
DOCUMENT RESUME

ED 053 533 Ell 009 051

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY
REPORT NO
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

Boessenroth, Theodore; And Others
Engineering Operational CAI.
Texas Univ., Austin. Computer-Assisted Instruction
Lab.
National Science Foundation, Washington, D.C.
TM-1
Oct 70
24p.

EDRS Price MF-$0.65 HC-$3.29
*Communication Problems, *Computer Assisted
Instruction, Curriculum Development, *Flowcharts,
Programers, *Programing, Programing Languages,
*Programing Problems

It a course using computer-assisted instruction
(CAI) is to follow the author's philosophy and design, it is
important that communication between author and coder be explicit.
Here, a set of definitions and flowcharts ace presented which allow
an author to describe precisely to the coder alternate choices which
a student using the program may make. By using these sample
definitions and flowcharts, it is possible for author and coder to
communicate clearly. The second part of this document describes an
effective collaboration between author and coder in developing a
course in mathematics fundamentals. Close contact between them
produced consistency of approach and product. However, turnover of
staff and deadline pressure made it difficult to maintain this close
contact. The staff nevertheless felt such contact is desirable. (JK)

U S DEPARTMENT OF HEALTH EDUCATION & WELFARE

OFFICE Of EDUCATION

MS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE

PERSON OR ORGANIZATION ORIGINATING IT POINTS Of VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE Of EDUCATION

POSITION OR POLICY

Li GI0EE I 1.4 G

OPiaATIONAL CAI

TECHNICAL MEMO dO. 1

Theodore Boessenroth
Authella Smith

CarZ Gregory

Sponsored By

THE dATIONAL SCIENCE FOUNDATION
Grant Gel 509 X

Computer-Assisted Instruction Laboratory
The University of Texas

Austin, Texas 78712

October 1970

2

ENGINEERING OPERATIONAL CAI

The instructor who considers writing a computer-assisted
instruction (CAI) program first decides whether his material is suitable
for CAI treatment. He discusses types of hardware available with the
engineer and instructional designer and, in consultation with educa-
tional specialists, an instructional designer and programmer assess
its potential. If he decides to use CAI, he begins course design with
the preparation of terminal objectives: tasks the learner is to be
capable of performing at the end of the course. Differences between
classroom-lecture design and CAI design become apparent here; the
former stresses stimulus dimensions, such as choice of text, behavior
of the lecturer, continuity and elegance of delivery; the latter empha-
sizes response dimensions such as performance proficiency of the learner
at the end of the course.

The author subsequently decides on prerequisite skills re-
quired and prepares intermediate objectives, a collection of inter-
mediate performance requirements leading from the prerequisites to
the terminal objectives, not necessarily linearly. Therefore, CAI
design is a "backward" construction--terminal objectives to prereq-
uisites--while lecture construction is forward--prerequisites to final
lecture. Construction of intermediate objectives leads in a natural
way to a modular structure of the CAI course, each module represent-
ing an instructional unit taking the learner from one or more inter-
mediate objectives to another.

Writing of the course proper begins with construction of a
skeleton for each module which is then refined to final form by off-
and on-line testing using student feedback for continual revision.
The module design again differs markedly from lecture preparation.
The teacher designs his lectures based on verbal presentation with
ample use of blackboard and text. Students' response requirements
then are usually determined by what has been covered in class. Good
CAI design is built on response requirements. The author must adapt
himself to tight, efficient design exploiting display techniques of
the new medium. The material has to be presented in small doses,
one at a time, cognizant of the learners limited access to peripheral
material.

1

The Author's Draft

Abstract

Designing a complex instructional system is difficult.
Explaining that system, in detail, so that others will
envision it in the same way as the designer is frus-
trating, if not impossible. So how, then, does an
author communicate, accurately, with his coding staff?
Certainly, if a coder could see, literally, the instruc-
tional system operate, then he could envision that in-
structional system in the sane way as the designer.
Thus, a design for an author's draft was developed
which would do just that: permit the coder as well
as the author to literally see the instructional
system operate.

To prepare an author's draft of this design, the author needs
pads of IBA 1510 Instructional Display Planning Guides, form X26-5608-0
(U /.i 025), or facsimile, pencils, a pair of scissors, and a few well
understood terms.

