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1.0 Introduction

During the past three years, the author has been working on

research and development efforts in educational achievement testing. The

Comprehensive Achievement Monitoring project (Gorth [6] and Pinsky [9,10])

that the author is a member of was initiated with the idea of applying

sampling procedures such as those used in industrial quality control tech-

niques to educational measurement. Throughout this time, questions have

arisen such as how long should an achievement test be?; how frequently

should testing be done?; and what is the value of an achievement testing

program as compared with its cost? Analogous questions have been asked of

the sampling procedures used in industrial quality control techniques.

Mathematical models have been developed to gain insight into the role of

these sampling procedures in the quality control process (Barlow and

Proschan [2]). In his Ph.D dissertation (Pinsky [9]), the author explored

the use of these mathematical modeling techniques to gain insight into the

role of achievement testing in the instructional process. This paper

presents extensions of the work contained in the dissertation.

The next section presents the general assumptions upon which all the

models are based. Model 1 is developed in section 3.0; model 2 is developed

in section 4.0, followed by computational examples for the model; and model

3 is developed in section 6.0, followed by computational examples for this

model. It is the author's intention that these models will be of value in

gaining insight into the role of achievement testing in the instructional

process. It is not the author's intention that these models will be applied

to a real world environment. Much more work is necessary before the latter

4



2.

situation will be productive.

Some of the assumptions made in this paper are reasonable, and

some of the parameters defined are easy to estimate. However, some of the

assumptions made and parameters defined should be examined closely. The

assumptions about test reliability are straightforward, and the concept of

test reliability is easily incorporated in the models. The defining of

student parameters should not cause any major problems. The estimation of

these parameters is slightly more difficult. The concept of placing a

monetary value upon certain instructional activities is a relatively

foreign concept in educational institutions. However, this decade should

see a considerable effort in the educational community to analyze instruction-

al alternatives in monetary terms. This is evidenced by the Planned Program

Budgeting Systems (PPBS) approach that is now getting considerable attention.

The assumptions about how the achievement test data is used to make instruc-

tional decisions should be examined carefully. The manner in which test

data, in conjunction with other data that a teacher has (such as verbal and

visual cues in the classroom), is used for decision making is not very

well known. It is hoped that these models will stimulate thought about

this topic. The final and perhaps most difficult assumption to defend is

concerned with the curriculum structure and how a student progresses

through this structure. Extensions of the work presented in this paper

should concentrate on making more explicit assumptions about the curriculum

structure, defining the relevant student parameters, and generating models

of learning within this structure.
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2.0 Assumptions

The following general assumptions apply to all three models. The

time variable can be continuous (denoted by the symbol t ), or discrete

(denoted by the symbol n ). In the assumptions below, time is represented

by t, but could also be represented by n . In each of the models, fur-

ther assumptions are made.

2.1 Student's state - The student's state at time t is given by

n(t) . 0(t) can be a scalar or vector quantity, discrete or continuous.

Examples of a student's state include what lessons in a textbook he is

working on, his grade equivalent in a subject area, his mental ability (IQ)

score, or his level on each of the strands in Stanford's CAI mathematics

curriculum (Suppes and Morningstar [11]).

2.2 Estimation of o(to) - Testing is done at time to . The test

results generate an estimate 8(to) of the student's true state e(to) .

The variance of this estimator is called the reliability of the testing

procedure (Lord and Novick [8]).

2.3 Change in the student's state - The student's true state e(t)

changes over time according to a stochastic learning model. One never

observes o(t), but must make a projection as to what e(t) is given

that one knows o(t
o

) . o (0 is the projected student's state based upon

0(to) and the stochastic learning model. However, one never knows e(t
o
),

but rather must make inferences from 6(t ) . Correspondingly, 8 (t) is

the estimated projected student's state. This variable 0 (t) is known

and is used to make instructional decisions. An example of (t) is that
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a student who has just finished lesson 5 at time to (8(to) = 5) will

probably have finished lesson 6 by time t1 (8p(t1) = 6) .

