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The Analysis of Sequential Behavior

In Classrooms and Social Environments:

Problems and Proposed Solutions

L. S. Collet M. I. Semmelt

University of Michigan Indiana University

Considerable interest is currently being evidenced toward the measure-

ment, description and understanding of complex interactive behaviors in

classrooms and other social environments. A surfeit of observer-coding

systems have been developed for the study of verbal interactions (Flanders,

1965), motor behaviors (Calloway, 1968) and cognitive behaviors (Gallagher,

1965), among others. Such schemes allow an investigator to categorize

the events being observed in a systematic fashion. Early attempts to

describe complex interactive behavior focused on the frequency with

which various categories of behavioral events occurred, and the data-

set was analyzed by computing the proportion of time spent in each category

(see Medley & Metzel, 1963). Subsequently, interest focused on methods

which retain the sequential elements of the events. Flanders (1965)

recorded observations in a matrix with row and column indices identifying

antecedent and consequent behavioral events. Hence, each cell entry is

the frequency of occurrence of a particular two-stage Markov chain. The

cell entries can be divided by the appropriate row total to obtain the

probability of one event following another.

To our knowledge, relatively few workers have gone beyond the simple

two-stage technique introduced by Flanders and his associates in applying

Markovian constructs and analytic techniques to the study of interactions
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in classrooms and other social environments. Jaffe (1968), Hertel

(1968), and Bausch (1970) have recently presented interesting applica-

tions of the Markov chain model to the analysis of sequential interactive

behavior. Kalter (1970) has presented an interesting application of the

Markov model to the assessment of intercoder reliability in sequential

analysis. Pena (1969) applied the Markov model directly to problems of

Interaction Analysis data derived from the Flanders technique. Bobbitt,

Gourevitch, Miller and Jensen (1969) have reported an interesting approach

to the analysis of the order of events over time as well as the frequency

of their occurrence.

Several methodological issues are generic to the analysis of se-

quential interactive behavior. The purpose of this paper is to discuss

what we believe to be some of the more critical problems in this are

and to recommend strategies toward their solution. Questions pertaining to

the validity and reliability of specific observer-coding systems are con-

sidered beyond the scope of this paper, although some suggestions are made

regarding the validation of categories within observation systems. Analytic

problems associated with simultaneity, segmentation and the retention of

sequence are discussed.

Issues in the Study of Sequential Behavior

Simultaneity

Most of the existing observation-coding systems assume that the

interactors (i.e. the class and teacher) behave sequentially. This is

an oversimplification since each student is obviously engaged in some

type of behavior (e.g., listening) while the teacher is "behaving" (e.g.,

lecturing). It is, therefore, desirable that a general analytic strategy
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have the capacity to deal with simultaneous coding of behavior from

several sources (Fink, 1970). Fortunately, simultaneous codings can

generally be transformed to a sequential code by creating a dummy

category system which consists of all possible combinations from the

sequential codes (e.g., pupil and teacher behavior diads). Jt is

therefore assumed that any analytic method which deals satisfactorily

with sequential coding will also be satisfactory for simultaneous

coding systems.

The Problem of Segmentation

Both Kalter (1970) and Marsden (1970) have pointed out the lack of

agreement among investigators regarding strategies for segmenting sequen-

tial behavior into units for analysis. Rules of segmentation include time-

independent systems which record only transitions from category to category

to time-dependent systems which code behavior according to fixed-interval

schedules (see Medley & Mitzel, 1963). The inadequacies of time-independent

analytic systems have been extensively discussed in the behavioral science

literature (e.g., Zimmerman, 1963; Rausch, 1970), and need not be reiterated

here. However, it has not been widely recognized that a time-dependent

unit consists of two orthogonal components: transition into a behavioral

category--the occurrence of the categorized behavior, and the duration

of the recorded episode--the time spent in the category.

The problem is best illustrated with a hypothetical data matrix.

Suppose that a twenty-minute session had been segmented using three-second

time intervals, and each segment classified as one of five mutually exclu-

sive categories of behavior. The hypothetical results are recorded in

Matrix 1 of Table 1. Assuming that behavior is constant throughout each
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three-second interval, the frequencies which would obtain using a one-

second interval are tabulated in Matrix 2. Note that the off-diagonal

cells remain constant while the diagonal elements are grossly inflated.

