
DOCUMENT RESUME

ED 054 126 SP 007 324

AUTHOR Hannigan, Joseph T.; Engvall, Richard E.
TITLE Introduction to Computer Programming.
INSTITUTION Framingham Public Schools, Mass.
PUB DATE 70
NOTE 127p.

EDRS PRICE
DESCRIPTORS

ABSTRACT

EDRS Price MF -$O.65 HC Not Available from EDRS.
*Computer Science Education, *Curriculum Guides,
*Programing

GRADES OR AGES: No mention. SUBJECT MATTER: Computer
programing. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is
divided into seven chapters, each of which is in outline form with
numerous diagrams and charts. It is mimeographed and looseleaf-bound
with a paper cover. OBJECTIVES AND ACTIVITIES: No objectives are
mentioned. Each of the seven chapters--covering history of computers,
numeration systems, flow charting, equipment, machine and assembly
language, basic, and focal--consists of a detailed content outline
followed by several problems to be assigned. Problems involve
performing calculations or writing programs. INSTRUCTIONAL MATERIALS:
Several references are listed at the beginning of each chapter.
STUDENT ASSESSMENT: No mention. [Not available in hardcopy due to
marginal legibility of original document.] (RT)

Albert Z. Benson
Superintendent of Schools

George P. King
Associate Superintendent

INTRODUCTION

TO

COMPUTER

PROGRAMMING

Summer

1970

Prepared by

Joseph T. Hannigan
Richard E. Engvail

kiR,00,04~MIPPKiffelt&P/CITE
A4M-1411191,18iPM11,18P444t4+16.

M IC OF IC HE REPRODUCTION
ONLY.

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

Framingham Public Schools
Framingham, Massachusetts

02701

Edward J. Moran
Director of Secondary Instruction

TABLE OF CONTENTS

CHAPTERS

1. History of Computers

2. Numeration Systems

3. Flow Charting

4. Equipment

5. Machine Language and Assembly Language

6. Fortran

7. Basic

8. Focal

APPENDICES

I. Reference Books

II. Sample Programs
a. Machine and Assembly Lanimare.
b. Fortran
c. Basic
d. Focal

III. Programmer's Reference Forms
a. Machine Language and Assembly Language
b. Fortran
c. Basic
d. Focal

IV. Teletype Keyboard and Directions for Use
a. Preparation of Tapes

V. Diagnostics
a. Basic
b. Focal
c. Fortran

VI. Assignments
a. Basic
b. Focal
c. Fortran

d. Machine Language

PREFACE

INTRODUCTION TO COMPUTER PROGRAMMING is a new course. It is based on
the belief that a computer can be an effective tool in teaching. The student
who understands the basic concepts of a computer may then use the computer

to aid his learning. This course is intended to provide insight into the
computer, and into the concepts involved in programming.

There is very little documented experience in teaching a course of
this type. It requires extensive preparation by the teacher. He must be
competent in operating the computer to be used by the students. He must
understand and appreciate the algorithmic approach to solving problems.
He must be willing to give freely of his time.

There are four general objectives of INTRODUCTION TO COMPUTER
PROGRAMMING. The first is to provide a solid foundation of knowledge of
computers and what they can do. The second is to teach students to use a
computer to lessen the computational burden of mathematical and scientific
investigation. The third is to reinforce concepts taught in mathematics
and science classes. The fourth is to provide the student the opportunity
v) extend himself to the limits of his own creativity, to investigate
topics unrelated to classroom material, and to develop the ability to work
independently.

This manual is provided to help you teach or learn this course. It is
not complete, nor will it ever be complete. Each year revisions, deletions
and additions will be made. Sample programs will be inserted where they
are deemed helpful. More reference books will be listed as they become
known. The chapter on FORTRAN will be included. Suggestions for teaching
the course will be included. After the course has been taught, the
deficiencies in the manual will be more apparent and will be corrected.
Until then, the teacher and student are encouraged to make frequent use of the
suggested reference materials.

It should be noted that the entire manual need not be taught.
Suggested alternatives are:

I. Chapters 1, 2, 3, 4, 5, 6.

II. Chapters 1, 3, 6, 7.

III. Chapters 1, 2, 3, 4, 5, 7.

IV. Chapters 1, 3, 6, 7, 8.

V. Chapters 1, 2, 3, 4, 5, 8.

Problems in the body of the manual should be assigned when they occur.
Problems in Appendix VI may be assigned at the teacher's option.

CHAPTER 1

HISTORi

AN OUTLINE HISTORY OF COMPUTERS

I. Counting Tools

23,000 B. C. - Historians tell us that man began to count by using
a one to one correspondence without the use of any
number names. What man probably did do was to
associate one stone with one animal when the animals
were let out to pasture. When the animals returned,
he would subtract one stone for each animal. If

any stones were left, he knew that all the animals
had not returned.

18,000 B. C. - It is about this time that man developed the concept
of "one", "two", "many ".

3,000 B. C. - Man developed the Abacus.

Chinese Abacus - "Suan-Pan" Japanese Abacus - "Soro-Ban"

,

i,

24______1

Aside!

In 1947; an American named Tom Wood had a contest with a
Japanese named Kiyoshi Matsuzake to see who could calculate
(correctly) the fastest. Mr. Wood used an electric calculating
machine while Mr. Matsuzake competed on the Soro-Ban.
Mr. Matsuzake won in four of the five problem categories.

300 B. C. - The first recorded use of zero for place value.

1,200 A. D. - The Arabic numerical system came into being.

II. Mechanical Devices and more recent computers

1617 - logarithms developed by John Napier. A device known as

"Napier's Bones" peformed multiplications using logarithms.

1621 - slide rule developed by William Oughtred (first analog computer)

1642 - first adding machine - built by Blaise Pascal (at age 19)
he worked in his father's tax office - built a gear driven
computer that would add 8 columns of numbers.

El_ggrlio 8 windows indicating number

size of shoe box

(44....
row of wheels each with 9 teeth
"carried" automatically

\\N

aside + also fathered projective geometry,
hydrodynamics, and probability

1674 - calculating machine which performed multiplication
developed by Leibnitz

III. Punched Card Devices

1801 - Joseph Jacquard - used punched cards in weaving in his
automatic loom the punched holes supplied instructions
that controlled the selection of threads and the
application of designs.
To show off, Jacquard had these cards weave his portrait
took 20,000 cards.

1812 Charles Babbage - designed "Difference Engine" - hundreds of
gears and shafts, ratchets and counters.

+ - X

> <

Got grant of 17,000 ($1,000,000 by today's
standards) (5 decimal place accuracy) worked
10 years - gave up designed ';Analytical Engine"

Input

coded j

icards

Storage

1000 nos. Output

each 50 digits

control

4

Analytical Engine Features
Memory Unit
Punched cards for Input and Control
20 place accuracy
Arithmetic Unit
Automatic Readout

Went broke - never finished - would have taken over an acre to
house the machine

1887 - Dr. Herman Hollerith - Bureau of Census - still working on 1880
census (50 million people)
Size of card corresponded to 1887 U. S. dollar bill
1890 census (62 million) took only until 1892
System would:

Record
Sort
Tally
Print

Hollerith used electricity - cards floated across pools of mercury -
50 -75 cards/min pins dropping through holes made contact

creating an electrical circuit causing
counters to add one. Start of IBM
after several mergers.

IV. Modern Computors

1925 - Vannevar Bush (MIT) built analog computer

1949 - Howard Aiken (Harvard) - built
used relays
punched paper tape
electromechanical

MARK I
3 operations per second
first of large scale
digital computers

1946 - Mauchlv & Eckert (U of Penn) ENIAC - Electronic Numerical Integrator
& Computer

1st electronic computer - 18000 vacumn tubes
weighed 30 tons
1500 SQ. Ft. (walls as long as
football field)

5,000 operations/second

1949 EDSAC - Cambridge, England - 1st stcr:Id program computer

1951 - MIT WHIRLWIND - used magnetic core memory

1951 - UNIVAC I (Mauchley & Eckert) - first commercially available computer.

1st Generation
Vacunin Tubes Bulky, took much room, produced much heat

2nd Generation (1960) - solid state devices (transistors)
smaller
less heat
more reliable

1 -

7
4

3rd Generation (1964)
microminiaturized circuits (integrated circuits)
thin film memory
smaller
faster (op speed - billionths of a second)

(nanosecond)

1 -eS5

CHAPTER 2

NUMERATION SYSTEMS

`;)

NUMERATION SYSTEMS

I. To Convert Numbers From One Base to Another Base.

A. To convert Numbers in the Decimal System to the Binary System.

1. The Highest Power Method
Change 37 to Base Two
1) The highest power of two that

is in 37 is 25 = 32
Divide 37 by 32
32 1.37_ with a remainder of 5

1

2) Take the 5 and divide it by the
next lowest power of 2 which is
24 = 16 getting 0 with a
remainder of five

3) Divide the remainder (5) by
the next lowest power of two
23 = 8 getting zero with 5
as a remainder

4) Repeat this process until the
power's of two are exhausted.
(i.e. until the last division
is one)

Example

!Divisors
1)/ 32

1 Remainders
, 37

Quotient-
1

2) 16 5 0

3) 8 5

(
4

-t--

5

,4) 2 1

1 1 1

5) Your answer is the number formed
by reading down the quotients
column.

2. The Remainder Method

1. Divide 37 by 2 getting 18
with a remainder of one.
Place the 18 under the 37
and the 1 to the right of the/
37.

2. Next divide the 18 by 2
getting 9 with a remainder of
zero. Place the 9 below the
18 and the zero to the right
of 18.

3. Keep dividing by 2 until you
get a quotient of zero. You
then read up the remainder
column writing Your answer
left to right as you read up
the column.

5) Ans: 3710 = 1001012

Divisors Quotients i Remai

Read
Down

1---

1) 2 37 1

2) 2 18

2 9 1

2 4 0

3) 2 2 0

2 1

I

1 Read UP

0

2-1

Ans: 371014001012

3. Change Binary Numbers to Decimals (base ten)

Set up in table form as illus- Example
trated with the top row contain-
ing the base to be changed
written in exponential form.
The second row contains the
values of the top row in base
ten. The last row contains
the number to be changed in its
proper column.

1. Take the binary number
101102 and place these
numbers in the first five
columns from the right.

Exponential Form 24 23 22 21 20

Value 16 8 4 2 1

(1) 1 0 1 1 02

(2) 16 x 1 = 16
8 x 0 = 0

4 x 1 = 4

2 x 1 = 2

2. Find the products of the 1 x 0 - 0

second row and the third 22
row and find their sum.

Ans. 101102 = 2210

2-2

11

NUMERATION SYSTEMS - PROBLEM SET

I. Convert the following decimal numbers to their binary equivalent.

1) 15 12) 1502

2) 18 13) 7777

3) 42 14) 501

4) 100 15) 828

5) 235 16) 907

6) 1 17) 15631

7) 294 18) 6023

8) 117 19) 18741

9) 86 20) 99999

10) 4090 21) 10101010

11) 4978 22) 15712

II. Convert the following binary numbers to their decimal equivalents.

1) 110
2 9) 110110111012

2) 101
2 10) 1110001110012

3) 1110110
2 11) 11101011010012

4) 1011110
2 12) 111111110111012

5) 01101102 13) 10101101010100102

6) 111112 14) 1111112

7) 10102 15) 0001010012

8) 1101112 16) 1111111111112

2-3

12

dU1i6RATIOR SYSTE14 (Cont.)

B. Convert numbers in the decimal system to the octal system.

1. The Highest Power Method
Change 127 to base eight. Example
1. Find the highest power

of eight that goes into
127. It is 82 = 64. 1) 64 127
Divide 127 by 64 giving
1 with a remainder of 63. 2) 8 63
Place the 1 to the right
of the 127 and the 63 3) 1 7

below the 127.
0

2. Divide the 63 by the next
lowest power of 8 4) Ans. 12710 = 1778
(81 = 8). This gives
an answer of 7 with a
remainder of 7.

3. Divide the 7 by the next
lowest power of 8 which
is 80 = 1 giving an
answer of 7 with a
remainder of zero. Place

the 7 to the right of
the 7 and the zero below
the 7.

4. iou read your answer
reading down the right
hand column and writing
the answer from left to
right as you read.

2-4

1j

NUMERATION SYSTEMS (Cont.)

2. The Remainder Method
Example

1. Divide 127 by 8 getting 15
with a remainder of 7. Place
the 15 below the 127 and the Remainders

7 to the right of 127. 1)

2. Divide 15 by 8 getting 1 with 2)
a remainder of 7. Place the
7 to the right of the 15 and 3)

the 1 below the 15.

8 , 127 7

78 ! 15

1 8

i

1

I--

I 1

I

0

3. Divide the 1 by 8 getting
zero and a remainder of 1.
Place the zero below the 1 4) Ans. 12710 - 1778

and the 1 to right of the 1.

4. iou find Your answer by
reading up the right hand
and writing the numbers from
left to right as you read.

1--

i t

Read.Up_

3. Change from the Octal System to the Decimal System.

Set up in table form as illus-
trated with the top row
containing the base to be changed
written in exponential form. The
second row contains the values Exponential Form 85 841 831 82
of the top row in base ten. The
last row contains the number to Value 32768 409. 512 64

Example

be changed with each digit place
in its proper column.
1. Take the octal number 3745

8
and place these numbers in
the first four columns from
the right.

2. Find the products of the sec-
ond row and the third row and
find their sum.

2-5

14

1)

2) 512 x 3 = 1536
64 x 7 = 448
8 x 4 = 32

1 x 5 = 5

2021

Ans.: 37458 = 202110

Problems: Convert the following decimal numbers to their octal equivalents.

