DOCUMENT RESUME

ED 053 546 EM 009 125
AUTHOR Hill, Edward, Jr.
TITLE The On Line Modeling System. Part One, General

Discussion. Part Two and Part Three, Programmers'
Reference Manual.

INSTITUTION National Institutes of Health, Bethesda, Md. Div. of
Computer Research and Technology.

PUB DATE Apr 71

NOTE 211p.

EDRS PRICE EDRS Price MF-$0.65 HC-$9.87

DESCRIPTORS *Biology, Computer Graphics, *Computer Programs,

*Manuals, *Medicine, Models, *On Line Systenms,
Programing Languages
IDENTIFIERS OLMS, *On Line Modeling Systenm

ABSTRACT

An On-Line Modeling System (OLMS) which should be
particularly useful to the biomedical community is described which
utilizes a process called "overlaying" to simplify loading and
executing programs. OLMS has been constructed and iwsplemented as an
interpreter; that is, a program that translates and then executes
each source statement in sequence where these two operations follow
each other in close time proximity. It has been written so that it
can be run under the IBM S/360 and the PDP-10 operating systems, but
has been implemented only on the PDP-10. OLMS operates from a command
language that is executed interpretively through a set of closed
subroutines., The user may run a job, save data, get data, and display
data. While his program is running, he can access the whole memory.
This report consists of a description of OLMS and programmer's
reference manuals for both the OLMS graphical system and OLMS. (JY)

Ir..‘

P

!
i
—

TECHNICAL REPORT NO. 6 l
PART |

THE ON-LINE MODELING SYSTEM

National Institutes of Health

-
C
g
=
XL
)
Q_
>
w
)
@
<.
o)
-

-

The Division bf Computer Research and Technology, NIH, will
issue on an irregular basis technical documents which we believe
will be of particular interest to the biomedical community.
These reports will include detailed descriptions of relevant
computer programs and instructions in their use (as well as some
theoretical background), in hopes that interested scientists will
be encouraged to gain first-hand experience in applying them.

In some cases, such reports may serve as foci around which DCRT
will structure training courses to expand the knowledge and
experience of NIH staff in applying computer science to problems
of research and management. Circulation of these reports within

the biomedical commmnity broadly is, of course, encouraged.

A st

A. W, Pratt, M.D., Director, DCRT

-9

2
4
R

THE ON LINE MODELING SYSTEM

Part I. General Discussion

by
Edward Hill, Jr.

Laboratory of Applied Studies

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
DFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR OR.GANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE Of EDU-
CATION POSITION OR POLICY.

Division of Computer Research and Technology
National Institutes of Health, Public Health Service

Department of Health Education and Welfare, Bethesda, Maryland

20014

SECTION I

1.1
1.2
1.3

SECTION 11

2.1

SECTION I11

3.1

3.2

SECTION IV
4.1

THE ON LINE MODELING SYSTEM

OLMS

Table of Contents

Introduction
Example Problem

Generalized Statement of Problem

A Syntactic Description of a
Modeling Command Language

Generation of Input

Function Key Light Pen Mode

Example

PAGE

1-1 to 1-3
1-4 to 1-6

1-38 to 1-39

2-1 to 2-20

3-1
3-1 to 3-11

4-1 to 4-28

T e

PREFACE

This report is intended to introduce a simple modeling system, that
is easy to use, flexible and general enough to allow a scientist or

programmer to extend it using Fortran IV.
There are three parts to this report;

Part I : The On Line Modeling System ,

Part II : A Programmers' Reference Manual For The On Line
Modeling Graphical System, and

Part III : A Programmers' Reference Manual For The On Line
Modeling System.

Before using this system a user should read all of Part I and at least the

miscellaneous Section in Part III.

D

o

Ao

.‘ SECTION I
1.1 INTRODUCTION

Access to computers is limited by many constraints; namely, memory
size, memory cost, computer structure, computer language, internal
operating systems and monitors, etc. The design and implementation of
any program that a user wishes to interact with is directly influenced
by the above factors and perhaps others that are not listed. Most
computers are designed for general purpose usage and as such the
generality given any particular user is a compromise between the speed
of loading and executing programs. Mathematical models of complex
processes require complicated programs which tend to grow in size as
the problem solving capability increases, and new knowledge of the

«. system being modeled is incorporated. This concept is clear if we
think of modeling a physiological structure. Independent unit structures
may be modeled, and at some point, connected together as a model for
a complete structure. An example is given in Section IV showing how the
input output relations of the Hodgkin-ifuxley Nerve Equations can be
studied.

Since most models grow as the investigator proceeds, the total storage
requirements for instructions in a given program may exceed the available
storage capacity of the machine. It then becomes necessary to use
repeatedly the same blocks of the computer's internal storage in order
to execute the total program. The process whereby data or subprograms
replace other data or subprograms which are no longer needed, is called
overlaying. This overlaying process provides a more efficient utilization

jlof memory capacity and increases the flexibility of the internal programming

[l{lC 1-1 N
s B

.

structure. The On-Line Modeling System discussed here utilizes this over-
lay concept to simplify the process of loading and executing programs.

A program that translates and then executes each source statement
(e.g., an individual Fortran statement such as x = y) in sequence, where
these two operations follow each other in close time proximity 1is called
an interpreter. The use of an interpreter is advantageous if rapid
response to modifications of the source statements is required. For this
reason The On-Line Modeling System has been constructed and implemented
as an interpreter.

Present day operating systems and monitors are influenced by the needs
of many people; however, they may not completely fulfill the needs of any
particular user. FPFurthecrmore, many generalized operating systems are
designed in such a way that they cannot normally allow the user to run
programs, save data, get data, and display data by pushing buttons on a
keyboard. The On-Line Modeling System described in this report has been
written so that it can be run under the existing (S/360) and (PDP-10)
Operating Systems. However, it has been implemented only on the PDP-10.

‘The OLMS operates from a command language that is executed interpretively,
through a set of closed subroutines. This command language has eight modes
of operation which are discussed later in this report. In one of these,
the Function Key Mode, the system can be operated by a push button key-

board, allowing a user to manipulate the OLMS without having to know the

details of the command language.

1-27

In sumary, the OLMS is a system that allows a user to run a job,save

data, get data, generate data, and display data. When the user's program
is running he can access the whole memory (i.e., the OIMS is not in memory
when the user's program is running). This is accomplished by using the
system overlay loader to overlay the OLMS. The interpreter for the OLMS
command language gives the user flexibility in using the various modes of
the system. In the Function Key Mode a user can interact with the system
by pushing buttons and answering questions. As the user answers the
questions a syntactic command 1s generated and passed to the interpreter
to test its acceptance. The advantages of such a system are as follows:

1) A user can use the system without any display programming

or any prior knowledge of how the display works.

2) Awuser can run a program and see immediate relationships
among the variables (i.e., graphs can be generated by
pushing buttons).

3) When the user's program is running he has the capability
of using the central processor, fast memory, and all I/O
devices.

Finally, the handling of programs that are too large to fit in memory
is possible since the files are each organized and the user can interact
with the total organization. Therefore, the OLMS provides investigators
who must use large programs and large amounts of experimental data with a
flexible and responsive _omputer facility which allows them to explore all

the characteristics of their data. Furthermore, the individual user may

modify the OLMS with some prior knowledge of Fortran.

1.2 Example Problem

This example shows how the OiMS can be used to study the input and

2

output relations of a simple quadratic equation of the form Y = AX" + BX + C.

The algorithmn listed below shows how this equation can be implemented on the

OLMS.

Algorithm

The system buffer is defined as a named common bloc’:; namely, COMMON/COMBUF/
SYSBUF(384) .

Al. [Input coefficients by teletype]

| A,B,C+——_INPUT F"
| A2. [Input the number of points to generate by teletype]. 4
| NPTS<- -- INPUT

if (NPTS>128) then go to A9

A3. [Initialize I].
I«---1
|

A4, [Generate points].
: if (I>NPTS) then go to AS8.

A5. [Generate X value].

SYSBUF (1)<--- -1

1

A6.

A7

A8.

A9.

Al10.

[Generate Y value].

SYSBUF (128+I) = A*(I**2) + B*I + C

[Increment I].
Te---1+1

Go to Ad

[Write SYSBUF on disk].

CALL WRR(1)

[Load Interpreter].
CALL INTERP(1)

Terminate

In this algorithm the routine WRR(1) writes the content of the system

buffer on the disk. The routine INTERP(1) is a call to the Loader to load

the OIMS interpreter.

A Fortran IV program is given to show an implementation of this algorithm.

1-5 10

FORTRAN IV PROGRAM

COMMON/COMBUF/ SYSBUF (384)
TYPE 12
ACCEPT 1,A,B,C
1 FORMAT(3F)
TYPE 13
ACCEPT 2,NPTS
2 FORMAT(I)
IF(NPTS.GT.128)TYPE 11
IF(NPTS.GT.128)GO TO 9
I=1
4 IF(I.GT.NPTS)GO TO 8
SYSBUF (1) +1
SYSBUF (128+1)=A*FLOAT (1) **2+B*FLOAT (1)+C
I =141
GO TO 4
8 CALL WRR(1)
9 CALL INTERP(1)
11 FORMAT(' ERROR NPTS IS, GREATER THAN 128'/®
12 FORMAT(' INPUT A,B,C'/' ")
13 FORMAT (' INPUT NPTS'/' ')
END

Steps used to get a job ready for the OLMS.
(1) Place cards on disk
R PIP
DSK:NAME <« CDR:

(2) Compile job
COM NAME

(3) Load job
LOAD NAME, INTOP

(4) Save job
SA DSK:NAME

")

The information needed to operate the OLMS can be acquired by reading

The Function Key Mode in Section III, Section V, and the following

semantics in Section II of this report:

4

5.
6.

9

10.
12.
16.

18

19.

20.

22

23.

25.

Now you are

.1 (Save Statement)

.1 (Clear Statement)

.1 (Kill Statement)

.1 (Dout Statement)

1 (Get Statement)

1 (Delete Statement)

1 (Rename Statement)
1 (Plant Statement)

1 (Start Statement)

1 (Enter Statement)

1 (Display Statement)

1 (Top Statement) 1
1 (Transfer Statement).

ready to use the OLMS; therefbre; branchi to the computer, other-

wise, proceed to add depth to your understanding.

hind

1.3 Generalized Statement of Problem

Given that a program is too large to fit in the existing computer
memory, we may divide it into Cj parts (where j = 1,2,...,n). The sub-
division is made so that the user may interact with any cj.

Each Cj is loaded for execution with an overlay structure. Suppose
that the part C1 has been loaded and executed. Depending on the output
from C1 the user may want to execute C1 again or one of the other
CZ’CS"‘
to keep all program parts organized for execution. This 1s done by using

-,C, parts of the program. To perform this task, it is necessary

the proper push buttons on the Function Key Box (see Section 3 of Part IT).

To simplify the loading and executing of program parts, we use a
command language that is executed interpretively, and which keeps the
C.'s and their associated files organized for manipulation. To accomplish
this kind of organization, a storage management scheme must be available
that is general and easy to implement. The OLMS uses an algorithm called
the T-Algorithm to accomplish this management scheme. This algorithm
requires that the computer system being used to implement the interpreter

have an overlay structure. The T-Algorithm is outlined below:

T-Algorithm
Tl: Create a simple overlay program that
calls the interpreter for the command
language.
T2: The program created in step T1, will
be a part of every Cj that we wish to
interact with at execution time. Note,

a call to the program created in step Tl

Y
: }

may appear anywhere in Cj'
T3: To start the system, make a call

to the program created in step T1.

The T-Algorithm functions so that any task executed from the interpreter
will overlay the interpreter. This algorithm allows a user to develop

a good simulation program under most existing operating systems. Finally,
this algorithm generates flexibility for interaction with the Rand Tablet
and Function Keys.

The sections of this report that follow are an implementation of the T-
Mgorithm. To understand the details of how the T-Algorithm works, refer

to the following discussion and diagrams.

An Example of the T-Algorithm

Let INTERP be the name of a routine that calls an interpreter (called
INTER).

Let DMAIN be the name of a routine that calls INTERP to start the
system.

Let C1 be a part of a program that displays data. Assume that INTER
and the Cj's are on disk. The diagrams below show how the memory would
look under the T-Algorithm.

—

INTERP

DMAIN «--DISC MEMORY

l+——CORE MEMORY

The interpreter is now in memory and we can interact with it in any

desired way. From the interpreter we will now allocate the Cj's.

. 1-9

1 /1

The program C1 to display data is now in memory. When we wish to return

to our interpreter, a call to INTERP is executed.

INTERP ~
o OAD
- INTER
\INTER
C.
j
INTER

hand

The interpreter is now in memory and our algorithm may continue.

15

SECTION II

A Syntactic Description of A

Modeling Command Language

Language Description

The language in which a language may be defined is termed a metalanguage and
must be uniquely distinguishable from the language being described. To
formalize the definition in the metalanguage, each definition is given the
form of a statement or construct, which is analogous to a formula. However,
to accomplish some unique features of such a specification, the operators.
define a mode of construction, or concatenation. The following symbols are

employed in this metalanguage:

X the object named X
= can be formed from
| or (the exclusive or)
{Z}g Z is to be repeated at least i times but not more
than j times. When i is omitted, its value is to
be assumed to be 1, and when j is absent, its

value is assumed to be infinity.

The syntactic part of this paper is divided into sections. Each section begins
with a section number. Within each section there are subsections. All sub-
sections are numbered with subsection numbers. An example of the structure of
the syntactic part of this paper is given below.

1. Section

1.1 Subsection

1.1.1 Subsection

2. Section

515

.

&

The last subsection of every section contains the general semantics of the

section.
1. Letter, Special Character, Null, Blank, Digits, Sign Numbers

1.1. Letter

2
17

) < Letter >: = A|B|C[D------- |z
1.1.1. Semantics
Letters do not have individual meaning. They are used for forming variables.

1.2. Special Character

<special character>: = + |'|,
1.3, Null
<null>: = A

1.3.1. Semantics
Lambda is a string of length zero.
1.4, Blank
<blank>: =
1.4.1. Semantics
Blank is a "special character' of length one.
J 1.5, Digits
«digit>: = 0]|1]2]3|4|5|6]7]8]|9
1.5.1. Semantics
Digits are used for forming numbers and variables.
1.6. Sign
<sign>: = <null> [+]-
1.6.1. Semantics
A null sign is an implicity plus sign.
1.7. Exponent
<exponent>: = E<sign>{<digit>}§
1.8. Numbers
1.8.1. Integer

10
<integer>: = {<digit>};

9
i
w

18

1.8.2. Decimal Number

0 digit>}10-n

<decimal number>: = {<digit>}I1151
1.8.3. Fraction
<fraction>: = {.{<digit>}io}
1.8.4. Number
<Number>: = «<fraction>|<decimal number> |
<integer>|{< decimal number >i<fraction>}i
{<exponent>}i

1.1.0. Signed Number

<Signed number>:=sign><number>

2. Variable
<Variable> : =<Name>
3. Name
<Name>: = <1etter>}<1etter>|4digit>}g }
4. Save statement
<Save statement>: = SAVE{<B1ank>|,}i

11
{<Directory statement>}:{<Blank>|,},

1
{<File> } 1

4.1. Semantics

Files may be saved on magnetic tape, Dectape, and Disk. All files
are saved from the system buffer. The system buffer is a named
common block called COMBUF. The buffer size is three hundred and
eighty four words.

5. Get statement
<Get statement>:= GETF{<Blank>},}i ” |
{<Directory statement>}i {<B1ank>li }i{File>};

5.1. Semantics

Y

Files are read from magnetic tape, Dectape, and Disk into the system)
buffer.

“19

e

- 6. Delete statement

1
.Delete statcment> : = DELE{<Blank>|,};

1 1 1
{<Directory statement>}; {<Blank>|,}; {<File>},

6.1. Semantics

Files may be deleted from magnetic tape, Dectape and Disk. Any
deleted can never be recovered.

System Directory statement
<System Directory statement>: = NEWD
{<B1ank>|,}; <Device Name>

Semantics

The system directories can be written on magnetic tape, Dectape, and
Disk. The file and library directory are called the system directories.

Directory Input statement
<Directory input statement>: = DIRM
1 1 1 11
{<Blank>|,}; {<Device Name>}; {{<Blank>|,}; {<Directory statement>};}
Semantics
If the device name is magnetic tape the magnetic tape directory will be
read. A device name for Dectape and Disk will read the system directories.
When the system directories are read the old contents of the directory
tables are destroyed. For magnetic tape the <Directory statement> must be
omitted.
Clear statement
1
<Clear statement>: = CLEA {<Blank>|,};
1
{<Device name >},
. Semantics

The Dectape and magnetic tape directories can be cleared. The disk
directory cannot be cleared.

Rename statement

<Rcname statement>: =

1 1 1
{<Blank>|,}; {<File>}; {<Blank>|,};

1 1
RENA {<Blank>|,}; {<Directory statement>},

1 1
TO {<Blank>|,}; {<File>}

10.1. Semantics

11.

11.1.

12.

13.

Files may be renamed on magnetic tape, Dectape and Disk.

Description statement

<Description statement>:

1 1
{<Blank>|,}; {<Directory statement>},

1 1
{<Blank>|,}; {<File>};

Semantics

DSCR

File descriptions of fifty characters may be printed in the system

directories.
Plant statement

<Plant statement>: =

1
PLAN {<Blank>|,};

1

{<Directory statement>};

1 1
{<Blank>|,},{<File>},

. Semantics

File names may be planted in the system directories.

Assign statement

<Assign statement>:

1
{<Device name>|{CHAN{<Blank>|,};

1 1
<Device name>}, |{OLMS{<Blank>},},

11
<Device name>}; };

21

1
ASSN {<Blank>|,};

2-6

13.1. Semantics

A11 devices are assigned at execution time. These assignments are
only methods to update system device tables. CHAN in the commands
tells the system where user chain files are stored. OIMS in the
commands tells the system where the On Line Modeling System is
stored.

14. Deassign statement
1
<Deassign statement>: = DEAS{<Blank>]|,},

1 - 1
{<Device name> | {CHAN{<Blank>|,}<Device name},

1 11
| {OLMS{<Blank> | ,}, <Device name>};1},

14.1. Semantics
Devices are deassigned at execution time. All deassignments are
local, that is, they update system tables. CHAN in the command
deassigns all CHAIN Files. OIMS in the command deassigns the
system.
15. Model statement
1 1
- <Model statement>: = {<Blank>|,};MODEL{<Blank>|,},
1 1
<Name>{<Blank>|,}; {A]S|G},

15.1. Semantics

The A refers to an analysis model. S and G refers to a simulation
and generation model respectively.

16. Start statement
1 1
<Start statement>: = START{<Model statement>},{<Core statement>},

16.1. Semantics

If the core statement is omitted the model will be run in 20k
including the root segment and Block Data. The core size.can
be determined when the CHAIN file is generated. The loader

- returns the CHAIN size when a file is generated. If this size
is greater than 20k the core statement should be used.

17. Proccss statement

1
<Process statement>: = PROCE{<Blank>|,},
1 1
{<Model statement>}; {<Core statement>},
17.1. Semantics
The Process statement will process the output from a simulation
model. The core rules are the same as those in 16.1. Remember
these syntactic rules are defined on tables which are updated
at execution time; therefore, a simulation model or generation
model can be run using this statement if the name has been
given with the A property in the ENTER statement.
18. Kill statement
<K11l statement>: = KILLM <Model statement>

18§.1. Semantics

KILL 1s local in that it removes the model name from the model
name table.

19. Enter statement
1
<Enter statement>: = ENTER{<Model statement>}, i
19.1. Semantics

The ENTER statement is used to put model names in the model name
tables.

20. Display statement
<Disp statement>: = DISP
20.1. Semantics
This command will bring in the OLMGS. The OLMGS is operated inter-
actively using the RAND Tablet. All the capabilities of the OLMGS
is utilized to fit any users needs.
When the OLMGS is loaded a user can use it interactively as described
in the flow diagram in Figure 2. The flow diagram is designed to .

show the appearance of the CRT at various stages.

The commands available in this program are listed below.

<DOUT statement>: = DOUT
<Top statement>: = T “}
<Yes-No statement>: = {Y]N}i
Q
ERIC 2-8

21.

A carriage return is used to proceed in multipicture displays.

To understand the capabilities of the OLMGS read reference [12]. When
multipictures are displayed the system block transfer function is used
to move blocks of data. A diagram in figure 3 shows how the data is
moved from one buffer to another to accomplish the multipicture display
task. Consider the example given in Figure 1.

[

SYSBUF 1128 words | 128 words | |
[j * ~

ol [@2

s == e o
|
|

\ N

28 words Jg 128 wordsl 128 wordéL 128 wordsAI work areal

(ST U

WORKSY t

%3

Figure 3

The first picture displayed is the one in SYSBUF. The dotted lines show what
happens when the second picture is displayed. The lines show what happens
when the third picture is displayed.

In Figure 2 the user flags the boxes that appear on the CRT on the Rand Tablet
to accomplished certain yes-no task. A flag is defined as a close of the
stylus switch followed by a release. To input parameters when they are asked
for by the system via the Rand Tablet a user should place the pen on the Rand
Tablet depress it and move it to the right horizontally watching the CRT for
the value box. When the value box is set to the desired value then raise

the pen.

Create statement

<Create statement>: = CREA

21.1. Semantics

This command must be given before the Disp command in 20. When CREA is
realized certain flags are set to prevent the user from doing anything
but DISP. This is done to let the user think a fraction of a second
before he gives the DISP command. The CREATE flags can be turned off
without giving the DISP command.

NO

TOP
SET MARGIN
[yes]
NO
YES
LEFT MARGIN
RIGHT MARGIN
BOTTOM MARGIN
TOP MARGIN
VALUE
¥
4
SET GRAPH DENSITY
VALUE
BOX
GRAPH TYPE
LINEAR- LINEAR YES
NO
LOG-LINEAR YES
NO
LINEAR LOG
LOG-LOG S
% ‘ﬂ}.
- —

SCIENTIFIC LABELS

(AXIS LABELS
NO YES
INPUT LABELS
ON TELETYPE
DETAIL GRAPH
C
VES
Y
v NO
MULTIGRAPH
0

YES

GIVE NUMBER OF POINTS

VALUE
BOX

GIVE NUMBER OF POINTS

BOX

1

<

CPLOT DATA
SET INTENSITY AND SCALE ['Y_E'S]

IF YES GIVE VALUE OF
INTENSITY AND SCALE | VALUE

BOX
SET INTENSITY TO HIGHEST

VALUE
[xo0]

SET INTENSITY OF MEDICAL

VALUE

SET CHARACTER SIZE

IF YES SET SIZE
TERMINATE
PROGRAM

ALUE

] X
FIGURE 2

2-12 2'/

(PLOT DATA)

arriage
Return

(TRANSFER PICTURE DATA D

CSELECT PLOT SYMBOL)

22, DOUT statement

<DOUT statement>: = DOUT

22.1. Semantics

The DOUT statement is used to return to the OIMS from the OLMGS. A
DOUT given at the level of the OLMS will turn off the CREATE flags.

23. Top statement

<Top statement>: = T

23.1. Semantics

This statement allows a return to the beginning of an interactive
process.

24. Core statement

<Core statement>: = 1

24.1. Semantics

The core statement tells the OLMS to allocate the maximum amount of
core available. If no core is available the appropriate message
will be typed and the system will return for another command.

25. Transfer statement
1
<Transfer statement>: = TRANS {<Blank>|,};
1
123

25.1. Semantics

The transfer statement is definec on the system buffer and a work
area. The work area is a named <ommon block called WORKSY which

is seven hundred words long. The OLMGS uses this area when multiple
pictures are being displayed on one graph. If multiple pictures

are to be displayed by the OIMGS, it is necessary to place the
picture data in the buffers at the OIMS level. The OIMGS is de-
fined on the first 256 words of system buffer. The first 128 words
: are the X-values and the second 128 words are the Y-values. The

- buffers in figure 1 shows how the transfer command works.

| Suppose we have done a GETF of a file of data. Now the file of
data is in the system buffer. Let us call this file Gy - Give
a transfer to put a; in the work buffer.

L
: L]
SYTBUF 128 words 128 words
/@1 /21 /2 /2
WORKSY [128 words | 128 words | 128 words| 128 words]]
Figure 1

TRANS, 1
Now do a GETF of a file called ay. Give another transfer.
TRANS, 2
We have two pictures data sets stored in WORKSY. Give another GETF and
call the file data a,. We have @z, 07, Oy @S the first, second and third
picture sets respectively.
26. Generation statement
1
<Generation statement>: = GENET {<Model statement>};
26.1. Semantics
Every model will require a specific kind of input. To meet this
need the generation statement has been implemented to operate as

the START and PROCESS statements. This command is discussed in
detail in section three of this paper.

L]

27. File
<File>: = <Name>{{. <EXT>}3 {<Blank>|,}i
{<Device name>}i}i
27.1. Semantics
The extension may be omitted.
28. Device Name
<Device Name>: = MTA{<Unit num>}i|DTA
{<Unit number>}i i{DSK{<B1ank>}i}i
28.1. Semantics
These are the only devices on most systems that users may access.

29. Property statement

<Property statement>: = WMTA|DTA|DSK }

R

2-129

EfQ.l. Semantics

30.

31.1.

31.

31.1.

The properties MIA, DTA, DSK are magnetic tape, Dectape and Disk
respectively.

Directory statement

<Directory statement>: = {LIF}i

Semantics

L and F refers to the system library directory respectively.
File Name

<File Name>: = <Name>{ .<EXT>}(1){<B1ank> | ,};

<Property statement>}i

Semantics

The extension may be omitted.

