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SOME GENERAL RESULTS ON FIT IN FACTOR ROTATION
CD

Walter Kristofw
Abstract

In this paper a rather general theory of oblique factor rotation is

outlined. The main results are formulated as four theorems. Necessary

and sufficient conditions are derived for two factor matrices to admit

identical factor structures and/or factor patterns with factors having unit

variances. These conditions are expressed in terms of eigenvectors and

eigenvalues of certain matrices obtainable from the data. It is also shown

that two matrices admitting identical factor structures will admit identical

factor patterns and vice versa. After introducing the notion of a pair of

transformations to identical structures and/or identical patterns, rules are

given as to finding such pairs if they exist. Finally, some immediate con-

sequences of the theorems are noted. They concern, for example, the suitable

choice of a target structure and/or pattern and a hierarchical order of

jointly necessary and sufficient conditions for fitting a specified target

perfectly.
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SOME GENERAL RESULTS ON FIT IN FACTOR ROTATION1

1. Introduction

Transformation of factor matrices is often an indispensable step in

the course of a factor analytic study. Especially when the study is of the

confirmatory type, we may wish to rotate an initial factor matrix to a

specified target. Closeness of fit will be a measure of the success of

the transformation.

At times, fit may turn out to be quite unsatisfactory. In such cases

we may wish to know the conditions responsible, and we may also wish to know

if fit can be improved by a possibly minor change of the target which the

investigator might be willing to concede. Necessary and sufficient conditions

for perfect fit will be derived, and imperfect fit of any degree must then be

attributable to violations of such condlitions.

Techniques for obtaining optimal fit have been worked out for three

different problems when rotation of a factor matrix (uncorrelated factors

of unit variances) to a specified target is required. The problems differ

with respect to the class of transformations admitted. Least squares

solutions of the problem of finding an optimal orthogonal transformation

matrix were given by several writers (e.g., Cliff, 1966; Fischer & Roppert,

1964; Green, 1952; Kristof, 1964; SchOnemann, 1966). When correlated

factors are involved, however, then a distinction must be made between

factor structures and factor patterns. Mosier (1939) was the first to

derive an approximate least squares method for transforming a given factor

matrix toward a given target factor structure or, more specifically, the

reference factor structure usually referred to as the matrix V . Browne

1
Research reported in this paper has been supportAd by grant-. GP-18230

from National Science Foundation.
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(1967) developed a least squares procedure which is, at least ih theory,

exact. He illustrated it by way of a worked example. Least squares solutions

for the case in which the specified target is a factor pattern are of a still

more recent date. Browne and Kristof (1969) worked out a solution and applied

the method to a set of data. Gruvaeus (in press) dealt with the same basic

problem and arrived at a different procedure by minimizing a different

criterion.

It may be worth noting that the orthogonal "Procrustes" problem is

basically different from the more general oblique case. The usual least

squares goodness of fit criterion as employed first by Green (1952) and

then by others in the orthogonal situation is invariant under orthogonal

transformations of the target. Analogous invariance properties of the

corresponding least squares criterion do not ho.,d, however, when the target

is either a factor structure or a factor pattern, and replacement of the

original target by another one obtained from the same correlation matrix is

allowed. On account of this fact, the theory developed in the following

sections of this paper will be concerned with problems in fitting factor

structures and factor patterns to target structures and patterns respectively.

Target matrices will not necessarily be regarded as unalterable. In

fact, a good deal of the following theory will be applicable to the problem

of selecting a target. We will give necessary and sufficient conditions

for two correlation or covariance matrices to admit identical factor structures

or factor patterns and we will show how to recover such structures or patterns

if they exist.

In defining least squares goodness of fit criteria, Browne (1967),

Browne and Kristof (1969) and Gruvaeus (in press) used a rigidly specified
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target without assumed knowledge of the correlation or covariance matrix

from which the target was obtained. We do assume such knowledge, however,

as will be the case when the target is determined by some earlier study.

