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Abstract

Aitkin's generalized least squares (GLS) principle, with the inverse
of the observed variance-covariance matrix as a weight matrix, is applied
to estimate the factor analysis model in the exploratory (unrestricted)
case. It is shown that the GLS estimates are scale free and asymptotically
efficient. The estimates are computed by a rapidly converging Newton-

Raphson procedure. A new technique is used to deal with Heywood cases

effectively.
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l. Introduction

Consider the factor analysis model,

(1) y=Af +u

2

where y is a p x 1 vector of observable random variables, A is a

p x k matrix of unknown factor loadings, f is the k x 1 vector of un-
observable common factors and u is a p x 1 vector of unobservable unique
factors or residuals. It is assumed that €&(f) =0, ¢&(£f')=1I, ¢€(u) =0
and €&(uu') = wa , where wa is a diagonal matrix. It is further assumed

u and f are uncorrelated. (For convenience, a mean vector has been sup-

pressed in (1)). From these assumptions it follows that the variance-

covariance matrix X of y is

Z:AA'-*-\p’g .

~~
)]
~

The force of the model when X is small relative to p lies in the con-

straints it imposes on this variance-covariance matrix: the r = % p(p + 1)

*The first author is Research Statisticlan at Educational Testing
Service, Princeton, N.J. The second author 1s Professor of Economics at
the University of Wisconsin. Work on this project was in part supported
by a grant from the Research Committee of the University of Wisconsin
Graduate School. The authors wish to thank Michael Browne for many
helpful comments and Marielle van Thillo for valuable assistance in the
numerical computations. This paper is also being distributed in the
Workshop Paper Series of the Social Systems Research Institute.

3




-0

distinct elements of ¥ are expressed in terms of the (k + 1)p unknown
parameters in A and we . Since A in (1) may be postmultiplied by an
arbitrary k x k orthogonal matrix without changing % , A may be chosen
to satisfy % k(k - 1) independent conditions. Thus, the effective number
of unknown parameters are s = (k + 1)p - % k(k - 1) and the degrees of

freedom of the model is
1 2
(3) ag=r-s=350p-%" -(@-K)

Let S. denote the p x p sample variance-covariance matrix of ¥y
with n .degrées of freedom obtained in a random sample of size n + 1.
The estimation problem of factor analysis is to use S to develop esti-
mates of A and we . The factor analysis literature contains alternative
estimation procedures, many of which amount to choosing A and we to
make % close to S in some sense [cf. Anderson, 1939, PDp- 19-22].
Let ©(S,=) be a scalar measure of the distance between S and £ to be
minimized with respect to A and V¥ . Tt is convenient to normalize ¢

so that ¢ =0 when S =23 . A desirable property for ¢ is that
o(8,s) = ¢(DSD,DID)

for all diagonal matrices D of positive scale factors. Such a ¢ will
yield estimates that are scale-free.

One simple measure ¢ 1is the unweighted sum of squares

(%) U= (s -2 .




-

_3_

This measure, which is minimized by the iterated principal factor method
and the minres method [Harman, 1967, Chapters 8 and 9], is not scale-free
and is therefore usually applied to the correlation matrix R instead of
S . Another measure ¢ is the function employed in maximum likelihood

(ML) factor analysis [see e.g., JBreskog, 1967]:

(5) F = tr(z'ls) - log Iz‘lsl -p .

This measure is scale-free and, when y is multinormally distributed, leads
to efficient estimates in large samples.
In this paper, we propose an estimation procedure which calls for

minimization of the Quantity
=142
(6) ¢ = tr(I - 57%)

This yields a scale-free method and when normality is assumed produces
estimates which have the same asymptotic properties as the maximum likeli-

hood estimates.

2. Generalized Least Squares Principle

-

The background for our proposal is as follows. Assuming that ¥ is
multinormally distributed, S has the Wishart distribution with expecta-

tion ZO , where X is the true population variance-covariance matrix of

0
v . Therefore, a straigatforward application of Aitken's [1934-35] general-

ized least squares principle would choose parameter estimates to minimize

the quantity

(7) & - % wizi(s - 217 .
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In practice, of course, ZO is unknown, so that the Aitken procedure
is not operational. Nevertheless S estimates ZO . Using the estimate
S in place of I, in (7) gives
(8) G = -é— tr[s'l(s - 2)12 = % tr(I - s'lz)2 ,

which is the criterion to be minimized in our modified generalized least
squares (GLS) procedure.