It is very important for the author to do his writing directly
on a display planning guide so that he does not accidentally exceed the
character limit of his particular display device--in our case, an IBM
1510 cathode ray tube (CRT). Thus, the author himself adjusts the text
to fit into whatever display space is available. If there is no limit
to display space, display guides are still useful to assist the author
in developing some economy of language.

An author will usually have in mind a certain action he wants
the computer to take dependent on the action a student has taken. He
also will most likely want to study, at his leisure, student-computer
interactions in order to determine the correctness, with respect to his
intent, of the computer program; effectiveness of the instruction; clarity
of messages; and ways to improve effectiveness. Thus, the author needs
an easy way to specify dependent actions and identify what actions have
occurred or are occurring for particular students or groups of students.
The terms we are using for author-coder communication are as follows:

2

4

1. Ca: If the student's entry is the same as this one,
present this message to him and then present
the next problem. This dependent action (logic)
can be described by the following excerpt from a
flowchart:

Present problem n

Allow student
to respond

..)
-1:esponse

../

Student
-4-
(mismatch) NO ,/. the same as

takes a c"., the ca
different
path ES (match)

Present ca message

IPresent problem n+1

2. Wa: If the student's entry is the same as this one,
present this message to him and then allow him
to respond to this question again.

Present
wa message

Present prohlem n

Allow student to respond

)1,

3

Response
YES (match) the same

as Wa

Student

(mismatch) NO takes a
)

different
path

3. un: If the student's entry is not the same as any
of those expected by the author, present this

message to him, and then allow him to respond

to this question again. An author may prepare
as many as ten un messages for any one particu-

lar problem. The combined logics--ca, Wa, un --

are described by the following flowchart:

1

I Present problem n

[Set m=0

[Allow student
Present to respond

problem n+1 1
1

tYES (match)

1

Present
1 ca message

YES

::-response

the same as
the

NO (mismatch)

Response
the same as

a wa

YES (watch)

NO (mismatch)

M = the
number of

author's last
un for this

roblem?

NO

L m = M+1

4.

Present mth
un message

Present
Wa message

Keep in mind that an author (Ian use any dependent actions

(logic) he wants. That which is described above is but

one example.

4

MI/MOIM

4. Zabel: A label may be up to a maximum of six characters,
either alphabetic or numeric, and is used to give
sequences of computer code an identity. Labels are
internal to the computer and not visible to students.
Labels are directly addressible by name by the computer.

5. epid: 1.n epid may be up to a maximum of ten characters
and is used to give student responses an identity.
If epid's and labels are coordinated, then a par-
ticular student response can be related to a par-
ticular sequence of computer code. Epid's are
internal to the compute, not visible to a student,
but are saved by the computer as part of the stu-
dent's response record. These identifiers are
not addressible by name by the computer.

6. frame identifier: A fram! identifier may be up to 40
characters, either alphabetic or numeric, but
usually the same as the label. These identifiers
are used for debugging and updating of the instruc-
tional system by the person in charge of student
use of the system to identify the sequence of code
currently being executed by the computer for a par-
ticular student at a particular time. The person
in charge can simply look at the student's display
to make the identification. Frame identifiers are
visible to students, but are not addressible at all
by the computer.

7., match id: A match id may be up to a maximum of two
characters and is saved by the computer along with
the student's response; contents of counters,
switches, return registers, and epid. Thus, the
match id can be used to identify which of the mes-
sages prepared by the author was displayed to a
particular student at a particular time.

8. prr: Often students are not able to complete a course
during one session with the computer. Thus, at the
end of a session, the computer needs to know where
in the course a particular student should resume his
work at the beginning of his next session. prr is
used by the author to indicate these places (restart
points) to coders.

9. pr: pr is used by the author to mark the beginning of a
problem.

At this point, Example 1 on the following page should be
self-explanatory to the reader if page numbers are carefully observed.

Refer to Example 1 on page 7

An author may wish to define several problems at one time to
reduce repetitious tedium. He can do this by replacing the portions of
text that vary with column headings. The varying text is then prepared
in tabular form. Thus, fixed text need be written only once. Coders and
authors can still see the instructional system operate; and while coding
time or storage space may not be reduced, coding is less tedious and
debugging time is greatly reduced. An example of this appears on page 8.