A factor structure or a factor pattern alone does not fully represent the

information contained in a correlation or covariance matrix.

For the sake of clarity, the basic matrix notions used in this paper

will be explained in some detail. Let E be a (reduced) correlation or

covariance matrix of order n x n and rank p, p<n. E is called

"reduced" when the diagonal elements have been adjusted such as to be

determined only by common factors in the sense of the traditional linear

factor analysis model. Consider a decomposition E = AOA' with A' and

43 having orders n x p and p x p, respectively, and rank p. Matrix

0 is symmetric and positive definite because E is symmetric and should

be left positive semidefinfte, notwithstanding any adjustment of the

diagonals. It is further postulated that diag Q = I . Under these

provisions, A is called a factor pattern. Its elements are regression

coefficients of tests on factors. Matrix B = AO is called a factor

structure. Its elements are covariances between tests and factors. Evidently,

E = BO
-1

B' . Matrix ' gives the correlations between factors. If 4 = I ,

i.e., when the factors are taken to be uncorrelated, then factor pattern and

factor structure coincide. One speaks simply of a factor matrix. It will

be observed that _ = BA' for 4) given.

The entirety of factor structures determined by E can be written as

follows. Let F be a factor matrix, E = FF' . Then B = FU with

diag U'U = I , U full rank, comprises all possible factor structures.

This formulation is generally valid because any two factor matrices Fl



and withF1 F' =F22 F' are related by means of F2 =FI ,S S orthogonal.

One observes that U*'U* = U'U when U* = SU .

The entirety of factor patterns is given by A = FV with diag(VIV)
-1

= I ,

V full rank of course. Again, this formulation is generally valid. In each

case, F may be taken as Prl
/2

when E = PPP' is a canonical decomposition,

P having orthonormal column vectors and I' being a positive definite

diagonal matrix.

In writing E for a correlation or covariance matrix we do not wish to

imply that E must be a population nvtrix. In a typical situation, E will

be obtained from a sample.

The present papo7. is primarily theoretical in nature. Applications of

the theory will be contained in another report.

2. A Lemma

A proof of the following lemma will shorten the development of the in-

tended theory of factor rotation.

Lemma: Consider the two simultaneous equations

(1)

P P
g
2

= 0

g2+ g
2

= 1 ,

p > 2 , the coefficients Ali being real and not all of them zero. These

equations admit p linearly independent real solution vectors g' = (g
1 p

ifandonlyifthereisacoefficient.4j >0 as well'as a coefficient Ilk< 0 .

Proof: Necessity of the condition is clear. Sufficiency is inferred

from considering the following exhaustive distinction of possibilities.
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(i) Precisely two coefficients are different from zero, kL1 > 0 and

p.

2
< 0 , say. Two linearly independent solution vectors of the form

(Y2 )0,...,0) can be found easily. Additional p - 2 linearly inde-

pendent .) )

Thus a set of p linearly independent solution vectors exists. This result

holds for any p > 2 .

(ii) Suppose there are exactly K coefficients different from zero,

2 < K < p . They may be taken as µ1,...,µK with i-11 and 112 having

the same sign. We proceed by induction with respect to K , the first

induction step being contained in (i). In the sequence 112,u3,...,11K both

signs must occur. By induction assumption, there are p - I linearly

independent solution vectors of the form (0,2,3,...A p) . Analogously,

the sequence v0,v3,...,vp will contain coefficients of each sign, hence

there are also p - 1 linearly independent solution vectors of the form

. Among these, there must be at least one solution vector

with 4 0 . Adding such a solution vector to the first set gives a total

of p linearly independent solution vectors. This completes the proof.

