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INTRODUCTORY STATEMENT

The Center for Social Organization of Schools has two primary

objectives: to develop a scientific knowledge of how schools affect

their students, and to use this knowledge to develop better school

practices and organization.

The Center works through five programs to achieve its objectives.

The Academic Games program has developed simulation games for use in

the classroom, and is studying the processes through which games teach

and evaluating the effects of games on student learning. The Social

Accounts program is examining how a student's education affects his actual

occupational attainment, and how education results in different vocational

outcomes for blacks and whites. The Talents and Competencies program is

studying the effects of educational experience on a wide range of human

talents, competencies, and personal dispositions in order to formulate- -

and research -- important educational goals other than traditional academic

achievement. The School Organization program is currently concerned

with the effects of student participation in social and educational

decision-making, the structure of competition and cooperation, formal

reward systems, ability-grouping in schools, and effects of school

quality. The Careers and Curricula program bases its work upon a theory

of career development. It has developed a self-administered vocational

guidance device to promote vocational development and to foster satisfying

curricular decisions for high Gchool, college, and adult populations.

This report, like others occasionally published by the Center,

deals with a subject common to all programs -- that of scientific

measurement.
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ABSTRACT

The formula for correcting coefficients of partial correlation

for attenuation due to errors of measurement is derived. In addition,

the correction for attenuation formulas for multiple and canonical

correlations are presented and discussed. The attenuating effects of

measurement error are examined algebraically for a special case of

partial correlation and by means of numerical examples for the general

case of partial correlation an: multiple correlation. Finally, the

formula for the corrected partial r is related to recent work on the

measurement of change.
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Introduction

In dealing with multivariate correlational techniques and fallible

data, one is faced with the same difficulties that have been pointed out

for the product-moment correlation (Finucci, 1971) and other similar

measures of association (Stanley, 1971). Correlations based on fallibly

measured variables will result in values which are underestimates of the

correlations among the true parts of the variables. (The truth of this

statement for all multivariate situations has not been proven analytically,

but Cochran's (1970) work regarding multiple correlation suggests that the

statement does, in fact, hold true.) Investigators have been inclined to

ignore the problems of unreliability, being content with underestimates of

the true relationship and avoiding "questionable" correction for attenua-

tion procedures. However, such an approach ignores useful information.

In addition to providing a means for obtaining estimates of true-score

correlations, correction for attenuation formulas facilitate understanding

of the effects of unreliability on the results. Information of this type

is useful, for example, in deciding how much could be gained by expending

time and money to develop more reliable measurement.



The purpose of the present paper is to give the correction for attenua-

tion formulae for partial, multiple, and canonical correlation coefficients

and to discuss, where known, the effects of measurement error on these sta-

tistics. Most of the formulas presented have been derived elsewhere in the

literature. I have simply standardized the notation and extended some of

the derivation where appropriate.

Partial Correlation Corrected for Attenuation

First, consider the first-order partial correlation coefficient. Sup-

pose there are three fallibly measured variables x1, x2, and x
3

of, say,

alienation, school achievement, and I.Q. and one wants to know the true cor-

relation between alienation and school achievement, controlling for I.Q.

Begin by defining the variable xi to be the sum of its true score, ti, and

errorsofrileasurement,ei(xi =ti-Ve.for i = 1, 2, 3). (In the sequel it

is assumed that E(x.) = 0.) We assume that the true score and error for each

variable covary zero (nr" = 0); that the tree score of one variable and
t. e.

the error component in another variable covary zero (S7- = 0); and that
t e.
i 3

the errors in the differential variables covary zero (rr- = 0).
v e e.

i 3

The partial correlation between alienation and achievement, controlling

for I.Q., is defined as the zero-order correlation of residuals. The resi-

duals for alienation are given by the difference between the observed values

and the regression estimates of alienation from I.Q. The residuals are

represented symbolically in equations (1) and (2). It is well known that

x
1.3

= xl - Bx
1
x
3

x3

x
2.3

x
2

- B
x2x3

x
3

2

(1)

(2)



the correlation of residuals can be expressed in terms of the three zero-

order correlations. The formula is given in (3), which is the partial r

a

x1.3x2.3
PX1X2 PXiX3PX2X3

xlx2 x3
a

2
. a

x

2

x
/7(1 Ax X

)(I P
2

)

1.3 2.3 1 3
X
2
X
3

(3)

based on fallible measures. The partial correlation coefficient, corrected

for attenuation, would yield the partial correlation of true score, i.e.,

the correlation of true score residuals. We can obtain the correction for

attenuation formula by starting with the correlation of true score residuals

and working backwards.

