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FACTOR ANALYSIS BY GENERALIZED LEAST SQUARES

Karl G. J8reskog*

Educational Testing Service

and

Arthur S. Goldberger*

University of Wisconsin

1. Introduction

Consider the factor analysis model,

(1) y = Af + u

where y is a p x 1 vector of observable random variables, A is a

p x k matrix of unknown factor loadings, f is the k x 1 vector of un-

observable common factors and u is a p x 1 vector of unobservable unique

factors or residuals. It is assumed that g(f) = 0 , g(ff') = I , g(u) = 0

and g(uu') = *
2

, where *
2

is a diagonal matrix. It is further assumed

u and f are uncorrelated. (For convenience, a mean vector has been sup-

pressed in (1)). From these assumptions it follows that the variance-

covariance matrix E of y is

2
(2) AA' +

The force of the model when k is small relative to p lies in the con-

straintsstraints it imposes on this variance-covariance matrix: the r = + 1)

*The first author is Research Statistician at Educational Testing
Service, Princeton, N.J. The second author is Professor of Economics at
the University of Wisconsin. Work on this project was in part supported
by a grant from the Research Committee of the University of Wisconsin
Graduate School. The authors wish to thank Michael Browne for many
helpful comments and Marielle van Thillo for valuable assistance in the
numerical coutputations. This paper is also being distributed in the
Workshop Paper Series of the Social Systems Research Institute.
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distinct elements of E are expressed in terms of the (k + 1)p unknown

parameters in A and *
2

Since A in (1) may be postmultiplied by an

arbitrary k xlk orthogonal matrix without changing E , A may be chosen

to satisfy
1
k(k - 1) independent conditions. Thus, the effective number

of unknown parameters are s = (k + 1)p -
1
k(k - 1) and the degrees of

freedom of the model is

(3) (d=r-s--

1 [p-k)
2

(10 k)]
2

Let S. denote the p x p sample variance-covariance matrix of y

with n degrees of freedom obtained in a random sample of size n + 1 .

The estimation problem of factor analysis is to use S to develop esti-

mates of A and *
2

. The factor analysis literature contains alternative

estimation procedures, many of which amount to choosing A and *
2

to

make E close to S in some sense [cf. Anderson, 1979, pp. 19-22].

Let 0(S,E) be a scalar measure of the distance between S and E to be

minimized with respect to A and * . It is convenient to normalize

so that 0 = 0 when S = E . A desirable property for 0 is that

4(S,E) = 0(DSD,DED)

for all diagonal matrices D of positive scale factors. Such a 0 will

yield estimates that are scale-free.

One simple measure 0 is the unweighted sum of squares

(1k) u = tr(s - E)2 .

4
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This measure, which is minimized by the iterated principal ('actor method

and the minces method [Harman, 1967, Chapters 8 and 9], is not scale-free

and is therefore usually applied to the correlation matrix R instead of

S . Another measure (I) is the function employed in maximum likelihood

(ML) factor analysis [see 'e.g., J8reskog, 1967]:

(5) F = tr(Z-1S) - log IZ-1S1 - p

This measure is scale-free and, when y is multinormally distributed, leads

to efficient estimates in large samples.

In this paper, we propose an estimation procedure which calls for

minimization of the quantity

(6) G = tr(I S-E)
2

.

1 _

2

This yields a scale-free method and when normality is assumed produces

estimates which have the same asymptotic properties as the maximum likeli-

hood estimates,

2. Generalized Least Squares Principle

The background for our proposal is as follows. Assuming that y is

multinormally distributed, S has the Wishart distribution with expecta-

tion Z where Z
0

is the true population variance-covariance matrix of

y . Therefore, a straightforward application of Aitken's [1934-35] general-

ized least squares principle would choose parameter estimates to minimize

the quantity

(7) 5 .
2

tr[Z-1(S - Z)]
2

5
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In practice, of course, SO is unknown, so that the Aitken procedure

is not operational. Nevertheless S estimates Eo . Using the estimate

S in place of Eo in (7) gives

(8) E)]2
1 1_ 2

G =
1

tr[S l(S E)] = tr(I - S L) ,

which is the criterion to be minimized in our modified generalized least

squares (GLS) procedure.

