
ED 052 806

AUTHOR
TITLE
INSTITUTION
PUB DATE
NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

LI 002 951

Hart, Robert
Instant Fortran.
Hofstra Univ., Hempstead, N.Y.
11 Nov 70
37p.; (1 Reference)
Author, New College of Hofstra, Hempstead, New York
11550 ($.50; $.40 each for 10 or more copies)

EDRS Price MF-$0.65 HC-$3.29
Automation, *Computer Programs, *Computer Science
Education, *Electronic Data Processing, *Information
Processing, *Programing Languages
*Fortran

As part of a short (five-hour) "package" or "module"
of computer instruction, this booklet can be inserted into existing
courses. It is aimed at the problem of giving large numbers of
liberal-arts students a "literacy" in computation -- cheaply,
feasibly, and with minimum facilities, staff, and administrative
"blither." (Author/NH)

a'

y

"PERMISSION TO REPRODUCE THIS COPY-
RIGHTED MATERIAL HAS BEEN GRANTED
BY

Robert 71-Aa_rt
TO ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE U.S. OFFICE
OF EDUCATION. FURTHER REPRODUCTION
OUTSIDE THE ERIC SYSTEM REQUIRES PER-
MISSION OF THE COPYRIGHT OWNER."

INSTANT FORTRAN

Robert Hart
New College of Hofstra University
Hempstead, New York 11550, U.S.A.

(November 11, 1970)
CD
CO 0 Copyright 1971 by Robert Hart. All rights reserved.

rJ
Le%

O
LLi

TO THE INSTRUCTOR: Classroom quantities of this booklet
are available. Permission to reproduce or adapt this booklet
will usually be freely granted for purposes which are educa-
tional, non-commercial, and not-for-profit. Written permission
and the exact conditions must be secured in advance from the
copyright holder.

A Teachers' Commentary on this booklet is (or will be)
available from the author. This booklet is part of a short
(five-hour) "package" or "module" of computer instruction,
w1-..ich can be inserted into existing courses; and which is
ai.ned at the problem of giving large numbers of liberal-arts
students a "literacy" in computation -- cheaply, feasibly, and
with minimum facilities, staff, and administrative blither.
Further information, including a "do-it-yourself kit" for
instructors (of instructor's guide, student handouts, evaluation,
bibliography, folksy advice, etc.), is available from the author.

ACKNOWLEDGEMENTS: Development of the package and this booklet
was supported in part by the Undergraduate Science Curriculum
Improvement Program of the National Science Foundation. The
final section of this booklet owes a debt to Section. 1 of G.E.
Forsythe's excellent "Educational Implications of the Computer
Revolution," in Applications of Digital Computers, edited by
W. F. Freiberger and W. Prager (Ginn and Company, Boston, 1963)

ERRATUM: The bottom line of p. 5 should have a decimal point
added and read

CN/
X = 2A - B + 1 , in Fortran this would be X = 2.0*A - B + 1.0 .

(Note that the
c=)

The picture to keep firmly in mind when programming a computer, is of an

idiot sitting at a desk calculator. The idiot is fast but very dumb. Your program

is a series of instructions to the idiot, which the idiot obeys slavishly one after

the other. If you could write a set of explicit instructions to a very dumb secre-

tary for carrying out your calculation, that would be pretty nearly a computer

program.

Almost any computer program has about the same structure: you tell the

idiot to take in numbers, to do something with them, and to give you the results

out. I will essentially show you one instruction for each of these, using the

simplest program I can think of--a program to add two numbers together. But I will

drop hints on how these innocent-looking instructions and the same structure can,

in fact, be used to do socially important and sizable calculations.

Before we tell the idiot to take in two numbers, add them together, and

give the result out, I will comment on something which often bugs people. We will

be giving the idiot numbers, and a set of instructions for what to do with them.

Both are necessary, but they are logically distinct. The idiot couldn't do much

if we gave him instructions for adding two numbers together, but didn't tell him

which two to add. He couldn't do much, either, if we gave him two numbers, but

didn't tell him whether we wanted to add them or multiply them. The instructions

(the program) sit on the desk in front of the idiot, and he follows them, one after

the other. The numbers (data) are written one number to a card, on a stack of index

cards, and this stack is somewhere else,on his desk. Every once in a while he hits

an instruction which tells him to do something with ore of the numbers in the stack.

However, these data are not themselves instructions. They are just there to be

used like the instructions tell him to. The program is the recipe that the idiot

follows, the data are the ingredients.

The point of this separation is that the same recipe can be used to do many

jobs by putting in different ingredients. Once we have written a set of instructions

for adding two numbers together, those instructions can be used to add together any

two numbers, just by giving the idiot a different pair of data cards. (Also, since

this leaves the instructions the same, their original translation into machine

language can still be used. If the data were part of the program, changed data

would mean a changed program, and computer time would have to be used to translate

this new program.)

That isn't too interesting for adding two numbers, which no one in his right

mind would do on a computer, anyway. However, if you have a complicated set of

instructions--a payroll program, say--it means that the same instructions can be

used to prepare another company's payroll. All that's needed is giving the idiot

the different numbers (hours worked and hourly rates of pay, say) for the employees

of the other company, and following the same set of instructions he'll grind out

the payroll for the other company. (Some companies make a living this way, pre-

paring payrolls for others. They are called computer service bureaus.)

Similarly, if the original company wants to prepare next week's payroll,

they use the same instructions over. They don't have to rewrite the program, even

if Jones got a nickel raise. They just slip the card with his old hourly rate out

of the stack of data cards, and replace it with a card with his new rate written

on it.

That is a Very Important Point about computers. For repetitive calculations,

you get a large return of computation for a small amount of programming. If by

hand or on a desk calculator you were to average two batches of numbers (of 1000

numbers each, say), getting the average of the second batch would be just as much

work as getting the average of the first. On a computer, the instructions have to

be written for averaging the first batch, but once this is done, later batches are

-2-

done essentially free, i.e., with little extra human effort. Indeed, computers are

useful only for jobs that repeat in some way. If you want to do something one time

only, it is easier to punch the keys of a desk calculator yourself, than to write

the instructions telling the idiot how to do it.

Well, on to telling the idiot to take in two numbers, add them together, and

give the results out.