We further note that the transitional cell probabilities will differ

as a function of the interval size selected. Hence, transitional

probabilities must always be reported in relation to the interval selected

if misinterpretation is to be avoided.

Insert Table 1 about here

The matrices in Table 1 provide visual evidence that the diagonal

and off-diagonal elements are conceptually independent. Mathematically,

as interval size approaches zero, the diagonal entries approach time-in-

category (that is, their respective row or column totals). Since the

off-diagonal elements remain constant, there is zero correlation between

diagonal and off-diagonal elements. Therefore, the diagonal cells

(time-in-category) and off-diagonal cells (transitions from category to

category) are orthogonal.

Prima Vector um. In order to facilitate discussion of a proposed

solution strategy, we define any stream of behavior which has been segmented

into discrete categories as a primary vector (PV). As demonstrated above,

each segment of a PV has two orthogonal dimensions: rominal and temporal.

We explicitly assume that behavior is continuous. Therefore, the nominal

dimension, the advent of a specific behavior, is defined as the transition

into a category. The temporal dimension is the duration of the categorized

behavior. The analytic strategy suggested is a separate tabulation a

transitions-into-category and category duration.
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Separate tabulation does not preclude the use of equal time intervals

as a sampling device. Assuming that the coded behavior applies to the

entire interval, we record a transition each time the code changes, and

a duration equal to the number of sequential intervals (observations) is

assigned the same code. It should be pointed out that this procedure

allows us to escape the problem of non-independence associated with

fixed-time intervals. The frequency of appearance of a time-interval

unit is a function of classroom tempo and interval size. Sequential

segments are not truly independent since each unit tends to be followed

by itself--a tendency which is incredsed by slowing the classroom tempo

or reducing the interval size. Separate tabulation will permit both an

assessment of classroom tempo and comparisons of behavior samples with

tempo held constant by statistical means.

Sub-Vectors (SVs). We frequently have compelling a priori reasons to

expect changes in patterns of behavior within a primary 'vector. For ex-

ample, a typical lesson would probably exhibit different patterns during

the introduction, presentation, and summation stages. In order to facilitate

such within-group comparisons, we define a sub-vector as a sequence of

behavior within a PV. Usually, PVs will be partitioned into SVs by elapsed

time or proportion of time. However, any other method which assures

mutually exclusive sequences is perfectly acceptable. For purposes of

expositional brevity, only partition by proportion of time is considered

in the subsequent sections of this paper.

Retention of Sequence.

The fundamental purpose for analyzing sequential behavior is to dis-

cover patterns which provide a parsimonious description of PVs (i.e. samples
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of behavior) and which are sufficiently stable to permit useful dis-

criminations between samples and the prediction of future states of

PVs. In order to Oiscover patterns, mr analytic procedures must retain

the sequence of observed behaviors. Accordingly, there has been

considerable discussion in recent years oC the use of Markovian chains

in analyzing sequential interactive behavior (Flanders, 1970; Jaffe,

1968; Hertel, 1968; Pena, 1969).

Rausch (1965) provides a coherent discussion of the advantages of

a Markovian process model. He defines a process as "systematic changes

over time as the result of intrinsic relations among a set of forces."

A Markovian process then, is one which can be modeled by a finite

Markov chain. Given a measure of the contingencies among events, it

infers what will happen over time. Such a process is defined by a

transition matrix in which the cell frequencies have been divided by

the corresponding event totals to yield the probabilities of a given

category being followed by any other category. The probabilities of

longer chains can now be obtained by multiplying the) contingency proba-

bilities within the chain. It is important to note that the model

specifically assumes that "all that is reltvant for a particular state

is given by the last preceding state," or in psychological terms, "the

more distant past is contained and expressed in the last preceding event."

Rausch suggests that the advantage of the Markovian model is that it

permits the abstraction from the matrix of variables which are more

stable than those available from direct observation.

