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MATHEMATICAL ANALYSIS OF A MULTIPLE-LOOK CONCEPI IDENTIFICATION MODEL

John W. Cotton

University of California, Santa Barbara

Abstract

The behavior of focus samples central to the multiple-look model of

Trabasso and Bower (1968) is examined by three methods. First, exact

probabilities of success conditional upon a certain brief history of

stimulation are determined. Second, possible states of thevorganism during

the experiment are defined ard a transition matrix for those states deter-

mined, permitting prediction over all possible numbers of trials. Third,

Fisher's generalizations and corrections of the Trabasso and Bower focus
sample theory are examined. A general solution for the conditional

prot:ablility of success is derived from Fisher's equation for the proba-

One very strong implica-

bility of n successes between any two errors.

tion of the theory is given in Section 5.
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MATHEMATICAL ANALYSIS OF A MULTIPLE-LOOK CONCEPT IDENTIFICATION MODEL

1. Introduction

Consider a K -dimensional binary response concept identification task
with one or more dimensions being relevant. A possible solution of the
task might be that a stimulus including value 1 of dimension A (Al) should

be followed by Response 1 <Rl) and that A, should be followed by R

2 2 °
Thus A 1is a relevant dimension. We require that with more than one
relevant dimension all such dimensions give redundant information. Thus,
in addition to our assumption about dimension A , we might assume that Bl

rmust be followed by R B, must be followed by RE 5, and that presenta-

1’ 2

tion of Al (AE)\ always implies presentation of Bl <B2) . Thus B is
also a relevant dimension. Trabasso and Bower (1968, pp. 54-57) present a
model for a focus sample of x relevant and s - x irrelevant cues to
which a person may attend on any trial. The focus sample is a crucial part
of a multiple iook model because it permits the learner to attend to more
than one conceivably crucial cue on any one trial, with a subsequenf reduc-
tion in the number thus noted as new trials give new information.

Trabasso and Bower (1968, p. 5%) note that a random sequence of stimulus
patterns implies that "each irrelevant cue will have an independent probabil-
ity p on each trial of being allied with the correct, relevant one."
FUrthefﬁore, "the probability of the correct response is the proportion 5f
cues in the focus sample that dictate.that‘response." 4A cue is a dimension
'valﬁe, notva:dimenSion; |

' Trabassd‘andABoWer begin their derivation by assuming an error on an

arbitrarilylnumbEfed'triai, "TO'. At this point the learner selects s cues,
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all of which are consistent with the information from TO . Let (s} denote

the set of such elements, with the convention that we list dimension values

which evoke 31, opposite values evoking R2 . Thus, if on TO AlBlCl

should have led to R {Al,Bl,Cl] is an acceptable set (s} , for s =3 .

l 2

Trabasso and Bower also permit focus samples in which the same cue appears

} is also acceptable in this

more than once. TFor example, {s} = [Bl, 1,C
instance.
On the next trial, Tl , Trabasso and Bower predict the following pro-
portion of successes:
_x+ (s -x)p ,
PT<S.'I.IEO) T x4+ (s - x) (1)

because X plus p(s - x)' is the expected number of cues yielding a correct
response, and X + (s ~ x) = s is the total number of cues from which selec~
tion is being made. On subsequent trials in a series of successful trials,
any cue which would not have led to a correct response on the immediately
previous trial is excluded from the focus sample. The expected number of

cues remaining in the focus sample becomes the denominator of a new predictive
equation; the expected number of cues which would yield a correct response on
the next trial becomes the numerator of that equaticn. Therefore the follow-
ing probability is assigned for the n + 1 -th success conditional upon n

successes in a row following TO H

n+l
x+ (s - x)p . . (2)

x+ (s - x)p

Is’

| 'Pr<$n+1 51 o) -

' The Trabasso and Bower proof of (2) 1s ‘brief and appears to be marred by use of

’the expected operator approx1matlon (Sternberg, 1963, pp. 40-47) w1thout noting

-
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that the expected values just discussed should, after Tl , have been condition-
alized subject to successes on all trials up to the point of any prediction. It
seems appropriate to make a more rigorous analysis of the consequences of
Trabasso and Bower's assumptions. We begin with an examination of specific

stimulus sedquences.

2. Determination of Response Probabilities for All

Stimulus Patterns in a Three-Trial Sequence

The discussion below is dependent upon knowledge of a term from Cotton (in
press): Congruence (i) is defined as the number of dimensions, including
the relevant one(s) which is (are) consistent with the relevant dimension(s)
in changing value(s) from Trial n to Trial n + 1 when the relevant dimen-
sion(s) change(s) or in remaining constant when the relevant dimension(s)
remain(s) constant. (The possibility of two or more redundant relevant
dimensions is accommodated by the parenthesized s 's.)