1) 796 7) 108 13) 15072 18) 287

2) 32 8) 999 14) 107891 19) 19872

3) 4037 9) 57 15) 571 20) 4279

4) 580 10) 111 16) 8572

5) 1000 11) 97 17) 7852

6) 3 12) 4095

Convert the following octal numbers to their decimal equivalents.

1) 67
8 7) 777

8 13) 64
8

19) 256348

2) 701
8

8) 106
8

14) 117
8

20) 1245638

3) 32
8

9) 20
8 15) 245

8

4) 236
8

10) 171
8 16) 2718

5) 10
8

11) 576
8 17) 1718

6) 71
8 12) 75

8 18) 662
8

115

NUMERATION SYSTEIS (Cont.)

C. Convert from binary to octal

In order to convert from binary to octal you must understand the following
table which gives the comparative values between the binary system and
the octal system.

Base Two Base Eight

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

1. To convert from binary to octal, vou will group the binary number into
groups of three and then find the equivalent values for each group in
base eight.

Take the binary number,
separate it into groups of
threes, working from right to
left. The equivalent values

10

2

001

1

011

3

110

6

101

5

1112

78

in base eight are written next
which gives you your answer
in base eight. 100010111101011112= 2136578

2. To convert from Octal to binary, you still use the tables given earlier.
1ou convert your octal number to its equivalent in the binary system.
For each octal number there are three binary digits. It is the reverse
process of working from the binary to the octal.

Take an octal number and
convert each digit into its
binary equivalent which gives
you your answer 372468 = 0111110101001102

2-7

1G

3 7 2 4 68
4

011 111 010.100 1102

Problems: Convert the following binary numbers to their octal equivalents.

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

101
2

111
2

1101
2

10111
2

1101
2

11101
2

1011
2

10012

1111
2

10112

101102

111012

100012

110012

110112

10102

17) 1100
2

18) 10111
2

19) 110001
2

20) 110011
2

21) 111000
2

22) 1110011
2

23) 1011001112

24) 11110011102

25) 10110002

26) 101010102

27) 1110011112

28) 1011110112

29) 1100111002

30) 10111011112

31) 100012

32) 11001112

33) 11111111
2

34) 11110101
2

35) 1110001110001
2

36) 111100011
2

37) 11111100001011
2

38) 110110110
2

39) 101111001
2

40) 1101111101101
2

41) 1111111111112

42) 1110110111112

43) 1010101010102

44) 1101110111102

45) 11101110111112

46) 111110111102

47) 111011101100012

48) 110111010110110102

49) 101110112

50) 111111010001110012

Convert the following octal numbers to their binary equivalents.

1) 354
8

8) 12
8

15) 3214
8

22) 1221
8

29) 27688

2) 736
8

9) 121
8

16) 414
8

23) 401
8

30) 13478

3) 15
8

10) 310
8

17) 707
8

24) 273
8

31) 26538

4) 10
8

11) 111
8

18) 141
8

25) 2211
8

32) 13478

5) 7
8

12) 100
8

19) 747
8

26) 6713
8

33) 43758

6) 307
8

13) 1101
8

20 1243
8

27) 5142
8

34) 67548

7) 70
8

14) 64
8

21 1001
8

28) 347
8

35) 723138

2-8

1?

Convert the following octal numbers to their binary equivalents. (cont.)

36) 52768 43) 1111118

37) 61148 44) 1011104

38) 543778 45) 2743628

39) 3421568 46) 576438

40) 1011018 47) 7658

41) 275318 48) 11000018

42) 723678 49) 2200228

50) 333038

II. ADDITION IN BASE TWO AND IN BASE EIGHT

Addition in all bases is exactly the same as you have always done in base
ten. iou only have to remember when to carry from one column to the next.
When you add one to nine in base ten, you know nine is the largest single
digit number in base ten so you now carry one over into the ten's column
giving ten. This same thing happens in other bases except the largest
single digit varies with the base being used. The largest single digit
in any base is the digit that is one less than the base being used. In

base eight the largest single digit is seven. In base five the largest

single digit is four. In base eight when you add one to seven You get 108

I think we can best illustrate this thought by some examples. In base

eight let's add 2768 and 3228

11 Six and two added gives 108 so we carry one
2768 into the eights column. Add the carried one

3221 and seven we get 108 so we carry the one over
6208 to the next column. We now add the zero and

the two in the second column and get two.
We add the one and the two and the three in the
third column and get a sum of 6.

Let us now look at an addition problem in base two. The largest digit in
base two is one less than two which is one. Adding one to one in base

two gives 102 which is a two digit number.

Let us look at an example to illustrate addition in base two. Let's add
10112 to 1112

1111
10112
1112

100102

Adding one and one in the first column
gives 102. Carry the one over the next
column and write zero in your answer. Now
add the carried one to one getting 102

which means we have to carry one again.
Add the zero and the one in the second
column getting one which you write in
your answer. In the third column add
the carried one to the one already in
the column getting 102 which means carrying

one to the fourth column. Add the carried
one to the given one getting 102 so you have

to carry one to the next column This is
the only number in this column so you place
the one in your answer.

2-10

1 ri

Problems:

1)

2)

3)

4)

Add the folowing ploblems in base two.

1101101111
2

1111110111
2

1111001110
2
+ 11011

2

1111001110
2

110111
2

1101111000
2
+ 10101011

2

1011
2
+ 101

2
11)

11112 + 1112 12)

11110
2
+ 1011

2
13)

110112 + 112 14)

5) 10110112 + 1112 15) 1101110011112 + 101010102

6) 1101100112 + 1101112 16) 1111100112 + 110110112

7) 11100111002 + 111001112 17) 11112 + 101101102

8) 111101112 + 11101112 18) 1111112 + 100010002

9) 11102 + 110012 19) 1000110002 + 1110011112

10) 111112 + 11111112 20) 11101111002+ 1010112

Find the sum of the following problems in base eight.

1) 248 + 138 9) 17538 +.60278

2) 328 148 10) 476318 + 14578

3) 1528 + 3138 11) 537128 + 47268

4) 4168 + 2318 12) 752468 + 25628

5) 23148 + 32528 13) 137568 + 472218

6) 5348 + 2538 14) 1473128 + 57236718

7) 43568 + 8118 15) 623578+ 2146738

8) 3748 + 4138

2-11

20

NUMERATION SYSTEMS (Cont.)

III. A Subtraction of Numbers in other bases.

Let's take a look at subtraction as you know it and then we shall learn

how to subtract by addition.

Let's subtract 321 from 476.

The standard form for this is 476
- 321

which gives us a difference of 155

Now as you will see in section B, you can get the same answer except
that instead of subtracting one number from another, You will add.

III. B. Subtraction by Addition

In order to perform subtraction by addition, you have to know how to
find the 10's compliments of the subtrahends. The 10's complements

of a number is that number which when added to the number gives a
higher power of ten.

Example: The complement of 9 is 1 because 9 + 1 = 10; the complement
of 9 is 91 because 9 + 91 = 100; etc. The ten and the one-hundred
are powers of ten.

Subtraction by addition using the ten's complement.

A) 476 4 476 Add the numbers Subtract 321 from 1000,
- 321 4 + 679 -4- the 10's complement 'there must be an equal

(1)155 number of digits in both'
numbers.

Discard The answer is 155

B) 3476 4 3476 Add the numbers
- 243 4 +9757 -4- The ten's complement

(1)323i

DiStard

The answer is 3233

Another method of subtraction by addition is by using the nine's: complement.
fou simply take one less than the ten's complement to get the nine's complement.

Subtraction by addition using the nine's complement.

2 -12

21

A) 476 4- 476 (Add the numbers
-321 +678 {- (Nine's complement (Subtract 321 from 999)

(1)154
+1 Bring the one around and ADD

Answer 155

B) 3476 4- 3476 (Add the numbers
- 243 +9756 4 (Nine's complement

(1)3232
+1 Bring the one around

Answer 3233 and ADD.

(Subtract 243 from 999,
remember that there must be an
ecual number of digits in
both numbers.)

Problems: Find the Difference by Using the Ten's Complement and
the nine's Complement.

)) 27 - 3

2) 163 - 79

3) 3479 - 268

4) 111 - 10

5) 1534 - 13

6) 725 - 696

7) 39743 - 872

8) 5783 - 10

9) 273 - 194

10) 32591 - 9237

NUMERATIO11 SYSTE'i4 (Cont.)

Subtraction in Octal by Addition.

The eights complement is the number that is added to a giving number
to get a power of eight.

Example: The 8's complement of 6 is 2 because 6 + 2 108;

Subtraction by Addition using the eights complement.

A) 7468 7468 Add
-5128 _+2668 +Eight's complement (subtract 512 from 10008)

(1 234

Discard The Answer is 2348

B) 5218 +
768

5218 Add
+7028

(1)4238

Dicard The Answer 4238

8's complement (Subtract 76 from 10008)

Another method of subtraction by addition is using the seven's complement.
The seven's complement is one less than the eight's complement.

Subtraction by Addition using the seven's complement.

A) 7468 + 7468 Add
-5128 +2658 + 7's complement (Subtract 5128 from 777)

(1)2338
L. +1 Bring around and Add
2348

The answer 2348

B) 5218 + 5218 Add
-768 +7018+ 7's

(1)4228
I, +1

4238

complement (Subtract 718 from 777)

Bring around and Add
The Answer is 4238

Problems: Find the Difference by using the eight's complement and the seven's
complement.

1)

2)

268 - 178

318 - 4

21)

22)

6752 8 - 374
8

143258 27418

3) 1718 7 23) 37614 8 - 4303 8

4) 128 - 5 24) 51048 218

5) 7348 - 238 25) 76028 - 78

6) 4548 - 1428 26) 43178 2068

7) 4718 - 508 27) 27658 - 7768

8) 6758 - 2 28) 56128 - 238

9) 5178 - 278 29) 234218 - 43218

10) 16428 5318 30) 47568 7148

11) 478 - 248 31) 627358 - 30468

12) 74528 - 1478 32) 25768 678

13) 25348 - 14238 33) 47218 - 328

14) 3768 - 128 34) 35168 - 008

15) 4278 - 168 35) 42718 - 3

16) 53618 - 4238 36) 75318 - 2468

17) 3768 - 1078 37) 675428 578

18) 278 - 78 38) 13428 - 4638

19) 65318 - 248 39) 76518 6748

20) 75678 - 1478 40) 43578 - 4638

2-16

2J

NUMERATION SYSTEM (Cont.)

Subtraction in binary by addition.

The two's complement is the number that is added to a given number to get a
power of two.

Example: The two's complement of 1 is 1 because 1 + 1 = 102; the two's complement
of 1012is 112 because 1012 + 112 = 10002; etc.

Subtraction by addition using the two's complement.

A) 11012 -' 11012 Add
-10112 +01012+. Two's complement (Subtract 10112 from 100002)

(1)00102

Discard The answer is 102

B) 100112 100112 Add
- 1012 + 10112 Two's complement (Subtract 1012 from

(1) 11102 100002

Discard

Instead of using the two's complement, you can also get the same results by
using the one's complement in your subtraction by addition. The one's
complement is one less than the two's complement.

A) 11012 ' 11012 Add
10112 + 01002 .4- One's complement (Subtract 10112 from

(1) 00012 11112)
1 -- +1 Bring around and Add.

102 The answer is 102

B)
100112 4. 100112 Add

- 1012 + 10102+ one's complement (subtract 1012 from 11112
(1) 11012

+1 Bring around and add
11102

2-17

2G

The answer is 11102

Problems: Find the difference by using the twos complement and the one's

complement.

1)

2)

3)

101
2
- 10

2

110
2
- 1

2

1101
2
- 10

2

21)

22)

23)

1110001100
2
- 110011

2

101100
2
- 10011

2

10111
2
- 1001

2

4) 111
2
- 10

2
24) 10111100

2
- 110000

2

5) 101
2
- 11

2
25) 11011100

2
- 101

2

6) 1011
2
- 1

2
26) 11111000

2
- 1000000

2

7) 1011
2
- 11

2 27) 1111000111
2
- 111111110

8) 10101
2
- 1 23) 11011

2
- 10

2

9) 101100
2
- 1011

2
29) 110001

2
- 101

2

10) 101010
2
- 11011

2
30) 10110111

2
- 1011

2

11) 101011
2
- 10110

2
31) 10110

2
- 1

2

12) 111112 - 1000
2

32) 111000
2
- 101

2

13) 100100
2
- 10010

2 33) 10101
2

- 10
2

14) 101110 2
- 10001

2 34) 110101
2

- 1

15) 1010110
2
- 10110

2 35) 1110110
2

- 101001
2

16) 11001110
2

1001110
2 36) 111001112 - 11000

2

17) 11100110
2
- 11

2 37) 101100111
2

- 101
2

18) 111112 - 10012 38) 1110011
2

- 101 2

19) 101111
2
- 10001

2 39) 1100111
2
- 110001

2

20) 1100112 - 11111
2 40) 101010102 - 101012

2-18

2

ANSWERS - NUMERATION SYSTEMS PROBLEM SETS

I.
1)

7)

1111 2) 10010 3) 101010 4) 1100110 5) 11101011 6) 1

100100110 8) 1110101 9) 1010110 10) 111111111010

11) 1001101110010 12) 10111011110 13) 1111001100001 14) 111110101

15) 1100111100 16) 1110001011 17) 11110100001111 18) 1011110000111

19) 100100100110101 20) 11000011010011111 21) 100110100010000100010010

22) 11110101100000

1) 6 2) 5 3) 118 4) 94 5) 54 6) 31 7) 10 8) 55 9) 1757

10) 3641 11) 7529 12) 16349 13) 44372 14) 63 15) 41 16) 4095

III.