Get Numbers In

We have given the idiot a stack of two data cards. Each card has written on

it, in ordinary decimal notation, one of the numbers we want to add together. The

first instruction to the idiot is

READ A Program I

This tells the idiot to pick up the top caTd from the stack, read whatever number

he finds there, memorize the number and call it A , and then throw this card into

the wastebasket. Later on, whenever you want him to use A , he'll know what A is.

Throwing the card into the wastebasket after he read it, means that the stack now

has a new top card--the second card of the original stack.

To get in the second number, you do exactly the same thing. If you want to

call the second number B , the second instruction to the idiot is

READ B Program II

As before, this tells the idiot to read the top card from the stack, memorize what-

ever number he sees there and call it B and to toss this card into the wastebasket.

Note, tho, that he tossed the first card into the wastebasket when he obeyed READ A .

So this top card is now the second card of the original stack.

So oow the idiot knows what A and B are, and is ready to do something

with them. His A and B are the numbers on the first and second data cards you

-3-

4

gave him. And that is about all there is tc getting numbers in. At any point in

the instructions that you want the idiot to read the next data card, you tell him

READ W , where W is whatever you want to call that number.

Before going on to doing something with A and B , it may be useful to

clean up some odds and ends. First, instead of A and B , you can use any letter

(except I, J, K, L, M, or N) as the name of a number. They don't have to be in

alphabetical order. (I, J, K, L, M, and N have other uses, which I hope to explain

in a sequel to this booklet, "Son of Instant Fortran.")

You aren't restricted to taking in two numbers. You can take in as many as

you want, and you can take them in anywhere in the program. For example, the four

instructions READ A , READ B , READ S , READ Q , at whatever point encountered,

would result in the idiot's there reading the next four data cards, and calling the

numbers found on the cards A , B , S , and Q , respectively.

The data cards are punch cards (IBM cards), and not index cards as I used

for illustration. However, that doesn't make much difference for understanding what

is going on. The numbers are punched on them in a code of holes, in addition to

being written on them. The computer reads the holes. The punching and writing is

done by a keypunch, which is similar to a typewriter except that it punches in

addition to writing. Learning to use it takes about five minutes.

Each data card has on it only a number, as, e.g., 62.7 , 19. , or 0.017 .

It does not have on it A = 62.7 , B = 19. , or S = 0.017 . The computer knows which

is which by order. It knows that A is 62.7 because this is the number on the top

data card when the idiot reaches the instruction READ A . Putting in " A = " is

unnecessary, illegal, and immoral. Instead of doing your job the computer will make

insulting remarks.

-4-

Also, each of the data numbers must have a decimal point. Plain 19 with-

out a decimal point is illegal. More about these later, but they are common enough

errors to deserve double mention.

Do Something With Them

Most any program consists of getting numbers in, doing something with them,

and getting the results out. We have gotten numbers in--the idiot knows the values

of A and B --and now we will do something w4th them. This is the part of the

program that does the work, but it is easy. The secret is that Fortran is designed

to be as much like ordinary arithmetic as possible. To tell the idiot to add A

and B and call the result X , we wr &te X = A + B ; and similarly, all other

calculations look like what they mean.

The program so far looks like

READ A
READ B
X = A + B

Program III
...11/11,1

We told the idiot to take in A and B , and now that he knows what they are, the

last instruction tells him to calculate their sum, and whatever number he gets,

memorize that number and call it X . Later on, whenever you want him to use X ,

he'll know what X is.

Let us write down some other calculations that look like what they mean. In-

stead of X = A + B , we could have written X = A - B , and the idiot would have

subtracted B from A and called the result X . X = A/B is division. (The

slash is division.) X = A*B is multiplication. (The asterisk is used as the

multiplication sign, to avoid confusion with the letter x.) These fundamental oper-

ations can also be used in combination. If, in ordinary algebra, you had

X = 2A - B + 1 , in Fortran this would be X = 2.0*A B + 1 . (Note that the

-5-

6

9.

numbers must have a decimal point.) The idiot would do with it the same thing he

did with X = A + B : calculate the thing on the right-hand side of the equal

sign, using the known values of ti and B , and whatever value that came out to,

call it X . If, in ordinary algebra, you had X = 014.3 A - AB + 23B) , in

(2A - 17)

Fortran this would be X = (14.3*A A*B = 23.0*B)/ (2.0*A 17.0).

Note that all the multiplication signs (asterisks) have to appear explicitly; for

example, in 14.3*A and A*B .

So I will continue writing X = A + B in the sample program I am developing,

but what this really stands for is "as complicated a calculation as you want,"

written in the ordinary notation of arithmetic.

You can make the calculation more complicated in other ways. For example,

you could add an instruction to the program to make it look like

READ A
READ B
X = A + B

V ,., X/A

Program IV

The point is that by the time the idiot hits the last instruction, he knows what

X is, and he can use it to calculate further quantities, just like A and B .

He happens to know X for a different reason than he knows A : X he calculated

and A he read in from a data card. But once he knows a quantity, for whatever

reason, he can use it to calculate further quantities. Remember too, that X = A + E

and V = X/A could each be as complicated an expression in ordinary algebra as

you want. Nor are you restricted to two letters on the right-hand side. Once the

idiot knows A , B , and X , the last instruction could have been V = 2.0*B -

A*X + 17.3 . The idiot handles all such instructions in the same way. You write,

on the right-hand side, in what is essentially ordinary algebra, as complicated a

combination of previously-known quantities as you wish. The idiot calculates the

whole mess on the right-hand side according to the notation of ordinary arithmetic,

plugging in the previously-known values. Whatever number the mess comes out to,

the idiot memorizes it and then calls it whatever letter you put on the left-hand

side of the equal sign. Later on, whenever you use this letter, the idiot knows it

has this value.

So I will continue using the uninteresting-looking X = A + B in the sample

program I am developing, to represent the entire "Do Something With Them" part of

the instructions; but this is a fake that stands for any of the more complicated

calculations you can do using the same structure and ideas.

In fact, socially significant computer programs can sometimes be quite

simple. The guts of a payroll program, for example, is PAY = TIME*RATE , no more

complicated than X = A + B . (TIME is the number of hours worked, and RATE is

the hourly rate of pay.) Programs like this have put people out of work (and

creat3d jobs for programmers). Not because they do anything that a third-grader

couldn't, but because the computer does it quickly and repetitively, a point I will

beat to death later.

