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Preface

This booklet is a separate presentation of the "capsules" dealing
with algebra in the Thirty-first Yearbook of the National Council of
Teachers of Mathematics, Historical Topics for the Mathematics
Classroom. Paperback publication makes this material available in an
economical and flexible form for use in algebra classrooms or by in-
dividuals whose mathematical interest at the moment is primarily in
algebra.

"What is new today becomes old tomorrow," even in mathematics.
The "new math" of a few years ago is now commonplace in many
elementary and S'econdary schools across the country. Of course such
terms as "new math" and "traditional math" still carry meaning for
those professionally involved in the teaching of mathematics, although
these terms may not carry exactly the same meaning for all persons.
But such designations are related to chronological intervals and COD-
ceptual patterns that encompaPR only a small Wirt. 01 thy ovr"1 his-
tory and development of iu

The Thirty-first Yearbook of the NCTM is a constant reminder
to its readers that mathematics does indeed have a history and that
there are values to be derived from using some of this history in the
present-day classroom. As stated in its preface, the primary objective
of that yearbook is "to make ,available to mathematics classes im-
portant material from the history and development of mathematies .

with the hope that this will increase the interest of students in maithe-
matics and their appreciation for the cultural aspects of the subliect."

In the "overview" of the history of algebra given in the yearbook,
John K. Baumgart states: "Although originally 'algebra' referred to
equations, the word today has a much broader meaning, and a ,at,ios-

factory definition requires a two-phase approach: (1) Early (ele-
mentary) algebra is the study of equations and methods for solving
them. (2) Modern (abstract) algebra is the study e. mathematical
structures such as groups, rings, and fieldsto mention only a few.
Indeed, it is convenient to trace the development of algebra in terms
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of these two phases, since the division is both chronological and con-
ceptual."

The accompanying algebra capsules give brief sketches of some of
the individual topics that are part of each of these developments. A
glance at the table of contents readily reveals that no attempt has
been made to separate them into these two groups nor to give them in
any sort of chronological order. Included are such themes as the
change from a geometric to an algebraic solution of problems, the de-
velopment of algebraic symbolism, the algebraic contributions of dif-
ferent countries at different times, the origin and development of cer-
tain special topics in algebra, the search for generality and abstract
structures.

While the capsule treatment bas the advantage of permitting concen-
tration on just one topic at a time, it also limits the discussion of the
interrelationships with other algebraic topics and with other areas of
mathematics as well. 'The overview of the history of algebra in the
parent yearbook will be of help in giving the reader orientation and a
general picture of some of these developments.

The Thirty-first Yearbook includes, in addition to the material on
algebra, overviews and capsules on the history of numbers amd
numerals, computation. e'Pon- trigonometry, calculus, and modern
mathem Logethey , essay in the history of mathematics
as a teaching tool.

Those persons who contributed to the preparation of the entire
project are acknowledged in the prefac of the yearbook. Now thanks
are expressed not only to them but -a:, mtembers of the Publications
Committee of1. the NCTM for their entum-agement and recommenda-
tion that this portion be made av0,-abIt.- separately as one of the
Council's supplementary publications.

ARTHUILE. IIALLERBERG
Chairman orf the Eclitoriail Panel
Thirty-Tj.st Yearbook cl the NCTM

iv
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Origin of the Word "Algebra"

from the yearbook overview by

JOHN K. BAUMGART

xotic and intriguing is the origin of the word "algebra." It does
not submit to a neat etymology as does, for example, the word "arith-
metic," which is derived from the Greek arithmos ("number").

Algebra is a Latin variant of the Arabic word al-jabr (sometimes
transliterated al-jebr) as employed in the title of a book, Ifisab al-
jabr w'al-muqabalah, written in Baghdad about A.D. 825 by the Arab
mathematician Mohammed ibn-Musa al-Khowarizmi (Mohammed,
Fon of Moses, the Khowarezmite). This treatise on algebra is com-
monly referred to, in shortened form, as Al-jabr.

A literal translation of the book's full title is "science of restoration
(or reunion) and opposition," but as more mathematical phrasing
would be "science of transposition and cancellation"=or, as Carl
Boyer puts it /(g) : 252-53/, "the transposition of subtracted terms to
the other side of an equation" and "the cancellation of like [equal]
terms on opposite sides of the equation." Thus, given the equation

al-jabr gives

x2 -I- 7x + 4 ---- 4 -I- 5z3,

and al-rauqabalah gives

7x 5x3
.x2

Perhaps the best translation would be simply "the science of equa-
tions."

While speaking of etymologies and al-Khowarizmi it is interesting
to note that the word "algorism" (or algorithm) , which means any
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special process of calculating, is derived from the name of this same
author, al-Khowarizmi, because he described processes for calculating
with Hindu-Arabic numerals in a book whose Latin translation is
usually referred to as Liber algorismi ("Book of al-Khowarizmi").

Perhaps a final philological comment on the lighter side is worth-
while. The Moroccan Arabs introduced the word algebrista ("restorer
[that is, reuniter] of broken bones, bonesetter") into Moorish Spain.
Since bonesetting and bloodletting were additional fringe benefits
available at the barbershop, the local barber was known as an cage-
brista. Hence, also, the bloody barber poles!

Capsule 66 Kenneth Cummins

EQUATIONS
AND THE WAYS THEY WERE WRITTEN

IF A student of the time of Diopbantus had been confronted with an
expression of the now-common form illustrated by x2 7x + 12 = 0,
he would have been utterly baffled; this modem symbolic style is of
relatively recent invention.

There is no complete agreement on "the time of Diophantus"; some
authorities believe that he lived in the third ceaury A.D., 'but some
place him as early.as the first century. It is known, however, that he
was a Greek mathematician working "in residence" at the University
of Alexandria, Egypt, and that he made a start on the use of algebraic
symbolism, which eventually supplanted the writing of algebra in a
verbal or prose style called "rhetorical algebra."

To illustrate rhetorical algebra we choose an example from an
Arab mathematician of a later period: al-Khowarizmi, whose book
Al-jabr (c. 825) both named and greatly influenced European algebra.
(It is curious that even al-Khowarizmi used words for numbers, since
it was his book Liber algorismi [to use the Latin] that introduced
Hindu-Arabic numerals into Europe.) He states and solves, as fol-
lows, the problem given in modern notation as x2 + 21 = 10x:
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What must be the'amount of a square, which', when twenty-one dirhems
are added to it, becomes equal to the equivalent of ten roots of that
square? Solution: Halve the-number of the roots; the half is five. Multiply
this by itself ; the product is twenty-five. Subtract from this the twenty-
one which are connected with the square; the remainder is four. Extract
its root;; it is two,.. Subtractthis from the- half of the roots, which is five;
the remainder is three. This is the root of the square which you required
and the,square is nine. Or-you may addi the root to the-half of the roots;
the sum, is seven; this is the root of the square which you sought for, and
the square itself is forty-nine.

Of course his solution amounts to our writing

\/(10)2
2 ci 21

If al-Khowarizrni's algebra seems prosaic, it might be worthwhile
to comment that ideas often precede notation ;. symbolism is invented
as needed. .

"Syncopated algebra," the use of abbreviated words, was introduced
by Diophantus; and somewhat later, in India, Brahmagupta (c. 628)
invented his own system of abbreviations. Unfortunately, other writers
often chose to, ignore (or were unaware of) existing progress in nota-
tion; thus al-Khowarizmi used the 'rhetorical style cf the preceding
example.

The origirial- of Diophantus' thirteen-volume work, the Arithmetica,
has been lest, arid the earliest existing copy of any- part of the work
was made; more than a thousand years after it was written.

Here is an example from one of the earlier manuscripts, followed
by interpretations in modern form and an explanation of the Greek:

leg sn AYE As As;

x32

that

or

x25 1 4 44,

2x3 8x (5x -F 44.

KT is an abbreviation for KTBOZ- (KUBOS, "cube")
r, is an. abbreviation for apEOgas; (ctrithmosi "number").
IN is a combination of A and I in AEINFZIZ (LEIPSIS, "lacking ).
A.T. is an abbreviation for AT.NAMIM' (DUNAMIS, "power").
gel is- an abbreviation for MONAIIEZ. (MONADES, "units").
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Equality is expressed by iari ("is equal to") and also by la for io-os
(isos, "equal").

The first nine letters of the Greek alphabet, a, t3, 7, 3, e, s, n, and 0,
stand for 1, 2, 3, 4, 5, 6, 7, S, and 9; and L, K, X, v, o, 7r, and P (ob-
solete koppa), stand for 10, 20, 30, 40, 50, 60, 70, SO, and 90.

The example given above uses some capital letters, some lowercase.
Later manuscripts use only lowercase letters.

To illustrate the syncopated style of Brahmagupta, we give the fol-
lowing example, with an interpretation into modern notation:

ya ka 7 bha k(a)12 ru A

ya v(a) 3 ya 10

7xy ± V12 8

= 3x2 ± 10x.
It will be quickly noted that equality is expressed by writing the

left-hand member of the equation above the right-hand member (to
use modern terminology) . The shortened form ya stands for yavatta-
vat, the first unknown; ka for kalaka ("black"), a second unknown;
bha for bhavita, ("product") k (a) for karana, ("irrational" or
"root"): The dot placed above -a 'Aumber, as it is here placed over
the 8, indicates 'a negative number-, nt stands for rupa, ("pure" or
"plain" number) ; v (a) for varga, ("square number"). Additional un-
knowns would have been expressed by using abbreviations for addi-
tional colors, thus: ni for nilaca ("blue"), pi for pitaca ("yellow"),
pa for pandu ("white"), and lo for lohita ("red").

The accompanying list of examples will give some indication of the
ways in which algebraic notation gradually progressed from the rhe-
torical stage to 'the symbolic. (See also the examples in the overview
Tor this chapter and in [89] ) To help the' reader decipher some of
the abbreviations we make the following brief introductory comments.

A pure number is often followed by N, numer.i, or cp (analagous to our
writing 7x° for 7). 'Abbreviations for X are many, including Pi i. for
primo ("first"), n° for numero ("number," "unknown"), p for res
("thing, 'unknown ), and N for numel.us ("number, "unknown ').
The square (of x) is written in many ways, including Se for secundo
("second"). Addition and subtraction are often indicated by 23 for piu
("more") and in for meno ("less").

1494
Pacioli

rrrouarne .I.no. ehe giato al suo drat0 facia .12.
= 12:

1514 4Se. 51Pri 30N dit is ghelijc 45.
Vander Hoecke 4x2 51x 30 = 45 .
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1521 I 0 e 32C° 320 numeri.
Ghaligai x2 + 32x = 320.
1525 Sit 13 aequatus 1224 36.

Rudolf x2 = 12x 36.

1545 cubus 15 6 r0-lus aequalis 20.
Cardc.no x3 ± 6x =-- 20.

1553 2 24 A-1- 23. aequata. 4335.
Stifel 2 x A -I- 2x2 --= 4,335.

1557 14.ve. + .15. / 71. / .
Recorde 14x ± 15 = 71.

1559 J OP 6p P 9 [ I 0 P 3p P 24.
Buteo x2 + 6x + 9 = x2 + 3x + 24.

..s., 3

1572 1. p. 8. Eguale à20.
Bombelli x6+ 8x3 = 20.

1585 30 + 4 egales a 20 + 4.
Stevin 3x2 ± 4 = 2x + 4.
1591 I QC 15 QQ + 85C 225Q + 274N aequatur 120.
Vibte 15x4 + 85x3 225x2 + 274x = 120.

1631 aaa 3 bba +2 ccc.
Harriot x3 3b2x 2c3.

1637 yy cy
cx y + ay ac.

Descartes

1693 x4 + bx ± cxx ± dx -F e = 0.

For Further Reading
-

CAJonr (d): I, 71-400 D. E. SMITH ( ) :

SANFORD (c1) 153-59



Capsule 67 Wade Ellis

THE BINOMIAL THEOREM

rrtt,=E "arithmetic triangle" is often associated with the name of Blaise
Pascal, who in 1653 discussed many of its properties and applied it to
tly_a expansion of (a ± b)n, with n a positive integer. He did not
claim to have invented the "triangle" or the binomial theorem, but
he -was probably unaware that the Hindus and Arabs 1--fid worked
with these ideas as early as the beginning of the twelfth century, when
Omar Khayyam claimed to know the binomial expansion for degrees
four, five, six, and higher (and for particulars referred the reader to
another of his workswhich has since been lost).

The Hindus and Arabs used the expansiOns of (a ± b)2 and of
(a ± b)3 in finding square roots and cube roots. If they were given a
positive number N and required to find its square root, they would
choose a nearby perfect square number, say 82, and let d be another
number such that s2 ± d = N . The correction on s so that (s 4- cor-
rection)2 = N was all that was required, Continuing to use modern
notation here, we can describe their square-root process as follows:
Let x be the required correction; then

N = e ± d = 2sth

By discarding the x
2s ± x

on the right we obtain a first approximation to Arg:
, d= S Ts"

A machine program for this will be easy to write. Using N 5 as an
illustration we have

5 = d (2 -F

d 1
2s 2(2) 025

--= 2 + 0.25 = 2.25.
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Repeating this .-mcess we have

5 = (Z-.25) + d1 (2.25 x )2

di 0.0625
2(2.25)

0.01389
281

32 ---'-- 31 + Xj 2.23611

d2 5 (2.23611)1 = 0.00019;

and so on, until d, i(wItich dc:RE-A, in fact, converge to zero) is as close
to zero as requiredr.

For, cube mow sLunilar aerative procedure results from letting
N = s3 d. Them

x 332 4_ 3sx,± x2

It is interesting to observe that the correction term, x, which gave
4/2s and d/3s2 for square and cube roots, reminds one of Newton's
method in the calculus.

In 1676 Isaac Newton wrote two letters to Henry Oldenburg in
which Newton stated without proof the binomial formula

where A = first term P B = second term = 211 AQ, and so forth,

and the exponent 2--.1-z was a rational fraction (positive or negative). The

form of the theorem more familiar to the modem reader is obtained if
one makes the indicated substitution for A, B, C, . . .

(-71-
lj

±POn=P" (PQ) + 12
2

(1)

(PO' +

.a t
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The first proof (not up to modern starAards of rigor) for arbitrary
positive- integral power (i.e., mjn -----= posit .ve integer) seems to be that
.given by Jakob (or Jacques) Bernoulli in his Ars conjectandi, which
was published in 1713, eight years after his death. In 1826 the twenty-
four-year-old Niels Henrik Abel, poverty-stricken and suffering from
lumbar tuberculosis but already a famolus mathematician, published
the first general proof of the formula for .arbitrary complex exponents.
This appeared in the Journal fur die re.ine und angewandte Mathe-
',natik, customarily referred. to as Crelle's Journal.