2.4 Instructional decisions - Given the value 8
P
(0 at time t,

instructional decisions DO
P
(0) are made. Thus, if 8 p(t) = 6 (meaning

that the student has probably just completed lesson 6), then D(8p(0) =

D(6) = 7 (meaning that the student should work on lesson 7). D() can be

either a scalar or a vector function.

2.5 Value of the instructional decisions - Given e(t), the true

value of the student's state; 8
P
(0, the estimated projected value of the

student's state; and D(ep(t)), the instruction decisions; V[D(e
P
(0)1e(t)]

is the value of such a decision. If the student has just finished lesson 6

(o(t) = 6) and is assigned lesson 7 (D(8p(0) = 7), then the value of

this instructional decision should be high; while if this student is assigned

lesson 12, then the value of the instructional decision should be low.

2.6 Expected value of instruction - It is assumed that testing is

done every T units of time. Thus, the models have an infinite horizon.

The expected value of the instructional process from time to to time

t
o
+ T is given by

and

t
o
+T

EV(T) = I {EV[D(8 (01e(t)Ddt
t
o

P

n
o
+N

EV(N) = y EV[D(8p(n))10(n)]
n=n

o

for continuous time

for discrete time.
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The expectation is taken with respect to both the errors of measurement

for 8(t
o

) and the deviation of e(t) from e .

2.7 Testing frequency - In order to maximize the expected value

of the instruction program per unit of time, T* is chosen which maximizes

the expected value of instruction over an interval of T units of time

(EV(T)) minus the cost of testing (m) divided by T . That is,

EV(T*) - m =
max EV(T) - m

T* T > 0 T

3.0 Model 1

The first model is a very simple one. This simplicity is necessary

when one considers a finite horizon model; that is, when instruction takes

place in a finite amount of time [0,T], and testing is done at times

t
'

t
n'

0 = t
1

< <_t
n

< T . Both the finite and infinite horizon

formulations of this model are discussed in detail in the author's disser-

tation (Pinsky [9]).

This section presents a summary of the results for the infinite

horizon formulation.

3.1 Student's state - A student is assumed to be in state c

(conditioned) or state uc (unconditioned). The terms conditioned and

unconditioned are motivated by the terminology of mathematical learning

theory (Atkinson, Bowers, and Crothers [1]). The student is assumed to be

in state c when the information about his needs is correct, and to be in
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state uc when the information about his needs is incorrect. Thus, in

state c the student is presented materials such that he learns efficient-

ly, while the student in state uc is presented materials that are not

what he really needs (for instance, the materials may be too easy or too

hard).

3.2 Estimation of o(t
o

) - A test is given at time t
o

every T

units of time. The results of this test are used to decide what the

student will study. If the test results are accurate, then e(t0) = c .

If the test results are inaccurate, then e(to) = uc . After each test,

the probability that a student will be in state c is equal to r, i.e.,

P{o(t
o

) = c} = r . r is referred to as the reliability of the testing

procedure. One never knows what state the student is in. In this model,

6(t
o

) = c .

3.3 Change in the student's state - As the length of time increases

since the last test, the information about the student's heeds becomes less

accurate. Correspondingly, the materials presented to the student are less

in accord with his needs. A student who is in state c at time t
o

might

switch to state uc at time to + t . A student in state uc remains in

state uc until at least the time when the next test is administered.

This transition of student states is summarized below.

Plo(t) = clo(to) = = 1 - F(t - to) P{o(t) = cle(to) = uc) = 0

Pln(t) = uclo(to) = c) = F(t - to) Pfo(t) = ucle(to) = uc} = 1
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F() is referred to as the failure distribution analogous to similar

terminology used in models of the failure of mechanical components in

industrial situations (Barlow and Proschan [2]). Later in this section,

two forms of the failure distribution will be used:

(a) uniform F(t) = mit4,1], t > 0

(b) exponential F(t) = 1 - e-At, t > 0 .