Refer to Example 2 on page 8

An author's draft prepared in the manner described above will,
to some extent provide for the following:

--Author and student alike will see the same display at
the time each is doing his work.

--Author will not be tempted to crowd too much text into
one display.

--Course can be programmed in any CAI language.

- -Author can conduct an off-machine test of the instruction
with a few students.

--Programmer can generate the required computer code for
implementation without assistance from the author.

- -Neither the author nor the programmer need to repeat text
which is to be displayed over and over.

--Student practice may be extended without significantly
increasing programming time, author time, or disk storage.

--Modifications and updates are easily accomplished.

--Media specialist can prepare associated audio-visuals.

- -Publisher can prepare manuals and permanent documentation
for users and potential users.

6

8

C0052/ (LADEL)

FRAME
IDENTIFIER

EXAMPLE 1

PRR (RESTART POINT)

0 4 8 12 16 20 24 28 32 36 39

1 C00521 (one Question)

3
Use the third law of exponents to

5
rewrite the following expression.

7
All exponents are positive integers.

9
--7

r(x 2y + 3
5

z) 1

4
= C00521A (epid)

13

15

17

19

21

23

25

27

29

31

Pagel

C0052/ (LABEL)

FRAME
IDENTIFIER

EXAMPLE 1

PRR (RESTART POINT)

3

5

7

9

11

0 4 8 12 16

C00521 (one question)

Use the third law

rewrite the following

All exponents are

[(x - 2:y + 3z)
5
]
4

20

of

positive

=

24 28 32 36 39

exponents to

expression.

integers.

CA
L(It. 20

13

15

17

19

21

23

25

27

29

31

Correct.

Page 2

C1

(MATCH ID)

C0052/ (LABEL)

FRAME
IDENTIFIER

EXAMPLE 1

PRR (RESTART POINT)

0 4 8 12 16 20 24 28 32 36 39

1 C00521 (one question)

3
Use the third law of exponents to

5
rewrite the following expression.

All exponents are positive integers.
7

9

11
[(x - 2y + 3z)5] 4 =11

(x - 2y + 3z) (5) (4)1

13

15 Ok, but we prefer that you carry your

17 work a step further. We accept your

19 response even though

21 - 2y + 3z)
20

23
is preferable.

25

27

29

31

Page 3

CA

11

C2

(MATCH ID)

EXAMPLE 1

C0052/ (LABEL)

FRAME
IDENTIFIER

PRR (RESTART POINT)

0 4 8 12 16 20 24 28 32 36 39

1 C00521 (one question)

3
Use the third law of exponents to

5
rewrite the following expression.

7
All exponents are positive integers.

9

11
2v + 5] =j x - 2y + 3z-

2
f WA

13

15
you nave incorrectly represents:'. the

17
given expression. Since the base itself

19

Your thought is probably correct, but

is an expression, it rust be enclose
21

in parentheses. For example:
23

25 (a+b)
2

= (a +b) (a +b) = a
2
+ 2ab + b

2
.

27 Obviously, (a +h)2 a+b2 if a 0.

29

31 Use () to enclose the base.

Page 4

W1

(MATCH ID)

C0052/ (LABEL)

FRAME
IDENTIFIER

EXAMPLE 1

PRR (RESTART POINT)

0 4 8 12 16 20 24 28 32 36 39

I C00521 (one question)

3
Use the third law of exponents to

5
rewrite the following expression.

7
All exponents are positive integers.

9

11 -1
[(x - 2y + 3z)

5
]
4
= UN

13

15 Incorrect. Check your work carefully

17 and respond again.

19

21

23

25

27

29

31

Page 5

1

U1

(1JATCH ID

C0052/ (LABEL)

FRAME
IDENTIFIER

EXAMPLE 1

PRR (RESTART POINT)

0 4 8 12 16 20 24 28 32 36 39

1 C00521 (one question)

3

5

7

9

Use the third law of exponents to

rewrite the following expression.

All exponents are positive integers.

15 Incorrect. If you think of

17
x - 2y + 3z as b,

19
5 as mr

21
4 as n, then you can see that

23

25
= (x-2y+3z)(5)(4) = (x-2y+3z)

20
.

27
rnter - 2y + 3z) 20 now.

