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Abstract

Given that we collect observations A.P.
j

from two perfectly crossed

factors we may be interested in fitting a model such as f(AiPj) = ai Si .

An iterative method for computing the scale values ai and and the

function f is developed. The procedure is relevant to problems of finding

monotonic transformations eliminating interaction effects preceding analysis

of variance and to the classical conjoint measurement model.
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I. INTRODUCTION

When conjoint measurement was finally exposited in its complete or

nearly complete form by Luce and lukey in 1964, it was heralded by many

as the panacea for measurement problems in the behavioral sciences. If

not a panacea, certainly the forerunner of an axiomatized, complete measure-

ment system. Indeed certain refinements, simplifications and generalizations

followed (Scott, 1964; Krantz, 1964; Roskies, 1965), but the utilization of

CM as a tool for research in the behavioral sciences didn't. The reasons

for this lack of enthusiasm by the researcher in the field are complex, but

probably include the following: (1) only the most sophisticated of readers

could wade through the myriad of involved axioms and theorems;(2) the how to

do it part of the model was by and large lacking. It is the second diffi-

culty to which this paper hopes to make a modest contribution.

CM, as expounded by Luce and Tukey, assumes two sets of "events" or

factors, A and P and a weak ordering
1

( < ) on A x P , where A x P

is the cartesian product of A and P . This is most easily understood

in an analysis of variance context where we have two perfectly crossed

factors A. and P. where i = 1,2,...,n , j = 1,2,...,m , m,n > 2 ,

and we make observations, or record responses, on each of the cells in the

design AiPj . We can then generate a weak ordering by lining up the cells,
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the A.P
j

, in a nonincreasing sequence. Given this, and certain other

conditions discussed below, the axioms assert that there exists three

functions cl) , 0 , and A such that

(1) (p(A x P) = 8(A) + A(P) .

That is, there exist functions which will transform the observations, or

responses, and the sets of events, A and P , such that we generate an

additive model. In the analysis of variance context, we have found a

transformation which permits us to disregard the interaction term and speak

of a completely additive model of main effects.

Besides the axiom concerning a weak ordering certain other conditions

must be met for (1) to be obtainable: (a) the levels of the factors must

be sufficiently finely graded such that for any AiPj and Ak for i k

there exists a P2, such that AiPj = AkP2, (b) given a set of observations

A x P it is necessary that the data conform to certain, essentially transi-

tivity requirements. Formally, given Ai,AvAk and Pst,Pm,Pn ,

A.P
m

> A P
n

and AjP2, >_AkPm implies AiPt iAkPn , and (c) an archimedean

2
axiom for ordered sets.

In practice the weak ordering conditions are easy to verify on an empir-

ical set of data; however, the additional conditions enumerated above are

not routinely verifiable. Even if we are able to apply the axioms tc a

finite set of data and deduce that the data do not conform to the axioms,

we cannot conclude that an additive representation does not exist, since

the axioms of CM are merely sufficient, not necessary. Zinnes (1969)

points out another difficulty: we, quite naturally, can't expect the axioms

to hold exactly, thus how close do they have to be before we accept them as

4



being satisfied? There is as yet no statistical theory for determining

the goodness of fit of the data to the axioms.

This paper will outline a straightforward approach to achieving CM

largely in the context of analysis of variance. The approach may fail for

some particular data set in hand; however, from the results decisions can

be made as to the utility of the additive representation obtained.

In analysis of variance transformations of the data are almost never

for reasons other than achieving homogeneity of variance. Finding a trans-

formation that will yield some model as a strictly additive function of the

main effects and an error term, thus eliminating an interaction effect, is

rarely considered, even though the existence of such an interaction effect

may simply be a result of the scale upon which the factors were measured. In

any case a transformation is considered admissible only if it is monotonic,

thus preserving the ordering of the cell means. We shall deal with the most

general class of monotone functions for achieving an additive representation.

Shepard (1962) was the first to explicitly state the notion of nonmetric

monotonicity as a criterion for admissible transformations of observed data.

That is, a transformation is considered admissible only if the ordinal proper-

ties of the original data are maintained after transformation. Certainly

in the context of analysis of variance, it is inconceivable to consider

transformations which may invert the order of the cell means (Winer, 1962).

Kruskal (1964a, 1964b) implemented She,ard's original notions into a

powerful algorithm for resolving a set of data into its dimensional com-

ponents. The crux of Kruskal's program is the generation of a monotone

regression of reproduced data on original data. At each step in the program

the data points, in a space of given dimensionality, are altered slightly



to maximize this regression. Since only the ordinal characteristics of

the original data are of interest (more appropriately, the ordinal rela-

tions are the maximal information obtainable), we can't strictly talk of

maximizing a regression (that is, doing arithmetic on ordinal numbers).