PAY = TIME*RATE also illustrates that you can call numbers by names that

look like what they mean, not only single letters like the A , B , and X that

we have been using. (PAY is a single number just like A ; it is not a number

P times a number A times a number Y .) This is an enormous practical help

in writing real programs, where there may be many names of numbera. There are

other uses. It is rumored that some programmers write their programs so as co

embarass female employees and vice-presidents as much as possible. However, single

letters are adequate for our purposes, so the details are in "Son of instant Fortran."

PAY also shows why multiplication signs (asterisks) -have to appear ex-

plicitly: in X = A*B , for example. If you wrote X = AB , the idiot would con-

sider AB to be a single number called AB , just like PAY is a single number.

-7-

8

Before going on to getting the results out, a couple of odds and ends. If

you write something like X = A/B + 1.0 , people often ask whether the idiot under-

stands this as X = (A/B) + 1.0 , or as X = A/(B + 1.0) . The cheap answer, which

always works, is to put in enough parentheses to make your meaning unambiguous.

(Parentheses are on the keypunch, just like on a typewriter.) If you mean X =

(A/B) + 1.0 , write that. Ii you mean X = A/(B + 1.0) , write that. More paren-

theses than necessary don't hurt, so use them freely whenever you are in doubt.

A slightly more expensive answer is that here, as everywhere, Fortran is as

much like ordinary arithmetic as possible. So Fortran evaluates things like you

did in grade school: First you do the multiplications and divisions, and then you

do the additions and subtractions. So X = A/B + 1.0 means X = (A/B) + 1.0 .

Students sometimes ask what happens if you write READA or READ A , in-

stead of READ A . Fortran sees these, and also perversions like RE ADA and

R E A DA , all as the same thing, Spaces are irrelevant in the instructions (tho

the numbers on data cards should be written in the ordinary way). They are useful

because READA is more legible to you than READA , X = A + B more legible than

X=A+B , especially when you have a long series of such instructions; but the

computer Is equally happy with all of them. In other words, .if you write every-

thing (instructions and data numbers) in the form that looks natural to you, it will

be correct. Fortran is deliberately designed to be as useful for people as possible.

Get Numbers Out

In most any program you get numbers in, do something with them, and get the

results out. Continuing with Program III, we have gotten numbers in, and done some-

thing with them (" X = A + B "); and now we want to get X out. A human assistant

might know that X is the desired result, and give it to you; but the computer is an

idiot, and you have to tell it "give me this number." If you don't, the computer

knows what X is, but it won't tell you.

-8-

The instruction for "give me X " is WRITE X . When the computer hits

this instruction it prints the value of X on the printer. This is a kind of

glorified typewriter attached to the computer, which prints out a whole line at a

time. (Wi'..h other instructions, or other computers, X might be printed instead

on the regular typewriter that is part of the computer, or punched on to a punch

card, or gotten out in other ways. Exactly which way isn't too important.)

With this addition, Program III becomes

READ Al ..(40mBER im

READ B 3 Program V
X = A + B a)cf ScmerHiricj

WRITE X ,4....REs.,67 co,

And that is about all there is to getting numbers out. At L.ny point in tho instruc-

tions that you want the computer to give you the value of a previously-known number,

you say WRITE W , where W is the name of that number. You can get out as many

previously-known numbers as you want, anywhere in the instructions, and they can be

any numbers that the idiot knows (not just numbers he calculated). For example, you

could have written

READ A
READ B
WRITE A
WRITE B
X = A + B
WRITE X

Here the idiot would give you the values of A and B right after he took them in,

before going on to calculate and print out X as before.

No paragraph

This has its uses. It is a check that the computer has read in the values of A

and B that you intended.

Now we have taken numbers in, done something with them, and gotten the re-

sults out; and that is the basic structure of most real computer programs.

-9-

But that is still the hard way of adding two numbers together, or of doing any

one-time calculation. If you want to do something one time only, it is usually

easier to punch the keys of a desk calculator yourself, than to write the in-

structions telling the, idiot how to do it. It becomes useful when you have lots

of pairs of numbers to add together (or lots of employees on your payroll). If

you have five hundred pair of numbers (or five hundred employees), it is not nec-

essary to write Program V five hundred times. You write it once and tell the idiot

to go back and do the same thing for the next pair of numbers (or the next employee),

and the next, and the next, ..., and so on until the job is done. Thus you get a

tremendous return of computation from a small amount of programming. That is the

value of computers.

Contrary to popular opinion (and the opinion of most of your professors), speed

is not their dominant merit; or at least speed would usually be useless without

this repetitive ability. If the computer could only do one-time calculations,

programming a calculation is read of doing it by desk calculator would be a waste

of your time and of expensive computer timeJo matter how fast the computer.

Before we go on to getting the program to repeat, some of the comments I

made at the start of this booklet might now make more sense. These were about

the difference between program and data, and about the usefulness of keeping them

separate. The basic point was that once a Program has been written to do a par-

ticular job, it can be used with little further human effort, to do that job on

any numbers, just by giving the. program different data numbers to chew on. (Another

aspect of repetition.) If you look at Program V, you'll see exactly that. These

instructions will add any two numbers together--just give the idiot two different data

cards, apd whatever numbers you put on them, the idiot will read in those numbers,

add them together, and write out their sum. Which numbers you give him is totally

unimportant. He'll do it for any numbers whatever.

. -10-

11

Repetition

We have taken numbers in, done something with them, and gotten the results

out. Now we want to tell the idiot to go back and do the same thing with the next

pair of data numbers. We want him to go back to some preceding point in the pro-

gram, so we give that point a name, and tell him GO TO that name. In our case,

we want him to start over at the first instruction, so Program V becomes

37 READ A
READ B
X = A + B
WRITE X
GO TO 37
END

Program VII

The names of instructions in Fortran are positive integers (no decimal point),

smaller than 9999 . Other than that, 37 is a random number. We could have used

162 , 589 , 14 , or whatever. The main thing is that the two numbers have to

match. We couldn't have said GO TO 85 if there were no instruction 85 in the

program.

Also, END is at the end of every program, and I have put this in too.

(Data numbers are not program; they happen to come after END .)