29

31

PAGE 6

UN U2
(MATCH ID)

1/1

L
I

2

.3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

<1> < 2>

TABLE

<3> < > r1><1> <2> <
3

erezenseezeiserrerser..ereemmememTmerfteeseemannieseresemmermett

t

(X -274-3z) 5

rel nememormemsewesterg

x-2y+3zi 5 4
esemem

1

[(x-2y+3z)] (x-2y+3z) x-2y+3z

[(2a+b

"+' 4

)] (2a+b) 2a + 1) 1 (2a + b) 2a + b

R

I 4 3
.4 3

i

, 12 12 (I)(3) 1

-.I. .1

-3/4) tl 2
t (.3/4)2t
I'

7 -3/4
2t

.r

(-3/4)
(t)(2)

-3/4 t 2

[
41.

4. 1
/

i
1. .

1" t
l'

1 1

if
ir

T
I

1
r

.1. r

1

.1-

.-

i

i .1. 1.
1

+ 1

18
- - - -4

r

;FRAME
IDENTIFIER)

EXAMPLE 2

000521 (LABEL)

PRR

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

0 4 8 12 16 20 24 28 32 36 39

C00521 (one question)

Use the third law of exponents to

rewrite the following erpression.

All exponents are positive inteaers.

VII iC0052IA (epid)

PAGE 1

(FRAME
IDENTIFIER)

EXAMPLE 2

C0052/ (LABEL)

1

3

5

7

9

11

0 4 8 12 16 20 24 28 32 36 39

C00521 (one question)

Use the third law of exponents to

rewrite the following ernression.

All exponents are positive integers.

`2'
I CA

13

15

17

19

21

23

25

27

29

31

Correct.

PAGE 2

Cl

(MATCH ID)

(RAME
IDENTIFIER)

C0052/ (LABEL)

PRA?

EXAMPLE 2

0 4 8 12 16 20 24 28 32 36 39

1 C00521 (one question)

3

5

7

9

11

Use the third law of exponents to

rewrite the following ernression.

All erDonents are positive integers.

0/7//p/7 e Ajp

13

15

17

19

21

23

25

27

29

31

Ok, but we prefer that you carry your

work a step further. le accept your

response even though

is preferable.

PAGE 3

CA

18

C2
(MATCH ID)

EXAMPLE 2

('FRAME

IDENTIFIER)

C0052/ (LABEL)

FRR

1

3

5

7

9

11

0 4 8 12 16 20 24 28 32 36 39

C00521 (one question)

Use the third law of exponents to

rewrite the following expression.

All exponents are positive integers.

<e>
3 WA W1

(MATCH ID)13

15
Your thought is probably correct, but

17
you have incorrectly represented the

19
given expression. Since the base itself

21
is an expression, it must be enclosed

23
in parentheses. For example;

25 (a+b)
2
= (a+b)(a+b) = a

2
+ 2ab + b

2
.

27 Obviously, (a+b)2 a+b2 if a # 0.
29

31 Use () to enclose the base.

PAGE 4

;FRAME
IDENTIFIER)

EXAMPLE 2

C0052/ (LABEL)

PRR
0 4 8 12 16 20 24 28 32 36 39

1 C00521 (one question)

3

5

7

9

7/7. e ////77,
11 W

9

//, //

Use the third lay r of exponents to

rewrite the following ernression.

All elTonents are positive inteuers.

13

15 Incorrect. Check your work carefully

17
and respond again.

19

21

23

25

27

29

31

PAGES

] UN U1
(MATCH ID)

(e, u

(FRAME
IDENTIFIER)

C00521 (LABEL)

PER

EXAMPLE 2

0 8 12 16 20 24 28 32 36 39

1 C00521 (one question)

3

5
rewrite the following exnression.

7

9

11

Use the third law of exponents to

All exponents are positive intecTers.

13

15 Incorrect. if you think of

/7-7M/1<as h,
19

.e11;121 as Ia.