1) 16 2) 6 3) 7 4) 575 5) 676 6) 40 7) 307 8) 30

9) 277 10) 7777 11) 2653 12) 7652 13) 24132101 14) 255

15) 6444 16) 2372

IV.

1) 011001100 2) 111011110 3) 01101 4) 001000 5) 111

6) 101100010100 7) 011000111 8) 001001000001 9) 11000 10) 110100

11) 111111111111 12) 011010001100 13) 111111110110 14) 001010100011

V.
1) 1434 2) 40 3) 7705 4) 1104 5) 1750 6) 3 7) 154 8) 1747

9) 71 10) 157 11) 141 12) 7777

VI.

1) 010 000 100 2) 101 000 101 3) 001 011 011 010

VII. Binary l's complement 2's complement
1) 000 000 000 001 111 111 111 110 111 111 111 111
2) 000 000 000 010 111 111 111 101 111 111 111 110
3) 000 000 000 111 111 111 111 000 111 111 111 001.
4) 000 010 000 001 111 101 111 110 111 101 111 111
5) 000 011 100 001 111 100 011 110 111 100 011 111
6) can't be done can't be done

VIII
1) .1001 2) .8125 3) .1101 4) .625 5) .10001 6) .110001

IV. 1) 1370, 1370 2) 3114, 3114 3) 3722, 3722 4) 7776, 7776
5) 0047, 0050 6) 2057, 2057

2-19 28

-t5

1'?

FLOW CHART

Terminal Symbol

Process Symbol

Decision Symbol

Connection Symbol

Annotation Symbol

3310

The flow charts or logical diagrams are devices which have received
considerable attention during the past several years as an aid to problem
solving. This device is actually a list of steps to be performed in sequence.
For clarity, the steps may be listed within sauares, circles, or other
geometric figures connected by arrows which designate the flow, or direction,
of the process. For each problem that is to be solved with a digital
computer it is necessary to work out in advance definite procedures which
the machine can follow without further need for supervision. This step-by-
step process is often called a program, and one way of presenting the steps
in a program is by means of the flow chart.

Flow charts are applicable not only to problems that are solved with
computers. Eefore a person solves any problem, whether it is mathematical,
how to repair an automobile, or how to bake a pie - a certain amount of
planning should be done.

It is important that some operations be performed in a certain sequence,
whereas others may be done in any order. For example, in changing a tire
one should consider whether the car should be lifted before the lugs which
hold the wheel are removed. Likewise, in making a pie one should consider
whether the crust should be prepared before the oven is turned on.

There are some techniques available to help a person organize his
thoughts in beginning to solve a problem. One way is to prepare a list of
things that need to be done. This list will give the order to be followed.
For example, in a recipe book,. the list of directions for making a pie is
merely a way of organizing the approach to a problem. On the other hand,
the directions for solving many problems may require considering the
possibility that a certain step cannot be done and that something else must
be tried before continuing.

There are three types of flow c:Arts that are to be considered - the
straightline, the loop, and the branch.

The straight line flow chart goes from one step to the next with no
decisions acting on the flow chart.

An example of a straight line flow chart problem is: Find the average
of four numbers.

3-2

31

START

ASK 1ST NUMB ER

ASK 2ND NUMB ER

ASK 3RD NUMBER

\/

ASK 4TH NUMB ER

FIND THE SUM

DIVIDE SUM B1 FOUR

\

PRINT AVERAGE

HALT

- 3

The branch flow chart will start oft as a straf.gLt lin6 flow chart,
but at some point a decision will be asked. You now have a choice to make.
You make the decision and You branch off in that direction tC, completion of
the problem.

An example of a branch flow chart would be: Write the larger of uneaual
numbers.

No

;!. PRINT 2ND NUMBER

"..

HALT

START

ASK 1ST NUMBER

ASK 2ND NUMBER

.., \
; ,

AS 1st
/ NUMBER \
/

/ LARGER THAN .
... \.. Yes __

2nd ? ." i

...
i 1

1 !

......;

3-4

PRINT 1St NUMBER

HALT

The third type of flow chart is the loop. Here the flow chart goes
along as a straight line flow chart until eventually a decision has to be

made. One decision can have You go on until completion while the other
decision will have you go back to perform some part of the program again.

An example of a loop flow chart problem would be:
Print the first ten perfect sauares.

START

1

LET X = 0

No

PRINT X2

INCREASE X Bi 1

Is

N

X = 10

3-5

34

(HALT

Flow Chart - Crossing An Intersection From A to B With No Automobile Traffic

START

LOOK AT LIGHT

YES

GO TO C

/
/

/ IS \

NO . LIGHT
*GREEN FOR

C TO B
YES

/ IS \\
LIGHT \

GREEN FOkv
A TO C ?

D

GO TO D

1;

L

I DA

IS

GREENEEN FOR No
\

YES
D TO B

WAIT A BIT

GO TO B

PROBLEM SOLVED '\

WAIT A BIT

Flow Chart - Calling A Party On The Telephone

\
/ DO \

/rou HAV
No

\A PHONE /

1

\BOOK //'

CALL OPERATOR
FOR NUMBER

\ les

LOOK UP NUMBER

START

ri

gHAVE
THE NUMBER

LIFT RECEIVER TO
HEAR DIAL TONE !

DIAL NEXT PART
OF NUMBER

' HAVE \
/YOU DIALED\\
SEVEN T34ES

HANG UP AND i

.),-.

YOU-N
WAIT A BIT 1 ET A BUSr..,

l f-ies,
SIGNAL ? .-:' --Na--

i

i

i WAIT A BIT
1

No

T-7

/DO YOU
THINK

L-11g----\ PARTY WILL
ANSWER,/

/
lies

' \

HAS \
PARTY \Yes

ANSWERED/
/

START TALKIN.
1

HALT

1.. 's 1-1:114 r

1... -
I

1

1

...*

4..

r.....,l'cf, ..-v,,,,(, .t.; '''T t "1-E-r, P 4 '7?,,,

* T14 -. '1:'

....., .. ,
. ti..?.

ti
. .,.-..-

I

1 ;45-444.r.`

i

....,4
.,....

'. '4' .'

i,-

4

;

, -0'

i
411--

1-1...liil tN, 0 ts)

i

Sill

,

4..
r-A -,.-----,

i

(..) ,l

(411:,,)

I

E

StNetvi:
.J 1

I _...1

rj.r#17.4

Gtve beril
610.047

-
MA*Rio

-- 5 tots
?

NO

1.f...._, ()
1 fe, I

..4

No
< xe

!

[k's VUe.

0.)

I Vet*, TM

ES

re, f:sble
thf449 ENd

17,;:in:

t'3(.3,cii 1

40(vOrl ;1er) [ST'A *X

IV

[PAW! To :470/KI
I

1

r',j

STARTTh

/1 1'
/ GOING
TO ADD TWO,
NUMBERS /

Yes

0 i.,
KNOW N
HOW TO / j LEARN TO ADD I

ADD?

/ STOP! THINK OF
SOMETHING ELSE TO DO

No

Yes ,

DO

/ KNOW '\
/ THE
\\UMBER

Yes

WRITE DOWN
I FIRST NUMERAL

J,

I OBTAIN No
\MEM?,

OBTAIN THE NUMBERS

WRITE DOWN
SECOND NUMERAL

/ARE/ NUMERAL:
< ALIGNED N No

CORRECTL Y?,

Yes

DRAW A LINE
BELOW NUMERALS

ADD NUMBERS

(PROBLEM SOLVED \;

3-9

3 'a

ERASE SECOND
NUMERAL

ANSWER INCONSISTENT

Flow Chart - Adding Two Two-Digit Numbers with Provision for Carry.

(--START

START WITH TWO
RIGHT-HAND DIGITS

ADD THIS
CARRY VALUE Yes

Aiel

IS
HERE
N
AN

PREVIOUS\
CARRY
VALUE ?/

RECORD CARRY DIGIT i .-"IS

i IN NEXT HIGHER Yes 'SUM GREATER

CARRY POSITION THAN NINE?

'RECORD CARRY DIGIT
!IN HUNDREDS POSITION'
1OF ANSWER

Yes

No

RECORD RIGHT-HAND
' DIGIT OF SUM

CO TO NEXT HIGHER
DIGIT POSITION

IS

THIS THE
SECOND TIME

THROUGH /

THIS /'

BOX?

IS

/THERE A
DIGIT IN THE
THIRD CARRY
POSITION

PROBLEM
SOLVED

No

No

PROBLEIS:

1. Modify the Flow chart for the telephone call to include the discovery,
when the party answers, of having dialed the wrong number.

2. Modify the Flow chart for the phone call to include the discovery,
after dialing any digit of the number, of having dialed the wrong
number.

3. Construct a Flow chart showing the process followed when a teacher
takes attendance by calling the roll. Take into account the
possibility of absentees.

4. Extend exercise number three to include the possibility that a
student may enter the room unnoticed by the teacher after the
roll-call has begun.

5. Construct a Flow chart showing the process of Your getting ready for
school in the morning.

6. Construct a Flow chart preparing a table of sauares for numbers less
than 10,000 by adding successive odd numbers.

7. Modify the Flow chart of the crossing of an intersection to include
the possibility that there is a policeman who normally allows the
traffic to flow according to the lights, but who may choose to
direct it himself from time to time.

3-11

410

PROBLEMS TO FLOWCHART

1. Find the largest of three numbers, A, B and C.

2. Add two numbers. If sum is even, put 0 in the Accumulator.
If add, put 1 in Accumulator.

3. Search locations 208 - 308for all odd numbers in the range of
518 - 578 inclusive. Halt with the number of valves in this range
in the Accumulator.

4. Solve AX + B > C for X.

*5. Multiply 4 by 5 by repeated additions.

*6. Find the sum of the first ten natural numbers.

*7. Sum the contents of Core locations 308 - 508 . Store the sum
in location 608 . Halt with sum in the Accumulator.

8. Find N! for a specified N.

Problem #2 FLOW CHART

START

SET SUM = 0

ADD A

ADD B
1;

fee

PUT 0 IN
ACCUMULATOR

HALT

IS

SUM
EVEN

3-13

4'2

No

PUT 1 IN
ACCUMULATOR

HALT

Problem 113 FLOW CHART

Th
START

1

--

ADD 1ST
NUMBER TO
ACCUMULATOR

INCREMENT
ADDRESS B1

1

DONE
No 218

TIMES

ies

STORE
(RESULT

DI SPLA

IN
ACCUMULATOR

HALT

- -- 3-14

4 ti

CHAPTER IV

COMPUTER EQUIPMENT

Ref: Introduction to Programming - Digital Eauipment Corporation
Maynard, Mass.

Chapter 1

COMPUTER EQUIPMENT

1:1:1r.are various ways by which you can communicate with the computer.
The earliest method used and one that is still in use today is the punch
card. They are capable of such tasks as college registrations cards,
electricity bills, and payroll data. They are cheap and versatile. The

cards have 80 vertical columns that can hold 80 characters of information
(letter, numbers, or punctuation). One punch in a single column can
represent any number from 0 to 9. Above the nine number rows are three zone
rows: 0, 11, and 12. By making two punches in a single column - one in a
zone row and the other in a number row, it is possible to represent any
letter of the alphabct. Certain special characters can be represented by
three punches In a slnle cslurn such as a period is represented by a
12 punch, a 3 punch anl an C pu,Ich. fcu must keep in mInd that the
symbolic language of the punch cord must be translated into binary to be
used by a computer.

The punched pener tape is cheap and easily stored in rolls. Typewriters
and cash registers can be equipped to automatically punch paper tape as
they are used in normal business. The resulting records can be easily
fed into computers for further processing.

A third means by which You can communicate with the computer is the
magnetic tr--,e. major advantages of the magnetic tape are:

a. it can holl huge quantities of data. A single 10 1/2 inch reel
of tape can lasd the co:Atc=nts cf 250.000 punched cards, and
vagnet!c tape r.a:i read up to 120,000 characters per second
fr,;r1. tap col-vc,reJ to only 1200 characters a second
fr=

Le:1e sal-To as computei's external memory
ruch r,-: 17-,= texl: tool: serves y.;u as c.:ternal memory. The magnetic
tape I-A a coiputol sw-,tc., is similar to the kind used in a home
recorder. 7._ is a pla,,tic rill-Jon with an iron oxide coating that can be
masTred. A tirlv area of to::ide is magnetized to indicate one in binary
code; a blank area in the pattern stands for zero. The magnetic tape
can be easily erased and r-:.

Come comp user sYste-le uza maometj_c discs for their external memory
i-1.3tead o f the mar-inetic tf)pcs. The dises, which look very much like a
large phonograph record, can ma'. -.e information available to the computer
more quickly than tare.

M,:g-aetic allos for the reeding of documents much the same
way magnetic tape is read. The additional advartoge of magnetic ink
characters is that they can be reacl by people as Len as by computers.
Banks make wide use of magnetic ink characters, particularly on checks.

The optical scanner is a device that is currently under development.
This machine would save much of the bother of translating information into
special codes for computer input. An optical scanner has a set of electronic
patter-Ls la i:s memory and a photoelectric cell that scans the material to be

4-1

4,-

read. converting the characters into electronic pulses. The scanner can
"read" any character that matches the patterns stored in its memory.

The high speed printer is the most important medium for getting
information out of the computer. A high speed printer prints information
at a rate of up to 1200 lines a minute. For You to turn out 1200 lines,
typing 60 words a minute on a typewriter, would take eight hours. The
types of information that are turned out by this printer include accounting,
forms, checks, and department store bills.