The Markovian process described above is useful for predicting future

states of the matrix, or predicting the frequency with which certain chains

7
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(patterns) wf,11 occur. It is less useful, however, if our interest is

in discovering strategies (chains of categories) for eliciting a particu-

lar response (another category). In this case, the assumption that the

event immediately preceding contains complete information is clearly

inappropriate. The point can be illustrated using empirical data pro-

'Acted by Sprague (1970). In the following example, a sixteen-category

coding system was used by the authors to code classroom verbal behavior

into six cognitive categories. based on the ?assialas (1970) system. Our

interest focused or determining strategies which would elicit hypotheses-

testing behavior in students (category 16). Since odd number categories

represent teacher behavior and even numbers represent student behavior,

we were looking for the sequences of odd numbers most likely to elicit

category 16. The matrix of transitional frequencies resulting from

the analysis was tabulated, together with the corresponding transitionaA

probabilities. We believe that the "best strategy" is unlikely to be

predicted by Rausch's method outlined above. To illustrate this point,

we have tabulated the strategies suggested by Markovian analysis with

those suggested by recording the actual occurrences of particular chains

of behavior. For convenience, we will illustrate using a five stage chain.

The best strategy according to Rausch's method can be estimated by

the most probableAarkoV chains ending in category 16. Tracing back the

highest and second highest probabilities yields the predicted chains on

the left of Table 2. The data was subsequently reanalyzed to obtain the

exact frequency of all chains. Using the exact observed frequencies to

find those sequences most likely to elicit category 16 yield the chains on

the right side of Table 2.
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The results reported in Table 2 show that in this example the

predicted chains failed to occur, yet longer chains ending in category

16 did occur. More important, however, was the fact that, on the whole,

longer antecedent:, were more likely to be followed by category 16 than

short antecedents. Empirical evidence is needed to determine the gene-

rality of this finding, the optimum length of such strategy chains, and

the relationships between chain length and the characteristics of the

category system used (e.g. number of categories). The hypothesis suggested

here is that for any given consequent within a specified category system

there exists a strategy (i.e. a chain of finite length) which regularly

and reliably yields a maximal probability of eliciting the desired

consequent. Hence, as Pena (1969) has also pointed out, the commonly

used simple two stage chain is probably an inappropriate fit for data

drawn from observation of human interactions in classroomE and other

social environments.

Insert Table 2 about here

Problems with longer chains. The decision to analyze PVs for chains

longer than those furnished by a two stage transition matrix introduces

additional problems in data reduction. A PV consisting of N segments can

contain as many as (N-1) two-category chains, (N-2) three - category chains

, and (N-K+1) K-category chains. Yet obviously a complete set of

higher order chains will contain within them all occurrences of lower

order chains. How, then, do we decide which set to use? If all possible

chains were colldcted the interpretive task would exceed that posed 'y

the initial primary vector. Consequently, heuristic strategies are needed
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for data reduction. The approaches recommended here are based on families

of chains, and the redundancy and duration threshold.

Families of chains. A family of chains is defined as a set of chains

with a common focal element. The focal element may be either a single

category or a particular finite chain. In general, an investigator's

interest will focus on either the strategies which produce a particular

focal element or the patterns of behavior which follow the occurrence of

a focal element. This suggests two types of chain families:

1. Precedent families of chains. These are chains having a

common precedent; they begin with the same focal

element (e.g. 5-11; 5-11-6; 5-11-7; 5-11-....). Pre-

cedent chains are collected and analyzed in order to

study the sequential responses which follow a given

stimulus (the focal element).

2. Consequent families of chains. These are chains with

common consequences. They end in the same focal ele-

ment (e.g. 11-5; 6-11-5;....-6-11-5). Consequent

chains are analyzed to study the strategies (sequences

of antecedent events) useful for eliciting a given

response (the focal element).

Orthogonality of familial chains. The strategy of collecting families

of chains raises the issue of orthogonality. Two chains containing identi-

cal sequences are orthogonal if, and only if, the identical elements come

from different portions of the primary vector. To illustrate, suppose

we obtain the family of precedent chains in Table 3. The frequency of

orthogonal chains may be calculated from the observed frequencies in four

steps. First the frequency of each chain is reduced by the number of times

that the chain occurs in chain e. Thus, the frequencies of chains d and

c are reduced by five and a and b by ten. The results are tabulated in
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column fde, with the subscripts de on the column title identifying the

chains which are now orthogonal. Second, we subtract from the a, b, c

frequencies the number of occurrences of that chain in chain d, and tabu-

late the results in column fde. Similarly, occurrences accounted for

by d and b are removed, with the resulting :.ompletely orthogonal frequencies

appearing in the final column,
fabcde

Insert Table 3 about here

Familial chain sets as variables. The implicit intent of the develop-

ment of families of orthogonal chains is that the entire set provides

useful means for discrimihating among groups. Heuristically useful com-

posite variables may be obtained by entering the frequencies of familial

chains as variable values, and perforMing a discriminant function analysis

to obtain the relative weightings which maximally discriminate among

groups. Subsequently, empirically validated sets of weights for particular

chain families can be used to assess experimental effects.