There is an interesting connection between the ML criterion (5) and

a1,...,ap denote the characteristic roots of

S1E ; they will be positive and, when S is close to E , lie in the

neighborhood of unity. Since the trace and determinant are respectively

the sum and product of the roots, we see that

(9) F= E (1/a m) + log If a - p = E (1/a - 1 + log a) .

m=1 m=1 m m=] m

1_
The characteristic roots of I - S -E are 1 - a 1'' 1 - a , so that

those of (I - S1E)2 are (1 - a1)21...,(1 - ap)
2

. Consequently

(10) G =
1

E (1 - am)
2

.

m=1

Expanding 1/am and log am in a Taylor series about the point am = 1

and discarding terms of order higher than the second gives

1 /am ::-... 1 - (am - 1) + (am - 1)2
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log am (am - 1) -
1

(am 1)2 .

Thus

1 p
(11) F 2 E (a

m
1)

2
G ,

m.1

so that the ML criterion can be viewed as an approximation to the GLS

eriterior_.

Our proposal derives from Zellner's [1962] operational approach to

generalized least squares estimation in multivariate regression models with

linear constraints on the ingression coefficients. Malinvaud [1966,

Chapter 9] extends the approach to cover nonlinear constraints on the

regression coefficients. Rothenberg [1966, p. 38] indicates a further

extension to cover constraints on the disturbance variance-covariance

matrix. For factor analysis with known factor loadings, Browne [1970]

suggests using weighted least squares with S estimating Zo . Ulti-

mately, all these procedures are applications of the minimum- X
2

principle

of estimation; cf. Neyman [1949], Taylor [1953], Ferguson [1958].

The GLS principle can be used in confirmatory (re3tricted) factor

analysis also, but in this paper we shall consider only exploratory

(unrestricted) factor analysis.

3. Reduction of G

The function G in (6) is now regarded as a function G(A,i) of A

and * and is to be minimized with respect to these matrices. The mini-

mization will be done in two steps. We first find the conditional minimum
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of G for a given , and then find the overall minimum. To begin with

we shall assume that * is nonsingular. The partial derivative of G with

respect to A is (see Appendix Al)

(12) aGiaA = 2S-1(E - S)S-1A

which, when set equal to zero and premultiplied by S gives

(13)

or

(14)

Using

.

ES
-1
A = A

lA lA

, -2
%

E
-1

= * - *
-

*
- 2

2A(I + A' AJ
-1
A'

2

(14) simplifies to

%

S 1A = *
-2
A(I + At*

-2
A)

-1

or

(15) (*S-10*-1A = *-1A(I + At*-2A)-1

The matrix At*
-2
A may be assumed to be diagonal since it can always

be reduced to diagonal form by a proper choice of an orthogonal post-

multiplier to A . The columns of the matrix on the right side of (15)

then become proportional to the columns of *
-1
A . Thus the columns of

-1* A are characteristic vectors of *S
-1

* and the diagonal elements of

8
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(I + At* 2A)
-1 are the corresponding roots. It will be shown that the

conditional minimum of G , for the given jr , is obtained when the

columns of *
-1A are chosen as vectors corresponding to the k smallest

characteristic roots of *S
-1

* . Let y
1

< y
2
< < y be the charac-

teristic roots of *S
-1

* and let w
i'

a
'

'I)

be an orthonormal set of

corresponding characteristic vectors. Let P = diag(y1,y2,...,yp) be

partitioned as P = diag(r1,r2) where P1 = diag(y1,y2,...,yk) and

and let 0 = [cci,a)2,...,cop] be partitioned
P2 = diag(y k+1'7k+2." '"Yp)

as Q = [P
2
] where Q consists of the first k vectors ard R

2

of the last p - k vectors. Then

(16) Q'1 S2
1
= I Q' . 0 , W2

(17) *S-1* = r 0' + Q'
21 1 1 2 2

and the conditional solution A is given by

(18) n 1)1/2

This conditional solution is identical to that of maximum likelihood factor

analysis [see e.g., Jt3reskog, 1967, eq. 17, where the solution is expressed

,

in terms of the roots and vectors of *
-1

S*
-1

J

Defining

(19) E . a, + *2

it is easily verified from (16) and (18) that

(20) *
-1E* -1 R r

1R1 + RI
1 1 1 2 2

9
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1-,
- s-E

-1 [a2(1 - r2)apf

tr(I - S102 = tr(I - P2)2 = E (ym - 1)
2

.

m=k+1

Therefore the conditional minimum of G(A,*) , with respect to A for

a given * is the function g(*) defined by

P
(22) g(*) =

1
E (y - 1)

2
.

m=k+1 m

It is now clear what the effect will be of choosing, as columns of

*
-1

A , characteristic vectors other than those corresponding to the k

smallest roots. The roots not chosen would then be involved in (22) and

the sum of squares would be larger than or equal to that in (22).