As part of their control unit, most computers have an electric
teletypewriter. Through it the human operator can enter information
directly into the computer. He can also receive through the teletypewriter
short answers to problems solved by the computer. If there is a programming
error, the computer may type out informatio7, that eneles the human operator
to make a correction.

Some computers have a section of lights that can instantly show what
information is in control, memory and the arithmetic section. The display
is in binary. If a light is on, it is a 1 and if the light is off, it is
a zero.

The cathode ray tube is used when some kinds of scientific problems
have answers that are in curves and other lines. While these answers can
be printed, it is convenient to translate the information into an image
that is flashed on a cathode ray tube. The human operator may learn what
he needs simply by looking at the image or he may photograph the pattern
for future use.

The equipment that makes up a computer system is called hardware. There
are two categories of hardware: The central processor that is the actual
computer, containing memory, control, and arithmetic units, and a variety
of supporting eauipment called peripherals.

All You need for a computer system is a central processor and at
least one type of equipment to get information in and out of it. Generally
speaking, the more kinds of peripheral equipment You have, the more kinds
of jobs you can do.

The basic equipment that is needed for a computer system is to have
a Central Processor and a console. The central processor is the actual
computer. It contains a solid core memory, an arithmetic unit, and
control circuits. There are no moving parts in the central processor
and it operates at nearly the speed of light.

The console has all the controls that enable the human operator to
run the computer system. It has the lights, switches, ani a typewriter.
It is through the typewriter that the operator sends information into the
computor and receives answers out.

Some of the peripherals that expand the uses of the computer are
the card reader, card punch, high-speed printer, magnetic tape units, and
disc storage unit. The card reader reads the standard 80 column cards

column by column. As it reads, the information is automatically translated
into the binary language of the computer.

The card punch punches 80 column cards at 100 cards per minute. After
punching each card, it reads the card to check for accuracy.

The high-speed printer is capable of turning out 1200 lines per
minute. Unlike the typewriter, it prints an entire 136 character line
at once rather than one character at a time.

The magnetic tape units, the computer's external memory, feeds
information into the internal memory in the central processor as needed.

The disc storage unit is another external memory unit. It stores
information on the magnetic discs for fast delivery to the central
processor.

r

8 its e Coperrroet

P. U.

Cocoa~
re.

Vti

144 ft* et

I evarrasoar at
tos sr

=IMP

X "per/ Oarr fvf
410 Tfliarryre tiutilatTtsi itle)
it) Madlearse. Tart (qo Pro ;NM biro of

Puttettael dotaels

DI sec

4 tV Caw:mows
&Too, roefe

a w rea0

CANI &adorns (moo toads Atm)
CP*1 &Mimes 3 caddie /Me so).

Sisk grelmi %WPM. (t l 00 leas. Iwo)

orical Sem04 (4 56.0 4.4.0.0.4fil lows)

roloty pa. (to chotdogyeetv/om)

ftersrie Tara tse AAAoks. be.4)

Ile tit, a emp

tei !MI %fa &ley /010)
CIiwam.d Caro ty)

4414 mor imil (0.3 we We" cloaogres0

Paid SsZtikftr
As Iwo" welodli $ v
0 goo Emmy e sotit

A retmd s has Mod ?a it rIIIKW

es 'lie don. (friaavir D* shaimcveas)

CAv r ire
.4' h 40.1.14ema

O. 5 se a hisherreso

(43 %%Awe eAsoosvosa)

4-5

/F.

1

Pit o G
R

A
M

C
ouA

rrE
ft

M
erv%

 o
A

ddress

M
e vno A

y
B

u-crek.

IL
Li

7
ce.vm

viri-rog.

Pouren.

/
.r

7

((v
Cf.)

6'71 11.7),"'

(itv;,) i'rj1)
\Z.

LU (167)

13/\)

is)

\ PV
C41 . QP,

41.1.11104101111111,1111

TELtTYPE MODEL XEVIiIARD LAYOUT

4-8

CHAPTER 5

MACHINE LANGUAGE PROGRAMMING

ASSEMBLY LANGUAGE PROGRAMMING

Ref. 1. Introduction to Programming - Digital Equipment Corp.
Maynard, Mass.

2. Programming Languages - Digital Equipment Corp.
Maynard, Mass.

Note to Teacher: When teaching this chapter it is useful to use an electric
model of a computer word to illustrate the various inst-
ructions. An attempt should also be made to allow the
students to run some programs through the console on the
computer at Framingham State College or at Digital
Equipment Corp. in Maynard. Both are receptive to this
type of thing.

L J., 17c :LI

OP Code
---com_

(8 different
ones)

1 Indirect Address
Addressing 00 000 000 0 4 0
0 Direct
Addressing

11 111 111 4 377 4 255i0

256 10 possible core locations

Mnemonic OP Code (Octal) Meaning

AND 0000 Logical and AC 110 011 111 000
Data 101 110 001 110

*TAD 1000 2's complement add 100 010 001 000

*ISZ 2000 Increment and skip next instruction if Zero

*DCA 3000 Deposit accumulator and clear AC (store)

JMS 4000 Jump to subroutine (program counter stored)

*JMP 5000 Jump to a certain step

CLA CLL 7300
HLT 7402

Explain
Indirect

TAD 1

ISZ
JMP 1

TO RUN PROGRAM

Put starting address on keys
Hit load address button
Push buttons down
Put in number for address
Hit deposit button

To Run
Put starting address
Hit load address
Hit start

A

m

1

a

t

0

r

Multiply by 2 shift position

Divide by 2

CORE MEMORf

shift right 1 position

0 1

10

2 _3_

+5 - 10

6 7

- 76

13

Prog. Cntr. Mem. Add

50J

Add

'1

5 0
1

Memory

[Add I Memory Buffer
100

Instruction Register
Major State Generator - goes into fetch state when program starts
the 50 in the PC goes into MA
the PC is increased by 1 PC is now 51
Memory reads the contents of location 50 into MB
Instruction goes to instruction register. Now execute instruction in IR
Address portion (100) comes from MB into MA
Memory reads +2 into MB. The (+2) is shifted to AC, added to 0 and is left in AC

-5-2

5'1

PRQGR4M

Add 2 and 3
47/CLA CLL + clears the accumulator and link

50/TAD 100 + means= the number in location 100 is added to the contents
of the accumulator

51/TAD 105

52/DCA 107 + means = the number in the accumulator is put in location 107

53/HLT + means program is finished

100/ +2

105/ +3

105/ 0 /

Storage location -* you must put the numbers in which are to
be added. fou don't have to put any
number in location 107 since the DCA
instruction will replace whatever is there
by the answer viz 5.

Note_ lou must insure that the accumulator is zero when you begin. This
can be done by starting each program with the instruction CLA CLL

Note! Instructions come sequentially - hence if you tell the computer where
the instructions begin, it considers everything an instruction until
it sees a HALT

The above program would be entered through the console as follows:

BINARf OCTAL

47/111 011 000 000 47/7300
50/001 001 000 001 50/1100
51/001 001 000 101 51/1105
52/011 001 000 111 52/3107
53/111 100 000 010 53/7402
100/000 000 000 010 100/0002
105/000 000 000 011 105/0003

55

-

OP Code
1 Indirect
Addressing

0 Direct
Addressing

TAD 167

Address

t'166 167 170
noa 1/3-

/4 I75 1 /-6

'177 200
46

201

This says add the contents of
location 167 to the accumulator.
Hence 2008 will be added to whatever
number is in the accumulator.

5-4

53

fridirect

TAD 1 167

/
This says add the number
which is found in the
location contained in
location 167. Hence the
number to be added to
the accumulator is the
number which is found
in location 200, namely
46.

Problems: Program (with Flow

1. Add two numbers. If the
the sum is odd, put 1 in

2. Find 5 ! (5 factorial)

3. Write a program to compute the product of 3 and any other
natural number.

4. Write a program to compute 6 x -7

5. Write a program to multiply 4 by 5.

6. Find the sum of the 1st ten numbers.

chart) the following:

sum is even, put 0 in the accumulator. If
the accumulator.

7. Sum the contents of core locations 308 through 508 and store the sun
in location 608 . Halt with the sum in the accumulator. (indirect
addressing)

5-5

5;'

Problem L. Add two numbers. If sum is even, put 0 in the Accumulator.If odd, put 1 in the AccumLlator.

200/ CIA CLL
200/ 7300201/ TAD 100 201/ 1100202/ TAD 101 202/ 1101203/ AND 102 203/ 0102024/ HLT
204/ 7402

100/ even, odd, odd 100/
101/ even, even, odd 101/

102/ 0001102/ +1

Run three times

Flow Chart (Problem #11

SET SUM = 0

4.,

ADD A

ADD B

PUT 0 IN

ACCUMULATOR

HALT

'I S'

EVEN \

5-6

58

PUT 1 IN
ACCUMULATOR

(--HALT

FLOW CHART :Pi.oble3r.

$ TART s)

1-- ADD lst.
NUIDER TO

ACCUMUTATOR

\

INCREMENT
ADDRESS BY 1

DitTE
216

TIME3?

Yes

STORE
RESULT

DISPLAY' IN
ACCUMULATOR

N!

HALT

59

SOME OTHER INSTRUCTIONS*

CMA 7040 complement AC
CMS. 7020 complement link
Rat 7010 Rotate AC and link right on^

R4L 7004 Rotate AC and link left one
RtR 7012 Rotate AC and link right two

7006 Rotate AC and link left two
LAC 7001 Increment AC by 1
SMA 7500 skip on negative AC
SZA 7440 skip on zero AC
SPA 7510 skip on positive AC
SNA 7450 skip on non zero AC
HLT 7402 halts the program
CIA 7041 complement and increment AC
LAS 7604 load AC 'with switch register
CLA IAC 7201 set AC = 1
CLA CMA 7240 set AC = -1
SZA CLA 7640 skip if AC = 0, then clear AC
SNA CLA 7650 skip if AC VL o, then clear AC
SMA CLA 7700 skip if AC < 0, then clear AC
SMA SZA 7540 skip if AC < 0
SPA SNA 7550 skip if AC > 0
SPA CLA 7710 skip if AC > 0, then clear AC

* A complete set of instructions will be found on the programmer's reference
card and in the book INTRODUCTION TO PROGRAMMING (Appendix D)

5 -8

GO

PROBLE,VS

8. Write a program which will put the larger of two numbers in the
accumulator.

9. Write a program which multiplies a number by 2.

10. Write a program which divides a number by 2.

11. Write a program to accept two numbers from the switch registers. If

they are equal halt with AC + 0 and if unequal halt with AC = -1.

12. Write a program to average two positive numbers entered through the
console.

13. Write a program to interchange the contents of lo.cationa 300 and 301.

14. Add the first 8 odd numbers.

15. Add the numbers in locations 10 through 30.

16. Put the numbers 1 - 208 in consecutive locations starting at location 1008

17. Search locations 1008 to 1508 to find the first number between 50 and 60.
Put the number in the accumulator.

5-9

200/CLA CLL 200/7300

201/TAD 101 201/1101
202/ISZ 102 202/2102

203/JMP 201 203/5201

204/HLT 204/7402

101/4 101/0004
102/-5 102/7773 (2's complement -5)

Problem #6 Sum of 1st ten numbers

200/CLA CLL 200/7300
201/TAD 100 201/1100
202/ISZ 100 202/2100
203 ISZ 101 203/2101
204/JMP 201 204/5201
205/HLT 205/7402
100/1 100/0001
101/-10 101/7766

Problem 417 Sum the contents of core locations 308 through 508 store the sum
in location 608. Halt with sum in tie Accumulator.

200/CLA CLL 200/7300 Location Number Octal
201?TAD 1 250 201/1650 30 1 1
202/ISZ 250 202/2250 31 3 3
203/ISZ 251 203/2251 32 5 5
204/JMP 201 204/5201 33 7 7
205/DCA 60 205/3060 34 9 11
206/TAD 60 206/1060 35 11 13
207/HLT 207/7402 36 13 15
250/308 250/0030 37 15 17
251/-218 251/7757 40 17 21

41 19 23
42 21 25
43 23 27
44 25 31
45 27 33
46 29 35
47 31 37
50 33 41

28910= 4418

5-10

62

FORMAN

Ref: 1. A Guide to Fortran Programming - Daniel D. McCracken
John Wiley & Sons Inc. (New York)

2. Fortran Autotester - Robt. Smith and Dora Johnson
John Wiley & Sons Inc. (New York)

-3. Fortran Programming Manual - Digital Equipment Corp.
Maynard, Mass.

4. The Bases of Fortran - Dr. R. E. Smith
Control Data Institute
Minneapolis, Minn.

5. Programming Languages - Digital Equipment Corp.
Ch. 15 Maynard, Mass.

6

CHAPTER 7
BASIC

References:

1. Introduction to an Algorithmic Language (BASIC) - NCTM 1968 - $1.40

2. BASIC - An Introduction to Computer Programming Using the Basic Language
William F. Sharpe - The Free Press (New York)

3. Problem - Solving With The Computer - Edwin R. Sage
Entelek Inc.
42 Pleasant St.
Newburyport, Mass. 01950

n4----Rring Mathematics Through Computers
Vol. 1. Rational Numbers (Part 1)
Vol. 2 Rational Numbers (Part 2)
Vol. ? Algebra
Vol. 4 Geometry
Vol. 5 Advanced Algebra and Trigonometry
Vol. 6 Probability and Statistics

- Dr. Viggo Hansen
Olcott Forward Inc.
234 N. Central Ave.
Hartsdale, N.Y. 10530

Price $4.00 each or $22.00 for
the set of 6 (Add 50C for
handling)

5. Prograrm'.ing Languages Ch. 12 - Digital Equipment Corp.
Maynard, Mass.

BASIC

Symbols Order of Operation

+ addition 1. Exponentiation

- subtraction 2. Multiplication
* multiplication 3. Division
/ division 4. Addition and Subtraction
t exponentiation

i.e 2 t3 means 23

Variables

A variable name is
1. Any one of the 26 letters of the alphabet, or
2. Any one of the letters followed by a single digit.

e.g. A, Z, P, Q4, R6, X2, etc. are acceptable variable names.

