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FINDING POINTS OF VIEW IN JUDGMENT DATA

Roger Pennell
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Abstract

It is argued that many investigators utilize the Tucker and Messick

(1963) Model with no intention of looking for individual differences or,

after utilizing the model, draw improper inferences. An example is given

illustrating the difficulties which result from improper use of the model.

Several proper methods are outlined.
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I. Introduction

It certainly must be argued that the availability of computers to

experimenters in the behavioral sciences provides the capability for much

finer and much more thorough data analyses. With the myriad of multivariate

procedures which are more or less routinely implemented on our computers an

investigator finds himself confronted with a large number of tacks he might

take to evaluate his experimental hypothesis. Often, however, the investi-

gator shortchanges himself by utilizing the most exotic of procedures. The

case in point is the model by Tucker and Messick (1963), henceforth TM, to

analyze a data matrix of p judgments by N subjects into components

accounting for subject variance and components accounting for judgment vari-

ance. Whereas before, one could only wonder about individual differences

that were known to exist in a sample of subjects, one now had a procedure to

isolate the components of these individual differences. Whereas before, one

analyzed the mean judgment (or every subject's set of judgments separately)

the sample could be partitioned into groups giving more or less homogeneous

responses.

The thesis propounded in this paper is, first, that investigators tend

to have misconceptions concerning the model, and second (not necessarily as

a result of the first), investigators tend to misuse the model. In order to

operate on common ground let us digress and indicate the exact model.
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The most common utilization of the TM model occurs when an investigator

has obtained n(n - 1)/2 = p judgments on all pairs of n stimuli for each

of N subjects. This generates the p x N data matrix X assumed to have

the following form:

(1) X = UGW

where U contains the column-wise eigenvectors of XX' , W contains the

row-wise eigenvectors of X'X , and G is a diagonal matrix containing the

positive square roots of the eigenvalues of either XX' or X'X .

Due to a theorem by Eckart and Young (1936) we know that for any arbi-

trary reik r we necessarily produce a least squares approximation to X by

( 2 ) X =UGW
r r r r

where Xr is least squares, rank-r approximation to X , Ur contains the

first r columns of U , W
r

the first r rows of W and G
r

the first

r rows and columns of G . The experimenter usually chooses r by one or

another subjective procedure aimed at finding the minimum "significant"

number of components needed in the model. At this point Tucker and Messick

state that the elements in U
r

represent projections of stimulus pairs on

unit length principal vectors of X , the elements of W represent projections

of people on the unit length principal vectors of X and that, further, each

column of U represents a set of distance measures for the set of p judgments.

We can now, for instance, absorb Gr into Ur and Wr and produce a trans-

formation on W
r

, say T , that is more psychologically pleasing than the

principal vector orientation and still preserve the form of the model as
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1
1

X
r

= (U
r r r
G2T )(TG2W

r
) = YZ .

Perhaps the most interesting notion that TM develop is that of an

idealized individual. Since the columns of Z represent projections of

people on r rotated dimensions, it is clear that we may append any number

of additional columns (representing imagined or idealized individuals), say

m of them, on to the end of Z and after premultiplying by Y , our matrix

X
r

will be P by N + m where the last m columns represent judgments

made by idealized individuals. As such these judgments may be analyzed by

one or another multidimensional scaling routine to obtain the underlying

structure of the stimuli as they appear to the idealized individuals.

We shall proceed in three phases: to show two common misuses of the

model; to use a set of artificial data to show that incorrect interpretations

are a result of these misuses; and to illustrate the proper approach to analyz-

ing such dava.

II. Misuses of the Model

TM state that one should expect the first component of U to be highly

correlated with the mean judgment, which brings us to our first point. Knowing

that the first component of U essentially represents a set of mean judgments,

some investigators apply the TM point-of-view routine with no intention of

searching for individut 1 differences in their data. With some phrase like

"the pattern of eigenroots was inspected and it was decided that one component

was sufficient to ...," they could analyze the distance from only the first

component and simultaneously report the utilization of a fancy multivariate



procedure. It is argued that this procedure is wrong for three reasons:

(a) The rationale for selecting only one component is usually related to the

very large size of the first eigenroot. It was clearly stated in the TM

paper that we should expect the first eigenroot to be large (due to choosing

not to eliminate means variance by row-centering) and that this state of

affairs is totally independent of whether or not individual differences exist.

(b) Only in the most uninteresting of cases (certainly null) is it tenable

to assert that there exist no consistent, identifiable characteristics of

subjects which produce intersubject variance. (c) Granted that we have

rightly or wrongly decided to eliminate considerations of individual differ-

ences, why use the elements of an eigenvector to represent distance measures

when we can put our feet on the ground with actual means with known sampling

properties?