3. Theorem's on Fit

In this section, some theorems on problems of fit as regards factor

structures and factor patterns obtained from matrices E1 E
2

will be

given. The theorems may serve to identify such characteristics of I
'1

and

E
2

which preclude satisfactory fit. The question of goodness of fit in

relation to the choice of a target will also be considered. The number of

factors in two matrices under comparison will be assumed equal.
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Theorem 1: Let El and L.2 ,
B1

# , have canonical decompositions

= 1,1EILi and L.2 = 2.21'12 . The following conditions for LI and E2

to admit identical factor structures, B1 = 4 , are jointly necessary and

sufficient:

1. There is an orthogonal matrix T with 4 = P1T .

2. W = 211/2TIP1 1T111/2 has an eigenvalue greater than unity as well
-- --2

(2)

as an eigenvalue smaller than unity.

Proof: (i) Necessity will be proved first. We write

/2
B = U1 11 U1,

B = P P1/2U2 2-2 2 '

diag UjUi = I

diag U2E2 = I

= 16 implies that the column vectors of both El and E2 are orthonormal

bases of the same p -dimensional space. Hence there is an orthogonal matrix

T relating the two bases, F1,2 = P1T .

Now, starting with (2), it follows from B1 = 4 and PiPi = I that

(3)
r1/2TF1/2u1 1 2 2

Then, using (3) and introducing

(4)
1.1/2T,rv_Tr1212

the conditions on the diagonals as stated in (2) become

(5) diag UnWU = I ,
2

An equivalent formulation is

diag U'U = I .

(6) diag 2.2(W - I)E2 = 0 , diag U222 = I .
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Let W have a canonical decomposition W = C'AC with elements Ai in the

diagonal of A . Further, put LI = CU2 and define a diagonal matrix

14=A-Iwithelementsp.in the diagonal. We will have M 0 because

A = I implies W = I and therefore El = E2 as it follows rather easily

from (4). Conditions (6) become

(7 ) diag L2'9 = 0 , diag = I .

Let (1,..., ) be a row vector of Ur . Conditions (7) can be expressed

in form (1) where the two simultaneous equations are to admit p linearly

independent solution vectors. According to the previous lemma this will be

the case precisely when there is a coefficient [.t.j >0 as well as a

coefficient p
k
< 0 or, equivalently, when there is an eigenvalue > 1

as well as an eigenvalue 7\1c, < 1 . This completes the necessity part of the

proof.

(ii) As to sufficiency, suppose that the conditions given in the theorem

are satisfied. Thus M = A - I , M and A as defined before, has positive

as well as negat4,e elements in the diagonal. It follows from the previous

lemma that there is a nonsingular matrix U obeying (7). Reversing the

corresponding steps in (i) we arrive at a nonsingular matrix U2 satisfying

(5). Now define a matrix Ul by means of (3). Evidently, diag Upi =

diag U'WIJ2 = I . Choosing the possible factor structures B1
P1412U1

and B
2

= P12TrV2u2 one has indeed B
-1

= B
-2

This concludes the proof.

The problem of existence of identical factor structures, Bl and 22 ,

is certainly a symmetrical one. Yet in the formulation and proof of

Theorem 1 the matrices E and E2 have been treated unsymmetrically. It

may therefore be desirable to demonstrate that interchanging the roles of

L.1 and T- does not affect the theorem materially.

9
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Such interchange would evidently not alter condition 1. But W would

1/2_
have to be replaced by W* = 121 Tr2

-1 _1/2
. However, placing

G = r1/2T'r-1 1/2
x-1

. Hence the eigen-one has W = GG' and W* = (GrG)2
values of W are reciprocals of those of W* which implies that condition

2 remains materially the same.

It will be noted that condition 1 in Theorem 1 is equivalent to

= 221.2L

An analogous theorem involving factor patterns could be established

by essentially following the scheme of the proof of Theorem 1. However, a

somewhat more general statement will be shown to be true.

Theorem 2: El and E2 , .E1 1;2 , admit identical factor patterns

if and only if they admit identical factor structures.

In other words, conditions 1 and 2 in Theorem 1 are jointly necessary

and sufficient for the existence of both identical factor structures and

identical factor patterns.