Program Statement

A program statement is one or more words in the BASIC language with
the appropriate punctuation that tells the computer to do something.
There can be only one statement per line in the program.
e.g. PRINT 3 + 4. is a statement which would cause the computer to
print the number 7 when the program is run. (A program is a sequence
of such statements.)

Note: Blank spaces in a program statement are not significant. Blanks
may be freely used to increase legibility.

Line Numbers

Each statement in the program must be preceded by a line number.
Any whole number from 1 to 99999 is allowed as a step number. The
computer will process the program in ascending order of the line
numbers (not in the order in which they are written)
Note: Line numbers need not be consecutive
e.g. A sample program might look like the following:

14 PRINT 3 + 2
403 PRINT 5 t 2
84 PRINT 4 * 9

500 END
RUN

N.B. the computer would not do anything unless you type RUN. This
tells the machine you are finished with your program and you want it
executed.

In the above program the computer would type

5 rather than 5

36 25

25 36 because
it executes the program in order of the line numbers.

IMPORTANT: When you number your steps in a program it is wise to use numbers
like 10, 20, 30, etc. rather than 1, 2, 3, etc. since vou can
later insert written statements. The value of this will become
obvious later.

Progrvm Statements

Note: Each program statement must be preceded by a line number

I. PRINT
the PRINT command is followed by one of three things:

a. An arithmetic expression
e.g. PRINT 4 + 17 - this causes 21 to be printed.

b. an expression contained within Quotation marks
e.g. PRINT "COST OF ITEM" this causes COST OF ITEM to

be printed.

c. a variable
e.g. PRINT x3 - this causes the value assigned to the

variable Xi to be printed. For instance,
if X3 = 58 then 58 would be printed.

Note: A combination of b and c is often employed
e.g. PRINT "THE AREA IS" Y - this causes the phrase
TEE AREA IS to be printed followed by the value of the
variable Y.

Note: You may cause several things to be printed with one PRINT
statement using commas.
e.g. PRINT "SOLN. SET =", X, Y

7-2 66

ASSIGNMENT

1. What numerical value will the computer give for ea

a. 18/6 * 3

b. (18/6) * 3

c. 18/ (6 * 3)

d. 5 * 3 t 2 + 4/2

e. 5 * 3 + (2 + 4/2)

f. 5 * (3 t 2 + 4) /2

g. (5 * 3) + 2 + 4/2

h. 16 t 1/2

i. 16 t (1

:h of the following:

12)

j. 8 - 5 - 3

k. 8 A 3 - 2 + 1

1. 18/3 *)/2

1

m. 4 t 2.5

n. 24/8/4

o. 6 3/3,

2. Write a program to evaluate and print the result

a. 1 + 1

3 + 1
3 + 1

3

c. 212 - 19
(31.3)(1.87)

b. 52- 33+
7

the following:

2

5.3 - 62

3. Write a program which will label three columns - NUMBER, HALF, and DOUBLE,
and will then compute and list under each column the number 7, its
half (viz 3.5) and its double (viz 14)

PROGRAM STATEMENTS (Cont.)

II. READ

III. DATA

The DATA statement defines the numbers to be operated on in the program.
There can be more than one number in each DATA line. They must be
separated by a comma. You may have as many DATA lines as you need and
they may appear anywhere in the program.

The numbers identified in the DATA statement have to be put into the
program in order to be used. The READ command does this. For example,
the statement

1C READ A

would cause the first number in the DATA list to be read into the
computer and thereafter be identified as A.

IV END

The last statement in every program must be the word END. This is the
signal to the computer that that is the end of the program. The END
statement must have the largest line number of all the statements in
the program.

SAMPLE PROGRAM

A sample program using the statements mentioned would be:

10 READ X, Y, Z
20 PRINT X, Y, Z
30 DATA 6, 3.2, 7
40 END

When executed, this program would cause the three numbers (6, 3.2 and 7)
to be read out of the DATA statement and printed back on the teletype
paper.

If you now typed RUN the program would be executed and the output would look
like this:

RUN
6 3.2 7

TIME: 0 secs + this means it took less than 1 sec. to execute the program.

68

PROGRAM STATEMENTS (Cont.)

V. LET

The LET statement allows the user to define variables, e.g.
10 LET X = 5

causes the value 5 to be assigned to the variable X.

IMPORTANT: The equal sign in BASIC (and in most other computer languages)
has a different meaning than in algebra. The equal sign
instructs the computer to perform the computation on the
right side of the equal sign and then store the result of this
computation in a location identified by the variable name on the
left side of the equal sign.
e.g. 40 LET A = X + 3 t 2
This instructs the computer to add 9 to the value stored in X
and then to store the sum in a location designated by A.

Remember that a variable name in a program refers to a location
within the computer memory. Whenever that variable is called,
the value stored in that location is entered into the computation.

Since the operations on the right side of the equal sign are
performed first, a statement like

20 LET X = X + 1
has meaning. This causes 1 to be added to the value stored in X
and this result to be stored back in X. That is, X now is
its former value increased by 1.

7-5

ASSIGNMENT

1. Write a program which will read 5 numbers and print their average.

2. Write a program which will read 4 numbers and print their product.

3. Write a program which will read 4 numbers, printing the sum of the first
two and the product of the last two.

4. Write a program which will read 4 numbers, printing the sum of the first
two, the product of the last two, and the sum of the sum and product
obtained.

5. Write a program which will evaluate v = x2 + 5x + 2 when x = 3

6. Write a program which will evaluate y = x2 + 5x + 2 when x = 3, -2, 4,
0 and 7

7. Write a program which will print the square and cube of -4, 6, 3, 0, 1
and -2

MORE ON SYMBOLS:

PARENTHESES - Operations within parentheses are done first. If
there are parentheses within parentheses then the
computer will perform the operations in the inner-
most parentheses first.

NOTE: The expression x + y must be writen as (x + y) /Z.
z

The omission of parentheses would cause the expression
x + y to be read rather than the intended one.

z

EOUALITY AND INEOUALITY

= means equal
> means greater than
< means less than
<= means less than or equal to
>= means greater than or eaual to
<> means not eaual to

FUNCTIONS

The following functions may be included at anv point in any legitimate
arithmetic statement (e.g. a LET or PRINT statement). The results of the
function can be further modified by multiplication, division, etc.

FUNCTION

SOR (X)
ABS (X)
LOG (X)

EXP (X)

SIN (X)

COS (X)

TAN (X)

ATN (X)

INT (X)

RND (X)
SGN (X)

RESULT

The sauare root of X
The absolute value of X
The natural logarithm of X (lnx)

Ex

The sine of X (a number or an angle
measured in radians)
The cosine of X (a number or an angle
measured in radians)
The tangent of X (a number or an angle
measured in radians)
The arctangent of X i.e. the angle
(in radians) whose tangent is X
The integer portion of X. Any value
to the right of the decimal point is
dropped.

A random number between 0 and 1
The sign of X (-1 if X < 0

0 if X = 0
1 if X > 0

Note: In the above functions, X is called the argument and must be included

within parentheses.

Note: The argument may be an arithmetic expression e.g. SQR (2 t 3 +
6 * 12 + 1) will yield Fr which is 9.

Note: The argument of a function may also be a function e.g. INT (SQR (7))
will yeild the number 2

Note: Functions may be used with other statements - e.g.
10 PRINT (-B + SQR (B t 2 -4 * A * C)) / (2 * A)

or
20 LET X3 SIN (2) + 7

Note: The argument of the random number function may be any variable - it's
a "dummy" argument.

ASSIGNMENT

1. Write a program which will print the square root of 4, 5, 6, 9, 17
(use the SQR (X) function)

2. Write a program to compute the sine, cosine and tangent of 300
(approximate n by 3.1415927)

3. Write a program to find the angle whose tangent is Tr

4. Write a program to fine the angle whose sine is 1/2

5. Write a program to find the arcsit of any number (you pick one)

6. Write a program to find the arccos of any number (you pick one)

7. Write a program to drop the decimal portion of the square roots of
10, 35 and 60.

8. Write a program to round off the square roots of 10, 35 and 60

9. Write a program to write 5 random numbers between 0 and 1

10. Write a program to write 5 random integers between 0 and 10

PROGRAM STATEMENTS (Cont.)

VI. FOR - NEXT

Aside: The real power of the computer becomes apparent when you
can direct it to repeat the same operation or series of
operations over and over again. This process is called
looping or iteration. In BASIC, looping is accomplished
by the use of two statements FOR and NEXT.

e.g.

10 FOR X = 1 TO 12
15 PRINT X, X t 2
20 NEXT X
25 END
RUN

The above program will give the following output.

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81
10 100
11 121
12 144

The program works this way: When you type RUN the computer reads the 1st
number in the FOR statement, namely 1. It then prints I and the square of 1
It then is told to take the next value of X, namely 2, and then prints 2
and the square of 2. It continues this process until the last number in the
FOR statement has been processed.

Note: The FOR statement need not begin at 1. For example!

10 FOR J =5to8
20 PRINT 6 * J
30 NEXT J
40 END
RUN

The output would look like this
30
36
42
48

Note! The FOR statement need not go up by increments of 1. If you wish a
different increment you must specify it by the word STEP. For example:

10 FOR A = 3 to 5 STEP .5
20 PRINT A, A t 2
30 NEXT A
40 END
RUN

7 -10

The output would look like this

3 9

3.5 12.25
4 16

4.5 20.25
5 25

Important: There must be a NEXT statement for each FOR statement.

Note: There may be loops inside of loops. For example:

10 FOR B 1 to 3
20 FOR C = 4 to 7
30 PRINT B, C

-- 40 NEXT C

50 NEXT B
60 END
RUN

The output would look like this:

1 4

1 5

1 6

1 7

2 4

2 5

2 6

2 7

3 4

3 5

3 6

3 7

Note: The beginning and final values of the control variable do not have to be
constants. They may be variables.
e.g.

10 READ A
20 READ B
30 FOR X = A to B
40 PRINT X/2
50 NEXT X
60 DATA 4, 7
70 END
RUN

This would cause the numbers 4, 5, 6, 7 to be divided by 2.

ASSIGNMENT

1. Write a program to print the first ten perfect squares.

2. Write a program to print the first twelve square roots.

3. Write a program to list the double of the integers from -5 to 2.

4. Write a program to list the values of Y in the expression Y X2 - 5

for the values of X from - 2 to 5 in steps of one half.

5. Write a program to list the products of the numbers 2 through 5 and
the nuwbers 7 through 9. (Hint: a loop within a loop)

6. Write a program to add the first 15 numbers.

7. Write a program to add the first 8 perfect squares.

8. Write a program to print 20 random numbers.

9. Write a program to print the decimal equivalents for the unit fractions
from 1 to 1

2 12 (i.e. 1, 1, 1 etc.)
2 3 4

10. Write a program to print the sine of the angles from 00 to 3600 in
steps of 15u. (Let II u 3.1415927)

7-12

76

OUTPUT FORMAT

A word should be said about the output format at this time. Not
only does the comma spearate variables in a PRINT statement, it also lines
them up in columns.

There are five implied columns on the page. Up to five variables can
be printed ire one PRINT statement and they will be properly spaced across the
page. Subsequent PRINT statements using variables separated by commas will
also line up under these columns.

Labels may be printed over the appropriate columns by putting each
in quotes and separating them with commas. There are a maximum of 15 PRINT
positions for each column, so the heading labels must be 15 characters or less.

A comma at the end of a PRINT statement suppresses spacing after that
line is printed so that several PRINT statements can print on the same line.

For example, the series of statements:

10 PRINT A,

50 PRINT B,

235 PRINT C
results in all three variables (A, B and C) being printed on the

same line.

The wsrd PRINT with nothing behind it can be used to insert additional
spaces to make the output easier to read.

For example:

10 PRINT "NUMBER", "SQUARE", "CUBE"
20 PRINT
30 FOR N = 1 to 4
40 PRINT N, N t 2, N t 3
50 NEXT N
60 END
RUN

The output would look like this:

NUMBER SOUARE CUBE

1 1 1

2 4 8

3 9 27
4 16 64

The statement in line number 10 causes the labels to be printed. The PRINT
in line number 20 causes a double spacing between the labels and the numerical
output.

PROGRAM STATEMENTS (cont.)

VII. IF -THEN

The computer can make logical decisions within the program by
comparing the value of two variables or two expressions. The statement to make
these decisions is an IF - THEN. For example:

10 IF X > Y THEN 50 causes the program to jump to line 50
if X > Y. If X is not greater than Y the program continues with the next
statement after 10.

Remark: The six relation symbols are
less than

< = less than or equal to
equal
greater than

> = greater than or equal to
<> not equal

Note: You may use the IF - THEN to loop instead of the FOR - NEXT.
To print the first ten numbers and their squares we could write:

10 LET N = 1
15 PRINT N, N t 2
20 LET N = N + 1
25 IF N < 11 THEN 15
30 END

ASSIGNMENT

1. Write a program to put three numbers in ascending order.

2. Write a program to approximate the 4- without ulang the SQR function.

1

4. Write a program to tell for what integers from ()Ito 7 2n > N2

(if less than or equal to, state which)

3. Write a program to list the divisors of 96.

5. Write a program to tell when $2000, invested at)°/., compounded annually,
will double. 1

6. Write a program to tell what the first integer N is which will make
2n > 1,000,000

7. Write a program to print 20 random numbers, writing the ones less than
.5 in one column, the ones greater than .5 in another column, and the
ones equal to .5 in a third column.