Ore never knows if the student's true state changes. In this model,

6 = c all the time.

3.4 Instructional decisions - Since 6 = c, the instructional

decisions are always the same - DO (0) = D(c) 2 D
c

.

3.5 Value of the instructional decisions- The value of the instruc-

tional decisions is given by

V[1)(613(0)10(0] = V[Ocle(t)] =

1 if e(t) = c

a if 0(0 = uc, 0 < a < 1

Thus, a student in state c learns at a rate of 1 per unit time, while a

student in state uc learns at a rate of a per unit time.

3.6 Expected value of instruction - The value of the instructional

program has two sources of variance. The first is the probability of initial-

ly being placed in state c, and the second is the probability of transfer-

ring from state c to state uc at time t . With to = 0, one obtains

io



thus

EV(t) = f
T
[P{o(t) = c} 1 + P{o(t) = uc} a]dt

0

P{o(t) = c} = r (1 - F(t))

P(o(t) = uc) = (1 - r) + rF(t)

EV(t) = [a(1 - r) + r]T - r(1 -a) JTF(t)dt .

3.7 Testing frequency -

(a) Uniform failure distribution

EV(T) = [a(1 - r) + r]T

EV(T. - m
a(1 - r) + r -

for T < D

m
T

8.

Taking the derivative of the above with respect to T, setting it equal to

zero, and solving for T yields

1

T*
2mD

r(.1 - a)

This solution only holds for T* < D .

(b) Exponential failure distribution

11
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e
-AT

- 11
EV(T) = [a(1 - r)+ r]T-r(1 - «)ET+ A J

EV(T) - m (e-AT 1) m
T

a(1 - r) + r - r(1 - a) r(1 - a) T

Taking the derivative of the above with respect to T and setting it equal

to zero, yields the following equation for T*

(1 + AT*)e-AT* = 1
A m

(1 - a)r

The author has been unable to find any closed form solution of T* from

this equation.

4.0 Model 2

The second model is concerned with tests that are used to direct

individual students' instructional activities in an individually-paced

curriculum. Examples of this type of instructional program include Indivi-

dually Prescribed Instruction- IPI (Cooley and Glaser [3]), Planned Learning

in Accord with Needs PLAN (Flanagan [5]), and Stanford's CAI strands

curriculum (Suppes and Morningstar [11]).

4.1 Student's state - In this model the student's state is a one-

dimensional variable that is related to his achievement level in the subject

area. In the computational example presented in the next section, the

curriculum content ranges from kindergarten to the sixth grade, and a

12
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student's state can range from 000 (the entry level in the kindergarten)

to 699 (the exit level from the sixth grade). Thus, the state variable

is approximately a grade equivalent achievement level for a student.

4.2 Estimation of o(t
o

) - A test is given to a student at time

t
o

every T units of time. e(t
o

) is the estimate of e(t
o

) that is

generated by the test data. It is assumed that t3(t
o

) N(e(t 0),a
). a2

'

is referred to as the reliability of the test.

4.3 Change in the student's state - o(t) is assumed to change over

time according to the following linear learning model.

e(t) = o(to) + a(t - to) + c(t - to) t > to

where c(t - to) - N(0,a2(t - to)) .

013(0 = the projected student's state = E(e(t)) = e(to) + a(t - to) .

Thus, o(t) N(o
a2(t

(t),
0

is an indicator of how accurately

one can predict a student's achievement level over time in the curriculum

structure. o (t) = the estimated projected student's state = e(to) +

a(t - to) N(o (0,0 ) . Define a new variable e (t) = o(t) - (t) -

N(0,0
2

+ 02(t - to)) . This variable is the di fference between the student's
r

true state and the estimated projected student's state.

4.4 Instructional decisions - Given knowledge that the student's

true state o(t) = X, one would want to provide the student with instruc-

tional materials related to the curriculum content slightly more difficult

than X . An instructional decision of X means providing materials rela-

13



ted to the curriculum content slightly more difficult than X . Thus

(t)) = (t) .