The heuristic procedure suggested by the concept of orthogonal fa-

milial chains is to search for only those cnains which begin or end with

pre-specified focal elements. In addition to the pre-specified familial

chains, the system should tabulate any other chains which appear likely

to provide experimentally useful discriminations or predictions. A heuristic

procedure for facilitating serendipitous discoveries is suggested by the

concept of a redundancy threshold.

Redundancy threshold (RT). The redundancy threshold (RT) is defined

as the minimum frequency of occurrence necessary for useful experimental

11



inference. In general, the RT for a particular behavioral sequence should

be high enough to permit some variance groupings of scores. Useful RTs

may be determined empirically. However, our preliminary work suggests

that a useful rule of thumb is to set RT at the number of "treatment"

combinations in the experiment. Our preliminary efforts reveal that

frequencies of one or two occur for literally thousands of chains, con-

sequently RT should never be less than three. Once RT is established,

it may be used to decide which chains to discard and which to retain.

A suggested method by which this may be accomplished is discussed in a

subsequent section.

Noise (NT). No matter how carefully planned a particular observation

system may be, there exists the possibility that one or more behavioral

categories within an observation-coding system may be non-functional.

Non-functional categories are identified by the following characteristics:

1. They do not permit useful discriminations among

groups when used unilaterally.

2. They have no effect on the sequence of events in

which they are imbedded. For example, if category

10 were non-functional the sequences (3-9-3),

(3-9-10-3), and (3-10-9-10-3) would be functionally

identical.

We propose that all categories which do not meet the two criteria

above be collapsed to a single category defined as noise in the system

(NT). The noise category would be included in the usual summary statistics

(frequency of appearance, percent of time accounted for, etc.), but would

be ignored in the chain analysis. Operational definitions for application

of the criteria for non-functionality are suggested in the proposed analytic

procedure summarized below.
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Duration threshold (DT). The relationship of the RT and the concept

of noise in an observation-coding system is of special significance.

Obviously, categories with low empirical frequencies will enter into

sequences to produce low redundancy chains. However, it is possible

that a category which has a loW frequency uf occurrence in a primary

vector may have a high duration, thus accounting for a significant pro-

portion of the time dimension. Low redundancy is a necessary but not a

sufficient condition for classifying a set of behaviors as noise. It

is therefore necessary to intrdduce the notion of a duration threshold

(DT). DT is defined as the minimum proportion of time which a category

must account for in order to be experimentally useful and psychologically

meaningful.

We can now express through mathematical set notation that the primary

vector may be partitioned according to formula (1) where PV is the primary

(i)la {S (fc > RT) or (Pt > DT)}(){NT} (1)

vector, S is a behavioral segment in the vector, fc is the frequency of

occurrence for the category to which the segment belongs, RT is the re-

dundancy threshold, Pt is the proportion of time accounted for by the

category, DT is the duration threshold, and NT is noise. Thus, categories

are retained if either the frequency or the proportion of time accounted

for reach their respective threshold; only if the category fails both

tests is it transferred to NT. The ratio of "noise" to "meaningful" be-

havioral categories may be an important criterion for determining the

appropriateness of specific observation systems for characterizing specific

interactive behaviors ih different social contexts.

13
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It should be noted that the use of RT and DT is consistent with the

goal of parsimonious description of PV. We recognize that it is sometimes

the case that an investigator is interested in the presence of rare events

and/or events of limited duration. In such cases, RT and DT may equal

zero in which case all categories within a system would maintain their

identity and effects in the analysis of chains.

Just as some behavior categories within a system may be revealed

to contribute little toward a parsimonious description of PVs, so it

is possible that certain categories are too inclusive and lack precision

in their descriptive power. Such categories account for too much of

the PV data. It should be a rather simple matter to follow a strategy

for determining over-inclusiveness of categories which parallels our

suggested approach to overly exclusive (noise) categories. Hence, we

believe that the general conceptual strategy presented here may have

significant implications for both the construction of valid observation

systems and the analysis of the sequential interaction data that such

systems yield.

