier
mathematicians. The Hindus (by 1100 at the latest) realized that
quadratlc equations (with real roots) had two roots. Girolamo Cardano
realized in 1545, though somewhat vaguely because negative and
imaginary numbers were not clearly defined at this time, that cubics
should have three roots; and he exhibited three roots for some cubics.
Similar ideas were held W1th respect to quartic equations by Cardano
and other Italian algebraists of this period.

Francgois Viete (c. 1600) considered the poss1b111ty of factoring the
left member of the polynomial equation f(x) =-0:(with: positive co-

~ efficients) into linear factors but was foredoomed to only partial suc-

cess because of his marked aversion to negative and. imaginary
numbers. '

Peter Roth seems to have been the first writer to.say definitely that
a polynomial equation. of degree = has » roots. This -was:in:1608. Albert
Girard stated in:1629:that every algebralc equatlon :has:as:many roots
as the degree of 'its:highest power. :

The ms1ghts of Rene Descartes on ths matter rare: of speclal interest
because they. are: related to his famous “rule offsigns.” We:quote from

his La, geometrze (1637) / (b) 159—60/

Every equatmn can have as many dlstmct roats: (values of the unknown
L ‘quantlty) as:-the: number of o.1mens10n.> [le degree] of the. unknown
- quantity-in the equation. . ‘
It: often happens however, that some of the«mots are false or, Iess than
nothmg : ; .
We: can: determme also the number of tme [posxtwe] and. false [nega-
tive]; roots: that any equation can have;. as: follows: An: equation. can:

have: as many true roots as it containssclianges: of sign . . . and as many
false roots as the number of times two: 4 orr two — signs: are found: in:
succession.,

59



AT sy =

ALGEBRA

The first attemvt at a proof seems to have been made by Jean Le
Rond d’Alembert, in 1746, and for this reason the theorem is sometimes
called d’Alembert’s theorem, especially in France. Leonhard Euler
(1749) and Joseph Louis Lagrange also tried to prove the theorem.

A correct proof was not given until Gauss wrote his doctoral disser-
tation, which was published in 1799. This included “geometrically
obvious” assumptions for which later standards of rigor required
proof, which A. Ostrowski gave in 1920.

For Further Reading

BeLL (a): 178 F. Kreix (a): I, 1014

(d): 218-69 D. E. Smit (¢): I, 292-306
CouraNT and RoesBINs: 269-71 Struik (e): 81-87, 99-102,
DUNNINGTON 115-22

Capsule 85 Donald W. Western

DESCARTESS RULE OF SIGINS

In 1637 the French philosopher René Descartes (1596-1550) publishéd'
a book with a lengthy title commonly abbreviated to Discours de la
méthode, a full translation being “Discourse on the Method of Rightly

, Conductmg One’s Reason and Seeking Truth in the Sciences.” Three

appendixes were included: La dioptrigue {*“Optics”y, Les météores

(“Meteorology”’), and La: geometrze (“Geometry”). The third part of

the third appendix is entitled, in translation, “On the Construction of
Solid ‘and- Supersolid Problems ?:Tt deals with many basic ideas for
solving equations that arise in ‘connection with~ geometrlc problems
(prlmarlly the study of conic sections by algebraic methods).

After posmg soma problems on mean proportions, Descartes proceads
to construct a fourth-degree polynomial equation by multiplying
together the linear factors (z — 2), (z — 3), (x — 4), and (z + 5) to
obtain v

* — 42° — 192° + 106z ~ 120 = 0.
60
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He remarks that the polynomial is divisible by mno other binomial
factors and that the equation has “only the four roots 2, 3, 4, and 5.”
The fact that the fourth root is —5 rather than 5 is 1ecocrn1zed by
speaking of 5 as a “false” root, in contrast to the positive numbers,
which are calied “true’” roots. (The minus sign is not used by Descartes
to designate negative numbers.) Then comes the statement of the cele-
brated rule of signs /DESCARTES (b): 160/:

We can determine also the number of true and false roots that any
equation can have. as follows: An equation can have as many true roots as
it contains chazges of sign, from + to — or from — to +; and as many
false roots as.the number of times two 4 signs or two — signs are found
in succession.