On the n -th trial of a K -dimensional binary concept problem there
will be 2Kn possible branches reflecting different stimulus sequences of
stimull which may have occurred on the n triéls. Though 2Kh is much too
many branches to examine explicitly for large n , we can gain useful informa-
tion by examining a few trials fully in order to determine the possible states
of a Mérkov process and transitibn proﬁabilities presumed to correspond to
" the theory in queSﬁion. Let us consider an example with X = 3 , one relevant
dimension ('Ai._Should be followed'by: Rl and A, by R, )» and with {s} =
(A;,B1,C;], one of the acceptable focus samples of size 3‘which could follow

an error on Ty for the stimulus A B.C. . We assume for the moment that

v 17171

every one of the eight possible stimulus patterns is équaiLy likely on each
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trial, with patterns on pairs of trials having independent probabilities.
Under this assumption (and some less restrictive ones), complementary
stimuli AjBkc2 and Aj,Bk,Cz, , with j#3', k# k' ,and o #£32' all
simultaneously holding as in the case of A.B.C, and AQBECE , have equal

17171
probabilities of appearance. Furthermore feedback following presentation of
one member of a complementary pailr always confirms the same hypotheses which
feedback following the other member would confirm. Therefore, in the three-
dimensional case it will be sufficient to examine stimulus sequences involv-
ing a choice bf four stimuli rather than eight. Table 1 shows the possible

sequences based on A.B.C A B.C A B Cl , and AB together with

15151 2 Aq9BiCo 0 A48y 1BCs

- sy s . ) S ha b Pt St D e . - —

congruence (i) values, the probability of a correct response (Pr) with
each stimulus at each stage, and the (s} values resulting from examining
{s} after each success and excluding.any dimension value which could have
led to an error on that trial. The reader may simply assume that one-half
of the events attributed to any stimulus are actually assoclated with its
complementary stimulus.

To read Table 1 easily, one should learn that congruence values (i) for

Trial 1 are represented by Roman numerals I, II and III, when cases are deline-

.:étedAon subsequent trials. Case ITA and Case IIB differentiate 1 = 2 cases

which involve different stimuli yiélding‘different focus samples. One or two

- dots following a numerical specification of a case indicates that dne or two

final tfials, respectiVeLy, may be ignored as to specific stimulus_history

bécause the-fihal focus sample will bé ihdepehdent of that history. Thus for
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Case III 1. all focus samples include only the relevant cue following an
i =53 trial and an i = 1 trial in that order.
Once Table 1 is known, we can use our assumption of equally frequent

stimuli to predict Pr(SllEo) with the following equation:

Pr(SlIEO) = = wt (Pr)) (3)
seq

I
where wt  1is the weight or probability of being in a certain seque@ce, Prn

is the probability of a correct response on Trial n (Tn) for that sequence,
and the summation is over all sequences. It will be useful to call the right-

hand side of (3) by the name = Prod, and to define:

% Prod .. = I Prod (Pr'n_i_l)‘

1

= 2wt PrlPrE"'Prn+l

= Pr(s_,,---5,18) - (&)

n+l

Note that Pr, times wt +times Pr. is the probability of haﬁing suc-

2 1

cesses on both Tl and TE dﬁring a certain stimulus sequence. It might

seem reasonable to let X Prod =,2 Pre‘wt (Prl) define the probability of

2

two successes in a row after an error without further menipulation. However,

the experimental design in question is one in which data on T, are not

,
z

analyzed er‘subjeété-making an error on T Therefore, we must take into

l *
account the number of subjects remaining for analysis on T, 5 i.e., IT(SJJEO)

3.

Pr(s,, |8, 8yFy) = — 2 L0
o 3 - %r(sn...sl]Eo)

, B

v‘:vand‘  :;




3 ntl
Pr(Sn+ll 'SlEO) T2 Prodn ’ (6)

Table 2 presents the calculations of ET(Sn+l|S ) for each trial

l 0

of the example analyzed in Table 1. Once we determine the value of Trabasso
and Bower's p , we can check Table 2 results against (2). First, we empha-
size that p is not a response property as in Bower and Trabasso (196k);
rather, as the first quotation in this article implies, it is wholly defined
once the stimulus probabilities and the reinforcement rule are known. If
every irrelevant cue, such as Bl , is exactly as likely to be paired with
1
2 .