A Proposed Analytic Procedure

In order to assure that the strategies recommended here are feasible

in terms of both cost and the prerequisite computer hardware, a computer

program, consistent with the principles outlined in this paper, was de-

veloped and tested. In the interests of clarity and precision, the remainder

of this section will consist of a brief description of the prototype. A

technical description is available from the first author on requests

14
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Program CHAINwas constructed to analyze data from observation

systems composed of up to ninety-nine different behavioral categories.

Category names may he numeric, alphabetical or any alphanumeric combination

provided no more than four characters are used for any one name (e.g.

A34, B-3, 1.23, etc.). The computer assigns each of the category names

a numeric code (1-99) which is used as an index for computing frequencies,

time in category, and the like. The coded data is then stored on a

scratch file for subsequent chain analysis.

The present program analysis consists of two phases: category

validation and chain analysis. During the category validation phase, the

frequency of occurrence of each category and the matrix of frequencies

for category-to-category transitions (two-stage chains) are recorded.

In addition, the sums and sums of squares of time-in-category are accumu-

lated and subsequently used to compute means and standard deviations.

At the users option any subset of these summary statistics may be printed

for:

1. Primary vectors (PVs) such as a single complete

class or lesson. Any number of PVs may be included

in an analysis.

2. Sub-vectors (SVs) within PVs. An example of SVs

might be the introduction, body, and summation within

each lesson. The program accommodates up to five SVs

per PV.

3. SVs summed over PVs.

4. Grand totals computed over the entire experiment.

Prior to the application of the RT and DT criteria, the program

assessed each category's capacity to discriminate by computing the analysis
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of variance F ratios to test the SV and PV effects for two dependent

variables: (1) frequency-of-occurrence, and (2) time-in-category. The

exact probability of each F ratio is then calculated and compared with

a minimal alpha level which may be specified by the user. Since our

primary concern is to retain any categories which provide useful dis-

criminations, the level would normally be set relatively high (a > .10)

in order to minimize type two errors. Categories which fail to produce

significant F ratios are subsequently tested against the user-prescribed

RT and DT levels. If both these tests fail (i.e. if the observed fre-

quency is less than RT and the proportion of time accounted for is less

than DT) the category is listed as noise in the system. The program then

prints out the obtained F values, the probability of each F, and the

list of noise categories. At this point the categories listed as noise

are normally collapsed into a single composite category and the summary

statistics for noise computed and printed. However, the user has the

option of overriding the computer decision and retaining any "noise"

categories which he considers indispensible.

The second phase of the program is concerned with the tabulation of

recurring sequences of behavior which have experimental interest to the

user. For example, the familial chains to be collected may be defined

by entering the appropriate sets of precedent categories (stimuli) and

consequent categories (responses) to be traced. Since users will seldom

be interested in a chain which occurs only once or twice in an entire

experiment, the program also allows a redundancy threshold for familial

chains (RTF)- to-be specified. The program will record .a particular chain

if and only if each component transition obtained a grand frequency > RTF

in the first phase of the analysis.

16
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Identifying chains. Assume that an eight-category system has been

used to segment a stream of behavior into the sequence illustrated in

Table 4, and that the Phase I analysis has established the transitional

frequencies listed below the vector. Thus, we see that the transition

from E to G occurred twice in the initial analysis, the G to A transition

occurred eight times, and so on. Suppose that this sequence is to be

analyzed for "interesting" chains according to the following criteria:

precedents * (A), consequents = (B, C }, RTF = 3, and RTS - 7.

Insert Table 4 about here

Analysis proceeds by testing possible chains, from left to right,

against the criteria above. The testing procedure is defined by the flow

chart in Figure 1. Using Table 4 data to illustrate, the first possible

chain is (EG). However, the frequency of the (EG) transition is less

than RTF. Therefore, no "interesting" chain could possibly be formed

from EG, and the computer moves to the (GA) chain. Since the GA transition

is greater than RTF, it is retained as a transitional element. But the

GA chain per se will be recorded only if it qualifies as a precedent

chain, a consequent chain, or a serendipitous chain. In this case, the

first two tests fail, but the frequency of the GA transition exceeded

RTS--the redundancy threshold for serendipitous chains. Therefore, GA

was recorded as a serendipitous chain.