Incidentally, if we want the idiot to add together 500 pairs of numbers,

of course we have to tell him what those numbers are; so we give him a stack of

1000 data cards instead of the stack of two data cards he had before, but that

doesn't affect the program.

It may look odd that we can use the same instructions to add together five

hundred pairs of numbers; the same letters A , B , and X in fact, each get used

500 times. The secret is that A , B , and X are not fixed names of numbers.

If A gets the value 17.2 while doing the first pair, this does not mean that it

has this value forever after. Rather A , B , and X are storage locations in

the machine's memory--sort of boxes, or slots, or pigeonholes in the computer's

memory, it each of which. one number can be stored -- and which can

be eraJed and have a new number put into it. Thus, when the computer

does the second pair of numbers, it erases -Lie old numbers that were

in the. boxes A , B , and X as it goes along, and puts into them

the values of A , B , and X for the second pair. It does this

for each new pair of numbers, so it can go along forever adding pairs

of numbers together, each time erasing the A , B , and X from

the preceding pair.

This is the source of much of the computer's power. In a

moment I will give a detailed example of what happens when Program VII

is used to add together many pairs of numbers. But first I want to

clean up some shorter items.

First, 37 is the name of an instruction. There is nothing

numerical or sequential about it. SAM or JOE would make more

sense as names of instructions, but Fortran insists that the names

of instructions be integers like 37 . But there is nothing any

more numerical or sequential about 37 than there would be about

SAM or JOE . The next instruction after 37 does not have to be

38 . It could as well be 14 . In fact, you shouldn't give an in-

struction a name unless it needs one. The first instruction needs

one because elsewhere we say GO TO that instruction, but so far

no other instruction needs a name.

Similarly, if the next instruction that needed a name were

the third instruction after 37 , it would not have to be 38 , and

it would not have to be 40 . It could as well be 9674 .

-12-

13

A trivial point concerns the slashes in GO TO . This is

to avoid confusion with the numeral zero. As far as the computer

is concerned, 0 (zero) is a number like any other number, so if

you give him GO TO (with zeroes), this doesn't make any more sense

to him than G3 T3. The slashes avoid this confusion in handwriting;

on the keypunch, just like on a typewriter, numeral zero is with

the other numbers, and letter "oh" is with the other letters.

Everyone makes that mistake once, and it is particularly

frustrating because the progr..-1 looks right, dammit. Similar con-

fusion occurs between handwritten numeral 1 and letter I ; and

between numeral 2 and letter Z . Again, on the keypunch, numerals

1 and 2 are with the other numbers, and the letters are with the

other letters. Handwritten these four are conventionally disting-

uished as 1 (plain vertical line), I (with top and bottom bars),

(the ordinary way), and a (with a bar thru the middle, Contin-

ental style).

Coffee Break

Now we have come to a major break in this booklet. Program

VII is a complete program which would actually run on some computers.

Simple-minded tho it is, it was made that way on purpose, to show

the principles easily. As advertised at the start, it takes numbers

in, does something with them, and gets the results out; which is

the structure of most real computer programs. It also displays the

important repetitive ability of the computer. Despite its simple-

mindedness, I have hinted how the same structure and ideas can do

sizable and socially important calculations.

14'

If you understand the logic of Program VII, you understand

what is going on. Much of the rest of this booklet, except for the

next section, is a cleaning-up of necessary details. Further --

unlike most everything up to now -- some of these details (and

whether or not they are necessary) can differ on different computers.

However, the differences are often small, and the logic behind them

is the same in all computers' versions of Fortran. To illustrate

the typical magnitude of these differences, some versions of Fortran

use PRINT X instead of WRITE X , to do the same job; and some

might use CALL READ (A) instead of our READ A , meaning exactly

the same thing. But once you understand what is going on, that

sort of change is easy.

Further, starting with the third section after this, the

rest of this booklet deals with things that will be easier to under-

stand when you actually do them: when you actually punch your pro-

gram on to IBM cards and run it on the computer. So I will just

give the minimum advance information you need, and leave most of

the understanding to when it is easiest.

So the rest of this booklet will not be as inspiring, except

perhaps for the final section on the social implications of com-

puters. These details are necessary and reasonable, and some touch

on things vital to serious computing; and I will try and show why

this is all so. But gurnisht holfen, many of them are not as

central to our purposes as what has gone before.

The next section is exempt from these maledictions. It gives

a detailed example of how Program VII can add together many pairs

of numbers, not just one pair. If this seems clear from my earlier

comments, you might skip it. A reasonable check is to ask yourself

what numbers would come out if you gave Program VII the following

stack of data numbers: 17.2, 19., 8.7, 0.17, 590.0, .042 .

If you get 36.2, 8.87, and 590.042 (the sums of the first, second,

and third pairs of data numbers), you may be all right. Otherwise,

or if you are unsure how it got these, the step-by-step example of

the next section should clear it up better than anything. Anyway,

after you finish (or skip) the next section, is the time for a break.

Repetition II

On to the detailed example of what happens when Program VII

is used to add together many pairs of numbers. The idiot has the

program, and also a stack of data cards (one number to a card, with

a decimal point in each), a wastebasket to throw the cards into

after he has read them, erasable boxes in his memory called A ,

B , and X , and the printer on which he writes out results. They

look like this at the start:

Stack of
Data Cards Wastebasket

17.2
19. (empty at
8.7 : start) :

0.17
590.0
.042

(more
data
cards)

4

Boxes in Memory Printer

A:

B:

X:

-15-

(nothing
written out
at start)

The idiot starts carrying out Program VII, and hits READ A the

first time, which tells him . . . by now you should know what it

tells him. The top data card with 17.2 written on it goes into

the wastebasket, and 17.2 gets written in the box called A .

Thus:

Data Cards

19.
8.7
0.17
590.0
.042

Wastebasket Boxes in Memo!"

A: : 17.2

: 17.2 : B:

X:

Printer

(still
nothing)

The idiot then hits READ B the first time. The new top card with

19. on it goes into the wastebasket, and 19. gets written in the

box called B :

Data Cards

8.7
0.17
590.0
.042

Wastebasket Boxes in Memory

19.
17.2

A.: /17.2/

B: /19. /

x:

-16-

1'7

Printer

(nothing)

We have simplified the pictures of the wastebasket and boxes, to

keep the secretaries from climbing up the walls.