List statement

<List statement>: = LIST{<B1ar1k>|,}i{AISIM]DITIGILAIFA}}[{L}F}i{<Blank>|,}i

1
<File Name>}O

. Semantics

This command will type out the system tables.

The terminals are defined below.

A List analysis models
S List simulation models
M List system mode
D List devices assigned to system
T List magnetic tape directory
G List generation names
LA List the whole system library directory
FA List the whole system file directory
L List a file name, extension, property and
description from the system library
directory
F List a file name, extension, property and

description from the system file directory

33.

33.1.

34.

34.1.

Mode statement

<Mode statement>: = MODE{<Analysis statement>|<Simulation statement> |
<Function Key-light pen statement»> |<Expand statement>|<Edit statement>

<Null mode>|<Build statement> |<Generate statement>}i

Semantic:s

While designing the OLMS command language considerable thought

was given to forcing the user to do what he wanted to do, but

at the same time giving him considerable time to think and

change his mind. To accomplish this task the language is de-

signed with eight operation modes. In our implementation any

mode can be entered from another mode.

Analysis statement

<Analysis statement>: = {<Blank>|,}i ANAL

Semantics

The commands available in this mode are listed below.

<Mode statement>: = MODE{<Analysis statement> ~
|<Simulation statement>|<Function Key-light pen statement>|<Expand statement>
|<Edit statement>|<Null mode>|<Build statement>|<Generate statement>}i

<List statement>: = LIST{<B1ank>I,}i

{A|s|M|D|T|G|LA|FA}il{<131ank> | ,}i

{<File name>}i};

<Save statement>: = SAVE{<B1ank>|,}i
{<Directory statement>}i{<B1ank>|,}i
{<File>};

<Get statement>: = GETF{<B1ank>!,}i
{<Directory statement>}i{<B1ank|,}i
{<File>};

<Delete statement>: = DELE {<Blank>|,}i

1 1
{<Directory statement>};{<Blank>|,};

{<File>}i

2-16

31

hand

35.

35.1.

<Rename statement>:=RENA{<Blank>|,}i

{<Directory statement>}i{<Blank>!,}i
{<File>}i{<Blank>f,}1T0{<B1ank>|,}i{<Directory statement>};{<B1ank>|,}1
{<File>}i

<Description statement>:=DSCR
{<B1ank>|,}i{<Directory statement>}i

{<Blank>|,}i {<File>}i

<Help statement>:=HELP

<Disp statement::=DISP

<Create statement>:=CREA

<DOUT statement> :=DOUT

<Transfer statement>:=TRANS{<B1ank>|,}i {1|2}i
<Process statement>:=PROCE{<Blank>|,}i

{<Model statement>}i{<Core statement>};

Simulation statement

<Simulation statement>:={<Blank>],}iSIMM

Semantics

The commands available in this mode are listed below.
<Start statement>:=START{<Model statement>}i

{<Core statement>}é

<Mode statement>:=MODE{<Analysis statement> |

<Simulation statement>|<Function Key-light pen statement>|<Expand statement> |

1
<Edit statement>|<Null mode>|<Build statement>|<Generate statement>};

1 1 1
«List statement>:=LIST{<Blank>|,};{A|S|M|D|T|G|LA}FA};{<Blank>|,},
1.1
{<File Name>} 1 }0
Build statement

1
<Build statement>:={<Blank>|,},BUIL

- 2-17

34

36.1. Semantics

37.

37.1.

When the build made is entered the system initilization flag is set to
initialize the system in null mode when it is reloaded. The system
exits to the computer monitor.
Null Mode
1
<Null mode>: = {<Blank>|,}; Null
Semantics
The commands available in this mode are listed below.
<Mode statement>: = <MODE{<Analysis statement>|<Simulation statement>|<

Function Key-light pen statement>|<Expand statement>|<Edit statement>

1
|<Null Mode>|<Build statement>|<Generate statement>},

cList statement>: = LIST{<Blank>|,}}(A|S{M|D|T|G|LA|FA}}|{L|F}}(<Blanks|,})
{<File name>}i};

<System Directory statement>: = NEWD{<Blank>i,}i{<Device name>}i

<Directory input statement>: = DIRM ?

1 1 1
{<Blank>]|,};{<Device name>};{{<Blank>|,};
11
{<Directory statement>};}y

1
CLEA{ <Blank> |, };

<Clear statement>:

1
{<Device name>},;

1
PLAN{<Blank>|,};

1
{<Directory statement>};

<Plant statement>:

{<Blank> | ,}i{<File>}i

<Assign statement>: = ASSN{<B1ank>|,}i
{<Device name>|{CHAN{<B1ank>|,}i
<Device name>}i|{OLMS{<Blank>|,}i
<Device name>}i}i

<Help statement>: = HELP

DS)

<End statement>:

Expand Statement

2-18 343

38.1.

39.

39.1.

40.

40.1.

1
<Expand statement>: = {<Blank>|,};EXPA
Semantics
The commands available in this mode are listed below.

<Help statement>: = HELP

<Mode statement>: = MODE{<Analysis statement>|<Simulation statement>|<
Function Key-light pen statements|<Expand statement|<Edit statement,
|<Null mode>|<Build statement> |<Generate statement>}i

<List statement>: = LIST{<B1ank>l,}i
{A|S|M|D|T|G|LA|FA}1|{L[F}§{<B1ank>l ,}i

{<File name>}i}é

<Enter statement>: = ENTER{<Model statement>}i
<Ki1ll statement>: =KILIM {<Model statement>}i
Edit statement

<Edit statement>: = {<B1ank>|,}iEDIT
Semantics

Network models will be editted in this mode. Any variable
in Block Data which is the memory of the OLMS can be changed.

Generate statement

<Generate statement>: = {<B1ank>|,}iGENN

Semantics |

The commands available in this mode are listed below.

<Help statement>: = HELP

1
LIST{<Blank>|,},{A|SIM|D|T|G|LA

1 1 1 11
|FA}, | {L|F},{<Blank>|,},{<File name>},}o

<LIST statement>:

<Mode statement>: = MODE{<Analysis statement>|<Simulation statement>

|<Function Key-light pen statement>|<Expand statement>|<Edit statement>

213 1

1
| <Null mode>|<Build statement>|<Generate statement>},
1 ¢
<Generation statement>:=GENET{<Model statement>},

41. Function Key-light Pen statement
1
<Function Key-light pen statement>:={<Blank>|,},FKLP
41.1. Semantics

In this mode certain commands in the command language are
assigned to function keys. This mode is discussed in Section III.

42. Unit Number
<Unit Number>:= 0[1(2[3|4|5|6]7
43. Unit Num
<Unit Num>:= 0]1]2
44. EXT (File extension)
<EXT>:=<Nu11>|<Letter>{<Letter>|<digit>}z
45. Help statement
<Help statement>:=HELP
45.1. Semantics

Help is a program that teaches a user how to use the OLMS.
The commands available in this program are listed below.

<Top statement>:=T
<Yes-No statement>:={Y}N}i
<Dout statement>:=DOUT
46. END statement
<END statement>:=ENDS
46.1. Semantics
This command terminates the system.
47. Yes-No statement

1
<Yes-No statement>:={Y|N},

SECTION III

GENERATION OF INPUT

The Rand Tablet and Function Keys are excellent input devices for interactive
work with interactive systems. To use these devices economically it is necessary
to have a flexible system. This flexibility is obtained in the OLMS by allowing
any type of INPUT program using the Rand Tablet and Function Keys.

The OLMS has a standard graphical input using the Rand Tablet. The flow chart
in figure 1, shows the sequence for inputting a graph and collecting the graphical
data input. The large blocks show how the CRT loocks at certain levels in the
program.

Commands available are listed below.

<Top command>:=T
<Dout command> : =DOUT
<Transfer command>:=TRANS{<B1ank>|,3}{1|2}i
A carriage return will return to the data bounds input level.

This implementation allcws a user to collect 128 X-values and 128 Y-values.

FUNCTION KEY LIGHT PEN MODE

In this mode various commands of the Command Language are assigned to
Function Keys. The assignments are listed below.

COMMAND KEY ASSIGNMENT

SAVE
MODE
DISP
GETF
DELE
TRANS
START
CLEA
RENA

O 6 N O 1 B BN NN

(s

[,,.-:"g

COMMAND KEY ASSIGNMENT

DSCR 10
PLAN 11
ASSN 12
DEAS 13
PROCE 14
GENET 15
DOUT 16
KILIM 16
ENTER 16

This mode is operated by depressing a key associated with a particular
command and following the program sequence. Whenever a decision is needed
a small box will appear adjacent to the statement on the CRT. The Rand Tablet
is used to flag these boxes. If data input is requested on the teletype the
CONTINUE will be typed before the system is ready for input. The program
sequence is listed in figure 2. The large blocks show the appearance of the
CRT at a particular level in the program.

3'75-2

SET MARGIN

YES
NO
LEFT MARGIN
RIGHT MARGIN
BOTTOM MARGIN
TOP MARGIN
VALUE
BOX
SET GRAPH DENSITY
VALUE
BOX

Y

GRAPH TYPE

LINEAR-LINEAR

LOG-LINEAR

LINEAR-LOG

LO3-LOG

SCIENTIFIC LABELS
l > YES
NO

AXIS LABELS

NO

&

INPUT LABELS \\
ON TELETYPE

INPUT GRAPH DATA
AREA BOUNDS ON TELETYPE

L

DISPLAY DATA

()

(o)

TERMINATE
PROGRAM

3-5
a1

FUNCTION KEY MODE

COMMAND

SAVE
MODE

DISP

ASSN
DEAS
PROCE
GENET
DouT
KILIM
ENTER

10
11
12
13
14
15
16
16
16

CA —-—< DEPRESS KEY ’

41

3-6

FKLP
‘ EXPA

EDTT

OLMS MODES
KEY 2 / .
ANAL
{
INTERPRET SIMM
KEY 3 STRING

BUIL

NULL

GENN

i

]

TRANSFER COMMAND

3-7

—e-\430

GIVE MODEL NAME
ON TELETYPE

GIVE OLD FILE NAME
ON TELETYPE
_

1

GIVE NEW FILE NAME
ON TELETYPE

IMOD=4

INTERPRET
STRING

TOP

MODEL TYPE

GENERATION D

ANALYSIS r__]

SIMULATION E:]

INTERPRET
STRING

oy -

s

DEVICE TYPE

CHAN [:]

OLMS

NULL

IMOD=12

ERROR

4%1°

DOUT

KILIM

ENTER

J L

DIRECTORY

() XLIBD

PAGET

GIVE FILE NAME
ON TELETYPE

DEVICE

o)

DTA2

DTA3

DTA4

DTAS

DTA6

DTA7

(D DSK

MT'Ae

3-10

INTERPRET
IMOD=1 STRING

STRING

INTERPRET)

INTERPRET
SIRING

INTERPRET
STRING TOoP

IN{ERPRET
STRING

| o . FIGURE 2

SECTION 1V

4.1 Example

This example shows how the OLMS can be used to study the input
output relations of the Hodgkin-Huxley Nerve Equations. The
differential equations are solved using the Predictor-Corrector
Method with the Runge-Kutta Method as a starter.

The equations are given below under the heading Hodgkin-Huxley
Equations. Any details about these equations can be found in

references [29] and [28].

Hodgkin-duxley Equations

) I=CV+§Nam3h(V+115)+éKn4(V-12)+éL(V+10.5989)
(2 m=o[(l-me (V)-m8 (V)1,
(3) h =¢[(1-h)ey (V)-hg, V],
@ n =¢[(1-n)e_(V)-n8 (V)].

where

V -1
o {(V)=0.1(V+25) [exp(——zg—s) -1] 7,

8, (V)=dexp(V/18),

ap, (V)=0.07exp (V/20),

8, (N=lexp(T22)+11 71,

a (V)=0.01(v+10) [exp(LiY -11 71,

en(V)=0.125exp(V/80), and
¢=3(T—6.3)/10

vii The Predictor-Corrector used is given as follows:

Predictor

Given m points

and Newton's Integrating Newton's backward
interpolation formula we have:

m-1

= j ’

where

1,77
871,8;=(- D715 (5)dz,

X-X

. . n
z variable at x_ is z= d
R W

Corrector
Given:

xn-m+1’

T dseeseeen £

nfnel and Newton's Integrating Newton's backward

interpolation formula we have:
m-1

yn+1%yn+h .E
j=0

*J
S S

where
x * j.0 -Z
Bo"l’Bj"'(-l) f_l(J)dZ,

X-X
; . n

z variable at x = and
t n 1s 2 B

This model is given in algorithmic form and a program listing is given
for the solution of the model. This model can be extended by modifying

the algorithm and using two dimensional arrays to solve the partical

4-2

4%

P

differential equations in reference [28]. Someone may claim the

algorithm uses too much storage. An algorithm can be developed

that checks for vector overflow. If the vectors are full the data
in the vectors from the beginning up to the total length minus three
can be outputted. The three data points can be moved to the
beginning of the vectors. By adjusting the appropriate pointers the
algorithm will think it is starting. It is not necessary to mcve
the data if linked data structures are used. The stepsize can be
changed by creating an algorithm that sta:ts the Runge-Kutta when
some conditicn occurs, perhaps when the Predictor-Corrector fails to
converge. This can be done by backing up one step and starting the
Runge-Kutta with the new stepsize for some number of points greater
than or equal to three in our case. Adjust the appropriate pointers

and give control to the Predictor-Corrector.

The Model in Algorithmic Form

In thealgorithms that follow it is assumed that the relationship of
functions and subroutines exist. There are two classes of operators
called Operator and Parameter and Transfer Operator. The Operator and
Parameter class is used to give input to the algorithms. The Transfer
Operator is used to transfer data to the OLMS system buffer. Ali

operators are defined below:

Operator and Parameter Class.
CAP - membrane capacitance

UCON - turn off all variables held constant

+-49

DX

COLL

RUN
TOWM
TOWH
TOWN
TEMP

)} < 3 Z @ =
S g

EPS

STAR

MITE

~
1.

HC

NC

distance stepsize

data collection stepsize used to transfer data to the OLMS
system buffer.

start algorithm

T
m

Th

Tn

temperature (°C.)

sodium activation

sodium inactivation

potassium activation

initial time

initial voltage

stimulating current pulse
duration of current pulse
integration stepsize

convergence term

number of starter values

number of solution points desired
maximum number of corrector iterations per step
hold sodium activation constant

hold sodium inactivation constant

hold potassium activation constant

4-4
H0

Transfer

vV
'™
TH
TN
W™
VH
VN
DI

TI

Operator Class

time .vs. voltage

time .vs. sodium activation

time .vs. sodium inactivation

time .vs. potassium activation

voltage .vs. sodium activation

voltage .vs. sodium inactivation :

voltage .vs. potassium activation

distance .vs. current

time .vs. current

The global variables in the algorithms are defined as follows:

H
EPS
TEMP
NC

PHI
PHH
PHN
1CO
DX

SIS

integration stepsize

convergence term

temperature

total number of solution points desired y

number of starter values

maximum number

of corrector iterations per step

¢ for sodium activation

¢ for sodium inactivation

¢ for potassium activation

counter

radius of axon

-distance stepsize

specitic resistance of axoplasm

amplitude of the stimulating current

current

\ DIST - distance along axon
; DURRAT - duration of current pulse
| CAP - membrane capacitance
I CHAR - control vector
' YHH - vector os sodium inactivation
) YMM - vector of sodium activation)
’ YNN - vector of potassium activation :
| X - vector of time
SYSBUF - OLMS system buffer

The R-Algorithm is used to input data and transfer data to the

OLMS system buffer. The A-Algorithm is the main algorithm that uses

the V,FUM,FUH,FUN,P,C, and FN algorithms to integrate the equations.

R-Algorithm

Subroutine RUNMOD

Rl. [Give Operator and Parameter]
VAR <INPUT
VALUE <«INPUT
RZ. [What 1s the Operator?]
if VAR.EQ.'CAP' then CAP <VALUE, go to Rl,
Otherwise
if VAR.EQ.'UCON' then CHAR(22) « 0,CHAR(23) « 0,CHAR(24) <« O,
go to R1,
Otherwise
if VAR.EQ.'DX' then DX « VALUE, go to RI,
Otherwise
1f V/R.EQ.'COLL' then VALCOL <« VALUE, go to RI.
Otherwise
KCT « 0 (initialize control count)
LOOP: KG « 1 to 20 (loop to set KCT)
KCT « KCT+1
if VAR.EQ.CHAR(KCT) then go to LO,
Otherwise go to LOOP
Operator Error, go to RI.

LO: 1if KCT.EQ.1 then go to R3,

Otherwise

1f KCT.EQ.2 then TOWM <« VALUE

1f KCT.EQ.3 then TOWH <« VALUE

A-Algorithm

Subroutine ADAMS

Al. [Generate Starting Points]
N « The number of starting values
MAX + The maximum number of iterations per step
EPS « The convergence region
H « Stepsize
NC < Maximum number of steps
NCMN « NC-N The number of steps to use the predictor-corrector
I « 0 Initialize the predictor-corrector step counter
CALL RUNFIT Generate N starting points
ICO « 0
LOOP: 1CO « ICO+1
if 1ICO < N then go to LOP
Otherwise ICO « ICO-1, go to LO.
LOP: F(ICO) <« VOLT(Y(ICO))
FMM(ICO) « FUM(YMM(ICO))
FHH(ICO) <« FUH(YHH(ICO))
ENN (ICO) « FUN(YNN(ICO))
X(1CO+1)=X(ICO)+H
LO: 1f ICO < 3 then ERROR.
A2. [Start the predictor-corrector]
ICO « N+I
Initialize convergence switches

TVSW <« 0,IMSW « O,THSW « 0,INSW « 0

R7.

R8.

R9.

R10.

R11.

R12.

R13.

R14.

R15.

[Transfer Time.VS.Sodium Activation]

[Transfer Time.VS.Sodium Inactivation]

[Transfer Time.VS.Potassium Activation]

Same as R6 after replacing Y(I) in A2 by YMM(I) and LOOP1 by LOOP2.

Same as R6 after replacing Y(I) in A2 by YHH(I) and LOOP1 by LOOP3.

Same as R6 after replacing Y(I) in A2 by YNN(I) and LOOP1 by LOOP4.
[Transfer Voltage.VS.Sodium Activation]

Same as R6 after replacing X(I) in Al by Y(I), Y(I) in A2 by
YMM(I) and LOOP1 by LOOPS.

[Transfer Voltage.VS.Sodium Inactivation]

Same as R6 after replacing X(I) in Al by Y(I), Y(I) in A2 by YHH(I)

and LOOP1 by LOOP6.

[Transfer Voltage.VS.Potassium Activaticn]

Same as R6 after replacing X(I) in Al by Y(I), Y(I) in A2 by YNN(I)

and LOOP1 by LOOP7.

[Transfer Distance.VS.Current])

Same as R6 after replacing X(I) in Al by DIST(I), Y(I) in A2 by CURR(I)
and LOOP1 by LOOPS.

[Transfer Time.VS.Current]

Same as R6 after replacing Y(I) by CURR(I) and LOOP1 by LOOP9.

[Return to the OLMS]

39

R4. [Transfer data to the OLMS system buffer]
VAR « INPUT
R5. [Check Transfer Operator]
' VALTEM <« VALCOL
J <1
if VAR.EQ.'TV' then go to R6
if VAR.EQ.'IM' then go to R7
if VAR.EQ.'TH' then go to RS
if VAR.EQ.'IN' then go to R9
if VAR.EQ.'VM' then go to R10
if VAR.EQ.'VH' then go to R11
if VAR.EQ.'VN' then go to R12 .
if VAR.EQ.'DI' then go to R13 |
if VAR.EQ.'TI' then go to R14
Otherwise
Transfer Operator Error, go to R4
R6. [Transfer Time.VS.Voltage]
LOOP1: Increment I by 1, if I=500 then finished otherwise,
if J.GT.128 then go to LOOP1
if X(I).NE.VALTEM then go to LOOP1

Otherwise

Al. SYSBUF(J) <« X(I)

AZ. SYSBUF(J+128) <« Y(I)
J « J+]

VALTEM <« VALTEM+VALCOL

. go to LOOP1, go to R15 (after the loop is complete)
0 b4-10

if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if

KCT

KCT.
KCT.
KCT.

KCT

KCT.
KCT.
KCT.
KCT.
KCT.
KCT.
KCT.
KCT.
KCT.

KCT
KCT

.EQ.4

EQ.5
EQ.6
EQ.7
.EQ.8
EQ.9
EQ. 10
EQ.11
EQ.12
EQ.13
EQ.14
EQ.15
EQ.16
EQ.17
.EQ.18
.EQ.19

if KCT.EQ.20

go to Rl.

R3. [Start Model]

then TOWN <« VALUE
then YMM(1) <« VALUE
then YHH{(1) <« VALUE
then YHH(1) <« VALUE
then YNN(1) <« VALUEG
then X(1) « VALUE

then Y(1) <« VALUE

then SIS <« VALUE

then DURRAT « VALUE
then H «+ VALUE

then EPS « VALUE

then N « VALUE

then NC « VALUE

then MAX <« VALUE

then CHAR(22) <« CHAR(21)
then CHAR(23) <« CHAR(21)
then CHAR(24) <« CHAR(21)

PHI <« DEXP (.1098612289D0* (TEMP-6.3D0))

PHH < PHI

PHN <« PHI

1f TOWM.NE.1

if TOWH.NE.1

if TOWN.NE.1

CALL ADAMS

then PHI <« PHI/TOWM
then PHH « PHH/TOWH

then PHN <« PHN/TOWN

(start integration)

Check for constant conditions
if CHAR(2Z).NE.0.0 then IMSW « 1.
if CHAR(23).NE.0.0 then IMMS « 1
if CHAR(24).NE.0.0 then INSW « 1
Initialize corrector iterdtion counter
M« 0
NPT « N+I

A3. [Compute fN+I = f(xN+I,YN+I),etc.]

F(N+I) « VOLT(Y(N+I))
Cehck for constant conditions
if CHAR(Z2Z).NE.0.0 then go to B
Otherwise, ICO « ICO-1
FMM(N+I) <« FUM(YMM(N+I))
ICO « ICO+1
Check for constant conditions
0: if CHAR(23).NE.0.0 then go to G
Otherwise, ICO « ICO-1
FHH(N+I) <« FUH(YHH(N+I))
ICO « ICO+1
Check for constant conditions
L: if CHAR(24).NE.0.0 then go to L1
ICO « ICO-1

FNN(N+I) <« FUN(YNN(N+I))

hnd

ICO « ICO+1

A4. [Compute predicted value for Step I]
if IVSW.NE.1 then Y(NPI+1) <« PREDIC(Y,NPI,H,F)

if IMSW.NE.1 then YMM(NPI+1) <« PREDIC (YMM,NPI,H,FMM)

+

?
|
l
if THSW.NE.1 then YHH(NPI+1) < PREDIC(YHH,NPI,H,FHH)
if INSW.NE.1 then YNN(NPI+1) <« PREDIC (YNN,NPI,H,FUNN)
' T: if IVSW.EW.0 then go to E
Otherwise,
AS5. [Set up for corrector]

if IMSW.EW.0 then FMM(NPI+1) <« FUM(YMM(NPI+1))

if THSW.EQ.O0 then FHH(NPI+1)

4»«

FUH(YHH(NPI+1))

if INSW.EQ.0 then FNN(NPI+1)

+

FUN(YNN(NPI+1))

; A6. [Compute corrected solution value for step I, iteration M]
if IVSW.EQ.O0 then YVC « CORREC(Y,NPI,H,F)

if IMSW.EQ.0 then YC <« CORREC(YMM,NPI,H,FMM)

if IHSW.EQ.O0 then YCH <« CORREC(YHH,NPI,H,FHH)

if INSW.EQ.O0 then YCN <« CORREC(YNN,NPI,H,FNN)

A7. [Test for convergence]
DELV « |YVC-Y(NPI+1) |
DELY <+ |YC-YMM(NPI+1)|
DELH < |YCH-YHH(NPI+1)]|
DELN < |YCN-YNN(NPI+1) |
if IVSW.EQ.1 then go to 01
if DELV-EPS < 0 then go to 02

if DELV-EPS > 0 then go to 01

02:

Bl:

B2:

G2:

Gl:

T2:

T1:

El:

Y(NPI+1) « YVC ; good value converges

IVSW <1

: if IMSW.EQ.1 then go to 03

if DELY-EPS< 0 then go to Bl

if DELY-EPS> 0 go to B2

YMM(NPI+1) « YC ; good value converges
IMSW « 1

if THSW.EQ.1 then go to Gl

if DELH-EPS < 0 then go to G2

if DELH-EPS > 0 then go to Gl

YHH(NPI+1) < YCH ; good value converges
THSW « 1

if INSW.EQ.1 then gorto T1

if DELN-EPS < 0 then go to T2

if DELN-EPS > 0 then go to T1

YNN(NPI+1) « YCN ; good value converges
INSW « 1

if M-MAX < 0 then go to El

if M-MAX > 0 then go to EZ

if IVSW.NE.1 then Y(NPI+1) « YVC

if IMSW.NE.1 then YMM(NPI+1) « YC

if THSW.NE.1 then YHH(NPI+1) <« YCH

if INSW.NE.1 then YNN(NPI+1) « YCN

if IMSW+IHSW+INSW+IVSW.EQ.4 then go to S

Otherwise,

M+ M+l

go toT 60

B

S2:

S1:

L1:

E2:

: ICO « ICO+1

IMSW « 0

1HSW < 0

INSW <« 0

F(NPI+1) <« VOLT(V(NPI+1))
1CO <« ICO-1

go to AS

: [Constant YMM]

YMM(ICO+1) < YMM(ICO)
FMM(ICO+1) <« FMM(ICO)

go to 0
if I-NOMN < 0 then go to S1
if I-NCMN > 0 then go to S2
I «1I+1
X(NPI+1)=X(NPI)+H

go to A2
: [Constant YHH]
FHH(ICO+1) <« FHH(ICO)
YHH(ICO+1) « YHH(ICO)

go to L
[Constant YNN]
FMM(ICO+1) <« FNN(ICO)
YNN(ICO+1) « YNN(ICO)

go to S
Terminate algorithm.
NC «I

Fails to converge.

