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PREFACE

In the fall of 1957 the Mathematical Association of America (MAA)
extended to national status the contest given by its Metropolitan New York
Section. I was asked to chair the first contest committee of the Upper
New York State Section of the MAA.

After working with the administration of the 1958 contest, it occurred
to me that it would be worthwhile to make a follow-up study on what
happened to students who participated in the contests. Some small grants
allotted to me from the contest funds enabled me to begin a piece of work
that grew into a study of the academic progress of 117 students who com-
posed two top-ranking groups. The first group consisted of those who
ranked in the top 1 percent in the Upstate New York MAA Contest Section
in the 1958-60 contests; the second, of those who ranked in the top 0.03
percent nationally in the 1958 contest. Later the study was extended, for
some, to the developments in their careers.

As the work progressed, the idea became more and more appealing that
the experiences and opinions of these outstanding young people (many of
whom continued or are still continuing academic work to the doctoral
level) should be sharedthat what they had to say would encourage and
inspire high school and college students with interest and aptitude in mathe-
matics to continue their mathematical studies. I therefore sought and, for-
tunately, obtained the cooperation of a number of former contestants in
the project of writing essays on careers using mathematics. This booklet
is the result of that collaboration.

It has not been possible, of course, to cover the complete range of
careers using mathematics. In these personal accounts information is
limited to just a few fields: applied mathematics, computer research and
programming, biomedical engineering, accounting, music, the ministry, and
pure mathematics. Nevertheless it is hoped that this sampling, limited
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though it is, will whet the appetite of high school and college studcnts for
some carecr that is directly or indirectly connected with mathematics.

The authors have madc little attempt to outline what education one needs
for a particular position. "Learn more of the mathematics that is being
used today" is the sum of their advice to those who want to be prepared
to work effectively tomorrow in any of the possible fields using mathematics.

Likewise, the authors have not tried to associate specific ranges of salary
with levels of academic training. There are no upper limits on academic
training at any level; and salaries, like taxes, are steadily increasing regard=
less of level, so any current information would soon be outdated.

Again, the authors have made no attempt to write in a uniform style,
nor were they encouraged to do so. I have not tried to edit their writing
to produce any semblance of uniformity. There is something refreshing
about the different approaches as one goes from essay to essay.

In all these essays, however, whether by accident or design, the authors
convey to you their likingtheir lovefor their work, and this enthusiasm
may provide a new outlook for you.

Each essay is preceded by a brief introduction to give background infor-
mation about the author. It is with pleasure that, as editor, I express deep
gratitude to all the young men who contributed these essays. My heartfelt
thanks go to those who have been so helpful in giving the advice I have
sought. I thank the State University of New York at Albany for allowing
me the time to devote to compiling this work. I am indebted to the Upper
New York State Section of the MAA for supplying me with summer grants.
And I extend my thanks to Norman G. Gunderson and Elmer E. Haskins
for their part in my appointment as contest chairman; for without that
appointment this project would not have been envisioned. I am particularly
grateful to Frederick J. De La Fleur and Malcolm Smiley, whose critical
reading of the manuscript did much to help me prepare this collection of
essays.

Nura Dorothea Rains Turner
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APPLIED

MATHEMATICS

editor's Introduction_,

Often in the evolution of science,
so it has been said, praxis comes first
and theory later. Perhaps it is not
inappropriate, then, to start this series
of essays with one on applied mathe-
matics.

The author is an assistant professor
of mathematics at the University of
California, San Diego, under a joint
appointment between the Department
of Mathematics and Institute for Geo-
physics and Planetary Physics. In
addition to teaching freshman calculus
courses, he engages in research di-
rected toward mathematical methods
in mechanics, nonlinear waves (e.g.,
water waves), and other applications
of mathematics in geophysics.

Professor Luke received two B.S.
degrees in 1962 from MIT (Massa-
chusetts Institute of Technology), one
in electrical engineering and one in
math natics; an M.S. in applied

"If you think
you might be interested in

applied mathematics
as a career, .. .

why not try it as a hobby?"

JON CHRISTIAN LUKE

mathematics in 1963 from MIT; and
a Ph.D. in applied mathematics from
Cal Tech (California Institute of
Technology). His doctoral thesis,
submitted in 1966, was entitled "Non-
linear Dispersive Wave Problems." He
continued at Cal Tech on a postdoc-
toral fellowship during the academic
year 1966/67.

At the end of this essay the author
speaks of his own experience, from
the time of his early youth in Minne-
apolis. I shall mention, in anticipation,
only one thing. In spite of his having
disliked "many things that were ac-
tively encouraged," he has come to
realize the importance of fields of
study other than mathematics and
science and has begun to correct for
years of neglect. For example, he has
become very much interested in the
study of violin, which he once con-
sidered "little more than forced labor."

To avoid sounding like a college catalog or a thesis, I am writing
as informally as possible; I hope that no one will be offended by this
approach.
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A person's life work really begins when he is born, not after he com-
pletes his formal education. Mathematical and scientific interests often
develop at a fairly early age; for that reason I am beginning with a section
on mathematics and science as a hobby. This section tells what I wish I
had undertaken in junior or senior high school!

MATHEMATICS AND SCIENCE AS A HOBBY

If you think that you might be interested in applied mathematics as a
career, the best suggestion that I can make is this: "Why not try it as a
hobby?" Instead of just spending time doing work in mathematics courses,
it is much more importantand enjoyableto devote time to independent
reading and research, and it is certainly not too early to start in junior or
senior high school. You can wait longer, of course, but you might be
missing much of the fun. Also, it is a sad fact of human nature that you
might never get around to starting.

A good place to start a mathematical and scientific hobby is at a public
or school library. You might look through some issues of Scientific Ameri-
can or try to read something in What Is Mathematics? by Richard Courant
and Herbert Robbins; in The World of Mathematics, edited by James R.
Newman; or in The Feynman Lectures on Physics, by Richard P. Feynman,
Robert B. Leighton, and Matthew Sands. Also you might enter a science
fair or a mathematics contest. All of these activities can be very useful if
they stimulate your interest, but it is important not to be discouraged or
overwhelmed. Mathematics and science are fundamentally cooperative
efforts among human beings, and the competitive aspects are less important
than the cooperation.

It is good, of course, to explore all of the resources available to you, to
ask questions and to read books; but it is also useful to sit back and think
for yourself about the problems. That is not to say that you should try to
discover the calculus or special relativity from scratchthat would be
pretty hard. (Well, it might be worth a try, at that. You probably wouldn't
succeed, but who knows what else you might discover?) Of course if you
set out to discover things, you are bound to have a lot of failures. If you do
discover something that you think is new, it will probably turn out to be a
standard, well-known result. Even the professionals have that trouble.
Just the same, the concepts that you struggle with are likely to be useful
later on. In fact, many people find that books and teachers can only give
hints at best. To understand mathematics and science deeply, people need
to start from the hints and discover the concepts for themselves.

In the next section t have tried to give a few hints about some funda-
mental concepts in mathematics. Although details are left out, I hope that
the treatment is not superficial. If those paragraphs seem obscure, though,
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that is very natural; it is unreasonable to expect that anyone can make real
sense of such brief explanations unless he understands the material already
or else has the insight of a Newton or an Einstein.

A BRIEF TASTE OF APPLIED MATHEMATICS

Most mathematicians and scientists are intensely interested in their work.
For a person who did not enjoy the subject, applied mathematics would be
a difficult and unrewarding way to earn a living. I hope that the following
material will give a glimpse of what applied mathematics is really about
and will show how fascinating the subject can be. In any case, it should
at least give some idea of the wide range of subjects to which mathematics
can be applied, and of its power to unify many different fields.

First a word about calculus, since this is basic to much of applied mathe-
matics. Suppose some numerical quantity is known at each moment of
time. From this information one may wish to calculate how fast that
quantity is changing. This process of finding the rate of change of a quantity
is called differentiation (with respect to time). For example, if the position
of an automobile along a road is knivvn at each instant, then by differentia-
tion it is possible to deduce its speed at each instant. A speedometer is a
mechanical device that performs this differentiation and gives a reading of
the velocity along the road. Just as velocity is the rate of change of position,
so, too, acceleration is the rate of change of velocity.

The other fundamental concept of the calculus is integration, which is
essentially the opposite of differentiation. Thus if the automobile speedome-
ter reading is known at each instant and the starting point is known, by the
process of integration it is passible to deduce the position of the auto-
mobile along the road at each instant.

Differential equations

In order to describe the orbit of a satellite, the oscillation of an electrical
system, or the motion of a spinning top, the scientist or engineer uses what
are called "differential equations." To understand what the applied mathe-
matician does it is useful to understand, first, what it is like to formulate a
differential equation and, second, what it means to solve the differential
equation. Consider the following example of a differential equation:

d d
cit u = u.

This equation describes the motion of a pendulum, alt sough only in an
approximate way. The quantity u represents the position of the pendulum
bob, measured horizontally from its rest position. The expression on the
left side of the equation gives the acceleration of the pendulum bob. (The
symbol
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d

dt

placed on the left of a quantity means the rate of change of that quantity.
As explained earlier, the rate of change of the rate of change of the position
is the acceleration.) The equation states that the pendulum bob experi-
ences an acceleration back toward the rest position. The farther the pedu-
lum bob is from the rest position, the greater will be that acceleration. For
exampleif, at some moment, u is equal to 1 (which means that the pendu-
lum bob is at a position one unit to the right), then it follows from the
equation that the acceleration at that instant must be one unit negative;
that is, there is one unit of acceleration to the left.