There is an interesting connection between the ML criterion (5) and
the GLS criterion (6). Let STRTIILS denote the characteristic roots of
S_lZ ; they will be positive and, when S is close to X , lie in the

neighborhood of unity. Since the trace and determinant are respectively

the sum and product of the roots, we see that

r b b
(9) F= % (L/am) +log T a =-p= I (l/am -1+ log a )
m=1 m=1 m=1.

The characteristic roots of I - S-lZ are 1 - al,...,l - ap , 80 that

those of (I - S_lZ)2 are (1 - al)2,...,(l - ap)2 . Consequently

’ Y
(10) G=% = (l-am)2 .
m=1

Expanding l/am and log a in a Taylor series about the point a = 1

and discarding terms of order higher than the second gives

2
l/am ~ 1 - (am - 1) + (a, - 1) ,




Thus
Y
(11) Fz%Z‘.(a-l)2=G ,
m
m=1

so that the ML criterion can be viewed as an approximation to the GLS
criterior.

Our proposal derives from Zellner's [1962] operational approach to
generalized least squares estimation in multivariate regression models with
Linear constraints on the regression coefficients. Malinvavd [1966,
Chapter 9] extends the approach to cover nonlinear constraints on the
regression coefficients. Rothenberg [1966, p. 38] indicates a further
extension to cover constraints on the disturbance variance-covariance
matrix. For factor analysis with known factor loadings, Browne [1970]
suggests using weighted least squares with S estimating ZO . Ulti-
mately, all these procedures are applications of the minimum- X2 principle
of estimation; cf. Neyman [1949], Taylor [1953], Ferguson [1958].

The GILS principle can be used in confirmatory (restricted) factor
analysis also, but in this paper we shall consider only exploratory

(unrestricted) factor analysis.

3. Reduction of G

The function G in (6) is now regarded as a function G(A,¥) of A
and V¥ and is to be minimized with respect to these matrices. The mini-

mization will be done in two steps. We first find the conditional minimum
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!
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of G for a given ¥ and then f£ind the overall minimum. To begin with

we shall assume that ¢ 1is nonsingular. The partial derivative of G with

respect to A is (see Appendix Al)
-1 -1
(12) dg/3n = 287 (= - 8)8 A,

which, when set equal to zero and premultiplied by S gives

1

(13) S TA = A,
or
(14) I U
Using
DRV E ' WU
(14) simplifies to
s = ¢'2A(I + A'\y'eA)'l s
or
(15) (s R = vTIaG e Ay

. -2
The matrix A'Y A may be assumed to be diagonal since it can always
be reduced to diagonal form by a proper choice of an orthogonal post-
multiplier to A . The columns of the matrix on the right side of (15)
1

then become proportional to the columns of W- A . Thus the columns of

-J.A . bt -1
r are characteristic vectors of S  and the diagonal elements of




|

.."(_

. - R
(I + A"y A) . are the corresponding roots. It will be shown that the

conditional minimum of G ,

columns of W—lA are chosen as vectors corresponding to the k smallest

characteristic roots of WS_lw . Let 71 < 7o < .. f_yp be the charac-

teristic roots of WS_lw and let mi,mb,...,ab be an orthonormal set of

\
\
|
|
|
for the given V , is obtained when the +
|
|
1
{
correspording characteristic vectors. Let I = diag(yl,ye,...,yp) be ‘

|
partitioned as I' = diag(Fl,Fe) where T = diag(yl,ye,...,yk) and
F? = dlag(7k+l’7k+2?"';7p) and let Q = [wl,we,...,mb] be partitioned

as Q = [Ql,ﬂe] where Q consists of the first k vectors ard 0

of the last p - k¥ vectors. Then

—_ 1 — 1 —_
(16) Q0 =TI 010, =0 Q0 =TI

-1 _ 1 1
(17) ys Ty = QN0 QT8
and the conditional solution A is given by

(18) A = v (0" - S A

This conditional solution is identical to that of maximum likelihood factor

analysis [see e.g-., J8reskog, 1967, eq. 17, where the solution is expressed

in terms of the roots and vectors of W_lsw_l 1.
Defining
(19) o= M+ ¥ ,

it is easily verified from (16) and (18) that

1z, -1 ]

- _ _-; '
(20) R A Q.05
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and that