~ Following this general ‘comment, Descartes points out the three
_._z_changes of sign and the one succession (permanence) of sign in his

o »rexample and concludes, “On connoit. qu’il y a trois vraies racines; et

f"than the illustrative example’ that accompanied it.’

une ‘fausse’’; -that is “We know there are three ‘true. roots’ ‘and one
;,_false root.” - L : - :

" As.is often the case W1th the promulgatlon of a S1gn1ﬁcant mathe-
trnatlcal result, this ﬁrst statement .af.the relation between, changes in
' ’-S1gns of the successive terms. of the polynomlal and. the mnature of the
~‘roots was not: complete:: Nelther ‘was-any -attempt made at proof; other

There 1s s0n1e dlsa_greement in: the literature whethelz_. the: rule of
' “before Descartess pubhcatlon of La

1,oots Glrolamo Cardano (1501 1576) -.had stated-~

w7 oné: or two. varlatlons in sign’ ‘and’ the occurrence ‘of pO::lthe roots SR
The process ‘of refining the ruIe of signs’. continued over-a perlod of

' tvro centuries. In' this: process two pomts spemﬁcally, were clarified:
- (1) the fact that varia’ “ms’ in sign determine only upper: bounds for

o “the number of posmve roots bccause of the pos51b111ty of: imaginary
' j_'jroots and @) the fact that ‘the; permanences of ‘sign determine: bounds-

' that is, one with no cocflicients equal to zero.

" for the number of negative roots only- for a complete polynomlal—’

- Isa ac J\Tewton, in’ hlSL“WOI‘k Amthmetzco unwersalzs (pubhshed '1n.'
- 1707 but ertten some th" ty years earher) gaVe an. accurate statement

iirelatlon between o
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of the rule of signs and presented without proof a procedure for de-
termining the number of imaginary roots. At about the same time
Gottfried Wilhelm von Leibniz pointed out a line of proof, although
he did not give it in detail. In 1675 Jean Prestet published an in-
sufficient proof; Johann Andreas Segner published one proof in 1725
or 1728 and in 1756 a more complete one. In 1741 Jean Paul de Gua
de Malves gave a demonstration, introducing the argument that is
basic to modern proofs. (This type of argument was employed more
clearly by Segner in 1756.) Several other proofs were given in the
period from 1745 to 1828. In 1828 Carl Friedrich Gauss added the
significant contribution to the statement of the rule that if the number
of positive roots falls short of the number of variations, it does so by an
even integer.
The complete statement of Descartes’s rule of signs is as follows:

S N~ o L A 15 ] e B ARS8 g AT AR

‘ Let P.(z) = a,, z" + tz, L e a, where the coeﬂiczents ao, a,

, a, are real numbers, a, 5= 0. Then the number of posztwe real roots

of the equatwn P..x) = 0 [a root of multiplicity ' m being’ counted m

_ times] 7s either equal to the number of varzatzons n szgns or less than
9 that number by a 'posu,we even mteger : :

B gatwe roots of Py (z) = 0'is handled slmply by con-

e e, 2 roots of P (—:v) = O Thus the matter of perma—»
Mew. s avoided. - :

' The crux of the proof stems from the Work of Gua de Malves and, |
Segner It conslsts n show1ng Jhat 1f o : '

| R Pe) = (:z: — T)P _l(x) ‘ o
..v'ffwhere P,,_l(:v) has real coefﬁclents and ris pos1t1ve then P (m) has at”

‘ least -one ‘more varlatlon 111 slgn than does P,, 1(:v)——for the general
':,_case an odd number more B e kS -

Far F'wrthe, Readzng

_"BE_LL'(d):"35—55 SR 3 DESCARTES (o)
. CAk.‘roRr"%(’e)v:,.1,78—79,'k 248 - b'rRUIK (e) 89—99
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Capsule 86 Dorothy Wolfe

SYMMETRIC FUNCTIONS

A syMMETRIC function of two or more variables is a function that is
not affected if any two of the variables are interchanged. Perhaps the
most familiar symmetric functions are those met in elementary theory

of equations where for the cubic equation
$3+01$2+02$+ 03-:0
we have

T + 7 + 7'3' = —C, 7'17'2 + s+ 7'27'3 = (o, TTal3 = —Cs.