4.5 Value of the instructional decisions - The value of instruction-

al decision X for a student in state Y depends upon the closeness of X

and Y . The value of presenting a lesson on curriculum content 425-430

to a student in state 425 is high, while the value of presenting this

lesson to a student of state 300 or state 600 is quite low. The value

function chosen for this model is

v[p(613(0)10(t)] = ae
-b(o(t)

p
(0)2

4.6 Expected value of instruction - Assume to = 0 for the remain-

der of this section. The expectation of the value of instruction is taken

with respect to two variables, o(t) and e(to)

EVED(O(t))10(t)]. E0(t) E6(t)
-b(o(t) - (0)1

ae

Using the variable transformation od(t) = o(t) - op(t) and using the

properties of the normal distribution

-bo
EV[1.] = _Cae d f(od(t)) dod(t)



Since
d
(t) N(0,0 + Li

20
'

the above equals
r E

Then

-1/2

= a[2b(Gr
2

+ Get) + 1]

1/2

EV(T) = ira[2b(02+02t) + 1] dt
0

r

Using the variable transformation Y = 2b(021 + ot) + 1, one obtains

a ( 2 2 1/2
1/2

EV(T) --72-tE2b(Gr + (JET] - + 1]
bac

12.

4.7 Testing frequency - The optimal testing frequency T* in this

model is that value of T which maximizes

a 1/2 1/2

EV(T - m
b
2- 1[2b(a 2

r
+ a

E

2
T) + 1] - [2ba

2
+ 1] - m

)
a

(4.7.1)
T

The author could find no closed form solution for T* . The next section

presents a computational example of the above function.

5.0 Computational Example for Model 2

A computer program was written to find T*, the optimal testing

frequency for model 2, as a function of the various parameters of the model.
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Upon examining equation (4.7.1), one notices that T* is a function of

only three variables, m/a, bog, and bo
r

2
. The following thoughts went

into the selection of the parameter values used in the examples.

(a) The student state and curriculum content are numbered from

000 to 699. 000 is the entry level for kindergarten, while 699 is the

exit level from the sixth grade.

(b) Time is in school days. 180 school days to the year times 7

school years equals 1260 school days from kindergarten through the sixth

grade.

(c) If the average student enters level 0 and leaves level 699

over a seven year period, then a = .55 .

(d) $100-$150 per student per subject area per year is approximately

what most school districts spend. Thus a maximum value of $1 per day for

instruction in a subject area was chosen, a = 1

(e) a
2

= 1 implies an excellent test while 0
r

2
= 100 implies a very

poor test.

(f) a
2

= .02 implies a curriculum and student population that

allows for very accurate prediction of student achievement, while 0
2

= 2.0

implies a curriculum and student population for which accurate prediction

is not possible.

(g) A value of b = .05 was chosen.

(h) The cost per test per student (m) ranges from $.10 to $.90.

The results of the computer analysis are shown in Table 1. For

each of the 5 values of bog, bo
r

2
, and m/a, the computer calculated

equation (4.7.1) for T = 1 to 100 in steps of 1 and found the optimal

testing frequency T* . The number in the left of the brackets is T*,

1G
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while the number in the right of the brackets is the value (in cents per

day) of the instructional program with a testing frequency of T* . A

* in the brackets means that T* was not found in the calculations, i.e.,

T* > 100. Table 1 allows one to do a sensitivity analysis of the param-

eters in model 2. Note that the value of the instructional program seems

to be more sensitive to the reliability of the testing procedures (bcy
2

)

than to the cost of testing (m) or the predictive power of the student's

achievement level (b0
2

) . Figure 1 contains a graph of
EV(T) - m

as

a function of T for a = 1, b = .05, bog = .03, ba
r

2
= .5 and m = .70 .