4. Minimization of g(*)

We now propose to minimize g(*) numerically by the Newton-Raphson

method, making use of first and second derivatives of g . The roots and

vectors y
m

and m m = 1,2,...,p , of A(*) *S
-1

* are functions

of c . The first and second derivatives of g(*) may be obtained from

the first derivatives of ym and % . As shown in Appendix A2, the latter

are

(23) (2/*i)ymmim

(24) 6m. = (1/*.)m. m
n

a). co.

om ym - yn in on

10
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th
where co. is the i element of u

im m

By obtain

ag/6*. = E (y

m
- 1)(6ym/a1)

m=k+1

which, after substitution from (23), becomes

(25) 6g /6'i = (20i) E (-2 - Y \D2

m=k+1
\fin m/

By differentiating (25) with respect to * , we obtain

2
g/6V.

1
6*. = (2 /q.) E {(2ym - 1)cuTm(aym/a/Pi)

j
m =k +l

2 2 2
+ 2(y - y )co. (dco. /MY.) (10.)6..(7 y )CD.

M M 1M 1M j 1 lj M M 1M

which, after substitution from (23) and (24) and simplification, becomes

2 2

(26)
2
g/6*.6711. = (40.71r.) (2y - y im

w.
J j m m jm

(7m

2
7dmiejm E 7m 1- 7n m. w.

in jn
n/m ym - yn

(1/2)6..(7
2

- y )cu. cu.
m im jm

In minimizing g(*) we shall follow a procedure similar to Clarke's

[1970] method for maximum likelihood factor analysis. Clarke used the

roots and vectors of *
-1
S*

-1 and minimized a function of *
2

rather

than i . While this method works satisfactorily in all cases where the



-10-

solution is proper, having no zifi very close to zero, certain improve-

ments can be made to handle Heywood cases (improper solutions) more effec-

tively. When one or more of the ?Pi are close to zero both first- and

second-order derivatives are poorly defined and difficult to compute

accurately. J8reskog [1967] describes a procedure to deal with this dif-

ficulty, which involves (i) fixing ei at some arbitrary small positive

value such as 0.001 for subsequent iterations and minimizing with respect

to the remaining zifi and (ii) once a Heywood variable with e = 0.001

has been found, this variable is paxtialed out and the minimization

process repeated with fewer factors on a smaller matrix. Although this is

quite correct in principle, it is somewhat time consuming. When working

with the roots and vectors of *S
-1
* , rather than those of *

-1
S*

-1
, the

partial elimination of variables may be completely avoided. Jennrich and

Robinson [1969], operating on the roots and vectors of S
-1/2

*
2
S
-1/2

in-

stead of on those of *S
-1
* , used a similar procedure which also does not

break down when ' is singular. Furthermore, a transformation of variables

may be made which make the derivatives stable even at 4ri = 0 . This trans-

formationfrom*.toe.is defined by

(27) e. log ; +4e05-

We now consider g as a function of 0 0 ... e
11 21 1 p

instead of

The new function g(e) is defined for all ei , -co < ei < +co Note

that V'.
1

= 0 corresponds to 0.
1

= -co



The derivatives 6d6ei and 62g/66j66i are obtained from 6g/6?iii

and 62g/6*.6*. by

6gOei = (7y2)(6g/6*i)

62g/6,9i6ei (*iy4)(62g/6*i6y + bii(y4)(6gMi) .

These derivatives therefore become

(28) ,/661. p
E

(72 )(.02.