4-1‘5; 1

FN-Algorithm

Function FN(X)

FN1. [Initialize BCOEFF vector]

+

BCOEFF(1) <« -.083333333

1\

BCOEFF (2) .0166666667
BCOEFF(3) <« .0238095238

BCOEFF(4) < .025

BCOEFF(5) < .025252525
BCOEFF(6) <+ .02531136
BCOEFF(7) + .02533

FN2. if |X|-1. <0 then go to FN5
if |X|-1. > 0 then go to FN3

FN3.FN <« X/ (EXP{X)-1.)
FN4 .Terminate
FN5.X2 <« -X*X

I10FLO < OVERFL (I0FLO)

FN « 1.

A « -.5%X

I0OFLO <« OVERFL (IOFLO)

if IOFLO.EQ.1 then terminate
EN6.FN « 1.+A
FN7. [LOOP]

LOOP: I=1 to 7

A <« BCOEFF (I)*X2*A

TOFLO <« OVERFL (I0FLO)

g2,

if IOFLO.EQ.1 then terminate

FN « FN+A
go to LOOP

terminate (after loop is complete)

This is not the only way to implement this model using the OLMS;

however, it is one of the simplest.

V-Algorithm '

Function Volt (Y)
| V1.TOLT <« -120.*YMM(ICO)**3*YHH(ICO)*(Y-115.)
i -36.*YNN(ICO) **4* (Y+12.)-.3%(Y-10.598921)+CURR (ICO)
: V2. if CAP.NE.1. then TOLT « TOLT/CAP
V3. VOLT « TOLT

V4., Terminate

4-18

? FUH-Algori thm
FUH1.ICO « ICO+1

|
|
| Function FUH(YHH)
]
|
|

FUM2.FUH < PHH* ((1.-YHH)*.07*EXP(-.05%Y (ICO))-YHH/ (1.+EXP(3.- .1*Y (IC0))))

FUH3.1CO « ICO-1

FUH4 .Terminate

FUM-Algorithm

Function FUM(YMM)
FUM1.1ICO <« ICO+1
- FUMZ.FUM <« PI*II*((l.—YIVIIVI)*FN(Z.S—.l*Y(ICO))—YNM*4.*EXP(—Y(ICO)/18.))
FUM3.1CO « ICO-1

FUM4.Terminate

4-19

6o

FUN-Algorithm

Function FUN(YNN)

FUN1.ICO « ICO+1
FUNZ2.FUN < PHN*((1.-YNN)*. I*EN(1.-.1Y(ICO))-YNN* . 125*EXP(-.0125%Y (IC0)))

FUN3.ICO « ICO-1

FUN4 .Terminate

P-Algorithm

Function PREDIC(Y,NPI,H,F)
P1.PREDIC « Y(NPI)+(H/24.)* (55.*F(NPI)-59.%F(NPI-1)+37.%
F(NPI-2)-9.*F(NPI-3))

P2. Terminate

4

B3

C-Algorithm

r Function CORREC(Y,NPI,H,F)
| C1.CORREC <« Y(NPI)+(H/24.)*(9.*F(NPI+1)+19.*F(NPI)-5.*F
|

(NPI-1)+F(NPI-2))

C2.Terminate

FN-Algorithm

Function FN(X)

FN1.
FN2. if |X|-1. < 0 then go to FN3

if |X|-.1 > 0 then go to FN5
FN3.FN <« X/(EXP(X)-1.)
FN4.Terminate
FN6.X2 « -X*X

I0FLO <« OVERFL (IOFLO)

FN7.FN <« 1.
FN8.A « -.5*%X

This is not the only way to implement this model using the
OLMS; however, it is one of the simplest. Several graphs are

given to show the input output relationships of this model.

4-24 .?0

RESULTS OF SIMULATION

These graphs are given to show how the resulrs of a model can be displaycd
using the OLMS.

* f
. I
. S.1E001 9.EEe0: o.zd‘ 0.46+8: &.SEv81 8.8E00)

.
L SUSUUNIUURT e

TINE b Y

Action Potential

x
~

0.lEv81 0.0E01 030481 .31 0.8Ev01
T .

Sodium Activation

4-25 71

9.10+01 0.0501 0.38%81 0.4M0%0) §.35e0)
Tire

o

Potassium Activation

0.1Kv0) o.2Ee0 0.2+8) 0.4E+9)
TinE

Sodium Inactivation

RIC 4-26
58 72

Aruitoxt provided by Eic:

0.50+8)

N
4
0.0000008 0. 4000+08 0.0001 08 §.0000 08 §.1000+8)
" oL TASE -
- Sodium Inactivation v.s. Voltage
<k

ERIC

. 4'7;&(

0.8008 08 l;:‘ﬂ 2.0008+08 §.0008+00 O 1008+83
oL .

Potassium Activation v.s. Voltage

4-28 74

A]
[
4

e

10.

11.

12.

References

DEC-10-LOVA-D, CHAIN, Digital Equipment Corporation, Maynard, Massachusetts,
February 8, 1968.

Bruce, M. C., PDP-10 Equipment, NIH Internal Memorandum, CCB, October 9,
1968.

Perkel, D. H., A Digital Computer Model of Nerve-Cell Functioning,
Memorandum RM-4132-NIH, The Rand. Corp. Santa Monica, Calif., June
1964.

Lockemann, P. C. and Knutsen, W. D., Phase 2 User's Guide, Programming
Report No. 4, Booth Computing Center, Calif. Inst. of Tech., Pasadena,
Calif., June 1967.

Gwynn, J. S., Lockemann, P. C., Knutsen, W. D., Advanced Programming
Support User's Guide, Programming Report No. 5, Booth Computing Center,
Calif., Inst. of Tech., Pasadena, Calif., September 1967.

Randall, D. L., Richer, J., Dill, J. C., Plexus User's Guide, Programming
Report No. 6, Booth Computing Center, Calif. Inst. Of Tech., Pasadena,
Calif., December 1967.

Rosen, Saul, Programming Systems and Languages, McGraw-Hill, New York,
1967.

Lee, J.A.N., The Anatomy of a Compiler, Reinhold Publishing Corporation,
New York, 1967.

Dill, J. C., Randall, D. L., Richer, I., Plexus An On-Line System for
Modeling Neural Networks, Communications'of the ACM, Vol. 11, pp. 623-629;
September 1968. :

Knuth, D. E., The Art of Computer Programming, Addison-Wesley Publishing
Company, Rading Massachusetts, 1968.

Wegner, P., Introduction to System Programming, The Automatic Programming
Information Center, England, 1964.

Mize, J. H., Cox, J. G., Essentials of Simulation, Prentice-Hall, New
Jersey, 1968.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Stromberg-Carlson, Prugrammers' Reference Manual, Data Products,
San Diego, Calif., October 1964.

Lewis, Harry, Fortran-Lisp Display Routines, NIH, Division of
Computer Research and Technology, CCB, Bethesda, Maryland April 1969.

Adler, C., Sanford, 340 Display Programming Manual, Decus No. 7-13,
New York University's Department of Industrial Engineering and
Operations Research, Bronx, New York,

Lewis, Harry, Assembly Language For DEC 340 Display, NIH, Division
of Computer Research and Technology, CCB, Bethesda, Maryland, April 1969.

Adler, C., Sanford, 340 Display Programming Manual, Decus No. 7-13,
New York University's Department of Industrial Engineering and
Operations Research, Bronx, New York.

DEC - 10 - MIEO - D, Time-Sharing Monitors; Multi-programming Monitor
(10/50) Swapping Monitor (10/50), Digital Equipment Corporation, May-
nard, Massachusetts, November 1968.

DEC - 10 - MIEO - D, Time-Sharing Monitors; Multi-programming Monitor
(10/50) Swapping Monitor (10/50), Digital Equipment Corporation, May-
nard, Massachusetts, November 1968.

Feldmann, R. J. Rand Tablet Service Routine, NIH, Division of Computer
Research and Technology, CCB, Bethesda, Maryland, August 1969.

Stromberg-Carlson, Information Manual, Data Products, San Diego, Calif.,
October 1966.

Freedman, S.R., Filer, M.I.T./L.N.S., Cambridge, Massachusetts,
February 12, 1968.

Vreenegoor, H., Lewis, H., Function Box Service Routine, NIH, Division
of Computer Research and Technoiogy, CCB, Bethesda, Maryland, September
1969.

DEC-10-NGCA-D, PDP-10 System User's Guide, Digital Equipment Corporation,
Maynard, Massachusetts, 1967.

DEC-10-PPCO-D, Peripheral Interchange Program, Maynard, Massachusetts, 1968.

DEC-10-ETEB-D, Text Editor and Corrector Program, Maynard, Massachusetts,
1968.

Feldmann, R. J. An Extension to CCL (Concise Command Language), NIH,
Division of Computer Research and Technology, CCB, Bethesda, Maryland,

28. Cooley, J. W. and Dodge, F. A., Digital Computer Solutions for Excitation
and Propogation of the Nerve Impulsc, Biophysical Journal, Volume 6, 1966.

29. Fitzhugh, R. Thresholds and Plateaus In The Hodgkin-Huxley Nerve Equations,
The Journal of General Physiology, Volume 43, Number 5, pp. 867-896, May,
1960.

o

£ M

TECHNICAL REPORT NO. 6
? PART Il

ED053546

THE ON-LINE MODELING SYSTEM

.....

'.1‘/ : - i
lg‘ - US. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
~ Public Health Service | National Institutes of Health
- 6- |
S
w 78

The Division of Computer Research and Technology, NIH, will
issue on an irregular basis technical documents which we believe
will be of particular interest to the biomedical community.
These reports will include detailed descriptions of relevant
computer programs and instructions in their use (as well as some
theoretical background), in hopes that intereste! scientists will
be encouraged to gain first-hand experience in applying them.

In some cases, such reports may serve as foci around which DCRT
will structure training courses to expand the knowledge and

experience of NIH staff in applying computer science to problems
of research and management. Circulation of these reports within

the biomedical commmity broadly is, of course, encouraged.

‘ | 4/{/. @@é D)

A, W, Pratt, M.D., Director, DCRT

79

-9

&t

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS REEN REPRO-
DUCED EXACiLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFfICE OF EDU-
CATION POSITION OR pPOLICY

THE ON LINE MODELING SYSTEM

Part II. Programmers' Reference Manual

by
Edward Hill, Jr.

Laboratory of Applied Studies

Division of Computer Research and Technology
iational Institutes oX Health, Public Health Service

Department of Health Education and Welfare, Bethesda, Maryland 20014

20

£

Section

II

III

IV

PROGRAMMERS' REFERENCE MANUAL

Table of Contents

Page

INTRODUCTION. 4ttt ittt et it ittt cene et ctnnnnennnns 1-1
BASIC OLMGS PROGRAMMING ON THE DEC 340 DISPLAY...... 2-1
SCALE. .ttt e et et e 2-1
INTENSITY . ettt e i ettt e ci e e, 2-1
MODE. .\ttt i i it e it e 2-1
DATA WORD FORMATS. ... vtiieeitiiereetencnnanncnnnnn. 2-2
PARAMETER MODE. iiii it ieieiineennannenennnn 2-2
POINT MODE. ... iiiitieieiieiieeeenesennenanannnnnnn 2-2
RASTER MO DE. . ittt ittt ittt iieteeannannnnnns 2-2
CHARACTER MODE. ciiiiii ittt it ieenennennnnnn. 2-3
VECTOR MODE. .. iietiiiiiieieeiceeinecnnnnanannanns 2-3
VECTOR CONTINUE MODE......iiiiuieinnsnennnnenennnn 2-3
INCREMENT MODE. ...t iieeintieeiiaennesensnnnnnnnnn 2-4
SUBROUTINE MODE. tviiiiiitnninnencanncncnnnnn. 2-4
SYMBOL CONVENTIONS. .. et iitiininetnnnenrenannnanans 2-4
OLMGS CONTROL ROUTINES...uitviiiennrrinernnannsnnaa’3-1
SETTING ERROR POINTERS......ciiiiiiiiininnnennnen. 3-1
CHAIN FILE COMPATABILITY.....ioieiieeenenennnannn. 3-1
INTENSITY SELECTION: BRITEV, FAINTV, ITSCV 3-1
SCALE SIZE: BIGV, SMALLV, CHARV........ccvvuvnn.. 3-2
GRAPHS . ottt i ittt e e 4-1
Graphing Data: KWKPLT, PDP340.......cicvivunnnnnn 4-1
GRIDS. .ttt it ittt eteatentteceneantnannnn 5-1
Generating a Grid: GRIDIV.........cciivieiennnnn. 5-1
Examples of GRID1V Usage........cevviennnnenna..5-3
Computation of GRID1V Arguments: DXDYV........... 5-13

O,
cant

Section

V
(cont)

VI

Page
GRIDIV Controls.....vivviiiiinininneiinnennenees.h-14
Grid Margin Variation: SEIMIV, SETMOV......... 5-15
5211110 = 5-16
Providing for Special Label Characters: SETCIV,

] 24 00 1 5-16
Holding Margins from Graph to Graph: HOLDIV,

HOLDOV. ¢t ottt ittt iie i it eiii e ciii e nienans 5-18
Operational Details of GRIDIV........covuivenennnn, 5-19
Determining Grid Boundary Positions............... 5-25
GRIDIV Error Procedure.......c.ceveeieennrnnnnannns 5-26

Examples of GRID1V Characteristics............. 5-27
Example 1....evuieniiiennnineeieneenennnansan=27
5002 11) < 5-27
Example 3..... it iiiiiiiineeinienasnennssas5-32
Example 4.... . c0iiiiiientiieenenensnoscnnnnnss 5-32
Example S...viiiiiiiiiiiiiiiiiiiiiienenenen, 5-32

Log and Semi-Log GridS......eovveeneieenennnnnennn 5-35
Restrictions on Logarithmic Mode...............ut 5-36

EXamples. ..o iieiiiiiiiiiii ittt 5-36
Building Special Grids: LINRV, NONLNV............5-39
Axis Lines: XAXISV, YAXISV.....tivvierinnennnnnns 5-44

SCALING AND CONVERSTION. c. v vviivvnvnnenrnnnnnnennnnnns 6-1
Basic Scaling Subprograms: XSCALV, YSCALV........ 6-1

Sy 111) 6-2
Basic Scaling EquationS......vvevieeneereeencnenns 6-2
Conversion of Data: NXV, NYV, IXV, IYV........... 6-3
Basic Conversion EQUationS......coeeveenrecnennnes 0-4
Inverse CONVErSION. ..vveveeiernienonaseneennnnsons 6-6
Retrieval of Scaling Information: SCLSAV......... 6-7
Resetting Scaling Information: RESCLV............ 6-8
Nonlinear Scaling and CONVerSiON........ceeeeeeenss 6-8
Linear-Nonlinear Scale Mode Indicators: SMXYV,

3 P 6-8
Nonlinear Transformation: XMODV, YMODV........... 6-9
Off-Scale Error Detection......ceviuveeeenrncecnnnsn 6-10
Set Conversion Error Indicators: SCERRV.......... 6-10

Example 1...cieeieiiiiiiiiienieieneeninnennnnns 6-11

25 1110 = 6-11

Saving and Resetting Error Indicator Cells:
SERSAV, SERREV....iiiiientneeennrnsnennnennnans 6-12
ii

Nt

Vgl

VII

VIII

IX

PLOTTING. vt ittt it e tirssie s tnsnnaennnasons 7-1

Plotting Data....evve i iiiiinnnnnrnrnnnnsnensnas 7-1
Point Plotting Subprograms........evvevvvenenreonns 7-1
Plotting an Array: APLOTV.......ivivivevevnnnnenns 7-1
Plotting Individual Data Points: POINTV.......... 7-7
Basic Plot-Print Subprogram: PLOTV............... 7-8
Line Generation: LINEV........iiviniiinnnnnvnnnnns 7-11

TITLING AND LABELING. . vt tvtvtintninrnrornrnsennanens 8-1
Titling and Labeling Subprograms.................. 8-1
Horizontal Printing: PRINTV........vvvvivinvnnnnn 8-1
Vertical Titles: APRNIV.......ivviivininnvnnnnnns 8-2
Fixed Point Labels: LABLV......viviiuiinvnnvnnnns 8-4
Number Conversion: NXV,NYV.....vvvviiienenenennns 8-7

PRINTING. vt ittt ittt ii ittt ie i tninenesrssnsanensannns 9-1
OLMGS 340 PRINTING: TX340. ... 0vevnenrnrnnnnnnnnas 9-1

MISCELLANEOUS ROUTINES. ...t vvvvrnrnnsnvnrnnnsnnsnsas 10-1
Unpacking Characters: UNPACK......vcovvvnnunennn 10-1
Setting System Flags: FLAGS.........civivinennn, 10-1
Drawing Vectors: PLIWS......i.iiiivivevnnvnnrnnn, 10-1
Display Premitives......vvivinrnrnnenenrnrnennnns 10-2

iii

83

i

* SECTION 1
INTRODUCTION

To model anything it is necessary to analyze the results given by the
model. In order to model it is important to have flexibility in both
the modeling system and the modeling graphical subsystem. During the
development of an On-Line Modeling System (Part I), I found it desirable
to develop an On-Line Modeling Graphical System (OLMGS). This OLMGS

is completely flexible with respect to graphical display. This flexi-
bility will become obvious as this report is read.

The most obvious application of the OLMGS is the rapid production of
labeled graphs. Results in graphical form are usually much easier to
analyze then are the same results in printed tabular form. An option
that is available is the production of a picture that combines tabular
data with a plot of the related curve. Still another use of the OLMGS
techniques is the creation of diagrams and line drawings. A camera may
be operated with this system under program control.

At first glance, the list of the OLMGS routines on the following pages
may seem formidable indeed, but the user should not feel baffled by
the great volume of details. Some routines were developed for special
) purposes and have limited usage. Many are used principally as lower
{ modules for more general subroutines, and will seldom be called
directly by the programmer.

This Programmer's Reference Manual has been organized in major sections.
These are arranged according to the function of the routines described
therein. The major sections are: Introduction, Basic OLMGS Programming
on the DEC 340 Display, Control Routines, Grid Drawing Routines,

Scaling Routines, Point-Plotting and Line Drawing Routines, Titling

and Labeling Routines, and a Higher Level Printing routine. Information
about the interpretation of the system subroutines has been included

in the control section.

The OIMGS is a set of Fortran IV and Macro-10 Assembly Language routines
that drive display premitives which were written by Mr. Harry Lewis.

The Light Pen and Rand Tablet can be used in the manner described in

Mr. Lewis' Reports, (see reference [3] and [5]). It is possible to
implement this system on any computer if the rasters on the CRT are the
same as the ones used in this report. If the rasters are different a
few constants and uppe limits for loops can be changed to make the
system compatible.

a SECTION II
BASIC OLMGS PROGRAMMING

ON THE DEC 340 DISPLAY

The DEC 340 Display plots images on a grid 1024- horizontal by 1024- vertical
points. There are therefore, over 1 million addressable positions. The
center of any character may be plotted at any of these positions. The origin
(0,0) is in the lower left corner, with X and Y increasing to the right and
upward, respectively as shown in the figure below. The electron beam does
not scan the face of the tube; its position is determined by the contents of
the X and Y registers of the display. (If a data word specifies a point
outside of the raster an edge violation occurs and stops the display).

0,1023 1023,1023

0, 1023,0

SCALE

The scale setting determines the number of positions each succeeding spot is
moved before it is intensified. It effects both the size and appearance of

:i’ lines or symbols drawn in the vector, vector continue, increment, or character
modes. At scale setting 11,, each point can be clearly distinguished. At
scale setting 00,, lines ana symbols appear to be continuous. The point
spacing 1is illus%rated in the following table.

Scale Point Spacing Itensity
00 e e o o a o o o o EVeI'y
01 e 0o e o e o e o e 2nd
10 e 0o o o e o o o e 4th
11 e o 0o o o o o o e 8th

INTENSITY

There are eight intensity levels available on the display, ranging from 00,
which is barely visible, to 111.,, which is very bright. Note that scale a%d
intensity settings are interrel%ted. For example, if characters are drawn
(with the character generator) at the lowest scale setting, and too high an
intensity is used, they will be badly blurred. On the other hand, if many
characters are to be displayed simultaneously or if the light pen is to be

i used, it 1s best to use as high an intensity level as possible.

- MODE

The mode register is a 3-bit register whose contents determine the way in
which the next data word will be interpreted. The eight different data
word formats (modes) will be discussed in the following paragraphs of this

1 section,

2-1

b)

DATA WORD FORMATS

PARAMETER MODE (0002)

Mode Light | Stop Scale Intensity
7 Pen
0|1} 2|3 }4 5|67 |8]| 91011 12|13]14 | 15]16] 17

Parameter mode is the control mode of the display.

parameters of the display

POINT MODE (0012)

A parameter word can
be used to change the mode, scale, intensity, light pen and/or interrupt

10J 11

S:g Mode nggt INT| Horizontal or Vertical Address
ol 112 [3]4|l5s5lel7187]09 ' 12113 | 14 15|16 | 17

Point mode is used to specify an X or a Y coordinate location on the dis-

play.

data word is interpreted by the display as point mode if the mode register

It can change the mode, light pen, and intensify parameters.

was set equal to 0012by the previously interpreted word.

RASTER MODE (0102)

Esc

Ret

Int

Int

Int

Int

Int

A

10

11

12

13

14

15

16

17

2-2

906

v

CHARACTER MODE (0112)

[—— s . et ame o e e e

1st Character 2nd Character 3rd Character

i

31 4[5 1|6 l 7 l 819 {1011 |12 {13 | 14} 15|16 |17

In character mode the display interprets each word as containing three
alphanumeric characters. Each character is specified by a 6-bit modi-
fied ASCII code. The display remains in the character mode until an
escape code is encountered, then the display returns to parameter mode.
A data word is interpreted by the display as character mode if the mode
register was set equal to 011, by the previously interpreted word of if
the previous data word was in“character mode and did not contain the
escape character. Bits 0-5 are interpreted as the second chara:ter and
bits 12-17 are interpreted as the third character.

2

VECTOR MODE (100,)

ESC Int -« AY | - AX —— ————]

IR D

9 ho |11

12 |13] 14|15 {1517
+

012]3 slslel7] 8

In vector mode the display interprets each word as containing vector size
and direction, intensify, and escape information. The display remains

in vector mode until the escape bit is set, at which time it returns to
parameter mode. If the edge of the raster is violated, a flag is set which
causes a computer interrupt. A data word is interpreted by the display

as vector mode if the mode register was set equal to 100, by the previously
interpreted word or if the previous word was in vector mOde with the

escape bit equal to 0.

VECTOR CONTINUE MODE (1012)

EsciInt AY - AX

o1/ 2)34]15]6 (7] 8}9 |10 |11 |12} 13114} 15{16 |17

+ +

In vector continue mode the display interprets the word as containing vector
directions, and intensify information. The vector is drawn from the
starting point to the edge of the raster. When the vector violates the

edge of the raster, the display returns to parameter mode. A data word is
interpreted by the display as vector continue mode if the mode register

was set equal to 101, by the previously interpreted word.
2-3

B/

INCREMENT MODE (1102)

Esq Int 1st Point 2nd Point 3rd Point 4th Point

0 |1 2 Rish M 4A‘ 5 6 |7 |8 9 |10 | 11) 12 (13 |14 (15116 17
Movehlgnhtiove U - U-D |M, [R-L U-D R-1Li -
e Lerel ¥ Lponn | X R My X My My My|U-D

When in increment mode, the display interprets each succeeding word as con-
taining information to plot four successive spots; each adjacent to the
preceding one. A spot can be placed into any one of the eight adjacent
locations at each movement. A data word is interpreted by the display as
increment mode if the mode register was set equal to 110, by the previously-
interpreted word or if the previous word was in incremen% mode and the
escape bit was not equal to 1. The display remains in increment mode until
the escape bit is set equal to 1 or it moves a spot past the edge of the
raster.

SUBROUTINE MODE (11]2)

Op "~ Mode Address
Code

O |1123 14|56} 7{8 |9]10 |11 |12 13({14 |15]|16{17

When in this mode, the display interprets the next word as a jump instruction
to some location in memory. The subroutine word sets the mode of the next
word to be interpreted and allows the display of data from nonconsecutive
memory locations.

SYMBOL CONVENTIONS

In the subprogram descriptions, floating point variable names have been
assigned in accordance with the FORTRAN IV conventions. If integer
variables are required, names beginning with I, J, K, L, M, or N are
used. The actual floating point number (or integer) may be used in the
argument lists in place of a floating point (or integer) variable name,
if the argument represents input to the subprogram. Constants should
never be substituted for argument names that represent output from the
subprogram.

Details about anything in this section can be found in references [6],
[5]1, [3], and [7].

2-4

SECTION ITI

CONTROL ROUTINES

SETTING UP ERROR POINTERS: SETSEV

At the outset of every job, this routine should be called to set up system
error pointers.

CALL SETSEV

CHAIN FILE COMPATABILITY

The OLMGS has a named common block in which it communicates with itself and
other systems. This common block is designed for use by CHAIN. A description
of the common block is in figure 3-1.