6.0 Model 3

The third model is concerned with tests that are used to group

students together for instructional activities. For each unit of curricu-

lum content, there may be several different instructional activities. In

many instances, these activities vary in their difficulty level. Examples

of this type of instructional program include tracking systems that place

each student in a certain difficulty level of instructional activities and

periodically change the student's level when his achievement results

change, and Stanford's CAI block structure curriculum (Jerman and Suppes

[7]). The time variable in this model is discrete and is labeled as

n = 1,2,3,. This time variable corresponds to school days.

6.1 Student's state - During each time period (or day), the student

is assumed to be in one of S states, i.e., o(n) c {1,...,S} . This state
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variable corresponds to the instructional activity that is best suited for

the student's needs. There are S instructional activities available in

the model.

6.2 Estimation of o(n
o

) - A test is given to each student at the

end of time period no every N units of time. The test results are used

to place the student in the instructional activity that appears best suited

for his needs. Thus 6(no) c {1,.,S} . Given that a student is actually

in state o(n
o

) = j, the test will place him in state 6(n
o

) = k with
S

probability rjk,
klr.k

= 1, j = 1,...,S . (rjk) is referred to as the

reliability matrix of the testing procedure.

6.3 Change in the student's state - A student in state j at

time n transfers to state 9. at time n+1 with probability pie

S

16X 1

Pjit = 1, j = 1,...,S . (pjz) is referred to as the student transition
=

matrix. The states are labeled such that pjj > pjz, u, = 1,...,S . A

student who is assigned instructional activity k at time no, remains

in activity k until the next test. Since testing is done every N units

of time, 6o(n1 + no) = op(no) = O(no), nl = 0,...,N-1 .

6.4 Instructional decisions - A student with parameter 6 (n) = k

is assigned instructional activity k; that is, D(oo(n)) = ©p(n) . Testing

is done to determine what activity is best for each student, and the student

is kept in that activity until another test is given.

6.5 Value of the instructional decision - A student in state it

(0(n) = v), and in instructional activity k, (8 (n) = k) has a value V
2..k;
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that is,

VED(61)(n)) = kjo(n) = t] = Va .

It is assumed that V
tt tk'

k = 1,...,S .

6.6 Expected value of instruction - In order to calculate the

expected value of instruction, one must know the percentage of students who

are in each of the S states. Let i be the percentage of students in

state j . Since the model being considered is an infinite horizon one,

the fii should be the steady state probabilities of the student transition

matrix (Pjz) . (This model contains a finite state Markov chain. The

properties of a finite state Markov chain that are used in this paper came

from Chapter XVI of Fellar [4].) After a test is given and the student

assigned to instructional activities, the value per unit time is given by

S S

714 o.
J.' k=1

r

u" J"
, .

This expression results from a student in state j (which has probability

fi ) being assigned to activity k (which has probability r
jk

) which

has a value of V
jk

Between time periods n
o

+ 1 and n
o

+ 2, the

student's state changes from state j to state t with probability pit

The student, however, remains in activity k . Thus the value per unit

time at time n
o

+ 2 is

S s

y y r. p V
j jk jt

19
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In general, the value of the instructional program per unit time n units

of time after testing is given by

(6.6.1)
s s s

ni y r
i

L
v n-1

k P. V

j=1 u j=1 - 2,=-1 R, a

n1where.Pjis the probability of a student transferring from state j

to state 5t. in n-1 time intervals. Thus, the expected value of an

instruction program when testing is done every N time units is

n +N
S

EV(N) =
'

n=n
o
+1 j=1 J k=1 Jk 5t.--11jjz va

6.7 Testing frequency - The optimal testing frequency N* under

the assumptions of model 3 is that N which maximizes

no+N s

y y 7. y r.1, 1:11.-1V - m

EV(

S S

n=no+1
j=1 J k=1 J- 9,=1 V a1 m _

N

(6.7.1)

The next section presents a computational example of the above function for

the case S = 2 .