It might be stated that in the expansion of (1 + x)a, the successive
terms form_ a sequence that is finite only if a is a il,mnegative integer.
In case a is fractional or negative, the question of convergenceboth
of the sequence of successive terms and of the series, -which is itself
the general binomial expansionimmediately arises..

We do not often think .of the .binomial theorem, even in its general
form,..as opening.doOrs to more advanced mathematics; yet a discus-
sion of the two following expressions,

lirn (1 -I- ir

lim (1 xy)",,
x f ixed

leads to the definition of the transcendental number e and the trans-
. . .cendental function ea". With this in mind, it is no longer mysterious

that the Maclaurin series expansion for ex looks like a modification of
the binomial expansion of (1 + xy)1/11.
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CaPsule 68 Elaine J. Tatham

CONTINUED FRACTIONS

318 1

76 15 -I- 2 4- *
shows that the common fraction 318/76 can be written as a continued
fraction. If all the numerators in a continued fraction are l's (as in
the above example) it is called a simple continued fraction.

Perhaps the most interesting elementary property of continued
fractions is their close relationship with the Euclidean algorithm for
finding the greatest common divisor of two integers:

318 == 76(4) -F 14

76 = 14(5) ± 6

14 = 6(2) ± 2
6 = 2(3) ± 0

-

Remarks:
318 76 gives a quotient of 4 and

a remainder of 14, and so forth.
The last nonzero remainder, 2, is

the G.C.D. of 318 and 76.

318 1= 4
76

-F
1

5 2 + *

Remark:
To obtain the above, write

and -- andthen replace 76 by 5 -I- --1
14 14'

so forth.

The striking similarity of the expressions in the parallel columns
above (especially with respect to the digits 4, 5, 2, and 3) leads some
writers to say that continued fractions were already known to the
Greeks, "though not in our present notation."

Rafael Bombe lli seems to have been the first to make explicit use of
(infinite) continued fractions when he wrote the following in 1572
(modern notation is used here) :

6
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= 3 4

6 A-
4

6 +

and he probably recognized the above as a spfecial ease of

-ve + 6 = a +
2a

2a + 2a 4-

The above expression for is called an _anite <continued frac-
tion" and can be obtained by equating it to 3 -F ii/x; then

4
x ili3±3
hence

4 4 4
3 + 13

1- 3
4

6
'

(3 -1)
6 + 1

now just keep replacing 1/x by 47(6 (1/x))
This process for finding an infinite sequence of successive approl-thma-

tions for gives the first three convergents as follows:

These converge to V13 oscillating back and forth across ViT3 as shown
in Figure (68]-1.
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John Wallis (c. 1685) found many properties of these convergents,
including recurrence (or recursion) formulas that express a particular
convergent, Ck = Nk/Dk, in terms of the preceding two sets of N's
and D's. One of the interesting examples discussed by Wallis is the
one discovered by William Brouncker (1658) :

12

2 ± 32

2 ± 72
52

2 ± 2 ±
A modern form of symbolism was introduced by Christiaan Huygens

(1629-1695), who expressed the ratio 77,108,431/2,640,858 in this form:

29 ±

± a± -

This ratio actually arose in the solution of a practical problem which
Huygens attacked in 1680, in designing the toothed wheels of his
planetarium. In 365 days the annual movement of the earth is
359°45'40"31'", while that of Saturn is 12°13'34"18" Converting to
units of sixtieths of a second, 77,708,431 is to 2,6/10,858 as the period
of Saturn is to the pericsci -of time during which the earth makes its
revolution around the sun. The corresponding simple contipued frac-
tion given above is sometimes expressed today in the more cOnven-
ient form (29; 2, 2, 1, 5, 1, 4, . . .), introduced by Dirichlet in 1854 ;

Huy.gens wished to find two smaller integers with almost the same
ratio, so that no pair of smaller iritegers would yield a closer ap-
proximation. Denoting the simple continued fraction in the modern
form (ao; ai, a.,. aq, . . .), Huygens approximation was made by at-
tempting to determine ak so that both I ak ak.1 I and I ak ak--1 I

were maximized. He then used (a0', al, a2, . . . ak_1) as his' approxi-
mation. Hence he clu;se (29; 2, 2, 1) = 206/7; his wheel of Saturn
had 206 teeth while its motor whee: had 7 teeth. Using these numbers
made it necessary to advance the wheel of Saturn by one tooth every
1,346 years.

It was Pietro Cataldi (1613) who began working on the theory of
continued fractions and who also introducedin his treatise published
in Bologna on finding the square roots of numbersthe motivation
for the notation that was to be used later by Huygens.
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Leonhard Euler (1737) secured the foundation of the modern theory
and showed that any quadratic irrational (like -V- above) can be
represented by a simple repeating (or periodic) continued fraction; thus
VI-3- can also be written in the following form:

3 ±
1

1

1

1 + 1

1
1

1 -I-
6 -I-- . .

1

More compactly, 3;11116 11116 ... .

Johann Heinrich Lambert (1761) showed that the following simple
continued fraction for 7r,

3 ±
7 ±

, 15 ± 1
292 ± . . .

Was not periodic and hence not a quadratic irrational (a ± Vi), a, b
rational).

JosePh Louis Lagrange (1798) proved that periodic simple continued
fractions represent solutions -of quadratic equations with rational coef-
ficients. Thus 1 = 2; 11116 11116 .. . is a root of x2 + 2x
12 = 0.'Lagrange also gave the first complete exposition of convergence
of convergents. He showed that in general (see Fig.' [681-1) every odd

. .
convergent is less than all following convergents (in the sequence
C1, C2, C3) .C4, C5) .) and every even convergent is greater than ail
following convergents. From this (and the fact that the C's approar,h
V13) it follows that, for example, C4 differs from -V-1 by less than
(1/2) IC2 C2I.

Adrien Marie Legendre (1794) proved that every infinite continued
fraction is irrational.

Thomas Joannes Stielijes (1894) found a relationship between di-
vergent series and convergent continued fractions which made it pos-
sible to define integration for the series; Stieltjes' integrals were to
some extent a reSult of his work with continued fractions.
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Capsule 69 Richard M. Park

OUGHTRED AND THE SLIDE RULE

WIDLIAM Oughtred (1574-1660), the vicar of Shalford and rector of
Albury, Surrey, was one of the most influential mathematicians of his
-titne. He was in great demand as a teacher, since the universities of
that time offered little instruction in mathematics. A systematic treat-
ment of much of the then-known work in arithmetic and algebra was
Ptiblished in his Clavis mathematicae (1631), which ran through six
editions.

Oughtred placed unusual emphasis on mathematical symbols, de-
veloping or fostering many symbols in use today. Major examples are
X for multiplication, : : for proportion, and -- for difference.

Today, however, Oughtred is best remembered for his invention of
both the circular and the rectilinear slide rules. His circular slide rule
is described in his Circles of Proportion (1632) as eight fixed circles
oti one side o tie instrument with an index operating much like a
eon3Pasr,' (Fig. [89] -1). Calling the outermost (largest) circle the first
and the. innermost circle the eighth, the scales on each of the eight
circles 'are as shown below.

1- Sines from 5°45' to 900
2- Tangents from 5°45' to 45°
3- Tangents from 45° to 84°15'
4- Logarithmically spaced integers 2, 3, 4, 5, 6, 7, 8, 9, 1
5- Equally spaced integers 1, 2, 31, 4, 5, 6, 7, 8, 9, 0
6- Tangents from 84° to 89°21'

Plittkt
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An example of its use: To find the value for sin 300 (see point A
in Fig. [69] -1) one leg of the index (or compass) is placed at 300 on
the first circle; the corresponding number on the fourth circle, 5, gives
0.5000 as the sine of 30°. Similarly, to find tan 30° refer to point B,
30° on the second circle, and read the corresponding answer, 0.5774,
on the fourth circle. (Oughtred could get accuracy to four places.)

The fourth circle is used for multiplication. For 2 3 (see Figs.
[69] -2 and -3) open and turn the two legs of the index so that-they
point to 1 and 2; then, with the angle « between the two legs held
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7
6'
5

FIGURE [69]-2 FIGURE [69]-3

constant, rotate the index so that one leg points to 3. Then the other
leg points to 6, the desired product.

Around 1622 Oughtred invented his rectilinear slide rule which con-
sisted of two logarithmically calibrated rulers, one sliding along the
other (without a fixed track or groove). I]e gave full credit to Ed-
mund Gunter for the latter's invention, ,;r1 1620 of a single rectilinear
logarithmic scale, used to 'multiply numbers by adding the corres-
ponding segments mechanically with the aid of a pair of dividers.

In 1630, two years before Oughtred published his Circles of Propor-
tion, one of his former students, Richard Delamain, published Gram-
melogia. This, also, contained a description of a circular slide rule.
Each man accused the other of having stolen his invention, but Cajori
/(e) : 158/ and D. E. Smith /(c) : I, 160/ think it probable that each
man invented the circular slide- rUle independentlY.

'For Further Reading

CAJORI (c)
(d): 187-99
(e) : 158-59

SANFORD (d): 343-47
D. E. SMITH (c) : I, 160-64
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HORNER'S METHOD

WHAT we know today as Horner's method (for approximating real
roots of polynomial equations with real, numerical coefficients) was
known in an equivalent form by the Chinese for many centuries be-
fore it was published by Chhin Chiu-shao in 1247. It was called the
"celestial element method"; and it appears also, though in more primi-
tive form, in the Nine Chapters, written before the Christian era.

It is quite likely that in his travels Fibonacci (Leonardo of Pisa)
learned of this method, which in 1225 he described rather well up to a
certain point, after which he stopped explaining the method and
merely gave the answer, to an excellent degree of accuracy. To solve
(we use modern notation here)

from which it is clear that x < 2. The original equation shows that
x > 1, since 1 + 2 + 10 < 20. Then he shows that x cannot equal a
rational fraction, afb, because (a/b) + (a3/10b3) + (a2/5b2) is not
an integer; hence x is irrational. Further, x is not the square root of a
positive integer, a, because the given equation implies that

which for x

20 2x

=-- Afi; becomes the impossible statement that

20 2a
10 ± a

Then Fibonacci abruptly gives

that is as

the
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, 22 , 7 42 , 33 , 4 , 40
60 602 603 60 60 60

as it had probably been given to him during his travels.
Frangois Viète (1600), apparently unaware of earlier results, gave a

systeinatic process that showed a new insight into the general theory
of equations, but the process becomes very laborious for equation:, of
high degree.

Isaac Newton (1669) simplified Vibte's method, the simplification
being essentially like that found in texts in college algebra or theory
of equations (not the Newton's method found in books on the calculus).

Paolo Ruffini (1803) and William George Horner (1819) indepen-
dently worked out and published very similar methods for finding
approximations of real roots of numerical polynomial equations. They
both thought of their methods as better ways to find cube roots, fourth
roots, and so on. At first they explained their methods in terms of the
calculus, but later each of them was able to use only elementary
algebra.

Ruffini's later method is actually closer than is Horner's to what
present-day texts cfIll "Homer's method."

Although Horner did not attend a university, he became a master in
the Kingswood School-of Bristol at the age of nineteen. He was not,
however, a .great matheriia-?..iCian. It was a 'stroke of good fortune that
this mathematical accomMishmenthis_ only onewas published in
the Philosophical' Transsactions of the Royal Society (although not
without some objections because of the elementary nature of his
paper) ; the intricate style of his exposition made the work seem more
impressive than it really was.

For Further Reading
D. E. SMITH (a) : II, 471-72

(c): 232-52
BELL (a): 108-14
CoorADGE (c): 186-94
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SOLUTION OF POLYNOMIAL EQUATIONS
OF THIRD AND HIGHER DEGREES

THE first records of man's iuterest in cubic equations date from 'the
time of the Old Babylonian civilization, about 1800-1600 B.c. Among
the mathematical materials that survive are tables of cubes and cube
roots, as well as tables of values of n2 + n3. Such tables could be used
to solve cubics of special types.

For example, to solve the equation 2x3 + 3x2 = 540, the Babylonians
might have first multiplied by 4 and made the substitution y = 2x,
giving y3 + 3y2 = 2,160. Letting y = 3z, this becomes z3 + z2 =;-- 80.
From the tables, one solution is found to be z = 4, and hence 6 is alroot
of the original equation.

In the Greek period concern with volumes of geometrical solids led
easily to problems that in modern form involve cubic equations. The
well-known ,problem of duplicating the cube is essentially one of
solving the equation X3 = 2. This problem impossible of solution by
ruler and compasses alone, was solved in an ingenious manner by
Archytas of Tarentum (c. 400 B.c.), using the intersections of a cone,
a cylinder, and a degenerate torus (obtained by revolving a circle
about its tangent) /GBAEssEre/.

The well-known Persian poet and mathematician Omar Khayyam
(A.D. 1100) advanced the study of the cubic by essentially Greek
methods. He found Solutions through the use of conics. It is typical of
the state of algebra in his day that he distinguished thirteen special
types of cubics tha,t, have positive roots. For example, he solved equa-
tions of the type x3 + b2x = b2c (where b and c are positive numbers)
by finding intersections of the parabola x2 = by and the circle y2 =
x(c x), where the circle is tangent to the axis of the parabola at its
vertex. The positive root of Omar Khayyam's equation is represented
by the distance from the axis of the parabola to a point of intersection
of the curves.

The next major advance was the algebraic solution of the cubic. This
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discovery, a product of the Italian Renaissance, is surrounded by an
atmosphere of mystery the story is still not entirely clear /CARDANO :
1XXii ; FELDMAN (a),/. The method appeared in print in 1545 in the
Ars magna of Girolamo Cardano of Milan, a physician, astrologer,
mathematician, prolific writer, and suspected heretic, altogether one
of the most colorful figures of his time.

The method has gained curreazy as "Cardan's formula," Cardan
being the English -b= of the namt. According to Cardano himself,
however, the credit:is thie to ScipEonre del Ferro, a professor of mathe--
matics at the UniTity of Bologna, who in 1515 discovered how tc)
solve cubics of the tgpe + bx =--- c. As was customary among rnathe-
matioians of that tifp=tee .he kept his,ruthods secret in order to use them,
for personal advaratage in mathematical duels and tournaments. Wheal
he thied_in 1526, tita--4:644 persons Esrailiar with his:-work were a son-ira-
law -and one of hiS sthidents, Antonio Maria Fior of Venice.