INTENSITY SELECTION: BRITEV,FAINTV,ITSCV

GRIDLV ensures that the bright intensity mode is on. Normally, this intensity
mode should be left on, since experience has shown that it produces the best
results. If the programmer wants to change this setting to the faint mode, he
can use the following statement:

CALL FAINTV

The faint mode will always be a setting of 4. Then, to restore the bright
intensity mode, he can use the statement:

CALL BRITEV

Bright mode will always be a setting of 7. To set the intensity and scale to
any value use the following statement:

CALL ITSCV (I,J)

where I = intensity 0 < I <

[
1}
A
~J

scale 1,2,4,8

COMMON/D!,T55T/LIST, ZDDPTA, DXXSYY , XX)XXDD,, YYYYDD , ACDD , AYDD,, BXDD , BYDD, DHIGHD,
DHIGHI , DLOWDD, DLOWD1 ,MLDD,MRDD , MBDD ,MTDD, WIDEDD , HIGHDD , DDDDYY , DXXDYY,,
DDDSDD,, HOLDDD , CAMVDD, YTOPDD,, YREGDD, DO, D1 , FRMCNT , SCFL , NOCOMP

COMMON/ INSCAL/ INTENS, ISCALE, ICHASZ ,LENGTH

FIGURE 3-1

SCALE SIZE CONTROL: BIGV, SMALLV, CHARV

The scale may be selected by the programmer. The program statement.
CALL BIGV

will set the scale to its maximum setting; and the statement,

CALL SMALLV
reduced the scale to its median setting. Character size can be set by calling
CHARV. The calling sequence is: I

CALL CHARV (k)

where k is the character size.

3-2

u

{

SECTION IV

GRAPHS

GRAPHING DATA: KWKPLT

The purpose of this routine is to provide the programmer with a quick
look at the relationship between two variables. KWKPLT will automati-
cally provide the programmer with a series of linearly connected
points on a scaled linear grid with identification printing.

It is not necessary to arrange the coordinates in an increasing or
decreasing order of magnitude. If the table of X-coordinates are not
in ascending order, KWKPLT will rearrange them in ascending order
within the table. The Y-coordinates will be arranged accordingly.
The calling sequence with identification printing is:
CALL KWKPLT(X,Y,N,LH,LV,ID)
where
X = starting location of a forward stored array of
floating point numbers representing the X-
coordinates.
Y = starting location of a forward stored array of
floating point numbers representing the Y-
coordinates.
N = number of points to be plotted.

IH = 18 character identification for the X-coordinates.

LV

18 character identification for the Y-coordinates.

ID = 1 1abel axis.

0 no label on axis.

[

The printing routine assumes a full 18 characters
including blanks.

PDP340

This routine provides the programmer with a quick look at the relation-
ship between two variables. PDP340 will automatically provide the
programmer with a series of linearly or non-linearly connected points
on a scaled linear-linear, log-linear, linear-log, or log-log grid with
identification printing. The calling sequence is:

CALL PDP340 (NPLOT ,MODE ,NCHAR ,NPTS X, Y ,XMIN, XMAX , YMIN , YMAX , XLABEL,,

where

NPLOT

MODE

NCHAR
NPTS

XMIN-

YMIN-

XLABEL
YLABEL
GLABEL
JERR

YLABEL ,GLABEL , IERR)

1 eject and start new graph
2 use same graph

1 Linear-Linear
2 Log-Linear

3 Linear-Log

4 Log-Log

tn uou

Character Number

= Character Number
= NPIS of X-coordinates
= NPTS of Y-coordinates

= Minimun and Maximum of X-coordinates

= Minimun and Maximum of Y-coordinates

= 72 character X axis label

= 72 character Y axis label

72 character heading

1 Normal
2 or 3 Error

|:'>i a-

SECTION V
GRIDS

GENERATING A GRID: GRID1V

In many ways, plotting on the OLMGS is very much like plotting on a sheet
of graph paper, but there are also distinct differences. For one thing,
the programmer must create the grid; the picture is completely blank to
start with.

Although every line of the grid must be specified on the OILMGS, there are
advantages to this situation. A hand-plotted graph must be adapted to
some preprinted form; more frequently than not, this means that some plot-
ting area must be sacrificed in order to use the most convenient scale.

On the OLMGS, the programmer can select a scale that will be easy to read
and that will accommodate the entire range of data. The number of light
grid lines, the number of emphasized grid lines, and the spacing between
lines can be chosen to suit the plot. The programmer is not restricted

to the use of a single form for a variety of plots. For each graph, a new
grid can be tailored to the data.

The easiest way to create a grid is to call the GRID1V subprogram. At the
outset, GRIDIV makes certain that the Bright Intensity Mode is on.

GRID1V will produce a grid which has some lines emphasized and some lines
labeled. Margin space (which may be used for titles) will be reserved at
the top, left side, and bottom of the grid. Normally, the title margin
spaces are 24 raster counts wide.

Upon completion of GRID1V, scale factors will have been established and
made available (internally) for the conversion requirements of other
subprograms; i.e., the conversion of floating point coordinates into
raster coordinates.

The call statement for GRID1V appears below, with a description of the
arguments.

CALL GRIDIV (L, XL, XR, YB, YT, DX, DY, +N, +M, +I, +J,

+NX, +NY)

XL,XR

DX, DY

N,M

This integer argument contrcls the label margins
computations.

L #1 No label margins will be computed.
L =1 Compute label margins.

Floating point values of X for the left-most and
right-mest 1imits of the grid.

Floating point values for the bottom limit and the
top 1imit of the grid.

After margin space for titles and labels has been
reserved, the limits of the remaining space are
assigned the data values given for XL, XR, YB, and
YT. Scale factors are then computed; they will
remain in effect until another GRID1V statement

is made (or until other action is taken to compute
new scale factors).

Floating point data increment at which vertical
(specified by DX) and horizontal (specified by
DY) grid lines will be displayed. If 0.0, no
lines will be shown.

Positions are stepped off in DX increments in the
positive and negative directions from X = 0, and
in DY increments in the positive and negative
directions from Y = O.

Fixed point integers that cause every Nth vertical
grid line and every Mth horizontal grid line to

be retraced for emphasis. If N (or M) is zero, no
vertical (or horizontal) lines will be emphasized.

To force the grid to be square, a negative sign
should be used on N and/or M. (If either N or
M 1s zero, the negative sign should go on both
N and M.)

5-2

94

I, d Fixed point integers which cause every Ith vertical
line and every Jth horizontal line to be labeled. If
I (or J) is zero, no vertical (or horizontal) lines
’ will be labeled.

If I and J are positive, the line labels will lie along
the X = 0 and Y = 0 lines, provided these lines are
within the grid limits. If X =0 (or Y = 0) does not
fall within the grid limits, labels will be placed in
a space reserved at the left (or at the bottom) of the
grid.

Negative signs can be used on I and/or J to force
labels outside the grid. Label space is reserved

at the left if I is negative, or at the bottom if J is
negative, and labels will be placed in these reserved
spaces. Note that label margin space is in addition
to the margin reserved for titles.

NX, NY Fixed point integers indicating the number of char-
acters to be displayed in the labels of vertical and
horizontal lines.

+NX, +NY The labels will be in a decimal format
similar to the F-type format. In speci-
fying +NX and +NY, a decimal point must
be counted as one of the NX or NY char-
acters, but the sign is not counted. The
largest number of digits permitted is 6
(or 7 if one character is a decimal point).

-NX, -NY The labels will be ig(ﬁcientific notation.
(Example: 1.25x10 .) NX indicates
the number of significant figures in the
labels of vertical grid lines, and NY
indicates the same for the labels of hori-
zontal lines. The sign, decimal point,
and exponent will be displayed in addition to
NX (or NY) characters. NX (or NY) must
not be greater than 6.

Examples of GRID1V Usage

Figures 5-1 through 5-9 are examples of the effect of the various parameters in the

5-3

95

GRID1V call statement. These examples are reproduced from DEC 340 output. The
call statement to produce each graph is printed in the figure with the graph.

Figure 5-1 is a simple grid with the x=0, y=0 lines crossing in the middle of the grid.
The numeric labels have been placed along the x=0, y=0 lines. For simplicity in the
illustration, constants were used in the parameter list. In actual usage, variable
names may be substituted for any parameter,

Figure 5-2 is similar to Figure 5-1 except that the XL, XR and YB, YT have been
reversed to show that the scaling routines have no difficulty handling data which
decreases from left to right and bottom to top.

Figure 5-3 illustrates the effect of negative values for I, J in the par:imeter list.
Note that the numeric labels are outside the grid and that the margins have been in-
creased to accommodate the labels.

Figures 5-4 and 5-5 show the same grid with labels in integer notation and scientific
notation.

Figure 5-6 has been double exposed to show the effect of negative arguments at N or
M. The outer frame was produced by the first call statement with the positive argu-
ment for N and M. The grid utilizes the maximum available space in both directions
and is taller than it is wide. The second call statement with negative N and M forced
the frame to be shorter in the Y direction in order to be square. It is important to
have a square grid when representing geometric figures such as a circle or a square.
Note that the first parameter of the second call statement is a 2 which inhibits the

margin calculation.

Figure 5-7 illustrates the use of the routine DXPDYV to compute some of the values
for the GRID1V parameter statement. DXDYV is explained on page 5-13.

Figures 5-8 and 5-9 show the influence upon the grid of the density factor used by
DXDYV. For the case of Figure 5-8, a density factor of 8.0 was specified as the
8th argument of DXDYV. A larger factor, 20.0, caused DXDYV to derive values of

DbX and DY such that the grid in Figure 5-9 is less dense.

200
[T T
i
-
0
J
490
bd—
b+ +—1+ +—1
+ . 44

- -) H 1P 1
i It

; BEN

'_‘I[M

Bl
440
-
|
P 1
T +440 {
CALL GRIDtVY (t,-3%.,0, 3%0.0,-600.0, 800,0, 1,0, 25.0, 5, 4, %0, 6, 2, 3}
Figure 5-1

| B) &'
| 97
.

) MM H l
| +-4 + -4 4 4 441 1
u LI L 44041
4 4 ! - F -1
| T 1
H —4t 4 44 -4 -4 +
244t } |
4 -4 4 4 U W S .
! P RO
T v =T
. 4 4 4. I Se mih Ak R i B b Son BN _— L o et T e
|4 . -.t. ;. 4 -t A.+ 4 <v—-1-i—- 4
L 4 4e- GO } S S 0
] } T 1——1 ! P
F4- - - 4 “+- ~-l- —4- -4~ 4 4t g } —~+— 1 -—4-— 4
»—J- & S -4 —-+ - J»---»--—J» -4 1 I
S S G A 44 444444 + + 4
el LT
F <44 44— 4 —t-4— 1 ? 1»—-4 4 4}—4»—
F+1-1 4 4+t -4-+1- 1+ 44— % - .-4>_+.‘ # .F«»

4 4444444
—a-— -+ — ¢
- -

Fap

+
1
4
0
4t
490
1
| 1
1 -+
HHH .,
L I
4 ;
4
f

1

s$0 {

CaLL emIDIV (1, 30,0,-30.0, 800.0,-800.0, 1.0, 25.0, 8, 4, 10, 0, 2, 3)

ERIC

Aruitoxt provided by Eic:

Figure 5-2

-400 .00
-400.0 -200.0 []

CALL GRIDSV (3 ,-400.0, 400,.0,-400.0, 400.0, 25.0, 25,0, 4, 4,-8,-8, S, 8)

Figure 5-3

—4—4

g LJI—'L.

3
]
ol 1
. 1000 0 s000 4000 so00 e000

CALL ¢mID3V ¢ 8, O,0, YoOO0.0, 0.0, ?0000.0, $00.0, 3000.0, 5, 3, 10, 40, 4, 5)

Figure 5-4

El{fC‘ 100

Aruitoxt provided by Eic:

1000

CALL LABLY (379.3, &23, 1023, 5, 1, 3) RESULYS IN 379.3
7.0x10*9¢ CALL LABLY (379.3, «23: 999, ~4, 1, 3) RESULTS IN s.re8x10°02
. TI1L
it E -+ S I Y il
LTI -
-t 4 b 4
ir—-dh e e e
5»—-1 4 - 41 - .-
. _H 130
o.ox0'% 1 14+H
(11 T]
-4 j—-- - 4 ﬁ-«.l— L. - +
41 -4 -
L1441 O 0 I %
T T p
.-*—-4 - - ._j -+
1T T
*04 |4+ L4 4444
’.0X10 b1 1411 11 11 i
+4 }—4».4— 4odd 441
ans
L+ —4 1444 B
—1»—-# <+t —
1T
4.0x30%%4 11t
[T1TTT
1»——'
3.0x30°0¢
i
W)
R
g.ox10*9¢ <
ans
1 .0x10%0¢
»
. s .0x10°03 2.0x10°%03 3.0x10%9% 4.0x30°*93 s .0x30*03 ¢.oxs0*%"® v.0x30°°?
. caLL oepI03v (1, 0.0, ?000.0, 0.0, ?0000.0, 300.0, 1000.0, 5, 5, 10, 10, -2, -2)
Figure 5-5
e
<x

ERIC 01

Aruitoxt provided by Eic:

90

100
CALL GR1D!vV (3, %50.0, 100.0, 50.0, 200.0, 80.%, %0.0, 1, 8, 2, 2, 3, &)

CALL oR10iv (2, 50,0, 100.0, 50.0, 100.0, 80.0, %0.0,-3,-1, 2, 2, 3, &)

o

Figure 5-6

ERIC

Aruitoxt provided by Eic:

1
T
bt §— = 4 . —
+ 4 4 h
L4 —
—
__4& —— 1
ewhk1+-1
- +—4 44 b
4+—4 4 — -
— -
—+ - A
4 ..
s0 ed -4
— 41" 4
[- - 4 —-
4.4 4441
—~—d -
A0 T"1°T
30
—4
+ -4- 4
0 1 :
4 — —— -
ety 4 A
-4 P G S
- ~4—
30 T1"
- ‘T
s 1
] 4 4 [] [] 30 iz 14 18 18 20
CALL DXDYVY (3, 0.0, 20.0, OX, N, I, NX, 310.0, 1ERR!)
CALL DXOYY (2, D.0, 80.0, DY, W, J, NY, 10.0, IERRZ)

CALL &RIDIV (83, 0.0, 20.0, 0.0, 80.0, Dx, DY, N, W, 1, J, NX, NY)

Figure 5-7

109

Q

ERIC

Aruitoxt provided by Eic:

111 4+t +4 -
and —4—1‘, -4
ulgtng n
80 1114 1 [-T"
F+ 1+ {4{ -
] - 40 - o0 -120 -180 -200 -p40 -280 -3g0 -340 460
CALL DXDYVY (1, 0.0, -305.0, Ox, M, I, NX, 8.0, LERR)
CALL OXDYV (2, 93.3, 14.0, DY, M, J, NY, 8.0, IERR }
CALL GRIOtV ¢ 1, 0,0, -505.0, 93.3, 14.0, OX, DY, M, M, 1, J, Nx, NY
Figure 5-8
L — . - — .
w0 |
S
40
0
r
80
[-100 -200 ~300 ~400 ~300
caLL OXoYY ¢ 3, 0.0, -8505.0, Ox, N, I, Nx, 20.0, IERR)
CALL OXBYY ¢ 2, 93,85, 14.0, OY, M,

Jy NY, 20.0, IERR)
CALL GRIOIY ¢ 2, D.0, -505.0, 93.5, 14.0, OX, OY, N, M, 1, J, NX, NY)

Figure 5-9

5-12

104..

pE——

COMPUTATION OF GRID1V ARGUMENTS: DXDYV

i It frequently happens that the programmer does not have sufficient advance informa-
tion about the range of data his program will encounter to be able to assign practical
values to all arguments of GRID1V. In this case, a series of FORTRAN statements
can be used to determine the upper and lower X and Y bounds. For example, the
values of XL and XR for a block of data, X, can be computed as follows:

XL = X(1)
XR = X(1)
DO 10J =2, NPTS where NPTS is the number

of points in the X block of
data
XL = MIN1F (XL, X(J))

10 XR = MAX1F(XR, X(J))

A similar group of statements can be used to compute YB and YT for the Y block of
data.

Once XL and XR (or YB and YT) are known, the routine DXDYV is available to com-
pute arguments for line spacing, line emphasizing, and line labeling. Two call state-
ments are available, one for the X direction and one for the Y direction. They are:

CALL DXDYV(1, XL, XR, DX, N, I, NX, DC, IERR)
CALL DXDYV(2, YB, YT, DY, M, J, NY, DC, IERR)

On each entry to DXDYV, four arguments are furnished by the programmer:

The first argument is a 1 or a 2, to indicate whether DXDYV is
being applied in the X direction or in the Y direction.

XL and XR (or 'YB and YT) are defined as in the summary
of GRID1V arguments.

DC represents a floating point quantity which limits the density of the
grid. The grid lines drawn by GRID1V, using arguments furnished by
DXDYV, will be no closer than DC raster positions. DC should never
have a value less than 3. 0; values of 8.0 to 20.0 are recommended.

The remainder of the arguments are variables to which DXDYV will assign values.
Any value previously assigned these variables will be destroyed during execution
of the subroutine. NEVER USE CONSTANTS FOR THESE ARGUMENTS.

IERR is an error indicator. It is set to zero if a reasonable grid can be drawn, and
to one if the parameters given would result in an impossible grid. After execution
of DXDYV, IERR should always be tested before proceeding to draw the graph.

In using DXDYV, it should be noted that no provision has been made for generating
labels in scientific notation. If this is desired, it is necessary to assure that there
is sufficient space for the longer labels and also to change the sign of NX and NY to
be negative.

GRID1V CONTROLS

Certain features of the basic linear GRID1V can be altered by subprograms that con-
trol its internal operation. The subprograms can be classified as "set" and '"retrieve"
routines since they permit information to be set by the programmer and retrieved
during execution of GRID1V.

The routines that furnish values different from those normally employed by GRID1V
are:

SETMIV, which allows the programmer to make nonstandard
margin assignments. The companion routine called
by GRID1V to retrieve margin values is SETMOV,

SETCIV, which makes it possible to provide extra space for
grid line labels. The companion routine is SETCOV.

Routines that furnish indicators recognized by GRID1V as signals to execute alternate
branches are:

HOLDIV, which assists in holding margins from graph to graph.
HOLDOV is called to retrieve the indicators.

SMXYV, which enables the programmer fo select a non-linear
mode of operation. The companion routine is MSXYV.
These two routines are described under '""Log and Semi-
log Plotting. "

Grid Margin Variation: SETMIV, SETMOV

«~ As discussed in an earlier section, GRID1V normally reserves a strip, 24 raster

. counts in width, at the top, left, and bottom of the grid, for the display of titles. For
the many applications which require special margin widths, the subprogram SETMIV
can be called to change the basic specifications.

One obvious application of SETMIV is to provide margin space for multiple lines of
printed titles and headings. In addition, and perhaps even more important, SETMIV
makes it possible to display more than one graph on a frame, or to display a graph
with its accompanying text.

The standard GRID1V margin specifications can be altered by the statement:

CALL SETMIV (MTL, MTR, MTB, MTT)

Each argument is an integer which specifies, .r raster counts, the
width of one area tc be reserved for a margin.

MTL Width of area for left margin.
MTR Width of area for right margin.
MTB Width of area for bottom margin.
MTT Width of area for top margin.

GRID1V does not necessarily use these exact values for the upper and lower limits of
X and Y. It guarantees that the reserved space will not be overlapped, assigning
additional space if required for label margins. After the total margin space has been
reserved, the remaining area will be used for the grid. '

If SETMIV is never called, GRID1V will use the values 24, 0, 24, 24 as MTL, MTR,
MTB, and MTT, respectively. To return to a standard grid after the margins have
been altered, restore the standard margin values by

CALL SETMIV (24, 0, 24, 24)

The current values of MTL, MTR, MTB, and MTT can be retrieved by using the
statement

CALL SETMOV (MTLI, MTRL, MTBL, MTTL)
: where the arguments are variables (never constants) to which SETMOV is to assign

the current margin values. SETMOV was designed for use by GRID1V tp retrieve
{ current margin values; the programmer will rarely have reason to call it.

5215,
- 107/

Examples. Figure 5-10 shows three grids with the SETMIV and GRID1V call state-
ments used to produce them. The grid at the bottom was the first one displayed; a
1 was used as the first argument of the first GRID1V statement executed, in order
to change the film frame. The other two GRID1V statements include a 2 as the first
argument, to inhibit margin calculation.

Note particularly the variation in the raster locations assigned by GRID1V to XL in
each of the grids. This effect is caused primarily by the differences in the specifi-
cation of NY (the last argument), which gives the number of characters to be dis-
played in the labels of horizontal lines. In each case, NY has been assigned a value
just large enough to satisfy the needs of the grid. For the bottom grid, NY = 1;

for the middle grid, NY = 3; and for the top grid, NY =5. Since margin space was
reserved for labels of different lengths, the positions of the left limits, and of the
corresponding values of X, vary noticeably. Such a nonalignment is often of no im-
portance, but if it does matter, the programmer may have to make special provisions
to force alignment.

PROVIDING FOR SPECIAL LABEL CHARACTERS: SETCIV, SETCOV

GRID1V computes the starting location of each label, taking into consideration the
size of the characters used. If the labels are to be placed outside the grid, GRID1V
assigns space for them, again taking the character size into consideration. Nor-
mally, labeling is done in CHARACTRON characters (via LABLV). If the pro-
grammer substitutes a non-system labeling routine for LABLV, it may be necessary
to furnish adjusted character dimensions to GRID1V.

To state the dimensions of nonstandard label characters, use

CALL SETCIV (IW, IH)

w An integer which specifies, in raster counts,
the allowance needed for the width of each
label character.

IH An integer which specifies, in raster counts,
the allowance for the height of a label character.

If SETCIV is never called, the indicator table contains IW = 8 and IH = 10.
Obviously, if it is called, the arguments must be compatible with the size of the
characters esmployed by the LABLV subprogram used.

GRID1V retrieves the values of the indicators by using:

CALL SETCOV (IWL, IHL)

5-16

104

NARGIN VARIATIONS FOR CRIDIV
1 Tl T T
il
T
T
- i
+—+
4
—
4
. I
T
} L
+ T T
+ + ; L
4- 4 - |
- -~ n I 1 j | 1
10000 J T P T T s |
|] 10 20 0 40 30
CaLL SETMIV ¢ 24, O, 712, 23)
CaLL GRIDIV (2, 0.0, %0.0, 10000.0, 40000.0, 1.0, 2000., S, S, 10, %, 2, %) h
400
+ i I
swol T T 11
._._..1._ — -
wol T T
i
100 7
° 10 20 : 30 40 so
o caLL SETHIV ¢ 24, O, 383, 371) ‘
i CALL GRIDIV ¢ ¢, 0.0, 50.0, 100.0, 400.0, 1.0, 20.0, 5, 8, 10, 8, 2, 3
P L
LT :
3
T
[} 1 i
M
—t
N
T
[} i !
[] 10 20 30 40 (1)
caLL BETNIV (24, O, 24, 713}
CALL GRIODtv ¢ 31, 0.0, S0.0, 1.0, 4.0, 1.0, 0.2, 5, 5, 10, 5, 2, 1)

Figure 5-10

5-17

ERIC 109

Aruitoxt provided by Eic:

The width will be retrieved from the table and stored in the fixed point variable loca-
tion IWL, and the height will be similarly stored in IHL. (The arguments must not
be constants.) Note that GRID1V uses this information to control the space that will
be reserved for labels; it does not control the size of the label characters themselves

in any way.

HOLDING MARGINS FROM GRAPH TO GRAPH: HOLDIV, HOLDOV

For a large graph, it may be necessary for the programmer to display segments of
the graph in separate frames, and join the segments ''tile fashion' to form the com-
plete plot. If the graphs are to have the same scale, certain equalities should exist.

1. The range of X in each segment should be equal, and the range
of Y should be equal. In other words, the quantity (XR - XL)
should be the same in each segment, and, similarly, the
quantity (YT - YB).

2. The dimensions of the scaled area should be the same from
segment to segment; that is, the dimensions of the space
Letween margins should be equal.

The programmer can easily provide for equality in the ranges of X and Y, but he
cannot so readily ensure equality in the scaled areas. Since GRID1V computes label
margins (and, therefore, total margins) to suit the needs of each graph, the dimen-
sions of the scaled area may vary.

One method that will usually give equality of scaled areas is to specify the option
that forces labels to be placed outside the grid, and to always request the same
number of label characters (NX, NY) for each segment. If this is not practical, a

"holding" feature is provided.

GRID1V can be instructed to hold the label margin spaces used for the preceding
grid and use them in computing total margins for the next grid. The statement to

be used is

CALL HOLDIV (NH)

If NH # 0, the label margins from the preceding grid
will be used again. If NH =0 (as is the case if HOLDIV
is never called), label margins will be computed in the

normal manner.

The status of this indicator is tested in GRID1V by using

CALL HOLDOV (NHL)
The value of the indicator will be retrieved and stored in
the location named in the argument.
The "hold" may be released by executing the statement

CALL HOLDIV (0)

Figure 5-11 is similar to Figure 5-10 except that NY = 5 on all three grids, permitting
the left limits to be in line. If XL, NX, and NY are equal from grid to grid, the de-
sired alignment will usually be achieved.

Figure 5-12 shows four graphs on a single frame. The SETMIV statements used to
produce the margins for each grid are shown. The programmer must remember to
set the first argument of the GRID1V statement to 2 so as not to calculate margins.

Figures 5-13, 5-14, and 5-15 show additional examples of special effects which can
be obtained with GRID1V when the routine HOLDIV is used to retain grid margins

from one grid to another. The labeling is self explanatory.