Now the idiot hits X = A + B the first time, and this tells

him to see what is in box A , see what is in box B , add these

two numbers together, and whatever sum he gets, put it into the box

in his memory called X :

Data Ci.rds

8.7
0.17
590.0
.O42

Wastebasket Boxes in Memory

A: /17.2/

B: /19. 1

19.
17.2 X. /36.2/

Printer

(nothing)

Note that this is non-destructive: The idiot just looks at the

numbers in boxes A and B ; he doesn't erase or alter them.

Now the idiot hits WRITE X the first time, and this tells

him to go to the box in his memory called X , see what number is

there (it is the sum of the first two data numbers), and write that

number on the printer:

Data Cards Wastebasket Boxes in Memory Printer

8.7 A: /17.2/ 36.2
0.17
590.0
.042 B: /TT-7

19.
17.2 X: /36.2/

This is the first sign of life you get from the computer, i.e.,

the first of your answers printed out and given to you where you

can read it. Note that this also is non-destructive: The idiot

prints out whatever number he sees in box X , but doesn't erase or

change the number in box X . So far everything is as before,

because everything has been done the first time, with no repetition

yet.

Now the idint hits GO TO 37 the first time, starting the

repetition. This sends him back to READ A to start over again from

there. So he hits READ A the second time, and it means the same

thing it did the first time: Pick up the top data card (now 8.7),

throw it into the wastebasket, and put whatever number was on this

card into box A , first erasing whatever number used to be there:

Data Cards Wastebasket Boxes in Memory Printer

0.17 A: /8.7 / 36.2
590.0
.042 B: /19. /

8.7
19. X; L.2/
17.2

The first erasing what used to be there is now important. It is

the key to how the same A can be used to add together 500 pairs

of numbers. Before, when the idiot hit READ A the first time,

and box A was just blank, it could be ignored.

Now the idiot goes down the list of instructions, obeying

one after the other, as before. He hits READ B the second time,

and this tells him the same thing: Pick up the top data card

(now 0.17), throw it into the wastebasket, and put whatever number

was on this card into box B , first erasing whatever number used to

be in box B :

Data Cards Wastebasket Boxes in Memory Printer

590.0
. 042 0.17

8.7
19.
17.2

A: /8.7 /

B: /0.17/

X: /36.2/

36.2

Now boxes A and B hold the second pair of data numbers.

Note, tho, that the contents of box X is still the same.

X = A + B is not an algebraic equality in the sense that the con-

tents of box X always has to equal the sum of the contents of

boxes A and B . It is an instruction which is only carried out

when the idiot actually hits that instruction.

Now the idiot does hit X = A + B the second time and as

before, this instructs him to see what is in boxes A and B ,

add those two numbers together, and whatever sum he gets, put it

into the box called X , first erasing whatever number used to be in

X :

Data Cards Wastebasket Boxes in Memory Printer

590.0 A: /8.7 / 36.2
. 042 0.17

8.7 B: /0.17/
19.
17.2 X: /8.81/

19

Now box X doer have in it the sum of the second pair of data

numbers.

The situation with X = A + B is often summarized by saying

that the equal sign in Fortran is replacement rather than ordinary

algebraic equality. X = A + B instructs the idiot to calculate

the right-hand side, and to replace the contents of box X with

this number.

Having done READ A , READ B , and X = A + B the second

time, the idiot keeps going down the list of instructions; next he

hits WRITE X the second time, which tells him to see what number

is in box X , and write that number on the printer:

Data Cards Wastebasket

590.0
.042 0.17

8.7
19.
17.2

Boxes in Memory Printer

A: /8.7 /

B: /0.17/

x: /8.87/

36.2
8.87

Thus, the sum of the second pair of data numbers has been given to

you on the printer.

And so it goes. The idiot next hits GO TO 37 the second

time, which sends him back to do the whole thing over for the third

pair of data numbers, and then the next pair, and the next, and

the next

In fact, the perceptive student may have noticed that this

program never ends -- which is not elegant, but it does the cal-

culation. The program just goes on until it runs out of data cards.

Some computers then start working on the next person's program,

-20-

21

usually first making insulting remarks; others come to a grinding

halt and require personal attention to get them started again, which

is grossly inefficient. In serious programming there are ins0ructions

to tell the computer that 500 pairs of data numbers are coming in;

so when he has done it 500 times he should stop already, and know
Instant

that this program is done. These are given in "Son of.Fortran."

Take your coffee break.

READ and WRITE

Program VII is a complete program, with all the logical struc-

ture needed, and would run on some computers. On most computers,

however, including Hofstra's IBM 1130, two further pieces of in-

formation must be given the computer in the READ and WRITE in-

structions which get numbers in and out.

The first of these is easy to understand. Most computers

have several ways to get a number out, and you have to tell the

idiot which one. Each way is assigned a code number, so you say

WRITE (3) X instead of WRITE X . The 3 tells the idiot to give

you the value of X on the printer. If you wanted him instead to

type X on the regular typewriter that is part of the computer,

then instead of 3 you would use the code number for the typewriter;

and similarly for other ways of getting numbers out.

Just as there are several ways of getting numbers out, so

there are several ways of getting numbers in. So instead of READ A

you say READ (2) A , where 2 happens to be the code number for

the card reader that we will be using to take numbers in.

-21-

22

So Program VII becomes

37 READ (2,) A
READ (2,) B
X = A + B
WRITE (3,) X
GO TO 37
END

Program VIII

The 2's tell the idiot to take numbers in from the card reader,

and the 3 tells him to give you X on the printer.

The extra blank box in the READ and WRITE instructions

is for the second piece of information that the computer needs when

getting numbers in and out. This is harder to explain than the

first piece. The basic point is where. When getting a number in,

the computer has to know where on the data card to look for it.

When getting a number cut, the computer has to know where on the

line to print it. This is important in serious programming, mostly

because each data card or line of printed output has room for ten

or twenty numbers, not just one. For example, you could get your

results out in the form of a table. But where each number is, must

thus be specified.