A as with A But our assumption of equal

1 2

probabilities for each possible stimulus pattern assures this equality.

in our example, then p =

Therefore (2) should hold, yielding the same probabilities as obtained in

Table 2. It does.
3. A Matrix FPormulation of the Focus Sample Problem

Examination of Table 1 suggests that a useful representation of the
process under study.will result from classification into seven states, with
a revised”orgahization leeding eventually to four states. The seven states

 are 1¢ (the probablllty of belng correct is l and all cues in the focus

. sample are correct lU5 (the probablllty of belng correct is 1, but there

.are three cues in the focus sample, not all of which are correct), lUE (1ike
.' 1U3 but Wlth two cues, not ‘both of whlch are correct), States 2/5, 1/2 and

| ‘fll/5 havlng probabllltles of belng correct glven by thelr deslgnatlons, and
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the dropout State (D) having zero probability of a correct response because
the subject hag made an error since’ TO and is therefore excluded from future
analyses.

It is easy to identify which state will be operative after a given
stimulus sequence by looking at a case number in Table 1 and examining the

probability values and {s} entries. Consider Trial 2, Case III: For 1

values of 3, 2, and 1 a person is in 1U3, 2/5, and 1/5, respectively. Persons

making errors on Trial 2 because they are in States 2/3 or 1/3 will go into
State D on Trial 3 and stay there thereafter. However, persons who are cor-
»reet on Trial 2 when in State 2/5 will go into State 1U2 or State 1/2 on Trial
3, depending upon whether the twe cues remaining in their focus sample are
consistent or inconsistent with the next stimulus presented. Persons who are
correct when in State 1/5 on Trial 2 will go iﬁto State 1C on Trial 3 since

Table 1 shows that only A will remain in thelr focus sample.

1

Rather than present a matrix for these seven states, we flrst expand

“to 10 states by dlstlngulshlng between success (S). and error (E) substates
for the three states havlng fractlonal probabllltles of a correct response.

‘Thls, together w1th examlnatlons of probabllltles of reachlng various p01nts

“.1n Table l,ylelds the follow1ng 1n1t1al vector.

1c 5 lU2 (2/5)8 (2/5)E (1/2)8 (1/2)E (1/5)S (1/5)E D |
=Lo 1/u 013 e o o /12 1/6 ol - (1)




and transition matrix:

1c 103 w2 (2/3)s (2/3)E (1/2)s (1/2)E (1/3)8 (1/3)E D

1C 10 0 © 0 0 0 0 o 0
1U3 o1/ o 1/3 1/6 0 0 1/12 1/6 o0
1U2 0 0 12 o 0 1/ 1/4 0 0o o0
(¢/3)s | o 0 1/2 o0 0 1/h 1/b 0 o 0
R* = (2/3)E 0O 0 O 0 0 0 0 0 0 1 . (8)
(1/2)s 1 0 O 0 0 0 0 0 0 0
(1/2)E 0O 0 0 0 0 0 0 0 0 1
(1/3)s | 1. 0 0o o0 o 0 0 0 o o
(1/3) | o 0o 0o O 0 0 0 0 0 1
D o0 0 O 0 0 0 0 0o 1

Note that rows 1C, (1/2)S, and (1/3)S of this fransition matrix are identical;
also rows 1U2 and (2/3)S; also Tows (2/5)E4'(l/2)E, (1/3)E, and D. By Burke and
Rosenbiatt's (1958) Gorollary 1 Wé can lump states having such identical rows
togethef, yielding the following L4-state model:

C U3 U2 E
p, = [1/12 1/% 1/3 1/3] ‘ (9)

and

ofaud

PRI “"&,_\‘Gag;.'.?w,g.;'-a_udub"ﬂw'vﬂ‘.ﬁ_*_-"-;:)‘;::< -




C U3 U2 E

C 1 o 0 o0 o
U3 |1/12 1/% 1/3 1/3

R = (10)
u2 |1/ o 1/2 1/
E 0 o o0 1

where C implies that a subject will be correct with probability 1 heroafter;
U3 means that a subject will be corrcct on the current trial but is still
unconditioned in that at least one of the cues in the focus sample is irrele~
vant; U2 means that a subject will be correcf onAthe current trial but that
one of the two cues in the focus sample is 1rrelevant and E means either
that an error w1ll be made on the current trlal or that the subject involved
has alrea@y dropped out-of the analysis because of a previous error. The
'proportion of subjects in the two sources of the E state can be determined by
finding the difference between the proportlons in E on Trials n and n -1 ;
the difference is the proportlon of errors (out of all subgects) on Trial n .
We must now find an expression for R" in order to obtain explicit
.>-tr1al by trial predlctlons based on the well known relatlon
".Pn+1='P_iRn‘ - | - (1)
o}A method from Goldberg (1958, pp- 229 251, and exercises 10 and ll, pp. k-
‘j’.2h5) leads us’ flrst to flnd the characterlstlc roots of R from (9) by solv-