Now it is easier to see the distinction between what the differential equa-
tion says directly and what its solution says. If we ask "What if the pendu-
lum bob is one unit to the right at some moment?" then the differential
equation tells about the behavior of the pendulum bob (its acceleration)
at that same moment. However, if we release the pendulum bob from some
position and want to know what will happen in the future, we must solve
the differential equation. Such information is contained within the differ-
ential equation. It is often well hidden, but the solution of this very simple
differential equation is known. Suppose that the pendulum bob is released
from a point on the right side. The solution says that it will swing to the
rest position, overshoot, and go to the same distance on the left. Then it
will swing back to the right, and so on. In this simple model there is no
friction, so the pendulum keeps swinging indefinitely. A graph of u made
fog various values of time forms what is known as a cosine curve. If this
graph of the solution is known, one says in mathematical jargon that "u is
a known function of time." That statement means that u depends on time
in a known way. A mathematical function of the time :s really just a rule
so that, for each instant of time, one can find the corresponding value of the
quantity u.

The formulation of differential equations is often done by the scientist
or engineer rather than the applied mathematician. Whoever does this
needs a firm understanding of the forces at work within the system and
the way the various parts of the system interact. In complicated problems
it may require insight to see what is sign3ficant for an accurate mathematical
model of the system and what can be neglected. For example, whether one
can neglect friction in the study of a pendulum depends on what aspects of
the problem are really under investigation.

To formulate differential equations is often difficult; to solve them is
generally impossible. At least there is no known way to do it exactly,
except in some fairly simple cases. This is where the applied mathematician
comes in. Because the same differential equations often arise in physics,
astronomy, electrical engineering, and many other fields, it is useful to have
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people who sk ct. in dealing with the equations themselves no matter
where the equations are to be used.

Here are some possible ways for the applied mathematician to proceed:
(1) Find an exact way to solve the differential equation. Sometimes this
can be done by cleverness or trickery. (2) Solve a simple but related
differential equation. It may require insight to know if the simple equation
gives a valid model of the physical problem. (3) Prove that a well-behaved
solution exists, even though no way is known to find it. This may be useful
if it is not known whether the original equation is well formulated. (4) Use
an approximation method to try to obtain sufficiently accurate results or a
useful insight into the problem. Some of these methods are numerical and
are usually carried out on a digital computer, although many approximation
methods are not connected with computers at all. In the case of routine
numerical work on a computer, an applied mathematician is seldom in-
volved except possibly in an advisory way. (5) Investigate the accuracy
of an approximation method. (6) Develop a new approximation method.
(7) Find a new way to do any of the things listed above.

Some of the major uses of differential equations are in electronics, con-
trol of automatic devices, guidance of rockets, and calculation of orbits
in space.

Partial differential equations

The differential equations described in the previous section are called
ordinary differential equations (ODEs) to distinguish them from the more
complicated equations known as partial differential equations (PDEs).
A typical problem of the kind that can be described with a PDE is that of
the motion of a guitar string. By the use of ODEs the mathematician
describes how a single quantity (like the position of a pendulum bob) or
how several quantities change with time. The motion of a guitar string is
clearly complicated, for at any moment of time it is necessary to be con-
cerned with the behavior of each small bit or increment of the string. To
do this with ODES one might consider the position of each molecule sepa-
rately, but that would certainly be a very cumbersome problem. It is better
to describe the position of the string in a different way.

Suppose the string is vibrating. Consider its position at one instant of
time (or imagine a photograph taken at that instant). Call that instant of
time t and call the distance that the string is away from its rest position u.
Of course the value of u may well be different at different places on the
string. For example, the bit of string 10 centimeters from the end might be
0.2 centimeters away from the rest position. Instead of writing down num-
bers, let us just say that the bit of string x centimeters from the end is u
centimeters away from its rest position. One could draw a graph so that
for each value of x it would be possible to read off a value of the displace-
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ManatitiSMEN.

"A typical problem of the kind that
can be described with a

partial differential equation
is that of the motion

of a guitar string."

,MENIIIMOINIENCIEKIIMMISIESSEIV.20Z-M2METNAMIM

ment u. Then one would know how u depends on x at time t. Using mathe-
matical jargon again, one says that "u is a function of x." A graph of this
function of x looks like a photograph of the string at that instant.

A PDE can be used to tell how such a graph or function changes with
time. The PDE often used to describe a guitar string says that if the string
is curved at some point, the bit of string there will be accelerated. One
might be led to guess this because if a guitar string is grabbed between two
fingers and moved to the side so that it becomes bent, there is a force
pulling on the fingers (due to the tension in the string); and, if the string
is released, this force causes that bit of string to accelerate back.

To determine the bending or curvature at some point on a graph of u,
one differentiates the function of x twice. A beautiful analogy now becomes
apparentfor, as explained in the previous section, this is exactly the way
one would determine acceleration for a function of time. Incidentally, this
is the same analogy between space and time that comes into play in Ein-
stein's special theory of relativity.

The distinction between formulation and solution of PDEs is much the
same as for ODEs. Although the PDE for a guitar string states directly
what happens at any given instant, it is more difficult to find out what hap-
pens if the string is released and allowed to vibrate. To find out, one must
solve the PDE. For this simple problem it can be done. The solution
shows that the guitar string can vibrate at its fundamental frequency and at
various higher frequencies. An alternate description is that waves can
travel in both directions along the string.

The same PDE that is used to describe a guitar string also occurs in many
other problems. For example, this PDE has applications in the theory of

6
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sound and in the theory of electromagnetism, which includes the phenomena
of light and radio waves.

Probability

Of the other fields of applied mathematics, I'll mention only one, the
field of probability. A simple classical example in the theory of probability
is that when two fair dice are rolled there is one chance in six that the total
number of spots will be seven, but only one chance in thirty-six that the
total will be two. The study of probability arose historically from its use
in gambling, and even now this application seems to receive the most pub-
licity. Some other important applications of probability and statistics have
to do with random motion of gas molecules, messages in noisy communica-
tion channels, and interpretation of experimental results.

THE EDUCATION NEEDED FOR A CAREER IN APPLIED MATHEMATICS

Mathematics as a hobby can be useful no matter what field a person
finally enters, but suppose now that mathematics grows into a career. Then
the various formal educational requirements must be faced. The standard
way to become an applied mathematician is to complete high school, to
spend about four years as an undergraduate to earn a bachelor of science
degree, and then to spend several years in graduate school.

An early decision regarding a major field is not really necessary. Mathe-
matics, physics, or branches of engineering are all very acceptable under-
graduate major fields for a person who goes into applied mathematics in
graduate school. However, a solid foundation of calculus and physics is
essential during the first years as an undergraduate. For the person who
wants to be an applied mathematician within the academic community, the
degree of Ph.D. is now almost a requirement. This means, incidentally,
that it is wise to do some language study as early as possible, since a reading
knowledge of two languages in addition to English is a common require..
ment for this degree.

Many graduate schools do not have a separate applied mathematics de-
partment, so a person with interests in this direction may find himself in the
mathematics department (or possibly elsewhere).

WHAT APPLIED MATHEMATICIANS DO FOR A LIVING

The bread-and-butter aspects are probably the least interesting part of
an applied mathematics career, but it is only fair to say a little about them.
Let us suppose for the moment that the authors of papers in applied mathe-
matics journals are representative applied mathematicians and glance

7



through one or two journals to see what topics are of interest to applied
mathematicians. Let us see, also, what information the acknowledgments
give about the institutions the authors are associated with and about the
financial support received for their research.

A quick look at almost any applied mathematics journal shows that the
large majority of the authors are associated with some academic institution.
In one journal I looked at, these academic institutions were widely scat-
tered across the United States and Canada, with a few European institutions
also represented. Within these institutions the mathematics departments
were most frequently mentioned, but physics departments, electrical engi-
neering departments, and computing centers were each referred to several
times. Other departments mentioned ranged from astronomy, biology, and
chemistry to economics and, unexpectedly, philosophy. Many authors ac-
knowledged financial support from government agencies such as the National
Science Foundation, the Atomic Energy Commission, the Air Force, or the
National Aeronautics and Space Administration. Authors not connected
with an academic institution were typically associated either with an indus-
trial corporation or with a government or private research organization like
the National Bureau of Standards or the Jet Propulsion Laboratory.

The next two paragraphs are brief sketches of jobs of applied mathema-
ticians in the academic community and in industry, respectively. The first
paragraph is specifically about the job of a professor; however, it might be
remarked that a sizable number of the authors of applied mathematics
papers describe research done while they were still graduate students.

As a university professor, an applied mathematician would normally
teach one or two courses and spend the rest of his working time preparing
lectures, doing research, and helping students with course work and re-
search. Most academic institutions expect that a professor will publish
research work from time to time. Some professors have administrative or
extra counseling duties, and some take on consulting work in industry in
addition to their regular duties.