~ These last three equa11t1es expl ess the coefﬁclents of the cublc equatlon

as symmetric functlons of the roots ry, 7, T3: c .

- When Frang,ols Vlete made his first tentative- dlscoverles conwrmna
symmetrlc functions in- the-late s1xteenth century, the very notion of
‘the roots. of. an algebraic: equation was 1ncomp1ete, in large measure

o because of an. 1ncomp1ete understandlng .of negative and. imaginary
: numbers \1ete himself Worked only- with - pos1t1ve roots. He noticed
- that if the equatlon x* + b = ax (a >0, b > O) has two 'posztwe roots, 7

"~.l'r1andr2,then e R e T e T

5@_»-apa;vmm+w

Also as Cajorl says / (b) 230/

HIS ‘nearest approach to complete recog*utnon of the facts is contained
._m the statement that the equation

R _"— (u+v + w):z: + (uv + sw + wu)a: — ww, ="'0

S has three roots, u, v, w For cublcs thlS statement is perfect 1f u, v, w are"
" allowed to represent any numbers. But: Vlete is in the habit of assigning

" to letters only positive values, 50 that the passage really means Hess than
"','._atﬁrsts:ghtxtappearstodo n : L ‘

]
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Albert Girard was interested in extending Viéte’s result. He con-
sidered all roots—those he called “impossible” (i.e., imaginary) as well
as negative and positive roots. He studied the sums of their products
taken two at a time (analogous to Viéte’s (1), above), then three at a
time (analogous to Viéte’s (2), above), and so on.

But Girard was also interested in obtaining expressions for the sums
of given powers of the roots; these sums constituted a different set of
symmetric functions than the one Viéte had essentially pioneered.
Girard published his results in Amsterdam in 1629 in a pamphlei In-
vention nouvelle en Palgébre, which contained the statement /FuNK-
HOUSER: 361/ that if

" — Az"' 4 Bz — C" % + - - =0,
then » _
A . o : ] _‘ J' solutions
A? — 2B _ ) I will be squares.
A® — 34B 4+ 3C J the sum of lcubeo o
A* — 44°B + 4AC’ 4 2B"’ - 4D ’ biquadrates.

Girard stated: this result rather casually Perhaps becaw" of this and
perhaps also’ because seventeenth -century ‘mathematicians -were not

ready, Girard’s" ‘remark went -unnoticed until it reappea'ed without - -

proof; in Isaac’ ‘Newton’s Amthmetwa umversalzs (1707). and became
fainons. It also’ became one 01 sever al theorems that are’ called “New-
ton’s theorem.” . EE N ,,

"For .a hundred yea1s after Newton many mathemn‘rv Seoine g

Colin, Maclaurln, Leonhard Euler, and Joseph Lou: Lange, coll- o
“cerned - themselves Wlth proofs and generahzatlons of this. theorem o

Fm Further Readmg

CATORI ‘(b)£‘23o—31 7 Srruik (e) 81-87
FUNKHOUSER S
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DISCRIMINANT

As A result of the historical development of ideas leading to the term
“discriminant,” there is today a slight inconsistency in the use of the
word. Texts dealing with the equation

Az + Bz -+ C =0

call B> 4AC the diseriminant of the equatlon Othm texts, discussing
the binary quadratic form

Q(z, ) = Az® = 2Bzy + Cy°,
call AC’ — B2 the discriminant of Q. Similar though these expressions
are, the first is negatlve four times what we would expect:it to be if
notations were uniform. And ever: if this were" corrected, it would not
be immediately obvious that we &« )astlﬁed in using the same name—
that we have the same mathematical entity. '
By the mlddle of the elghteenth century it: was well known tha’t a

S ,ecessary and sufficient condition for the equutlon Ax® + Bz + C’
. .'to have’ two 1dentlcal roots was B2 — cAC =
‘known; mathematxclans knew what it <1gn1ﬁed and how to work with

it; but 1t was not yet xecognlzed as a mathem: ucdl entlty

Durmg ‘the next hundred years mathematicians studied several ex-

~ pressions related to: the quadratlc form. In 1748 Leonhard Huler-used

conditions. 1nvolvmg expressmns like: those above. to determme whether

- a quadrxc surface is contalned in ﬁnlte space but Euler d1d not glve a

name to these expressmm a :
The expression that was not yet an entity 1eappeared in 1773.
Joseph Louis Lagrange we: studying the binary quadratic form