-1~ -1 .
(21) -85 = v, (T - TR0V
so that

p 2
2 (7, - 1)

1.2
r(T - §718)° = tr(T - r,)°
m=k+l

Therefore the conditional minimum of G(A,¥) , with respect to A for
a given ¥ is the function g(¥) defined by
(2) &) =% T (-2
m=k+1
It is now clear what the effect will be of choosing, as columns of
w_lA s characteristic vectors other than those corresponding to.the k
smallest roots. The roots not chosen would then be involved in (22) and

the sum of squares would be larger than or equal to that in (22).

h. Minimization of (V)

We now propose to minimize g(y) numerically by the Newton-Raphson
method, making use of f£irst and second derivatives of g . The roots and

vectors 7 and ® , m= 1,2,e.0,0 , OF A(y) = WS_lw are functions

of ¥ . The first and second derivatives of g(w) may be obtained from
the first derivatives of 7 and - As shown in Appendix A2, the latter
are
2
2 .= (2
(@3) ¥ [, = (2[bren,
Tm " n
(24) do, [V, = (/¥ D)o, T o 0 O, ,
AT i’ im n%m.7m.- 7, nan




l

where .
im

By di

which, aft

(25)

By di

which, aft

(26)

In minimi

[1970] me

roots and vectors of W_lSW_

than V¥ -

_9_

is the ith element of ah .

fferentiating (22) with respect to ¥, we obtain

b
og/oV, = 12; . (v, - 1)(3y, /o¥;)
m=k-+

er substitution from (23), becomes

_ P 2 2

fferentiating (25) with respect to wj , we obtain

o) b
O g /Y., = - 2
oS0y = 2f¥) T {(eym 1) (37, /3%,)

2 2 2
+ 2 - -
(7m 7m)wim(awim/awj) \l/wi)aij(7m - 7m)wim}
er substitution from (23) and (24) and simplification, becomes

b 2 2 2
(4/4,9) T {(27m SN

2
gV, oY,
Ld m=k+1

2 _ y o+t
(7m 7m)wimmjm ni L - 2 win@jn
m 7m 71’1

+

zing g(¥) we shall follow a procedure similar to Clarke's

thod for maximum likelihood factor analysis. Clarke used the

2
L and minimized a function of V¥ rather

While this method works satisfactorily in all cases where the

J
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solution is proper, having no wi very close to zero, certain improve-
ments can be made to handle Heywood cases (improper solutions) more effec-
tively. When one or more of the wi are close to zero both first- and
second-order derivatives are poorly defined and difficult to compute
accurately. J8reskog [1967] describes a procedure to deal with this dif-
ficulty, which involves (i) fixing W§ at some arbitrary small positive

value such as 0.001 for subsequent iterations and minimizing with respect

to the remaining ¢i and (ii) once a Heywood variable with ¢§ = 0.001
has been found, this variable is partialed out and the minimization
process repeated with fewer factors on a smaller matrix. Although this is
quite correct in principle, it is somewhat time consuming. When working
with the roots and vectors of WS_lw , rather than those of w_lsw_l , the
partial elimination of variables may be completely avoided. Jennrich and
-1/2W28-1/2

Robinson [1969], operating on the roots and vectors of S in-

stead of on those of WS_lW , used a similar procedure which also does not

break down when V¥ is singular. Furthermore, a transformation of variables

may be made which make the derivatives stable even at wi = 0 . This trans-

formation from ¢£ to 0, is defined by

(27) 0, = log wﬁ S A Jeai )

We now consider g as a function of 91,92,.-.,9p instead of ¢ﬁ3wé,---,¢b-

The new function g(@) is defined for all 6, , -= <6, < + . DNote

that ¢£ = 0 corresponds to 6, = - .
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0
The derivatives ag/aei and a‘g/aeiaej are obtained from

2
and d g/awiawj by
9g/d0, = (¥./2)(%e/3¥;)

2%g/20,30, = (4,¥./4)(3%/3¥,30.) + 5 (¥, /4)(3/3¥,)