OPERATIONAL DETAILS OF GRID1V

GRID1V is, in maay respects, an executive routine. It examines the information
furnished by the argument list and by certain external subprograms, makes decisions
based on this information, and then calls other subprograms to calculate margins,
compute scale factors, generate the grid, etc.

Initially, GRID1V uses BRITEV to ensure that the bright intensity mode is
"On.”

GRID1V then checks certain internal locations to obtain basic information, by calling
the following subprograms:

SETMOV Retrieves margin assignments. The programmer
may have changed the standard specifications by
a CALL SETMIV.

SETCOV Retrieves character size specifications that programmer
may have changed by a CALL SETCIV.

5-19

111

10000 __I_L o

[

[} 10 1] 0 40 [1]
CaALL SETMIV ¢ <. O, 712, 28) R
CALL ¢RIDIV (2, 0.0, 350.0, 10000.0, 40000.0, 1.0, 2000,, 8, 5, 10, S, 2, %)
400,0
L
300,0
200 .0
’
100,0
[] 10 0 0 40 [1]
CALL SETMIV ¢ 24, O, 388, 371)
CALL eRIDIV ¢ 2, 0.0, %0.0, 100.0, 400,0, 3.0, 20.0, 5, S, 10, S5, 2, 5)
4,000
3,000
£.,000
}
1.000| |
[] 10 £ 30 40 [1]

CALL SETHIV (¢ B/, O, 2¢, 713)
CALL emIpsv ¢ 1, 0,0, $0.0, 1.0, 4.0, 8.0, O,.2, 5, 3, 10,5, 2, %)

ERIC

Aruitoxt provided by Eic:

Figure.5-11

5-20

114

CALL BETMIV ¢ 24, 934, 3536, 24) CALL SETMIV (536, 22, 536, 24)
s s
T
+ —{-‘ g L J]
N -+ -
Y S . -t~ 4 -4
,_T. _L_.___~ “4-+4-4
:ju.q_ _j_ 4
S A . |
. 4 L}
H - +
+
—+ +
'—"—‘—ﬂ——-
—4
[§
{
!
)
] }
o) . °]
[] § 4 [}] §
e s
L1 1.
10 .
[] §
4
4
[[}
. e 4 s 0 .2
CalLl SETMIV (24, 534, 24, 35356 CaLL SETMIV (S3¢, 22, 24, %38

Figure 5-12

EI{IC 5-21

11 ‘-{

Q

ERIC

Aruitoxt provided by Eic:

HOLDIVY A% AN A

h)

IN MATNYAINING THE BAME BCALE FRON OME SRID TO'ANOTHER

BPECIAL SRICIVY EXAMPLED

— 1
- 1«-4. 44
4 ¢ —-4+—1- 44~

T

1
1
I

T
;

1
ll
|
44
t
—+
—+
1
JER
1

-4 4

i 4 -4 —+ 4

P .

~+4-

CaLL omIDIYV
CALL HOLDIVI(1)

-10.0, 70.0, 0.0, 7.0, 1.0, D.1, 3, 3,

THE HOLD STATEMENT WILL CAUSE LABEL MARGINS TO BE MELD FOR SUBSEQUENT GRIDS

UNTIL CALL HOLODIV(D)

RELEABES THE HOLD

2,2

Figure 5-13

5-22

40

r0

o
,+ T i W% 3 H by)
! -+
) 1
1
. r + 4 + 44—
+ 11+ ShERat g & T =1
H HHT :
1 T >
+ m — 1+t 1+
44— - t-1- W -t +1
3 +— ﬁ T_lwel.vll |
T [L,,IL-TT 1] LT
1 u A e A
L]
1+ -~]] .
aase. =8 : |
T T r -+ 1 : |
_I.T.w O o W a
T3t h L s o
- I PR T I I T in o=
F—— t J\H 1+t t11 ,v + 4 — gﬁllﬁl -4 et
¢ 1+t —+—1 - M.l 137 -t - +—)W__
o
- } BRENS 1y 1] L <H
: i T 13 ! .z« —_
AR ERSRERENES i i g r _
1 qu I S cwf 10 -
p..-ﬁ;{r ~+ T H i 1t 11 - 3o o ~
: - gt aT T T el u H P
1+ -+ 171 +4 4+ 1 -+ 14 AA 11 4 - 44 44— -3 J
iR R e ET ~ s Bo o
ISNSSESRENENNRENEEENSNE NN wez =
! 111 Sy 2R ER g r - > = = —{
+ N TR TS ﬁjl 4 11 L P
3 s 44 5 Iﬁl T-.THﬂ o 1
F e AT AT aas T
-+ 11 =t 171 A%IT H. AJA;T..T +- < w DO"-
R AR A b T ;23
TR T T Suksdutn e CIT T -
{ 1+ +etebd et by t 44t o a =
[. B EY SR UE N 1 I U U 4 08 —t- b4t -
R R &
]1 e Ty ﬁlo.w 10 P,ﬁl 1 1 7 4 n”u -
b1 — 34 44 1]?.«1@ <A_wi.L r 1 ++-1 © oz 3
HENSAERES BRARSR LT.Q ﬁ m; - 1111 - -ud
4+ v 1 -+ —+— -+ +1 +~t-1- + o @
S HH Ji;ﬁ.fﬁ; #.ﬂ ESuSEES s >3
BERE H [T MM D =
- : —+ DN B By ray 4 [~ .3
e fsantasgnsnsannyschnnnan! 2352 RSN
ed el e e A e s as, P = 2,
e I T R NS RS R +11 +Te
e T T s ' HHH cus
DR DI S oy T IS RE RN - : r ~E
MDD S R it B i 6 . i T L8:
P A -+ - -ﬁr%.ﬁf S5
-t —+ ¢ 4, + - + i -4 — - -
eed nhls .ﬁ.% T RERN B S Jr *.14, T 5% S
Loz b e b A T A AT AT, 20s
- L 3 - L L4 - L)
w X =

IC

Aruitoxt provided by Eic:

E

SPECISAL CR1DIY EXxAnPLES
USE OF HOLDIY W1 THIN A FRAML

CALL SETYMIV (24,399, 30, 373)

€4LL 6RI1DIY ¢ 3, 30,0, 90,0, O.0, 9.0, 3.0, 3.0, ¢, 2, -4, =2, 2, 1)
CALL HOLDIY (1)

CALL SETMIV ¢ 824, 99, 30, 873

CALL GRID3VY ¢ 2, 90,0, 390,0, V.0, 9,0, 3,0. 1,0, 4, 2, -4, =2, 3,1 }

NOTYE .., NOY OMLY MUSY XR-XL AND YB-YY OF ONL CRID Ceual YHE CORRESPOMOING GUANTITY IN TML

OYHER GRID, BUY ALBO TYHE ARGUMENTS OF BETMIv MUSY MAYE A B8PLCIFIC
RELATIONSHIP,, ...

CORRESPOMD ING SUANMTYITY '« THE OYHER iR

SAY YME ARGUMENTY LIGY T8 (MYL ,MYR,MTB ,NTY) ,THEN THE
VALUES 1023-C(MTLOMYR) “w 1023-(MYAeMITY) OF ONL CRID MUSY CevaL L

) l o ’ 100 tln

Figure 5-15

5-24
ERIC | 11v

Aruitoxt provided by Eic:

140

>
¥
i

MSXYV Determines linear or nonlinear mode. Indicators may
have been set to nonlinear by a CALL SMXYV.

HOLDOV Determines whether margin specifications were held
over {from preceding graph. Indicator may have been
specified by a CALL HOLDIV.

Computations are made to determine the raster positions to be used as grid boundaries.
ERRLNV and/or ERRNLYV are called to check the boundaries and the data limits to see
if a grid can be produced from this information. Finally, XSCALV and YSCALV are
called to compute scale factors, and LINRV (in the linear mode) and/or NONLNV (in
the logarithmic mode) are called to generate the grid.

DETERMINING GRID BOUNDARY POSITIONS

GRID1V sets aside the margin space specified by a prior call to SETMIV (or the
standard margin space if SETMIV has not been calledj. With the exception of the
small area in the upper right corner used for frame identification, GRID1V does nec
writing in these basic margins.

Then GRID1V tests to see if labels are to be placed (or may extend) outside the grid
area. Space required for such labels is computed, taking into consideration the type
of label (fixed point or scientific). the number of label characters specified in GRID1V
arguments plus space for a sign, and the height and width of the label characters.

If any space is needed for labels at the left, right, bottom, or top of the grid, it is
added to the basic margins specified by SETMIV table, to produce the total margins.
(HOLDIV can alter this procedure by causing label spaces ''held' from a previous
grid to be added when computing the total margins).

If the option for a square grid is specified, the right, or top, total margin will be ad-
justed so the remaining area will be square.

If the total margins and the grid limits (XL, XR, YB, and YT) meet certain error
tests, they are used as arguments of XSCALV and YSCALV in computing the scale
factors required for generating the grid and plotting on it.

Since so many items influence the margin assignments, the grid boundaries will rarely
fall at the exact raster positions that the programmer might have estimated. If the
precise rasivr positions of the boundaries are required in a program, they should be
derived by converting the limits into raster counts after GRID1V has been called. For

example:

IXL = NXV (XL)

IXR = NXV (XR) (The right total margin is 1023 - IXR)
IYB = NYV (YB)

IYT = NXV (YT) (The top total margin is 1023 - JYT)

GRID1V ERROR PROCEDURE

Even if bad input data is used, GRID1V will attempt to produce a grid. The philosophy
is that some useful information may be revealed, even if the grid is inaccurate.

The grid limits and total margins are tested by lower-level subprograms, ERRLNV
(for linear mode) and/or ERRNLV (for log mode). If these tests show that a grid
cannot be produced from the given information, some data values are manufactured
so that the program can continue. The manufactured quantities are used only intern-
ally; data values in the main program will not be affected. (Since ERRLNV and
ERRNLV are meant to be used only by GRID1V, the call statements are not given.)

When artificial quantities are used, an error mark (/////) is placed in the upper
right corner of the frame by ERMRKV. Although ERMRKV was designed for use by
GRID1V, the programmer can place this mark on the frame if he uses the statement

CALL ERMRKV

An error mark from GRID1V may indicate that one or more of the following errors
has been found.

1. Equal values have been specified for grid limits; that is,
XL = XR and/or YB = YT. See Figure 5-16.

2. The specified margins are too wide. In other words, MR + ML
- 1023, and/or MB + MT - 1023. See Figure 5-17.

3. Inalinear grid, the specified values of DX and/or DY would
result in grid lines spaced closer than 3 raster counts.

4. In alog grid the value of one or more of the limits is either zero
or negative.

[

In the log mede, there are more than 10 cycles in either the X
or Y direction.

e B

SPECIAL GRIDIV EXAMPLES
GRIDIV ERROR HANDLING

e

L 1

10 11 e 13 14 13 1¢ 17 18

CaLL emiDJvV ¢ 1, 10.0, 10.0, 0,0, $.0, 0.1, 0.1, 8, 5, 10, 10, 2, 2

Figure 5-16

Q ' -27
EMC 5-2

‘ 1 1 ' -
§
LY

5-16

10

SPECIAL GRIDIV EXANPLES
SRIDIV ERAOR HANDLING

CaL). SETNIV (€00, 600, 48, 46)
CALL erpiv ¢ 1, 0.0, 10.0, 0.0, 10.0, 1.0, 1.0, 5, 5, 10, 10, 2, 2)

Figure 5-i7

5-28

120

Examples of GRID1V Characteristics

Certain special characteristics of the grid generated by GRID1V are shown in the
following examples.

Example 1. During construction of a linear grid, vertical lines are displayed at
intervals "'stepped off'" from X = 0 in DX increments until the maximum limit of the
grid is exceeded. Then they are "stepped off'" from X = 0 in the negativz direction
until the minimum limit of the grid is passed. Similarly, horizontal lines are
"stepped off' from Y = 0 in DY increments. Because of this method of construction,
lines will be generated at the grid limits only if XI. and XR are integer multiples of
DX, and if YB and YT are integer multiples of DY. Figures 5-18 and 5-19 illustrate
the effect of changing DX and DY. Figures 5-20 and 5-21 illustrate a similar effect
in the negative range of values.

Example 2. Vertical lines to be emphasized are '"stepped off'" from X = 0 by incre-
ments of N'DX, and vertical lines to be labeled are ''stepped off'' by increments of
I:DX. Similarly, horizontal lines to be emphasized are "'stepped off'' from Y =0
by increments of MDY, and those to be labeled by increments of J-DY. This pro-
cedure means that labels and/or emphasized lines will not necessarily occur at the
grid limits. Lines at XL, and XR will be emphasized only if XI. and XR are integer
multiples of N-DX, and labeled only if XI. and XR are integer multiples of I-DX.

In the same way, lines at YB and YT are integer multiples of M-DY, and labeled
only if they are integer multiples of J-DY.

This method of determining the positions of line labels is responsible for the absence
of labels on the limit lines in Figures 5-19 and 5-21. Notice in the example that the
labels for vertical grid lines are adequate; there is no real need to provide labels on
the lines at XI. and XR. However, the labels for the horizontal lines in this illustra-
tion are not adequate; they demonstrate another factor to be considered in planning
for line labels. To be meaningful, labels should appear on at least two lines. In the
example, the use of J = 5, instead of J = 10, would cause labeling of the lines of

Y =25.0, 30.0, and 35.0, giving a scale that can be read easily.

5-29

121

~

O

ERIC

Aruitoxt provided by Eic:

SPECIAL GRIDIV EXANPLES
EFFECTS OF SYEPPING OFF DELTA INCREMENTS FROM IERO

10 1 20

CALL GRIDIYV ¢ 3, 7,8, 32,8, 8,0, 31,0, 3.0, 2.5, 8, 2, 5, 4, 2, 2)

Figure 5-18

CALL GRIDIV (2, 25.0, 45,0, 25,0, 35,0, 3,0, 1,0, S5, S5, 10, 10, 2, 2)

Figure 5-19

5-30

124

40

R e

handl

b SPECIAL CRIDIV EXANPLED
THE NECATIVE RANGE OF VALULS 18 HAMOLED IN A SINILAR waAY

-30
-
i
--I -
-e0 . I .
. i
I 1
! I
. :’ | | |
b p— ‘ ' — T - b
- L ’I !
-10 -15 -20 -£3 -30

Catt GRIDIV (1, -7.%5, -32.%, -8.0, -31.0, 1.0, 2.5, 8%, 2,3, 4, 2, 2

Figure 5-20

-30 =40

CALL eRIDIVY (2, -25.0, ~45.0, -25.0, -35.0, 1.0, }.0, 5, 8, 10, 10, 2, 2)

Figure 5-21

ERIC 123

Aruitoxt provided by Eic:

£

Example 3. Under certain conditions, GRID1V purposely omits labels. Figure 5-22
shows how this can happen. The limits of X used for the grid were -99.9999 and
99.9999, and the limits of Y were 0.0 and 9.9999. During scaling, these limits were
rounded, causing them to be treated as -100.0, 100.0 and 0.0, 10.0.

This process caused the decimal scales of the grid limits to be larger than the initial
limits, i.e., the values of NX and NY specified by the programmer were not com-
patible with the new limits. To avoid erroneous labeling, label values will not be
displayed if the rounding process causes the decimal scale to be larger than the
initial value.

The system does not adequately provide for all problems of this type. Such compli-
cations can be avoided if the programmer considers the rounded values of XL and XR,
and YB and YT, and when specifying NX and NY.

Example 4. When X = 0 (and/or Y = 0) lies within the grid limits, and I (and/or J)
is pos,m GRID1V places labels along the X = 0 (or Y =0) line. If there isn't
enough space for the label between X = 0 and the left limit of the grid (or between

Y =0 and the bottom of the grid), GRID1V will provide space outside the grid area
for labels, just as if negative values of I (and/or J) had been specified. An illustra-
tion is shown in Figure 5-23.

Example 5. The number of label characters, NX (or NY), specified for fixed point
labels should satisfy the largest and smallest label values to be displayed. Normally,
the quantity should be the sum of: (1) the decimal scale of the largest value of X

(or Y), (2) the number of fractional positions required in the smallest value, and (3)
one more position to provide for the decimal point, if required. The total quantity
may not exceed 6 (or 7 if the decimal point is included).

Figure 5-24 illustrates how trouble can occur when NX and/or NY are not specified
properly. Note that the values of NX = 1 and NY = 1 are adequate for the largest
values of X and Y, but do not allow for the fractional values required in some of the
labels. In this example, 3 should have been used for the values of NX and N Y, in the

top graph.

For some applications, it may be advantageous to specify values of NX and/or NY " -
less than the decimal scale of the largest label value. In the miiadie grid of Figure
5-24, the two low-order positions in the labels have been drcpped intentionally, by
using values of NX and NY that are less than the decimal scales of the largest values
of X and Y. In this case, the resulting graph has been effectively rescaled.

This procedure must be used with care. In the bottom grid, Figure 5-24, the
values of NX and NY are so small that the increment between labeled lines is not
reflected in the labels that are displayed.

1%

A2

SPECIAL CRIDIV EXANPLED

D SPECIAL CABLS AFFECTING GRID LABELS
[]
.
4
)
o
-s0 -80 ~40 -20 ° 20 IT) 0 0
CALL GRIDIV (3, ~99,9999 , 99,9999 , 0.0, 9,9999, 4,0, 1.0, 83, 2, 8, 2, 2, 1)
Figure 5-22
e
40 onnd
[
-)
[] 20 40 0 a0 100

CALL GRIDIV ¢ 2, -0.7, 300.0, -3,0, 300.0, 2,0, 30,0, 5, 2, 10, 4, 3, 3

Figure 5-23

«'e

o 5-33. ..
D D .

SPECTAL CRIDIV EXAMPLES
FURTHER CRID LABEL CONBIDERATIONS

1]
BN O . i 1] 1
1 1 !
=t + t
 m T . .
1 b)
t j ¥ M 1
1] + i
T . ., I ——0‘—4_-*'_‘ s I i o 71
1 i -t : f M ! - N A.JJ 4
R o ; i) b | A4
H 1_‘4_ : o)| 1 D O N N0 SO W i 1_—{& ;11__“-
I R -+ ‘ i 6¢—J--.——4Y..-<—< - NS W Wﬁl A—d { -——i—-L g
RN bt ! ok _I gy i i i —+
L ¢I 4; 1l v ! 1 - %]]j‘J I
-t H : | - dmdad S0 GO S D S B
T T f ' R 11 1] _ll_ .7_4.]
1] 1 I il S 4 ,,_l I 1 H 1 i .jrj ' 4
——t I 1 11 A iy 1 o | gt dd.
ol 1 1 I A A 1 AN 1 I 1 LT] . il
-] 0 1 1 4 4 3 : 4 9
CALL Cmtpvy ¢ 2, 0,0, 80, 0.0, 2.0, 0,5, 60,1, 5, %, %, %, 1,1
100
T
t
0
0
40
20
1
10 0 30 40 s0 0 70 0 "0 100
CallL GmIOiv ¢ 1, 1000.0, 1DO0OO,D, 1200,.0, 10D0OD.0, 200.0, 400.0, 3, 3, 5,5, 3, 3)
el ?
1
1
|
1
. T 1
[] [] 10 10 11 11 1t 1t 13

CALL CRIDIV ¢ 2, $00.0, 1300.0, D.O, 2000.0, 3.0, 100.0, 5, 3, 10, 5, 2, 1)

Figure 5-24

El{llC) 120

PAFullToxt Provided by ERIC

r

LOG AND SEMI-LOG GRIDS

The earlier examples used only linear scaling and conversion. The modal sub-
routine SMXYYV can be used to alter the scaling mode such that scaling and
conversions will be made in the logarithmic mode.

The call statement for establishing the logarithmic mode is:
CALL SMXYV (MX, MY)

where MX and MY are scale mode indicators that designate whether the logarithmic
or linear mode is to be used:

If MX #0, MY#0LoginX, loginY
MX #0, MY #0 Log in X, linear in Y
MX = 0, MY # 0 Linear in X, log in Y

MX =0, MY = 0 Linear in both X and Y
(to restore linear mode)

At the beginning of each job, MX and MY are zero, so that linear scaling and
conversion result if SMXYV is never called.

If the programmer wants to generate a log or semi-log plot, he must call SMXYV
to set the logarithmic mode before using any ojMgs subroutines that involve
scaling or conversion.

Once the log-log or semi-log mode has been set by SMXYV and the scale factors
have been established, the functicn statements NXV and NYV can be used to convert
data coordinates into raster coordinates, in the same manner as shown for linear
scaling.

The contents of the scale mode indicators may be retrieved by using the following
statement:

CALL MSXYV (MXL, MYL)

The indicator for the X scale mode will be
stored in MXL, and for the Y scale mode in

MYL.

GRID1V uses this statement to determine what scale mode has been selected by the
programmer.

RESTRICTIONS ON LOGARITHMIC MODE

In general, once SMXYV has been called, the programmer can use any of the
routines to generate a logarithmic display. (One exception: DXDYV should not be
used to generate arguments for GRID1V in the direction in which logarithmic
scaling is being used.)

However, some of the GRID1V arguments are restricted in the logarithmic mode.
Following is a list of the 13 arguments, with notations as to the arguments affected
if the mode is logarithmic in the direction affected by each.

CALL GRID1V (L, XL, XR, YB, YT, DX, DY,
+N, =M, I, +J, NX, NY)

L Controls margin calculations.
XL, XR Left and right limits of the grid. May not be negative or zero.
YB, YT Bottom and top limits of the grid. May not be negative or zero.

DX, DY Should be set to 1.0. If less, only the cycle lines will be
displayed. If greater, no lines will be drawn.

N, M Will be ignored; however, an argument must be present. A v
negative sign on N or M will force the grid to the square. .

I, J Will be ignored; however, an argument must be present.
NX, NY Number of characters to be displayed in the labels.

Generally, line labels will be placed only at the cycle lines. If, however, the grid
spans less than one complete cycle, each grid line will be labeled.

N more than 10 log cycles are permitted in the GRID1V system.

Examples. Figure 5-25 illustrates a plot that is logarithmic in both the X and Y
directions. Note the arguments for SMXYV and GRID1V in the coding.

Figure 5-26 illustrates a semi-log grid, with plotting of the data used in Figure 5-25.

5-36

ERIC v 128

Lo __-___

A |
I

10

' |

CALL SKXYV ¢ 1, I
cALL &mfDIV (1, 1.0, 30.0, 1.0, 31000.0, 1.0, 3.0, 1, 3, 3, 3, 2, &)
PCIMTS PLOTTED BY USING CALL POINTV ¢ K,¥, 1 § IN A LOOF

Figure 5-25

ERIC

Aruitoxt provided by Eic:

{
1000 4

[§ 4 [}

CaLL BSMXYVY (0, 1)
CALL DXDYVY ¢ 1, 1,0, 20.0, DX, K, !, NX, 32.0
CALL GR!DIV ¢ 8, 1.0, 20.0, 8.0, 10000.0, DX,

[} 10 12 14

+ IERR)

1.0, N, 8, 1, 1, NX, 3

Figure 5-26

5-38

BUILDING SPECIAL GRIDS: LINRV, NONLNV

@ Two of the lower-level modules employed by GRID1V are useful as building blocks
for building special grids. LINRV may be used to generate only the vertical portion
or only the horizontal portion of a linear grid. NONLNV can generate only the
vertical or only the horizontal portion of a log grid. See examples in Figure 5-27
and Figure 5-28.

In addition to gencrating the vertical and horizontal portions of a grid in separate
operations, these modules offer other special capabilities:

1. The programmer can control the length of the grid lines. For
example, the grid lines can be as short as '"time tics."

2. The programmer can exert greater control over the position of
line labels by specifying a label reference location.

~ 3. Selected grid lines can be emphasized and/or labeled in the same
way as with GRID1V.

4. DXDYV can be used with LINRV in much the same way it is used with
GRID1V.

ny Certain subprograms must be executed prior to the use of LINRV or NONLNV.
The frame must have been advanced, and XSCALV and/or YSCALV must have
established scale factors. If a change in scale mode is required, SMXYV must

have been called.

o 131

The call statement for using LINRV to generate a vertical grid is

CALL LINRV (1, LYREFR, IYMIN, IYMAX, XL, XR,
DX, N, I, +NX, IW)

For a horizontal grid, the statement is

CALL LINRV (2, LXREFR, IXMIN, IXMAX, YB, YT,
DY, M, J, £NY, IH)

LYREFR Label reference locations.

LXREFR For a vertical grid, LYREFR is the Y raster
coordinate that will be used to position the labels
of the vertical grid lines. The X raster coordinate
will vary, and will be computed by the subprogram.

For a horizontal grid, LXREFR is the X raster
coordinate that will be used to position the labels

of the horizontal grid lines. The Y raster coordinates
will vary, and will be computed by the subprogram.

The character dimensions, IW and IH (below), should

be considered in assigning LYREFR and LXREFR.

For example, LYREFR should be chosen to allow at -
least one character height (IH) below the origin of '
vertical grid lines (IYMIN). LXREFR should be a

raster position that is at least IW* (NY + 1) raster

counts to the left of the origin of the horizontal grid

lines (IXMIN). In both instances, some additional

space should be added to prevent overlapping.

If scientific labels are selected (-NX and/or -NY),
provisior ‘must be made for 7 additional label
characters in the computation of LXREFR. About
5 raster counts extra must be added to LYREFR
to allow for the raised exponeni.

NOTE: IW* (NY + 1) allows space for a sign u.