5/
in m 1M

m=k+1

, %(29) g/06.06. = k27
2

7 )w.
2
w.
2

m m amm=k+1

+
(

2 7 4-
- 7

m
)w. w. w. .

m=k+1 im Jm nj4m 7mm 7nn in Jn

2 % 2 2= (27 - 7 AD. cu.
m=k+1

m n im jm

, 2
k 7

m
+ 7

n
+ kym

m im am
- 7 )(D. a). W. w.

m=k+1 m n=1 7m 7n in

2 p 7m 4- 7n+ E (7m - )w. w. w.
m=k+1

m im OM
n=k+1 7m 71 in jn
n/m

13
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The last term may be written

2
P m-1 [(7m Ym)(Ym Y ) (7

2
Yn )(Ym Yn )1n+n

.. . .

m=k+1 n=k+1 7m 7n
yn - ym jm jn

p m-1
z z (ym + y

n
)(y

m
+ y

n
- 1)w. w. w. w.

m =k +l n=k+1
jm jn

1
= 2 z E (Ym n)(Ym Yn 1)w. w. w. 0)jjm n

m=k+1 n=k+1
nAm

which after substitution into (29), simplification and use of the relation

p k
Z w. w. = 6..

n=1
- Z w. w.

m=k+1
im jm ij in jn

gives

(30) a2gPeiae. = ( Z y w w )
2
+ 6..Pg/01.)

m =k +l
m

.

jm

P 2
k

7n
+ 2 Z y

m
- y )(1). 0.). Z w. w.

m im jm. y - y
n
inn

m =k +l n=1 m

When yk+1,yk4.2...lyp are all close to one, this is approximately

(31)
2gPe.N9. (

p
Z w. )2

j aan jm
m =k

It should be noted that the function and all derivatives of first and second

order may be computed accurately everywhere, even at Gi = -co ( = 0 )

14
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Let 6 denote a column vector with elements 61,62,...,6p and

let h and H denote the column vector and matrix of corresponding

2, ,

derivatives 6g/66 and 0 g/606' respectively. Let 6
(s)

denote

the value of e in the s
th

iteration and let h
(s)

and H
(s)

be the

corresponding vector and matrix of first- and second-order derivatives.

The iteration procedure may then be written

(32) H(s)5(s) h(s)

(33) e
(s+1)

=
(s) (S)

where 5(s) is a column vector of corrections determined by (32). The

Newton-Raphson procedure is therefore easy to apply, the main computations

in each iteration being the computation of the roots and vectors of

-1
* and the solution of the symmetric system (32). It has been found

that the Newton-Raphson procedure is very efficient, generally requiring

only a few iterations for convergence. The convergence criterion is that

the largest absolute correction be less than a prescribed small number

E . The minimizing 6 may be determined very accurately, if desired,

by choosing E very small.

In detail the numerical method is as follows. The starting point

6
(1)

is chosen as [see e.g., J8reskog, 1963, eqs. 6.20 and 7.10 or

J8reskog, 1967, eq. 26],

(34)
(1)

e. = log[(l - k/2p)(1/sii)]

where s
ii

is the i
th

diagonal element of S
-1

. The exact matrix H

of second order derivatives given by (30) may not be positive definite in

15



the beginning. Therefore, the approximation E given by (31), which is

always Gramiari, is used in the first iteration and for as long as the maxi-

mum absolute correction is greater than 0.1. After that, H is used if it

is positive definite. It has been found empirically that E gives good

reductions in function values in the early iterations but is comparatively

ineffective near the minimum, whereas H near the minimum is very effective.

To compute the characteristic roots and vectors of kirS

-1
* in each

iteration, we use the Householder transformation to tridiagonal form, the

QR method for the roots of the tridiagonal matrix and inverse iteration

for the vectors. This is probably the most efficient method available

[see Wilkinson, 1965]. The system of equations (32) are solved by the

square root factorization H = TT' , where T is lower triangular.

This shows at an early stage whether H is positive definite or not.

InHeywoodcases,whenoneormoreoftheei-4-coi.e.*.-->0

a slight modification of the Newton-Raphson procedure is necessary to

achieve fast convergence. This is due to the fact that the search for

the minimum is then along a "valley" and not in a quadratic region.

When O. -4-00 , ag/ae. and
2
g/60.60

j
-,o , j = 1,2,...p

th
i
th

so that when e. is small the i element of h and the row and

column of H and E are also small. This tends to produce a "bad"

correction vector 5 and the function may increase instead of decrease.