8. Write a program to print 20 random numbers, writing the ones between
'nd .3 inclusive in one column, the ones between .3 and .6 in a

second column, and the ones between .6 and 1 inclusive in a third
column.

7-15

PROGRAM STATEMENTS (Cont.)

VIII. GO TO
The statement GO TO (line number) causes the program to jump to
the line number. For example:

40 GO TO 95 causes the program to jump to step 95. The
example given under IF-THEN could have been written as follows:

10 LET N= 1
15 PRINT N, N 4. 2

20 LET N = N + 1
25 IF N = 11 THEN 35
30 GO TO 15
35 END

IX. INPUT

In-addition to reading numbers into the computer from DATA
statements through the program.statement.READ, values may also
be entered. during the execution of the program by use of the
statement INPUT followed by the desired variable name. Fot
example, a program might contain the statement

90 INPUT X1
When the program reaches statement 90, a question mark will be
printed by the teletype unit. and the execution of the program
will temporarily stop. You then type in the value of Xi you
wish, hit the RETURN key on the teletype, and the program
execution continues

-Note: More than one variable may be input at one time simply by separatinjg
the variable names with a comma. For example:

15 INPUT A, B, C
. asks for three numbers to be entered. Only one question mark will
be printed, but three numbers, separated by commas, must be
entered before the program execution continues.

.

- .

ASSIGNMENT

1. Write a program (using GO TO) which will print a number and its cube
until the cube exceeds 7000.

2. Write a program which will ask for 5 numbers and print their average.

3. Write a program which will ask for 4 numbers and put them in descending order.

4. Write a program to solve any quadratic equation (AX2 + BX + C = 0) where
the A, B, and C are asked for at the time of execution. If the roots are

complex state this. If the user supplies A = 0 print out an error
message to him. Call the roots X1 and X2 and have each root identified
in the printout.

5. Write a program to have the computer select a random digit between 0 and 9
(without printing it), then ask the user to guess it, using such aids as

"TOO HIGH", "TOO LOW", or "THAT'S RIGHT". Also, have the program terminate
if the user takes more than 4 guesses.

6. Write a program that will ask the user to supply an amount of money to be
banked, the rate of interest, the number of times compounded per year, and
the number of years the money is left in the bank. Then print out the
amount he would have at the end of this time. Use the formula

(

A = P A + euln where P = original deposit, r = rate of interest,
m;

m = number of times compounded per year, and n = number of years.

Subscripted Variables

It is possible to assign a different variable name to each number to be
used in a program. However, even for a relatively short list of numbers, this

can produce a lengthy program.

There is a more powerful way to define variables - subscripting. If you

had 20 numbers to work with, you can let X(1) be the first, X(2) be the second,

X(3) be the third, etc.
Subscripted variables may be named by any letter, but they may not be

followed by a number. That is A(7) is legitimate but A3(1) is not.

For example:

10 FOR 1 = 1 TO 6
15 INPUT S(I)

20 NEXT I

This part of the program would allow you to put in 6 numbers, the first
..identified as S(1), the second as S(2), etc.

X DIM
The statement DIM means dimension and is reauired for all subscripted
variables with more than 10 values. The statement is of the form:

10 DIM S(25)
The number immediately following the variable name indicates the
maximum number of subscripted values that will be used in the program.
All of them do not have to be used

Note: More than one variable may be mentioned in the same DIM statement.
For example:

10 DIM S(25), B(11), C(40)

Note: The DIM statement must precede the use of the subscripted variable.

7-;18

82

ASSIGNMENT (use subscripted variables)

1. Write a program to print the first 20 Fabonacci numbers, labeling
them U1, U2, U3, etc.

Note! 111 = 1, U2 = 1, U3 = 2, U = U + U ,
___-

n n-1 n-i

2. Write a program to ask the user to supply 6 numbers and
a. find their sum
b. find their product
c. find their average

3. Write a program to print a number, its square, its
root, and its cube root for the integers from 0 to

4. Write a program to approximate one root of a cubic
Newton's tangent method. Use 5 approximations and
supply the A, B, C, D of AX3+BX2+CX+D=0 at the time

7-19

cube, its square
10.

equation by
have the user
of execution.

COMMANDS

LIST

Important!

Note: No line number required.
If you type LIST your program will be printed on the
teletype paper. The line numbers will be printed

sequentially.

If you wish to change a line, one way it may be done is
to type the same line number with the correct version
you wish. The old line will be replaced by the new line.
When you type LIST the new line will appear in the
program and the old line will be deleted.

DEFINING FUNCTIONS: (DEF. FN-)

It is possible to define functions for use within any given program.
A new function may be defined by the statement!

DEF FN (variable) = expression
1\ a single letter

This means that up to 26 functions may be defined in a single program.
e.g. FNA, FNB, FNC, FND, etc.

For example if we wish to define a function which converts a percentage to
its decimal equivalent, we could write

20 DEF FNP(X) = X/100
later when we wrote

50 PRINT FNP(37)
the computer would print out the number .37

An example of a program which might use the concept of a defined
function would be the following!

10 FOR X=-3T03 STEP .2.,
15 DEF FNF(X) = Xt2-3*X+7
20 PRINT X, FNF(X)
25 NEXT X
30 END

This program defines F(X)=X2-3X+7 and finds the ordered pairs
(X, F(X)) for all values of X from -3 TO 3 in steps of 1/4

SUBROUTINES (GOSUB - RETURN)

When a particular series of statements are to be performed more
than one time in any given program, at different places within a program,
the most efficient program uses a subroutine.

A subroutine, called by the statement GOSUB, is a series of statements
that are performed and then control of the program returns to the statement
immediately following the point where the subroutine was called.

For example, the statement

7 -20

84

20 COSUB 300

causes the program, when it reaches step 20, to go to the statements beginning

at 300, continuing to the end of the subroutine as identified by the

statement RETURN, and then returning to the first statement following the

statement 20.

7-21

For example, the following program illustrates the use of a subroutine.
It is a program to determine the GCD (greatest common divisor) of three
integers using the Euclidean Algorithm. The first two numbers (A, B)
are selected on lines 30 and 40 and their GCD is determined in the
subroutine, lines 200 - 310. The GCD just found is called X in line
60, the third number (C) is called Y in line 70 and the subroutine is
entered from line 80 to find the GCD Of these two numbers. This
number is, of course, the GCD of the three given numbers and is printed
out with them in line 90.

10 PRINT "A", "B", "C", "GCD"
20 READ A, B, C
30 LET X = A
40 LET Y = B
50 GOSUB 200
60 LETX =G
70 LET Y = C
80 GOSUB 200
90 PRINT A, B, C,
100 GO TO 20
110 DATA 60, 90, 120
120 DATA 38456, 64872, 98765
130 DATA 32, 384, 72
200 LET q = INT (X/)
210 LET R + X- (1, * Y

220 IF R + Q THEN 300
230 LET X = Y
240 LET Y = R
250 GO TO 200
300 LET G = Y
310 RETURN
320 END

8G

7-22

MORE ON FORMAT

E Format

Numbers may be written in what is known as exponential format.
For example, the number .0000123 can be written 1.23E-5 which
means 1.23 x 10'!5

Other examples

10,000,000,000 can be written 1 E 10
.0000123 can be written .123E-4
.0000123 can be written 12.3E-6

This form is useful for extremely large or extremely small numbers. Any
number to be used with BASIC may contain, at most, 9 digits. Hence, a
number such as 10,000,000,000 must be written in E format.

Note: Small or large numbers are output by the teletype unit in exponential
format. Any number less than .1 or greater than 100,000 is output
in exponential form.

MATRICES

rectangular array of numbers. For example
// 1 3 -5

4 0 8

12 6

\, 3 15 4

4 rows and 3 columns. It is called a 4 x 3 matrix. A

A matrix is a

is a matrix with
symbolic way of representing any 4 x 3 matrix would be

i All Al2 A13
/ A21 A22 A23 where A would represent
A31 A32 A33 lj

\ A41 A.42 A43
the element in the i-th row and the j-th column.
e.g. A32 is the element in the
first example is the number 15.

3rd row and 2nd column and in the

Basic provides a special set of twelve instructions for computations
involving matrices. They are identified by the fact that each instruction
must start with the word MAT. They are:

1. MAT READ A, B, C Read three matrices, their dimensions
having been previously specified in a
DIM statement. Data is stored in the
matrix ruw by row.

2. MAT C = ZER Fill out matrix C with zeroes

3. MAT C = CON Fill out matrix C with ones

g13

4. MAT C = IDN Set up matrix C as an identity matrix.
(i.e. all ones down the diagonal, zeroes
elsewhere.)

5. MAT PRINT A, B, C Print the three matrices, with A and C in
the regular format, but B closely packed.

6. MAT B = A Set the matrix B eaual to the Matrix A

7. MAT C = A + B Add the two matrices A and B and assign
the value to C

8. MAT C = A - B Subtract the matrix B from the matrix A
and assign the value to C.

9. MAT C = A * B Multiply the matrix A by the matrix B and
assign the value to C

10. MAT C = TRN (A) Transpose the matrix A and assign the value
to C

11. MAT C = (K) * A Multiply the matrix A, by K. K, which
must be in parentheses, may be a formula.
Assign the value to C.

12. MAT C = INV (A) Invert the matrix A and assign the value
to C.

Dimensioning.. Rules

Each variable which is to be later used in a matrix operation must
be defined in a DIM statement. For most of the MAT operations, this is
simply to reserve enough space for the matrix.

The DIM statement may simply indicate what the maximum dimension is to
be. Thus if we write:

DIM M(20, 35)
then M may have IR_ to 20 rows and 35 columns. This statement saves enough
space for the matrix and hence the only care at this point is to assure
that the dimensions declared are large enough to accommodate the matrix
that must be taken.

The actual dimensions of a matrix are established either when it is
set up by a DIM statement or when they are defined in one of four MAT
statements:

MAT READ
MAT ZER
MAT CON
MAT IDN

e.g.

10 DIM M (20, 35)
50 MAT READ M (17,30) *

will read a 17 x 30 matrix since sufficient space has been reserved for it
by statement 10

* some versions of BASIC have a zero row and a zero column so You would write
MAT READ M (16, 29) to get a 17 x 30 matrix.

7-,24 88

e.g. MAT M = CON (7,3) sets up a 7 X 3 matrix with 1 in every component.

The form of the four instructions is as follows:

MAT READ C (M, N)
MAT C = ZER N)

MAT C = CON (M, N)
MAT C = IDN (N, N)

where M and N are specifically stated or defined in the program by READ,
INPUT, or LET

An example:
10 DIM A (2, 3)
20 MAT READ A
30 MAT PRINT A

100 DATA 1, 2, 3, 4, 5, 6
200 END

Produces the following output:

1

4

2 3

5 6

If the DIM statement were changed to

10 DIM A (3, 2)

the output would appear as follows:

1 2

3 4

5 6

ASSIGNMENT

1. Write a program which asks you to input a 3 x 4 matrix and
then prints it.

2. Write a program which asks you to input a 3 x 2 matrix and
then prints it.

3. Write a program to evaluate a 2 x 2 determinant.

4. Write a program to print the solution of the system ax + by = c
and dx + ey = d. (use determinants)

5. Write a program to evaluate a 3 x 3 determinant.

6. Write a program to evaluate a 4 x 4 determinant.

7. Write a program to add a 2 x 3 matrix to another 2 x 3 matrix.

8. Write a program to multiply a 2 x 3 matrix by a 4 x 2 matrix.

90
7-26

Note: Additional, advanced statements are to be found in the BASIC
manual. Specialized printing rules, editing, and error diagnostics
are there and the student is encouraged to read the explanations
given and try to use each.

Of particular help will be the section on storing and recalling
programs but students should not use storage except under unusual
conditions.

7-27 91

CHAPTER 8

Ref:

1. Introduction to Programming

2. Computers in the Classroom
(A. Resource Manual for

Algebra)
3, Focal Programming Manual

4. Programming Languages Ch II

FOCAL

- Digital Equipment Corp.
Maynard, Mass.

- Walter Koetke
Digital Equipment Corp.
Maynard, Mass.

- Digital Equipment Corp.
Maynard, Mass.

- Digital Equipment Corp.
Maynard, Mass.

FOCAL

Order of Operations

1. Parentheses (), < >

2. Functions

3. Exponentiation t

4. Multiplication *

5. Division

6. Addition and Subtraction +, -

Performs operations of same priority from left to right

Parentheses (), [], < >

Functions
later

Exponentiation
2 t 3 means 23
2 t n

limits on n
1) must be a non-negative integer (book says positive)
2) must be <2048 (book says <2046)

2 t 3.262 -0. 8 Focal takes integral part

Problem: write the following the way it must be done using parentheses

FORMAT

3 (11.2 - 13.72)
5.86 - 2.9
13.87

% -0 Floating point

O. bbbbbb E t aaa

6 digits won't be used unless needed
no greater accuracy limits t 619

+ O. 999999 E + 619 biggest number
Ask what smallest is - answers will vary

Answer - 0.999999 E + 619

8-1 9 3

maximum is 19 (6 are significant, other 13 are zeroes)fir-
% ab.cd.,

r. N of places to right of decimal place
--total # of places

Problem: Write 123.456

+0.123456 E + 03

% 9.03 + Li L, u123.456

% 5.02 + 123.46
N.rounded off

%3 +123

% 2 xx
Ccmachine realizes it can't work in your format

Note: Some people may not know what .32 x 103 is
.32 x 10 3 is
etc

Review X -n, Xn ,

You Are At The Teletype
(Assume Focal has been loaded in)

Machine Types

Waiting for you

CTRL
+Hit these together to interrupt program.
Returns program control to You.