. glven above. He proved that 1f z + Ay were subst1tu’ted for z, leadmg

toa new form

A(x + MJ)Z +: ?B(:c + M/)y + Cy A

" then if the new expressmn is sxmph tad to

A'a: + 2B';cy + Cl ?,‘ ;j_": |

0. The expressmn was":

o e o g e 0 N
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we must have

A'C" — B’ = AC — B.

Other mathematicians turned to the study of such invariants, and
similar expressions: kept reappearing: Carl Friedrich: Gauss: called
such an expression: a: “determinant” of the function. It remained for
the tempestuous James Joseph Sylvester; who called: himself the
“mathematical Adam” because of his habit of giving names to mathe-
matical creatures, to'name this one. In 1851 he was studying invariants
in reducing certaiir sixth-degree functions of two variables to:simpler
forms. What he found was-what he called (2nd what we now'recognize
as) the “discriminant of a:cubie.”

His explanation in.a long, testy, and somewhat defensive-footnote is
amusing and enlightening:: ‘

“Discriminant;” because it affords the discrimen or test forrascertaining
whether or not. equal factors enter into a function of two vanables, or
more generally - of . the existence or otherwise of multiple. points:in the
locus represented'or characterized by any algebralcal function, the most

~ obvious'and first observed species of singularity.in such function or locus.
. Progress in-these researches is impossible without. the aidi of: clear expres-
- sion; and the first condition .of -a' good . nomenclature is..wiat different
. things, should. be- called by dxfferent names, The mnovatlons in . mathe-
" matical language liere and elsewhere (not w1thout hlgh sanctlon) intro-
) _,,dUced by the- author, have been never adopted except under actual ex-

e penence of theeembarrassment arising from ‘the want of them and will
'’ require no vmrhcatmn ‘to’ those wiio have’ reached that pomt Whele the '

i necess;ty of some“ such\addltlon becomes felt

Both our- casess satlsfy Sylvester’s deﬁnltlon The dlscnmmant is a

_ ,'combmatlon of- constants whmh vamshes 1f at least two factors of a
, functmmare the same If R : .

| B* —-.~4A0'=A0,‘~- A0, .
then, ' : Lt

A:):. + B:z: + C’ A(x+ B/2A) ;

o under the same condltlons (or equ1valently, W1th changed notat:lon 1f
“AC Bz— 0, Ax%O), . - .

TR

A:z:2+ «B:vy+ Cy ¥'—(Ax +By)

b Py b

i g ML e

e aten oo e £ e T




Interest and Annuities Capsule S8

Fo. .urther Reading
Berz (d): 378-405 Bover (g): 253, 25%

Capsule 88 L. S. Shively

INTEREST AND ANNUITIES

ERTERID AR R 23

In THE Liber abact of Fibonacci (Leonardo of Pisa), written in
1202, the following problem appears /Eves (¢): 234/:

A certain man puts one denarius at [compound] interest at such a rate
that in five years he has two denarii, and in every five years thereafter
the money doubles. I ask how many denarii he w ould gain from this one
denarius in one hundred years? .

The answer, (220 — 1) denarn is eas11y obta1ned since exactly 20
doublings are involved. The unphed interest rate of 16%3 percent com-
pounded annually is possibly ‘a commentary on the rather high rates ;
charged in medieval Europe in splte of certain restrictions by the é
Church. - i
' The custom of chalglng 1nterest is found as cariy as 2000 B.C., as :
recorded on ancient’ Babylonlan clay tablets We glve one example
/D E SMI’I‘H /a) II 5’30/ ' 8

Twenty manehs of s11ver the prlce of wool the property of Bc.:hazzar,
‘the son of the klng . All the property of Nadin-Merodach in town
-and country shall be the securlty of Belshazzar, the son of ‘the king, until =
Belshazz'lr slnll recelve in full the mouey as well as the 1nterest upon it.