However, our interest is in doing the calculation, not in

fancy ways of getting numbers in and out. So I will give you a

simple all-purpose way that works for most ordinary decimal numbers,

without explaining much about it: data numbers go anywhere in the

seventh thru twenty-sixth spaces of the data card, one number to a

card, with a decimal point in each number; results are printed out

one number to a line. To do this, Program VIII becomes

-22-

23

37 READ (2, 14) A
READ (2, 14) B
X = A 4- B
WRITE (3, 14) X
GO TO 37

14 FORMAT (6X, F20.9
END
17.2
19.
8.7 t.C1

0.17
590.0
.042

Program IX

If your instructor told
you to skip this section,
you should mostly be
looking at Program VII
instead.

I have put in a stack of data cards after the program, for illustra

tion.

Very briefly, the 14 in READ (2, 14) A tells the idiot

that where for this READ instruction is specified by instruction

14 . Instruction 14 happens to specify that the first six spaces

are skipped, and the number is in the next twenty spaces.

It is the same with READ (2, 14) B and WRITE (3, 14) X .

In each case the 14 tells the idiot that where is specified by

instruction 34 ; and instruction 14 specifies the same thing

as abr,ve.

You may notice that instruction 14 is never actually obeyed

by the idiot. Rather, instruction 14 gives the idiot information

which he needs when he obeys the READ and WRITE instruction:,.

In line with giving you a simple allpurpose way that works

for most decimal numbers, I have used the same where (specified

by instruction 14) fo7 getting all numbers in and out, but this

is not necessary in general. I could add to the program other

FORMAT instructions with different numbers and specifying different

2d-23-

where's. Then READ (2, different number) B would tell the idiot,

that where for B is specified by the FORMAT instruction with

that different number.

Incidentally, the 6X in FORMAT (6x, F20.9) has nothing

to do with the X in X = A + B , or in WRITE (3, 14) X . 6x

is just the way to tell the idiot to skip the first six spaces.

Also, 14 is the name of an instruction, just like 37 was,

and everything said about 37 io true of 14 . In particular,

14 is a random number, except that it has to be a positive integer

smaller than 9999 I could equally well have used 8934 thruout

Program IX, inst yd of 14 .

Cards

You now have a program and data, like Program IX or Program

VII,* written on a piece of paper. Computers don't read handwriting --

yet. They read IBM cards (and other things, but we will use IBM

cards). You have to punch your program on to IBM cards, run the

cards on the computer, correct any errors that turn up, and then

try again. That is what the rest of this booklet is about. All

this is more easily understood when you are actually doing it, so I

will just give the minimum necessary advance information.

*Normally Program IX is your sample; but if Program VII or

a near relative will run on your computer, your instructor will tell

you to skip the preceding section on " READ and WRITE ," and stick

with the easier Program VII: I will mostly talk about Program IX,

but for you this means Program VII. If your instructor doesn't say

anything, stick with Program IX.

-21-

Incidentally your first program should be nearly as simple

a' Program IX or VII. Misconceptions are easier to clear up that

way. You might multiply or divide two numbers instead of adding

them, but nothing much more elaborate.

The punching on to cards is done with the keypunch, which

operates like a typewriter. You will be given a sheet of instruc-

tions when you actually do the punching. (Hang on to this relig-

iously. It will enable you to use the keypunch on your own later,

without further instruction). The keypunch punches your program

on the cards in a code of holes, in addition to writing it.

Each line of Program IX or Program VII (including the lines

of data) goes on a separate IBM card. (If you are using Program VII,

it is followed by data after END , just like Program IX: Take a

look at Program IX). These cards have 80 spaces. The name of an

instruction (like 37) goes in the first thru fifth spaces. The

rest of the instruction (like READ (2, 14) A) goes anywhere in

the seventh thru seventy-second spaces. Data numbers come after

END , and go anywhere in the seventh thru twenty-sixth spaces, one

number to a card, with a decimal point in each number. (Rememberemember

that a decimal point is also required in nuabers like the 1.0 and

2.0 of an instruction like X = 2.0*A - B + 1.0). This is the

way Program IX has been spaced and decimal-pointed, so you can use

it as an example. Also, the last page of this booklet is a full-

size picture of a punch card, and of Program IX as it appears on

cards.

-25-

These rules must be adhered to *E*X*A*C*T*L*Y*, as must

all the commas, parentheses, and other "grammatical" details of

Program IX. Otherwise interesting and instructive things will

'happen when you try and run your program on the computer.

Thus, Program IX has been transformed into a stack of punch

cards, with 37 READ (2, 14) A on the top card, and .042 on

the bottom card. This stack is pictured on the last page. Inci-

dentally, the printing pictured on these cards (and also their

color, and whether they have square or round corners), is immaterial

to the computer. All it cares about is the positions of the holes.

The printing is a convenience to yo.;..

Extra Cards

Program IX has now been transfOrmed into a stack of punch

cards, shown on the last page. Yo: will probably have to insert

into it an additional card with/your name and perhaps other ident-
/

ifying information on it, befOr/ e the program is actually run on

thecomputer;thisprevent/ cilost and anonymous programs. Details

will be available.

Many computers, including Hofstra's IBM 1130, require that

another sort of additional punch cards be inserted into the stack

before the program is run on the computer. The main thing to know

about these extra punch cards is that they are not worth worrying

about. They are provided by the computer center, and are the same

for all programs run on the same computer, at least at this beginning

level. Thus, all you need is a sample program with the extra cards

inserted, and you can use this as a sample for putting the extra

cards into any program. Initial samples will be available, and

later your first program with the extra cards inserted will serve
correct

as a sample. Your firstAprogram is the other thing you should hang

on to religiously if you may have further contact with the computer:

Its the best possible sample for the extra cards, and for the

spacing, decimal-pointing, and other grammatical rules of Fortran.

With the extra cards inserted, your program is ready to

go into the computer. That is all you need to know about the extra

cards, so you can skip the rest of this section. The extra cards

do things like separate your program from the next person's program

(obviously necessary if many programs are being run at once), and

tell the computer that your program is a Fortran program (and not

a machine language program, or a program in some other language).

Thus these extra cards are not really part of your program, but

rather instructions about your program; they have a kind of "traffic-

directing" function in getting your program thru the computer.

Sinew different computers have different internal "traffic patterns,"

the extra cards (unlike your Fortran program) can differ widely

from one computer to another; but are identical for all simple pro-

grams run on the same computer, all of which follow the same route.