An applied mathematician who works in industry typically spends much
of his time consulting with and advising engineers and others who have
specific problems of a mathematical nature. An ability to work in close
cooperation with other people is essential in this work. Because of his firm
grounding in mathematics, the applied mathematician is able to enter many
fields of science or engineering rather quickly, and he may be called upon
to do so if the need arises. He will probably write frequent reports and
documents dealing with mathematical problems. Most of these are for
circulation within the company, but some may well be published. Far-
sighted organizations will probably allow him to spend some time on re-
search of his own choice. The educational requirements for work in industry
are more flexible than in the academic community, but people with ad-

8
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vanced degrees customarily receive higher salaries and, in general, more
freedom to work on their own initiative.

ONE CASE HISTORY

The previous sections have dealt in generalities, so it may be useful to
tell how one individual happened to become interested in applied mathe-
matics. Unfortunately, I haven't enough information to describe any case
history but my own and am forced to write on more personal terms than
I would have preferred.

I had the good fortune to grow up in a stable and happy family environ-
ment. My father teaches vocational agriculture at the high school level,
and my mother also has a teaching background, but my interest in mathe-
matics and science has developed more or less independentlynot under
the influence of a close relative, a particular teacher, or some acquaintance.
Actually, it is probably fortunate that no one in the family circle tried to
influence me toward a career in science or mathematics, for I came to
dislike many things that were actively encouraged. (Despite the best efforts
of my parents I became unsociable and unathletic, and my study of the
violin was little more than forced labor.)

In the fourth or fifth grade I developed an interest in electricity, astron-
omy, and related subjects. My interest in mathematics gradually evolved
from this. During the eighth grade I became interested in an algebra book
in the library. I was able to read only part of it and gained little factual
knowledge, but I feel now that this attempt affected my later career greatly.
First, if I had not had a certain amount of experience in advance, I think
that I might have become confused and discouraged when algebra was
first presented to me in ninth grade. More important, I realized then that
for me it was enjoyable and useful to study mathematics by myself rather
than to have it taught to me.

My enjoyable experiences in mathematics have been almost entirely
outside of the classroom. These include both the study of standard material
and a certain amount of carefree speculation and daydreaming. (It is usual
to glorify this with the title of research.) When studying standard material
I frequently spent many hours to realize what a teacher might have ex-
plained in a few minutes; however, the excitement of a few hard-won
victories made up for what might seem an incredible waste of time. Electri-
cal engineering remained my major field until I entered graduate school,
when I finally decided that my chief interest was in applied mathematics.

SOME REMARKS ABOUT LEARNING

A friend just happened to walk by and glance ac the title of this essay.
His immediate reaction was "Aren't you about twenty years too young to

9
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write about a topic like that?" That is correct, of course, for as I write this
essay I am just a beginner in my line of work; but even though my experi-
ence is very limited I want to make a few concluding remarksagain of a
general nature.

In the past year I finally began to realize how important it is for a person
to develop interests and skills in many different areas. Here are a few of
the areas where I have been very negligent arni in which I am now trying
to develop some proficiency: (1) reading and writing, listening and speak-
ing, (2) music, (3) being interested in people and remembering their
names and faces, (4) using time efficiently and productively, (5) cultivating
a cheerful and enthusiastic outlook instead of cynicism and intellectual
snobbishness. A lengthy explanation would probably not be very useful
here; people have been trying to explain such things to me for many years,
but I didn't listen.

Maybe what I'm seeking is really the knack of learning things quickly
and with pleasure. For the first time, that almost seems within my grasp.
It seems to me that the key to the development of that knack is simply that
one should never be too much in a hurry, or too lazy or proud, to correct
simple habits if they are the real stumbling blocks to progress. For example,
if my violin bow scrapes across the wrong strings, it would be wise for me
to concentrate all of my efforts and correct this in a short period of time, for
it is not likely to improve if I just keep on practicing in the same old way.
That is obvious, of course, but somehow it is only recently that I realized
it for myself.

Finally, I have come to be impressed most of all by the enormous,'
untapped reserve of thinking capacity a human being possesses. There are
those wonderful moments when the circumstances are just right for new
understanding to occur or great bursts of learning to take place. Maybe it
is foolish to speak of creating such moments, but I am convinced that there
is adventure in store when human beings begin to understand thought proc-
esses in greater detail. Perhaps someone who reads this essay will have a

: . adventure.
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THE COMPUTER

AND THE

PROGRAMMER

"Today there are more than 200
different computers,

speaking more
than 1,000 dialects

in over
300 languages."

editor's Introduction

The present era is aptly called the
computer age; for computers are now
an impressive reality (though the com-
puting machines of today are merely
the realization of some portion of the
visionary scheme of Leibniz). We are
so computerized that there is even
some thought of eliminating schools
and taking education into the home
through television and computer hook-
ups; there would be no age or grade
classification and no limit to the speed
with which a child could proceed with
his education. It is fitting that an
essay on the computer and the pro-
grammer be included here.

The author's earliest awareness of
possessing mathematical skill came
when a junior high school mathematics
teacher demonstrated the supposed ad-
vantage in speed in the use of a slide
rule over hand calculation and the
young student found that he could
consistently beat the slide rule. Later,
when the teacher made him a gift of
the instrument, he was able to figure

FRANK RUBIN

out part of the principle on which it
works.

The next indication of his aptitude
in mathematics came in high school
when he received his geometry text-
book. He read and absorbed the in-
formation on many pages in a single
sitting. He then came across the inter-
mediate and advanced algebra text-
books his mother had used in high
school and found he could easily ab-
sorb that subject matter also. Attend-
ing college (Massachusetts Institute of
Technology), he repeated this kind of
feat by learning probability theory,
vector calculus, and ordinary and par-
tial differential equations during a
single Christmas vacation. For all the
subjects he studied in this way, he
took the regular final examination and
received credit for the course as a
prerequisite for other courses. In this
way he was able to take graduate-level
courses in mathematics beginning in
his sophomore year.

As an undergraduate he was twice

11-
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a member of the MIT team in the
Putnam competitions, taking fourth
place in 1961 and second in 1962.
Four times he placed in the top forty
individual scores in the Putnam com-
petitions in the U.S. and Canada.

He received a B.S. in mathematics
from MIT in 1962 and an M.A. in
mathematics from Brandeis University
in 1964. He is well on his way to a
Ph.D. in systems and information
science, having spent the year 1970/71
in residence at Syracuse University in
the IBM Resident Study Program, on
leave from his regular employment as
a staff programmer with IBM at
Poughkeepsie, New York.

Mr. Rubin's work is in design auto-
mation, a field in which present com-
puters are used in almost every phase
of designing, building, simulating, and
evaluating future computers. When he
accepted the position, he looked upon
it as a rather awesome project, but he
did so with the awareness of possi-

bilities for its signaling notable ad-
vances in the technologies of many
design fields.

In his work he is engaged in the
same type of problem solving he be-
gan enjoying as early as the 1958
MAA contest, in which he ranked, on
a national basis, eighth among eighty
thousand contestants. The general
problem-solving techniques he devel-
oped throughout his formal training
have proved invaluable in computer
problems. He has found remarkable
similarities between such problems
and formal mathematics. For example,
he finds "stable construction," which
involves the abstraction of large vol-
umes of data in various ways to suit
preassigned ends, similar to the
construction problerm of plane and
solid geometry. Again, he finds the
abstraction of information in compact
form similar to the method of break-
ing down a long mathematical proof
into a series of steps called lemmas.

Istudied mathematics in high school, liked the subject, and liked
it so well that I continued the studying in college as both an undergraduate
and a graduate student to the master's degree. Then I began wondering
what I was going to do with the mathematics I had learned. I found I had
the basis to go into computing, a field which had aroused my curiosity.
I was offered a good position with IBM and, with nothing to lose and per-
haps a great deal to gain, accepted it under the condition that I could
continue working in mathematics while working with computers. I find my
work tremendously challenging because computer programming is mathe-
matics. I am convinced that anyone who likes mathematics would find this
field as challenging as I have found it.

Now I should like to tell you about computers, what a programmer does,
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the kinds of computer programmers there are, and the mathematical prepa-
ration required for each type of programming.

WHAT IS A COMPUTER?

Before we can discuss careers in the field of computers, we should try
to answer one basic question: "What is a computer?"

Most people have one of two ideas about computers. On the one hand,
many people have heard that computers are virtually miraculous machines
that can forecast elections, track space vehicles, design bridges, play near-
championship checkers, spot income tax cheaters, and even design new
computers. On the other hand, many people have heard that computers
are nothing more than machines that do arithmetic very quickly. Both
ideas are correct!

How can a mere "arithmetic machine" do such amazing things? The
answer is programming. A program is a list of detailed instructions to the
computer telling it how to solve a particular problem. This list is made up
of the most elementary operations: add two numbers; subtract one number
from another; compare two numbers; turn a switch on or off; go to another
part of the program as a result of a size comparison between two numbers.

The job of the programmer is to express a problem to the computer.
However, not every problem can be expressed in the same way. For
example, designing a bridge involves the solving of large numbers of mathe-
matical equations that represent the forces in each of the parts of the bridge,
but playing checkers requires methods for representing the positions of the
pieces on the board and rules for moving the pieces and evaluating board
positions.

This question of how to express problems to the computer was one that
faced the earliest users of computers. They devised a number of different
languages for computers. Some languages closely resemble mathematics,
others closely resemble business terminology, a few even resemble English
somewhat. Today there are more than 100 different computers, speaking
more than 500 dialects in over 200 languages. Most experienced pro-
grammers understand several different computer languages in detail.