The true score residuals are defined as the difference between the true

value and the estimated true value based on a regression of the variable

(t
1

or t
2
) on the true value of the control variable (t

3
) and are given in

formulas (4) and (5). The partial correlation of t
1

and t
2

controlling for t
3

t
1.3

= t
1 t

1
t

t
3

t
2.3

= t2 - 5t2t3t3

(4)

(5)

is then given by (6). Expanding numerator and denominator, we can use some

a
t
1.3

t
2.3

a
(t

1
-

t
t
3
)(t

2
- at2t3t3)

13
pt

1
t
2
.t

3 f2 2 ir 2 2 (6)

t
1. 3

at
2.3 (ti f3t

1
t
3

t 3a (t
2

-
t t

)

3
t 3)

of the well-known properties of classical test theory to express the true

partial correlation in terms of the attenuated zero-order correlations

and reliabilities. The result, given in (7) is the correction for attenuation

Pt
t t

1 2. 3 2 2 (7)

hl1P33 Px
1
x
2/
)4)22P33 Px

2
x)

P 33Px x P P
1 2

X1X3 X2X3
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formula for a first-order partial correlation. (The proof is given in

the appendix.) It should be noted that the formula is equivalent to cor-

recting each of the zero-order correlations for attenuation by the usual

way and substituting these values into (3). (See Livingston and Stanley,

1970.)

A General Approach to Multivariate Corrections for Attenuation

Meredith (1964) developed a more general approach to correction for

attenuation problems which he has applied to the canonical correlation problem.

His result can be readily applied to problems involving partial and multiple

correlation. We begin with a variance-covariance matrix, Ex, of ,.-ank p + q,

where p + q is the number of variables. Under the assumption that the clas-

sical test theory model is appropriate for each of the p + q variables we

can write the matrix E
x

as the sum of two matrices,
t'

the variance-co

variance matrix among true scores, and the variance-covariance matrix

among the errors of measurement (equation 8).

Ex ET
+ E

E
(8)

Assuming errors of measurement covary zero with each other the matrix F.

is a diagonal matrix of the variance errors of estimates. We can obtain

by subtraction (equation 9). Given /
t'

the matrix of true

ET= EX EE (9)

score variances and covariances, it is a simple matter to obtain the ma-

trix of true score correlations by dividing each element by the square

root of the product of the appropriate variances. These operations are

shown in matrix notation in equation (10).

RT = D(4)- E1D(;)-11 (10)

4



It is important to note here that (10) is equivalent to correcting

each of the zero-order correlations in R
x

, the matrix of observed corre-

lations, for attenuation in the usual manner. That such is the case

becomes clear if we consider each of the p q variables to have a mean

of 0 and a variance of 1. Under the latter condition 2x = R
x

and

e
is a diagonal matrix of alienation coefficients. Thus, the matrix

1 of (9) is the matrix of observed intercorrelations (R
x
) with relia-

bilities on the diagonal, which is the true-score variance-covariance

matrix of standardized variables. The operations shown in (10) now in-

volve dividing every correlation in Rx by the square root of the product

of the reliabilities for the appropriate variables, which is the zero-

order correction for attenuation procedure.

So far, the discussion has been in terms of population values. Mere-

dith has pointed out that a maximum likelihood estimate of Et and thus of
^

R
t
can be obtained from 2:

x
, the sample variance-covariance matrix, if the

reliabilities of the measures are known (equations 11 and 12). Though the

remainder of the paper continues to use the population values, one can

easily substitute R
t
under the above restriction.