A simple and effective way to deal with this problem is to delete the i
th

equation in the system (32) and compute the corrections for all the other
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Ors from the reduced system. One then computes the correction for 0

as

(35) 8i = (6g/600/(62g/60T)

I

This procedure will decrease Si slowly in the beginning but

faster the more evident it is that Si is a Heywood variable. When Si

has become less than -10 it is not necessary to change ei any more unless

±760. is negative. Thus, the procedure corrects itself quickly if a

variable is incorrectly taken as a Heywood variable.

5. Asymptotic Distribution Theory

In this section we show that the GLS estimates and the ML estimates

have the same asymptotic properties. In particular we shall evaluate the

common asymptotic variance-covariance matrix of the estimates of

Ir ...
1'

7

2 p

It is assumed that S converges stochastically to E of the form

(2), and that the elements of WI (S - E) have an asymptotic multi-

normal distribution with variances and covariances given by

(36) neE(s -a)(s -a)] .aa +au
ap ap pv pv ai pv av pp

which are the elements of 2(E C)E) . In particular, this is true when the

observations on y are drawn from a multinormal distribution with variance-

covariance matrix E . The matrices E , A and 1V now denote the true

population values as distinguished from the mathematical variables A and

1V used in the previous sections. It is furthermore assumed that ?1 0 ,

i = 1,2...,p i.e., that the population is not a Heywood case.
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Let A = IVE
-1
* and let 71 < 72 < < yp be the characteristic

roots of A with w
l'

w
2

an orthonormal set of corresponding" p
characteristic vectors. Let I'

1
= diag(7 7

2'
... 7 ) r

2
= diag(7

k+1'k

k+2 ' p ' 1 [wk+1'wk+2'.."(131) We7 7 ) n = [co and n_

assume that the roots in r
1

are all distinct. Then

(37)

and

(38)

A = n n + n n2 ,

1 2 2

A
-1

n I'
1n, + n r

1
ni

1 2 2 2

However, since

(39) A-1 = *-1E*-1 = *-1AA,*-1 + I

we have that Y
7 7

1 , or
'k+1 k+2 p

(4o)
112 I

Defining

(41) = n ,

2
n2

it follows from (37), (38), (40) , nIn2 = 0 and np2 = I that has

the properties

(42) A:-ti:= A-1:E = :EA =
1 2

Corresponding to the population quantities in (37) and (38) we have the

corresponding sample quantities
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(43)

and

(44)

A .

^-1
A

I;
1 1 1

=
1

I'
1

+ I;
2 2

+

2

^-1"
2
r
2 2

where Pl = diag(91,Y2,...,Yk) and P2 = diag(Y k+1'9k+2''5)10) are

diagonal matrices of the characteristic roots Yi < Y2 < < Yp of

A = vS -1* and S21 of order p x k and i22 of order px(p k) are

matrices of corresponding orthonormal characteristic vectors. These are

the quantities obtained at the minimum of g(4r)

We shall show that 171. converges stochastically to * . The function

g(*) in (22) is also a function of S and will now be denoted g(S,**) .

The estimate f is defined as the value of ** that minimizes g(S,*)

for a given S . But g(S,*) converges stochastically to g(E,**) which

has a unique minimum at ** = * . Since the functions are continuous, lr

must converge stochastically to * .

In deriving various asymptotic results we shall make repeated use

of the following well-known lemma [see e.g., Wilks, 1962, p. 103]: If

C = (c..10 ) is a matrix whose elements are continuous functions of random

variables xi,x2,...,xm and if plim xk = exists and is finite for

all k , then plim C(x) = Ca) .

From this it follows immediately that

(45) plim A = plim lifS-117f = *E-1* = A

and that plim Ym = ym , plim ci)m = cum .

19
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Hence, from (30) and (40) we have that

plim
2
g0(9.(9. ( E co. co. )

2

J im jm
m=k+1

and from (26) that [cf. Anderson & Rubin, 1956, eq. 12.24; Lawley, 1967,

eq. 7 and J8reskog, 1967, eq. 101]

(L.6) plim
2gM.U.. = (4/*.t.)( wim w.

jm
)

2

m =k +l

The asymptotic variance-covariance matrix of the ML estimates of the *is

..
is given by (2/n)E

-1
, where E is the matrix whose ij

th
element is

given by the right-hand side of (46). We proceed to show that (2/n)E-1

is also the asymptotic variance covariance matrix of the GLS estimates of

the Vs.