WHAT DOES A PROGRAMMER DO?

Now that we have some idea of what a computer is, let's try to find out
what a programmer does by imagining that a major problem has been
defined and we want to solve it on a computer.

The first step is to decide on a general approach: if the problem is mathe-
matical, we must try to estimate the number and complexity of the equa-
tions involved; if the problem is commercial, we must try to estimate how
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much data is involved. We will need an idea of the typc of information we
will be working with, how we will represent the information, and what types
of results are expected.

The next step is to decide on the type of computer required for such a
solution. We must considcr (1) what special equipment is needed, (2)
whethcr the problem can be solved better by some means other than com-
putcrs, and (3) what language or combination of languages is suitable for
cxprcssing the solution.

Once all of these questions have been answered, a specific solution must
be found. The exact equations must be formulated. The mathematical and
statistical methods must be worked out. The forms in which data will be
represented must be determined. Any tables or other forms for internally
handling and storing data must be specified. It is also necessary to decide
what kind of answer is wanted: a table of numbers, a map or drawing, a
filmstrip showing stages of the computer output in successive frames, verbal
answers.

Before we can convert a mathematical solution into computer instruc-
tions, we must investigate the limits of the system. If our problem involves
1,000,000 numbers, but the computer can store only 10,000 numbers, we
must find a way to reduce the amount of data or to work with just a fraction
of the total at one time. If our solution involves 500 hours of computation
but our budget allows only 10 hours, we must develop shortcut methods.
It is at this stage, usually, that we get the opportunity to be most creative.
This is the point at which we first develop procedures unique to our
problem.

Finally we put into practice the method for solving the problem. That is,
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we are ready to write computer instructions. If the problem is large, we will
want to divide the program into parts. Each part, called a subroutine, will
do a single job such as multiply matrices, convert shillings and pence to
a decimal fraction, or compute the possible moves of a bishop on a
chessboard.

Generally it is best to draw a diagram of the various components of the
program. This diagram is called a flow chart, and it serves to establish the
major control functions in the program. This will give us an overall view
of the entire system. It is best to begin our coding (the writing of computer
instructions) with the simplest subroutines first. This gives us the oppor-
tunity to test the subroutines individually. Later, when we are tryi:ig to
test larger problems, we can do the testing with more certainty that the
individual parts work.

Once we begin to write instructions, the biggest problem is testing. Test
programs must be written to test the individual subroutines. Both the pro-
grams being tested and the testing programs may have errors. Detecting,
analyzing, and removing such errors constitute 90 percent of a program-
mer's job. Errors may continue to crop up as much as five years after the
program has been in general use. The larger the program is, the more
errors there will be and the longer they will persist. It is for this reason
that so much emphasis must be put on advance planning. By correctly
designing the whole system, errors in later stages may be restricted to small
sections of the program.

When the various positions of the program are written and tested, the
sections of the program are combined, and the whole system is operating, a
programmer's task is still not completed. There are manuals to be written
about how the program works and other manuals to be written about how
to use the program. Personnel must be taught to use the program. Man-
agement must be advised of the long-range requirements for maintaining
and improving the program.

A working program is not always enough. It is frequently necessary to
make the program extremely efficient so that the long-term cost of using it
is reduced. This is done by using the facilities of the machine that have
not been used in the basic solution. For instance, suppose our computer
can store 10,000 numbers, but we have used only 8,000 numbers of this
capacity; by processing more numbers at a time it may be possible to speed
up the total operation.

WHAT KINDS OF PROGRAMMERS ARE THERE?

We have now seen what a programmer does, from the start of a long
project to its end. Let us look at some different types of programmers,
their problems, and their background.
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Commercial

Commercial programming generally deals with the accounting and inven-
tory problems of business such as the following: (1) billing customers,
(2) accounting for receipts, (3) calculating payrolls, (4) computing inven-
tories, (5) keeping track of bank accounts, insurance policies, automobile
registrations, and stock market prices, and (6) figuring odds at racetracks.

The basic problem in commercial programming is the amount of data
involved. Storing and processing very large amounts of d^ta in an efficient
manner requires an intimate knowledge of the computer's capability to
acquire, store, and retrieve data.

Somc examples may show just how much data may be involved in a
commercial problem. One company may have 1,000 employees on the
payroll; another company may manufacture 10,000 different parts; one
bank may have 100,000 savings accounts; a state may have 1,000,000
registered autos; some insurance company may issue 10,000,000 policies.
As a final example, the Internal Revenue Service may process 50,000,000
income tax returns, comparing this with a list of 200,000,000 Social Secu-
rity numbers and with the 20,000,000 income statements filed by employers.

Commercial programming in smaller systems generally requires the least
mathematics. High school algebra plus business arithmetic may get one by.
However, detailed accounting or actuarial programming will require college-
level work in these fields, Work on larger systems, like those in government
applications, requires more mathematics and advanced college degrees.

Scientific

Scientific programming deals generally with the design of experiments,
the prediction of results, and the testing of theories against these results.
Some problems may be: predicting satellite orbits, determining scattering of
electrons in an electromagnetic field, estimating the size, speed, and distance
of quasars or other astronomical objects, analyzing windflow patterns
around a model airplane, predicting hurricanes from satellite photographs,
and simulating the effects of various airplane controls in a model cockpit
to train pilots.

Basic to most of these problems is the need to formulate physical data
in terms of equations and then to solve these equations. Special techniques
must be developed to solve large numbers of equations involving many
variables.

This type of programming requires a very solid mathematics background.
In high school mathematics, plane and solid geometry and trigonometry
should be studied. At the college level, calculus, differential equations,
partial differential equations, vector and tensor calculus, and numerical
methods, particularly, are needed.
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A college degree in mathematics or science is essential, and advanced
degrees are preferred.

Management

The use of computers to advise management is a new and growing com-
puter field. In order to make decisions about their businesses, management
needs accurate statistics abou` current operations, forecasts of future trends,
and estimations of the effects of various proposed courses of action such as
mergers, investments in new plants or equipment, and relocation of distri-
bution centers for their products. Management may also want to design
new plants for the best work flow, decide when to scrap obsolete machines,
or locate an executive to fill a key position.

One basic technique for management problems is to build a model of the
process being studied. Such a model may give the value in dollars of
operating a particular machine. It may take into account the cost of break-
downs and overtime. It may consider the amount of floor space some
machines may use and how this affects people trying to work in the area.
It might consider the number of defective articles manufactured by the
machine, the cost of inspecting for defective articles, and even the book-
keeping involved in replacing defective merchandise for customers.

Such complex models for computer use are inevitably mathematical in
nature. A programmer in this field should have a solid grounding in mathe-
matics through calculus, probability theory, and statistics. In addition, he
should study some of the special mathematical fields that have grown up
in the last twenty years in this area: modeling theory, queuing theory,
operations research, game theory, and decision theory. Besides mathe-
matics, study in the area of industrial management, now available in many
universities, is also valuable.

Engineering

Computer programming plays a very great role in all branches of engi-
neering and architecture. Problems include the designing of bridges, the
planning of roadways, the logical testing of computer circuitry, the deter-
mining of optimum proportions of ingredients in concrete, the simulating
of effects of airplane-wing designs, and the planning of plumbing, heating,
air conditioning, and electrical layouts of large buildings.

Another form of engineering programming is called process control. This
is a "real time" problem because the computer monitors a process as it is
actually happening. Processes may be the baking of bread, the smelting of
iron, or the printing of newspapers. The computer tests the process and
sets controls to adjust temperature, proportion of flour, or the drying time
for the ink. It may also be set to warn humans when something that it
cannot handle has gone wrong.
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Computer jobs in the fields of engineering and architecture generally
require a degree in mathematics or engineering. Mathematics, at least
through differential equations, is required; and some knowledge of statistics
and modeling theories may be desirable.

Systems programming

Earlier I mentioned that many different languages may be used on a
single computer. Before the computer can "understand" these languages,
they must be translated into the computer's simple instructions. This is
done by having a special program that does the translation. This type of
translation program is called a "compiler" because it compiles a list of
computer instructions. Compilers constitute one type of systems program.

Other systems programs are needed to get a programmer's job into the
computer, to stop it if something goes wrong, to get the job off the com-
puter, to help print the results, to allow several programs to run at the same
time without interfering with each other, to compute common mathematical
functions like square roots or logarithms, to aid in the storage and retrieval
of data, to do sorting, and to help diagnose errors when a mistake is made.

Since these programs are very frequently used, they must be extremely
efficient. The systems programmer must be intimately familiar with the
computer and all the devices that are used with it. Great abstraction must
be done in many of the programs. For example, to analyze the grammar
of a computer language, the langauge may be abstracted in complex tables
that show the relations between language elements. "Language elements"
are similar to the parts of speech: nouns, verbs, adjectives, ant so forth, that
are used in human languages.

Generally, a strong formal mathematical background is not needed for
this type of programming. Some college-level mathematics subjects, such
as symbolic logic or heuristics, are highly desirable. For a programmer who
wishes to write mathematical subroutines, numerical analysis is required.
To write the compiler for a computer language involving equations and
scientific computations, the programmer needs a general knowledge of dif-
ferential equations and linear algebra in order to understand how the
language is used in these fields. Thus in systems programming there is a
wide range of mathematical background that is essential, but all fields are
those taught at the college level.