Similarly, simple computers may get away without the extra cards,

because all programs follow the same route, so you dont have to

mark the route separately for each program.

Incidentally, these extra cards are ordinary punch cards,

and you could punch them yourself on the keypunch if you wanted to;

-27-

;213

but since they are the same for everybody the computer center

duplicates them by the thousand and leaves stacks of them in appro-

priate places. More about these extra cards for the IBM 1130 in

"Son of Instant Fortran."

Debugging..

Your program has been transformed into a stack of punch cards

with the extra cards inserted (if your computer needs the extra

cards), this stack has been run on the computer, and -- surprise! --

your printed output from the computer is not your answers, but in-

stead a lot of sarcastic remarks. That is all right. Contrary to

popular opinion, finding and correcting errors ("debugging")

is the major activity of programmers, not writing the program.

If your answers came out, keep reading anyway. They may

not be right.

The computer tells you what it dislikes about your program

by printing the name(s) (like 37) ofthe Fortran instruction(s)

it finds objectionable, accompanied in each case by a code number

for the type of error committed. This is straightforward when the

offending instruction has a name, but not all do. If the computer

dislikes an unnamed instruction, it goes back to the last preceding

instruction with a name, and counts from there. Thus STATEMENT

NUMBER 00037 + 002 means the second instruction after instruction

37 ; i.e., X = A + B in Program IX or Program VII. If there is

no named instruction before the offending instruction, the computer

counts from the beginning of the program: STATEMENT NUMBER

00000 + 004 means the fourth instruction from the start of the

program.

-28-

2-9

Lists of the error code numbers, and the error to which each

corresponds, will be available. Incidentally, the computer is

usually correct in which instructions it dislikes, but is sometimes

confused or not very helpful about why it dislikes them. So to

find our why, it is often easier to first check the offending in-

struction against Program IX, to see what commas or parentheses you

have misplaced, before consulting the list of error codes.

After you have found the errors you have committed, punch

new cards and substitute them for the erroneous ones, and run the

corrected program as before. You only have to repunch the cards

that were in error, not the whole program. Repeat until the com-

puter ceases to complain about your program.

Now you have a complaint-free program and, presumably, your

printed computer output from this program is the number of answers

you expected. Altho the printed computer output looks very im-

pressive, and it apparently has the computer's seal of approval,

these answers are not necessarily correct. The computer can catch

grammatical errors (X = A ++ B , for example), but otherwise it

does what you tell it to; and if you tell it to make mistakes, it

makes mistakes, with great speed and obedience. If you meant to

subtract two numbers and somehow wrote Program IX or Program VII

to do this (i.e., you wrote X = A + B where you meant to write

X = A - B), the computer won't complain about these programs, but

the answers will be garbage.

There are many reasons why a complaint-free program may

yield wrong answers, but fewer reasons why you should believe the

garbage -- which is the real hazard. The most powerful single way

-29-

Z1D,

to keep from believing it, is hand-calculating a couple of answers

and comparing them with the computer's answers. For example, trying

Program IX or Program VII with the data numbers 1.0 and 1.0 ,

and getting the computer's answer 2.0 (instead of the correct

answer 0.0 for subtraction), immediately catches the error that

this is a program for subtraction. Do this with your program. After

it gives you the right answers for test data, you can be moder-

ately confident that it is giving you the right answers for other

data too.

The above deals with errors in your program. Errors in your

data are possible too (leaving out a decimal point, say). It is

also possible to have a perfectly correct program with a perfectly

correction instruction like X = A/B , which will work fine most

of the time, but cause trouble for B = 0 .

It may be worth repeating that correcting errors is a normal

part of programming. In fact, most programmers learn more from

the computer's error messages ("sarcastic remarks") than they do

from the programming texts. There is a serious moral to this --

one of the main morals of this booklet. Once you get over the hump

of being able to get numbers in, do something with them, and get

the results out -- which this booklet is supposed to teach you --

the computer will teach much of the rest. When in doubt about

what a programming text is saying, ask the computer. Write a

simple program that you understand completely, except that it

makes one simple use of a feature of Fortran you are dubious about.

-30-

31

...

Even if you are wrong, YOU CAN'T HURT THE COMPUTER. You just

get useful error messages. Because you can ask the computer, be-

cause each new feature is small, and because programming is logical,

with a definite rule for (almost) everything, programmin.E is

peculiarly amenable to self-study; which is how I and many others

learned it.

This section discussed what can go wrong with computer pro-

grams, which leads into

How to Make a Stupidity Amplifier.

The computer does what you tell it to, and if you tell it to

make mistakes, it will make mistakes, with great speed and obedi-

ence. It is frequently said that a computer can in ten minutes

do more calculations than an army of mathematicians working their

whole lifetimes. It is less frequently pointed out, that in ten

minutes it can make more mistakes than the army of mathematicians.

A computer may be an intelligence amplifier, but it is also a

stupidity amplifier.

Let us look at some of the intelligent and stupid uses of

computers. Many of the stupid uses arise from regarding anything

that comes out of the computer as divinely inspired, or at least

too complicated for anyone except a computer programmer to argue

with. Even if you are not an auto mechanic, you would doubt a

story that a car jumped in the airs and did three loop-the-loops

while singing "Hail Columbia." Similar nonsense circulates about

computers, which are getting as important to our society as cars,

-31-

32

but few people have the same kind of general knowledge of computers

that they have of cars. One aim of this booklet is to give a start

toward that kind of knowledge.

As to the divine inspiration, you have seen that plain typo-

graphical errors can get in the way of this, like X = A + B in-

stead of X = A - B ; and with more complicated programs the poss-

ibility of such mistakes, and their more subtle and troublesome

relatives, increases greatly. However, here you know what you want

to do, and only a flaw in the program makes that different from

what you actually told the computer to do. Much sweat and checking

should catch the flaw. Subtler questions are what you should do:

not how to do it, but what is worth doing; and what value to place

on the computer's answers when you have done it.

Data of doubtful accuracy or meaning are not purified by

being handled on the computer. If you are uncertain of the values

of A or B , or what they really mean (social scientists and

psychologists take note), doing X = A + B on the computer instead

of by hand, will not improve the accuracy or meaningfulness of X .