These derivatives therefore become

b
2 2
(28) Og/o6, = = (y_ -y )l
m=k+1
D A
(29) a2g/59i59. = I (2')'2 -v) ?w?m
I ekl m m’im
b Yty
+ (72 -7 . o,z —m—_—-—n“ 11 ®@1p
m=k+l ™ MO by T T 7n J
P 2 2 2
= Z (27m - 7n) imwjm
m=k+1
p k y +7
oz (7r2n - ym)wimwjm 7m - 7n winwjn
m=k+1 n=1 ‘m n
b b Yt
+ = (7r2n -y )wimw. X —m—_——Ewinw.n
m=k+1 m I pek+l Tm T 7 J

nfm

dg/ aw‘i
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The last term may be written

2 2
powl [ (yp-r ), *+r) g -r ), )
z z - + —] W, W, 0. W,
m=k+] n=k+1 Ta "~ 7n ’n = Tnm im jm in jn

D m-1
= 3 = + + - 1w, w, w, w,
m=k+1 n=k+l (7m 7n)(7m "n ) im jm in jn
L >z O+ ) 1)
== 2 % Yy oty vy +y - W, ®, ®, O, B
2 m=k+l n=k+1 =™ n’*m n im jm in Jjn

nfm

which after substitution into (29), simplification and use of the relation

D k
Z w. . = 5.. - Z . )
meks] TWJm iJ py 0 dn
gives
P
(30) 3%g/36.30, = (% gy . )° + 5, (/.
g/08,, 08, (m=k+l 7o sn®sn) .+ 834(98/08,)
P k 4
2 n
re oz (7m B 7m)wim.wjm z S 4 winwjn
m=k+1 ’ n=1 ‘m n

When 7k+l’7k+2""’7p are all close to one, this is approximately

P
(31) a2g/ae.ae. = ( Z w )2
+ m=k+1 T I

It should be noted that the function and all derivatives of first and second

order may be computed accurately everywhere, even at Gi = -0 ¢i =0 ).

e ———

14
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Let © denote a column vector with elements 91,92,...,9p and
let h and H denote the column vector and matrix of corresponding
derivatives Jg/d¢ and aeg/aeae' , respectively. Let G(S) denote
the value of @ in the sth iteration and let h(s) and H(S) be the

corresponding vector and matrix of first- and second-order derivatives.

The iteration procedure may then be written
(52) H(S)B(S) = h(s)

(3%) Q(S+l) - G(S) - 5(5)

where B(S) is a column vector of corrections determined by (32). The
Newton-Raphson procedure is therefore easy to apply, the main computations
in each iteration being the computation of the roots and vectors of
¥y and the solution of the symmetric system (32). It has been found
that the Newton—Raphson procedure is very efficient, generally requiring
only a few iterations for convergence. The convergence criterion is that
the largest absolute correction be less than a prescribed small numbexr
€ « The minimizing 6 may be determined very accﬁrately, if desired,
by choosing € very small.

In detail the numerical method is as follows. The starting point
1)

e( is chosen as [see e.g., J8reskog, 1963, eqs. 6.20 and T7.10 or

J8reskog, 1967, eq. 261,
(1) ii
(34) 6377 = logl(L - k/2p)(1/s77)]
i1l .th . -1 ..
where s is the i diagonal element of S . The exact matrix H

of second order derivatives given by (30) may not be positive definite in

15
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Therefore, the approximation E given by (31), which is

the beginning.
always Gramian, is used in the first iteration and for as long as the maxi-
After that, H 1is used if it

mum absolute correction is greater than 0.1.
It has been found empirically that E gives good

is positive definite.
reductions in function values in the early iterations but 1s comparatively
ineffective near the minimum, whereas H near the minimum is very effective.

To compute the characteristic roots and vectors of ws-lw in each

iteration, we use the Householder transformation to tridiagonal form, the

QR method for the roots of the tridiagonal matrix and inverse iteration
This is probably the most efficient method available

for the vectors.
The system of equations (32) are solved by the

[see Wilkinson, 1965].
T is lower triangular.

square root factorization H = TT' , where
is positive definite or not.

This shows at an early stage whether H
In Heywood cases, when one or more of the 6, — -, i.e., wi -0,

a slight modification of the Newton-Raphson procedure 1s necessary to
This is due to the fact that the search for

achieve fast convergence.
the minimum is then along a '"valley" and not in a gquadratic region.