IYMIN, IYMAX Raster positions that determine the origin and end of

IXMIN, IXMAX each line. For a vertical grid, these integers are
raster counts in the Y direction. For a horizontal
grid, these integers are raster counts in the X
direction.

o ~5-40

Iw, IH The dimension to be allowed for each label character:
IW for the width, and IH for the height. Since LINRV
uses LABLYV to display the labels, and since the system
LABLYV uses PDP-10 characters, the dimensions
should be IW = 8 and IH =12 . (If the standard values
have not been altered, these values can be obtained by
calling SETCOV).

The remainder of the argumcnts have the same definitions given for these terms in
the discussion of GRID1V.

The vertical portion of a log grid can be generated by the statement

CALL NONLNV (1, LYREFR, IYMIN, IYMAX, XL, XR, DX,
N, I, NX, IW)

For a horizontal log grid, the statement is

CALL NONLNV (2, LXREFR, IXMIN, IXMAX, YB, YT, DY,
M, dJ, NY, IH)

The arguments XL, SR, DX, N, I, NX, and YB, YT, Y, M, J, NY have the same
definitions (and restrictions) given for these terms in the discussion of GRID1V for
the log mode. The remaining arguments have the definitiocns given for LINRV.

Figures 5-27 and 5-28 show examples of portions of grids created by LINRV and
NONLNYV, respectively.

CALL YSCaLY
CaLL LINKYV

1

{

15.0,

2,

s20,

sc

65 .0,
850,

10

20, 575)

023,

15.0,

63,0,

[11]

2.5,

2,

EXAMPLES OF UBE OF LINRY

(33

a, 2,12

raty

TALL

.0

50

}

40

X3CALY (48,0, ¢
LINRY ¢ 1, 313,

3.0,
533,

$0.
200,

S4a4

43.0;

3.0,

by

N

2,

.

Figure 5-27

134

5-42

TXANPLES OF USE OF NONLNY

i ! ' |
, [' ‘ CALL SNXYV € 1, D)
; : i CALL X8CALY (10,0, 100,0, S0, 344)
1 1
! i i . i ! CALL NONLNY (1, 518, 333, 900, 10,0, 100,0, 1.0, 1, 1, 3, 8
! . ' |
' P |1
) '

i I i i l
! ! '
| L AR
| i 1 1
! : ! | I
i * i I §

. M 1
. f i P
i H . 1 i
! ' .

N [}
: i |

IR
I . 1 1
! A 1

! | | !

! | i ’ ’ f

1
! i | |

10
o7 R
-
CALL sWxYvy (0, 1)
CALL ¥Y8CALY t 1,0, 10,0, 20, 373) ——
CALL NONLNV ¢ 2, 520, %50, 1023, 1.0, 10.0, 1.0, 1, 1, 2, 8)
1

Figure 5-28

ERIC 135

AXIS LINES: XAXISV, YAXISV

Axis lines XAXISV, YAXISV enable the programmer to use the axis line feature

of the DEC 340 to generate horizontal or vertical lines. Horizontal axis lines
started at a specified raster position will be swept to the right to the specified X
stop point in raster count. Vertical axis lines started at a specified raster position
will be swept upwarde to the specified Y stop point in raster count. The axis
generator will not sweep lines down or to the left; therefore, the program auto-
matically interchanges the coordinates if it is required in order not to stop the DEC
340 . If no stop point is given in the parameter list, the axis will be swept to the

right margin or the top margin .«
The call statement for sweeping a horizontal line is:
CALL XAXISV (KX, IY)
or CALL XAXISV (IX, IY, NSTPT)
IX, IY The fixed point raster coordinates of the origin of the line.
IX may have a value from 0 to 959, while 1Y may have a
value from 0 to 959.
NSTPT The fixed point X coordinate of the stop point.
For a vertical line, the statement is:
CALL YAXISV (KX, IY)
or CALL YAXISV (IX, IY, NSTPT)
IX, IY The fixed point raster coordinates of the origin of the line.
IX may have a value from 0 to 959, while IY may have a

value from 0 to 959.

NSTPT The fixed point Y coordinate of the stop point.

5-44

136

Section VI

SCALING AND CONVERSION

In earlier sections, scaling and conversion problems have been left to the routine
GRID1V. However, much of the actual computation is done in lower-level modules.
This section describes these and some associated modules thai nrovide additional
tools for some scaling and conversion problems.

The descriptions may also be useful in clarifying the operation of higher-level routines.
For example, GRID1V uses XSCALV, YSCALYV as a lower-level routine to do scaling.
Consequently, the comments in this section concerning scaling and conversion equations,
scale factors, and retrieving and resetting scale factors also apply when the programmer
uses GRID1V to control scaling.

Methods of operation in both the linear and nonlinear modes are discussed. The non-

linear mode built into the system is the logarithmic mode, but the possibility of sub-
stitution of other nonlinear modes is mentioned.

BASIC SCALING SUBPROGRAMS: XSCALV, YSCALV

XSCALV, YSCALV will compute the scale factors for a specified display and store
them in an internal table for later use by those functions which convert data. The
calling statements are:

CALL XSCALV (XL, XR, ML, MR)
CALL YSCALV (YB, YT, MB, MT)

XL, XR Floating point values of X for the leftmost and rightmost
limits of the scaled plotting area.

ML, MR The amount of margin space to be reserved to the left and
right of the scaled area, >xpressed in raster counts (fixed
point integers).

YB, YT Floating point values of Y for the bottom and top limits of
the scaled plotting area.

MB, MT The amount of margin space to be reserved below and above
the scaled area, expressed in raster counts (fixed point
integers).

XSCALV, YSCALV contains a test for nonlinear mode. If this mode is indicated, XL,

XR and/or YB, YT will be transformed before the scale factors are computed by the
basic scaling equations.

Example

Figure 6-1 illustrates the relationship of the arguments. The margin specifications
are: ML =170, MR = 192, MB = 340, MT = 128,

jm

MB

Figure 6-1

XSCALV will assign XL to raster location IX = 170, and XR to raster location IX = 831
(i.e., 1023 - 192). YSCALYV will assign YB to raster location IY = 340, and YT to
raster location IY = 895 (i.e., 1023 - 128). The scaled area will then be the rectangle
from IX = 170 to IX = 831, and from IY = 340 to IY = 895.

BASIC SCALING EQUATIONS

In the following equations, "A" and "B" represent the scale factors computed and
stored by XSCALV, and "C" and "D" are the factors computzd and stored by YSCALV.
(Since the computation is done in floating point arithmetic, the floating point variable

names FML, FMR, FMB, and FMT are used to represent the floating point equivalents
of the margin values ML, MR, MB, and MT.)

D A (1023.- FMR) - FML I
XR - XL

B = FML - A*XL I
C = (1023. - FMT) - FMB I
YT - YB

D =FMB - C*YB v

CONVERSION OF DATA: NXV, NYV, IXV, IYV

Four function subprograms, NXV, NYV, IXV, and IYV, are provided to convert data
coordinates into raster coordinates. The argument for each of the functions must he
a floating point quantity; the result will be an integer quantity.

The following FORTRAN statements show how these functions may be used to convert
data coordinates X (or Y) into raster coordinates IX (or IY):

IX = NXV(X)

IY = NYV(Y)

IX = IXV(X)

IY =TYV(Y)
These four functions are similar in that they all convert data by means of the basic
equations for data conversion discussed below. They are dissimilar in the way they
handle off-scale data (that is, data which falls outside the limits XL, XR or YB, YT.)
The functions NXV and NYV check for off-scale cata values. The result IX (or IY) will
be set to zero if the argument X (or Y) is outside the limits that were used to establish

the scale. In addition, an error indication is set, as discussed under Off-Scale Error
Detection,

2 The functions IXV and IYV do not test for off-scale data values. The resulting position
[can be outside the plotting area, or even outside the frame, but the value will be properly
1 scaled relative to the plotting area. (However, no test is made for the possibility that

the result is greater than 131,071, integer bits above the 17th will be lost.)

Figure 6-2 illustrates how error testing of the results of NXV, NYV can be used to by-
pass plotting of points that are off-scale. NXV and NYV were used to convert the points
along the curve into raster positions, and LINEV was employed to connect the points.
Since the results of NXV and NYV were tested for zeros, and plotting was by-passed
whenever a point was off-scale, the curve stopped at the top and right limits of the
scaled area (outlined).

In Figure 6-3 two sine curves are shown, one plotted after using NXV, NYV to do the
conversion, and the other after IXV, IYV were used. As in Figure 6-2, LINEV was
used to connect the points. NO ERROR TESTS WERE MADE.

The lower curve shows the line going to zero when off-scale values were encountered
by NXV, NYV. Note that this curve drops to the bottom of the frame (IY = 0) when
values that were off-scale in Y were encountered. Also note that the off-scale initial
and last values of X caused the curve to start and end at the left edge of the frame
(IX = 0).

The higher curve was drawn after IXV, IYV were used to convert the points. The curve
continued past the boundaries of the scaled area when off-scale values were encountered.
(When IXV, IYV are used, the programmer must decide what action should be taken
when the result of IXV and/or IYV is < 0 or > 1023.)

All four functions test for nonlinear mode. If indicated, X (or Y) will be transformed
before it is converted by one of the basic conversion equations.

BASIC CONVERSION EQUATIONS

The following equations show how the conversion functions convert data coordinates
X and Y into raster coordinates IX and IY:

IX=A*X+B
IY=C*Y +D

The scale factors A, B, C, and D are those derived from the equations I, II, II, and
Iv.

Generally speaking, the programmer should use the conversion functions rather than
writing statements of his own containing these equations. The functions offer the

6-4

140

N

VML OF NXV, NYV o1TH CRROR YEBTING

—

Figure 6-2

UMK OF Nxv, WYV, Ixv, 1YV WITHOUT ERROR TERTING

T~

/ N

Figure 6-3

following advantages:
a.. They have direct access to the internal table in which the scale factore
A, B, C, and D are stored.

b. They check the scale mode, and use a nonlinear conversion if that mode
is indicated.

c. NXV, NYV contain a test for off-scale points.

If it i{s ever necessary to use these equations directly, the programmer can retrieve
the scale factors (A, B, C, D) by employing the routine SCLSAV.

INVERSE CONVERSION UXV, UYV

The functions UXV, UYV allow the programmer to obtain the coordinates of a specified
raster location in terms of his data. The following statements show how these functions
may be used:

X = UXV (IX)
Y = UYV (IY)

Although UXV, UYV represent the inverse of IX = IXV (X) and IY =IYV (Y), the results
are approximate because truncation occurs in the IXV and IYV functions).

NOTE

UXV, UYV CANNOT BE USED
IN THE NONLINEAR MODE.

The equations used by UXV, UYV are the inverse of the equations for data conversion:

(The computation is performed in floating point arithmetic.)

6-6

142

#

RETRIEVAL OF SCALING INFORMATION: SCLSAV

' The subroutine SCLSAV will retrieve scale factors and other scaling information from
an internal table and store them in an array named by the programmer. Although
SCLSAV makes scaling information available for special-purpose conversions, certain
limit tests, etc., its principal value is that it permits saving scaling information from
one program link to another. When a new link is entered, another routine RESCLYV,
can be called to restore the scaling information in the internal table, where it is
accessible to NXV, NYV, IXV, or IYV.

The calling statement to retrieve the scaling information is:

CALL SCLSAV (R)

R The name of a ten-cell array, named and dimensioned by the
programmer.

The storage locations in the block of cells, R, are assigned as follows:

R(10) Minimum IY
R(9) Minimum IX
- R(8) Maximum IY
R(7) Maximum IX
R(6) D
R(5) B Scale factors
R(4) C
R(3) A
R(2) Scale mode indicator for Y
R(1) Scale mode indicator for X

RESETTING SCALING INFORMATION: RESCLV

If the scaling information has been stored in COMMON by SCLSAV, it can be reset
into the internal table when a new chain link is entered. The statement is:

CALL RESCLV(R)

where R is the ten-cell array described under SCLSAV.

NONLINEAR SCALING AND CONVERSION

The only nonlinear capability built into the system is logarithmic scale mode, used in
connection with log grids. However, the system design allows the programmer to in-
corporate some special nonlinear scale mode, by the substitution of one module of his
own. For this reason, the more inclusive term, 'nonlinear, " is used in the following
discussion, instead of "logarithmic."

LINEAR-NONLINEAR SCALE MODE INDICATORS: SMXYV, MSXYV

The subprogram SMXYV allows the programmer to set scale mode indicators. It
must be called if nonlinear scaling is desired. These indicators are tested within
other subprogiams (GRID1V, IXV, IYV, NXV, NYV, XSCALV, YSCALV). If non-
linear mode is indicated, additional steps will be taken to handle the selected mode.
The programmer may also retrieve these indicators, using the subprogram MSXYV.

The statement which sets the scale mode indicators is:
CALL SMXYV (MX, MY)

MX# 0, MY# 0 X nonlinear,
Y nonlinear

MX #0, MY #0 X nonlinear,

Y linear
MX =0, MY #0 X linear, Y nonlinear
MX =0, MY =0 X linear, Y linear

To reset the indicators for linear-linear, use CALL SMXYV (0,0). If SMXYV is
never called, the scale mode will be linear in X and in Y, and the internal scale mode

indicators will be set as if CALL SMXYV (0, 0) had been executed.
For chain jobs, note that the values of MX and MY do not carry over from link to link.

If a scale mode other than linear-linear is desired, it will be necessary to restate the
SMXYV statement in each chain link.

The following statement will retrieve the scale mode indicators for testing:

CALL MSXYV (MXL, MYL)

MXL, MYL Locations in which the quantities furnished as arguments
in the last SMXYV statement will be stored.

NONLINEAR TRANSFORMATION: XMODV, YMODV

The scaling and conversion equations shown under number conversion apply not only
to the linezr mode, but also to the nonlinear mode if transformed arguments are used.
The functions XMODV, YMODV are provided to perform such transformation; they
can be used in statements of the following type:

XPRIME = XMODV (X)
YPRIME = YMODV(Y) .

The scaling and conversion subprograms (XSCALV, YSCALV, IXV, IYV, NXV, NYV)
test the scale mode indicators to see if they have been set to nonlinear mode by a call
SMXYV. If nonlinear mode is indicated, each of these subprograms will use XMODV
(or YMODYV) to perform a nonlinear transformation on X (orY) before the remainder

of the scaling or conversion takes place. Since the XMODV, YMODV functions in the
system compute the log of X or Y, the system nonlinear mode is synonymous with log

mode.

For a problem requiring special non’inear transformation, the programmer can sub-
stitute subprograms of his own named XMODV and YMODV, with one argument and one
result. Since the system XMODV and YMODV are physically contained in one sub-
program, both must be replaced if a substitution is made for either. Obviously, such
substitute functions must meet the nonlinear scaling and conversion requirements of
the entire program (or chain link), since they will replace the system functions.

6-9

145

System subprograms that use XMODV and YMODV (either directly or indirectly) are:
GRID1V, IXV, IYV, LINRV. NONLNV, NXV, NYV, XSCALV, YSCALV, APLOTV,
POINTV.

WARNING: GRID1V WAS DESIGNED ONLY FOR THE LINEAR, LOG, AND
SEMI-LOG OPTIONS. SUBSTITUTION OF A SPECIAL TRANS-
FORMATION FUNCTION MAY CAUSE UNEXPECTED DIFFICUL-
TIES IF USED BY GRID1V.

OFF-SCALE ERROR DETECTION

Whenever there is a possibility that off-scale data points might be encountered, error
tests should be made by the programmer. For example, APLOTV sets an error
indicator which should be tested. A zero result from NXV or NYV nearly always
indicates an error; a test should be made for this condition.

There are additional situations which demand special error detection procedures. For
one thing, if no left and/or bottom margin space is reserved, the conversion of XL and/
or YB can produce a legitimate zero result from NXV, NYV. More important, the
programmer may be using NXV or NYV indirectly, via other modules, and thus be un-
able to test the results. For these reasons, additional subprograms are provided for
detailed analysis of conversion errors resulting from off-scale points.

-

Keep in mind that the special procedures which follow are designed for unusual situations,
in which normal error testing does not suffice.

SET CONVERSION ERROR INDICATORS: SCERRV

Two internal cells are used by NXV and NYV to store indications of successful or un-
successful data conversion. The subroutine SCERRV allows the programmer to assign
two cells which NXV, NYV will use in place of the internal error cells. In this way,
the programmer can name error indicator locations that are accessible to his program.
The call statement is:

CALL SCERRV (KX, KY) .

When NXV converts a quantity successfully, it will place a "0" in KX; when unsuccessful,
it will store a '"1" in KX. NYV will use the cell KY in the same way. The cells named
will be used in each subsequent execution of NXV, NYV (including execution via other
subprograms) until new cells are named by another call to SCERRV (or the internal

cells are reset at the beginning of a new link of a chain job). If possible, tests of these

error cells should be made as soon after execution of NXV, NYV as possible, to avoid
any possibility that they might be altered by subsequent executions of NXV, NYV.

The following practical examples show how SCERRV can provide error indicator cells
in connection with POINTV. Since POINTV uses NXV and NYV only once, the named
error cells will still contain indications of off-scale errors when control is returned
from POINTYV to the calling program. (The examples assume that the scale factors
have already been established.)

Example 1

CALL SCERRV (KX, KY)

DO300I=1, N

CALL POINTV (X, Y, NS)

IF (KX*KY) 700, 300, 700 Test for non-zero KX and/or KY

300 CONTINUE

700 CALL DUMP Dump when an off-scale point is
encountered

Q 6-11

147

Example 2

CALL SCERRV (KX, KY)

Ml

1]
o

M2

1]
o

DO 300I=1, N
CALL POINTV (X, Y, NS)
M1 = M1 + KX

300 M2 = M2 +KY

bt et

In Example 2, M1 and M2 will contain the total number of points that are off-scale.
The contents of these locations may be printed out at the end of the job or after all
points have been plotted on each frame.

SAVING AND RESETTING ERROR INDICATOR CELLS: SERSAV, SERREV

As has been pointed out, the locations assigned by SCERRV will be used as error
indicator cells until new ones are named (or a new link of a chain job is loaded). As

a result, subsequent executions of NXV, NYV, whether on the same level or on a lower
or higher one, will alter the contents of the error cells (setting them to 1 for an un-
sucessful conversion, to 0 for a successful conversion).

Two problems can occur. The obvious one is that indications of error may be masked
by a subsequent execution of NXV, NYV. This can usually be avoided if the programmer

voud

ERIC 148

completes error tests before there is any possibility that the contents of the error cells
might be changed.

The less obvious problem is that the error cells named in one level of a program will
not be accessible for error testing in other levels unless special action is taken. One
way to solve this problem is to carry the error cell names in the call statements of the
subprograms, not always a desirable solution.

The modules SERSAV and SERREV, used in conjunction with SCERRV, offer a con-
venient means for avoiding these problems in multi-level jobs. The call statements

are:
CALL SERSAV (LOCX, LOCY)

This subprogram saves, in LOCX and LOCY, the locations of the cells that
are currently being used for off-scale indicators.

CALL SERREV (LCCX, LOCY)

This wubroutine resets the off-scale error cell locations that were saved by
SERSAV.

The arguments, LOCX and LOCY, must be variable names (either fixed or floating
point) which are not used for any other purpose between the executicn of SERSAV and

of SERREV.

6-13 l{l.'f)

§ection VII

PLOTTING

PLOTTING DATA

The 64 PDP-10 characters are shown in Figure 7-1 along with the selection
code for each.

Reduced to fundamentals, printing or plotting of one PDP-10 character in-
volves the selection and display of that character at a specified

position on the raster. (A basic subprogram, PLOTV, can be used to

select and display one character at a time.) The higher-level subprograms,
however, contain features that make each one suitable for a specialized
purpose: plotting, printing, or labeling. These specialized features

of the higher-level routines make them appear to be distinctly different
from each other.

POINT PLOTTING SUBPROGRAMS

Since point plotting usually involves the scaled representation of a
physical phenomonon, most point plotting subprograms accept physical
data coordinates for position information. During execution of these
subprograms, the data coordinates are converted into raster coordinates.
Scale factors must have been established for the plotting routines to
use in making these conversions; this requirement can be satisfied by a
prior entry to GRID1V.

Scale factors are not normally saved from link to link in a chain job.
Consequently, plotting should be done within the link in which scale
factors are computed.

PLOTTING AN ARRAY: APLOTV

APLOTV was designed for situations in which a large number of X values
are stored in one array and and the corresponding Y values are stored
. in another array. It is possible to plot the entire set of data with
one entry to APLOTV. If desired, only a portion of the data can be
plotted.

[ON N SO I o)

ool Ne W, I SIS SN o

Space

-
-

+ %\ -~ 4N oC &5 An

OO~ UN-PUHNNDE O

DV Il A we o

PDP-10 STANDARD CHARACTERS

SUGGESTED PLOTTING CHARACTERS

Figure 7-1

151"

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.

PN ESOHNZBOYOZ 2RO~ IO moNw> o

>

It is also possible to use different PDP-10 characters as symbols to identify
curves, The programmer furnishes a table (of one or more PDP-10 charac-
ters) that will be selected cyclically, '

APLOTV also keeps a tally of the number of off-scale points encountered.

The calling statement is:

CALL APLOTV (N, XARRAY, YARRAY, JX, JY, #NC, MARKPT, IERR)

N Controls the number of points to be plotted. N is actually the
number of points if all the data points in the arrays are to be
plotted in succession, The value of N may be computed by
letting K in the following formulas equal the number of points
to be plotted:

N = K*JX or N = K*JY, whichever is larger.

Usually, N should be positive, to indicate that the data arrays
are in normal FORTRAN order of storage. However, if the
arrays are in increasing order of storage, N should be negative.

XARRAY Normally, the names of the arrays of floating point data to be
YARRAY plotted. Since these arguments must name the locations of
the data coordinates of the first point to be plotted, subscripts
may be necessary. Both arrays must be in the same order
of storage.

JX, JY Fixed point positive integers giving the increments to be
added to the subscripts of XARRAY and YARRAY as each
point is plotted.

NC The number of characters in the array MRKPT to be used as
plotting symbols (usually the size of the array MRKPT).
Positive NC indicates that MRKPT is a normal FORTRAN
array. Negative NC shows that MRKPT is stored in increasing
locations in core,

MRKPT The array that contains the plotting
character(s) to be used, These will be used cyclically, with

the first one being used again after the NCth one has been used,

To set up this information when only one character is to be
used, the argument can be one of the following:

7-3

154

a. A Hollerith argument for one FORTRAN character, as

"1HO. "
b . The name of a location containingan '0" | as "MRKPT."
& ., Anarray read in by the A format, one character to a

location, Such an array is not restricted to integer-type
names; it could be called PTMRK, for example, if the
contents are not used in a computation,

IERR The name of an error location supplied by the programmer.
Any point that falls outside the grid drawn by GRID1V will not
be plotted. Instead, a count of such points will be stored in
IERR.

APLOTYV plots only one character per point, If a center dot is desired, APLOTV
may be repeated, using the plotting dot as the symbol. The use of APLOTYV is
illustrated by the Figures 7-2 and 7-3.

In Figure 7-2, it is assumed that the data are stored in two arrays: X(l), X(2), ..
X(25), and Y(1), Y(2), ..., Y(25). A prior entry was made to GRID1V, using the
statement: '

A

CALL GRID1V (1, 0.0, 14,0, 0.0, 180.0, 0.2, 5.0, 5, 4, 10, 8, 3, 3)

Note that the X and Y limits cover the range of the data to be plotted. Also, since
GRID1V was entered first, the necessary scale factors have been established for
APLOTV, /The calling statement of APLOTYV for this example is the following:

DATA 1L BTORED x1,X2,...X23 AMD Yi1,v2,...v23
'

_qu HH 11 JN
4. 4- r. 4 p 4 4-1 —4 4
—%—1---44.-4[-»-4 44444 .LN_ ! MT ol 191 1° 1L °
180 -l » o
-t 1t 4t —4L - Tt g E 4
Ayl _#FJ _1, L _+J L L
—4 44— 4 Y U D 0 W P G, _qqr_T L) 4 4.
t B
A1 4 - 4
) gr-ﬂ%w il
100 c——‘ BEOAEI 1
1 4) N
I |
J I
P .
i
4 L
80
-H
. _1, - 4_*_‘ -T—l
40 i
A]
)
! .
o 1T |
] § 4 ¢ . 10,

f . f
CALL emID2Iv (1, 0,0, 4.0, 0,0, 180.0, 0.2, 8,0, 5, 4, 10, 8, 3, %

CALL APLOTY (28, X, Y, 1, i, 1,

38, tERR)

CALL aPLCTY (25, X, Y, &, 1, 1, 1HO, lERR)

Figure 7-2

ta,

XA ARRAY 18 STORED X1,X2,...X10 YA ARRAY 18 BTORED A1 ,AR,...A10 81,B2,...810 C1,C2,...C10
' PTHRK COMTAING O,X,AND & LOADED UNDER CONTROL OF FORMAT (3al)

100
' i 1
!
+- - 1=
(1]
— —f e —
NI S S A - L . s N
- i
b 4 — s -—
I OSSN N (U .
I DS I |
0
-
—d— -
»
| - - — X
40 e
K
X
h S
X .
[] Q G
1 X Q
[+]
[X Q
2 o
I S X
Q
X Q
Q
k-]
. 1

e s 1D 13 20 t 13

DO s240 I=x3,10
1240 CaALL APLOTY (30, XA(1), YA(I), O, 30, 3, PTMRK, 1ERR)

Figure 7-3

Q

ERIC

Aruitoxt provided by Eic:

CALL APLOTV @5, X, Y, 1, 1, 1, XT, IERR)
or CALL APLOTV (25, X, Y, 1, 1, 1, 1HO, IERR)

N =25 The array size, 25 in this case, is equivalent to the number of
points to be plotted. This can only be true when all points in
each array are to be plotted.

X, Y Names of the X and Y arrays (properly dimensioned).