Interest rates in Babylonla ran as hlgh as 33 percent In Rome
durlng Clcero “day 48 percent was allowed Justinian later set the
maximum allowable rate at'0.5 percent per month which gave rise to
the common rate of 6 pelcent a year. In. Indla, however, durmg the

- twelfth centu1y, rates as high as 60 percent are ‘recorded. L
The origin. of the wo"d “interest”’ is re1ated to church. policy, which
: .forbaae usury, payment for the use of money 1he moneylender got




PRSPPI TR TR e STV et ats o r— vy o e e, - o ————— s e

ALGEBRA

around this restriction of canon law by collecting a fee only if the
money was repaid tardily (which happened often enough even in those
days!). The lender argued that the fee compensated him for the mone-
tary difference between his pocrer financial standing, because of late
payment, and what would have been the standing under prompt re-
payment. This difference was referred to as id quod interest (“that
which is between”’).

Anauities were known as early as 1556, the year in which Niccolo
Tartaglia, in his General trattato, gives the following problem, which
he said was brought to him by gentlemen from Barri who said that the
transaction had actually taken place /Sanrorp (d): 136/:

e, o L - S

e b,

A merchant gave a university 2,814 ducats on the understanding that he
was to be paid 618 ducats a year for nine years, at the end of which the
2,814 ducats should be considered as paid. What interest was he getting
on his money?

e

The answer to the problem is that the interest rate was slightly 1nore

than 19 percent; but without logarithms and annuity tables, 1t was
not comsidered easy. - ‘
.. In 1663 Edmund Halley, who is best knOWn for his work as an as- l
tronomer contributed to the stu Lly ~" life insear | Luities 1th Lae
~wblie~iog of 7 gices of Mortahty of Mankind . . . with an Aitempt
to Ascertain the Price of Annuities upon Lwves. Th1s included the
followmg formula /CAJORI (e): 1?1/

‘ To ﬁnd the value of an annulty, multlply the chqnce that thenml:wldual
00ncerned will be alive after n years. by the present value of the &7.nual
payment due at the end of n years; then sum the results thu= obt:ained
for all values of n from 1 to the e\treme po<s1ble age for the lize of that V.
'1nd1v1du'11 : L B

Halley probably used the mor tahty table pubhshed in 1662 by John
Graunt of London in his Natural and Politica’ Observations . .. ITade
upon. t’he Bills of Mortahty, .which was based on. 1ecords ﬁtdeaths
that were kept .in London beglnnmg in 1592. (These reco*r& were
cmgmallly mtended to keep track of deaths due to the plagw il

e e e o <t =it

. . ” Far F’urther Readmg | |
SA\IFORD (d) 127-31 o e D . Smrri (a) II 59565;'.”,
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Capsule 89 Donald J. Dessart

EXPONENTIAL NOTATION

THE great French mathematician René Descartes is credited with first
introducing, in about 1637, the use of Hindu-Arabic numerals as ex-
ponents on a given base. To any modern schoolboy the idea of writing
r-x-zaszdorx - x - x -z as z* seems so obvious that it is quite
natural for one to feel that Descartes probably hit upon this idea with-
out help from his many predecessors in mathematics. But that was
not the case! Ingenious inventions very often result from the insights
of men who have learned from the trials and errors of others; such was
the case with Descart. s’s use of exponents. :

In this short capsule we shall look at some examples of  early
expanentlal symbolism and shall see that the idea of an exponent was
a,vallable ‘'when Descartes took the very significant step of usmg Hindu-
Arabic numerals placed to the upper right of the base.. ,

‘Sometime around. 1552 an Ttalian mathematician, Rafael Bombelh
Worked -very diligently. on a manuscript that he pubhshed in 1572 as
an algebra book called. L’Algebra In this volume he wrote the selation
toa problem begmnmg it as shown below : '

- 4.ps R.q. l_24 m, 20,_] Eguale 9:2. %

A ﬁrst glance at this lme of symbols rmght lead one to ‘think that
: Bombelh was using a.very complicated secret code, as in a sense he
'was; he was writing the equation we 1ep1esent by ertlng

4+ V24~—20a:

‘. Let us pa,use for a, moment and compare: Bombelh s equatlon with .
~ our present—day form.. It is easy to see that “Eguale a» proba.bly means