Proof: Let El and E2 have canonical decompositions El = PlrlPl

and E2 = .1221:222 . In analogy to the first paragraph of part (i) in the

proof of Theorem 1 it is at once inferred that the existence of an orthogonal

matrix T with P
2

= PIT is also necessary for El and E to admit
2

identical factor patterns. Now suppose that El and E2 admit identical

factor structures, thus conditions 1 and 2 in Theorem 1 are satisfied.

Introduce matrices

(8) = p r-111)1 = p r
-1

P'1 1-1 =1 ' 2 2-2 2

and form

(9) w = i1/2T,r1Tr21/2

xammumaimmenollElliliNam
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It is seen that W = W
-1

, hence the eigenvalues of W are reciprocals of
- -

those of W .
Therefore, according to Theorem 1, E1 and E2 will also

admit identical factor structures. In other words, there are nonsingular

matrices U 1
and b. with

(10)

-1/2- -1/2-Pr U uI1 I -11-2 2

diag UlU1 = diag U2U2 = I .

But this is equivalent to

-, 1/2-
221

1 211.1 -1
/ = P Tr-2

Uf
-1

1- -

diag (U1151-1) -1 = diag (fJ.;11T1)-1 = I .

Upon setting

(11) V
1 '

= 51-1 V
-2

= 51-1
-1 2

we obtain instead

P r1 /2V = P Tr1/2V11 1 1-2 2

(12)

diag (VIV1)-1 = diag (Ify,2)-1 = I .

Therefore E1 and E
2

admit identical factor patterns also, as given in (12).

The proof is completed upon noting that each step in this derivation is

reversible.

Theorems 1 and 2 have been formulated as existence theorems. The problem

of actually determining identical factor structures and/or factor patterns, if

they exist in a given instance, will be our next concern.
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Let
1

= P
1-
r
1-
P1 and

2
= P
-2-2

P2 be canonical decompositions. We

wish to characterize all pairs of transformation matrices UI,U2 with diag UU1 =

D rellarr D rellarrdiag Sif2 = I which yield A pair of
Bi 1-1 1 2-2 2

transformation matrices satisfying these conditions will be called a pair

of transformations to identical structures. Similarly, we wish to charac-

terize all pairs of transformation matrices V1,V2 with diag(V1V1)-1 =

diag(Vy2)-1 = I which yield A, A pair ofP14/2V1 1324/2X2 A2

transformation matrices satisfying the latter conditions will be named a pair

of transformations to identical patterns. The following theorem gives

necessary and sufficient conditions for Ul,U2 and Vi,V2 to be a pair of

transformations to identical structures and a pair of transformations to

identical patterns, respectively.

Theorem 3: Let E1 and Z:2 ,

El
E2 , have canonical decompositions

El = 2.341121 and E2 = 13.211.2* . Full rank matrices 21,1.j2 or y1,y2 are

a pair of transformations to identical structures or a pair of transformations

to identical patterns, respectively, if and only if the following conditions

are met:

1 There is an orthogonal matrix T with P2 = PIT .

2. Let W =
-2
r'112T'r1 -1TF1/2 have a canonical decomposition- -2

W = C'AC . Then )

r2
is to be chosen such that U2 = CU- - 2 2

satisfies simultaneously diag (A - I)U2 = 0 and

diag U' I . Matrix Ul is to be taken as U_ _Tfil2TF1/2"
'1 2 2

3. As regards factor patterns, V2 is to be chosen such that

cy2 satisfies simultaneously diag 22-1(1%:1 - I)22 -1 = 0

and diag(VIV )-1 = I . Matrix V1 is to be taken as

V = 142T1-1/2171 -1 --2 -2



Proof: The theorem follows from suitably adapting and interpreting

the combined proofs of Theorems 1 and 2 quite immediately.

It should be noted that the determination of matrices
U 2 or 12

1

satisfying the above conditions 2 or 3, respectively, is a rather simple

matter. It amounts to finding linearly independent solutions of a system

of equations of the form (1). Then the next step would consist in

obtaining U2 = CIU2 or V2 = C'V2 . The applicability of this procedure

depends exclusively upon the existence of T and, secondly, the eigen-

values of W .