Thus, Kruskal essentially discards the original data while preserving only

its rank ordering. Symbolically given a sequence of data D = {d.}
N

i=1

let o be a permutation of the first N integers such that

do(1) > d
0(2)

> > d
a(N)

. The function, o , is the only characteris-

tictic of the data retained. The monotone regression problem is then solved

by applying the same function to the reproduced data and seeking a parti-

tion which renders it also nonincreasing. For details of this procedure

see Kruskal (1964b).

II. METHOD

We shall use essentially the same approach in finding a transformation,

f(A.P.j ) , which is exactly monotonically related to the original AiPj .

Explicitly we shall try to fit a model of the form

(2) f(A.P
j

) = a. + 8
j

+ E
Ei j

To do this we shall use a measure similar to Kruskal's stress, S :

(3)

n m n m
S = [ e2 / E E (a. + 8.)2]1/2

1=1 j=1
ij

1=1 j=1 1 j

Minimizing (3) is equivalent to finding a set of ai and 8j which repro-

duce, in an additive fashion, a transformation of the original data. We

m
shall assume, without loss of generality, that E 8 = 0 . Taking the

j=1
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partial derivative of (3) with respect to the ai and 6 , and noting

that minimizing S is equivalent to minimizing S2 we obtain

(14a)

(4b)

as2

as
- mKa

v
- K E f(A

i
P
j

) - mLa
v

= 0

v j=1

as2
n

:16
- = K)[ E a. + ] - L f(A.P ) = 0 ,

1=11:-1 1
1 j

n m n m
where K = E E and L = E E (a. + f3)2 . Since equation (4)

1=1 j=1 i=1 jz-1 1 J

is a rather complicated quadratic we choose to use a gradient method

(Kunz, 1957) in order to minimize 3S2/lav and 3S2/3N, . That is to say,

given a set of initial approximations to start the process, say ai0
and

P.jo,theestimatesofthefinala.and f3j after the k -th iteration

will be

( 5 ) - Xa
ik

=
aik-1 la

ik-1

as2

as2

jk
=

jX-1
A

3
aik-1

As an aside we can note that heuristically one can picture (5) as

hunting in a space of nm dimensions (the parameter space of ai s and

13. s) for a point providing a minimum for S . We can consider the point

having coordinates a
i0

, i = 1,2,...,n , f3j0 , j = 1,2,...,m as lying

on a hypersurface of constant So . By evaluating (5) we move in a direction

perpendicular to the hypersurface, inward towards the point S . We move

inward until we just graze another hypersurface of constant, say Si ,

reevaluate (4) and again move inward toward S . Ultimately the process

should converge to a minimum for S .
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We need to estimate two quantities in order to proceed. First, it

would be helpful to hive a reasonable first approximation to the final

solution for the a
i

and . We should be. able to obtain such an approx-

imation by assuming the (Ail)) are additive and letting aio and 6
J0

correspond to the least squares estimates

(6a)

(6b)

a
JO

=
r E (A

i

P ) - C
I J=1

1 m
a
JO m

= E (A
i
P )

j
i=1

where C represents the average a effect.

The second quantity we need is A , commcnly known as the step size.

In our case it is rather simple to compute if we observe that for any iter-

ation, k + 1 , we are trying to find a A which makes

n m n m
a

(7) E E
E1 3a

as2

= E E (a - A +
j

- A
s2

- f(A.P ))2
1j

ik
a
jk

1 j

= KS = T

as small as possiele. Thus, the needed value of :x is given by dT/dA = 0 ,

or,droppingtheit.erationsubscriptsandlettingV.1 =3S2/3a.
1

and

Q = as2/aa
'

(8) a =

n n m m n m n m n m
mEa.V.+E E a.Q +nE8Q+E EaV.-E E f(A.P )V.-E E f(A.P )Q.

1 1
1

jj ji 1 j 1 1 j j
i=1 i=lj=1 j=1 i=1.1=1 i=1.1=1 i=1.1=1 .

n n m m

m E V? + 2E EQV. +nE2
1 j 1

Qj

i=1 i=1 J=1 J=1



-

In summary, given a set of data to be measured conjointly we (1) string,

the data out in a vector (for instance, take each column, one at a time, and

string it into a single vector) and find the function o , (2) find the

initial approximations aio and Ojo , (3) string the numbers aio sic) ,

i = 1,2,...,n , j = 1,2,...,m , into similarly arranged vecnor as in step 1

and apply the function o , (4) find the function f , (5) solve equations

(3),(4)andWandobtainimprovedestiruttesofo_and Sj and repeat

starting from step 3.

III. EXAMPLES

In order to illustrate the above outlined algorithm two examples will

be presented. The first is some data taken from Winer (1962, p. 245). These

data are supposed to represent a 2 x 2 analysis of variance with two obser-

vations per cell. The sums of the observations are presented in Table 1.