When 6, —-® , 0g/08;, -0 and azg/aeiaej -0, J=1,2,000,D,
and the ith row and

is small the 1 h element of h
This tends to produce a '"bad"

so that when Gi
are also small:

column of H and E
® and the function may increase instead of decrease.
th

correction vector
A simple and effective way to deal with this problem is to delete the 1

in the system (52) and compute the corrections for all the other

equation
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@'s from the reduced system. One then computes the correction for Qi

as

(35) 5, = (3/38,)/(3°g/36%)

This procedure will decrease 91 slowly in the beginning but
faster the more evident it is that ei is a Heywood variable. When 05
has become less than -10 it is not necessary to change Gi any more unless
Bf/éei is negative. Thus, the procedure corrects itself quickly if a

variable is incorrectly taken as a Heywood variable.

5. Asymptotic Distribution Theory

In this section we show that the GLS estimates and the ML estimates
have the same asymptotic properties. In particular we shall evaluate the
common asymptotic variance-covariance matrix of the estimates of
¥y Ugseens ¥ -

It is assumed that S converges stochastically to X of the form
(2), and that the elements of Vn (S - £) have an asymptotic multi-

normal distribution with variances and covariances given by

(36) ne[(saB - Ods)(suv w’? = %%y T %w%Bu

which are the elements of 2(226520 « In particular, this is true when the
observations on y are drawn from a multinormal distribution with variance-
covariance matrix X . The matrices X , A and ¢ now denote the true

population values as distinguished from the mathematical variables A and
¥ used in the previous sections. It is furthermore assumed that wi % o,

i=12,...,p, i.e., that the population is not a Heywood case.
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Let A = WZ'lw and let 7, < 7o <...< 75 be the characteristic
roots of A with aﬁjaé""’ab an orthonormal set of corresponding
characteristic vectors. Let T, = dlag(7l’72""’7k) , Tyo= dlag(7k+l,
= ' = oo . W
7k+2""’7p) ; 9 = [wl’wE""’wa and Q= [0 ;,0 0 ,mb] e

assume that the roots in T are all distinct. Then

1
(37) A = QlFlQi + QEFEQé
and
(38) a7l o arler + o rstor

111 2°2 2

However, since
- - -1 -
(39) A - g lzw 1 ¥ TAATY L + I

we have that Yial = Vg = 00 = 7p =1, or

: (40) Iy =1

? Defining

f

{

i (b1) =005

: it follows from (37), (38), (40) , Qi0, =0 and 0,0, = I that = has
the properties
(u2) A=A EoEa. =t o8l =

Corresponding to the population quantities in (57) and (38) we have the

corresponding sample quantities

—
&)




"~ and that plim-?m =7y ,~-plim.&m“=”w_
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~ _ ~N ~ /\' A A A‘
(43) A = nlrlnl LR USIRUN
and
(1) /NI o LU oo o

1’171 222 7

a)

where I = dlag(yl,72,...,7k) and [ = diag(7k+l,7k+2,...,7p) are

A

diagonal matrices of the characteristic roots ?l E_?2 < e <7 of

1Y
A =1A

A=9""7 and Q. of order px k and Q. of order px(p - k) are

1 2

matrices of corresponding orthonormal characteristic vectors. These are
the quantities obtained at the minimum of g(V¥) .

We shall show that $ converges stochastically to V¥ . The function
g(¥) in (22) is also a function of S and will now be denoted g(S,y*) .
The estimate % is defined as the value of V¥ that minimizes g(8,V¥*)
for a given 8 . But g(S,¥*) converges stochastically to g(Z,¥*) which
has a unique minimum at ¥ = ¥ . Since the functions are continuous, $ ‘
must converge stochastically to V .

In deriving various asymptotic results we shall make repeated use
of the following well-known lemma [see e.g., Wilks, 1962, p. 103]: If
¢ = (c..) 1is a matrix whose elements are continuous functions of random

1J

variables X3 Xpyee ey X and if plim x, = exists and is finite for

k= fx
all k , then plim C(x) = C(E) .

From this it follows immediately that

(45) plim A = plim 98759 = v= hy = &

- .

19



!
!

-18-

Hence, from (30) and (40) we have that

plim 3%/36.3. = ( * o, o, )
T m=k+1 J
and from (26) that [cf. Anderson & Rubin, 1956, eq. 12.2k; Lawley, 1967,

eq. 7 and J8reskog, 1967, eq. 101]

A2 , p
(46) plim 3%g/3U. 3%, = (LB T o o, )°
i™ "] 107 gy M m
The asymptotic variance-covariance matrix of the ML estimates of the ¥'s
is given by (2/n)E_:L , where E 1is the matrix whose ijth element is
given by the right-hand side of (46). We proceed to show that (2/n)E_:L

is also the asymptotic variance covariance matrix of the GLS estimates of

the U's.