The GLS estimates
l' 21

...
' p
3 are defined implicitly by the

following equations

= 0

which by (25) may be written

i = 1 2

(L.7)
diag[i12(2 - P2)4] = 0

We shall write (1,7) linearly in statistical differentials. The symbol 5

is used to denote deviations of sample from population values. All such

deviations are of order
-1/2

in probability and since we assume that

n is large, we shall neglect in what follows terms of second and
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higher degrees in the 5's. Let 8112 = P2 - P2 = P2 - I 5f22 = - Q2

and 5A = A - A . Then we have to the order of approximation indicated

/.2 ^r2 = + 251-'2 1 r2
2

- F2 = 5112 and 122(2 - P2)14 f225r252 . But

5112 = f228Af22 which may be verified from A122 = 122112 and V12 = I

Hence, (47) is asymptotically equivalent to

(1.8) diag(a. 5A = 0

Furthermore, with 5* = - * and 5E = S - E we have to the same

order of approximation

s -1
(E + 5E)

-1
= E

-1
- E

-1 -1

and

5A = (* + 5*) (E-1 - E-15EE-1)(* + 5*) - A

= 5*E
-1* + -15* - *E

-15=-1
*

= 514 1A + Alf
-1
5* - A*

-1
5E*

-1
A

which after substitution into (1.8) and use of (1.2) shows that (1.8) is

asymptotically equivalent to

(1.9) 2diag(7:E5**-)= diagrt:*-15E*-1) .

From (37) it follows that the elements of T = 15E*-1 have a

limiting multinormal distribution with variances and covariances given by
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v
(50) ne(t t ) acx kaP aa vaP

;.1.

ap

where alb denotes the ij
th

element of A .

-1

Equation (49) is linear in 6*1,02,...,5c and may be written in

scalar form as

P 2 p p
(51) 2 E (5* /* ) = E E i = 1,2,...,p

x=1 " x x (3,1

which may be solved for 5* /* if the matrix 0 with elements
g g

2 p ,

l
2 .

(0.1. = =
13

( E W. W3m. ) s nonsingular. The solution is
3 im

m =k +l

P p p
(52) E E E

ila
ta

g =

g g i=1 a=1 p=1
p p 2

Equation (52) shows that 6411,54'2,...,5c are asymptotically linear

in the elements of T and hence will have a limiting multinormal dis-

tribution. To obtain the asymptotic variance-covariance matrix of

1' 2' / p
i we write equation (52) with indices h j k and v

instead of g i , a and p respectively, multiply these equations

and use (50) and (42). This gives

r
EEEEEEogi0j. 0,104.1.0v aavapp)(n0

g
WO 5* ) (l/4)

g h ip 311 31,
i j C X P

= (1/2) E E OgiOhje
i j

ij

(112)
ogic ojh

i j
ij
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Hence,

(53) e(b*gb*11) opg*11/2n)ogh

which is the gh
th

element of (2/n)E
-1

. This, therefore, shows that the

asymptotic variance-covariance matrix (2/n)E
-1

is the same for both the

ML estimates and the GLS estimates.

Lawley [1967] obtained the unconditional asymptotic distribution of

the ML estimate A from the conditional asymptotic distribution of A

for given V [Lawley, 1953]. Since the conditional estimate A is the

same for both ML and GLS, it follows that also the GLS estimate A has

the same asymptotic distribution.

Another well-known result for the ML method is that n times the

minimum value Fmin of F in (5) is asymptotically distributed as X'

with d =
1 ,

[kp - k)
2

- (p + k)] degrees of freedom. The same statement

is true also for the GLS method. To prove this we show that both minima

are asymptotically equivalent.