In 1535 Fior dirttllenged the prominent mathematician Niccolo
Tartaglia of Breareial (then teaching in Venice) to a contest because
Fior did not believrt 'Tartaglia's claim of having found a solution for
cubics of the type x3 ± bx2 = C. A few days before the contest Tarta-
glia managed to discover also how to solve cubics of the type x3 +
ax = c, a discovery (so he relates) that came to him in a flash during
the night of February 12113, 1535. Needless to say, since Tartaglia
cotild solve two tyPes of cubics whereas Fior could solve only one
type, Tartaglia won the contest -

Cardano, hearing of Tartagfia's victory, was eager to learn -his
method. Tartaglia kept putting him off, however,, and it Was not until
four years later that a meeting was arranged between them. At this
meeting Tartagha divulged his methods, swearing Cardano to secrecy
and partimlarly forbidding him to publish it. This oath must have been
galling to Cardano. On a visit to Bologna several years later he met
Ferro's son-in-law and learned of Ferro's prior solution. Feeling, per-
haps, that this knowledge -feleased him from his oath to Tartaglia,
Cardano published his version of the method in Ars magna. This acdon
evoked bitter attack from Tartaglia, who claimed that-ihe fuld been
betrayed.

Although couched in geometrical language, the method itself is
algebraic and the style syncopated. Cardano gives as' an example the
equation x3 + 6x = 20 and seeks two unknown quantities, p and q,
whose difference is the constant term 20 and whose product is the
cube of 1/3 the coefficient of x 8. A solution 'is then furnished by the
difference of the cube roots of p and q. For- this example the solution is
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N3/1/108 ± 10 "N3/171- 10.

This procedure easily applies to the general cubic after being trans-
formed to remove the term in x2.

This discovery left unanswered such questions as these: What should
be done with negative and imaginary roots, and (a relatecd question)
do three roots always exnst? What should he done (in the so-called ir-
reducible case) when Cardano's method produced apparently imag-
inary expressions like

_3/
V 81 ± 30 V-T---5 ± 3/81 30

for the real root, 6, of the cubic 63x 162 = 02 These questions
were not fully settled until 1732, when Leonhard Euler found a solution.

The general quartic equation yieRaled tonlethods of similar character;
and its solution, also, appeared in Ars magna. Cardano's pupil Ludo-
vico Ferrari was responsible for this lesult. Ferrari, -while still in his
teens (1540), solved a challenging problem that his teacher r2 ould not
solve.

His solution can be described as follows: Firr,t reduce the general
quartic to one in which the x3 term is missing, then rearrange the
terms and add a suitable quantity (with undetermined coefficient) to
both sides so that the left-hand member is a perfect square. The un-
determined coefficients are then determined so that the right-hand
member is also a square, by requiring that its determinant be zero. This
condition leads to a cubic, which can now be solvedthe quartic can
then be easily handled.

Later efforts to solve the quintic and other equations were fore-
doomed to failure, but not until the nineteenth century wf...s this
finally recognized. Carl Friedrich Gauss had proved in 1799 that
every algebraic equation of degree n over the real field has a root
(and hence n roots) in the complex field. The problem was to express
these roots in terms of the coefficients by radicals. Paolo Ruffini, an
Italian teacher of mathematics and medicine at Modena, is considered
to have given (in 1813) an essentially satisfactory proof of the im-
possibility of doing this for equations of degree higher than four. Bet-
ter known is the work of a brilliant young Norwegian mathematician,
Niels Henrik Abel. After first thinking he had solved the general
quintic, Abel found his error; and in .1824 he published at his own
expense (in Christiania, now Oslo) his proof of its impossibility. His
result appeared also, two years later, in the firat volume of Crelle's
Journal (Berlin), thus helping to inaugurate at a high level one of the
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great mathermazical periodicals of the world. Abel's work in turn stim-
ulated the youmg Frenchman Evariste Galois (1811-1832), who before
his early death in a duel shcqved that every equation (could be asset-.
elated with a ez,^haracteristic group and that -the properli e. of this group
could be used to determine whether the equation could:_ be solved by
radicals.

BOYER ((g): 310-17
CARDANO : Vii-XXii
COOLIDGE (C) : 19-29
EVES (c)

[3d ed. 217-211
FELDMAN (a)
GRAESSER
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VECTORS

THE roots of vector algebra go back to the geometric concept of di-
rected line segments in space. The composition of forces by the paral-
lelograrn law red to the idea of addition of vectors. Their representation
as ordered sets of real numbers occurred only after the extension of
number systems beyond the complex numbers.

Hermann Grassmann, in his monum'ental Ausdehnungslehre, pub-
lished in 1844, freed his thinking from three-dimensional Euclidean
space. He discussed manifolds of n dimensions and developed algebras
for these systems. This enabled him to consider an extension of complex
numbers to hypercomplex numbers. He made a significant stride when
he found that he had to give up the property of commutativity of mul-
tiplication. This was the major stumbling block in the extension. His

.21
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work included also the theory of tensor. cal 7ui.us, which wats destined
to play a key role in the theory of relativi-z-y. Unfortunately, Grass-
mann's work was not properly understood :ny- others, so its true sig-
nificance had to wait for the passage of time. Jn 1862 he published a
second edition of his wc,rk, in which he attempted to clarify the first
and to add to it; but again he met with little -HutIcess.

The year before Gra5smann published the Tirst edition of his Aus-
dehnungslehre, William _Rowan Hamilton -ii5.._car.rered the basic idea for
quaternions. He, too, was bold enough to ..-armifice the commutative
property of multiplication. In 1853 he published Lectures on Quater-
nion.s, a work that was better understood an= :appreciated than Grass-
mann's, perhaps because it was not so general_ Hamilton devoted the
rest of his career to developing the theory of quaternions. He seemed
convinced that this theorF held the key to many ideas.

There was opposition to Hamilton's ideas, perhaps because of the
complexity of the algebra involved. As a result, others tried to de-
velop their own substitutes for it.

A disciple of Hamilton, Peter Guthrie Tait, devoted his life to
quaternions. He stirred up a fight between mathematicians that ex-
tended over fifty years. His chief opponent was Josiah Willard Gibbs,
who developed an excellent departure from quaternions with his
vector analysis. A student of Gibbs, Edwin Bidwell Wilson, put the
theory of vector analysis in book form in 1901. It is ironic that the
idea that could have resolved the conflict much earlier was in Grass-
mann's Ausdehnungslehre. Actually, it was resolved by Grassmann's
tensor calculus, which was further developed by C. G. Ricci, Who pub-
lished a work on it in 1888. At first, little attention was paid to this
work; it was only after Einstein used it in his theory of relativity that
it gained genel al acceptance. This theory of relativity vindicated the
work of Grossmann and showed that he had been more than fifty years
ahead in his thinking.

Today vectors are studied from tIr.t geometric point of view as di-
rected line segments in three dimensions, largely as a result of Gibbs's
work, and from the algebraic point of view as n-ilimensional manifolds,
largely as a result of Grossmann's.

BELL (a) : 182-211
CAJORI (e) : 334-45

.For Further ,Reading
NEWMAN: I, 162-63, 697-98
D. E. SMITH (C) II; 677-96
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DETERMINANTS AND MATRICES

THE Japanese mathematician Seki Kowa (1683) systematized an old
Chinese method of soh ing simultaneous linear equations whose coeffi-
cients were represented by calculating sticksbamboo rods placed in
squares on a table, with the positions of the different squares cor-
responding to the coefficients. In the process of working out his system,
Kowa rearranged the rods in a way similar to that used in our
simplification of determinants; thus it is thought that he had the idea
of a determinant.

Ten years later in Europe Gottfried Wilhelm von Leibniz formally
originated determinants and gave a written notation for them. In a
letter to Marquis de L'Hospital Leibniz gave a discussion of a system
of three linear equations in two unknowns /D. E. SMITH (C) : I,
268-691. A translation appears in the left-hand column, below, with a
more modern version in the right-hand column.

I suppose that

10 + 11x + 12y
20 + 21x ± 22y
30 + 31x ± 32y

0

0

0

au) 4- allx 4- ai2y = 0.
a20 4- a21x a22y = 0.

a30 ± a31x a32y = 0.
(1)

where . . . eliminating'y first from
the first and second equations, we
shall have

10.22 ± 11.222; (a10a22 a12a20)

12.20 12.21...
and from the first and third

10.32 --F 11.32x

12.30 12.31...

(a11a22

(a10032 al2a23)

a12a21

a12a31)x = 0.

23
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It remains now to eliminate the let-
ter . . . and as the result we shall
have

10.21.32 10.22.31 0400:211232 a13a22a31

11.22.30 == 11.20.32. alia22a30 = 4- a1 a20a32

12.20.31 12.21.30 -1-C42a20a31 a12a21a3u

or, moving all terms to the left side
of the equation,

or

.a10a21a3p a10a22a31

--Falla22a30 a11a20a32

-±a12a20a31 a12a21a30

al.
a20

ail a12

a21_ a22

a32

----- 0. (2)

(The reader may recall, or easily verify, that (2) is the condition
for the three straight lines represented by (1) to pass through a
common point.) The now-standard "vertical line notation" used in
(2) above was given in 1841 by Arthur Cayley.

Determinants were invented independently by Gabriel Cramer,
whose now well-known rule for solving linear systems was published
in 1750, although not in present-day notation.

Many other mathematicians also made contributions to determinant
theoryamong them Alexandre Théophile Vanderrnonde, Pierre Simon
Laplace, Josef Maria Wronski, and Augustin Louis Cauchy. It is
Cauchy who applied the word "determinant" to the subj ect; in 1812 he
introduced the multiplication theorem.

Although the idea of a matrix was implicit in the quaternions
(4-tuples) of William Rowan Hamilton and also in the "extended
magnitudes". (n-tuples) of Hermann Grassmann [72] , the, credit for
inventing matrices is usually given to Cayley, with a date of 1857, even
though Hamilton obtained one or two iso/ated results in 1852. Cayley
says that he got the idea of a matrix "either directly from that of a
determinant; or as a convenient mode of expression of the equations
x' ax by, y' = cx dy."

24
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It was shown by Hamilton in his theory of quaternions [77j that
one could have a logical system in which the multiplication is not
commutative. This result was undoubtedly of great help to Cayley in
working out. his matrix calculus because matrix multiplication, also,
is noncommutative.

Cayley's theory of matrices grew out of his interest in linear trans-
formations and algebraic invariants, an interest he shared with James
Joseph Sylvester. They investigated algebraic expressions that re-
mained invariant (unchanged except, possibly, for a constant factor)
when the variables were transformed by substitutions representing
translations, rotations, dilatations ("stretchirigs" from the origin), re-
flections about an axis, and so forth. Thus, for example, if one trans-
forms the conic

(i) Az? ± Bxy ± Cy2 = K
by applying the substitution

X =

1 1
y 1772: X

which is a linear transformation representing a rotation of axes
through 45°, this becomes

(2) A'x'2 Blx'yl ± C'y'2 K,

where

B (A B C), C' (A B -F 0).

It is easily checked that the "discriminant" B2 4AC of (1) is equal
to the discriminant B'2 4 A'C' of (2), no matter what values are
used for A, B, C. Hence this discriminant, B2 4AC, is called an
invariant (under the rotation). Under the 45° rotation, 3x2 ± 2xy
4- 3y2 -,------ 5 becomes 4x'2 + Ox'y' + 2y'2 = 5, The discriminants are,
respectively, 22 4 - 3 - 3 and 02 4 - 4 - 2 (both equal to 32).

Today, matrix theory is usually considered part of the broader
subject of linear algebra, and it is a mathematical tool of the social
scientist, geneticist, statistician, engineer, and physical scienti6t.
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BOOLEAN ALGEBRA

THE idea of laying down postulates for the manipulation of abstract
symbols (not necessarily numbers) seems to have occurred first in
England and at about the time of George Boole (1815-1864). Boole
published his basic ideas in 1847 in a pamphlet entitled Mathematical
Analysis of Logic. In 1854, in An Investigation of the Laws of Thought
on Which Are Founded the Mathematical Theories of Logic and Pl-oba-
bilities, he presented a more thorough exposition of his work. "Boolean
algebra" is a term often applied to the algebra of sets, although it can
also be interpreted so as to yield what we now call "the propositional
calculus" or "truth-function logic," which is studied largely by means of
truth tables.

Boole us:...d lowercase letters such as x, y, z, to denote sets, whereas
we often use uppercase A, B,C, and so on. It is assumed that we can
tell whether a given thing does or does not belong to a given set. A set
can be described by saying it consists of all items having a given property
or characteristic. The set containing no elements is called the null set
in Boole's notation Written as the number 0, in modern notation written
a..s 0 or 0, uppercase letter oh. The set of all elements under consideration
(containing all sets under consideration and perhaps more, too) is the
universal set-1 in Boole's notation and now frequently I, uppercase
letter eye. If we take the set of all human beings for the universal set,
then all human males, all people over fifty years old, all biue-eyed people,
and all brown-eyed people are four differents sets that are subsets of the
universal one. The set of all two-headed people is the null set (we hope).

Sets can be combined to form new sets in two basic ways. The logical
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product or intersection of two sets x and y (or A and B)denoted by
Boole as xy or x-y (now frequently as A (Th B, called "A cap B")
consists of all elements that are in both sets. If A is the set of all human
males and B is the set of all blue-eyed people, then A rl B is the set of
all blue-eyed men. If C is the set of all brown-eyed people, then we have
B c = 0, where is used to connect two different symbols for the
same set (in this case, the null set). By the meaning of logical product
we must have x x = X. Boole wrote this as x2 x. When this
equation is regarded as a condition on unknown numbers rather than
as a set-theoretic statement, it has only 0 and 1 as roots. This led Boole
to search out his set-theoretic interpretations for 0 and 1 which we have
already observed.

By logical sum of two sets A and Bdenoted A kJ B and called
"A cup B"we mean the set whose members are members of the set
A or the set B or both. Using A and. B as in the last paragraph, the
set A k,J B would consist of all people who are males or who have blue
eyes, including, of course, all blue-eyed men.

Boole's "logical sum" was a little different. His logical sum of sets x
and ydenoted x ± y, read "x plus y"consisted of elements in x
or y but not in both. Just as we agreed with Boole that x2 --= x, we might
have expected him to agree with us that 1 -I- 1 = 1 and x ± x = x.
But his logical sum x ± x is difficult to interpret. Whenever it occurred
he gave it the formal designation 2x; this caused him complications that
need not concern us here.