^ 1'

ET Ex EE

^ p(i )- 1/2i
T
pli

T'

1/2y

(12)

A general procedure for correcting multivariate correlations for atten-

uation involves the following two steps. First, correct each of the zero-

order correlations for attenuation in the usual way to obtain Rt. Second,

calculate the desired statistic from Rt.

5
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Let us return to the problem of partial correlations. Suppose that we

were interested in obtaining the true score correlations among a set of p

variates controlling for true scores on a second set of q variables. We

could solve the problem by first obtaining Rt, partitioning R
t
as shown

in (13), and using the matrix

lT

R
T
1.2

= R
T
11

-

solution for partial

R f R
T
11 I

T
12

R R
T
21 f

T
22

.10

-1

RT
12

R
T
22

R
T
21

correlations (Anderson,

(13)

(14)

1958:29 and Morrison, 1967:89) shown in (14) above. If q = 1, RT is

1.2
a p x p matrix of first order partials whose off-diagonal elements are

of the form given in (3).

The multiple correlation problem involves finding the maximum corre-

lation between a single criterion and a linear combination of, say, p

predictors. The matrix solution for squared multiple correlation (MR
2

)

is given in (15) (See Anderson, 1958: 30, or Morrison, 1967:104). The MR
2

between the true scores of the p predictors and the criterion could be

2
MR = Rx ;(1 Rx
X

21 11 12
(15)

obtained by substituting the corresponding true score correlation matrices

of (13) into (15), resulting in equation (16). (RT and RT are vectors.)

2
1MR

T = R TR TRT, (16)

21 ll 12

In the above situation, any of the p + 1 variables could be designated

as the criterion by simply interchanging the appropriate rows and columns

6



of Rt. A general formula for MRT of each of the i variates with the remain-

ing variates corrected for attenuation is given by (17), where I is a p + 1

identity matrix and D indicates diagonals of the matrices given in paren-

theses.
-1

2
D(MRT) = I - D(P

T
1) (17)

The last statistic we shall discuss is the canonical correlation co-

efficient (Hotelling, 1936). Canonical correlation is a generalization of

the concept of multiple correlation to the case of multiple criteria (q > 1)

as well as multiple predictors (p > 1). The objective in such an analysis

is to find the maximum correlation between a linear composite of the predic-

tors and a linear composite of the criteria. Though Hotelling was primarily

concerned with the largest correlation between these composites, there are

k = min (p, q) possible independent correlations. the k canonical corre-

lations for any given set of p predictors and q criteria are given by the

1 -1
latent roots of R2111111112R22. Meredith (1964) has shown that if the true-

score correlation matrix in (13) is used, you would have the k canonical

correlations corrected for attenuation. The weighting vectors to form the

linear composite of the criterion variates and the linear composite of

1 -1 1 -1
predictor variables are the latent vectors of R2111111112R22 and Ri2R22R211111.

The formulas would provide either the attenuated weighting vectors or the

true-score weights, depending on which correlation matrices were used.

7
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Effects of Errors of Measurement

In the introduction it was pointed out that the most well-known effect

of errors of measurement on zero-order correlations is to produce an under-

estimate of the true value. This appears to also be the case for multiple

correlation. For example, Cochran (1970) showed that for a number of situa-

tions involving multiple correlation, a good estimate of attenuating effects

of fallible data is given by (18). Though the actual value of MR
x
2
may run

2570 higher than this value for positivefliq and low predictor reliability

(Ai = 0.5), it never exceeds MR

q-1

E P P

qq 3:1

ii

MRx MRT. = RTPggpii

E pi
q1=1

(18)

where p
clq

is reliability of the criterion

p
ii

is reliability of the ith predictor

P
iq

is correlation between criterion and ith predictor.