In the preceding developments repeated use has been made of matrix W

as originally defined in Theorem 1. In fact, knowledge of the eigenvalues

of W is required if Theorem 3 is to be applied.

However, being existence theorems, Theorems 1 and 2 permit a combined

reformulation which does not explicitly involve matrix W and which may be

more appealing formally. The following result is obtained.

Theorem 14: Let fl and E2 ' l E2 , have matrices of eigenvectors

21 and 22 , respectively. The following conditions for E1 and Z:2 to

admit identical factor structures and/or factor patterns are jointly

necessary and sufficient:

1. P1 and P
2

are orthogonal transforms of each other.

2.
I

- E
2

is not a semidefinite matrix.

Proof: Condition 1 is obvious in view of Theorems 1 and 2. As to

condition 2, Theorem 1 stipulates that W = r1/2T'FI 1TF1/2 have an eigen-

value greater than unity as well as an eigenvalue smaller than unity. This

is equivalent to W
1

- I having a positive as well as a negative eigenvalue.

Or, by a generalization of Sylvester's law of inertia,

1
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-2

_1/2 -1 _1/2

2
P (W - P' = P r P' - P r P'
-2 -2 111 2-2-2

= E E
-1 -2

is not a semidefinite matrix. This concludes the proof.

4.. Some Immediate Consequences of the Theorems

I. Theorem 3 gave rules as to the possible choice of pairs of trans-

formations to identical structures and pairs of transformations to identical

patterns. The following consequence may deserve particular interest: Not

every full rank matrix U2 or y2 satisfying diag U2U2 = I or

N
diagW-

2-V 2

1
) = I can be taken as a possible member of a pair of trans-

formations to identical structures or identical patterns, respectively.

Therefore, if unsatisfactory fit is encountered in rotating a factor matrix

to a target structure or target pattern, improvement of fit may be attempted

through a possibly but minor change of the target. The original target may

have been obtained from rotating a factor matrix P24/2 by means of a

transformation U
2

or y
2

which, when rotation of a factor matrix P
1r/1

2

toward the target is sought, is not close enough to being a possible member

of a pair of transformations to identical structures or patterns. However,

there may be another transformation, 4 or 4 say, which answers this

requirement more accurately and which will yield a target that is still

psychologically meaningful or otherwise useful to the researcher. Of course,

such a substitution is feasible only if the factor matrix is known from which

the original target was derived.

II. According to the previous theory, the following three conditions

are jointly necessary and sufficient for actually attaining perfect fit

when a target is specified:

1d
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(i) 2
1

and 2 span identical spaces, i.e., there is an

orthogonal matrix T satisfying P2 = PIT .

(ii) = P1/2T'F-1T1-42 has an eigenvalue greater than unity as2 1 --2

well as an eigenvalue smaller than unity ( E1 - E2 is not

semidefinite).

(iii) Transformation matrix 152 or V2 is a member of a pair of

transformations to identical structures or identical patterns.

These three conditions form a hierarchical order. Condition (ii) becomes

meaningful only if condition (i) is already met. Condition (iii) can be

checked upon only if both conditions (i) and (ii) are satisfied. If con-

ditions (i) and/or (ii) are not fulfilled then perfect fit can under no

circumstances be achieved, even if any choice of a target were permitted.

III. Suppose that two covariance (correlation) matrices, EI and E2 ,

admit identical factor structures or factor patterns. Then, typically, the

corresponding correlation (covariance) matrices DiZID1 and p22112 , DI

and D diagonal nonscalar matrices, will not allow for identical factor

structures or factor patterns. For, consider the canonical decompositions

El = 412121 , 112 2 22 = ISALQi and D2E2D2 = 2V2% Now

= 2a2 with T orthogonal does in general not imply 22 = 21S with S

orthogonal.
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