7.0 Computational Example for Model 3

Because of the complexity of equation (6.7.1) and because of the

number of parameters involved, S = 2 was chosen to generate some data for
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model 3. With S = 2, the following reduction in the number of parameters

occurs.

r
11

= 1 - rl' r
12

= rl' r
21

= r
2'

r
22

= 1 - r
2

Thus,r.is the probability of assigning a student in state j to activ-

ity k, k # j .

Pll 1 al' P12 al' P21 a2' P22 1 a2

Thus, aj is the probability of a student in state j transferring to

state k, k j, in one time interval.

al

n
2 al + a2

and 1r2 are the steady state probabilities of a student being in each

state.

n-1

a

0L2 al(1-a1 -a
n-1 = al

a
1
(1-a

1
-a

2
)n

Pll +
l a2 al a2

P12 a
1
+ a

2 al a2

n-1 = "2 "2 1 "2

)n

Pn-1 =
a2(1-a1 -a2)n

P21 a
1
+ a

2 al
+ a

2
22

al
+ a

2'

The derivation of the above expressions can be found in Chapter XVI of

Fellar [4]. Inserting the above parameters into equation (6.6.1) and

reducing yields,

21



where

and

then

K1 + (u, + u2)K2(1 - al - a2)
n-1

19.

(al a2)

2

K1
V11 [a2(1

rl) ala2r2] "12La2r1 ala2(1
r2)]r

+ V
21 [ct 1

a
2
(1 - r1)

a1r2] V22Eala2r1 4(1 r2)]

("1 a2)3K2 ala2(1 rl r2)EV11 V22 V12

EV(N) = K1 + K2[1 - (1 - al a2) N]

Finally, equation (6.7.1) becomes (with no = 0)

Kl + K2E1 - (1 - al - a2)Nj - m

N

Note that N*, the optimal value of N, depends only upon al, a2,

EV N* - mr1 + r2, and mi[V
V22 V12 V21],

while

the values of al, a2, rl, r2, V11, V12, V21, V22, and m .

depends upon

The following thoughts went into the selection of the values used in

the examples.

(a) Time is in terms of school days.

(b) $100-$150 per student per subject area per year is approximately

22
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what most school districts spend. V11 V22 = 1 and V12 = V21
1

were chosen. This means that V
11

+ V
22

- V
12

- V
21

= 1 .

(c) r
1
and r

2
range from .01 for an excellent testing program

to .33 for a very poor testing program.

(d) a
1
and a

2
range from .01 for a very stable student popula-

tion and curriculum structure to .25 for a very unstable student popula-

tion and curriculum structure.

(e) The cost per test per student (m) ranges from $.10 to $.90.

The results of the computer analysis are shown in Table 2. For each

of the values of the parameters the computer calculated E
V

for

N = 1 to 100 in steps of 1 and found the optimal testing frequency N* .

The number in the left of the brackets is N* . The number in the right of

each bracket is the value (in cents per day) of the instructional program

with a testing frequency of N* . A * in the brackets means that N*

was not found in the calculations, i.e., N* > 100 . Figure 2 contains a

graph of E
V N - m

as a function of N for m = .3, a
1

a
2

= .05, and

r
1

+ r
2
= .25
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bat

bo
2

= .05

m = .1a
m = .3a
m = .5a
m = .7a
m = .9a

bog = .15

m = .1a
m = .3a
m = .5a
m = .7a
m = .9a

ba
2

= .50

m = .la
m = .3a
m = .5a
m = .7a
m = .9a

ba
2

= 1.50

m = .la
m = .3a
m = .5a
m = .7a
m = .9a

ba
2

= 5.00

m = .la
m = .3a
m = .5a
m = .7a
m = .9a

.001

[15, 94]
[27, 93]
[36, 92]
[43, 92]
[48, 91]

[18, 87]
[30, 86]
[40, 85]
[48, 85]
[54, 84]

[25, 70]
[42, 69]
[56, 69]
[66, 69]
[75, 68]

[39, 50]
[70, 49]
[91, 49]

*

[86, 30]
*
*
*

*

.003

[9, 93]
E16, 91]
[21, 90]
[25, 90]
[28, 89]