The analogues of certain laws in ordinary algebra are seen to hold in
Boolean algebra. For instance, A B --= B n A is the commutative
law for logical products. Also,

A n (B J(7) = (A. n L..) (A rl C)

is an analogue of the distributive law. The correspondence of this law
to the distributive law of ordinary algebra is especially obvious when we
use Boole's symbols:

x(y z) = xy ± xi.
Another, way of constructing a new set J comes, not from con.:';J:;vjn,2,-

two sets, but from complementation. If -we remove from the universal
set I all members of the set A, the remaining elements constitute a set
called the complement of A and variously denoted by I A, --A, A',
and A. By definition, A L.) A' = I, and A n A' = 0.

In the propositional calculus, letters stand for statements that may
be true or false instead of for numbers (as in high school and college
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algebra) or for sets (as in Boolean algebra). To give some indication of
the relation between Boolean algebra and the propositional calculus,
we mention only that if A is "Roses are red" and B is "Violets are blue,"
then A A B is "Roses are red and violets are blue," and A V B is
"Either roses are red or violets are blue or both statements are true."

John Venn (1834-1923), a contemporary of Boole's and also an
Englishman, invented a way of representing clearly such B.)olean ex-
pressions as the right and left members of the distributive law. Similar
diagrams had been invented independently by Leonhard Euler (these
were called Euler circles) and by Augustus De Morgan and others
/SISTER STEPHANIE/. In Venn diagrams we draw a fence around all
members of a set so as to exclude all nonmembers. Then the "area"
common to the regions representing the two sets, the shaded area in
Figure [74]-1, represents their logical product. Figure [74]-2 represents
the case where A (-1 B = 0-

FIGURE [741-1 FIGURE [74]-2

FIGURE [74]-3 FIGURE [74]-4 FIGURE [74]-5

The logical sum as defined by modern mathematicians would be
represented by the shded area in Figure [74]-3. However, according to
Boole, the logical sum would be represented by the shaded area in
Figure [74]-4. In order to find the Venn representation. of A n (B C),
the left member of our distributive law, we shade first the logical sum
B C, then its logical product with A, obtaining the doubly shaded
area in Figure [74]-5.

Similar analysis of the right member of the distributive law yields
the same set. Hence the two members are merely different names for
the same set. (The reader might like to apply Venn diagrams to the
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other distributive law of Boolean algebra, A U (D c) = (A L.) B)
(A LJ C).)

The most interesting recent development in connection with Boolean
algebra is its application to the design of electronic computers through
the interpretation of Boolean combinations of sets as switching circuits.
The logical product of two sets corresponds to a circuit with two switches
in series. Electricity flows in such a circuit only if both the first and
second switches are closed. The logical sum of two sets corresponds to a
cireuit with two swit3hes in parallel. Electricity flows in such a circuit
if either one or the other or both switches are closed.

A1113

AUB

A fl (11 U C)

(An.a) U (Anc)
FIGURE [74]-6

In the last diagram of FIGURE [74]-6 the two A switches must be
linked mechanically so that they are always both open or both closed.
The last two circuits are equivalent (they correspond to identical sets
by the distributive law); but the hardwaae for the first of these, A n.
(B C), is simpler.

For Further Reading
BELL (d): 433-47 MIDONICIC: 147-65, 774-85
BOOLE (a) NEWMAN: HI, 1852-1931

(b) SISTER STEPHANIE
CAJORI (d): H, 290
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CONGRUENCE (Mod m )

LET in be a fixed, positive integer. For arbitrary integers x and y we
write x = y (mod m) , read "x is congruent to y, modulo m," in case
the integer x y is divisible by the integer m. The concept and no-
tation were introduced by Carl Friedrich Gauss in 1801, when he was
twenty-four years old. The integer in is called the modulus.

The property described above means that there exists an integer q
such that x y = qm, or (what is the same) x = y ± qm. For
every integer x, the long-division process guarantees the existence of
integers q and r such that x = qm + r, 0 < r < m. Since x is thus
congruent to r, modulo m, it follows that (modulo m) each integer x
is congruent to one and only one of the integers 0, 1, - - m 1;
this integer is called the "least residue" of x, modulo m.

From the definition one can readily prove that-

1. If x y (mod m), y z (mod in), then x z (mod m).
2. If x y (mod m), then y x (mod m).
3. If x y (mod in), a b (mod m), then

a) x ± a -=-= y b (mod in).
b) x a y b (mod m).
c) x a yb (mod m) .

d) xk yk (mod m) , k any positive integer.
e) kx ky (mod m), k t,,ay integer.

It follows that if

1(x) a x + an--1 xn-1 - - - ± an ,
where x and all the coefficients at are integers, and if x y and every
ai bi, modulo in, then

1(x) bn. ?in --I- - ± b. (mod m).
Although congruences form a vital tool in the theory of integers,

Gauss recognized their utility, also, in showing certain polynomial
equations to have no rational roots. Consider the equation
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f(x) = xn + a_1 + - - ao 0,

where all az are integers. All rational roots of f(s) are known to be
integers dividing the constant term, am,; call the integral divisors of

ao "potential roots" of f(s) 0.
If r is actually an integral root of f(s) 0, then f (r) ---=-- 0, whence

f (r) 0 (mod in) for every choice of the modulus in. In considering
a potential root r, if in some manner we find a positive integer in
such that f (r) 0 (mod m), then we are assured that r is not a
root of f (x) = 0. The value of this method for eliminating potential
roots lies in the fact that calculating f (r) to determine whether
f (r) = 0 is often far more difficult than "calculating f (r) , modulo
in." The latter phrase refers to the determination of the least residue
of f (r), modulo in; if this residue is not 0, then f (r) 0 (mod m)
and f (r) O.

It is convenient to use the same n---rlulus in in checking all potential
roots r, but this is Lot essential. L selecting in, one will never gain
any knowledge from an in that is a factor of an and of r, for then we
always find f (r) 0 (mod m).

An example is shown below.
f(x) = x14 ± X3 - X2 ± X -I- 6 = 0.

Potential roots are and We try the modulus m
= 5, since this is the smallest positive integer not. dividing 6. Note that
in any congruence modulo 5, the term 6 may be replaced by I. Thus

1 + 1 + + 3 (mod 5)

f(-1) 1 -- 1 -- 1 1 + 1 as 4 (mod 5)
f(2) 214 4_ 3 4 + 2 + 1 21-4 + '2 (mod 5).

Since
24 1 (mod 5 ),

it follows that
214 210,24 to -22 (mod 5)

1(2) 4 + 2 1 (mod 5)

f(-2) = 2'4 8 4 .2 4 1 (mod 5)

4 3 4 2 + 1 1 (mod 5)

f(3) 3'4 + 2 4 + 3 + 1 =7-- 3'4 + 2 (mod 5
Then
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34 9-9 4-4 1 (mod 5)
314 310 36 32 = 4 (mod 5)

1(3) 4 --F- 2 ------ 1 (mod 5)

f( 314 2 4 3 ---I- 1 (mod 5)
(mod 5).

Since

6 1 (mod 5)
it follows that

1 (mod 5);
1(6) f(1) = 3 (mod 5).

6 = 1 (mod 5);
f( 6) = f(-1) = 4 (mod 5).

In every case the least residue fails to be 0. Thus no potential root
is an actual root, whence f (x) 0 has no rational roots.

For Further Reading
MIDONICK : 380-86 STRIMK : 49-54
ORE (C) : 209-33

Capsule 76 Eugene W. Hellmich

COMPLEX NUMBERS
(THE STORY OF

HISTORY shows the necessity for the invention of new numbers in the
orderly progress of civilization and in the e.rolution of mathematics.
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The story of N/7-9-., the imaginary unit, and of x yi, the complex num-
ber, originates in the logical development of algebraic theory.

Deploring the use of the word "imaginary" by calling it "the great
algebraic calamity" but "too well established for mathematicians to
eradicate" is quite proper from the modern point of view; but the use of
this word reflects the elusive nature of the concept for distinguished
mathematicians who lived centuries ago.

Early consideration of the square root of a negative number brought
unvarying rejection. It seemed obvious that a negative number is not a
square, and hence it was concluded that such square roots had no mean-
ing. This attitude prevailed for a long time.

Perhaps the earliest encounter with the square root of a neg.-.-tive
number is in the expression V81 144, which appears in the Stereo-
metrica of Heron of Alexandria (C. A.D. 50); the next known encounter is
in Diophantus' attempt to solve the equation 336x2 ± 24 ------ 172x (as we
would now write it), in whose solution the quantity V1,849 2,016
appears (again using modern notation).

The first clear statement of difficulty with the square root of a nega-
tive number was given in India by Mahavira (c. 850), who wrote: "As in
the nature of things, a negative is not a square, it has no square root."
Nicolas Chuquet (1484) and Luca Pacioli (1494) in Europe were among
those who continued to reject imaginaries.

Girolamo Cardano (1545), who is also kaown as Jerome Cardan, is
credited with some progress in introducing complex numbers in his solu-
tion of the cubic equation, even though he regarded them as "fictitious."
He is credited also with the first use of the square root of a negative
number in solving the now-famous problem, "Divide 10 into two parts
such that the product - - is 40," which Cardano first says is "mani-
festly impossible"; but then he goes on to say, in a properly adventurous
spirit, "Nevertheless, we will operate." (This was due, no doubt, to his
medical training!) Thus he found 5 ± V-15 and 5 V 15 and
showed that they did indeed have a sum of 10 and a product of 40.

Cardano concludes by saying that these quantities are "truly so-
phisticated" and that to continue working with them would be "as
subtle as it would be useless."

Cardano did not use the symbol -V 15. His designation was "R m,"
that is, "radix minus," for the square root of a negative number. Rafa3l
Bombelli (c. 1550) used "d.m" for our Albert Girard (1629) in-
cluded symbolism such as " V-2." René Descartes (1637) contributed
the terms "real" and "imaginary." Leonhard Euler (1748) used "i"
for Caspar Wessel (1797) used " e." Carl Friedrich
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Gauss (1832) introduced the term "complex number." William Rowan
Hamilton (1832) ocpressed the complex number in the form of a num-
ber-couple.

Bombe lli continued Cardano's work. From the equation x2 + a 0,
he spoke of "-I-- and " A- a." The special case of this equa-
tion, x` + 1 = 0, affords an excellent approach to i and i2, as follows:

If x ± 1 = 0, then x2 = 1 and x = Now, if i
then 1 0 when x is replaced by i, and i2 = 1. From this it
follows as a good exercise that i3 = i4 = 1, i5 = ,
i243 I., and so forth.

In his Algebra (1673, republished in 1693 in Opera matltematica; FPg
/D. E. SMITH (C): I, 48/) John Wallis associated "-1600 square perches"
with a loss and then supposed this to be in the form of a square with a
side [160 square perches =1 English acre]:

What shall this side be? We cannot say it is 40, nor that it is
40. (Because either of these multiplied into itself, will make +1600;
not 1600). But thus rather, that it is V-1600, (the Supposed Root
of a Negative Square:) or (which is equivalent thereunto) 10 -V.-16, or
20 V7-7i, or 40 \/=i7.

Wallis; Wessel (1798), Jean Robert Argand (1806), Gauss (1813),
and others made significant contributions to the understanding of
complex numbers through graphical representation, and in 1831 Gauss
defined complex numbers as ordered pairs of real numbers for which
(a, b) (c, d) = (ac bd, ad + bc), and so forth. Wessel's represen-
tation is given as follows JD. E. SMITH (C) : I, 60/ :

Let +1 designate the positive rectilinear unit and -1- a certain other
unit perpendicular to the positive unit and having the same origin; then
the direction angle of +1 will be equal to 0°, that of 1 to 180°, that of
-1- to 90°, and that of -E to 90° or 270°. By the rule that the direction
angle of the product shall equal the sum of the angles of the factors, we
have: (+1)(+1).-= +1; (±1)(-1) = 1; (-1)(-1)= +1; (+1)( + e)
+e; (+1)(e) = e; (-1)(--e) = +E; (-F-)(4-0 = (-F-e)() =
±1; e) ( E) -1. From this it is seen that E is equal to V 1, and
the divergence of the product is determined such that not any of the
common rules of operation are contravened.

Of a similar representation it has been said /BELL (d) : 234/:

All this of course proves nothing. There is nothing to be proved; we assign
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to the symbols and operations of algebra any meanings whatever that will
lead to consistency. Although the interpretation - - - proves nothing, it may
suggest that there is no occasion for anyone to muddle himself into a state
of mystic wonderment over nothing about the grossly misnamed "irnag-
inaries."

A geometric representation credited to Wessel and Argand inde-
pendently is based on the geometric principle that the altitude to the
hypotenuse of a right triangle is a mean proportional between the seg-
ments into which the altitude divides the hypotenuse. In Figure [76]-1,
OD, = c1 = ±1, 0.1)2 d2 1. LDiRD2 is a right angle, and OR d.
Then di : d = d : d2. Now d = -11 (11(12 = ± =

.1?

02 0
d2
I:FIGURE 1761.4

Fromm [76]-2

Some interesting geometric proofs can result from the representa-
tion of the complex number a + bi ny the point in the plane v-ith
rectangular coordinates a and b. An example is the proof that the
midpoint of the hypotenuse of a right triangle is equidistant from
the three vertices. In Figure [76] -2 0 is the vertex of the right angle
of right triangle AOB, and C is the midpoint of the hypotenuse AB.
Using the coordinates in the figure,

OC 11 (a + bi) 01 Ka = Va2 + e,
and
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AB = la bit = Va2 b2.

Hence

OC = AB = BC = CA.
Lastly, among the more valuable relations involving the imaginary,

is that suggested by Abraham De Moivre (1730) :

(cos 0 -F i sin 0)n cos nO -F i sin nO.
An illustration of De Moivre's relation in the development of trig-

onometric identities follows /JoNEs (c)/:

(1) (cos 0 ± i sin 0)3 = cos 30 ± i sin 30.
But by the binomial theorem we have

(2) (cos 6 ± i sin 9)3
= cos3 0 + 3i cos2 0 sin 0 ± 3i2 cos 0 sin2 0 ± i3 sins 0.

Equating the right-band members of (1) and (2) , we ha:7e
cos 30 ± i sin 30 = cos3 0 3 cos 0 sin2 0 -F 1(3 cos2 0 sin 0 sin3 0).
Equating the real parts gives

cos 30 = cos3 0 3 cos 0 sin2

4 cos3 0 3 cos 0.
Equating the imaginary parts gives

sin 30 = 3 cos2 0 sin 0 -- sins 0
= 4 sins 0 -I- 3 sin O.