ojlng the follow1ng determlnantal equatlon
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where I is an identity matrix, obtaining A, =1, A= i/, A5 =1/2 ,
and. ?\)_l_ = 1 . The Cayley-Hamilton theorem asserts that if £f(A) = 0 as
required by (12), then f(R) , using the same constants as in (12) but
replacing powers of A Dby corresponding powers of R , will equal the null
matrix. 1In the present example, each equation will be a polynomial of the
fourth degree.

Now it is possible to write A" in the form:
A= £(A) aA) + () (13)

where q(A) is of degree n - 4 since f(A) has degree 4 and r(A) has
at most degree 3, else r(A) could be factored by f£f(A) . Goldberg cites

a proof that the corresponding matrix equation. holds as a consequence of (13):
R" = £(R) q(R) + r(R) . (14)

“Invoking the conditions defined by (12) and by the Cayley-Hamilton theorem

yields:

}\1’1.

r(h)  from (13) and () = O

. s
2 +~:al>\, + ae?\ + 33?\‘. 5 | : (15)

e ’r(R) ﬁfrcmf(1&)_a#d  f(g) =0

WreRreElee® 08

©since r(A) end r(R) mist be of degree 3 or less.
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We must now solve for the coefficients from (15) and apply them to (16).

A slight complication arises because A, and A, are equal, yielding three
; by ’

1
independent equations, rather than four, from (15). Therefore, we differenti-

ate both sides of (15) with respect to A , for Ah =1:

n?xf:'l =a + 2, + 5a5>\f : (17)

Substituting the values of Al through Ah in (15) or (17), as appropriate,

yilelds the following system of equations:

1"-a +a +a,+a (18)

(l/h)n = ag + al/h + a2/16 + a5/64 (19)
(l/2)n = a, + gl/e + ae/h + a5/8 (20)

and
n=a) +'2a2 + 5a5 (21)

which can also be expressed in matrix form:

(o) = c(a) (22)

where (c) is the column vector on the left hand side of the set of
. equations, C ~iS'theimatfix»bf"QOefficienté[of the 8 's, and (a) is a
" column vector of : aj 's}"C.3isZﬁbhéingular;_ﬁherefore,'(22)‘implies:

| (a) - C_-l(cj L (25).

f}tYNQw invefﬁing;gCiineids:f f  '




13 32 -36 -3

1 -88 -128 216 21
¢ = (1/9) ’ (2k)

(16 160 -32k k2

-80 -6+ 14k 2k

from which (a) has been computed using (23) and has values equal to the

coefficients of the R~ terms below based on (16):
CRY = (1/9)[13 + 32(1/4 )" - 36(2)" - 3n]T + (1/9)[-88 - 128(1/4)"+ 216(%)"+ 21nlR

+ (1/9)[164 +160(1/4)%- 324 (3)™- kenlR® + (1/9)-80 - 64(1/4)% 1 (5)P+ Shnlr

We now need values of R2 and

calculation, from (10),

3

¢ U3 U2 E
¢ {1 o o o
o W 9/48"1/16 /% 1/2
R‘ i U2 3/8 0 | 1/4 3/8
g | o o o 1
“and
. ¢ v U2 E
C .“g71,_'“ 0 0 o
BEiﬁﬂlQAQQ:VQ-7ﬂ£ 7ﬁg
R Coe ps o s 16
. Eif'>  d:_ , ,O | vlo_" f;?fi"

R” , so that (25) may be applied.

(255

By direct

(26)

(e1)
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For present purposes it is sufficient to calculate the last column of R- 5

which will be called (Rn)h . Use of (10), (26), and (27) in (25) leads,

after simplification, to:

’ B
. C ] 0 )
&, - COLEE SIN -
v2 | (3 - &)
E 1

We know from (11)- that:the probability of being in State E on Tn+l is given
by:
n
P(E,1) = P (R,
=2/3 - (/355" vy (9) and (29). (29)
But the probability of a success on Tn+l is:
ET(Sn+l) =1-P(E,,)
= (1/3)(1 + &)  from (29). (30)

- We have just found the probability of a success on Tn%l , computed from

o To make this probability condi-

among,all subjects who made an error on T
- tional ﬁpon‘having been tested on »Tn+i s we note that we are dealing only

with those Subjécts‘whovwere,sucéessful on T, through T  and then were

~ also successful on T .. . Therefore,
- T n+1l :
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Pr(s |S..SE)

n+l
NS - S . (30). (31)

But (31) is equivalent to (2) for x =1, s =3, and p =5 , the condi-
tions operative in our example. Thus (2) has been verified for the focus

sample of Table 1 and equiprobable, independent stimuli.