Consulting

Many firms and individuals today engage in the selling of programming
services to business and industry. Programmers in this area work on a
wide variety of problems. They may work in one, several, or all of the
programming fields just described. This type of work offers great oppor-
tunities to travel and to meet people in all levels of business. Thus many
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programmers find this the most desirable form of work. To prepare for
this type of job, a broad understanding of all the mathematical subjects
mentioned above is needed.

A FINAL WORD

I hope the field of programming sounds exciting, and that many readers
will enter it. If the reader does not plan to enter programming specifically,
he should remember that computers are beginning to touch almost every
area of human endeavor. Whether one goes into engineering, science, or
business, a knowledge of computers and programming is likely to be a
significant help in knowing how computers can aid in one's chosen field.
Computers speed decision-making and cut overhead in so many lines of
work that one who does not know how computers can help will be handi-
capped. His competitor will know, and will win the race.

A good foundation in mathematics is a necessary basis for understanding
what computers are all about, what they can do, and what they cannot be
expected to do.
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BIOMEDICAL

ENGINEERING

"Probably the most important
research tool of

the biomedical engineer
is mathematics."

Editor's Introduction

"There is no new thing under the
sun." This familiar saying from
Ecclesiastes comes to mind as I think
of biomedical engineering; for it is a
union, or a cross-fertilization, of en-
gineering and medicine, both of which
are sciences of great age.

The author of our essay about the
uses of mathematics in this field is an
associate professor of physiology and
biophysics in the School of Medicine
at the University of Mississippi Medi-
cal Center. His workresearch with
some teachingdeals with the mathe-
matical analysis of physiological sys-
tems, with application to (a) acquiring
a better fundamental understanding of
control of the human body and (b)
designing new animal experiments
aimed at obtaining new biological in-
formation. While this seems rather
specialized, it is typical of the work
being done by others in the field.

Professor Coleman received a B.S.
in electrical engineering from the Uni-
versity of Rochester in 1962, an M.S.
in electrical engineering from Missis-
sippi State University in 1964, and a
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Ph.D. in biomedical engineering from
the University of Mississippi in 1967.

He claims that he was no childhood
math whiz; but early in his life he
became fascinated with problems and
puzzles. With great enthusiasm,
though at times with little success, as
early as the fourth or fifth grade he
was attempting to solve some of the
simpler games and puzzles found in a
number of books. In this way he
learned something about algebra. With
one development leading to another,
he entered high school with a pro-
found interest in things mathematical.
That interest resulted in a desire as a
freshman college student to study elec-
trical engineering and to plan for a
career in research in a "growing field."
While he has deviated from a strict
application of electrical engineering,
he has clung to his plans for research,
which is part of his work at the medi-
cal center.

As a high school senior, Professor
Coleman had only a nebulous idea of
what a mathematics major could do.
He feels that many high school seniors



find themselves in the same position medical engineering may be of help
and hopes that his comments on bio- to some.

The first question that ought to be answered is "What is biomedical
engineering?" Biomedical engineering is a relatively new field that is dedi-
cated, as medicine is, to improving the care of the ill. The knowledge and
techniques of enginezring are being used to aid the medical profession.
This uniting of engineering and medicine offers exciting careers for persons
who have a suitable education in both areas.

Biomedical engineers work either as independent researchers or as in-
tegral parts of research teams. What, then, do they do? They work in
such areas as development of artificial organs, patient monitoring, human
control systems, and instrumentation, as well as in many other areas.

The artificial kidney is a typical example of an artificial organ. The
artificial kidney control unit (see fig. 1) is a complex machine that allows
people with little or no kidney function to live comfortably. Periodically
these people are connected to an artificial kidney, and their blood is cleaned
in a way that is similar to the way that it is cleaned by a real kidney. An
artificial kidney must have temperatures, flow, and chemical concentrations
controlled precisely to ensure maximum efficiency of operation and maxi-
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Fig. 1. Artificial kidney control unit
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mum safety of the patient. The design and construction of artificial kidneys
has challenged both the medical and engineering professions. The success
of artificial kidneys has been immense, yet there is still much to be done.

Better care of the ill can also be achieved fundamentally and generally,
although not in individual cases, by basic research. Basic research leads to
a better understanding of the human body and consequently a better under-
standing of illness and how to cure it. An example of the role that bio-
medical engineering plays in basic research is found in the study of human
control systems (or, simply, human systems) such as the respiratory sys-
tem. The type of control that causes the respiratory system to deliver not
too much and not too little oxygen to each of the body's 100 trillion cells
to allow them to function properly is not altogether different from the type
of control that guides a rocket into orbit. A study of this kind of system
often involves the use of high-powered analog or digital computers. Figure
2 shows part of an analog computer center that is, in turn, part of a medical
research complex. A mathematical description of the system under study
is made, and the resulting equations can then be studied on the computer.
The computer results, in turn, lead to a better understanding of the system.
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Fig. 2. Part of an analog computer center
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Another example of the role of biomedical engineering in basic research
is to be noted in figure 3, which shows equipment used for detecting and

(
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Fig. 3. Equipment used for detecting and recording the electrical activity of the eye

recording the electrical activity of the eye in an experimental laboratory
that is equipped to study the eye and the electrical signals it sends to the
brain. The researcher must be able to design and build the many special
instruments associated with detecting and recording the small electrical
signals generated by the eye in response to various images and lights. He
must also be able to decode these signals to determine exactly what infor-
mation is theremuch as coded "enemy" messages are decoded by gov-
ernment agencies. In this case, the electrical signals are stored on magnetic
tape so that they may be studied a number of times if initial decoding
attempts fail.

One particular area of medical research involves both mathematical and
experimental analysis of the circulatory system in normal and diseased
states. All available data concerning the system in question are collected.
These data are then converted into a great number of equations that are
solved using a digital computer. These equations must be changed into a

23

9 0



form that the computer can understand before an answer can be obtained.
Figure 4 shows part of a listing of slightly less than a hundred equations
being fed into a digital computer. The form is somewhat different from
the basic algebraic equations, but all of the meaning is there. For instance,
in this case the first column gives the number (rather than a name) of a
variable or unknown, and the second column describes the type of equation
that this variable is part of. The computer has been programmed in advance
to correctly interpret this type of coding. It should be added that studies
of this sort were impossible before the advent of modern high-speed com-
puters, since it is virtually impossible to solve such a large mathematical
problem by hand. The equations are solved by the computer, and some
predictions are made.

26 ADDER 13 20
27 MULT 12 17
28 ADDER 27 -42
29 INT 28 39 38.3
30 GAIN 29 .2
31 ADDER -30 78
32 MULT 12 23
33 INT 32 35 49.15
34 GAIN 33 .2
35 ADDER -34 84
36 DIVIDE 30 78
37 OFFSET 36 -.04
38 GAIN 37 -125.
39 GAIN 31 .47
40 ADDER -38 -39
Fig. 4. Mathematical equations coded for computer analysis

Equivalents to some of the algebraic equations in figure 4 can be written
as follows, starting at 33:

x33 = f t (x32 + x$5) dt 49.15.

./C84 = .2 x33.
X36 = X84 - X34.

X36 = X30 / X78.

X37 = X38 .04.

These particular equations describe the dynamics of the kidney, and a
knowledge of the physiology and anatomy of the kidney is necessary for
complete understanding. In general the variables represent fluid flows and
volumes and electrolyte concentrations. The equations have indicated that
certain changes will take place in some of the variables after the beginning
of kidney disease. (It should be noted that the original graph seen in fig. 5
is computer-drawn but that the heavy lines were added afterward by the
author for emphasis.) The predictions are then compared with what is
already known, and any differences are investigated fully.
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In figure 5 the lowest line refers to the urine output of the kidney. There
are two pairs of numbers at the bottom. The first pair gives the value of
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Fig. 5. Computer predictions resulting from a mathematical study

time (the abscissa) and the second pair gives the value of Y (the ordinate).
Each pair is read as x1 10'n. The second number in the time column,
then, is .6 102 or 60. The predictions of this particular study were for
humans. The verification is being done on dogs, and the data extrapolated
to humans using standard techniques. This type of mathematical research
allows large, complex systems, such as the circulatory system, to be studied
in a very sophisticated manner. Such research improves our understanding
of how the system works normally and, more importantly, how it works
when a person is ill.

These examples have been offered to give you some idea of the many
possibilities in the field of biomedical engineering; it would be impossible
to make a complete listing. The next generation of biomedical engineers
will have entirely different problems to solveproblems both harder to
solve and more important to humanity. At the same time they will be
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better equipped to solve these problems, because they will have use of
better research tools and a better education.

Biomedical engineers need a broad background in both medicine and
engineering. A number of universities have formal graduate programs in
biomedical engineering and offer both master's and doctor of philosophy
degrees in this area. Most universities will accept students into their bio-
medical engineering programs from a number of college majors, but a
major in either engineering or mathematics is generally preferred. Subjects
studied in these biomedical engineering programs are varied, and the stu-
dent generally has some choice in picking the curriculum that best fits his
own interests. Some typical courses might include the theory of control
systems, analog and digital computer programming, physiology, biochem-
istry, and advanced mathematics. As in most other fit. Is, each university
has a certain area or areas in which it is especially ge.od. When selecting
a university, a student should try to match one of these areas of excellence
with his own interests.