Bohrnstedt (1969) derived a formula for correcting partial correlations

for attenuation due to errors of measurement which is similar to (7), but

does not contain the terms 41'132' Upon examining his derivation, it was

apparent that he was correcting only for errors of measurement in the con-

trol variable x3. In effect, he had provided the formula for a partially

corrected partial correlation coefficient. On the basis of his formula,

Borhnstedt indicates that it is possible for the corrected partial correla-

tion to be less than the obtained partial correlation. While this appears

8
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to be the case the author's verbal argument is misleading. He points out

that in his formula, given in (19), the factor /..)
33

in the numerator would

/111)x
1
x
2.

t
3

P331X1x2 ,(Xix3 ICX2x3

V9°337° 2q) V )xix3 33 x2x3

(19)

tend to make (19) smaller than (3). (Bohrnstedt, 1969:127). He does not

mention that the presence of0/333 in the deonominator of (19) would tend to

make (19) larger than (3). The net effect of these two factors is not o!.,-

vious. By making the simplifying assumption that /13 = /33 (which is not

very restrictive), we can show algebraically that (19) will always be less

than (3). Assuming the correlations with the control variable to be equal,

(3) and (19) reduce to 2

IC)xlx2

(1 _ 2

xlx2x3
1

x3)

/411X
lx 2. t 3 (1 - 10: /3

' 1 3 /-33

2

/?(1x2
/1x3 /33

(3t)

(19')

Letting the quantities in (3') be represented by a - b
2

and the quan-
- b )

a
tides in (19') by

(1

d
2

d
2
)'

it is sufficient to show that

a - b
2

a - d
2

G = 0

1 - b
2

1 - d
2

Creating a common denominator for G one secures:

G -
(1 - b

2
) (1 d

2
)

(1 - d2) (a - h
2
) - (1 - b

2
) (a - d

2
)

Since the denominator will always be positive, it is sufficient to show that

*
G = (a - ad

2
- b

2
+ d

2
b
2
) - (a - ab

2
- d

2
+ b

2
d
2

1 0

9
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Simplifying the above expression yeilds

G = (d
2

- b
2
) - a (d2 - b

2
) ,

The value d represents the zero order correlation between variables

1 and 3 corrected for errors of measurement in x
3
and b represents the

attenuated correlation. It is well known that d>b. Thus, since lal<1,

it is true that G >0 which completes the proof that
/9(1x2x32/x1x2.t3

The proof of this latter inequality whentlix3 /61/1X2x3 becomes algebraically

intractable. However, one effect of correcting for attenuation due to a

fallible x
3

only, is to decrease the size of the residuals being correlated

in (19). It is well known that a restriction in the range of a variable

decreases correlations involving the variable. As Bohrnstedt points out,

"the smaller the residual variation to correlate, the smaller the partial

correlation (127)."

Blalock (1964: 149-150) has noted that it is possible to observe a

non-zero partial correlation when the true relationship is zero, due to

errors of measurement in the control variable. That such is the case

is clear only whenP
11 =F22

1 and thus (19) is the true partial correla-

tion. However, when all three variates are fallibly measured, the size of the

observed partial relative to the true partial is difficult to determine

algebraically. The information presented in Table 1 does provide some infor-

mation on their relative values for a range of reliabilities and correlations.

In order to simplify computation and presentation it was assumed that
1
7°

22

and Out of the ten true partial correlations possible in
xix3 x2x3

Table 1, three of them were less than the attenuated partial r. One of

10
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TABLE 1

,/Comparison of, and for/:
t t

1 2 . 3 xlx2"t3

'62/33/1122c1x211x3' And/49x
/ 2 3

Different Values of

RELIABILITIES

(/433 ' /422'61 )

(.3, .4, .4)

( . 9 4 4)

(.3, .8, .8)

(.9, .8, .8)

CORRELATIONS

(43/23712 )

(.2, .2, .3) (.5, .5, .3) (.2,

*
.63 **

.72 .18

. .25t **

.34 .04t

xix2 x3 = .27 .07

* Numbers in the Table are
tlt2.t3

** Impossible because /t
1
t
2
.t

3
1

t True value is less than the attenuated value.

.2, .7) (.5, .5, .7) (.6, .6 ,

** ** **

** * **

.86 ** **

.87 .81 .50t

.69 .60 .53

11
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these occurred in the cell where the reliability of the control variable

was small (.30) and the reliability of the other variables was large (.80).

The other two cases occurred in cells where all reliabilities were high

(.90, .80) and the correlations with the control variablewere large (.60).