The second area of conceptual difficulty centers around the notion that

the deccmposition in (2) provides us with individual points of view, or

:.ndividual sets of distance measures which can each be analyzed to obtain

representative stimuli configurations. No matter whether one considers Ur

or Y , the column wise elements are not in general all positive and therefore

do not even possess the elementary property of distances: nonnegativeness.

Some would argue that a set of distances both positive and negative simply

constitutes an "additive constant" problem; however, this author has had

little interpretive success upon scaling such numbers based )11 this premise.

A helpful heuristic in conceptualizing the subject space is to consider

it made up of a large number of directions. As we move along some particular

direction some facet of stimulus relationships changes in a consistent fashion.

As an example, subjects closer to the origin in a particular direction might



-5-

perceive stimulus i and j to be clocer together than subjects farther

from the origin in this same direction. Were we to pick a point in the space,

multiply through its coordinates to get an idealized set of distances and

find that some of these distances were negative, we should be satisfied that

we have chosen an idealized subject that we could never, even theoretically,

observe. This is so btcause he ;erceives two or more stimuli as being so

close together that their distance is negative. It seems at best fatuous

analyze distances from a sLbject who is theoretically not observable. Further-

more, taking, say, the i -th column of Ur as a set of distance measures is

equivalent to utilizing the one-dimensional centroid (mean) of the correspond-

ing i -th subject component from Wr . That is to say, this is one way of

idealizing the i -th component of subject variance. But, indeed, this is the

height of absurdity unless there exist subjects with high scores on the i -th

component of Wr and essentially zero scores on all other components. If this

is not the case, we are implicitl:r embracing a model which says that the way in

which subjects make judgments about stimuli can be viewed as a multidimensional

process, and that we are interested in one dimension of that process even though

it produces judgments not at all like the judgments actually 'lade. For this

reason the statement made by TM: "These stimulus-pair projections, when ...

rotated to orientations possibly more appropriate psychologically than the

principal-axes position, will constitute measures of distance between pairs

of stimuli" (Tucker & Messick, 1963, p. 29), is simply not worded strongly

enough, i.e., we must isolate dimensions, by means of rotation, which pass

through clusters of real subjects, and, as such, generate an essentially

"simple structure" space for subjects.
2

Without this we embrace the somewhat

bizarre model alluded to above. We shall delay this point until the example
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which follows and acknowledge that Cliff (1968) has cogently argued a

rather similar point.

III. Example

As an example we shall consider a fictitious set of data in which rather

extreme points of view actually exist. We shall generate points of view by

concocting four ways in which a set of two-dimensional stimuli might be "con-

ceptualized"by hypothetical subjects. Figure la represents a standard con-

ceptualization, lb and lc represent subjects that use either the first dimension

or the second, but not both, ld represents a uniform contraction of the la

space. This example is 'lightly extreme, but it is not hard to imagine a

population of subjects that differ in their perceptions of a set of stimuli

along the lines of Figure 1. The four sets of interpoint distances corresponding

to the four points of view about the stimuli were computed, and an additional

sample of four subjects was generated for each of the points of view by adding

randr,41 noise distributed as N(0.5) to each "true" interpoint distance. This

generates the matrix X as p = 28 and N = 20 (five subjects for eatth point

of view). X was decomposed by (1) and (2) taking r = 4 . The elements of G

were 1070.79, 455.34, 10.57, 7.12, 6.61, 4.21, 3.28, 2.89, 2.66, 2.49, 2.28,

1.90, 1.78, 1.57, 1.33, 1.17, .87, .77, .67, .56. If these roots were derived

from exploratory data, one would surely not take more than three components;

on the other hand, one should not conclude that there is only one point of

view merely because them is one enormously large root. Presumably there

appear to be only three points of view because the first and last population

points of view are so similar.

Insert Figure 1 about here
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What happens if we decide to use the elements of the first cigenvector

of U
r

as measures of the interpoint distances of the eight points? We can

get a feeling for what kind of configuration we are going to obtain by consider-

ing the correlation of this vector with the four sets of true interpoint

distances obtained from Figure 1. The correlaticns in order are .97'17, .8852,

.3325, and .9367; the multiple correlation between the four sets of distances

and the first vector is .9999. It seems clear that the set of interpoint

distances we are considering scaling (the first eigenvector of Ur ) is

exactly a linear combination of the distances we sheald be concerned with

(the true distances) but is imperfectly correlated with any one of them, i.e.,

the first eigenvector of Ur is a figment of our imagination and represents

no empirical state of affairs whatsoever.

Results such as obtained from our first eigenvector of Ur make evident

the folly of the "normative" approach to research in the behavioral sciences.

Indeed, what good is it to "predict and control" behavior of a normed non-

existent entity? Clearly we can discard the "first eigenvector" approach to

resolving the data matrix.