JX =1 Since every X versus Y is to be plotted, the fourth and fifth
JY =1 arguments are set to 1.

NC =1 Only one plotting symbol is to be used; hence the sixth argu-

ment is set to 1.

MARKPT In the two calling sequences shown, one specifies the plotting
symbol by a symbol ; the other uses a Hollerith argument,

Figure 7-3 shows one way that APLOTV might be used to plot a family of curves.
The example assumes that the XA and YA arrays are properly dimensioned. The
data is stored XA(1), XA(2), . . ., XA(10); corresponding Y's for the threec curves
are stored in the array YA in the order A(1), A2), . . ., A(10), B(1), B2), . . .,
B(10), C(1), C@), . . ., C(10). PTMRK is the name of a three~-word array which
was loaded as the BCD equivalents (read in by the A format) of the characters O, X,

and *,

In the example, A(), B(I), and C(I) were plotted versus X(I) each time APLOTV was
entered. A DO loop was used to proceed to the next value of X, so that a total of 10
entries were made to APLOTV. The coding was:

DO 12401=1,10
1240 CALL APLOTV (30, XA(I), YA()), 0, 10, 3, PTMRK, IERR)
Note that the plotting symbols are used cyclically, returning to the first one when

the array PTMRK is exhausted. If desired, a center plotting dot can be superimposed
upon the plotting symbol by repeating the entries to APLOTV with the plotting dot

used for PTMRK.

PLOTTING INDIVIDUAL DATA POINTS: POINTV

For each entry to POINTV, one symbol is plotted (with or without a center dot). The
coordinates may be specified as floating point data, which POINTV will convert into
raster coordinates. Scale factors must have been established; this can be ac-
complished by a prior entry to GRID1V,

7

'
~

The calling statement is:

CALL POINTV(X,Y,+NS,ANY)

WHERE X,Y are coordinates of the point to be plotted,
stated as floating point data values.

+NS If NS is minus one, there will be no center
dot plotted. If NS is positive one, a
center dot will appear.

ANY any character to be displayed at the point
pointed at by POINTV.

Points outside the scaled area will not be plotted. Until the programmer
learns how to detect off-scale points, he should be sure that the data
coordinates will fall within the limit of the scaled area.

An alternate version of this subprogram allows the programmer to specify
position information in raster coordinates. This is particularly useful
when the programmer wants to construct a legend in the margin, showing
the symbols used and their meaning. The alternate call statement is:

CALL POINTV(IX,IY,+NS,ANY)

Where IX, IY are raster coordinates of the point
to be plotted; fixed point.

+NS If NS is a minus two, there will be
no center dot plotted and the routine
will accept IX and IY as raster co-
ordinates. If NS is a positive two
a center dot will appear and IX and
IY will be accepted as raster coordi-
na*cs.

ANY Any character to be displayed at the
point pointed at by POINIV.

BASIC PLOT-PRINT SUBPROGRAM: PLOTV

Any of 64 PDP-10 characters can be displayed at a specified raster position
by using PLOTV, the basic subprogram used as a lower-level modul- »>f other

routines.

However, the programmer may find it useful when other plotting or printing sub-
programs are not suitable. The call statement is:

CALL PLOTV(IX,IY,ANY)
Where IX,IY are fixed point raster coordinates at which the
character will be displayed.

ANY is any desired character. (See Figure 7-1).

7-9

153

TRE SAAL NATA PLOTTED USINE POINTY INSTEAD OF APLOTY

100 T
T l
(NS S A U A N
AN ISP TN QU E U —t
— - —‘“"“'%—"“—
.._-_I.__..,....,._ﬂ.____ﬁ - - - ' P
1 i
N B A | B
S + J % g
el it EEE B SR o - -
N Y - — I
80 ! _l _1‘
T —
-) i r
0
— Q
L- X
i1
40 G
X
X
-] 9
X
2 X_ 9
”
R [
[
x)
° —
N [N
H 1
. 1 |
[]] 10 18 20 [11

Q

ERIC

Aruitoxt provided by Eic:

Figure 7-5

7-10

159

LINE GENERATION: LINEV

IINEV connects two points by a straight line composed of vectors, joined end-to-end.
The arguments for LINEV, which specify the points to be connected, must be given
in raster counts. As described above, the programmer may connect two data points
by a line if he first uses the functions NXV and NYV to convert the data coordinates
into raster coordinates. (If there is a possibility that the data points being converted
may be off-scale, the conversion results should be tested for errors before ILINEV
is executed.) The calling statement is:

CALL LINEV (IX1, IY1, IX2, IY2)
X1, IY1 Raster coordinates of one end point,
IX2, IY2 Raster coordinates of the other end point.
Figure 7-6 contains an illustration of the use of LINEV.

LINE2V is used to draw a line from a fixed point in some direction specified by DX
and DY. The calling sequence is:

CALL LINE2V (IX1, IY1, IDX, IDY)
IX1, IY1 Raster coordinates of starting point.

IDX, IDY Number of raster points that the line is to be extended in the
X and Y directions. DX and DY will be handled modulo 64.

In either LINEV or LINE2V, a floating point data value may be utilized,if scaling
has been established,by utilizing the function subprograms NXV, NYV as follows:

CALL LINEV (NXV(X1), NYV(Y1), NXV(X2), NYV(Y2))

Figure 7-7 is an example of the use of LINE2V, Each line in the figure is produced
by incrementing IDX or IDY.

THICKRNERS: 1 .95

]
T

T
€
"
»
[4
L]
A
T
v
L
E

10 12

TIinE (SEC

Figure 7-6

CALL XSCALV (-511.0, 512.0, 0, 0)
CALL YSCALV (-511.0, 512.0, 0, 0)

L Z0 = 0.0
- zl =4.0
Z2 =4.0

CALL POINTV (Z0, Z0, -16)

DO5 I=1, 63

INC =1

JNC = -INC

CALL LINE2V (NXV (z1), NYV (Z0), 0, INC)
CALL LINE2V (NXV (Z2), NYV (20), 0, JNC)

' CALL LINE2Y (NXV (Z0), NYV (Z1), INC, 0)
CALL LINE2V (NXV (20), NYV (Z2), INC, 0)
Z1 =721 +3.0
5 Z2=Z7Z2-3.0
Ny ”1,,:ﬂ“!q||1|ln‘i!1!§}.?.' !
.i--.mmum-..,\.------g--"""""’ R
Figure 7-7
v
7

7-13

o 162

Section VII

e e

TITLING AND LABELING

TITLING AND LABELING SUBPROGRAMS

The printing and labeling subprograms enable the programmer to affix titles J
and other identifying information to a picture. Three subprograms of this
type will be introduced: PRINTV, APRNTV, and LABLV. Other means for
printing and labeling will be given in the section on printing.

For many applications, the positions of titles and labels must be independent
of the scale. Therefore, printing and labeling subprograms accept position
information in raster coordinates. This contrasts with the plotting routines,
which includes facilities for the conversion of data into raster counts.

Titles or labels may be positioned relative to data. The conversion functions
discussed later can be employed to find raster coordinates from floating
point location data.

HORIZONTAL TITLES: PRINTV

This subprogram allows the programmer to display horizontal titles composed
of characters. The call statement provides for printing characters read in
by A- type format. The call statement is:

CALL PRINTV(N,ASCTEX,IX,IY)
N The number of characters to be printed.

ASCTEX An array containing the (A- type format) text to be
printed.

8-1

« 163

IX, IY The raster coordinates for the center of the
first character.

VERTICAL TITLES: APRINTV

This subprogram can be used to display vertical titles composed of
PDP-10 characters. Each individual character will be upright. The
call statement provides for printing characters read in Dy the A
format or characters stored as a Hollerith argument. Since APRINTV
prints text or character, the spacing of the characters is controlled
by arguments specified by the programmer.

The call statement for APRINTV is:

CALL APRINTV (INCRX, INCRY, N, ASCIXT, IX, IY)

INCRX Increments used to space the

INCRY characters in the X or Y.
direction, given in raster
counts. For vertical titles,
INCRX will be zero and INCRY
should have a negative value.
(It is suggested that INCRY
fall in the range between -12
and -18 for vertical titles
in most applications).

The remaining arguments are as specified under PRINTV.

FIXED POINT LABELS: LABLV

LABLV was developed for GRID1V to employ in labeling grid lines, but will
prove helpful when the value of computed quantities must be printed. The
routine performs one chief task: it displays a floating point number at
the raster coordinates specified.

The calling statement of LABLV is:
CALL LABLV (D, IX, IY, NCHAR, NT, NDMAX)
D The floating point quantity to be printed.

The raster coordinates which will position
the first character of the label. Note

that this first character may be a leading
blank. If the quantity to be displayed is
negative, the minus sign will be displayed
one character space to the left of IX, IY.

Number of characters to be displayed, including
leading blanks and the decimal point, if any.
NGHAR is limited to 6 (or 7 if one of the
characters is the decimal point).

The number of times each character is to be
displayed (number of over-strikes). Normally
this should be 1, but 2 or more may be chosen
1f a darker label is desired.

Maximum decimal scale; i.e., maximum number of
characters to be displayed to the left of the
decimal point.

An integer quantity may be displayed by first changing it to floating
point form and then using LABLV.

An alternate form of LABLV may be used to display labels in scientific
notation. The call statement shown is used with the following changes.

NCHAR Number of significant figures to be displayed.
NGHAR may be less than or equal to 6. The
negative sign will result in the use of
scientific notation.

May be any fixed point quantity. Since the
right adjustment of these labels will not
be necessary, the value of NIMAX will be
ignored.

A

NGHAR will affect the format in the following ways:

NCHAR FORMAT
1 Y1x10+YY
2 Y. YX10+YY
3 Y. YYx10+YY
4 Y. YYYX10+YY
5 Y. YYYYX10+YY
6 Y. YYYYYX10+YY

Since the space required for these labels will be greater than that required
for the fixed point format, the programmer should allow NCHAR + 7 character
spaces in width and 1-1/2 spaces in height as a minimum; it may be necessary
to allow even more to avoid overlapping other images.

8-4

166

OLMGS 340 PRINTING: TX340

The purpose of this routine is
method of printing on the CRT.

The calling sequence 1is:

SECTION IX

PRINTING

to provide the programmer with a quick

CALL TX340 (A,NCHAR,NLINE,NCOL,IER)

where A = the array of character to be printed

NCHAR

NLINE

Number of lines.
NCOL = Number of columns
IER = 1 normal

2 Error

Number of characters.

O
i

167

SECTION X

MISCELLANEOUS ROUTINES

These routines are classified because they are never used directly by the
programmer; however, many may be used in other programs.

UNPACKING CHARACTERS: UNPACK

This subprogram is used as a low-level subprogram to unpack characters.
Characters in one vector are unpacked into a second vector one
character per word (A-type format compatible). The call statement
for UNPACK is:
CALL UNPACK (VEC,UVEC)
where:
VEC 1is a vector of characters (any length).
UVEC 1s a vector of length five, which will
contain the unpacked characters.

SETTING SYSTEM FLAGS: FLAGS

System error indicators may be set by the programmer while scaling data,
by calling FLAGS. Note it is not necessary for the programmer to scale
any data in this system; however this facility is available if the
programmer uses this option. The calling statement is:
CALL FLAGS(I,N)
where:
I is the value of the indicator.

N=0 set X indicator to I.

#0 set Y indicator to I.

DRAWING VECTORS: PLTW5

This subprogram is used to draw a vector from a fixed point in some
direction specified by IDELX and IDELY. The calling sequence is:

CALL PLTW5(IX1,IY1,IDELX,IDELY)

IX1,IY1 raster coordinates of starting point.
o~ IDELX,IDELY number of raster points that the line
- is to be extended in the X and Y

directions.
10-1

1645

DISPLAY PREMITIVES

These routines are described in reference [3].

PGEN(IX,IY, INTENSITY)
VGEN(IX,IY,INTENSITY)
TEXTP

PARMS (ISCALE, INTENSITY)

10-2

169

A

INDEX OF SUBROUTINES

SUBROUTINES PAGES
APLOTV 7-1
APRNTV 8-2
BIGV 3-1
BRITEV 3-1
CHARV 3-2
DXDYV 5-13
ERMRKV 5-26
FAINTV 3-1
GRIDIV 5-1
HOLDIV 5-18
HOLDOV 5-18
ITSCV 3-1
IXV 6-3
IV 6-3
KWKPLT 4-1
LABLV 8-4
LINEV 7-11
LINEZV 7-11
LINRV 5-37
MSXYV 5-35
NXV 6-3,8-7
NYV | 6-3,8-7
PDP340 4-1
PLOTV 7-9
POINTV 7-7
PRINTV 8-1
RESCLV - 6-8
SCERRV 6-9
SCLSAV 6-7
SERSAV 6-11
SERREV 6-11
SETCIV 5-16
10-3

170

SUBROUTINE

SETCOV
SEIMIV
SETMOV
SETSEV
SMALLV
SMXYV
TX340
UXv
UYv
XAXISV
XMODV
XSCALV
YAXISV
YMODV
YSCALV

PAGES

5-16
5-15
5-15
3-1
3-2
5-35
9-1
6-6
6-6
5-44
6-8
6-1
5-44
6-8
6-1

References
DEC - 10- LOVA-D, CHAIN, Digital tquipment Corporation, Maynard
Massachusetts, Feburary 8, 1969.

Stromberg- Carlson, Programmers' Reference Manual, Data Products,
San Diego, Calif., October 1964.

Lewis, Harry, Fortran-Lisp Display Routines,NIH, Division of
Computer Research and Technology, Bethesda, Maryland, April 1969.

Hill, Edward, A Proposed On-Line System For Modeling Networks,
N. 1. H. Division of Computer Research and Technology, Bethesda,
Maryland, Feburary 1969.

Lewis, Harry, Assembly Language For DEC 340 Display, NIH, Division of
Computer Research and Technology, Bethesda, Maryland, April 1969.

Adler, C., Sanford, 340 Display Programming Manual, Decus No. 7-13,
New York University's Department of Industrial Engineering and
Operations Research, Bronx, New York,

DEC - 10 - MTEO - D, Time-Sharing Monitors; Multi-programming Monitor
(10/50) Swapping Monitor (10/50), Digital Equipment Corporation, May-
nard, Massachusetts, November 1968.

**portions of this manual were printed with permission of the Stromberg
DatagraphiX, Inc.

10-5

172

o Tala e

s s oo

o
e

e e

B
e
........

........

TECHNICAL REPORT NO. 6

THE ON-LINE MODELING SYSTEM

PART Il

April 1871

mmsend L 4

US. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE

| ‘Public Health Service

173

National Institutes of Health

The Division of Computer Research and Téchnology, NIH, will
issue on an irregular basis technical documents which we believe
will be of particular interest to the biomedical community.

These reports will include detailed descriptions of relevant

computer programs and instructions in their use (as well as some

theoretical background), in hopes that interested scientists will
be encouraged to gain first-hand experience in applying them.

In some cases, such repor%s may serve as foci around which DCRT
will structure‘training courses to expand the kﬁowledge and

experience of NIH staff in applying computer science to problems

of research and management. Circulation of these reports within |

the biomedical commmity broadly is, of course, encouraged.

- A. W. Pratt, M.D., Director, DCRT

s

"17@éﬁﬁ

U.S. DEPARTMENT DF HEALTH,
EDUCATIDN & WELFARE

DFFICE DF EDUCATIDN

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

THE ON LINE MODELING SYSTEM

Part III. Programmers' Reference Manual

by
Edward Hill, Jr.

Laboratory of Applied Studies

Division of Computer Research and Technology
National Institutes of Health, Public Health Service

Department of Health Education and Welfare, Bethesda, Maryland 20014

Table of Contents

SECTION PAGE
I Introduction 1-1
Directories 1-2
System Generation 1-2
II Interpreter

Interpreting Commands: INTER 2-1
Storage Allocation: GETCOR 2-1
Task Allocation: INTERP 2-1
List String Interpreter: LISTT 2-2

File Name Deletions From System Directories:
DELEFL 2-2
Blank Vector: BLANKS 2-3
P List Mode: MMODE 2-3
- Device Characteristics: CHARD | 2-3
Find Address: GETADR 2-3
Block Transfer Data: TRANSF 2-4
Convert To Sixbit: CONVER 2-4
Look For Name: LOOK 2-5
Planting File Names: PLANT 2-5
Planting File Descriptions: PDESCR 2-6
Finding Space: TOP 2-6
Planting Names: PCHNAM 2-7
Planting Extensions: PCHEXT 2-7

Planting Properties: PCHPRO 2-7

SECTION
II

ITI

Check File Name Syntax: CHECKN
Continuation Indicator: FINISH
System Directory Lister: LISTER
Sixbit Device Names: CONDTA,CONMTA:
Packing Characters: PACK

Display

Rand Tablet Service Routine: GNF
Generalized Display: GENDIS
Generalized Rand Tablet Input: GENPUT
Creating A Generasl Grid: GRDVAL

Value Generation From Scaled Area:
VALUEX, VALUEY

Displaying Character Strings: TPAGE
Decision Box: YESNO,RECTAN

General Data Display: PDP342
Parameter Input On The Rand Tablet: XDATA
Hitting A Decision Box: FINHIT

Function Key INIT: EUNINI

Finding A Function Key Depression: KEYNUM
Turning Off Function Key Lights: LIGHTS
Closing Function Key Channcl: CLOFBX
Releasing Function Key Channels: RELFBX
FKLP Mode Program

ii

]??;?

PAGE
2-7

2-8
2-8
2-9

3-1
3-1

3-1

3-2
3-3
3-3
3-3
3-5
3-5

3-5

3-6

& 3-4

SECTION

v

o

Input-Output
Clear Dec Tape Directory: CLEAR,CCLEAR

Writing and Reading System Directories:
NTAD,DIRD

Reading an.! Writing Data On Dec Tape or
Disk: GETDD,SADA

Deleting Files From Dec Tape or Disk: CDEDAS
Renaming Files: RENAME,CRENA

Entering File Names In Dec Tape and Disk
Directories: ENTER '

Closing Channels: CLOSEC

Checking For a File In The Dec Tape and
Disk Directories: CHECKF

Writing and Reading Magnetic Tape
Directories: MTODIR,MI'IDIR

Pointer Routines: CDRBUF,NUMWDS
Allocating Buffers: BUFFER
Output: OUTI,OUT

Input: INI,GET

Magnetic Tape Operations: TAPE
Testing File Status Bits: STATUS

General Input, Output: IFILE,OFILE,IFILED,
OFILED

Releasing Channels: RELEAS

Writing and Reading System Directories
On Magnetic Tape: WRTDIR,REDDIR

Inputting and Outputting Data On Magnetic
Tape: GETF,SAVEM

iii

1738

PAGE

4-1

4-1

4-1
4-2
4-2

4-2
4-3

4-3

4-3
4-4
4-4
4-5
4-5
4-6
4-6

4-6
4-7

4-7

4-8

SECTION

Iv

Magnetic Tape CHAIN Files: CGZTF,CDIR,

CNTAP, CSAVEM, CDESCR , CDELE

Miscellaneous

Sleeping A Job: RESTIN
Login and Tape Assignments
Fortran Compile

Putting The OLMS On Disk
Building Chain Files
Running the OLMS

Index of Subroutines

References

iv

A7

PAGE

4-8

5-1
5-1
5-1
5-1
5-2
5-2
5-3 § 5-4
5-5 & 5-6

SECTION I

INTRODUCTION

The basic philosophy of the OLMS is the minimization of storage used

during the time when display is INITED, while at the same time keeping

the system flexibility under the control of the user.

This part is divided into four sections. The contents of the sections

are listed below:

SECTION II : A discussion of the routines used by the

interpreter for the command language.

SECTION III: The routines used to generalize the OLMGS

under INTER are discussed. Routines

which input data and graphical functions

using the RAND TABLET and Function Key

routines are discussed.

SECTION IV : The system I/0 is discussed in this section.

Reasons for writing I/0 are:

(1) To detect as many errors as possible

before an EXIT to the monitor.

(2) A magnetic tape directory system was

needed.

(3) The magnetic tape directory system

which existed, called FILER, had no

user level error returns that could

be handled before an EXIT to the

monitor.

1-1

- '{180

DIRECTORIES

The OIMS has two directories called PAGET and SLIBD. PAGET and XLIBD
are the system file and library directories respectively. In the present
configuration PAGET and XLIBD are set up for fifty files in each directory.
Each file has an associated file description of fifty characters. Each
directory is a total of 700 words. An example of the directories is given

in figure 1.

DESCRIPTION
NAME EXT PROP 50 CHARACTERS

PAGET

DESCRIPTION
NAME EXT PROP 50 CHARACTERS

XLIBD
FIGURE 1

SYSTEM GENERATION

A subsystem of this system can be generated with a few minor changes

in some of the routines associated with the interpreter. For example, a
user could get along with twenty or less files and no file description.
This saves 1360 words of storage. Clearly, this is a compromise between

generality, storage and processing time. Many subsystems can be developed

to fit the individual user's needs.

’.
hR——r

1-2

ERIC - 181

SECTION II

INTERPRETER

INTERPRETING COMMANDS: INTER

This routine interprets the command language. The string to be
interpreted must be in a common block called STRBUF.
The calling sequence is:
CALL INTER
No arguments are present since this routine is defined on a common
block.
STORAGE ALLOCATION: GETCOR

Storage is allocated by the interpreter by calling GETCOR.
The calling statement is:
CALL GETCOR(N, IER)
N = The amount of storage to allocate.

IER

1 The amount of storage asked for is not available.

0 The storage is allocated.
Storage is allocated in 1024-word blocks. Any details about how storage
is allocated can be found in reference (1).

TASK ALLOCATION: INTERP

After each task is complete in the OLMS this routine should be called
to return control to the OLMS. This call should be made at the point where

the user wishes to exit or return from his routine.

2-1

182

The calling statement is:
CALL INTERP(JCHDEV)
JCHDEV is the name for the device where the chaing are stored.
All modeling systems running under the OIMS must make this call in the,

instruction sequence. JCHDEV is a variable in a common block called SYSDDD.

LIST STRING INTERPRETER: LISTT

The 1ist commands are interpreted by a subinterpreter of INTER. LISTT
is used to give flexibility. A part of the interpreter may be a chain file.
This minimizes storage in case a user wants a system with a resident inter-
preter.

The calling statement 1is:

CALL LISTT

This routine assumes that the string is in a common block called STRBUF.

FILE NAME DELETIONS FROM SYSTEM DIRECTORIES: DELEFL

File names are deleted from the system directories using DELEFL. The
directory is determined by the state of the ITAMAS switch located in the
common block called COMSWI. The file name deleted is the name equal to
XNAME, the extension equal to EXT and the property equal to PROP located in
the common block called COMFIL. LOOK must be called before DELEFL to set
the IFOUND pointer.

The calling statement is:

CALL DELEFL
ITAMAS

0 Before call delete from PAGET.

ITAMAS = 1 Before call delete from XLIBD.

2-2

1843

BLANK VECTOR: BLANKS

This routine blanks a buiffer of five words. This buffer is used to
send characters to a name syntax checker. The buffer or vector is called
XPNAM and is located in a common block called PNAME.

The calling sequence is:

CALL BLANKS

LISTING MODE: MMODE

The OLMS has eight modes. This routine is defined on MMMODE. MMMODE
is the ‘system mode indicator. The mode indicator is located in the common
block called MODTAB.

The calling statement is:

CALL MMODE.

DEVICE CHARACTERISTICS: CHARD

This routine determines the physical characteristics associated with a
logical device. The DEVCHR UUO is used in this routine.
The calling sequence is:
CALL CHARD (DEVIC,IACL, IACR)
DEVIC A sixbit device name.
IACLL. The content of the left-half of the accumulator.
TIACR The content of the right-half of the accumulator.

Details about this routine can be found in reference (1).

FIND ADDRESS: GETADR

This routine returns the address of the variable in the first argument.

184"

The calling sequence 1is:
CALL GETADR(VAR,IRVAR) '
VAR Find the address of this variable.

IRVAR The address of the variable.

BLOCK TRANSFER DATA: TRANSF

This routine will block transfer data from the place pointed at by the
first argument to the place pointed at by the second argument.
The calling sequence is:
CALL TRANSF(IF,IT,N)
IF A link variable pointing to the place where the data
will be moved from in the transfer.
IT A link variable pointing to the place where the data
will be moved to in the transfer.
N One less than the number of words to be moved. .
The pointers can be found by using GETADR. Data-may be transfered in

the opposite direction by exchanging the link variables.

CONVERT TO SIXBIT: CONVER

This routine converts ASCII characters to SIXBIT characters.
The calling sequence is:
CALL CONVER (XNAME)
XNAME Contains the ASCII characters when the routine is

called and SIXBIT when the routirie returns.

2-4

185

LOOK FOR NAME: LOOK

This routine looks a’ the content of the system directories to determine
if a file is present. The directory is determined by the state of the ITAMAS
switch located in the common block called COMSWT. The file name looked for is
the name equal to XNAME, the extension equal to EXT and the property equal
to PROP locited in the common block called COMFIL. After the search is made
for the file the switch LOCATE in COMSWT is set to one if the file name is found;
otherwise, LOCATE is zero. If the file is found a pointer called IFOUND is set
to point to the location in the directory where the file name is located.
IFOUND is a pointer located in the common block called COMPNT.
The calling sequence is:
CALL LOOK
ITAMAS=0 Before call will look at PAGET.
ITAMAS=1 Before call will look at XLIBD.
LOCATE=0 After the return indicates the absence of the file name.
LOCATE=1 After the return indicates the presence of the file name.

IFOUND Pointer to the file name location.