+You hit this if you want the machine to do something

* TYPE (Command)

* TYPE - "JOHN DOE" RET

JOHN DOE * (ET

* TYPE LI "JOHN DOE", "SUE

JOHN DOE SUE SMITH *

* TYPE II "JOHN DOE", ! RET

JOHN DOE CBook doesn t use commas
.,-

* TYPE LI "JOHN DOE",! " SUE SMITH",! (RET

JOHN DOE

SUE SMITH

*TYPE 111..1 Li LR " JOHN DOE", i U ill

JOHN DOE SUE SMITH

8-3
95

"SUE SMITH",! (RET)

* TYPE %, 3.15 + 23.6

=40.267500E+02

* TYPE % 5.02, 3.15 + 23.6
=+ - 26.75

* TYPE 5 T 2 (RER)

+= - 25.00

uses format from previous example

Memory

Format

ERASE ALL erases all input except last format

Must be careful in type statement if you omit format. It is possible that last
format may not accommodate your answer.

* SET (Command)

SET W
variable name

E.G.

Expression for which
computer can get
a numerical value

Any number of alpha-numeric characters
First Character must be a letter
First character cannot be F

However, machine only uses first two characters
(i.e. All variables are identified in memory by a two
character designation)

SET A = 3

SET X1 = 4 t 2

SET MIKE 3 + 6/2 t 3
can define variables in

SET PETE = A = X1 + MIKE terms of other variables

SET A = A 2 + Can define a variable again (redefining)

SET J = 4; SET K = 3; SET Z = 2 4-can have more than one SET on a line

semi colons needed if more than one
command is on a line.

ASSIGNMENT

1. What numerical value will the computer give for each of the following:

a. 18/6*3 i. 16t(1/2)

b. (18/6)*3 j. 8-5-3

c. 18/(6*3) k. 8*3-2+1

c. 5*3+2+4/2 1. 8+-1

e. 5*3+(2=4/2) m. 4+2.5

f. 5*(3+2+4)/2 n. 24/8/4

g. (5*3)+2+4/2 6, 6-3/3

h. 16+1/2 p. 18/3*6/2

2. How would FOCAL respond to the following commands if they were typed in
the order given?

a. TYPE %5.02, 48/24*2-2*24/48

b. TYPE (1.2/(0.03*.4)) +1/2

c. TYPE %, (4*10+6/.2E-2)*3*10+4

d. TYPE (5+2-2+4)4..5

e. TYPE %3.01, 16.3+15.7

f. TYPE "PETE", !!!,. "MARY"

g. TYPE 43.6/10/10

3. Write a FOCAL command to evaluate (and print the result of) the following

a. 1 + 1 b. 52-33 + 2

3 + 1 7

3 + 1
3

4. How would FOCAL respond to the following commands if they were typed in
the following order :

a. SET A = 5
TYPE % 5.02, A

b. SET BOOK = 3+2
TYPE BOOK

c. SET Z2 = A+3
TYPE Z2 + BOOK

d. SET PETE = 4
SET BOB = 5
TYPE %, PETE, BOB

e. SET COUNT = -10
TYPE % 5.02, "COUNT = ", CO

f. TYPE "A=", A, I, "BOOK", BOOK,I, "PETE = ", PETE

g. TYPE A, Z2

h. TYPE A, " ", Z2

i. TYPE "A=", A, Z2", Z2

ERASE erases all variable names

Indirect Commands

1.01 not allowed
1.02 1, 2, 3, 4, 5, 15

15.99 group 1/ (part #) number to left of decimal

When line numbers are used, Focal stores entire line in memory.

*ASK (Command)
Allows user to input values for variables

ASK X
machine waits for you to put in a value

ASK X, Y

:3 /\ :5

hit a space or comma

ASX "X=", X, "Y=", Y
X=:3 Y=:5

ASK ? X I-1 Y ?

X:

Y: in manual
enclose requested variables, separated by spaced, between ?
and you get them printed and on separate lines.

Problem: Ask for two number, get their sum and product.

axing Mistakes

1.1 ASK R
1.2 SET PI = 3.145159

(\ Rub
Out Erases 5

\\
1.3 SET AREA L, PI * \\N\ \= PI * R +2

Put in
minus times
instead of =

1.4 ET CIRCUM = 2 * PI * R

forgot S - Retype whole line

1.4 SET CIRCUM = 2* PI * R

1.5 OUIT

forgot to get print out of answer - put a step number where you
want the step to be

1.45 TYPE %, "AREA", AR, 1 "CIRCUMFERENCE", CI, Ill

COMMAND

* WRITE + will type out the corrected program

* GO + will cause tte program to be executed

* QUIT + program halts and user regains control

* ERASE ALL + erases all of memory (step and variables)

* ERASE + erases all variables

PRASE 2 + erases all of part 2

* ERASE 1.7 + erases the step 1.7

FUNCTIONS

FSQU) + computes the square root of expression in parentheses
rib space

FABS () + gives the absolute value of expression in parentheses

FITR (N) + gives the greatest integer contained in parentheses
e.g. FITR (2.516) = 2 N<2048

FITR (0) = 0
FITR (-3.16) = -4

FEXP () + computes e to the power within parentheses
e.g. FEXP (1) = 2.718281 e + 2.718281

FLOG () + computes natural log of # within parentheses
Review rules of logarithms
log AB = log A + log B
log A = log A - log B

B

log An = N log A

10 19

FUNCTIONS (cont)

e.g. FLOG (1.98765) = .686953 4 e .686953 = 1.98765

FEXP (.686953) = 1.98765 e .686953 = 1.98765
Hence FEXP (FLOG (A)) = A

FSIN (N) 4 computes the sine of an angle (N must be in radians)

Conversion
D . n = angle in radians

180

R . 180 = angle in degrees
II

nos (N) 4. computes the cosine of an angle (in radians)

FATN (N) + computes the angle in radians whose tangent is the value N

e.g.

FATN (1) = II

4

FATN VS) = II

3

8-10

10`2

ASSIGNMENT

1. Write a Focal command which will evaluate and :vpe each of the
following expressions:
a. SIN 60°
b. COS2 3.1
c. ARCTAN (.31) + express answer in degrees
d. 3

d
7

Irir

2. Write a pro &ram which asks for two positive integers, N and D, and then
type the quotient of the division of N by D, type the remainder
of the division.

3. Write a prossam which asks for two numbers, A and B, and then writes
their sum and product.

4. Write a program which asks for two sides of a lcight triangle and then
type the two possible lengths of the third sidia.

5. Write a program which asks for five integers alid then types their average.

6. Compound interest : If A = PI.1 + On where
M)

A = amount in bank M = number Of times compounded per year
P = original principal deposited N = number)f years money is left.
R = rate of interest

1

Write a program which asks for P, R, M, and N and then types amount
in your bank account.

* COMMAND line numbers

IF (1,

+ + <o Imo >0

space any expression
with a numerical value

computer evaluates expression and compares it to zero

Problem: ask for two numbers A and B, divide A by B, tell if Quotient
is positive, negative or zero.

1 Do in class ERASE ALL
1.1 ASK A, B, !

1.2 IF (B) 1.5, 1.3, 1.5
1.3 TYPE "UNDEFINED"
1.4 QUIT
1.5 IF (A/B) 1.6, 1.7, 1.8
1.6 TYPE "NEGATIVE"
1.65 QUIT
1.7 TYPE "ZERO"
1.75 QUIT
1.8 TYPE "POSITIVE"
1.85 QUIT
CO

Now do same problem putting many commands on one line separated by semicolos.

1.1 ASK A, B, !; IF (B) 1.3, 1.2, 1.3
1.2 TYPE "UNDEFINED"; QUIT
1.3 IF (A/B) 1.4, 1.5, 1.6
1.4 TYPE "NEGATIVE"; QUIT
1.5 TYPE "ZERO"; QUIT
1.6 TYPE "POSITIVE"; QUIT

Problem: Ask for A and B, type the larger

ASSIGNMENT

1. Write a program which asks for two numbers and then tells whether the
sum or the product is the larger and if they are equal it states this
also.

2. Write a program which asks for an integer and tells if it is even or odd.

3. Write a program that asks for three numbers and prints the largest.

4. Write a program which asks for A, B and C in the quadratic equation
AX2 + BX + C = 0 and solves the equation.

5. Write a program which asks for an integer and tells if it is divisible
by 7.

6. Write a program which asks for two natural numbers N and D and then
tells if N is divisible by D.

8-13

105

* COMMAND

GOTO program will transfer control to a specific line
number and continue from that point

line number

Problem: Ask for a number and tell if it is in position, negative or zero;
even or odd; integer or not an integer.

1.1 ASK ? N ?, !

1.2 IF (N) 1.3, 1.5, 1.4
1.3 TYPE "NEGATIVE",t; GOTO '-A 1.6

1.4 TYPE "POSITIVE ",!; GOTO,-, 1.6

1.5 TYPE PZERO, EVEN, INTEGRAL ",!;OUIT
1.6 IF (FITR(N)-N) 1.8, 1.7 comment not needed
1.7 TYPE "INTEGRAL",!; GOTO 01.9
1.8 TYPE "NON-INTEGFAL",1; OUIT
1.9 IF (FITR (N/2) N/2) 1.95
1.91 TYPE "EVEN", !!!; OUIT
1.95 TYPE "ODD", !!!; OUIT

Problem: write a program to ask for an integer and tell if it is a prime.

ASSIGNMENT

1. Write a program which will ask for N numbers and take their average.

2. Write a program which will ask for N numbers and tell the smallest.

3. Write a program which will ask for N numbers and then types the number
and its square in two columns headed "NUMBER" and "SQUARE"

*4. Write a program which will give the first N Fibonacci numbers.

*5. Write a program which will find the G.C.D. of N natural numbers.

*6. Write a program which will ask for N numbers and will then compute
and type the mean and standard deviation of the numbers.

N
MEAN ai 4- (the average)

=

N

Standard Deviation =
N

(Ai - Mean)2

*7. a. Write a program which will compute and
is supplied at execution)

b. Write a program which will compute and
of that number from 1 to N (where N is

type N factorial (where N

type a number and the factorial
supplied at execution)

MODFY

New
Use
for

erase
everything
to right

1.3 IF (A-2B) 1.4, 1.5, 1.6

* MODIFY 1.3 (11et

Line,
Feed)

rest of erase
line o.k.every-

thing
left

to 4,

search for
next occurrance
of search
character

You define search character which will not be printed.

Modify erases variable table.

108
8 - 16

new search
character to be
defined

ASSIGNMENT

Correct (using Modify Command) each of the following.
After each correction say TYPE 1.1, TYPE 1.2, etc. to show corrected form.

1. You want
You wrote

2. You want 1.2
You wrote 1.

3. You want
You wrote

4. You want
You wrote

5. You want
You wrote

6. You want
You wrote

7. You want
You wrote

8. You want
You wrote

1.1 U SET Li X= 2*Y; SET u P=P+2; TYPE U X, Y, !

1.1 f-' SET U X = 2Y; SET U P=P+2; TYPE u X, Y, !

U IF U(A_2 *B) 2.2, 2.3, 2.4
2 ij IF Li (A-2*B) 2.2 2.3, 2.4

1.3 IJ SET U X = A+B; SETIJ M = A*B; TYPE U X, M, t

1.3U SET u X=A+B; SET f-fM=A**B; TYPE tJ X, M, I

1.4 L4IF U (A-2*B) 1.8, 1.8, 1.9
1.41-, IF u (A-2*(1.8, 1.8, 1.9

1.5 U SET u A=B+1; SET U C+A+2; IF
1.5 SET u A=B+1; SET W C=A+2; CF U

1.6 LI SET I- M=2*B; IF u (M-N) 1.3,
1.6 IJ SET lj N 10; SET u M = 2*B;

1.71-1 SET W P=P+2; SET Li 0=0-1; TYPE U P, 0, !

1.7 U SET IJ P=P+2; SET i1 0=0-1; TYPE U P, 0; GOTO U 1.4

(A-C) 1.2, 1.3, 1.4
(A-C) 1.2, 1.3, 1.4

1.4, 1.5
IF (L (4-N) 1.3, 1.4,

1.8 U TYPE U % 5.02, A, B, !

1.8 u SET A=3; TYPE u,A, B, !

"I`

C. COMMENT

Line # + is not printed each time program runs

SUBSCRIPTS (single)

A2 A [2]

MAX MAX [Y]
V

X
i+j

X [I+J]

Variable Name [

Lexpression, number, variable

1

is

is shift

shift

Problem: write a program which will
1. ask for N
2. ask for N numbers
3. tell which is the largest

1.1 ASK N01; SET I=1
1.2 ASK A[I]; SET 1=141; IF (N-I) 1.3, 1.2, 1.2
1.3 SET LARGE = A[1]; SET J=2
1.4 IF (A[J]-LARGE) 1.5, 1.5; SET LARGE=A[J]
1.5 SET J=J41; IF (N-J) 1.6, 1.4, 1.4
1.6 TYPE "LARGEST IS", LARGE, I!; OUIT

11 0
'8 -- 18

FOR and DO

1.05 TYPE "NUMBER",
1.1 FOR N=1, 10; DO 2
1.2 OUIT
2.1 TYPE Z3, N,"
*Go

", Nt2,1

NUMBER SOUARE

.1 =1

=2 =4
1.3

=4 =16
.5 =25

=10 =100

8-19

SOUARE", !