The data in Table 1 suggest that when all three variables are fallibly

measured, the attenuated partial r will more often be an underestimate of

the true value than an overestimate and that the underestimation is more

severe than the overestimation. These tentative conclusionsof course need

to be verified by more extensive monte carlo simulations over a wider range

of values.

It may be useful at this point to relate equation (7) to recent work

on the measurement of change by Tucker, Damarin, and Messick (1966) and

Cronback and Furby (1970)(hereafter referred to as TDM and CF, respectively).

Of primary interest in these papers is the definition of a "true" residual

change score. The two equations, in a form consistent with this-paper, are

t
1.3 xl 1?

1
t
3
x3

t
1.3

= t )9
1

- t
t
1
t
3

3

(20)

(TDM's Equation 25)

(21)

(CF's Equation 22)

(Where x
3

and are the pretest and posttest measures, respectively.) The

formula for residual in (20) by TDM is similar to Bohrnstedt's work in that

it only takes into account the reliability of the pretest (control) variable.

The equation in (20) used by CF is identical to (4). Both papers propose the

use of the residual change score for correlation with other variables (TDM,

1966: 470 and CF, 1970:76). The resulting part correlations of either ^t1.3

12
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Or with x
2

are attenuated by the fallible x2, since f) is not takent1.3
22

into account.

A second problem raised when errors of measurement are present is the

valid interpretation of results for multivariate correlations. In multiple

and canonical correlation studies, an important objective is to discover

the relative importance of the predictor and criterion variables. The inter-

correlations among these variables and their unreliability can interact to

produce misleading results. An example from Cochran (1970:33) illus-

trates this point.

A common practice in the application of multiple correlation (especially

among sociologists) is to partition the predicted variance MR
2
into por-

tions uniquely attributable to each predictor and the portion of common

variance predicted. Unreliability can have a substantial effect on the

results of such an analysis. Consider the 2-predictor case with
)13

=

= 0.5, and
12

= 0.3 and no error of measurement:

MR3.12 = .385 7 of variance unique to xl = 13.5

% of variance unique to x2 = 13.5

% of variance common to both = 11.5

(Uniqueness of x
1
is here defined as the drop in MR

2
that would result

from deleting xl from the equation. Darlington (1968: 162) defines this

as the "usefulness" of a variable. It is clear in the above example that

2 2
MR3.2 = /-23 = .25, MR

3.12 14R3.2
= .135, the uniqueness for x

1
.)

13
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With the reliability of variable

1 equal to .8; i.e. /do
11

= 0.8

and /12 = 1,

MR
3.12

= .356 % of variance unique to xi = 10.6
% of variance unique to x

2
= 15.6

% of variance common to both = 9.4

With /
1
= 0.6 and

1
/0522 = 1

MR
3.12 =1.328 % of variance unique to x

1
= 7.8

% of variance unique to x
2
= 17.8

% of variance common to both = 7.2

In the above example we see that as the reliabilities of the pre-

dictors become more disparate, the true contribution of each variable

becomes more distorted. This effect can be best understood when one con-

siders what would happen if x1 were removed from the correlation, alto-

gether. MR
3.2

would equal .25 and the percent of variance unique to x
2

would be 25. Unreliability in one of the variables takes part of that

variable "out" of the prediction, shifting predicted variance to the more

reliable predictors. The change in the importance of predictors in mul-

tiple correlation caused by deletion of one of the variables has been

referred to as the "bouncing betas." It is apparent from these examples

that differences in the reliabilities adds more bounce to these results.

These results on the effects of disparate reliabilities are one more

reason to heed the warning given by Darlington, "It would be better to

simply concede that the notion of 'independent contribution to variance'

has no meaning when predictor variables are intercorrelated." (1968:169)

14
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APPENDIX

Derivation of correction formula for partial correlation coefficient.
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(The last two terms are equivalent except for sign, and thus they sum to zero.)
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Therefore, where pii is the reliability coefficient of variable xi
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Therefore,
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Substituting (2), (3), and (4 ) into (1) and simplifying we get
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which is the formula for the partial correlation coefficient

corrected for attenuation.
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