The succeeding transition in the PV is now examined. It will be

added to the existing chain whenever its observed frequency is greater

than RTF. In our example, the chain GAD is the result. This chain does

not begin with a specified precedent nor end with a specified consequent,

and the observed frequency of the AD transition was less than RTS.

17
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Therefore GAD was not a recorded chain, but the sequence was retained

as part of a possibly "interesting" longer chain. In the example the

addition of the next transition formed GADC, which was recorded as a

consequent chain. The program continues to form new chains by adding

succeeding transitions until either the chain length reaches its maxi-

mum (maximums up to 8 may be specified), or a transitional frequency

less than RTF is encountered. In the example, GADC is the longest

"interesting" G chain formed because of the low CA frequency. At this

point the chain is erased and analysis recycles with (A) as the first

element in the chain. The results of the completed analysis for the

exemplary data appear in Table 5.

Insert Figure 1 about here

Insert Table 5 about here

Orthogonality. At the option of the user, a subprogram calculates

the orthogonal frequencies within each family of chains. For this purpose,

serendipitous chains may be formed into either precedent or consequent

families, or both. Note that the program does not remove any between-

family overlap.

Output. The output of program CHAIN consists of alist of chains and

their respective observed and orthogonal frequencies for each grouping

specified by the user. As in Phase I, users may request groupings by:

1. Primary vectors

2. Sub-vectors within primary vectors

18
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3. Sub-vectors summed over primary vectors

4. Grand totals

Storage Strategies. The inverval storage of chains may be envisaged

as three lists similar to those in Table 3. Note that for each chain we

must record two elements: (1) the name of the chain (i.e., the sequence

of categories) and (2) the frequency with which that chain occurred. In

order to permit more categories (up to 99) each category is represented

internally by a two digit number (e.g. 01 = A, 02 = B etc.). Chains are

named by a single sixteen-digit number formed by the concatenation of

the component categories with double zeroes representing blanks. Thus

GA becomes 0701000000000000, and AFGDEBEC becomes 0106070405020503. As

each new chain is identified by the analysis, the computer must search

through memory for a similar chain. If one is found, the frequency is

increased by 1; if not, the chain name is recorded and its frequency set

equal to 1.

Despite the data reduction achieved by recording only "interesting"

chains, it is obvious that hundreds or even thousands of different chains

may be encountered--especially in systems employing a large number of

behavioral categories. A complete search of memory for each new chain

would be prohibitively costly. Consequently, chains are stored in numerilal

order and a record is kept of the position of the first occurrence of

each category as the initial element in a chain. Thus the computer search

is limited to those chains having the same initial element as the chain

to be stored. Preliminary results indicate that this strategy provides

economical analysis for systems having as many as 99 behavioral categories.

19
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Time In Chains. The proportion of time accounted for by any given

chain within any given grouping can be estimated using the appropriate

means and standard deviations obtained in Phase I of the analysis. Simi-

larly, one can compare the times associated with particular families of

chains across groupings.

Analysis of CHAIN Output. At the present time we have insufficient

experience with the analysis of chains to offer any definitive emulative

conclusions relative to the value of our technique. We have, therefore,

chosen to conclude this presentation by raising two questions and possible

strategies relative to the development of analytic procedures for future

work in this area.

First, is it appropriate to ask if there is a point of diminishing

returns with respect to the length of chains which are experimentally

useful and psychologically meaningful? Intuitively, we would expect

this point to be reached at about four or five elements--this corresponds

to the number of moves ahead planned by a better-than-average chess player.