BELL (d): 233-34
JONES (C)
MIDONICK : 804-14
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QUATERNIONS

VECTORS are objects that can be added or subtracted, and multiplied
amongst th.4rnselves ; they can also be multiplied by real numbers. In
each case the result is another vector.

William Rowan Hamilton (who was born in Dublin in 1805 and
was appointed professor of astronomy at Trinity College, Dublin, in
1827) was disturbed by the lack of any concept of quotient of vectors.
That is, for any two vectors u and v, with v 0, he wanted to find
a unique vector q such that the vector product qv was equal to u.
His investigations showed the system of vectors to be too small for
this purpose and led him to an enlarged system whose members he
called "quaternions." His work stirred up considerable disputation
throughout the Western world on the question whether quaternions
should replace vectors as an everyday tool in physics and mathematics,
and it resulted in the formulation of an international association to
study the question. We shall look briefly at the way in which Hamilton
was led to quaternions.

Consider a rectangular coordinate system with axes X, Y, and Z
and with unit vectors i, j, and k drawn on these respective axes. All
vectors used herein emanate from the origin, whence the vector ter-
minating in the point (x, y, z) is xi + yj + zk. Let u and v be two
vectors; u ai + bj + ck, and v cli + ej + fk 0. We shall
consider a process for converting v into u, meanwhile countin;, how
many :Teal numbers are needed to specify the process completely in
the general case.

First, vectors v and u determine a plane Tr. Imagine a movable vector
vo, which initially lies on top of v. In the plane ir we rotate vo until
it lies on the ray containing vector u, the angle of rotation being
designated as 8.

This number 8 does not determine our rotation, since we are not
content to rotate vo through any angle equal to 8, but only through
an angle 8 lying in the appropriate plane. We therefore consider what
numbers may serve to specify the particular plane -71- through the
origin. If a movable plane ir-43 is pictured initially as coinciding with
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the XZ plane, we may rotate 7ro about the Z-axis until it includes v;
next, we rotate 7:-.0 about v until it contains the vector u. In this final
position the plane 7ro coincides with -77-; and if -y and p are the two
angles employed, the triple (fi, y, 8) determines the contemplated
rotation carrying the ray of vector v to that of u.

The length of v may very well differ from that of u, so we now
multiply the former length by some constant « to convert it, to that of
u. Altogether four constants, a, )3, -y, and 8, serve to convert v to u.
To express this "fourness" Hamilton coined the name "quaternion"
for whatever algebraic object he could find to accomplish the desired
conversion.

It turned out that his purposes were served admirably by the
notation

(1) w ceo aii a2.i a3k,
where ao, al, «2, and a3 are arbitrary real numbers. These symbols are
to be combined under addition and subtraction by the usual rules. For
example, if w' is given by

(2) w' go ± 13ii ± (325 ± g3k,
then both w ± w' and w' ± w are equal to

(cro ± go) ± (04 ± gi)i (a2 ± g2)3 ± (ck3 ± /33)k.
The product ww' is defined by use of the usual distributive laws of
algebra together with the following stipulations: ij = k; ji = k;jk = i; kj = i; ki = j; ik = j; and i2 = j2 = k2 = 1. Thus, for
(3) w 1 -I- 2i + 3j + 4k; w' = 2 -I- i -I- 5k,
we find that

tow' = 2 -I- 4i -I- 65 + 8k
2 -4- 3ji + 4ki

-I- 5k ± 101k ± 15jk 20

20 ± 20i ± 10k.
A similar computation shows that w'w = 20 10i -I- 125 -I- 16k.

Since ww' w'w in the computations above, the commutative law
of multiplication is not valid for quaternions. Another instance is
given by the equations ij = k, ji = k. For special pairs w and w',
however, the product may be commutative. This is the case, for ex-
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ample, if w is arbitrary and w' = po + Oi + Oj + Ok = po; ww'
w'w = pow.

The system of gnaternions so constructed includes the familiar
vectors ai + bj + ck; and when the laws of quaternion addition and
multiplication are applied to these vectors, the usual results are ob-
tained except that products now consist of a real term plus the usual
vector product. But now we shall demonstrate that an additional fea-
ture is present: Every nonzero vectoralso every nonzero quaternion
has an inverse in the system of quaternions.

The quaternion w in (I) is 0 if and only if all of its coefficients are
0. Let w 0, whence the number

(4)
a02 a12 a22 a32

is a real, positive number. If we write w as

= v, V= a1 ± a2j ± a3k,

then v is called the "vector part" of w; and ao v is called the
"conjugate" of w. Note that the conjuigate of iv- is w. The norm of w is
defined to be we& A short computation shows that both w and Tr) have
norm equal to the number p in (4): wCV = p 'Ow. It follows that
w((1/p).0) = 1 = / p)g.I)w, whence (1/77)0 is the inverse of w. For the
quaternion w in (3) the inverse is (1/30) (1 2i 3j 4k).

As a standard device for everyday use in physics, quaternions have dis-
appeared entirely. They are, however, very much alive now with a differ-
ent raison d'être. Today mathematicians are interested in studying
number systems in their entirety, in learning their properties, and in
learning how to construct new ones. One prominent type is called an
associative division algebra over a field. It is known that there are only
three such algebras over the real field: (1) the real number system, (2)
the complex number system, and (3) the system of quaternions. Thus the
system of quaternions may be designated as the only noncommntative
associative division algebra over the'real field.

The noncommutativity of quaternion muitiplication gives rise to a
curious property. An equation of degri.e n can no longer be said to have
at most n distinct roots, at least not if quaternion solutions are admitted.
For example, the quadratic equation w2 -I- 1 = 0 has thr,:e obvious
quaternion solutions: w w = 5, and w k. In actuality there are
infinitely many. It is easy to verify that w ao ± ali ± a2j ± a3k
satisfies the condition w2 1 = 0 it and only if ao = 0 and a12 ±az 2
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BELL (a): 182-211
(d): 340-61

For Further Reading
13oYmt (g) : 624-26
D. E. SmrrH (c): II, 677-83

Capsule 78 Gertrude V.. Pratt

EARLY GREEK ALGEBRA

THE algebra of the early Greeks (of the Pythagoreans and Euclid,
Archimedes, and Apollonius, 500-200 p.c.) was geometric because of
their logical difficulties with irrational and even fractional numbers
and their practical difficulties with Greek numerals [4], which were
somewhat similar to Roman numerals and just as clumsy. It was nat-
ural for the Greek mathematicians of 'this period to Use a geometfic
stYle for 'whieh they had both taSte and skilL

The Greeks of Elie lid's day thought Of the product ab (as we write
it) as a rectangle of base b and -altitude a, and they referred to it
as "the rectangle contained by -CD and DE" (Fig. [781-1).

FIGURE [781-1

To illustrate the style and method of Greek geometric algebra we
show how they solved a particular kind of quadratic equation. The
theoremin this case, really a problem to be solved--is gi-yen in
Euclid's own words /I, 402/; and the "proof" (a construction of the
positive root of the equation, followed by a verification) is almost
step by step the same as that given by Eu icL Book II, Proposition
11, is as follows:
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To cut a given straight line so that the rectangle contained by the whole
and one of the segments is equal to the square on the remaining segment.
[Find H so that a(a x) = x2; in other words, find the positive root x
(or AH) of the quadratic equation 2:2 ax a2

8X

a

FIGurtE [78.1-2

AB, or a, is the given segment (Fig. [78]-2). Construct square
ABDC. Bisect AC at E. Draw EB. Extend CA to F so that EF = EB.
Construct square FGHA. Then H is the required point (so that x =
AH is the positive root of x2 + ax a2 = 0) .

Verification follows, modern notation being used in the right-hand
column.

6)
By an earlier proposition (I1, Prop. II, 6 is a form of the

identity

CF-FG ± AE2 EF2 . ± + 02 a2 (1)

or

± 0)(a 13)
02

where, in the present context
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By construction EF = EB ;
hence

a aa = x and

so that
a-Ff3=a-Fx and a = x.
Hence (1) gives

CF - FG ± AE2 = EB2 . (a (x) ± ()2 = (s +
By the Pythagorean theorem, By th6 Pythagorean theorem,

CF FG ± AE2 = AB2 ± AE2

AE" AE2

CF FG

Or

B2

AHKC AH KC
Alf 2 = DB- HB

AH = AB- HB. (2)

(a ± x)(x)' ± ()2 = a2 ± ()2

(02 (02
(a -11- x)(a) a2

ax = ax
x2 = a (a x).
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Hence H is the required point (so that AH, or x, satisfies the con-
dition (2)).

As an example, see Figure [78]-3. Let AB = a = 2 to get the quadratic
equation x2 ± 2x 4 0. Carrying through the above construction
we find that Alf = x 1.236, which agrees -c-ith the positive root ob-
tained from tbe quadratic formula, x =

For Further Reading
AABOE (b): 617-63 EVES (C) : 64-69
EUCLID [3d ed, 61-67]
EVANB VAN DER WA ERDEN : 118-26

Capsule 79 Ferna E. Wrestler

HINDU ALGEBRA

THE Hindu work on astronomy Surya Siddhanta ("Knowledge from
the Sun"), written around A.D. 500, provided the motivation for a re-
markable development of arithmetic and algebra in India as shown
by the works of Aryabhata (c. 525) Brabmagupta (628), Mahavira
(c. 850), and Bbaskara (1150). After Bhaskara, Hindu mathematics
showed no proi.,ress until modern times.

Brahmagupta gave an interesting rule for finding one of the two
positive roots of the quadratic equation x 10x = 9 (using modern
notation) , which in the original is written as shown here:

yavlyalO
ru 9

In this, ya is, the. ir-orlioWn ; -Means -the dot above_ a num-
-. ber indicates that negative nun N ihe left-hand.member of
-.the equation --(as we would deseriL,.- ,,;,s:Z$i7n on one- line and the
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ight-hand member beneath ; rzt means "absolute" ("plain") number.
The three columns below give the solution as translated /D. E.

SMITH (a) : II, 445/, then in modern notation and with a generaliza-
tion for ax2 ± bx c.

Here absolute rwmber (6)
multiplied by (1) the [coef-
ficient of the] square [is] (6)

and added to the square of half
the [coefficient of the] middle
term, 25, makes 16;
of which the square root 4, less
half the [coefficient of the]
unknown (5), is 9;

and divided by the [coefficient
of the] square (1) yields the
value of the unknown 9.

x2 10x = 9.

( 9)(1) = 9

16\ 2
10)Vifi (-2

9

ax2 -I-- bx = C.

(c) (a) =ca

ca+ (P02

-\ b)2 b
ca-1-(--i

b

xa
Or

b± V b2 4ac
2a

The metho.d used in the above example is essentially the same as our
present method of "completing the square" and consists of adding
the shaded area (b/2)2 of Figure E79] -1 to the unshaded area

(a2x2 ± abx) ± (12)2
2

-I- abX2
--<

abx

2

FIGURE [79]-1
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which gives the whole area:

(a2x2 ± a b x) (
l2/

ca

Since it was given that ax2 ± h = c, put ca for a2:t2 abx; add
(b/2)2 to equal

(ax Pi)2 .

Hence the side, ax + (b/2), of the large (completed) square is

\ica ()2;
and :Ix is b/2 less thai_

Finally, divide by a to obtain x.
The example given shows that Hindu algebra was largely verbal

(rhetorical), although in th statement of the problem use is made of
abbreviations, illustrating the so-called syncopated style. Fspeciall3
noteworthy is the correct use of negative numbers, written by placing
a dot above the number. Imaginary numbers escaped the Hindus, who,
however, at least recognized them as rating a comment: "as in the
nature of things, a negative is not a square, it has therefore no square
root" (Mahavira). They operated freely with irrational numbers and
used Cie identity th at would be written in modern notation as

1./a2 Nita Va2
2 2

They realized that a quadratic equation with real roots would have
two roots, but they did not always bother to find both roots, as we
have seen. Negative roots were discarded as "inadequate."

The Hindus worked with arithmetic and geometric progressions,
permutations, and linear equations; and they could solve some equa-
tions of degree higher than two.

The Hindus made their greatest progress in indeterminate analysis.
For an equation ax + by = c (a, b, and c integers) with an integral
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solution, they could determine the solution by continued fractions, a
method that is still used. After finding one solution, x = p, y q, they
found others by using x = p + bt, y q at for any integer t. Like-
wise, if one pair of integers p and q could be found to satisfy a so-
called Pell equation, y2 = a.x2 + 1 (a an integer that is not a square),
they could find more by using the following property /CA.ToRI (e) :
95/: "If p and q is one set of values of x and n, and p' and q' is the
same or a different set, then qp' + pq' and app' + qq' is another solu-
tion." A problem from Bhaskara's works is this: "What square number
multiplied by 8 and having 1 added shall be a square?" One solution
of the equation 8x2 + 1 = y2 is x = 6, y = 17, from which it is readily
seen that x -7= 204, y = 577 is another.

Of interest is Bhaskara's solution of a problem on right triangles.
The problem is given as follows /Scorr: 73/: "The hypotenuse being
85, say, learned men, what upright sides will be rational?" (In mod-
ern symbolism, "Find rational values of x and y if X2 ± y2 h2.,,)

The solution is given below, with modern symbolism at the right.

Double the hypotenuse.
Multiply by an arbitrary
number, say 2.
Divide by the square of
the arbitrary number in-
creased by 1.

This gives one side.

Multiply by the arbitrary
number, 2.

Subtract the hypotenuse.

This gives the other side.

170 2h

340 2ah

340 2ah
5

68

136

136 85

51

2a2 h
a2 + 1

2a2h
a2 1

h(a2 1)
a2 + 1

This is equivalent to saying that the three sides of a right triangle are
proportional to a2 + 1, 2a, a2 1; and the values are not unique
but depend on the c',oice of the arbitrary number a.

The following pr )blem is typical of this period: "The horses be-
longing to four persons are 5, 3, 6, 8, respectively. The camels pertain-
ing to the same are 2, 7, 4, 1. The mules belonging to them are 8, 2,
1, 3, and the oxen 7, 1, 2, 1. All four pe: c.ns being equally rich, tell
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me the price of each horse and the rest." (One solution is horses, 85;
camels, 76; mules, 31 ; oxen, 4.)