N e

The GLS estimates @i,wé,...,wb are defined implicitly by the

following equations

ag/awi =0 , i=12,¢eu,p

which by (25) may be written

(b7)  dieglB (P8 - B AT =0 .

We shall write (H?) linearly in statistical differentials. The symbol d

is used to denote deviations of sample from population values. All such

e e -1/2
deviations are of order n l/ - in probability and since we assume. that

n is large, we shall neglect in what follows terms of second and

20
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=D, -1, 8, =0, -0

higher degrees in the &'s. Let 6% = %2 -T o o 5 5

2

and BA = A - A . Then we have to the order of approximation indicated

N ~nD ~ A A A oA
= - = - P 1
Ij=1I+28r,, T, -T,=028l, and 92(1“5 T,)al = 80,0, . But
_ , . . e AN _ AN A'/\ - .
6F2 = Q26AQ2 which may be verified from AQ2 = Q2F2 and 9292 T

Hence, (h7) is asymptotically equivalent to
(48) diag(EBAE) =0 .,

Furthermore, with &y @ -V and 8 =S - X we have to the same

1t

order of approximation

-1

g7t - (= + az)'l 57 - p7leps Tt

and

Ba = (v + By)(=7h - zTlezs Tty (v + BY) - A

sys Ly + vz ley - v less Ty

I

sov TA + Ay Tey - AV Tezy A,

which after substitution into (48) and use of (42) shows that (48) is

asymptotically equivalent to
. — -L— . — - -l —
(49) 2diag(=dVy =) = diag(= ¥ lazw =) .

From (37) it follows that the elements of T = v iese ™t have a

limiting multincrmal distribution with variances and covariances given by
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apan

- Qv _Bit
(50) ng(taﬁtuv) = a a ‘e

.|.

where a? denotes the ijth element of AT .

Equation (49) is linear in BWl,Swe,...,6¢b and may be written in

scalar form as

(51) 2 2 2(Sh/b)= > I ¢
1 R =
5 .X:l ng X X Ot:l B=l

iofiptos

which may be solved for Swg/Wé if the matrix ¢ with elements

2 2
0,5 = &y = ( = aﬁmFLnQ is nonsingular. The solution is
J J m=k+1 J
(52) v /b =L 3 % 3 o8 ¢ g 1,2
5 == z E. . P g = l,cy5e04,D
g g 2 im1 o=l p=l ixipaB

Equation (52) shows that BWi,Swe,...,6¢b are asymptotically linear
in the elements of T and hence will have a limiting multinormal dis-

tribution. To obtain the asymptotic variance-covariance matrix of

~ A ~

wi,we,...,wb we write equation (52) with indices h, Jj, s and v

instead of g, 1, & and B respectively, multiply these equaticns

and use (50) and (42). This gives

3 (aQMaBV aanBu)

(n/¥ ¥ )e(ab 84 ) = (1/4) ZZZz2s o8N N

BB Bl
ijapuv 1aTip Jugav
(1/2) © & o8TeMI2
i3 +d

1l

(1/2) = x 8%, odP
i3 +J

1l

= (1/2)e8"

o2
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Hence,

(53) e(89,0%,) = (¥ ¥ /2n)oE"

which is the ghth element of (2/n)E~l . This, therefore, shows that the
asymptotic variance-covariance matrix (2/n)E_:L is the same for both the
ML estimates and the GLS estimates.

Lawley [1967] obtained the unconditional asymptotic distribution of
the ML estimate R from the conditional asymptotic distribution of K
for given V¥ [Lawley, 1953]. Since the conditional estimate A is the
same for both ML and GLS, it follows that also the GLS estimate A has
the same asymptotic distribution.

Another well-known result for the ML method is that n times the
minimum value Fmin of F in (5) is asymptotically distributed as X2
with d = % ((p - k)2 - (p + k)] degrees of freedom. The same statement
is true also for the GLS method. To prove this we show that both minima
are asymptotically equivalent.

Let $ denote the maximum likelihood estimates of ¥ . Since G is
asymptotically equivalent to @ , the characteristic roots 71,72,..-,7 of

m

@S_lﬁ are asymptotically equivalent to the corresponding roots ?l,?e,-..,?