PLANTING FILE NAMES: PLANT

This routine is used to plant file names in the system directories. The
directory 1is determined by the state of the ITAMAS switch located in the
common block called COMSWT. The file name planted is the name XNAME, the
extension EXT and the property PROP located in the common block called COMFIL.
This routine calls LOOK and TOP. If an error occurs an €rror message will be

written before the return.

The calling statement is:
CALL PLANT
ITAMAS=0 Before call plant in PAGET.

ITAMAS=1 Before call plant in XLIBD.

PLANTING FILE DESCRIPTIONS: PDESCR

This routine is used to plant file descriptions in the system directories.
The directory is determined by the state of the ITAMAS switch located in the
common block called COMSWT. A call to LOOK must be made before this routine
is called to set the IFOUND pointer.
The calling sequence is:
CALL PDESCR
ITAMAS=0 Before call plant in PAGET.
ITAMAS=1 Before call plant in XLIBED.
Any description to be planted must be in the DESVEC vector before the call
to the routine. DESVEC is a vector in the common block called COMDIR. A

description of fifty characters may be planted.

FINDING SPACE: TOP

This routine is used to find space in the system directories. The
directory is determined by the state of the ITAMAS switch located in the
common block called COMSWI. A check is made to see if the upper limits of the
directories are exceeded. The upper limits of the directories are IPAEND and
ILDEND lccated in the common block called COMPNT. If the upper limit is not

exceeded then ISPACE is set to point to the first empty location.

~

The calling statement is:

CALL TOP

ITAMAS=0 Before call find space in

ITAMAS=1 Before call find space in

PLANTING NAMES: PCHNAM

This routine is similar to PLANT.
The calling sequence is:

CALL PCHNAM

PLANTING EXTENSIONS: PCHEXT

This routine is similar to PLANT.
The calling sequence is:

CALL PCHEXT

PLANTING PROPERTIES: PCHPRO

This routine is similar to PLANT.
The calling sequence is:

CALL PCHPRO

CHECK FILE NAME SYNTAX: CHECKN

This routine checks the syntax of a five or
The name must be in Al type format. A switch called ITWITC is set to indicate an

error or correct name. LOCATT is set to the number of characters in the name.

Only the

Only the

Only the

PAGET.

XLBD.

file name is planted.

file extension is planted.

file property is planted.

less than five character name.

ITWITC and LOCATT are located in a common block called COMSWT.

The calling sequence is:

CALL CHECKN

ITWITC=0 After return name error.

ITWITC#0 Correct name.

184

LOCATT The number of characters in the name.
2-7

BLANKS should be called before the name is placed in the XPNAM buffer.

The name must be in XPNAM before calling CHECKN.

CONTINUATION INDICATOR: FINISH

This routine types CONTINUE after a command has been executed.

The calling sequence is:

CALL FINISH

SYSTEM DIRECTORY LISTER: LISTER

This routine lists the system directories. The directory is determined
by the state of the ITAMAS switch located in the common block called COMSWT.
To 1ist a single file name LOOK must be called to set the IFCUND pointer,
IPASS must be set to IFOUND, LOCATT must be set to IFOUND before calling LISTER.
To 1ist the whole directory IPASS must be set to one and LOCATT must be set
to zero before calling LISTER. IPASS is a variable in the common block called
COMPAS.

The calling sequence is:

CALL LISTER
ITAMAS=0 Before call 1ist PAGET.

ITAMAS=1 Before call 1list .LIBD.

SIXBIT DEVICE NAMES: CONDTA,CONMTA

These routines return SIXBIT device names.
The calling sequence for CONDTA is:
CALL CONDTA(N,DEVICE)
N 0< N< 6. Tc one less than a Dec tape device number.
DEVICE The returned SIXBIT device name.

The calling sequence for CONMIA is:

2-8

189.

! ‘%—/‘

CALL CONMTA (N,DEVICE)

If N=3 the device is DSK.

. DEVICE The returned SIXBIT device name.

PACKING CHARACTERS: PACK

PACK is used to pack characters from one in a word to five in a word.

The calling sequence 1is:
CALL PACK (TEST,XSTRIN,N)

TEST The word where the packed characters are stored.

XSTRIN A vector of the characters to be packed.

N 0< N< 5. Is the number of characteré.to pack in TEST.

2-9

190

N 0< Ng 3. Is one less than a Magnetic tape device number.

SECTION III

DISPLAY

RAND TABLET SERVICE ROUTINE: GNF

This is a routine that allows a user to INIT the RAND TABLET. Details

about this routine are found in reference (2).

GENERALIZED DISPLAY: GENDIS

This program operates the OLMGS in a general way using the RAND TABLET.

Details about this program can be found inPart I and Part II.

GENERALIZED RAND TABLET INPUT: GENPUT

This program uses the OLMGS and routines GRDVAL, VALUEY, VALUEX, TPAGE,
YESNO, RECTAN, XDATA and FINHIT to allow a generalized input graph using the

RAND TABLET. Details about this routine can be found inPart I and Part II.

CREATING A GENERAL GRID: GRDVAL

This routine creates a general grid from the data limits XL, XR, YB and
YT given as arguments.
The calling sequence is:

CALL GRDVAL (XL,XR,YB,YT,DC, ITEK, ISLAB, XLABEL , YLABEL)

XL,XR Left and right limits of the data area.
YB,YT Bottom and top limits of the data area.
DC The data area grid density. DC should never

be a value less than 3.0; values of 8.0 to

20.0 are recommended.

ITEK=0 No 1labels on axis.
#0 Label axis.
3-1

191

Standard labels.
#0 Scientific labels.

XLABEL A vector of fifty or less characters to be
placed on the X-axis in A5 format.
YLABEL A vector of fifty or less characters to be

placed on the Y-axis in A5 format.

VALUE GENERATION FROM SCALED AREA: VALUEX,VALUEY

These routines use an inverse mapping on the grid scale area to obtain
the data value of a raster coordinate. The coordinates are left in a buffer
by the RAND TABLET service routine. Details about the RAND TABLET service
routine can be found in reference (5).

The calling sequence for VALUEX is:

CALL VALUEX(XL,XR,ICOR,VALUE)

XL,XR Left and right limits of the data area.
ICOR X-axis coordinate.
VALUE The value of the scaled data area associated with

the X-axis at this coordinate.
The calling sequence for VALUEY is:
CALL VALUEY (YB,YT,ICOR,VALUE)

YB,YT Bottom and top limits of the data area.
ICOR Y-axis coordinate.
VALUE The value of the scaled data area associated

with the Y-axis at this coordinate.

o

DISPLAYING CHARACTER STRINGS: TPAGE

' This routine is used to display character strings.
The calling sequence is:
CALL TPAGE (IX,IY,SAVF,N)
IX, Iy The raster coordinate of the point where
the string will begin.
SAVF A vector of characters.

N 0 < N < 15. The number of words of characters.

DECISION BOX: YESNO,RECTAN

These routines generate a decision box. YESNO displays YES,NO in a box
generated by RECTAN.
The calling sequence for YESNO is:
CALL YESNO(IX,IY)
IX, Iy The coordinate of the YES. NO will be located
at IX,IY-50.
A box will be drawn by YESNO by calling RECTAN.
The calling sequence for RECTAN is:
CALL RECTAN(IX,IY)

IX,IY The coordinates of the center of the bhox.

GENERAL DATA DISPIAY: PDP342

This routine uses the OIMGS to do generalized data displiy. Any details

may be found in Part I.

-

ERIC 193 -

The calling sequence is:

CALL PDP342(NPLOT,DC,NCHAR,NPTS,X,Y, ISCLAB,XLABEL, YLABEL, IDF, IERR)

NPLOT=1
NPLOT=2
DC

NCHAR

NPTS

X

Y
ISCLAB=0
ISCLAB#0
XLABEL

YLABEL

IDF=0

IDF#£0
TERR#1

Use new graph.

Use same graph.

Limits the density of the grid. DC should
never have a value less than 3.0; values of 8.0
to 20.0 are recommended.

0 < NCHAR ¢ 5. The plot character selected.

NCHAR PLOT CHARACTER

(52 IR~ VA S
o O X

The mumber of points to plot.
X- axis values.

Y-axis values.

Standard labels.

Scientific labels.

A vector of fifty or less characters in A5

format. These characters will be placed on

the X-axis.

A vector of fifty or less characters in ..5 format.
These characters will be placed on the Y-axis.

No axis labels.
Axis labels.

After return an error occurred.

-

PARAMETER INPUT ON THE RAND TABLET: XDATA

This routine allows a user to input data via the RAND TABLET. IREZDI
should be set to scae maximum data value. Details on the use of this
routine can be found in Part I.

The calling sequence is.

CALL XDATA
IRE3DI The value of the input data.

IRE2DI and IRE3DI are located in the common block called REGPAS.

HITTING A DECISION BOX: FINHIT

This routine is used to flag a decision box. Details sbout how this
routine works can be found in Part I. Before a call to this routine
a call to GFNINS an entry point in GNF must be made.

The calling statement is:

CALL FINHIT
IREGDI The X-coordinate of the hit.
IRE1DI The Y-coordinate of the hit.

IREGDI and IREIDI are located in the common block called REGPAS.

FUNCTION KEY INIT: FUNINI

This routine is used to INIT the function keys.
The calling sequence is:

CALL FUNINI (ICHANN, IER)

ICHANN 0 < ICHANN g 15. The user channel number
IER=1 INIT error
3-5

195

FINDING A FUNCTION KEY DEPRESSION: KEYNUM

This routine returns the number of the function key depressed. ‘
The calling sequence is:
CALL KEYNUM (ICHANN,NUM)
ICHANN 0 < ICHANN < 15. The user channel number.

NUM The number of the function key depressed.

TURNING OFF FUNCTION KEY LIGHIS: LIGHTS

This routine turns off the function key light and returns the light
number turned off.
The calling sequence is:
CALL LIGHTS (ICHANN,LIGHT)
ICHANN 0 < ICHANN < 15. The user channel number
LIGHT The light number turned off.

CLOSING FUNCTION KEY CHANNEL: CLOFBX

This routine closes the function key channel.
The calling sequence is:
CALL CLOFBX(ICHANN)
ICHANN 0 < ICHANN < 15. The user channel number.

RELEASING FUNCTION KEY CHANNELS: RELFBX

This routine releases function key channels.
CALL RELFRX(ICEANN)
ICHANN 0 < ICHANN ¢ 15. The user channel number.
Any istails about the Function Key Monitor Service Routine may be found in

reference (7).

FKLP MODE PROGRAM: FKLP

This program assigns the OLMS commands to the function keys. In

this mode the system is operated by the function keys.

ey
«

3-7

SECTION IV

INPUT-OUTPUT

CLEAR DEC TAPE DIRECTORY: CLEAR,CCLEAR

This routine uses the UTPCLR program operator to clear the directory.
The calling sequence for CLEAR 1is:
CALL CLEAR (ICHANN)
ICHANN 0 < ICHANN¢ 15. A user channel.
The program CCLEAR is a CHAIN file that INITS a device and clears the

directory by calling CLEAR.

WRITING AND READING SYSTEM DIRECTORIES: NTAD,DIRD

These programs are CHAIN files used to write and read the system directories
using Dec tape and Disk.
The use of NTAD is:
NTAD writes a system directory on Dec tape or Disk.
The use of DIRD is:
DIRD reads a system directory from Dec tape or Disk.

The device and directory is determined by the command given to INTER.

READING AND WRITING DATA ON DEC TAPE OR DISK: GETDD,SADA

These programs are CHAIN files used to read and write data.
The use of GEIDD is:

GETDD reads data from Dec tape or Disk into the system buffer.
The use of SADA is:

SADA writes data in the system buffer on Dec tape or Disk.

The device is determined by the command given to INTER. The system buffer is

4-1

193

SYSBUF located in the common block called COMBUF.

DELETING FILES FROM DEC TAPE OR DISK: CDEDAS

CDEDAS is a CHAIN file that deletes files frum DEC tape and DISK.
The CDEDAS program calls RENAME to delete file names. Any details about

this program can be found in reference (1).

RENAMEING FILES: RENAME, CRENA

The RENAME routine is used to rename file.
The calling sequence for RENAME is:
CALL RENAME (XNAME,EXT ,XNAME1,EXT1,IER,DEVICE,1CHANN)

XNAME, EXT The name and extension of the file to be
renamed.
XNAME] ,EXT1 The new name and extension of the file.
IER=1 Init error
=2 LOOKUP error
=3 RENAME error
DEVICE The SIXBIT device name
ICHANN 0 < ICHANN < 15. The user channel number.

The program CRENA calls RENAME to rename files. For details see reference (1).

ENTERING FILE NAMES IN DEC TAPE AND DISK DIRECTORIES: ENTER

This routine enters file names in the Dec tape and Disk directories.
The calling sequence is:

CALL ENTER (XNAME,EXT, IER, ICHANN)

XNAME , EXT The file name and extension to be entered.
IER=4 ENTER error
ICHANN 0 < ICHANN < 15. The user channel number
4-2
139

R

CLOSING CHANNELS: CLOSEC

This routine closes a channel and resets the JOBFF pointer.
The calling sequence is:

CALL CLOSEC (ICHANN,JOB, IER)

ICHANN 0 < ICHANN ¢ 15. The user channel.
JOB The contents of the old JOBFF pointer.
TER=1 Closing error.

JOB and ICHANN are in the common block called INOUT. JOB is set by a call

to BUFFER. For details see reference (1).

CHECKING FOR A FILE IN THE DEC TAPE AND DISK DIRECTORIES: CHECKF

This routine does a LOOKUP on a file name.
The calling sequence is:

CALL CHECKF (XNAME ,EXT , ICHANN, IER)

XNAME ,EXT The file name and extension to LOOKUP.
ICHANN 0 < ICHANN < 15. The user channel number.
IER=2 The file was not found.

For details see reference (1).

WRITING AND READING MAGNETIC TAPE DIRECTORIES:MIODIR,MTIDIR

These routines are used to write and read magnetic tape directories.
The magnetic tape directory is DIRECT. DIRECT is located in the common block
called MTAPE.
The calling sequences are:
CALL MTODIR
Write the tape directory.

CALL MTIDIR

Read the tape directory.

POINTER ROUTINES:

CDRBUF ,NUMWDS

These routines are used to manipulate pointers and plant data.

The calling sequence for CDRBUF is:

CALL CDRBUF (IBUF)

IBUF

A link variable. The contents of the right half

of the location pointed at by IBUF is returned.

The calling sequence for NUMWDS is:

CALL NUMWDS (IBUF,WORDS)

IBUF
WORDS

ALLOCATING BUFFERS:

A link variable.
The number to be stored. The contents of WORDS
are stored in the right half of the location

pointed at by IBUF.

BUFFER

Input or output buffers are allocated by this routine.

The calling sequence is:

CALL BUFFER (IND, IER,DEVICE, ICHANN, IBUF ,MODE ,NUMBUF,JOB)

IND=0
IND#0
IER=1
DEVICE
ICHANN
IBUF

MODE

JOB

Allocate output buffers.

Allocate input buffers.

After return INIT error.

SIXBIT device name.

0 < ICHANN ¢ 15. The user channel.

A link variable that points to the buffer header
set by the routine.

The device mode. For details see reference (1).
The number of buffers.

The contents of the old JOBFF.
4-4

201

OUTPUT: OUTI,OUT

These routines are used to output data.
The calling sequence for OUTI 1is:
CALL OUTI (ICHANN,IER)
ICHANN 0 < ICHANN <15. The user channel number.
IER=3 Bit transfer error.
Before output on a channel, OUTI must be called to initialize the chamnel.
The calling sequence for OUT 1is:
CALL OUT (ICHANN, IER)
ICHANN 0 < ICHANN < 15. The user channel number.
IER=4 Bit transfer error. |
OUT should be called one time for each buffer. Data may be transfered to the
buffers using the address in the buffer header pointed at by IBUF. The routine
called TRANSF can be used to block transfer a block of data to the output

area. For details see reference (1).

INPUT: INI,GET

These routines are used to input data.
The calling sequence for INI is:

CALL INI(ICHANN,IER)

ICHANN 0 < ICHANN < 15. The user channel number.
IER=6 Initialization error.
IER=3 Bit transfer error.

Before an input on a channel INI must be called to initialize the channel.
The calling sequence for GET is:
CALL GET (ICHANN,IER)

4-5

ICHANN 0 < ICHANN < 15. The user channel number.

IER=7 Input error. -
IER=5 Bit transfer error. f
IER=8 End of file was encountered.

GET should be called one time for each buffer. Data may be transfered from
bﬁffers using the address in the buffer header pointed at by IBUF. The
routine called TRANSF can be used in conjunction with GETADR to block transfer

a whole buffer of data to the user area. For details see reference (1).

MAGNETIC TAPE OPERATIONS: TAPE

This routine can do all of the magnetic tape MIAPE functions.
The calling sequence 1is:

CALL TAPE (ICHANN,FUNCTION, IER)

ICHANN 0 < ICHANN < 15. The user channel.
FUNCTION See reference (1).
IER=1 Function error.

TESTING FILE STATUS BITS: STATUS

This routine is used to test file status bits.
The calling sequence is:

CALL STATUS (ICHANN,MASS, IER)

ICHANN 0 < ICHANN < 15. The user channel number.
MASS An integer representing the bits to test.
IER=1 An error occurred associated with the MASS.

The bit information can be found in reference (1).

hand

GENERAL INPUT,OUTPUT: IFILE,OFILE,IFILED,OFILED

These routines read and write data on magnetic tape, Dec tape and Disk.

4-6

203 i

The calling sequence for IFILE is:
CALL IFILE
Before calling IFILE a pointer where the data will be stored and a pointer
to the buffer ring must be given. ITBUF is a link variable that must point
to the area where the data will be stored. IFBUF is a link variable that
must point to the buffer ring. NUMBUF must be equal to the number of buffers.
The calling sequence for OFILE 1is:
CALL OFILE
Before the call ITBUF must point to the buffer ring. IFBUF must point
to the area where the data will be moved from during the output. NUMBUF must
be equal to the number of buffers.
ITBUF,IFBUF and NUMBUF are located in the common block called INOUT.
OFILED and IFILED are defined on the same pointers as OFILE and IFILE.
The difference is in the buffer size for DEC tapes. These routines are used

for DEC tape.

RELEASING CHANNELS: RELEAS

This routine releases channels.
The calling sequence is:
CALL RELEAS (ICHANN,JOB)
ICHANN 0 < ICHANN < 15. The user channel number.
JOB The contents of the old JOBFF.

WRITING AND READING SYSTEM DIRECTORIES ON MAGNETIC TAPE: WRTDIR,REDDIR

These routines write and read the system directories on magnetic tape.

4-7

204 .

.

The calling sequence for WRTDIR is:
CALL WRTDIR.

The calling sequence for REDDIR is:
CALL REDDIR.

INPUTTING AND OUTPUTTING DATA ON MAGNETIC TAPE: GETF,SAVEM

These routines input and output data on magnetic tape by calling
IFILE and OFILE.
The calling sequence for GETF is:
CALL GETF.
This call reads data.
The calling sequence for SAVEM is:
CALL SAVEM

This call writes data.

MAGNETIC TAPE CHAIN FILES: CGETF,CDIR,CNTAP,CSAVEM,CDESCR,CDELE

These CHAIN programs are used for INPUT-OUTPUT on magnetic tape.

CGETF Reads input data into the system buffer.

CSAVEM Writes data on magnetic tape from the system buffer.
CDIR Reads the magnetic tape directory into DIRECT.

CNTAP Writes the magnetic tape and system directories

on magnetic tape.

CDESCR Writes file descriptions.

CDELE Deletes file name from the magnetic tape directory!
This program is used to rename files on magnetic

tape.

4-8

SECTION V

MISCELLANEQUS

SLEEPING A JOB: RESTIN

This routine uses the SLEEP program operator to stop a job and continue
automatically after an elapsed real time of ITIME.
The calling sequence is:
CALL RESTIN(ITIME)
ITIME 0 < ITIME < 68. The number of seconds

to sleep.

LOGIN AND TAPE ASSIGNMENTS

LOG
1

PROJECT NUMBER {, |/},;PROGRAMMER NUMBER
Assign or Deassign Devices

1 1 1
{AS|DEAS}; {<Blank>}{<Device Name>};
Putting Source Deck on Disk:
R PIP

1

DSK’: {«Name>} < CDR:

FORTRAN COMPILE

. 1 1
COMPILE{<Blank>} 1 {<Name>} 1

PUTTING THE OLMS ON DISK

R PIP

1 1
DSK: (XB) « {<Device Name>}:{<Name>};

BUILDING A CHAIN FILE

1 , 1
LOAD {<Blank>}, INTOP, {<NAME>},

1 1 1 1
SAVE {<Blank>},{<Device Name>},{<Blank>},{<Name>},

RUNNING THE OLMS

1 1 1
RUN {<Blank>},{<Device Name>},{<Blank>},0LMS

For any details see references (1), (14).

5-2

207

INDEX OF ROUTINES

ROUTINE PAGES ROUT INE PAGES
BLANKS 2-3 DELEFL 2-1
BUFFER 4-4 DIRD 4-1
CCLEAR 4-1 ENTER 4-2
CDEDAS 4-2 FINHIT 3-5
CDELE 4-8 FINISH 2-8
CDESCR 4-8 FKLP 3-7
CDIR 4-8 FUNINI 3-5
CDRBUF 4-4 GENDIS 3-1
CGETF 4-8 GENPUT 3-1
CHARD 23 GET 4-5
CHECKF 4-3 GETADR 2-3
CHECKN 2-7 GETCOR 2-1
CLEAR 4-1 GETDD 4-1
CLOEBX 3-6 GETF 4-8
CLOSEC 4-3 GNE 3-1
CNTAP 4-8 | GRDVAL 3-1
CONDTA 2-8 IFILE 4-6
CONMTA 2-8 TFILED 4-6
CONVER 2-4 INI 4-5
CRENA 4-2 INTER 2-1
CSAVEM 4-2 INTERT 2-1
5-3

208

ROUTINE PAGES ROUT INE PAGES
KEYNUM 3-6 REDDIR 4-7
LIGHTS 3-6 RELEAS | 4-7
LISTER 2-8 RELFBX 3-6
LISTT 2-2 ’ RENAME 4-2
LOOK 2-5 RESTIN 5-1
MMODE 2-3 SADA 4-1
MTODIR 4-3 SAVEM 4-8
MTIDIR 4-3 STATUS 4-6
NUMWDS 4-4 TAPE 4-6
NTAD 4-1 TOP | 2-6
OFILE 4-6 TPAGE 3.3
OFILED 4-6 TRANSF 2-4
OUT 4-5 VALUEX 3-2
OUTI 4-5 VALUEY 3-2
PACK - 2-9 WRTDIR 4-7
PACHEXT 2-7 XDATA 3-5
PCHNAM 2-7 YESNO 3-3
PCHPRO 2-7
PDESCR 2-6
PDP342 3-3 & 3-4
PLANT 2-5
REASL 2-9
RECTAN 3-3

5-4

o 209

A

10.

11.

12,

REFERENCES

DEC - 10 - MTEO - D, Time-Sharing Monitors; Multi-programming Monitor
(10/50) Swapping Monitor (10/50), Digital Equipment Corporation,
Maynard, Massachusetts, November 1968,

Feldmann, R. J., Rand Tablet Service Routine, NIH, Division of Computer
Research and Technology, Bethesda, Maryland, August 1969.

Hill, Edward, The On-Line Modeling System, NIH, Division of Computer
Research and Technology, Bethesda, Maryland, September 1969.

Hill, Edward, Programmers' Reference Manual for the On-Line Modeling

Graphical System, NIH, Division of Computer Research and Technology, J
BetEesaa, Maryland, June 1969.

Lewis, Harry, Fortran-Lisp Display Routines, NIH, Division of Computer
Research and Technology, Bethesda, Maryland, April 1969.

Freedman, S. R., Filer, M.I,T./L.N.S., Cambridge, Massachusetts,
February 12, 1968.

Vreenegoor, H., Lewis, H., Function Box Service Routine, NIH,
Division of Computer Research and Technology, Bethesda, Maryland,
September 1969.

Lewis, Harry, Assembly Language for DEC 340 Display, NIH, Division
of Computer Research and Technology, Bethesda, Maryland, April 1969.

Adler, C., Sanford, 340 Display Programming Manual, Decus No. 7-13,
New York University's Department of Industrial Engineering and
Operations Research, Bronx, New York.

Stromberg-Carlson, Programmers' Reference Manual, Data Products,
San Diego, Calif., October 1964.

Hill, Edward, A Proposed On-Line System for Modeling Networks,
NIH, Division of Computer Research and Technology, Bethesda, Maryland,
February 1969.

DEC-10-LOVA-D, CHAIN, Digital Equipment Corporation, Maynard, Massachusetts,
February 8, 1968.

5-5

210 -

=
T

16.

17.
18.

20.

19.

Bruce, M. C., PDP-10 Equipment, NIH Internal Memorandum, October 9, 1968.

DEC-10-NGCA-D, PDP-10 System User's Guide, Digital Equipment Corporation,
Maynard, Massachusetts, 1967.

Wegner, P., Introduction to System Programmiwg, The Automatic Progranming
Information Center, England, 1964.

Knuth, D. E., The Art of Computer Programming, Addison-Wesley Publishing
Company, Rading Massachusetts, 1968.

Rosen, Saul, Programming Systems and Languages, McGraw-Hill, New York, 1967.

Lee, J.A.N., The Anatomy of a Compiler, Reinhold Publishing Corporation,
New York, 1967.

DEC-10-PPCO-D, Peripheral Interchange Program, Maynard, Massachusetts, 1968.

DEC-10-ETEB-D, Text Editor and Corrector Program, Maynard, Massachusetts, 1968.

5-6 D

211