“‘equals.” Continuing,’ ‘we can see that “p ” probably stands for ‘“plus”’
and “m.” for “minus.”’ The symbol “R.q.” represents ° squa,re root’’;
- the two: a,ngula,r symbols ‘mean the same as ‘parentheses in :modern

' ‘sy*nbohsm Thue “R qL _J” means the square - Toot. of the polynomla,l o

.69
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written within the symbols. To write positive integral powers of a
variable, z, Bombelli wrote the exponent in a small eircular arc above
s numeral, so that

meant the same as 2z, 2x°, and 2z° in modern notation. Thus

R.q. | 24.m.: 0_[

means V21 — 20z.
At first thought, it may seem that Bombelli’s method is much better
than our present symbolism because he did not need to wrlte the letter
x. But suppose a mathematician wished to represent z®> — 7°. Could he
do this Dy writing

No! For this reason, Bombelli’s exponents were short-lived.

The complete solution as Bormbelli included it in L’Algebra is given
in the left-hand column below. Cover the modern version in the rlght—
hand column 1f you Want to test your sklll in translatlng

">4quL24m20_| '
Egualeé.2 e 4+‘Vz4=——20a: 2:1:. ‘

R q. L24 m. 20.'

‘ Egua,le a3, 4 L ‘\lm = 2z — 4.
24! m. 20 S - S
| Egualeh.tl m.16.p.16. 24 — 20z = 42" — 16z + 16.
24, p- 16 4 '
Eguale é.\i’. p- :216.'.p. 16. . 24 4+ 16z = 4z° + 20z + 16.
24 . , .
Eguale a4 p. p 16. 24 = 4® 4 4z + 16.
. Eguale é;_\féii#?f.. S 8 =4r 4 da.




Hxponential Notation : Capsule 89

2, A
Eguale & 1. p. 1. 2 = 2% + z.
2%
2 1
Eguale 3 1, p.1.p.%. 2t = 2* + = + 1.
13
1
Eguaie 21.p-3 1} = = + 2.
1
L
Epgnale a 1. 1 = z.

Bombelli was not the only mathematician before Descartes to write
a numeral above the coefficient to indicate the power of the variable.
Nicolas Chuquet, a physician in Lyons, France, wrote 12°, 121, 122,
and 123 to designate 12, 12z, 1222, and 12x% in his Le triparty en la
science des nombres, written about 1484, He also used

12.1.7'7:
to designate 12z-1. Later, about 1610, Pietro Cataldi wrote

¢, % 3. 4,

to stand for =0, :1'2 3, and «*; and in 1593 the Dutch writer Adrlanus
Romanus used

-1 (45)

for x45. In 1619.the Swiss mathematlclan Iobst Bulgl used Roman
numerals as exponents. He wrote

ot .
Vi, v iv iii

84 12— 9 4 10
to indicate the polynomial
8z° 4 122° — 9z* 4+ 10z°.

- The accompanying table summarizes the main items in the his-
torical development of exponents, including negative and fractional
exponent= Cardano’s verbal notation and J. Buteo’s pictor ial notation.
illustrate styles otherwise omitted bncausc they di d not contribute to
~ the development of our pr ésent system.
"The hlstmy of. the development of exponentlal notatlon is a t'edlt
to man’s genius in ﬁndmg famle symbohsmQ for expleesmg mathe—
' matlcal concepts L : : : -
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TABLE [89]-1