Similarly, a procedure of doubtful merit or relevance to

your problem, does not gain anything by being done on the computer.

If the sum of A and B has no bearing on your problem, it will

still have no bearing even if you do X = A + B on the computer

instead of by hand. These things are just as true of complicated

calculations as they are of X = A + B -- no matter how impressive

the computer output looks.

Two partial exceptions count toward the intelligent uses

of computers. Using a computer can improve accuracy, in that once

-32-33

you have a well-checked program, thereafter it will virtually

always do that calculation correctly, unlike a human calculator

(and do it essentially free: with little human effort). Also,

if a procedure or data are basically relevant to your problem,

and fail only because extracting that relevance is too lengthy

for a human calculator, a computer may be able to do it. For ex-

ample, treating more cases (more data) may make your result mean-

ingful, and the computer's repetitive ability is peculiarly well

suited to this. Similarly, a basically relevant procedure may

require dubious approximations to make it short enough for a human

calculator; the computer may be able to do it without approximations.

Again, howev3r, the computer doesn't sanctify the lengthier

calculation; it makes it possible. Whether it is worth doing is

up to the user. Like all human tools, the idiot computer is only

as good as the idiots who use it.

However, everything said so far about the uses of the com-

puter is merely doing -- faster, oftener, easier, more accurately --

the same thing one would be doing otherwise. The really interest-

ing uses of computers arise when its power makes possible new

approaches to a problem -- new ways of thinking about it. For

example, a car moves thirty times faster than a covered wagon.

But the effect of cars on our society is not just that of a fast

covered wagon. We do different kinds of things with cars, not

just more of the same. For good and ill, cars have shaped our

cities, our approaches to commerce, vacations, and the whole pattern

of our mobile society, in ways that an improved covered wagon could

not. Cars have brought new industries, new kinds of jobs, cer-

tainly new kinds of problems and fears, new ways of thinking about

the organization of society -- and their ultimate consequences

are not understood yet.

Computers do the same thing as a dumb secretary -- ten
not thirty.

million times faster
d
AFor example, economic historians can now

follow in detail 100,000 people or businesses instead of 100: an

entire city or small state in detail. That changes your whole way

of thinking about a problem. Computer-generated music gives com-

posers all sound, and the audience will hear it as written, not

filtered thru the abilities and interpretations of the performers.

This latter may be as fundamental for music, as was the invention

of writing for the art of storytelling. Computers would make

possible daily voting on local and national issues, which would

change our whole framework of thinking about government. A national

data bank in Washington could contain the administrative, criminal,

medical, and financial information about all citizens, which is now

scattered in many records. It would be possible to monitor almost

every business transaction in the United States. Checker-playing

programs now learn to beat the people who programmed them, and com-

puters are programmed to take intelligence tests and prove theorems

in geometry: Their simulation of much of what commonly passes for

thought, and even creativity, must sharpen our understanding of

what human thinking is, and of what it means to be human.

The significance of computers is that fundamental possibil-

ities like these are opening up in almost all fields. Again, exactly

as with X = A + B and its lengthier relatives, the computer
these applications;

doesn't sanctify/1/4 it makes them possible. Whether they should

be done, and how to use the computer intelligently and humanely

in exploring them, is up to the user. Like all tools back to the

caveman's axe, the computer amplifies man's possibilities -- for

stupidity or intelligence.

-35-36

00'20009000000100000000000000000000000000200
20 aeoutionoc, 00200000000009200000000017 3 4 5 6 7 11 01! 12 13 14 15 13 17 19 19 20 21 22 23 24

25 26 31 2829 30 11 32 27 24 35 76 71 34 19
40 41 42 41 44 45 13 41 49 46 50 61 52 53 54

35 56 51 53 59 11 41 52 63 64 75 71 57 69 CO
70 71 72 73 11 75 'C 77 14 /6 BC

1 111111111,1111111111111111111111111111111111111
222222222222i 2 2222 2 2 2222222222222222222222.22222222222222222222222222222222222222

4,1444 4-t-14144.444 41444444444 4 444 444 44 14444.4444444444444444444444'1444444
44444444444.55555551155515555515555555555555555

55

71777777777777777777777777777777777
7 7-7 7 73 7 7 7 7 7 7 7 7 17777777 77177777777777777777777

9 9 9 99 9/99 9939
1 2 3 4 5 6 I 8 9 10 11 12 13 14 15

16 17 19 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 49 49 50 51 57 53 54 55 56 57 56 59 60
61 52 63 64 E5 66 67 66 69 70 71 a 73 74 75 76 77 79 79 80

nu 020052

F
Gu TO 3,(---=frit(3) 14) X

RED te(
37 READ (2)

III I

911099096309001090990000000000009000000000009000000000000000000^ 002200200002 0 OOD

2 3 4 5 5 7 B 9 10 11 12 13 14 15 16 211 18 19 20 21 72 23 24 25'5 27 2" 29 35 11 32 13 34 35 36 37 39 29 40 41 42 41 44 45 46 47 48 49 SO 51-. 52;5 '4 1;56 57 65 59 50 61 67 E. ' 65 CC Si GB 69 70 71 72 23 71 55 76 17 73 12 39

1 1 11111111111111111111111101111111111111,11.11111111111111111111111111111 01111111
. .t

.

22222222222212222222222222222222222222 22

3333333333331333333333333333333333333333233333333333333333333333333333333333333

444444444144444414444444,..144444444444444.1444444444444444444444444444444444444444
. ,

5555555155515 5 5 55155 5 5555 55 55555555 555555555 555 55 55 5 55555 55 5555 55 5555 555555 55 555

66665666666666666666666666Z16665666666666.666666.666.6666666666666666666666666M666

717777777777777777777777777777777777'777733777777 7 7777777777777777777777777711777

8888888888818188818858888888888 88888838888888880888888888888888898908888 6008818

99999919999999999999999999 99
3 2 3 4 5 6 1 11 9 13 15 12 13 14 15 IG 17 19 15 20 21 2; 72 24 25 26 27 29 29 3Q 31 37 33 34 35 36 32 38 33 40 41 42 45 44 4;46 47 4846 50 51 52 53 54 65 56 S7 38 59 60 61 62 63 64 55 65 61 EC 69 10 71 12 73 24 15.15 77 79 79 C0

11204/05

36