Further Reqding

CAJORI (e) : 83-98 Scorr: 66-80
EVES (C) : 181-91 D. E. SMITH (a) : I, 152-64,

[3d el. 11.80-89] 274-81
MIDONICK 116-40,166-80

Capsule SO Cecil B. Read

ARABIC ALGEBRA, 820-1250

LITTLE is known about Arabian .nistory before the time of ohaned
(570-632) . Mohammed was instrumental in forming a powerful na-
tion that eventually extended over parts of India, Persia, Africa, and
Spain. Baghdad was the Eastern intellectual center, and Cordova, in
Spain, the Western.

The rulers, called caliphs, supported scientific research. The Arabs,
conquering Egypt, acquired some Greek masterpieces from the Alex-
andrian library. Conquering part of India, they came in contact with
the Hindus. Works of Hindu mathematicians were translated, and
Hindu numerals ,entured Arabia. Greek mathematizml works, includ-
ing Euclid's Elements and the writings of Archimedes, Heron, Pte:emy,
Apoflonius, and Diophantus, were also tans1ate:1 into Arabic. Often
Arabic translations c Hindu and Greek works are the only known
copies.

Arabic algebra came from both the Iliadus and the Greeks. The
Arabs treated algebIf numerically Eke the Hindus and geometrically
like the Greeks.

The early Arabs wrote out problems entirely in words. After con-
tact with other peoples, symbols and Hindu numerals were gradually
introduced; but later Arabian writers reVerted to writing out prob-
lems 'completely, showing perhaps the influence of Greek methods.
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Possibly the greatest of the Arabic mathematical writers was al-
Khowarizmi (c. 825), although some think his algebra shows little
originality. He used a type of "transposition" that is not found in
Hindu or Greek works, and he seems to have been the first to collect
like powers of the unknown. These may be his original ideas. He
solved linear and quadratic equations, both numerically a-ad geo-
metrically. He recognized the existence of negativ, roots (as the
Mndus also did) but consciously rejected them.

The original Arabic edition f al-Khowarizmi's best-known work,
Hi.sab al-jabr w'al mugabalah, is lost, I) a Latin translation exists
(dating from the twelth century). Dne translation of the title is "The
Science of Transposition and Cancellation." The book became known
as Al-jabr, from which we get our word "algebra." Subsequent Arabic
and medicval algebras were based on al-Khowarizmi's work.

The following example shows, in al-Khowarizmi's own words (as
translaAed /D. E. SMITH (a) : II, 447/), how he found the positive root
of the inadratic equation that, we i.7ou1d write as x 3- 10x 39. The
second column shows this in numerical values, and the third gives a
generalization for x2 ± vx = q.

You halve -the mirnher of
roots, which in the pre:sent
instance yields five.
This you multiply by itself ; the
Product 'is twol...--five.

Add this to thirtyLnine; the
sum is sixty-.four.

Nor: take :the root of this,
which is eight,

and subtract from it half the
number of tl-t roots, which is
five; the remainder is three.

This is the root of the square
which you sought for; thu
square ithelf is nine.

x2 ± 10x 39. 02 pz

(10)

5-5=-25

254-39,:= 64

8

10 3

or

p+ 1/p2-1-4qx- 2

The method used is essenially the same as our present-day method
of "completing the square ' and eondists literally of adding the shaded
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area (p12) 2 of Figure [80]-1 to the unshaded area (x2 + px) to com-
plete the square of side (x + (p/2)). That is,

± (x2 ± px) ---= (x 2 '

but since it was given that (x2 + px) = q, (p/2)2 + q (x + p/2)2.
Hence the ,5ide (x + (p/2) ) of the completed square is equal to

-1(12)2 + g;
and x is p/2 less than that quantity.

Notiec that the other root, 13, of the-equation x2 + 10x = 39 was
ignored because it is negative. If both roots had been positive they
would-probably have both been found.

Abu Kamil (c. 900) wrote a more extensive treatise on algebra. It
was so good that later writers used riach of it,.although with,at men7
tioning his name. The methods were well known.and.:considered to be
common property. He used both the terms "square" and "root." The
Greeks thought of_ 5 as the side of a square with area. 25; the -Arabs,
following th Hindus, thought of 25 as growing, like a tree, out of the
number 5 as a root. Both concepts appear in "square root."_ The Latin
word for "root." is radix; from it comes our word "radical."

Like others, Abu ICamil solved equations algebraically and geo-
me'rically. Hc. classified quadratic equations into six types, presenting
no general method. To- give a single example indicating that he did
work of more than elementary difficulty: he showed, without using the
modern notation employed here, the equality
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V12 2 Arid .= 10

One of the best Arabic algebraists was Omar Khayyam (c. 1100),
known usually only as the author of the Rubaiyat. He used geometric
algebra, solving cubic equations by finding the intersections of zonics.

me think that this was the greatest. achievement in Arabic algebra.
U.L,ar Khayyam thought the cubic was insolvable by purely algebraic
means.

His method of solving x2 + 10x = 39 (as we write it) was really the
same as al-Khowarizmi's, but we state it because of its historical
interest: "Multiply half of the root by itself ; add the product to the
number and from the square root of this sum subtract half the root.
The remainder is the root [side] of the square." /D. E. SMITH (a) : II,
447./ It is not coincidence that the same numbers (10 and 39) appear
in the two examples. This particular problem was a favorite in the
Arab schools of that time.

Note especially that Arab mathematicians would not have thought of
the above example in our customary form, x-2 + 10x 39 = 0, because
they simply did not grasp negative numbers; this difficulty with nega-
tive numbers and the subtleties of zero products probably explains why
solution by factoring came rather late (in the time of Thomas Harriot,
1631).

Some work was done with indeterminate equations by al-Karkhi
(c. 1020), who tended to follow the style of the Greek mathematician
Diophantus. As one problem he proposes this: "Find rational numbers
x, y, and z such that :C3 ± y3 = z2."

Arabic algebra .used the rules of false position and of double false
position [90]. They explained the rule of three, which today we call
proportion. The Hindu mathematicians had used the terms, and the
Arabs translated directly.

Some historians think the Arabs added little that was new, but all
agree that thrcrughout the Dark Ages the Arabs preserved the Greek
and Hindu works for posterity. Without their translations, most of
this prior work would be lost.

It was principally through the Arabs that algebra entered Europe.
Hindu influence dominated, hence algebra came to Europe with little
axiomatic foundation. Perhaps this explains why, until quite recently,
geometry was based on postulates and theorems while elementary
algebra emphasized method rather than logical 2oundations.
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ALGEBRA IN EUROPE, 1200-1850

EUROPEAN algebra was based directly upon Arabic algebra and de-
veloped rather slowly from what might be termed its beginning,
around 1200, until the nineteenth century, when discoveries followed
closely upon one another.

Much of the early work was done in Italy. There Fibonacci
(Leonardo of Pisa) did a great deal to popularize Hindu-Arabic nu-
merals with his book on arithmetic and algebra, Liber abaci ("Book
of Calculation"), written in 1202. This book also contains the famous
Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13,. . . [22]

For the next few centuries there was very little algebraic activity
in Europe; however, during the period from 1515 to 1545 it was again
Italy that produced the algebraists. During that time many mathe-
matics books were published in Italy, although mathematicians
did not send their disoveries to journals for publication. They
preferred to use their new knowledge in order to shine in public con-
tests, challenging one another in problem solving. Scipione del Ferro,
a professor at the University of Bologna, in 1515 devised a method of
solving the cubic equation x3 + bx = c, but he did not circulate his
work. Niccolo Tartaglia solved the cubic equation x3 + ax2 = c and
then also the cubic x3 + bx = c (about 1535) and used his information
in order to vanquish challengers [71 ] . Girolamo Cardano, a physician
and mathematician who was called the "gambling scholar" by Oystein
Ore / (a) /, obtained the solution from Tartaglia and made many im-
provements on Tartaglia's solution, solving (at least for positive roots)
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all possible cases except the "irreducible" one. He then published the
complete solution of all varieties of the cubic equation (except the
irreducible case involving "imaginaries") in his Ars niagna, giving full
credit to Tartaglia. It was Ludovico Ferrari who successfully solved
the general quartic equation. (Rafael Bombe lli, a sixteenth-century
Bolognese mathematician, made progress on the irreducible case of
the cubic by recognizing in 1572 that apparently imaginary expressions
like

N3/81 ± 301/7-- 3 + A3/81 30

were realin this case, .-6.)
Algebraists of the seventeenth century include Thomas Harriot, an

Englishman who introduced the signs < and > /C. SMITH ; EVES (a) /
and the use of aa for what we call a2 and aaa for a3. While we may
think this awkward, it is an improvement over the A cubum of Francois
Viete or even the res cubum of earlier times. -William Oughtred, another
Englishman, was responsible for the slide rule, the multiplication sign
x , and the sign : : for proportion.

Rene Descartes, a Frenchman, was one of the greatest mathema-
ticians of this century aril a prolific writer. His outstanding contri-
bution was, of course, his work on plane analytic geometry, but he
also improved the symbolism of algebra and introduced our present
system of positive, integral exponents. A large part of DeScartes's
La géométrie consists of what we now call "theory of equations," and
it contains Descartes's rule of signs for determining the number of
positive and negative roots of an equation. Descartes used the letters
at the end of the alphabet, . . . , x, y, z, for variables, and the early
letters, a, b, c, . . ., for constants. Viète, in the sixteenth century, had
used vowels for variables and consonants for constants.

Pierre de Fermat's work in the seventeenth century in France was
chiefly in number theory; theorems in Diophantine analysis (of which
he left no proof) are due to him. Isaac Newton, genius in many fields
and inventor of the calculus, discovered the binomial theorem in 1664
when he was twenty-two. The theory of symmetric functions of the
roots of an equation, first perceived by Viete, was firmly established by
Newton, who 'also gave a method for finding approximations to the
roots of numerical equations.

In the nineteenth century mathematicians began to work in spe-
cialized fields, but Carl Friedrich Gauss was an exception to this rule.
In his doctoral dissertation, written when he was twenty and published
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in 1799, he gave the first rigorous proof of the fundamental theorem of
algebra: Every algebraic equation of degree n has a root [and hence
n routs]. Later he published three more proofs of the same theorem. It
was he who called it "fundamental." Much of the work on complex
number theory is Gauss's. He was one of the first to represent complex
numbers as points in a plane. From 1807 until his death in 1855,
Gauss was director and professor of astronomy at the observatory in
Göttingen, Germany, where he had graduated from the university.

Evariste Galois, killed in a duel in 1832 at the age of twenty-one,
was a genius never recognized in France during his lifetime. On the
eve of the duel he wrote to a friend /D. E. SMITH (C) 285/:

Ask Jacobi or Gauss publicly to give their opinion, not as to the truth,
but as to the importance of the theorems [see below]. Subsequently there
will be, I hope, some people who will find it to their profit to decipher all
this mess.

This note was attached to what Galois thought wei e some new
theorems in the theory of equations; these turned out to contain the
essence of the theory of groups, so important today. At about the
same time Niels Henrik Abel, in Norway, thought he had found a
method of solving the general quintic equation, but later he corrected
himself and proved that a solution by means of radicals was impossible.

Finally, we take note of two English algebraists, Arthur Cayley and
James Joseph Sylvester. As a young man Cayley practiced law in
London, and it was there that he met Sylvester, an actuary. For the
rest of their lives they worked together on the theory of algebraic
invariants.

Although he spent most of his fife in England, Sylvester brought his
work to America (he taught briefly at the University of Virginia in
18,.:1/42 and returned to the States to teach at Johns Hopkins Uni-
varsity from 1877 to 1883). He established graduate study in mathe-
matics in this country, and "American algebra" /night be said to
begin with him.

For Further Reading

BoyEn (g): 333-38, 367-81, ORE (a)
544-49, 629-32 C. SMITH

EVES (a) STRIIIK (e): 74-111, 115-22
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FUNCTION

Definition 1.A function is a set of ordered pairs whose first elements
are all different.

Definition 2.When the value of one variable depends on another, the
first is said to be a function of the second.

Definition 3.If to each permissible value of x there corresponds one
or more values of y, then y is a function of x.

Definition 4.If y is a function of x, then it is equal to an algebraic ex-
pression in x.

TwE,:- 'TY elementary algebra texts were examined for definitions of
"function"; eleven of these texts were published before 1959, nine after
1959. The older texts used Definitions 2, 3, 4, and others; six of the
newer ones used Definition 1.

Fifteen college algebra texts were examined, seven published before
1959 and eight after 1959. None of the older texts used DefinitIon 1;
four of the eight newer ones did.

This quite recent history of "function" has additional significance
in the context of the earlier history of both the idea and the word.

Eric Temple Bell suggests / (a) : 32/ that the Babylonians of c. 2000
B.C. might be credited with a working definition of "function" because
of their use of tables like the one for n3 + n2, n. = 1, 2, . . . 30, sug-
gesting the definition that a fthietion is a table or correspondence
(between n in the left colunm and + n2 in the right column).

More explicit ideas of function seem to have begun about the time of
Rene Descartes (1637) , who ma:r have been the first to use the term;
he defined a function to mean f..ny positive integral power of x, sUch
as x2, x3, . . .

Gottfried Wilhelm von Leibniz (1692) thought of a function as any
quantity associated with a curve, such ag the coordinates of a point on
a curve, the length of a tangent to the curve, and so ci

Johann Bernoulli (1718) defined a function to be any expression
involving one variable and any ,constants.

Leonhard Euler (1750) called functions in the sense of Bernoulli's
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definition "analytic functions" and used also a second definition, ac-
cording to which a function was not required to have an analytic ex-
pression but could be represented by a curve, for eAample. Euler also
introduced the now standard notation f (x).

Joseph Louis Lagrange (1800) restricted the meaning of function to
a power series representation. Jean Joseph Fourier (1822) stated that
an arbitrary function can be represented by a trigonometric series.
P. G. Lejeune Dirich!et (1829) said that y is a function of x if y
possesses one or more definite values for each of certain values that
x may take. in a given interval, x0 to

More recen4, the study of point sets by Georg Cantor and others
has led to a definition of function in terms of ordered pairs of elements,
not necessarily numbers.

For Further Reading

BELL (a): See index
BOYER (f) : 243, 276-77

(g): 290-92
CA.TORI (d) : II, 267-70
EVES CC) 371-72

[3d ed. 371-72]
Growth of Mathematical Idea;

65-110, 445-49

Insights into Modern Mathe-
matics : 55-58, 220, 241-72,
409-11

F. KLEIN (a): I, 200-207
G. A. MILLER (b)
BEAD (e)
Selected Topics: 42-56
JOHN YOUNG: 192-200

Capsule 83

MATHEMATICAL INDUCTION

FROM the mathematical experiment

1 + 3
1 -I- 3 ± 5
1 -I- 3 + 5 ± 7 =-

etc.,

32,

42,
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one is led to the formula

1 3 + 5 - (2n 1) = n2;

and then this conjecture is proved deductively by using the principle
of mathematical induc,don.