Problems:

1. Ask for N numbers + show advantage of previous system.

2. Write a program to ask for N, then N terms Al, A2 , --- A
then type the sum of the series
SUM Is Al + 2A2 + 3A3 + 4A4 + + NAn

3. Sum the first N odd numbers

4. Get N numbers, type largest and smallest.

5. Sum of N numbers.

112
8 -20

DO - transfers control to a line or a part

1.2 DO 3.5 + will do line 3.5 and will then go back to the command

following the DO

2.4 DO 0 4 4' will do all of part 4 and return to the command following
DO command.

RETURN + will terminate the DO subroutine and control is transferred to
the command following the DO

e.g.
1.1 SET A = 2; SET B = 3
1.2 DO 2
1.3 TYPE A *B,!

1.4 DO 3; DO 2.2
1.5 OUIT only does this line

2.1 SET Ass$

2.2 TYPE A+B,!
2.3 TYPE A-B,1
2.4 RETURN + You're finished with DO statement
2.5 SET B = 6 never does this

3.1 SET A = 3
3.2 TYPE A/BO
*co

B = 3 OUTPUT

A " 4 a 7

. A- = --3 - --

COTO 2.2 goes to 2.1 and continues
from this point

DO 2.2 goes to 2.2, does it and
returns to command following DO

1.1 DO 2
2.1 DO 3
2.2 TYPE 1.J 61 "Here .-+"

3.1 DO 4
3.2 TYPE " I J
4.1 TYPE " AM u "

* CO
rocal types Am I here Am I Here Am I Am
to make it type Am I Here we could

a. use DO 1 instead of GO or
b. have 1.2 QUIT

113
8 - 21

= 1

= 12

= 1

= 6

1.1 DO-2- Am I Here
DO-3
DO-4

2.1 DO-3r Am I Here
2.2
3.1 DO 4 Am
3.2
4.1 AM

Ex. 1 Ex 2

1.1 TYPE "A"
1.2 DO 2
1.3 TYPE "C"

2.1 TYPE "B"
2.2 GOTO 2.4
2.3 TYPE "D" 4 never printed
2.4 TYPE "E"
2.5 TYPE "F"

3.1 TYPE "G"
3.2 TYPE "H"

1.1 TYPE "A"
1.2 DO 2
1.3 TYPE "C"

2.1 TYPE "B"
2.2 GOTO 3.1
2.3 TYPE "D"
2.4 TYPE "E" + never printed
2.5 TYPE "F"

3.1 TYPE "G"
3.2 TYPE "H"

ABEFCBEFG ABGCBGH

Notes If a GOTO (or IF) transfers to a line in the DO group (Ex 1)
the remaining lines are executed before returning to command
following the DO.

If a GOTO (or IF) transfers to a line outside the DO group (ex 2)
that line is executed and control is returned to the Command
following the DO.

FOR
FOR A = B, C, D; command

T

first increment stop
value by, this when
of amount >D
A

A 4 must be a single variable (no expression)
(only length)

B

C 4 numbers, variables or expressions
D

1.1 FOR X = 1, 2, 7; TYPE % 2, X, 1

*co
a1
= 3 If C is omitted

5 ,---increment assumed
=7 /' to be 1

1.1 FOR X = 1, 7; TYPE % 2, X, !

1

computations done in floating point
arithmetic-hence name your format

114
8 -22

1.1 FOR I - 1, 6; ASK ? A [I] ? ,

*co
A [I] :

A [I]:

A [I]:

A [I]:

A [I]:

A [I]:

1.1 FOR X + 1, .1, 2; TYPE X,I
i`ry this

NEW FOCAL

YES .25*1021

NO 155

FIND 7044

HELP .799993*10137

OLD FOCAL

9000

155

7044

.800011E+121

Program to make table of squares, square roots

1.1 SET 8+1; SET E=5
1.2 TYPE "NUMBER SOUARE SOUARE ROOT",!!

1.3 FOR N=8, E; TYPE !,%3, N, % 8, Nt2, %8.05, FSOT (N)
1.4 ASK " 4-J1 MDRE?", R; IF (R-155) 1.5, 1.6, 1.5
1.5 SET G=B+5; SET E+E+5; GOTO 1.3
1.6 QUIT

This concept can be used to determine the number of terms in a series such as
e+1 + 1 + 1 + 1 + --

1! 2! 3!

GO?
One letter rather than full command

1:i

8 -23

ASSIGNMENT

*1. Write a program which will give the factorials up to N, factorial
where N is supplied at execution. (This should differ from #7 on
problem set V in that you can use DO and FOR)

*2. Write a program which will compute and type the amount of money you will
have in the bank after 5 Years if you initially deposit $1000. Allow
the interest rate to vary from 4% to 6% in steps of 1/4 %. Also allow
the compounding to be done semi-annually, quarterly and daily.
The formula is A = P(1 + R)Nrn Y = # of years

N N = # of times compounded
per year

R = rate of interest
P = initial deposit

*3. In a right triangle the legs are A and B and the hypotenuse is C.
If M > N, set A = 2MN, B = M2-N2 and C = M2+ N2. All such triples
are called PYTHAGOREAN TRIPLES (integer values satisfying the
pvthagorean theorem, viz A2+B2. C2). Write a program which will
give the triples generated for M going from 2 to 10 and N assuming
values from 1 to M-1 in each case. (45 of them.)

*4. Write a program to approximate e using the series
e = 1 +1+1+1+1+ + 1 +

1! 2! 3! 4! n!

*5. Write a program which will ask for two sides and the included angle of a
trir.7gle (in degrees) and will type the length of the third side.
Use the ln of cosines a2.432+c2-2bcCosA

11 G
8 - 24

RANDOM NUMBERS

FRAN () gives a number between tl
anything in here is ignored

0 < FABS (FRAN()) <

0 < FABS (FRAN90) * N < N

FITR (FABS (FRAN())*n) vends the integers 0, 1, 2, ---,N

FITR (FABS (FRAN()) *10} yields the integers 0, 1, 2, ---, 10

FITR (FABS(FRAN())*5) + 1 yields 1, 2, 3, 4, 5, 6

FUN + PRACTICAL (simulation)

I. Fun
a. dice
b. baseball
c. toss of a penny

etc.

II. PRACTICAL
a. Approximate
b. gas laws in chemistry

A = 7r2
A =

x2.1,12. 1

Asa = 1

= I No. of Hits = 7/4
4 No. of throws 1

4 * (HITS) / (THROWS)

If (X2+Y2-1) hit, hit, miss

lti
8 -25

100 balls

B

no balls

1.1 SET A = 100; SET B = 0; FOR I = 1, 100; SET B[I] = 1 1;10
1.2 FOR C = 0, 10, 300; TYPE % 4.0, C, A, B,!; FO(I = C+1, C+10; D02

2.1 SET X=FITR(FABS(FRAN())*99).+1; SET B[X]=-B[X]; IF (B[X]-1) 2.3, 2.2, 2.3
2.2 SET B=B-1; SET A=A+1; RETURN
2.3 SET B=B+1; SET A=A-1

APPENDIX VI

ASSIGNMENTS

The following may be assigned in either the BASIC or the FOCAL sections:
(other problems are contained in each of the chapters)

Write a program to:

1. Compute the arc sin.

2. Compute the arc consine.

3. Round off numbers with decimal parts to the nearest whole number.

4. Average 5 numbers (in BASIC use the DATA statement)

5. Ask for and average 5 numbers.

6. Get a random digit. (uses INT and RND in BASIC)

7. Round off numbers to the nearest tenth.

8. Round off numbers to the nearest hundredth.

9. Round off numbers to the nearest thousandth.

10. Give integer random numbers from S to 24 inclusive.

11. Give X integer random numbers from B on.

12. List the squares from 1 to 20.

13. List a number and its cube from 8 to 15.

120
VI 1

ASSIGNMENTS (cont.)

14. List a number and its square root from 7 to 23.

15. Print the values of X and Y if Y = 3X2 + 2X -5
and XE { -4, -3.5, -3, -2.5, ---, 2, 2.5, 3}

16. Convert degrees to radians.

17. Convert radians to degrees

18. Find the area of a circle when the radius is asked for at the time
execution.

19. Compute the values of the sine function for angles from 00 to 3600
in steps of 300

20. Find the circumference of a circle when the radius is asked for at the
time of execution.

21. Approximate 7 by using inscribed and circumscribed polygons.

22. Compute N! for an N supplied at time of execution.

23. Compute 1! thru N! for an N supplied at time of execution.

24. Compute N pythagorean triplets.

25. Approximate e using the series
e= 1+ 1+ 1+ 1+ 1 +

1! 2! 3! 4!

- 2 121

ASSIGNMENTS (Cont.)

26. Approximate sin X for an X supplied at time of execution using the series
Sin X = X - X3 + X5 - X7 + X9 -

§-!

27. Approximate cos X for an X supplied at time of execution using the series
Cos X= 1 - X2 + X4 - X6 +

4!

28. Find the greatest common divisor (G.C.D.) of two numbers.

29. Find the least common multiple (L.C.M.) of two numbers.

30. Ask for a number and print out whether it is prime or composite.

31. List the prime numbers up to N.

32. Convert from natural logarithms to common logarithms.

33. Convert from common logarithms to natural logarithms.

34. Convert from centigrade to fahrenheit.

35. Convert from fahrenheit to centigrade

36. Print the first N Fibonacci numbers.

37. Identify the type of conic section when A, B, C, D and E are supplied
in the equation AX2 + BY2 + CX + DY + E = 0

ASSIGNMENTS (Cont.)

38. Find the maximum or minimum of the parabola Y + AX2 + BX + C

39. Play TIC TAC TOE (use subscripted variables)

40. Approximate roots using Newton's tangent method.

41. Find the missing parts of a triangle if:
a. Two angles and a side are given
b. Two sides and the angle opposite one of them are given
c. Two sides and the included angle are given.

42. Approximate the area under a curve using the trapezoidal rule.

43. Compute nPr

44. Compute nCr

45. Give the coefficients of the binomial expansion for a given integral exponent.

46. Convert a base 10 number to base 8.

47. Compute the mean and standard deviation of a set of N Scores.

S.D. =
N
E (xi - M)2
L=1

N

where M = mean

48. Add N consecutive odd numbers beginning at 1.

ASSIGNMENTS (Cont.)

49. Solve a system of N linear equations with N. unknowns.
(Hint: use Gaussian elimination method)

50. Approximate the area under a curve between X = A and X = B using rectangles.

51. Play a game of dice. In the game of dice, a player bets even money on
his chance of winning when he throws the two dice. If he throws 7 or 11
he wins immediately. If he throws 2, 3, or 12 he loses immediately.
For all other numbers (i.e. 4, 5, 6, 8, 9, 10)he must continue to throw
until either that number, called the point, appears again (and he wins)
or the number 7 appears (and he loses).

52. Compute the limiting value of
1 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 +

Your answer should be 2

53. Approximate ir using the series!
= 4 (1 - 1 + 1 - 1 + 1 -1 +1 -1 + - - -)

3 5 7 9 11 13 15

54. Compute the area of a circle using random numbers.

55. Give the coefficients of a quadratic equation if the two roots are supplied.

ASSIGNMENTS (Cont.)

56. Give the values of A, B, and C in the parabola Y = AX2 + BX = C if
three points on the parabola are supplied.

57. Give the area of a triangle if the lengths of the three sides are supplied.

58. Compute the weekly payroll for a company employing 10 men. Consider
state and federal income tax, social security, hospital insurance. Do

not assume all make the same salary nor have the same percentage of
taxes withheld. Print out the payroll for six weeks and the total of
each column for the six week period.

59. Determine if a point supplied at execution lies on, in, or outside
the circle X2 + Y2 = R2 where R is also supplied at execution.

60. Determine if a point supplied at execution satisfies the ineQualitv
Ax + By > C where A, B and C are also supplied at execution.

61. Determine 10 points which satisfy the ineauality AX + BY < C where
A, B and C are supplied at execution. Use random numbers and print
each point with a "yes" or "no" until 10 "yes" answers have appeared.

62. Determine the nature of the roots of a Quadratic equation using the
discriminant.

63. Determine the distance between two points.

64. Determine the distance from a point to a line.

65. Find the area of any regular polygon.

66. Find the sum of a geometric progression.

123
.VI 6

ASSIGNMENTS (cont.)

67. Approximate e using + 1\11

n)

68. Determine if a natural number is even or odd.

69. Convert a number from base N to base 10.

70. Calculate the solution to the birthday problem. i.e. how many people
are necessary to have a probability greater than 1/2 that two of them
have the same birthday?

71. Convert a number from base 10 to any base.

72. Demonstrate that the set of rational numbers is dense.

73. Show LEA sin x = 1

74. Simulate a baseball game.

75. Find the sum of the first N factorials.

76. Ask for a list of N numbers (any real numbers) and have the computer
print out those that are between 10 and 17 inclusive or between 47
and 61 (not inclusive)

ASSIGNMENTS (cont.)

77. Ask for the Mathematics, Science, Foreign Language, English and
Social Studies grades of N students. If a student's average (Ave)
is 90 - 100 inclusive put him on a list labeled HIGH HONORS. If

his average (Ave) is 80< Ave < 90 put him on a list labeled HONORS.
If the average is below 60 put him on a list labeled FAILURES.

78. Determine all four digit numbers which are perfect squares and each
of whose digits is even.

N
79. Compute E i2 - i

i=1

80. Compute a table of values of ex for values of x between -1.00 and 1.00
in steps of .01 1,1sing
ex = 1 + x + x' = x3 +--- +xn = - --

1! 2! 3!

81. Find the sum of the squares of the first N natural numbers showing
each partial sum.

82. Find the least common multiple of N natural numbers.

83. Convert ft/sec to mi/hr

84. Find the magnitude and direction of the resultant of two vectors.