Some useful information relative to this question might be gained by

performing a multiple discriminate function analysis using an appropriate

familial chain as the dependent variable. In the absence of a priori

evidence for groupings of PVs (or SVs), one might first perform a cluster

analysis in order to identify groups with common patterns of chain fre-

quencies. The discriminant function analyses could then be based on the

clusters obtained. In either case, the chain weightings obtained for

'various families of chains could be analyzed for a functional relationship

with the number of elements in the chain.
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Finally, it appears worthwhile to speculate how we might use

chains to identify strategies or environments (Hunt, 1966) to elicit

specific behaviors. A two-phase study design appears necessary to pursue

this issue. First, we might identify promising strategy chains. A

complete set of strategy chains, for a give.; -.3xperiment, may be obtained

by deleting the last element from all consequent chains which end in

the behaviors (category) of interest. The frequencies of these chains

together with the remaining "interesting" chains may then be entered as

predictors of the frequency of the desired category. The extent to which

the various chains contribute to this prediction can be used to select

the set of promising strategies for the second phase. Note that promising

strategies are not restricted to the strategy chains identified above.

Some of the serendipitous chains may prove to be important predictor

and/or moderator variables. The second phase of the investigation might

consist of an experimental assessment of the relative merits of the

various strategies; existing research procedures appear entirely adequate

for this purpose.

In conclusion, we have presented a tentative theoretical model for

the analysis of sequential behavior in classrooms and other social

environments. We have outlined a preliminary operational technique derived

from several of the major constructs presented which we feel supports the

heuristic merits of the model. Undoubtedly, future developmental and

research efforts will produce data leading to appropriate modifications

in our present theoretical position.
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Table 1

Summary Matrices Obtained Using Two Different
Fixed Time Intervals

Matrix 1: Three Second Interval

Consequent Behavior (R)

1

2

3

4

5

1 2 3 4 5 Sum

(SO) 1 10 5 28 94

25 (65) 5 10 10 115

8 22 (35) 10 0 75

3 11 15 (60) 3 92

8 16 10 7 (40) 81

94 115 75 92 81 457

Matrix 2: One-Second Intervals

Consequent Behavior (R)

1

2

3

4

5

1 2 3 4 5 Sum

(238) 1 10 5 28 282

25 (29S) 5 10 10 345

8 22 (185) 10 0 225

3 11 15 (244) 3 276

8 16 10 7(201 243

282 345 225 276 243 1371
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Table 2

Comparison of Observed Strategy Chains With Markovian Chains
Predicted From The Transitional Probabilities

Markovian Prediction Direct Observation

Theoretical
Rank Chain

Obs
f

Obs
P(16)

Theoretical
Rank Chain

Obs
f

Obs
P(16)

Two-category chains

First 5-16 18 .67 First 5-16 18 .670

Second 3-16 5 .18 Second 3-16 5 .180

Three-category chains

First 11-5-16 1 .09 First 3-5-16 6 .5625

Second 1-5-16 0 .000 Second 5-3-16 5 .5555

Four-category chains

First 3-11-5-16 0 .000 First 11-3-5-16 4 .800

Second 11-5-7,-16 0 .000 Second 7-11-3-16 3 .600

Five-category chains

First 5-3-11-5-16 0 .000 First. 5-11-3-5-16 4 1.000

Second 3-11-5-3-16 0 .000 Second 5-7-11-3-16 2 .667
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Table 3

Obtaining Orthogonal Chain Frequencies

Chain

Observed

f

Orthogonal Frequencies

f
de

f
cde

f
bcde

f
abcde

a. 1-2 23 13 11 10 7

b. 1-2-5 1S 5 4 3 3

c. 1-2-5-1 7 2 1 1 1

d. 1-2-5-1-2 6 1 1 1 1

e. 1-2-5-1-2-5 S 5 5 5 5
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Table 4

A ample of Behavior Which Has Been Segmented By An Eight-
Category System. Transitional Frequencies (Second Row)

Were Obtained From Phase 1 of the Analysis

PV (Sequence of Events): E-G-A-D-C-A-F-G-D-E-B-E-C-A-D-C . . . .

Frequency of Transitions: 2 8 6 3 2 6 9 8 7 6 4 5 2 6 3



Table 5

Results of Chain Analysis of Table 4 Data

Precedent Chains f Consequent Chains f Serendi itous Chains

AD 2 GADC 1 FG 1

ADC 2 ADC 2 FGD 1

AF 1 DC 2 FGDE 1

AFG 1 AFGDEBEd 1 GD 1

AFGD 1 FGDEBEd 1 GDE 1

AFGDEB 1 GDEBEC 1 DE 1

AFGDEBE 1 DEBEC 1

AFGDEBEC 1 EBEC 1

BEC 1

EC 1
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set n = o
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chain=pv(n)
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