Extension of the Matrix Formulation to New Focus Samples but the Same

Experiment
Trabasso and Bower (1968, pp. 59-60) assume that a subject selects a

focus sample by a replacement sampling method in which any one of the K
different dimensions has a specific probability of being selected as the first
member of the sample, and the same, independent probability of being selected
as the second, third, ... or X -th member of the sample. Consequently a focus
- sample of size s 'will have from O to s elements from any particular dimen-
~sion. The three~dimensionai binary task with s = 3 which we have been con-
sidering has 10 distinct'focus samples, ignoring order, and 27 samples when

- order is considefed. (6ther focus samples would be possible if the stimulus on
Tx. were different. See SeC{ihs) ‘Table 3 iists the 10 basic focus samples.

0

Sample lO , {A ,Bl,C 1, has already been 1nvest1gated above. 'HOpefully a
's1ngle matrlx proof could be developed for (2) whlch would hold for all 10

'v'samples Uhfortunately Table 5 shows that the rank of the trans1t10n matrix
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varies frcm 1 o 4 in the 10 samples under consideration. (In each case the
rank is also equal to the dimensionality of the matrix.) Therefore, we have
determined an initial vector Pl and the matrix R for each asterisked
sample cf Table 3, determined the form of g® , and verified that in each
case (2) follows from use of P and R in (11). By symmetry, (2) also
holds for each unasterisked sample.

Once (2) or some other equation is known to hold for a focus sample and
all possible focus samples have been investigated as above (with the possibil-
ity of some samples conforming to different equations or even different forms
of equations), the probability of solution of the problem can be determined
- for each focus sample using (2.2) and the sentence following from Trabasso
‘and Bower (1968, p. 56) and a weighted average probability of solution can
be obtained from their (2.3) and (2.4) once one makes a saliency assumption,
i.e., specifies the probability of selecting each dimension for use in the

focus sample. An equal saliency assumption will, of course, make each of the

27 permutations of Table % equally likely.

How Many Trials Must be Examined to Identify the Different States for a

- Problem with avSpecific Focus Sample When s and X Are Large?

The matrix method Just presented would be 1nconven1ent 1f it were neces-

1 sary to cons1der all posslble stlmulus sequences and consequent focus samples

1n a ser1es longer than the three trials’ examlned above . Suppose K is very
"‘tlarge, perhaps 15, and 's?.1s even larger, perhaps 20 1mply1ng that at least

. one d1menslon 1s represented more than once 1n the or1g1nal focus sample

h 1W1ll th1s make 1t necessary to examlne more than three tr1als9

R PV

i R G
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The query just posed may be answered by noting, first, that use of all
possible K -dimensional stimuli (excluding complements if desired) on Trial
1 will ensure that all possible combinations of dimensions are retained by
various subjects at the end of that trial, excluding possibilities in which
the relevant dimension was represented on Trial 1 but not afterward. Thus
there will be l-tuples, 2-tuples, ... K-tuples represented in new focus samples,
with the label on a -tuple identifying the number of dimensions represented in
a sample, not the number of elements. Because starting with a multiple repre-
sentation of any dimension can be followed only by keeping all representatives
of the dimension or discarding all representatives, no new combinations of
dimensions can be produced after Trial 2. But use of all possible stimuli on
Trial 2 does enlarge the set of different (s} values by producing all pos -~
'sible consequences on any specific -tuple. Consequently Trial 3 will always
include all possible {s} values provided that all possible stimuli were

presented on Trial 1 and independently on Trial 2 as well.

4. The Case of Constant Partial Relevance, and

Constant Predictabllity with Pr # .5

R T I

AlBlC2 3 AlB Cl s and AlB?C2 , were assigned the probabllltles 36, 2, .%h,

and .16 respectlvely, yleldlng IT(B IAl) = IT(C IAl) = . :, so that the

Suppose that; in the eXample'given in Table 1, the four stimuli A.B.C

v”jpartlal relevance, p > was constant at 6 [Slnce the numberlng system for

“B. 1 , and C : 1s arbltrary, rever al of numbers for B, and B

By 2%’ 2, 1 2
‘f-and for, Cl“ and Ceb would have ylelded p l'- .60 —».hO for each irrelevant

e

";4fd1mens1on We adopt the conventlon of numberlng each" ereleVauu d‘*ension’sv

,1yvalues S0 as to max1mlze each partlal relevance, Pr(BlIAl) s Pr(CllAl) ,
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etc.] Then Table 2 would require a new row of weight values, yielding differ-
ent values for PT(SlIEO) and related quantities. The new predictions would
conform to Eq. 2, showing another case in which Trabasso and Bower's equations
hold logically.