B. I. Van der Waerden /1261 points out that "in essence" the prin-
ciple of mathematical induction wa', known to the Pythagoreans but
that Francesco Maurolico was the first to make fairly explicit use of
it (in his Arithmetic, 1575). Blaise Pascal (c. 1653) was the next
person to use the idea, as he did repeatedly in his work on the so-called
Pascal triangle, which he called the "arithmetic. triangle."

The inductinn proofs of Maurolico are given in a rather sketchy
style not easily followed. Pascal's style is more nearly along modern
lines, and we present in modern notation a translation of his induction
proof that

nCr. r 1

nc, + 1 n r '
where

n!
'Cr (n r)! r!

and r is any "cell" from the Oth to the (n 1) th in Figure [831-1.

Consequence XII: In every arithmetic triangle, two adjoining cells on the
same line [have the property that] the lower is to the higher as the number
of cells below (and including) the lower is to the number of cells above (and
including) the higher.

Let E and C be any two adjoining cells on the same line; I say that

B is to C as 2 3

lower higher because there are two .because there are three
cells from E to the bot- cells from C to the top,
torn, namely, B, H. namely, C, R, jz

Althow; h this proposition has an infinity of cases, I shall give a very
short demonstration based on two lemmas:

The first, which is self-evident, that this proportion is true on the second
line [of the triangle] ; because it is easily seen that st is to cr as 1 is to 1
[let n = 1; then = (0 + 1)/(1 0)].
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FIGURE [83]-1

The Lecond, that if this proportion is true on any line it will necessarily
be true on the following line. [Let n k. Then

implies
kCr/ (r ± 1)/(k

= 1)/((k + 1) r),
and hence the theorem is true for n k 1 if it is true for n = kl
From which it is apparent that it is necessarily true on all the lines: for
it is true on the second line by the first lemma; therefore by the second
[lemma] it is true on the third line; therefore on the fourth, and so on.

It is necessary therefore only to prove the second lemma in this way:
If the proportion is true on any line, as on the fourth D A; for example,
if D is to B as A. to 3, and B to 0 as 2 to 2, and 0 to A as 3 to 1,
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and so forth, I say that this same proportion will be true on the following
line HA and that, for example, E is to C as 2 to 3.

For D is to B as 1 to 3 by hypothesis.
Therefore D ± B is. to B as i + 3 to 3

to B As 4 to 3.
Likewise B is to 0 as 2 to 2 by hypothesis.
Therefore B -4- 0 is to B as 2 -1- 2 to 2

C to B 4 -;) 2.
But E to B as 4 to 3 jand B to C as 2 to 41 (as was shown). Then [by mul-
tiplying these last two proportions] E is to C as 2 to 3. Which it was required
to show.

One can show the same on all the rest [of the lines], since this proof is
based only on that proportion found for the preceding [line], and [the
property] that each cell is equal to its preceding [one on the left] plus
the one above it, which is true everywhere [in the triangle].

The "property" referred to is, for example,

E = D B;
or, in general,

nCr = n-1 Cr-1 4- n-1 Cr
which is Pascal's rule of formation (definition) of the arithmetic
triangle.

For Further Reading
MESCHKOWSKI (b) : 36-43 STIWIK (e) : 21-26
D. E. SMITH (C) : I, 67-79

Capsule 84

FUNDAMENTAL THEOREM OF ALGEBRA

CARL Friedrich Gauss, at the age of twenty (1797) , gave the first
satisfactory prcof of the theorem which he called fundamental and
which was the topic for his doctoral dissertation at the University of
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lielmstadt, A New Proof that Every Rational Integral Function of :One
Variable Can Be Resolved into Real Factors of the First or Second
Degree. (Equivalent statements are "Every algebraic equation of. de-
gree n has n roots," and "Every algebraic equation of degree n. has a
root of the form a + bi, where a and b are real.") Actually, Gauss gave
four proofs for the theorem, the last when he was seventy; in the:first
three proofs he assumes the coefficients of the polynomial equation
are real, but in the fourth proof the coefficients are any complex-
numbers.

The words "new proof" in Gauss's title indicate that the ideas sum-
marized in the statement of the theorem had been considered by earlier
mathematicians. The Hindus (by 1100 at the latest) realized that
quadratic equations (with real roots) had two roots. Girolamo Cardano
realized in 1545, though somewhat vaguely because negative and
imaginary numbers were not clearly defined at this time, that cubics
should have three roots; and he exhibited three roots for some cubics.
Similar ideas were held with respect to quartic equations by Cardano
and other Italian algebraists of this period.

Francois Viète (c. 1600) considered the possibility of factoring the
left member of the polynomial equation f (x) = .(with positive co-
efficients) into linear factors but was foredoomed to only partial suc-
cess because of his marked aversion to negative and. imaginary
numbers.

Peter Roth seems to have been the first writer to .say definitely that
a polynomial equation of degree n has n.roots. This-was-in 1608. Albert
Girard stated in,1629;that every algebraic equation:has-as:many roots
as the degree of its highest power.

The insights of.Rene- Descartes on tbis matteryare.a.special interest
because they are.related to his famouS "nile of sigr.is-," We:quote from
his La géométrie (1637) /(b) : 159-60/:

Everrequation. can have as many distinct roots. (ralues of 'the unknown
quantity), as, the number of dimensions- [i e, degree] of the unknown
quantitrin the equation.. . .

It:often happens, however, that some offthe7roots are false or,less than
nothing

We can determine also the number of true. [positive] and false [negar
five]; roots that any equation can have,.. as- follows: Ani equation can
have, as many true roots as it contains.changes of sign . . . and as many-
falSe roots as the number of times twcr or- two signs are found' in:
succession.,
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The first attempt at a proof seems to have been made by Jean Le
Rond d'Alembert, in 1746, and for this reason the theorem is sometimes
called d'Alembert's theorem, especially in France. Leonhard Euler
(1749) and Joseph Louis Lagrange also tried to prove the theorem.

A correct proof was not given until Gauss wrote his doctoral disser-
tation, which was published in 1799. This included "geometrically
obvious" assumptions for which later standards of rigor required
proof, which A. Ostrowski gave in 1920.

For Further Reading

BELL (a) : 178
(d): 218-69

COURANT and ROBBINS : 269-71
DUN NINGTON

F. KLEIN (a): I, 101-4
D. E. SMITH (C ): 1, 292-306
STRunc (e) 81-87, 99-102,

115-22

Capsule 85 Donald W. Western

DESCARTES'S RULE OF SIGNS

IN 1637 the French philosopher René Descartes (1596-1650) published
a book with a lengthy title commonly abbreviated to Discours de la
methode, a full translation being "Discourse on the Method of Rightly
Conducting One's Reason and Seeking Truth in the Sciences." Three
appendixes were included: La dioptrique ("Optics"), Les inetéores
("Meteorology"), and La Oométrie ("Geometry") . The third part of
the third appendix is entitled, in translation, "On the Construction of
Solid and Supersolid Problems." It deals with many basic idoas for
solving equations that arise in connection with geometric problems
(primarily the study of conic sections by algebraic methods) .

After posing some problems on mean proportions, Descartes proceeds
to construct a fourth-degree polynomial equation by multiplying
together the linear factors (x 2), (x 3) , (x 4), and (x ± 5) to
obtain

x4 4x5 19x2 + 106x 120
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He remprks that the polynomial is divisible by no other binomial
factors and that the equation has "only the four roots 2, 3, 4, and 5."
The fact that the fourth root is 5 rather than 5 is recognized by
speaking of 5 as a "false" root, in contrast to the positive numbers,
which are calied "true" roots. (The minus sign is not used by Descartes
to designate negative numbers.) Then comes the statement of the cele-
brated rule of signs /DESCARTES (b) : 160/:

We can determine also the number of true and false roots that any
equation can have, as follows: An equation can have as many true roots as
it contains chages of sign, from ± to or from to ± ; and as many
false root3 as the number of times two + signs or two signs are found
in succession.

Following this general comment, Descartes points out the three
changes of sign and the one succession (permanence) of sign in his
example and concludes, "On connoit qu'il y a trois vraies racines; et
une fausse"; that is "We know there are three true roots arid one
false root."

As is often the case with the promulgation of a significant mathe-
matical result, this first statement ,_.1f the relation between, changes in
signs of the successive terms of the polynomial and the nature of -the
roots was not ,complete. Neither was any attenipt made at pro9f, other
than the illustrative example that accompanied it.

There is some disagreement M. the literature whether the rule of
signs was generally known before .Desca rtes's publication of La
géonz4trie. Smith and Latham st;i-Ae in a footnote of their translation
/DEscA.rats (b) : 160/ that. [Thomas] Harriot had given it in his
Artis anulyticae praa;is, published in London in 1631. However, iitz
Cantor denies this possibility, since Harriot did not admit negative
roots. Girohtrno Cardano (1501-1576) had stated a relation between
one or two -variations in sign:and the occurrence of positive roots. --

The process of refining the rule of signs continued over a period of
two centuries. In this process two points, specifically, were clarified:
(1) the fact that varisf-.)118 in sign determine only upper bounds for
the number of positive roots because of the possibility of imaginary
roots and (2) the fact that:,the permanences of sign determine bounds
for the number of negative roots only for a complete polynomial
that is, one with no coefficients equal to zero.

Isaac ,Newton, in his work Arithmetica universalis (published in
1707 but written Si-ime thirty years earlier) , gave an accurate statement

le)
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of the rule of signs and presented without proof a procedure for de-
termining the number of imaginary roots. At about the same time
Gottfried Wilhelm von Leibniz pointed out a line of proof, although
he did not give it in detail. In 1675 Jean Prestet published an in-
sufficient proof; Johann Andreas Segner published one proof in 1725
or 1728 and in 1756 a more complete one. In 1741 Jean Paul de Gua
de Malves gave a demonstration, introducing the argument that is
basic to modern proofs. (This type of argument was employed more
clearly by Segner in 1756.) Several other proofs were given in the
period from 1745 to 1828. In 1828 Carl Friedrich Gauss added the
significant contribution to the statement of the rule that if the number
of positive roots falls short of the number of variations, it does so by an
even integer.

The complete statement of Descartes's rule of signs is as follows:

Let P(x) = a f ± a, xTh-1 + an, where the coefficients ao, a
, an are real numbers, at, r O. Then the number of .positive real roots

of the equation P kx) = 0 [a root of multiplicity m being counted m
times] is either equal to the number of variations in signs or less than
that number by a positive even integer.

T'
sic

gative roots of Pn (x) = 0 is handled simply by con-
roots of P,,(x) = 0. Thus the matter of perrna-

,s avoided.
The crux of the proof sterns from the work of Gua de Malves and

Segner. It consists in showing that if

P(x) = (x
where P_,(x) has real coefficients and r is positive, then P(x) has at
least one more variation in sign than does P. (x)for the general
case, an odd number-more.

BELL (d): 35-55
CAJORI (e) : 178-79, 248

For Further Reading



Capsule 86 Dorothy Wolfe

SYMMETRIC FUNCTIONS

A SYMMETRIC function of two or more variables is a function that is
not affected if any two of the variables are interchanged. Perhaps the
most familiar symmetric functions are those met in elementary theory
of equations where for the cubic equation

+ C1x2 C2x + C3 = 0

we have

+ r2 + 7.3 = C1, r1r2 717.3 r2r3 = C2 r1r2r3 = C3.

These last three equalities express the coefficients of the cubic equation
as symmetric functions of the roots r1,

Wi:ien Francois Viete made his first tentative discoveries cone2rning
symmetric functions in the late sixteenth century, the very notion of
the roots of an algebraic equation was incomplete, in large measure
because of an incomplete understanding of negative and imaginary
numbers. Viete himself worked only with positive roots. He noticed
that if the equation x3 + b = ax (a > 0, b > 0) has two positive roots,
r1 and 7-3, then

(1)

and

(2) r17.2(ri + r

Also, as Cajori says /(b) : 230/:

His nearest approach to complete recognition of the facts is contained
in the statement that the equation

(u v + w)x2 (uv vw wu)x uvw = 0

has three roots, u, v, w. For cubics, this statement is perfect, if u, v, w are
allowed to represent any numbers. But Viete is in the habit of assigning
to letters only positive values, so that the passage really means less than
at first sight it appears to do .



ALGEBRA

Albert Girard was interested in extending Viète's result. He con-
sidered all rootsthose he called "impossible" (i.e., imaginary) as well
as negative and positive roots. He studied the sums of their products
taken two at a time (analogous to Viete's (1), above), then three at a
time (analogous to Viete's (2), above), and so on.

But Girard was also interested in obtaining expressions for the sums
of given powers of the roots; these sums constituted a different set of
symmetric functions than the one Viete had essentially pioneered.
Girard published his results in Amsterdam in 1629 in a pamphlei, In-
vention nouvelle en Palgebre, which contained the statement /FuNic-
HOUSER : 361/ that if

xn

then
4- Be-2 ce-3

A I

A2 2B
3AB -I- 3C

I. will be
the sum of

A4 4A2B 4AC 2B2 4D j

solutions
squares

1 cubes
Lbiquadrates.

Girard stated this result rather casually. Perhaps becauf-- of this and
perhaps also because seventeenth-century mathematicians were not
ready, Girard's remark went unnoticed until it reappeared, without
proof, in Isaac Newton's Arithmetica universalis (1707) o.rld becalm;
famoils. It also became one of several theorems that are-called "New-
ton's theorem."

For a hundred years after Newton many mathemrif; ;Iv ,ag
Cohn Maclaurin, Leonhard Euler, and Joseph Lou, angc, ,,,a-
cerned themselves with proofs and generalizations of this theorem.

CAJORI (b): 230-31
FUNICHOUSER

For Further Reading

STRUIK (e): 81-87
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DISCRIMINANT

AS A result of the historical development of ideas leading to the term
"discriminant," there is today a slight inconsistency in the use of the
word. Texts dealing with the equation

Ax2 Bx C 0

call B2 4AC the discriminant of the equation. Other tex s, discussing
the binary quadratic form

Q(x, = Ax2 2Bxy ± Cy 2 ,

call AC B2 the discriminant of Q. Similar though these expressions
are, the first is negative- four times what we would expect it to be if
notations were uniform. And ever if this were corrected, it would not
be immediately obvious that we a. astified in using the same name
that we haVe the same mathematical entity.