Let jrI denote the maximum likelihood estimates of jrI . Since jrI is

asymptotically equivalent to , the characteristic roots 5,1,5;2...,5;m of

TfS-1T are asymptotically equivalent to the corresponding roots '21,5,2...,5,)p

of 1fS-11 . The minimum of F is [see e.g., J8reskog, 1967, eq. 18]

p
Z (log

m
+ 1/5;

m
- 1)

m=k+1

which is asymptotically equivalent to
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1E (log
m

+ 1/Y
m

- 1) = E [log(1 + &yid
uyin

F 11

m=k+1 m=k+1

E (67m

m=k+1

1 E 672
2
m=k+1

1
= 7 E (9m - 1)

2

m=k+1

2
+ 1 - 57

m
+ 67

2
- 1)

m

6. Results and Comparisons on Numerical Data

The algorithm described in section 4 has been implemented in a FORTRAN

program and run on several matrices. It is interesting to compare the

results of GLS and ML on the same two correlation matrices, Data 1 and

Data 2, as areskog [1967] and Clarke [1970] analyzed with the ML method.

The correlation matrices are given in both of these papers.

Data 1 is a correlation matrix of order 9 x 9 and is analyzed with

three factors. The course of the minimization is shown in Table 1. It is

seen that the convergence is quite rapid and that the solution can be

determined very accurately, to about five decimals in the e's. This cor-

responds to an accuracy of about seven decimals in V2 . The solution is
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given in Table 2 along with the ML solution. It is seen that the two

solutions are very close, so close that interpretations of the data will

be the same. The value of X
2

with 12 degrees of freedom and based on

n = 210 , is 6.98 with GLS and 7.35 with ML. These are very close in

this case when the fit is very good.

Data 2 is a correlation matrix of order 10 x 10 and is analyzed with

four factors. The maximum likelihood solution for this data is a_Heywood

case with * = 0 for variable 8. The behavior under the GLS minimization

is shown in Table 3. In this case it takes nine iterations to achieve con-

vergence. This is because e8 goes very slowly to -10 and reaches -10 at

iteration 5. After that, convergence is quadratic. The GLS and ML

solutions are given in Table 4. Also in this case the two solutions are

very close. The corresponding X
2

values, 19.40 with GLS and 18.45 with

ML based on 11 degrees of freedom and n = 809, are somewhat more apart,

delpite the fact that n is large. However, the fit of the factor model

is not as good as in the Data 1 example.

It should be noted that for the GLS estimates it does not hold that

^2 ,^
* = diag(S - AA') which holds for ML estimates. In the examples, com-

munalities and uniquenesses do not add up to unity. Also it can be seen

in both Table 2 and Table 4 that the GLS estimates of *
2

are generally

smaller than the ML estimates. This suggests that the GLS estimates may

be systematically biased.

95
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TABLE 1

Details of the GLS Minimization for Data 1

Iteration Type Function Max. correction Max. gradient

0 0.1170246 2.45 x 10-1

1 E 0.04017278 6.64 x 10-1 7.04 x 10-2

2 E 0.03341929 1.71 x 10-1 1.06 x 10-2

3 E 0.03321625 2.73 x 10-2 7.36 x 10-4

4 H 0.03321503 2.91 x 10-5 3.64 x 10
-6

5 H 0.03321503 2.67 x 10-5 2.37 x 10
-10

TABTP 2

Solutions for Data 1

1

GLS ML

ail .1\i2 13 ail .7\i2 13

1 .662 .325 -.082 .445 .664 .321 -.073 .450

2 .688 .255 .191 .416 .689 .247 .193 .427

3 .491 .310 .225 .600 .493 .302 .222 .617

4 .839 -.286 .041 .208 .837 -.292 .035 .212

5 .708 -.309 .162 .37o .705 -.315 .153 .381

6 .823 -.376 -.106 .168 .819 -.377 -.105 .177

7 .66o .404 .073 .387 .662 .396 .078 .400

8 .454 .290 -.484 .473 .458 .296 -.491 .462

9 .763 .434 .001 .227 .766 .427 .012 .231
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TABU, 3