Fisher (in press) has shown that in general if the partially relevant
hypotheses in the focus sample are divided "into groups according to their

probability of producing a correct response (group i will have hi elements

each of which is associated with correct responding with a probability pi),"

X + Z‘.pihi
Pr(Sl!EO) =

X 4+ Jh,.
i

X + Zpihi

T (5-x) (2)
which reduces to our Eq. 1 if p = % . Note that two dimensions, B and C,
might'have'the same partial relevance; p , and yet have hypotheses with the
same partial relevance (pl =Py =P for {Al,B C } or p; =D, = l1-p
- for {Al,Be,C } or dlfferent partlal relevances (pl P, Py= 1-p for
{Ai,Bl,Ce} ). Note also that the i of Eq. 32 is not the congruence value,
i, discussed earlier.

. If P1:=lP2,é P, Eq. 32 also‘reduoes to Eg. 1, increasing the number of
cases ih»Whioh Tfabassossnd Bower's conclusions hold. _Eq; 2 wiil also hold
'vin this case,»as‘well as when touix%;Q;

A case 1n whlch Eq 52 mhst belemployed is’ eas1Ly 1llustrated by lettlng
»:the stlmulus for T from Table l ‘be AlBlC . Slnce an error was made,

”ﬁonefaccsptab : focus sample 1s {Aj, l,C } ' An analogue of Table 2 (not

;presented) shows that Pr S |E ) = 667_,, S IS 759 ’ and
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r(s |S 1 O) = .842 , for a sequence of trials beginning with this focus
sample and p, = 6, P, = .4 based on the stimulus probabilities discussed
at the beginning of Sec. 4. In contrast Trabasso and Bower [our Eq. (2) with

= .6] would have predicted Pr(SlIEO) = ,733 , Pr(SzlleO) = ,782 , and

(85]8,8,Ey) = .833)

Fisher's Sec. D gives the result:

=

= n - -—l- ’
Pr(E .8 ...8 [By) = 2p,(1 - p;) 3 33)

where pi and hi are defined as in (32). Eq. (33) can be used to determine

Pr(Sn+lSn...Sl[Eo) or its equivalent from (4), = Prodn+l :
LI B + . 0o 0 = LI B ]
Pr(8 18,5, Ey) Pr(E£+lSn 5,|B,) = Pr(s 8 ;...5 |Fy)
by elementary probability theory. Combining (4) and (34) yields:
z = - e .
) Prodn+l ‘ZbProd.n Pr(En_*_lSn SllEO) (35)
Since I Prodl 1|E from (3) and the discussion following it,

(32); (33), and (35) permit a recur51on to be performed in order to determine
_the.quentitiee requlred to apply (6) for‘any n .
The metﬁod juSt'deéeribed may aiso’be epplied.to the example with a
.Lfocus sample of {Al,Bl,C } The two by are each unity, pl ‘(for the B
br‘varlable)_ie 6 and p2 (for the C varlable) de';hr Equatlon 33 ylelds

(Ezsi|Eo',# .160 and Pr(E S.S. |E ) = 080 Equatlon 32 ylelds Pr |E

Lo _ 37271 1
‘a667 ; andvK§;d(6) and (35) then 1mply Pr S ]S = 760 »and Pr S IS 1Eo
4”?Tf8h2”§’ﬁhese“§; dlculonswarmaJs 1~°1*1g~*.’.3.+h ..00 of +hose reported before

‘;forgan'analogue of Table 2

f=‘.
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5. Further Empirical Implications of the Trabasso-Bower Multiple Look Model

Redundant Relevant Dimensions

Trabasso and Bower developed their model for the specific purpose of
treating behavior in the presence of redundant relevant dimensions. The fore-
going analyses are in no way changed if we assume Xk redundant relevant
dimensions so that Ay (Ag) is always also accompanied by Aj (Aé),...
Aik-l)' [Aék-l)'] There is no special advantage in discriminating which of
the x relevant cues in the initial focus sample comes from each relevant
dimension, so we may as well call them all Al as in Table 1. Any effect of
having relevant redundant =x dimensions will be reflected in modifications
of the probabilities of the different initial focus samples of size s . Thus
for Table 3, equal salience and a single relevant dimension would yield proba-
bilities of 1/3 for each cue to be sampled. Equal salience and k redundant
relevant dimensions would yield probabilities of 1/(k + 2) for each of the
two irrelevant cues and . k/(k + 2) for each of the redundant relevant cues to

be sampled. Note that each i value in Table 1 is increased by (k - 1) if

therevare k redundant relevant cues.