Probably the most important research tool of the biomedical engineer
is mathematics.
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ACCOUNTING

"The information explosion in business today
requires imaginative, analytical minds

to systematize, report, and review
the multitude of data. . . .

Accounting is one profession where
there is action today."

editor's Introduction_,

At one time little more than a
knowledge of arithmetic was necessary
as preparation for accounting. That
no longer is the case. Accounting has
lost its provincialism and become
sophisticated in its demand for mathe-
matical preparation.

The author of this essay has led a
varied career, with sometimes intense
and sometimes indifferent interest in
academicsalthough as long as he
can recall, he has enjoyed mathe-
matics.

It took him longer to find an occu-
pation to his liking than was the case
with our other essayists. At the
seventh-grade level he wanted to be
an engineer. By the tenth grade. he
wanted to become a teacher of mathe-
matics. He attended Albany Academy,
the oldest boys' school in the United
States, on a scholarship; and, as vale-
dictorian of his class, he was admitted
to Princeton University. He left there
after two and a half years. He did not
flunk out; he did rather well; but his
desire to do well deteriorated to the
point where he left the university dis-
satisfied alike with his own attitude
and with the system of education he
was experiencing. (Nevertheless, after
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obtaining a bank teller's position, he
continued his formal education by
attending night school.) Six months
later he was a life insurance agent,
and after still another six months he
was lucky enough to be hired as a
junior accountant by a firm of certi-
fied public accountants. One of the
stipulations of employment with the
firm was that he obtain a bachelor's
degree in accounting, so he went ahead
with night school sessions and obtained
the degree from Russell Sage College
in 1967. (Incidentally, he says that
this is doing things the hard way:
"Don't work full time during the day
until a degree is obtained. There is
nothing more tiresome than having to
sit through 100 minutes of lecture
after having worked all day.") Then
he began studying for the C.P.A. ex-
amination in New York State. He
passed all four parts of this examina-
tion on the first try, something rarely
done.

From the accountinZ firm Mr. Ernst
went to IBM as a computer systems
analyst, assisting customers in design-
ing and implementing accounting and
information systems using IBM/360
computers.
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After three and a half years with
IBM, he combined his accounting and
computer experience as controller of
First Albany Corporation, a regional
brokerage firm that is a member of
the New York Stock Exchange. Pres-
ently he is treasurer and in charge of
operations of the firm. During eight
years he has come a long way from
being teller in a bank!

Mr. Ernst is aware of a general
awakening to the potentially practical

uses of mathematics in accounting.
Yet he feels that the profession, both
public and private, has not yet fully
understood the applicability of mathe-
matical approaches using statistics and
mathematical models. In his own ex-
perience he has noted the awe he has
occasionally inspired among fellow
professionals by the simple procedure
of solving a practical accounting prob-
lem merely by the use of two simul-
taneous equations.

Who says accounting is dull? I don't.
Accounting today has evolved from the basic need to keep track of

transactions flowing through a business. The word "business" in this paper
includes profit, nonprofit, and governmental units, since each has a need
for keeping track of transactions. Accountants neither make nor market
products. They accumulate and report the results of making and marketing;
they review these results and produce more reports; they review the way
the accumulating and reporting is performed. Whatever they are doing,
the essential fact is that they are keeping track of actual operations.

This brief general introduction may have impressed you adversely. You
may even be considering tagging accounting as the gentle art of shuffling
paper and figures. Good! Now the worst is over.

Accounting provides such a great variety of careers that it is impossible
to convey the exciting possibilities to you by any general description. Would
you consider a career described only as requiring two years of preparation
to sit for many hours in an isolated room with no solid food? On the other
hand, would you consider a career as an astronaut? They are the same
career, you know.

WHAT AN ACCOUNTANT DOES

Let us look more closely at what keeping track of business transactions
really means today.

Business structures have become fantastically complex. Income tax
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laws have, also. Shrinking profit margins require closer control of costs
and better forecasting of future business requirements. Rapid business
growth requires constant scrutiny of the way transactions are handled.
Governmental requirements resulting from broad public ownership of cor-
porations have created an expanding need for new ways of verifying and
reporting results of business operations. The computer has exploded our
ability to collect and process data.

The accountant has had a central role in this business revolution.

Once, long ago and far away, there was a business that bought two cents
worth of dough, hired a cook for four cents, made one doughnut, and sold
it for nine cents. The bookkeeper entered the transaction in ledgers. The
accountant reviewed the entries and produced this report:

Sales $ .09
Costs .06

Profit $ .03

The owner was delighted, and that was the extent of the accountant's work.
At }ength, General Donut went into business to make one doughnut. The

project manager asked the controller to have a market forecast report made,
based on historical trends for like products, to determine if the doughnut
could be sold. The controller's staff provided the data for a computer
simulation of the potential market. By consultation that involved the cost
accounting, purchasing, and engineering departments, standard costs and
standard times were developed for producing the doughnut. Budgeting
information was transmitted to the budget accounting department, which

"General Donut . . . requires . . . many kinds of accountants, each
serving an essential function."
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incorporated the forecasted sales and costs in the corporate budget. One
ounce of dough was purchased for two and one-halt cents. The data control
department increased the inventory records and posted the cost. Since the
budgeted price for dough was only two cents, cost accounting reported the
variance of one-half cent to purchasing and budgeting. Subsequently a
conference of high-level purchasing personnel determined from this vari-
ance report that price estimation should be improved.

A cook made the doughnut in twenty-five seconds, and this cost eight
cents in wages. The payroll accounting department deducted a total of
seven cents in payroll taxes and issued the cook a check for one cent. Since
the cooking operation had a standard time of ;:en seconds, cost accounting
reported a large time variance. Upon review, the cook's manager found
that the cook had reported time actually spent smoking a seven-second
cigarette, and records were adjusted accordingly.

The doughnut was finally sold. The very next day, the company presi-
dent inquired into the computer system, from a terminal by his desk, to
determine how the doughnut venture was progressing. The information
was stored in the computer files according to a system developed by the
accounting systems and programming departments. The president received
the following report.

Projected Actual Variance
Sales $ .090 $ .090 $ 0.000
Costs

Material .020 .025 + .005
Labor .040 .058 -1-.018

Profit $ .030 $+.007 $.023

(Even with the advanced analysis techniques of today, mistakes are pos-
sible.)

The president discussed the potential effect of the loss taken in the
doughnut venture with the tax analyst on the controller's staff.

At the end of the year, an independent accounting firm verified the
validity of the doughnut transactions as part of their tests of internal ac-
counting control. They were satisfied with these and other tests, and
issued a favorable opinion on General Donut's financial statements.

General Donut, trivial as its business might be, requires, as you have
witnessed, many kinds of accountants, each serving an essential function.
They not only keep track of transactions, but also influence the outcome
of operations through the data and reports they generate. They provide
information to every level of management from the president to the operat-
ing managers. They interpret raw data about transactions and present
them in meaningful form for decision making. They not only analyze
historical data, but also forecast what is to happen.
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TYPES OF ACCOUNTING SPECIALTIES

Some of the various kinds of accounting specialties are briefly explained
below.

Public accounting

The basic function of the certified public accountant is to certify that
financial statements present fairly the financial condition and the results
of the operations of a business. This function is called auditing. The C.P.A.
forms his opinion by tests of accounting and source records sufficient to
satisfy himself that control documents are adequate; he verifies inventory
counts and valuations and scrutinizes cash, receivables, liabilities, as re-
ported by management.

Public accountants often also provide tax consultation services and gen-
eral accounting services. Lately, they have become active in management
services. Management services include accounting and computer systems
analysis, and costs of financing studies.

In New York State, the requirements to become a C.P.A. include a
degree from an acceptable college, three years of diversified experience with
a C.P.A. firm, and grades of 75 percent or more in each section of a four-
part examination given twice a year. Each state sets its own standards,
which may vary considerably. New York State's requirements are among
the most rigid.

Internal auditing

Large corporations usually have their own staffs of auditors who use
the same auditing techniques as public accountants. However, the internal
auditor's tests are continuous and extensive to enforce management's trans-
actions and to verify the correctness of recording.

Cost accounting

The cost accountant specializes in that part of accounting which records
and analyzes the costs of production and other expenses of a business. This
function is usually separated from other accounting functions in companies
that have developed a system for allocating costs to units of production.

Budgetary accounting

Responsibilities include assisting in the preparation of income forecasts,
expense budgets, and capital expenditure budgets. The budget group will
also analyze variances between actual results and budgets and adjust the
budgets accordingly. This function has become increasingly important.
The better a business forecasts its future needs, the better chance it has
of meeting its profit objectives.
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Income tax specialization

Because income tax reporting requires essentially the same data used
in accounting, responsibility for income tax planning and reporting is
usually considered an accounting function. The income tax expert is
conversant with the complexities of the corporate income tax law and may
also have knowledge of other corporate taxes.

Controllership

The controller is generally responsible for the proper functioning of a
company's accounting system. The budgetary, systems, and income tax
accountants may report to him. He is directly responsible for the prepara-
tion of general financial statements.

Systems analyst

The systems analyst, rather than recording or interpreting accounting
data, examines the way these data are handled. He studies the flow of trans-
actionsfor example, how documents like bills or purchase orders are
created and processed or how accounting information is utilized by operat-
ing and planning departments. Having made such a study, the systems
analyst uses his knowledge of system design, and his imagination, to suggest
improvements in both work flow and reporting methods.