HisTtorlcaL DEVELOPMENT OF IEXPONENTS

Modern
Tx T2 vx3 Commentary
Notation
Different manuscripts show dif-
1360 ferent notations. For 21/2 he
. 1.p 1/3
Oresme wrote 32r; also 551" For 91/3,
he wrote 39r,
For (23)t/4, he wrofe ;2% y
For 43/2, he wrote |1P &l 4,
P- 4. ,
1.2
1484 : o o . .
" = 72 73 For 7, Chuquet wrote 7° For
Chuquet 12z, he wrote 12.1.7,
1545 o . R e
7. pos. " 7. quad. 7. cab. ¥or 7z%, Cardano wrote 7
Cardaro ' ' : : guadr. quad.
509 S
% | T Tem
Buteo : L s o
1572 o ey <& '
" o 7 7 7
‘Bombelli C
C > 2O N O] - r® Stewn suggested for :z:% the ’ _
Stevin o . o notation ® when he said, “3/2 -
Lo C in a circle would be the symbol
for the square root. of ® i. e,
23)"?; but he never used tl:us :
nota.tlon. '
3 I - -} Vidte used vowels for unknewns
: 1590 TN 7Q - 7C and consonants for constants .
- Viete ¢ R S S e (except that N, Q, C had al-
B . ready been. resexved for:- powers).
R Bin A 7 B in A e q 7 B m 1A cu 7 He used the first. style for poly-
- Also | fer | for | for " ' | nomial equations in one un-.
Lo T BAY 7 BA2 , '_7_ BA3 ' | known with numerical coeffi-
T ' " .| cients. Both styles are from -
. {later editions of his wq::l; ear~
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lier he wrote “B in A quadra-
tum 7 for “B in A q7”’ [TBA2].
In the second style, Vitte wrote
“Bin A qq 7’ for 7TBAt and “B
in Aqeceu7’ for 7TBAS.

1610 : ' -
S 7 1# 7 i T4 For 7, Cataldi wrote 7 §.

Cataldi ' o '

1619 i i it v

7 7 7 For 7x*, Blirgi wrote 7.

Biirgi - ' ’

1631

. 7a Taa 7aaa

Harrlot_ :

1634+
Hengone = ’

;I_)e'sqaiftes ;

'- 11637

For k

:t:" Descartes wrofe 1:54

1606

-.-i"?ia_a';}‘ o

]676 Walhsspoke of

/-Fdr' 1:" Wallis - v\rote 7a4 In

* I“ a letter (June 1'% 1616) to Henrv Oldenburg. secretary of the Royal Society of Lomlon, Newton

ERIC

{AFulToxt Provided by ERIC

sald "Smce algebralsts “nte u?, ad; al,) etc. for aa; aua, aaau ett,., so r wrlte u‘f‘ aal-,
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For Further Reading

Bover (d) (d): T, 335-60
Cagort (a) : SanForp (d): 155-58

Capsule 90 Waldeck E. Mainville, Jr.

RULE OF FALSE POSITION

TuE rule of falseé position is a method of solving equations by assign-

ing a value to the unknown; if, on checking, the given conditions are

v '_lrnot samsﬁed this value is altered by a simple: proportion. For example,
. to solve x4+ '0/4 = 30, assume any convement value for z, say x = 4. '
__{Then z + a:/4 = -5 1nstead of 30. Since 5 must be multlphed by 6 to
R g1ve the des1red 30, the correct answer must be 4 -6 or 24. : '

“This’ methocl was. used by the early Egypmans (c. 1800 B. C) many '

g ,problems appearing on. Egyptlan papyri seem to have been solved by
S false position.: D1ophantus, in his text Arzthmetwa, uses a s1m11ar pro-
"j_~cedure to solve simultaneous equations.: : '

The Hlndu Bakhshah manuscmpt (c.. AD '600‘?) contalns some prob- :

7 -_f'_j'lems solved by false pos1t1on “The: earhest Arablc ar1thmet1c of al-
- 'r‘thowar1zm1 explamed the tule of false pos1t1on : S

The Ital1an mathemat1c1an Flbonacm (Leonardo”of P1sa c. 1200)

'.~:--"f’pos1t1on The*amthmetic? f"Johann W1dmann publ1shed in- Lelpz1g-',_;':

2 7in 1498,s’ the earliest: book: 1n1Wh1ch the symbols + and — have Dbeen . -
j_;;found They occurred in - connection. with: problems solved by false
position to 1ndlcate excess" and’ deﬁc1ency The first: edltlon of. Summa
o de amthmetzca, geometmca” ”'proportwm et: 'propo'rtw'nalzta (1494) by

v_'jthe Itahan friar Luca Pac1ol1 ‘discussed and apphed the rule:of false -
pos1t10n In England Robert Recorde 1ncluded the rule of false posltlon'

in h1s ar1thmet10, The’ G’round of Artes (1542)

For Further Readmg e
O D. E. SMITH (a) 11 437—41

MIDONICK 91—105
SANFORD (d) 155—58 TR