Specific Stimulus Sequences -

Each of the colums of Table 2 has"Prl and Pr2 values giving the

probablllty of a success on T and a subsequent success on T2 for specific

l

© stimilus values presented in sequence, as well as .Pr5 values glving the .

average probablllty of success on T5_ follow1ng the sequence of Tl and ‘ng:

1

condltlonal on success on both prev1ous trlals 'Tables l-and 2 could be

l'expanded for larger n in order to treat longer stlmulus sequences ‘However;

a moregconvenlent me: od is to flnd a seq ence, of. matrlces comparable,to'that_

(et




(3

~who were successful on Tl , hone will keep an irrelevant cue on T2 because

_sistent with reinforcement of R

. holds for any Case in Which' x = 0 .. Consequently, all subjects who err on T: .

wé do,hdt_exa@ine the logic of that case here. Failure of this prediction

-20-~

of (10), with each one appropriate to the stimulus on a certain trial, applying

te,

them in series:

Pp = PiBBp -+ Rg (36)

where RT is the transition matrix appropriate to the stimulus change from

dJ
Tj to Tj+l . This method of prediction is illustrated in detail in Cotton
(in press), using a single-look model. -

A very severe test of the present model is suggested by examination of

Table 1 for congruence values (i) of 1: First, consider the case in which
x 21 . Among all subjects who erred on T, and had i =1 in Table 1 (or

had i = the number of relevant dimensions for a more general case) on Tl and

no irrelevant cue placed in the éample focus on TO can be consistent with the
relevant cue(s) on T, , by the definition of congruence. Thus none of the
subjects with this histofy will ever again mzke an error on this problem.

Now considér the case in which x =0 . For example, let ﬁhe stimulus on

T be AB.C. and {s]:{Bl,B

0. 1171 Cl} be the focus sample selected to be con-

l:
1 on TO s with A Ybeing the relevant dimen-
sion. On T, , for which i=1, the B and C dimension values on T,

will both be inconsisténﬁ with the value of the A dimension on Tl .  There-

fore; the prQbability of a correct answer on Tl will be zero. . This conclusion

have i = the number of relevant dimensions on T, and are successful on T  ,

will be errorless ever afﬁé;é'according to the multiple-look model. This implica-

tidnvcan.be‘expandedfto pefmit the i = 1 successful trial to occur after Ty 3

23
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is equivalent to failure of a strict "local consistency” theory (Gregg & Simon,
1957).

We do not know of a published set of data bearing upon this prediction.
" “However, Pyle (1969) performed two experiments in which his Group 1 had
i=1 on Trial.e and on all subsequent trials except those numbered with
multiples of 5. Raw data kindly provided by Pyle show that in Experiment 1
only 12 of 18 subjects with a success on an i = 1 trial following an error
made no further errcrs. fhe corresponding result for Experiment 2 was 20 out
ofHBl.

Cotton and Rhone (1970) have performed an experiment in which Group'l has
the same i values as in Pyle's two Group 1l's. Among 23 subjects in Cotton

and Rhone's Group 1, 18 had an error on T and a success on T for some

0 1’

arbitrary T. not equal to a multiple of 5. Of these 18, 9 made no further

1
errors in the 24~trial sequence given all subjects. Thus 9 out of 18 subjects
exhibited behavior flatly contradicting thé strong prediction just derived from
the multiple-look model.

It is easy to show that the prediction of errorless performance once a
correct reéponse is given with i = number of relevant dimensions (assuming an
error on the previous trial) al1s0 follows from Trabasso and Bower's (1968, pp.
219-226) modified multiple;ipok model. ‘That model assumes that, following a
correct respbnsé, the subject has probability b of excluding inappropriate

A hypothéses on‘the same basis as the original model and probability 1 - b of

| exciuding-thém bﬁt resamrling frdﬁ locally_Coﬁsistent hypotheses in order to

- keep the size of . s constant. :The hyﬁothesis which has‘Been in the focus

samplé,fbr‘the gféatest number of corfecﬁ trials is called the dominant hypoth-

esis and'will cbnﬁrbl:fhe;response on any given trial. Since the i = number

24
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of relevant dimensions condition assures that the correct hypothesis or hypoth-
eses will be the only one(s) in {s} on Tl which were also confirmed on the
error trial T, , previous to resampling, the correct hypothesis or hypotheses
will be the only one(s) in {s}] on Tl which were also confirmed on the
error trial TO , previous to resampling, the correct hypothesis or hypotheses

will be the dominant one(s) on the next trial, will again be confirmed and

still be dominant, etc., assuming no subsequent errors.