3

of @S_l@ . The minimum of F is [see e.g., JYreskog, 1967, eq. 18]

b
£ (log ¥ +1/5 - 1)
m=k+1 m m

which is asymptotically equivalent to




00

p b 1 ]
S (log ¥ +1/7 - 1) 2 [log(l + & )+ 775 - L
m=k+1 m m m=le+l m’ 1+ By

1t

-

It
M=

™
~~
~2

]

l_l

~—r

6. Results and Comparisons on Numerical Data

The algorithm described in section 4 has been implemented in a FORTRAN
program and run on several matrices. It is interesting to compare the
results of GLS and ML on the same two correlation matrices, Data 1 and
Data 2, as J8reskog [1967] and Clarke [1970] analyzed with the ML method.
The correlation matrices are given in both of these papers.

Déta 1 is a correlation matrix of order 9 x 9 and is analyzed with
three factors. The course of the minimization is shown in Table 1. It is
seen that the convergence is quite rapid and that the solution can be
determined very accurately, to about five decimals in the ¢'s. This cor-

responds to an accuracy of about seven decimals in w2 « The solution is
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given in Table 2 along with the ML solution. It is seen that the two
solutions are very close, so close that interpretations of the data will
be the same. The value of X2 with 12 degrees of freedom and based on
n=210, is 6.98 with GIS and 7.35 with ML. These are very close in
this case when the fit is very good.

Data 2 is a correlation matrix of order 10 x 10 and is analyzed with
four factors. The maximum likelihood solution for this data is a.Heywood
case with ¥ = O for variable 8. The behavior under the GLS minimization
is shown in Table 3. In this case it takes nine iterations to achieve con-
vergence. This is because 98 goes very slowly to -10 and reaches -10 at
iteration 5. After that, convergence is quadratic. The GLS and ML
solutions are given in Table 4. Also in this case the two solutions are
very close. The corresponding X2 values, 19.40 with GIS and 18.45 with
ML based on 1l degrees of freedom and n = 809, are somewhat more apart,
despite the fact that n is large. However, the fit of the factor model
is not as good as in the Data 1 example.

It should be noted that for the GL3 estimates it does not hold that
@2 = diag(s - Kﬁ’) which holds for ML estimates. In the examples, com-
munalities and uniquenesses do not add up to unity. Also it can be seen
in both Table 2 and Table 4 that the GLS estimates of xpe are generally
smaller than the ML estimates. This suggests that the GLS estimates may

be systematically biared.
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TABLE 1

Details of the GIS Minimization for Data 1

Iteration Type Function Max. correction Max. gradient
0 _- 0.1170246 -- 2.45 x 107F
1 E 0.04017278 6.64 x 107+ 5.0h x 1072
2 E 0.03341929 1.71 x 107t 1.06 x 1072
3 E 0.03321625 2.73 x 1078 T7.%6 x 107
i H 0.03321503 2.91 x 1077 .64 x 1070
5 H 0.03321503 2.67 x 1077 2.37 x 10710
TABIE 2

Solutions for Data 1

GLS ML

* M1 Mo N w? M1 Mo N wﬁ

1 662 325 -.082 L5 664 321 -.073 450
2 .688 .255 .191 116 689 247 .193 Lo7
3 4ol .310 .225 .600 493 .302 222 .617
N 839 -.286 .0kl .208 837 -.202 .035 212
5 708  -.309 .162 .370 .705  -.315 .153 .381
6 823 -.376  -.106 .165 819  -.377 -.105 <177
7 .660 Lok .073 .387 662 .396 .078 400
8 L5k .290  -.484 473 458 296 .40l 462
9 .763 A3h .001 227 .766 L27 012 .231
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TABLE 3

Details of the GLS Minimization for Data 2

Iteration Type Function Max. correction Max. gradient
0 -- 0.08765774 9.31 x 107T 9.89 x 1072
1 E 0.03525694 4.09 x 107+ 2.25 x 1072
2 E 0.02892803 L.65 x 10 L 2.17 x 1072
3 E 0.02574564 8.74 x 107T 1.5% x 1072 ;
L E 0.02418829 3.63 x 10 7.71 x 1070
5 E 0.02401558 1.97 x 10" 1.10 x 1070
6 H 0.02398666 1.00 x 10° 3.55 x 10‘1+
7 H 0.023%98479 1.37 x 1072 2.99 x 1077
8 H 0.02398478 1.49 x 1070 4.81 x 1077
9 H 0.02398478 1.52 x 1077 4.81 x 1071
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TABLE 4