Details of the GLS Minimization for Data 2

Iteration Type Function Max. correction Max. gradient

o

1

-

E

0.08765774

0.03525694

9.31 x 10-1

4.09 x 10-1

9.89 x 10-2

2.23 10-2

2 E 0.02892803 4.65 x 10-1 2.17 x 10-2

3 E 0.02574564 8.74 x 10-1 1.53 x 10-2

4 E 0.02418829 3.63 x 10
0

7.71 x 10-3

5 E 0.02401558 1.97 x 10
4

1.10 x 10-3

6 H 0.02398666 1.00 x 100 3.55 x 10-4

7 H 0.02398479 1.37 x 10-2 2.99 x 10-5

8 H 0.02398478 1.49 x 10-3 4.81 x 10-7

9 H 0.02398478 1.52 x 10-5 4.81 x 10-7
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TABU', 4

Solutions for Data 2

Ail Tit

1 -.188 -.756
2 -.120 -.468

3 -.186 -.763

4 -.173 -.527

5 -.129 -.678
6 .359 .259

7 .448 .501
8 1.00o -.000

9 .429 .282

lo .316 .232

GLS

N.3 .N.4

.04 -.100

.095 .382

.157 .221

.198 .135

.258 -.345

.157 -.047

.504 .059
-.000 .000
.212 -.051
.505 -.020

ML

?I 1. 1

.

1 2
?\i3

.1\i4

.377 -.188 .753 -.035 -.108 385

.604 -.120 .468 -.103 .365 .623

.309 -.186 .767 -.167 .217 .301

.629 -.173 .526 -.200 .124 .638

.336 -.129 .672 -.251 -.349 .347

.767 .359 -.259 -.154 -.048 .778

.289 .448 -.504 -.507 .052 .286

.000 1.000 .000 .000 .000 .000

.68o .429 -.282 -.209 -.053 .6go

.580 .316 -.232 -.496 -.029 .600

30
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A. Appendix

Al. Matrix Derivative of Function G(A,*)

To obtain the matrix derivatives we use matrix differentials. In

genera4dX.(dx.)will denote a matrix of differentials. If F is

ij

a function of X and dF = tr(CdX') then 6FPX = C . Since

d tr(A) = tr(dA) we have for a fixed ic with G defined by (6)

and E by (2),

,

dG
1
d tr(S

-1
E - I)

2

2

tr[d(S1E - 1)2]

tr[(S-1E - I)d(S-1E - I)]

= tr[(S1E I)S-idE]

tr[(S-1E - i)s-1(AdA, + dAA,)]

2tr(S-1E - I)S-1AdA'

2tr[S-1(E - S)S-1AdAl] .

Hence, the derivative G/M. is that given by (13).

A2. Matrix Derivatives of Characteristic Roots and Vectors

The characteristic roots ym and vectors cum m = 1,2,...,p of A

are defined by

31
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(Al) Acu = y u)
m m m

(A2) ea)m = 1m

(A3) ea) = 0 ,

m n

-A2 -

n m

Differentiation of these equations gives

(Au.) dAce + Ado)M = dymm + y anm m

(A5) edco = 0m m

m = 1,2, ...,p .

(A6) eau + dew = 0 , n / m .m n m n

Premultiplication of (Au.) by (1):11 and use of (Al) and (A5) gives

(A7) dym = tul;IdAinm .

Let E = em dAn
n

= e
nm

for m,n = 1,2,...,p . Then premultiplication of
mn

(Al'.) by coll; for n / m and use of (Al) and (A3) gives

e Volm - VAdin
inn m n m n m

y e din - y e dinm n m n n m

= (7 7 )(1)T cla)m n n m

or

E

(A8) wi -
mn

n m ym - yn
n # m
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Multiplying this equation by con summing over n / m , using (A5) and

remembering that

E w w' = I - cow'
n n m m

n/m

gives dwM
as

(A9) dwM =
7

TIM

7
co
nntm m

The merits of (A7) and (A9) are that they express the differentials of

7
m

and co
M

in terms of the differentials of A .

In our problem we have A =
-1

If as a function of 1 so that

dA = dVrS -1Vr +
-1
d*

= 4* -1
A + A*

-1
d* .

Substitution of this into the definition of c gives

c = co' dAco
mn m n

co'd**
-1

Aco
n

+ m
-1

n

(7m 7n)culildo curl

-1
= (yini + yn) tr(conuiin* )

With this result we have

(A10) dy
m

= 2y
m

tr(co elf
-1

cill)
m m

33
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and

-I-

(All) din
7m

E tr(w col*
-1

d1V)w

m / 7 7

7n

npm m n
n m n

wim respect to *. are

(Al2) (27mPirdwm

and

(A13) /* (10.) E m n wi w.
11j

wpm
n/m 7m 7n n J

which are the results used in section 4.