[10, 86]
[18, 84]
[23, 83]
[28, 83]
[32, 82]

[14, 69]
[25, 68]
[32, 68]
[38, 67]
[44, 66]

[24, 49]
42, 49
53, 48
64, 48
[72, 47]

[51, 30]
[88, 29]

*
*

*

.010

[5, 91]
[9, 88]
[12, 86]
[14, 85]
[16, 84]

[6, 84]
[10, 82
[13, 80
[16, 79
[19, 77

[8, 68]
[14, 66]
[18, 65]
[22, 64]
[25, 63]

[13, 48]
[23, 47]
[30, 47]
[36, 46]
[42, 45]

[28, 29]
[49, 29]
[64, 29]
[76, 28]
[87, 28]

.030

[3, 88]
[6, 84]
[7, 81]
[9, 78]
[11, 76]

[3, 82]
[6, 77]
[8, 75]
[10, 72]
[12, 71]

[5, 66]
[8, 63]
[11, 61]
[14, 60]
[16, 58]

[8, 47]
14, 45]
18, 44]
22, 43]
[26, 42]

[16, 29
[29, 2
[38, 27

8

[46, 27]
[53, 27]

.10

[2, 83]
[3, 75]
[5, 70]
[6, 66]
[7, 63]

[2, 77]
[4, 70]
[5, 65]
[7, 62]
[8, 59]

[3, 63]
[5, 58]
[7, 54]
[9, 52]
[10, 50]

[4, 45]
[8, 42]
[11, 40]
[14, 38]
[16, 37]

[9, 28]
[17, 263
[23, 25]
[28, 25]
[33, 24]

[T*, the optimal testing frequency, The optimal value of the instruc-
tional program in cents per day]

Computational Example for Model 2

Table 1



(al' 012

r
1

+ r
2

= 02

(.01,.01) (.01,.05) (.01,.25) (.05,.05) (.05,.25) (.25,.25)

m = .1 [7, 97] [5, 96] [8, 96] [3, 94] [3, 92] [1, 89]

m = .3 [12, 94] [10, 93] * [6, 89] [6, 87] [3, 79]

m = .5 [16, 93] [14, 92] * [8, 86] *

m = .7 [19, 92] [18, 91] * [10, 84] * *

r
1

+ r
2

=

m =

.10

.9 [22, 91] [22, 90] * [12, 82] * *

m = .1 [7, 95] [6, 93] [10, 93] [3, 92] [3, 91] [1, 87]

m = .3 [12, 93] [11, 91] * [6, 87] [7, 86] [3, 78]

m = .5 [16, 91] [15, 89] * [8, 85] *

m = .7 [20, 90] [19, 88] * [11, 83] *
*

r
1

+ r
2

=

m =

.25

.9 [23, 89] [24, 87] * [13, 81] *
*

m = .1 [8, 91] [6, 90] [15, 90] [4, 89] [3, 88] [2, 84]

m = .3 [14, 89] [12, 88] * [7, 85] [10, 84] [4, 76]

m = .5 [18, 88] [17, 87] * [10, 82] * *

r, + r2 =

m =
m =

.67

.7

.9

[22, 87]
[26, 86]

[22, 86]
[28, 85]

*

*

[12, 80]
[15, 79]

*
*

*
*

m = .1 [12, 82] [10, 81] * [6, 80] [6, 79] [3, 76]

m = .3 [22, 81] [22, 79] * [12, 77] * *

m = .5 [30, 80] [36, 79] * [19, 76] * *

m = .7 [37, 79] [66, 78] * [32, 75] * *

m = .9 [43, 78] * * [*, 75] * *

[N*, the optimal testing frequency, The optimal value of the instruc-
tional program in cents per day]

Computational Example for Model 3

Table 2

2G



cents
per
day

cents
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day

EV(T2 - m
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Value of the instruction program as a function of testing frequency

Model 2

Figure 1
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