By the middle of the eighteenth century it was well known that a
necessary and sufficient condition for the equation Ax2 + Bx C = 0
to have two identical roots was B2 O. The expressiiin was
known mathematicians knew what it signified and how to work with
it; but it was not yet recognized as a mathenr Lical ,entity.

During the next hundred years mathematicians studied several ex-
pressions related to the quadratic form. In 1748, Leonhard Euler used
conditions involving expressions like those above to determine whether
a quadric surface is contained in finite space, but Euler did not give a
name to these expressions.

The expression that was not yet an entity reappeared in 1773.
Joseph Louis Lagrange wr.:: studying the binary quadratic form
given above. He proved that if x Ay were substituted for x, leading
to a new form

A(x Xy)2 -F 2B(x ± Xy)y -F ce,
then if the new expression is simplif.qd to

Al x2 4- 2B'xy ± C' 2



ALGEBR:it

we must have

AC B2.

Other mathematicians turned to the study of such invariants, and
similar expressions- kept reappearing.. Carl Friedrich Gauss- called
such an expression, al "determinant" of the function. It remained for
the tempestuous James Joseph Sylvester, who called himself the
"mathematical Adam" because of his habit of giving names to mathe-
matical creatures, to-name this one. In 1851 he was studyinginvariants
in reducing certain, sixth-degree functions of two variables to simpler
forms. What he found was-what he called (and what we'now-recognize
as) the "discriminant of a cubic."

His explanation in-a long, testy, and somewhat defensive-footnote is
amusing and enlightening:.

"Discriminant" because it affords the discrimen or test for-ascertaining
whether or not equal factors enter into a function of two variables, or
more generally of the existence or otherwise of multiple points- in the
locus represented! or characterized by. any algebraical function, the most
obvious and first observed species of singularity, in such function or locus.
Progress in these researches is impossible without the aid; of clear expres-
sion; and the first condition of a good nomenclature is, tliat different
things should be called by different names. The innovations in mathe-
matical language-here and elsewhere ,(not without high sanction) intro-
duced' by the author, have been never adopted except under actual ex-
perience of thee embarrassment a rRing from ,the want of them, and will
require no vindication to those wilo have reached that point where the
necessity -of sOine Sfichiaddition 'becomes felt.

I3oth our cases; satisfy Sylvester's definition. The discriminant is a
combinatiOn of constants which 'vanishes if -at least two, factors:of a
fUnctibmare the- same: If

/32 4AC

them

A 0 0,

A2x2'± Bx C A(x B/2A)2;

under the same conditions (or equivalently, with changed notatibn ,if
AC' B2 =

2BrY, Cy2 Ax ± By) .
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BELL (d): 378-405 BOYER (g): 253, 258

Capsule 88 L. S. Shively

INTEREST AND ANNUITIES

IN THE Liber abaci of Fibonacci (Leonardo of Pisa), written in
1202, the following problem appears /Ev Es (e) : 234/:

A certain man puts one denarius at [compound] interest at such a rate
th at in five years he has two denarii, and in every five years thereafter
the money doubles. I ask how many denarii he would gain from this one
denarius in one hundred years?

The answer, (220 1) denarii, is easily obtained, since exactly 20
doublings are involved. The implied interest rate of 161/3 percent com-
pounded annually is possibly a commentary on the rather high rates
charged in medieval Europe in spite of certain restrictions by the
Church.

The custom of charging interest is found as early as 2000 B.C., as
recorded on ancient Babylonian clay tablets. We give one example:
/D. E. SMITH (a) : II, 5`30/:

Twenty manehs of silver, the price of wool, the property of Bechazzar,
the son of the king. . . . All the property of Nadin-Merodach in town
and country shall be the security of 13elshazzar, the son of the king, until
Belshazzar shall receive in full the money as well as the interest upon it.

Interest rates in Babylonia ran as high as 33 percent. In Rome
during Cicero's day 48 percent was allowed; Justinian later set the
maximum allowable rate at 0.5 percent per month, which gave rise to
the common rate of 6 percent a year. In India, however, during the
twelfth century, rates as high as 60 percent are recorded.

The origin of the word "interest" is related to church policy, which
forbade usury, payment for the use of money. The moneylender got
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around this restriction of canon law by collecting a fee only if the
money was repaid tardily (which happened often enough even in those
clays!). The lender argued that the fee compensated him for the mone-
tary difference between his poorer financial standing, because of late
payment, and what would have been the standing under prompt re-
payment. This difference was referred to as id quod interest ("that
which is between").

Annuities were known as early as 1556, the year in which Niccolo
Tartaglia, in his General trattato, gives the following problem, which
he said was brought to him by gentlemen from Barri who said that the
transaction had actually taken place JSANFORD (d) : 136/:

A merchant gave a university 2,814 ducats on the understanding that be
was to be paid 618 ducats a year for nine years, at the end of which the
2,814 ducats should be considered as paid. What interest was he getting
on his money?

The answer to the problem is that the interest rate was slightly more
than 19 percent; but without logarithms and annuity tables, it was
not considered easy.

In 1693 Edmund Halley, who is best known for his vrt)rk as an as-
tronomer, contributed to the str r iife ins;ai uiLies ith tie

ui _es of Mortality of .11:iankind . . . with an Attempt
to Ascertain the Price of Annuities upon Lives. This included the
following formula JCATORI (e) : 171/:

To find the value of an annuity, multiply, the chance that theiipriividuaL
concerned will be alive after n years bY the present value of:the ki7..nual
paymein due at the end of n years; then sum the results Hum-- obt,lined
for all values of n from 1 to the extreme possible age for the liEe of that

Halley probably used the mortality table published in 1662-by John
Graunt of London in his Natural and Politica' Observations . Iade
upon, trte Bills of Mortality, which was based on records . sieaths
that wfere kept in London beginning in 1592. (These recolra,, were
originaLly intended to keep track of deaths due to the plagur

SANFORD, (d) : 127-31
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EXPONENTIAL NOTATION

THE great French mathematician Rene Descartes is credited with first
introducing, in about 1637, the use of Hindu-Arabic numerals as ex-
ponents on a given base. To any modern schoolboy the idea of writing
x x x as x3 or x-x-x-x as x4 seems so obvious that it is quite
natural for one to feel that Descartes probably hit upon this idea with-
out help from his many predecessors in mathematics. But that was
not the case! Ingenious inventions very often result from the insights
of men who have learned from the trials and errors of others; such was
the case with Descart, s's use of exponents.

In this short capsule we shall look at sdme examples of early
exp3nential Lymbolism and shall see that the idea of an exponent was
available when Descartes took the very significant step of using Hindu-
Arabic numerals placed to the upper right of the base.

Sometime around 1552 an Italian mathematician, Rafael Bombelli,
worked very diligently on a manuscript that he published in 1572 as
an algebra book called L'Algebra. In this volume he wrote the solution
to a problem, beginning it as shown below:

4.p.R.q. L24.m.20,J Eguale

A first glance at this line of symbols might lead one to think that
I3ombelli was using a very complicated secret code, as in a sense he
was; he was writing the equation we represent by writing

4 -F N/24 20x = 2x.

Let us pause for a moment and compare Bombelli's equation with
our present-day form. It is easy to see that "Eguale a" probably means
"equals." Continuing, we can see that "p." probably stands for "plus"
and "m." for "minus." The symbol "R.q." represents "square root";
the two angular symbols mean the same as parentheses in modern
symbolism. Thus "R.q.L j" means the square root of the polynomial
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written within the symbols. To write positive integral powers of a
variable, x, Bombe lli wrote the exponent in a small circular arc above
a numeral, so that

I 2 3

2, 2, 2

meant the same as 2x, 2x2, and 2x' in modern notation. Thus

R.q. L24.m.20

means V-2-1 20x.
At first thought, it may seem that Bombelli's method is much better

than our present symbolism because he did not need to write the letter
x. But suppose a mathematician wished to represent x2 y2. Could he
do this by writing

No! For this reason, Bombelli's exponents were short-liv-ed.
The complete solution as Bombelli included it in .L'Algebra is given

in the left-hand column below. Cover the modern version in the right-
hand column if you want to test your skill in translating.

4. p. R. q. L24. In.
Eguale to, 2.

1

R. q. L24. m. 20j
Eguale 4.

24. m. 20
Egualeà4m. 16. p. 16.

24. p. 16
Eguale h 4. p. 20. p. 16.

24
Eguale h, 4. p. 4. p. 16. 24 4 2 ± 4x ± 16.

4 ± A/24 20x =- 2x.

V24 20x = 2x 4.

24 20x =- 4x2 16x ± 16.

24 + lOx 4 2 ± 20x ± 16.
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1

Eguale a 1. p. 1.

,
Eguale a 1. p. 1. p.

Eguaie a 1. p.

Ecuale D. 1.

2 --- 2 + x.

21 == X2 -F x ± 1.

,

x -1-

= x.

Bombelli was not the only mathematician before Descartes to write
a numeral above the coefficient to indicate the power of the variable.
Nicolas Chuquet, a physician in Lyons, France, wrote 120, 121, 122,
and 123 to designate 12, 12x, 12x2, and 12e in his Le triparty en la
science des nombres, written about 1484. He also used

12.1 .C4

to designate 12x-1. Later, about 1610, Pietro Cataldi wrote

to stand for x°, x , x3, and x4; and in 1593 the Dutch writer Adrianus
Romanus used

1(45)

for x45. In 1619 the Swiss mathematician Jobst Mirgi used Roman
numerals as exponents. He wrote

iv iii
8 ± 12 9 ± 10

to indicate the polynomial

± 12x 9x4 ± 11::W .

The accompanying table summarizes the main items in the his.7
torical development of exponents, including negative and fractional
exponents. Cardano's verbal notation and J. Buteo's pictorial notation
illustrate siyles otherwise omitted because they did not contribute to
the development of our present system.

The history of the development of exponential notation is a , redit
to man's genius in finding facile symbolisms for expressing mathe-
matical concepts.
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TABLE [89]-1
HISTORICAL DEVELOPMENT OF EXPOrENTS

Modern
Notation

7r 7.r2 7z3 Commentary

1360

Oresme

Different manuscripts show dif-
ferent notations. For 21/2 he
wrote A2P; also 114. For 9113,
he wrote 49P.
For (21)114, he wrote

11..2.2-
For 43/2, he wrote 1P 4- 4, also

p.1 4.
1.2

1484

Chuquet
71 72 73 For 7, Chuquet wrote 7°- For

12x-1, he wrote 12.1.g..

1545

Cardano
7. pos. 7. quad. 7. cab. For 7x4, Cardano wrote 7

quad i . quad.

1559

Buteo
7 Ifi3

1572

Bombelli
7

1585

Stevin
7® Stevin. suggested for xt the

notation (I) when. he said, "3/2
in a circle would be the symbol
for the square root of (:) [Le.,
xar; but he never used this
notation.

1590
Viete

Mesa

7N 7Q 7C
Viète used vowels for unknowns
and consonants for constants
(except that N, Q, C had al-
ready been reserved for powers).
He used the first style for poly-
nomial equations in one un-
known with numerical coeffi-
cients. Both styles are from
later editions of his work; ear-

B in A 7
for

7 BA

B in A q 7
for

7 B A2

B in A cu 7
for

7 BM
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lier he wrote "B in A quadra-
turn 7" for "B in. A q7" [7BA2].
In the second style, ViCte wrote
"B in A qq 7" for 7BA4 and "B
in A q cu 7" for 7BM.

1610

Cataldi
7 :it For 7, Cataldi wrote 7 J.

1619

Bürgi

i ii
7

iii
7

iv

For 7:0, Burgi wrote 7.

1631

Harriot .

7aa 7aaa

1634'

IIerikone
7a2 7a3

. .

1637

:1.-Jescartes
7x 7xx 7x3 'For 7x4 Descartes wrote 7x4.

1656

Wallis
,a 7a3.

For 7x;;' Wallis wrote 7a4. In...
.1676, Wallis spoke of

1-. 1 . 1-

1/i. 71/2- '7 1/3
.. ,

he never used 'this potation.
. .. .

also; used,the colloyiing nota-
tions:

. . ,
,

1-a-2-,-ali a,7.ete'.;-a a 2. ,
-aa , etc.; ,, .,. :: .. .

_.. .

1676

Newton.*

.

.. .-.7x
..

.

:'

.. .

.,

- 7xx

-

.

:
.

..-...

-7x3,'..

.,

1-
P + P (21"= -- P " ,+ A Q +

, ii;
la .

Nktere A

".(2 : V7 1 ":(3:
X ±' x - -

*./n a letter" Vane 13, 1676) to Henry Oldenburg:secretary; àf tlic Royal Society of London. Newton
said: "Since algebraists write. (12, a3; a4, etc for aai aaa, aaaa, etc.',. so I %%Tito a 11.2, (OP, a5/3, for Va,' Va3s

,

N/c (es; and I write a-1, -a-2, .471,' etc. for' . etc." /CA.roni (d):' I, 355./a, an, aria

73
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BOYER (d)
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(d): 1,335-60

SANFORD (d): 155-58

Capsule 90 Waldeck E. Mainville, Jr.

RULE OF FALSE POSITION

THE rule of false position is a method of solving equations by assign-
ing a value to the unknown; if, on checking, the given conditions are
not satisfied, this value is altered by a simple proportion. For example,
to solve x + X/4 = 30, assume any convenient value for x, say x 4.

Then x + x/4 5, instead of 30. Since 5 must be multiplied by 6 to
give the desired 30, the correct answer must be 4 - 6 or 24.

This method was used by the early Egyptians (c. 1800 B.C.) ; many
problems appearing on Egyptian papyri seem to have been solved by
false position. Diopliantus, in his text Arithmetica, uses a similar pro-
cedure to solve simultaneous equations.

The Hindu Bakhshali manuscript (c. A.D. 600?) contains some prob-
. .lems solved by false position. The earliest Arabic arithmetic of al-

Khowarizmi explained the rule of false position.
The Italian mathematician Fibonacci (Leonardo of Pisa c. 1200)

issued a tract dealing with algebraic problems, all solved by false
position. The arithmetie of Johann Widmann, published in Leipzig
in 1498, is the earliest book in which the symbols + and have been
found. They occurred in connection with problems solved by false
position to indicate excess and deficiency. The first edition of Summa
de arithmetica, geoinetrica, proportioni et proportionalita (1494) by
the Italian friar Luca Paicio li discussed and applied the rule of false
position. In England Robert Recorde included the rule of false poSition
in his arithmetic, The Ground of Artes (1542).

For Further Reading

MIDONICK : 91-105 . D. E. SMITH (
SANFORD (d): 155-58
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