Insert Table 1 about here

The F -test for the interaction effect is significant at better than

p = .01 and the associated sum of squares is 950.56. Winer conjectured

that a square-root transformation would remove the sum of squares (SS) due

to interaction, and, in fact, such a transformation reduced it to .30.

Table 2 presents the same data after they have been transformed by a computer

program designed to carry out CM .

Insert Table 2 about here
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In approximately one second of 360/65 CPU time the program was termi-

nated after 10 iterations and S = .7 x 106 . Sums of squares for inter-

actionwaslessthan.49x10-7.ValuesofS.as well as the final scale

values are also presented. We should expect S = 0.0 for data in which

none of the profiles of plotted cell means cross between effects. These

data were probably concocted for illustrative purposes by Winer in order

to show that there often exist transformations on the original scale of

measurement which render an essentially additive model. The computer pro-

gram, however, made no assumptions about the form of the transformation

except that it be monotonic, and recovered an essentially square-root

transformation (linearly transformed) such that the plot of the cell means

looks almost exactly like Winer's (p. 247) except that the SS for inter-

action is zero to five decimal places.

The second example represents some data collected by Leibowitz and

Bourne (1956) attempting to explore the conditions under which either

retinal image or shape constancy obtain. They varied the degree of lumi-

nance and the duration of exposure obtaining the data presented in Table 3.

Insert Table 3 about here

The data indicate that as luminance or exposure is increased shape constancy

tends to obtain, and conversely under minimal viewing conditions (near

threshold) retinal image tends to dominate.
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The data were input to the CM Program and produced the results in

Table 4. The solution was obtained after an arbitrary 20 iterations with

Insert Table 4 about here

S = .311 x 10
-2 and sum of squares for interaction equal to .719 x 10

4
.

If we force the data to admit an additive structure it can be seen

that the experimental design is highly redundant in that luminances of .1

and 1.0 and exposures of .01 and .05, and .5 and .75 produce highly similar

perceptions. Further, we have found a monotone transformation of the values

expressing duration of exposure and amount of luminance which yields a very

close additive model.

IV. DISCUSSION

After completing the development of the model and producing a

computer program to perform CM it came to the author's attention that

a very similar, although slightly more sophisticated, approach had been

devised in a book by Roskam (1968). His approach proceeds by a direct

minimization of an equation similar to (3) and appears to produce results

similar to those reported here except for those cases extremely degenerate

in form. Young (1969) has also reported an algorithm for doing polynomial

CM in N -space which is a generalization (using a different algorithm) of

the results reported here.

The generalization of our approach to N -dimensional scale values is

straightforward, though certainly coupled with some risk. In practice we

surely would not let the total number of scale values exceed mn , and

certainly should explore the tenability of a one-dimensional fit first.
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Footnotes

1
Formally, for < to be a weak ordering the following must obtain for

q, r and s E A x P : (1) q>q holds for all q, (2) q>r and

r > s => q > s , (3) either q > r or r > q or both.

2Briefly, an archimedean axiom generally requires that for arbitrary

A.P
j

and A
k
P

2.

there exists an integer n such that nA.P
j

> kt .i
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Table 1

Sum of Two Observations in a Two-way

Analysis of Variance

(from Winer, 1962, p. 245)

bl b
2

b
3

al 1.0 26.0 47.0

a
2

18.0 62.0 95.0
a
3

64.o 134.0 196.0

SS
AxB

= 950.56
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Table 2

Data from Table 1 after Conjoint Measurement,

Scale Values, and Values of S During Iteration

Scale
Values

a
1

-48.037

a
2

-11.863

a3 59.900

bl b
2

b
3

27.658 75.251 111.424

-20.378 27.214 63.387

15.795 63.387 99.561

87.559 135.151 171.324

1 2 3 4 5 6 7 8 9 10

S .129x10
-1

.144x10
2

.16x10
3

.178x10
-4

.2x10
-5

.432x10
-2

.481x10
-3

.533x10
-4

.59x10
-5 .7x10

-6

15
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Table 3

Mean Ratios of Major Axis Length to Minor
Axis Length of Elipses Matched to a
Standard (.5) at Varying Levels of
Duration and Luminance (Leibowitz

and Bourne (1956), p. 278)

Exposure
(sec.)

Luminance (Millilamberts)

.01 .1 1.0

.01 .486 .524 .515

.05 .503 .528 .517

.10 .522 .566 .570

.25 .544 .608 .692

.50 .570 .688 .802

.75 .575 .670 .790

1.00 .590 .737 .842

6
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Table 4

Data from Table 3 after

Conjoint Measurement

Scale
Values

.556 .636 .642

-.113 .443 .526 .526

-.113 .443 .526 .526

-.030 .526 .607 .613

.052 .607 .688 .698

.064 .620 .698 .708

.064 .62o .698 .708

.075 .631 .708 .718
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