Beyond eliminating "red tape" procedures, the systems analyst also
designs advanced systems. The computer has created almost limitless pos-
sibilities here. Information needed by all levels of business management
can be stored in one central computer system and can be updated minute
by minute. The design of such integrated systems requires highly knowl-
edgeable, imaginative systems analysts.

TOOLS THE ACCOUNTANT USES

Traditionally, the basic tools of the accountant have been pencil, paper,
knowledge of accounting theory and practice, and common sense. Today
these tools may be supplemented by sophisticated techniques, many of
which are the result of the computer's ability to process data at fantastic
speeds. Some of these techniques are briefly explained below.

Flowcharting and decision tables

Flowcharting represents transaction, document, or procedural flows in
symbolic form. Decision tables represent complex logic decisions in table
form, sometimes supplementing flow charts. These techniques are useful
to the auditor in examining internal accounting control of documents and
to the systems analyst in analyzing the current system and designing a
new system.
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Statistk.a I analysis

The ability to draw valid inferences from a small, selective test of volu-
minous data is a powerful tool in accounting. The C.P.A. when auditing,
for example, cannot verify the validity of the transactions of an entire year
by scrutinizing each transaction. He must often confine his tests to a small
percentage of actual transactions. Properly used, statistical techniques may
help give him the soundest basis for his opinion on overall financial state-
ments.

Simulation

Simulation, a computer technique, is a recent addition to the store of
accounting tools. It is the creation of a statistical model representing
actuality. Once the model is validated, that is, reflects reality, various parts
may be altered to determine the result of potential changes in the rules
upon which he model is based. For example, in budgeting, each income
and expense item may be represented in three figures: most likely, most
pessimistic, and most optimistic. A simulation model may be created to
determine the probable range of net income based upon these variables.

The information explosion in business today requires Liaginative, ana-
lytical minds to systematize, report, and review the multitude of data for
operating managers, for planning managers, for government, and for the
public. The various accounting specialties mentioned are very much a part
of this explosion, not only participating in it, but also guiding business in
realizing its benefits.

An accountant may choose to develop his competence in one particular
accounting specialty, or he may choose to gain knowledge in many areas.
Accounting is one profession where there is action today.
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MUSIC

AND

MATHEMATICS

"Mathematics is the inspired ordering
of an infinite world

of numbers. . . .

Music is the inspired ordering
of an infinite world

of sounds."

editor's Introduction,

Music and mathematics. Do they
have anything in common? To deter-
mine the answer to this question, all
one needs to do is to read the biog-
raphy of a musician. The chances are
overwhelming that there will be at
least one reference by the musician to
an interest in mathematics. This essay
tells you some things about the rela-
tionship.

The author came rightly by his
combined interest in mathematics and
music. His maternal grandfather was
a coauthor of two textbooks on high
school algebra which were published
in the 1920s. His mother directs the
choir and is the organist of the family
church. His father, also, plays the
organ.

Mr. Lyon entered Michigan State
University intending to prepare for a
career as a physicist, but he changed
his plans and received a B.S. in music
in 1962.

Versatility is a characteristic of this
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young man. With a background in
mathematics, physics, and music, he
earns the major part of his living em-
ployed in the console department of
Organ Supply Company, Erie, Penn-
sylvania. He supplements his income
by playing violin in the Erie Philhar-
monic.

Always interested in both music and
mathematics, as a youngster he won-
dered how a certain part of a piano
was held together. He could find no
description in available books, and his
parents would not allow him to in-
vestigate the part in the family piano.
The problem rested until a neighbor's
piano was ruined in a flood. The in-
strument had been built into the base-
ment and could not be removed in one
piece. His parents volunteered his
services for dismantling the piano. He
had the chance to tear the whole thing
apart and to learn how a piano is put
together. A few years ago he applied
the knowledge gained in this way in



the ambitious project of rebuilding an
1867 Steinway, putting it back into
first-class condition. He uses the piano
regularly.

To give you more of an insight into
Mr. Lyon's personality. I shall quote
from a letter received from him: "I
rather like to recall that early in my
schooling I thought that each new
concept in mathematicsmultiplica-

tion as an imprmement over addition,
for examplepresented an alternate
and often easier method of working.
That's probably why I was always
willing to move ahead in mathematics.
Some people find that counting on
their fingers works and they're reluc-
tant to learn the reliable method. I

knew I had to run out of fingers. So
learning to count using pencil and
paper extended my limits."

Mathematics are sometimes difficult for musicians. Musicians are
inclined to do things by ear. The word "mathematics" surely sounds plural.
Mathematicians shy away from words like "noble" and "soft." This chap-
ter explores the middle ground between the two. I have traveled this middle
ground in a hearse. The hearse, providing a noble way to travel, has carried
my homemade harpsichord. I bought the hearse with an income tax refund
from last year. (If you can get that large a refund, you must be a mathe-
matician. If you spend all of your refund to carry a musical instrument in
a hearse, you must be a musician.)

Now that I've presented my qualifications, let me show you some features
common to mathematics and music. Both mathematicians and musicians

WaTra111.4257,griLla1757.02.:

"The hearse, providing a noble way to travel, has carried my
. homemade harpsichord."
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have intellectual pleasures. The mathematician plays with numbers, and he
arranges four 9s to produce 100 (99 + 9/9). The composer arranges notes
into a theme that can be played at half speed, in a different key, and still
fit the original theme when they are played together. Proportion and logic,
common to mathematics, are necessary in music as in any other discipline.
The most basic chord in music, the major triad, has vibrations in 4:5:6
relationship. A major triad on middle C has a C with 256 vibrations per
second, an E with 320, and a G with 384. Tempered tuning changes these
a trifle to keep other proportions sounding good. A good piano tuner with
a few minutes to spare can show anyone how to hear the difference between
256.0 and 256.1 vibrations per second. No oscilloscope, no computer, and
no knowledge of electronics are needed.

A trumpeter can play integer products of the number of vibrations of his
lowest tone. No keys are needed for these notes. The bottom 4-5 are the
notes in bugle calls. The trumpeter is limited only by the condition of his
lip, and if he's in good shape, he can usually get at least 7 or 8 of these
notes.

Written music is dependent on mathematics and fractions. The rhythm
is basic and must be counted. Several years ago one of Leonard Bern-
stein's second violins made an entrance a bar early in Beethoven's Fifth
Symphony. The tone quality was truly excellent and equalled only by the
embarrassment of the musician. A ride in a hearse would be a pleasant
alternative to facing some conductors after a goof like that. . . . Counting!!!

When I entered college in the fall of 1958, I planned to major in mathe-
matics or physics with the idea of preparing for a career as a physicist.
I had always been interested in these fields, and I had had the encourage-
me%t of ranking high in the 1958 Annual High School Mathematics Com-
petition in the Upstate New York Contest Section of the MAA. I studied
mathematics and physics for two years in college. Then I returned to
what really was my first love, music.

Mathematics is the inspired ordering of an infinite world of numbers.
That's Oswald Spengler's definition. Music is the inspired ordering of an
infinite world of sounds. That's my variation on Spengler's theme. Order-

or organization, is a necessary part of the mathematician's thinking.
organizing abilities of the mathematician and of the musician are prob-

ably similar. Because of this similarity there is probably no mathematician
without some interest in music and certainly no musician without some
interest in mathematics.
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Editorial Comment,

Some of the mathematical concepts basic to music have been known
since pre-Christian times. The medieval definition of music was "numbers
made audible." Music, considered as a science, was included along with
arithmetic, astronomy, and geometry in the quadrivium, one of the two
major divisions of the liberal arts; grammar, rhetoric, and logic formed the
other, the trivium. The pre-Christian association of music and mathematics
takes one as far back as at least the time of Pythagoras. Most of you are
familiar with the Pythagorean theorem relating the sides of a right triangle;
but do you know that Pythagoras is credited with other laws? One of these
laws has to do with music: "When a string and its tension, F, remain un-
altered but the length is varied, the period of vibration, T, is proportional
to the length, 1," that is, T = k11. That law and two additional laws that
were formulated by the early seventeenth-century French mathematician
Mersenne have had a marked effect on the building of instruments with
strings. Mersenne's laws state: (1) "When a string and its length remain
unaltered but the tension is varied, the frequency of vibration, f, is propor-
tional to the square root of the tension," that is, f = VT; and (2) "For
different strings of the same length and tension, the period of vibration is
proportional to the square root of the weight, W, of the string," that is,
T = k3 VW. These laws hold for an ideal string of negligible thickness and
uniform density. For real strings the laws must be slightly modified.

The operation of these laws is to be observed in the building of a piano.

If a piano maker relied on the law of Pythagoras alone, his longest string
would have to be 150 times the length of his shortest, so that either the
former would be inconveniently long or the latter inconveniently short.
He accordingly avails himself of the two other laws of Mersenne. He avoids
undue length of his bass strings by increasing their weightusually by
twisting thinner copper wire spirally around them. He avoids inconvenient
shortness of his treble strings by increasing their tension.'

Other mathematical concepts basic to music are such familiar ones as
inversion, permutations, ordered set, the identity element, and concepts
that may as yet not be familiar but will become so if you continue studying
mathematics: the concepts of decision theory and algebraic topology.