23 rTc

25
,rn

27 =

29

31

as n, then you can see that

cf-'27,.
<

/V/0'71= //':;

Enter / %/////k,>/:Pw now

PAGE 6

UN

21

Y2

(MATCH ID)

The Programmer's Role

Abstract

Our experience with the Preskills and Maths course
has Zed us to believe that close communication
between author and coder is essential to producing
imaginative yet consistent instructional programming.
The traditional roles of an author creating course
material and a disassociated coder implementing the
creation on a machine were not functional in produc-
ing a truly instructional course with expander: answer-
processing and a consistent philosophy of the aims of
the course. Our aim at The University of Texas at
Austin is to make both author and ccder aware of the
author's designs for the course and to create an
author-coder "team" to implement those designs with
consistency and imagination.

The Prerequisite Mathematical Skills (Preskills) program is
an excellent example of the hazards involved in the traditional authoring-
coding methods used by CAI installations. After the course material was
authored, a number of coders were employed to produce an operational
program. Many coders were involved because of the size of the program
and because coders were joining and leaving the staff regularly. The

variety of coding styles produced the major defect of the course: a

devastating lack of consistency. For a given correct answer of, say,
10000, one part of the course might accept 10,000 or 10000 as a student
response, another part might accept only 10000. The limitations placed
on a student would depend on the particular coder's dexterity with

answer-processing techniques. Furthermore, some coders were content
to say only "Wrong. Try again" for an incorrect response, while others
would be more extensive in their wrong-answer processing. These incon-

sistencies were the major complaints of students taking Preskills.

It was our feeling that such inconsistencies stemmnd from
inadequate author-coder communication. The author, Mrs. Authella
Smith, has a definite philosophy of teaching, but this philosophy
had failed to be expressed in the Preskills course. It was not enough

to have consistent specifications for coding techniques; the lack of
consistency in aims and expectations for the course had resulted in
the inconsistencies of the final product.

9

As we began to think of revising Preskills, we were determined
to make the course more expressive of the author's philosophy. We

favored giving students more control over the material they would take
(in response to many complaints from students about being trapped in
long sections of material they did not wish to take). We were also

very concerned with limitations that the Preskills course had placed
on student answer formats. We were determined to expand answer-processing
to accept any answer that was correct, and to provide more explicit
messages for more types of wrong answers. To improve on the basic
machine-student relationship, which hinders many students, we established
conventions such as not changing any screen messages until the student
indicates that he is ready for a change, and writing messages making it
clear to a student that he is dealing with a program written by a human
being, not by some super-intelligent electronic "brain."

As these aims became more definite, they produced two effects:
First, we turned from the idea of simply revising Preskills to deciding
to rewrite the whole course under the name Maths. The second effect
was to produce a new type of author-coder relationship in which the
coder realizes the aims and intent of the course and works with the
author to produce a working expression of the author's teaching
philosophy. Only in this way, we felt, could we produce a consistent
course in the context of frequent turnover of personnel.

Our new author-coder "team" first approached the idea of
student control and produced a table of contents format by which the
student selects an area of study but is free to quit and choose another
at any time. Diagnostic tests to determine what instruction was needed
became evaluations for the student's personal benefit. A glossary was
included for student reference from any point in the program.

Again, it was not our purpose to specify techniques, but to
standardize the aims of the course. Coding techniques would be the
products of the course philosophy, making the course "coder independent"
in a new sort of way. After the author-coder "team" specifies what
the course should be able to do, implementation procedures should no
longer be critical.

The effectiveness of the "team concept" at The University of
Texas at Austin is still open to question. In the early development of
Maths, a close author-coder relationship was maintained, producing con-
sistent course material using varied techniques that often extended
beyond standard coursewriter methods (extensive editing procedures in
answer-processing, production of an arithmetic evaluation function).
But the small staff underwent extensive turnovers of personnel, and it
was greatly enlarged to meet contract commitments. With many new
coders coming under emergency conditions, author-coder contact was
greatly diminished, and we were left with the same problem faced in the
development of the original Preskills course: managing a large, new
staff. The needs of the control program, the course philosophy, and

10

2J

techniques used for past problems proved to be too difficult to teach
the new staff in the time available, since students were already com-
mitted to the course and production was imperative. As a result, both
consistency and innovation were hampered, though not so much as in the
original version.

It is still our belief, however, that the programmer's role
in CAI lies in a close relationship with the author. As we begin
development of a new CAI language, we have a staff familiar with the
limitations of Coursewriter and conscious of the requirements of an
instructional course. To create a new language, it will be essential
to maintain the communication of requirements and new techniques and

the feedback of experiences.

11

24