Solutions for Data 2

GLS ML
* Moo MNe o N3 My w? N1 o MNe N3y My w?
1 -.188 -.756  .034 -.100 .377 -.188 .753 -.035 -.108 @ .385
2 -.120 -.468 095 .382  .60k4 -.120 .48 -.103 .365 .623
3 -.186 -.763 .157 .221  .309 -.186 .767 -.167 .217 .301
4 -.173 -.527 .198 .135 .629 =173 .526 -.200 .124  .638
5 -.129 -.678 .258 -.345  .336 -.129 672 -.251 -.349  .347
6 .359 .259  .157 -.0k7 767 .359 -.259 -.154 -.048 .778
7 L448 501 504 .059 .289 A48 -.504 -.507 .052 .286
8 1.000 -.000 -.000 .000  .000 1.000 .000 .000 .000  .000
9 29 282,212 -.051 .680 A2g9  -.282 -.209 -.053 .690
10 316 232 .505 -.020 .580 316 -.232 -.496 -.029  .600

(W)
D

a

N
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A. Appendix

Al. Matrix Derivative of Function G(A,¥)

To obtain the matrix derivatives we use matrix differentials. In
general, dX = (dxij) will denote a matrix of differentials. If F 1is
a function of X and dF = tr(CdX') then OF/0X = C . Since
d tr(A) = tr(af) , we have for a fixed V¥ , with G defined by (6)

and % by (2),

aG = % a tr(s'lz - I)2
- % trla(s™x - 1)2
- tr[(s™® - T)a(s™iz - 1)]
- trl(s™s - 1)s7taz]
- tr[(s™l - 1)87H(rant + anat)]
- 2tr(s”tz - 1)s7tAqA

2tr[s'l(z - s)s'lAdA'] .

I

Hence, the derivative JG/dA is that given by (13)-

A2. Matrix Derivatives of Characteristic Roots and Vectors

The characteristic roots Y and vectors @ , m= 1,2,eee,p , Of

are defined by

31
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(A1) Aw =7 O
(A2) (DT'nwm =1 5 m=1,2,.04,p .
(A3) oo =0 nf{m

Differentiation of these equations gives

(Ak) dhey + Adwy = dy @ o+ oy dio
| —_
(A5) wdw =0
| | —
(A6) oldw +dww =0 nfm .

Premultiplication of (Ak) by ! and use of (A1) and (A5) gives
— |
(A7) dy = wpdhe .

Let €an = wr;ldAwn =€ for myn = 1,2,...,p . Then premultiplication of

(Ak) by w} for n # m and use of (Al) and (A3) gives

€ =y wap - oAdw
mn m n m

t - t
7 mwndwm 7 nwn dwm

I

_ 1
(7, = 7y )opdw

or

mn
(A8) CD;ldUJm = 7_-'_7— P n ;é m .
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Multiplying this equation by W, summing over n f m , using (A5) and
remembering that

L o on =I-oon
nn m m
nfn

gives dwﬁ as

€
(A9) aw = . —2 .
" nfmm "7 "
The merits of (A7) and (A9) are that they express the differentials of

7 and o in terms of the differentials of A .

In our problem we have A = ws'lw as a function of V so that

dA d\ij-l\u + \LrS_ld\Lr

Il

dw'lA + A\u_ld\p .

Il

Substitution of this into the definition of emn gives

m
I

w' dAw
m n

Il

-1 -1
1 \]
' Ay Awn + w'Ay dvmn

Il

-1
1
(7, + 7)o dv¥ "o

Il

=1

r =L
(7m + 7n) tr(wdmmw ay) .
With this result we have

-1
= 2 1
(A10) dy =2y tr (abma.)mllf ay)
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and

7m i "n -1
(A11) aw = & BT (e oty Tdy)w .
m A 4 nm n
n;ém m n

Hence the derivatives of Yn and O with respect to

2
(A12) 37 /95 = @y, /¥ )5,
and
7ot 7n
(A13) dw, JO¥, = (L¥.) o, T o 50
im J J Jm n%m 7m - 71’1 in jgn

which are the results used in section 4.

are