Prediction of the Distribution of Runs of All Successes or All Errors

Trabasso and Bower (1968, pp. 55-56) derive an equation for the probability

of a run of n successive successes following an error: Pr(H =n) = (1 - o)t .
For all focus samples for which Eq. 2 holds, Trabasso and Bower's formula for
Pr(H = n)<'stands as given. Since this formula does not depend directly upon
either x or s , a subject could shift from one acceptable focus sample to
another following eaéh error {as he is assumed to do by the theory) and yet
the same equation‘would hold throughout his session, permitting calculation of
a variety of run statistics such as those‘pfesented in Bower and T;abasso (196k4)
for a single-look model. We emphasize a point inherent in Trabasso and Bower's
~discussion: Thé case S -~ X = 0 1is acceptable for a fpcus sample because it
will produce learning, making Pr(H = w)‘% 1 at the end of the experiment.
However, this serves to emphasiie that the learning paraméter, x/s , defined
~in their (2.2)5'is most assuredly not constant within a session for a single s
but father rénges from O when' x ; 0 to 1 When X =8

| For'thé general case, Fisher (in press) has shown that Pr(H = n) =
E%T [Zp?(l - pi)hi] , using the'same'notatiﬁn as in Eq. 32, This equati&n

i . .

reduces tp ﬁhe_Trabasso and Bower‘resulﬁ for any-case‘in which Egs. 1 and 2

20
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hold. A final thought about this general case: One error may occur in

response to AlBlCl , as in Table 1; the next error may occur in response to

A;B.C, as in our later example, so that Pr(H = n) must be computed separ-
ately for each case because the p; values will not be constant throughout
the experiment even though the partial relevance of any cue 1s constant.
Introduction of sampling schemes for focus samples, as in Trabasso and Bower

(1968, pp. 57-60) must receive careful mathematical analysis since this

problem of shifting p; values has not previously been noted.
6. Summary

Two methods of deriving predictions for the Trabasso and Bower multiple-
look concept identification model have been examined. A method of directly
calculating the effects of every possible stimulus sequence is practical only
for small numbers of triais'and must .- be used separately for each possible
focps sample of a given size. However, it can be employed for cases of par-
tially relevant cues, redundant relevant cues,.and a single stimlus sequence
for all subjects. This method reveals a very strong implication of the model:
Among subjects who make an'efror on some trial TO and who are correct on the
immediaﬁely subsequent trial for which the congruence must be edqual to the
number of relevant dimensions, there will be no fUrther errors. Existihg data
on this point contradicts the theory.

A matrixbméthod of proofvis applicable for all trial numbers'and is other-

Wisevcomparable to the first method. Use of the first method for»three trials

RCEES i s
e D 0

will normally be necessary to determine the appropriate transition matrix,

~ which varies from one focus sample to another.

S s R

e T —
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This paper also discusses Fisher's demonstration that certain Trabasso
and Bower equations sometimes fail to hold if p % .50 . Her conclusions
are shown to imply a general procedure for calculating the probability of a

success on Trial n given success on all previous trials since an error on

Trial O.

o ¥ e e
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Table 3
Listing of All Possible Initial Focus Samples in a Three-Dimensional

Problem with s =3 , § = A;B,C; on T, , and Dimension "A" Relevant

Focus ' No.  Rank of
Sample {s} x Permutations R Matrix
1* {Al,Al,Al} 3 1 1
o% {Bl,Bl,Bl} 0 1 2
3 {cl,cl,cl} 0 1 2
Ly {Bl,Bl,cl} 0 3 L
5 {Bl,Cl,Cl} . 0 3 L
6% (A, ,A;;B,] 2 3 3
7 (A, ,A,,C;] 2 3 3
8% {Al,Bl,Bl‘} 1 3 3
9 (A,,C,,C) 1 3 3
10% (A;,B,,C,) 1 6 4

Sum =.;;_

, *By symmetry, any unasterisked sample behaves like the
. asterisked sample above it. Only asterisked samples were
- explicitly investigated. :
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