What of the second, third and fourth eigenvectors of Ur , is there any

hope of finding a correspondence with the original set of distances? Table 1

presents a rectangular correlation matrix where rows represent the last three

eigenvectors of Ur and columns represent the four sets of interpoint distances

from Figure 1. Here it looks like the second vector is a bipolar representation

of the second and third viewpoints; however, the other viewpoints are not

evident. In any CE.9 we should expect a virtually unconditional identification

since we started from concocted data, and the results in Table 1 do not afford
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such identification. In no case can we hope to recover configurations of

stimuli like those in Figure 1, even though we know them to be present, from

the last three vectors of U
r

.

Insert Table 1 about here

IV. Admissible Sets of Distances

In our case neither rules of thumb nor orthogonal rotations will yield

an admissible set of distances - -a set which correlates almost perfectly with

the original set, and which, therefore, affords the possibility of recovering

the exact configurations of stimuli. We have to simply look at the data (Wr)

and observe that there are four clusters of points (subjects) lying on obliquely

related axes. The problem can cse attacked in either of two ways. We can,

as Cliff (1968) suggests, merely read off the centroids of those four cluster:,

array each centroid as a column in, say, D , and produce

X*
r
= U

r
G
r
D ,

where X* represents judgments of distance made by four idealized individuals.

Note that this essentially averaging process (in computing the centroids) is

not subject to the same philosophical criticism as using a mean vector to

represent the judgments of all the subjects Here we have presum-ably isolated the

components of individual differences, and, as well, groups of subjects that

consistently respond alike. We can therefore argue that using centroids is a

very natural way to deal with the measurement error that we expect.
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A second way to attack the problem, based on our knowledge of which

subjects belong to which groups, is to produce a pattern matrix, P ,

representing group membership. In this case the matrix would be N x 4 and

the i -th row would contain a 1 in the column representing the group to

which the i -th subject belongs and a 0 in all other columns. The matrix

to use in (4), D* say, is then found to be

(5) D* = PW;(WrW;)-1Wr ,

or

(5a) D* = PW
r r
'W

since W W' = I. Note that PW' = T from (3) and that one obtains the
r r

distances corresponding to the groups from the matrix Y.

Using this approach on our artificial data the distances in the columns

of Y have correlations of .994, .992, 1.00 and .972 with the respective

original distances. Clearly, if our scaling algorithm is sufficiently precise,

we can be confident of retrieving the input configurations.

The method utilizing the D* matrix is possibly the most versatile in

practice. If the number of groups is large we need not go to the trouble to

plot subject points and gauge the extent to which they cluster, rather we

need only gauge the extent of agreement between P and D*. The extent to

which they agree reflects the extent to which we have been able to find a

nonrigid rotation of the subject axes such that they pass through clusters

of actual subjects. Here we would be willing to tolerate small negative

values in Y as long as the fit between D* and P was quite good.
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It should be noted that using this approach we are strictly unable to

locate a number of groups, say g , which is less than r . This is the

case because what we need is the left-hand inverse of T , which doesn't exist

when g is less than r . In our example the four groups fell out rather

nicely because they were the four salient components of subject variance and

therefore came out as mixtures of the first four principal components. The

initially appealing idea of taking r to be large, perhaps the full set of

components, and trying to find,say,two components representing male judgments

and female judgments is, for the above reason, doomed to fail. If we take

only two components, r = 2 , and thus ensure g not less than r , we are

most unlikely to have these two components represent any mixture of sex

variance whatsoever, i.e., it would be extremely unlikely that sex differences

would be prominent enough to come out as the first two components unless the

experimental task was explicitly designed to contrast sex differences.

It should be pointed out that the rather typical problem in these types

of analyses, especially when the sample of subjects is large, is that when

trying to plot the subject points in r -dimensional space we find one

large, irregularly shaped cluster of points. Using the rationale developed

to this point one clearly proceeds along one of two lines: Decide that the

individual differences are uninteresting or at least unsystematic and there-

fore compute mean judgments and scale those, or take the judgments of these

subjects who seem to span the cluster of subject points and scale each in

turn. One thereby determines how internalized representations of the stimuli

vary as the range of individual differences contained in the sample is spanned.



V. Summary

We have tried to argue that simplistic and/or heuristic approaches to

the TM model are often inadequate. In particular, there is apparently little

to recommend the utilization of the first eigenvector as a set of distance

judgments.
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Footnotes

The author is indebted to Robert Weber, Cornell University, for

performing the necessary computer programing.

2
This is not to say that one may not eliminate the rotation problem

altogether by choosing interesting points corresponding to idealized individ-

uals.

5
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Table 1

Correlations between Eigenvectors of

U
r

and Original Distances, D

D1 DD2 D3 D4

U2 -.2215 -.7288 .7826 -.2793

U3 -.01467 -.0913 -.0961 .2096

U4 .1167 .1827 .1874 .3205

1 o0
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Figure Caption

Fig. 1. Four hypothetical "conceptualizations" about 8 stimuli in 2-space.

7
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