In the twelve-tone method of composition, the basic row must contain all
twelve tones of the chromatic scale. No one tone may be repeated until all

1. The foregoing quotations are taken from "Mathematics of Music," by Sir James
Jeans, in The World of Mathematics, ed. James Roy Newman (New York: Simon &
Schuster, 1956).
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twelve have been sounded. The row itself is subjected to perpetual varia-
tion. Consider the series, or ordered set, shown below.

We shall refer to this as the original form. The inversion of this series
appears as follows:

40.

The ascending interval D-G b of the original form is replaced by the
equivalent descending interval D-Bb; the descending interval Gb-F is
replaced by the ascending interval Bb-Cb; and so on. The retrograde
form of the series, which follows, is obtained by reading the original form
backwards, proceeding from the last tone to the first.

The retrograde inversion may be derived by reading the inversion back-
wards:

642* 6`' 412t

All these forms, found in Studies in Counterpoint, Based on the Twelve-
Tone Technique,'- are permutations of the original row.

Igor Stravinsky, the noted conductor, contended that music and mathe-
matics are alike. In explaining the likeness he said:

I have recently come across two sentences by the mathematician Marston
Morse which express the "likeness" of music and mathematics far better
than I could have expressed it. Mr. Morse is concerned only with mathe-
matics, of course, but his sentences apply to the art of musical composition
more precisely than any statement I have seen by a musician: "Mathe-
matics are the result of mysterious powers which no one understands, and
in which the unconscious recognition of beauty must play an important
part. Out of an infinity of designs, a mathematician chooses one pattern
for beauty's sake and pulls it down to earth."

Stravinsky also stated that likeness between mathematics and music can
be formulated

2. Ernest Kfenek (New York: G. Schirmer, 1940).
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in the comparison between the mathematical and the musical conceil:ions
of the "ordered set," or of the idea of the indispensable identity element
(the element of form that will not change the other elements or change itself
when combined with them).

He reported, but said he could not verify, that composers already claim to
'lave discovered musical applications of decision theory, of group theory,
and of the idea of shape in algebraic topology. To quote him further:

Mathematicians will undoubtedly think this all very naive, and rightly,
but I consider that an inquiry, naïve or not, is of value if only because it
must lead to large questionsin fact, to the eventual mathematical formu-
lation of musical theory, and to, at long last, an empirical study of musical
factsand I mean facts of the art of combination which is composition.'

J wonder if the biography of any musician would not have some reference
to mathematics. I shall settle for one more quotation, this one from a
biography of Arthur Fiedler.4 There Fiedler is quoted as saying, in refer-
ence to making youngsters do what they don't want to do, "It is the same
with music. You have to make them practice. My father did, and I'm glad
he did. . . . Musical training helps their arithmetic."

There are others besides Stravinsky, with illustrious careers, who have
associated mathematics with music. One is Ernest Ansermet, the cele-
brated Swiss conductor of the Orchestre de la Suisse Romande in Geneva
for almost fifty years, who studied mathematics with his father, a teacher
of geometry. After obtaining a degree from a college in Lausanne, Anser-
met taught mathematics at the high school there from 1906-1910. His
mathematical background was no flighty affair. During this time, however,
he pursued musical studies that had begun with training from his mother.

Maybe some of you with a strong bent for mathematics have an interest
in music and will use your mathematics for a formulation of musical theory
and an empirical study of musical facts. Stravinsky said that "musicians and
mathematicians are both working from hunches, guesses, and examples."
The mathematician George POlya would agree with that.

3. Igor Stravinsky and Robert Craft, Expositions and Developments (New York:
Doubleday & Co., 1956).

4. Carol Green Wilson, Arthur Fiedler, Music for the Millions: The Story of the
Conductor of the Boston Pops Orchestra (New York: Evans Publishing Co., 1968).
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To have a serious impact on the world,
we must combine within ourselves the skills

by which science controls the world
and the insights which religion

sheds on the direction
this control should take.

. Mathematics is,
in a sense,

the language of the modern world."

MATHEMATICS

AND THE

MINISTRY

EARL B. ARNOLD

2".

editor's Introduction.,

Over the years since I began the
study that resulted in this collection of
essays, I have observed that a signifi-
cant number of the participants in the
study have chosen a religious vocation
as minister, priest, or rabbi. The
author of this essay is one who made
this choice.

Mr. Arnold's interest in both mathe-
matics and the church became appar-
ent very early. In each of the years
1959, 1960, 1961, he ranked in the
top 1 percent in the high school con-
test in upstate New York. While still
in high school he became the stated
clerk of the Champlain Presbytery of
the Presbyterian Church, and in 1962
he attended the Third British Confer-
ence of Christian Youth at Leicester.
This simultaneous expression of the
two interests has continued, as Mr.
Arnold reveals in his essay; but in
giving his background I shall deal first
with mathematics.
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Mr. Arnold's interest in mathematics
became apparent when, at the end of
the seventh grade, he asked the ninth-
grade algebra teacher in the local high
school at Saranac, New York, to
explain logarithms to him. She lent
him a book from which he learned the
use of logarithms but not "why they
work." The next year he was trans-
ferred from eighth-grade mathematics
to algebra for the last twelve weeks
of school. During the following sum-
mer he studied a book on calculus and
achieved enough proficiency to derive
formulas for the derivatives of the
algebraic functions and to use them to
solve maxima-minima problems. In
his sophomore year he finished inter-
mediate and advanced algebra. After
his junior year he attended a National
Science Foundation summer program
in mathematics at Cornell. This latter
experience, no doubt in conjunction
with his success in the annual MAA



contests, confirmed his inclination to
continue purs ling the study of mathe-
matics and his expectation of pursuing
a scientific vocation.

After graduating from Cornell with
a B.A. in mathematics, he spent a year
in California with the Shell Develop-
ment Company, where he worked in
computer science in the company's
mathematics department. Most of his
attention was centered on information
retrieval, the goal being to design a
general-purpose filing system in which
the format of the information could
be specified by control cards rather
than by programming. He had a par-
ticular interest in the linguistic side of
computing; you will note a reference
to language in Mr. Arnold's essay.

Mr. Arnold's interest in the church
continued, however; and even while
employed at Shell he did field work in
Dick York's Free Church in Berkeley
and attended night school at the San
Francisco Theological Seminary, where
he took three courses in Hebrew. In
the fall of 1966 he began full-time
study for the ministry and received a
bachelor of divinity degree in 1969.

At present he still is combining his
interests in mathematics and the min-
istry. Employed as a mathematician
with the Shell Development Company,
he also preaches in a little church on
a temporary basis. He is looking for
the pastorate of a Presbyterian church
that desires a mathematically trained
minister.

The ministry is the vocation of every Christian. Every Christian
is called to be a servant to the world, and the way he exercises that servant-
hood is his ministry. Although my own training is aimed toward becoming
a professional clergyman, my remarks about ministry apply equally well
to any layman of any faith who acknowledges a basic concern for the
well-being of his fellow men.

Our time is an age of technology such as has never been seen before.
The imagination of modern man has been captured by the image of the
scientist controlling the forces of nature to benefit mankind. Today the
voice of authority is that of the technocrat, the scientifically trained person
who makes decisions in the name of science that affect the lives of all of us.
A person such as a clergyman who claims insight or competence in a par-
ticular field but lacks scientific training is at a considerable disadvantage
if he attempts to influence these decisions. Not being qualified to meet the
technocrat on his own ground, he is restricted to using nonscientific argu-
ments, which are not generally held in high esteem by scientists. At best,
he is taken for a well-intentioned but uninformed critic; at worst, he is
viewed as an opponent of science and an enemy of the modern way of life.
Too often the modern minister finds himself in this predicament.

It is important for the church to involve more technically competent
people in its program of missions in our modern world. Ministers should
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be urged to add some competence in a technical field to their theological
training. Laymen with technical training should be shown that their spe-
cialized knowledge makes them especially important as participants in the
church's ministry. Working to help bring the kingdom of God into the
world, the church tries to influence the critical decisions that affect the
lives of millions. Its influence will be more effective if its representatives
are well enough versed in science to deal on an equal basis with the highly

t

Mathematics was represented in the first worldwide Christian
conference on the task of the church in a society under the impact of
science and technology. The discussion attracted a hundred scientists,
technologists, and theologians to the World Council of Churches in
Geneva, 28 June-4 July 1970. They were asked to advise the church
on the future potential impact of their discoveries on man and his
life in society.

Mathematician Jeremy Bray, of the United Kingdom, who was
formerly Joint Parliamentary Secretary of the Ministry of Technology,
is seen above at the far left of the Panel on Technology and Society.
Other members of the panel (left to right) are Professor S. L. Parmar,
of India, chairman of the conference; Dr. Albert van den Heuvel,
Dutch theologian; Professor L. Charles Birch, professor of biology at
the University of Sydney; and Dr. Alejandro B. Rofman, director of the
Centre for Urban and Regional Studies, Instituto di Tella, Buenos Aires.
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trained technocrats who make these decisions. In order to hay,- a serious
impact on the world, we must combine within ourselves the skills by which
science controls the world and the insights which religion sheds on the
direction this control should take.

Whatever specialized training a technocrat may have, his scientific under-
standing rests on the foundation of mathematics. A solid grounding in
mathematics is a prerequisite for further scientific study. Besides, even
without specialized study in any particular science, a mathematician is, in
his own right, a respected member of the scientific community. Since
mathematical models are essential for conceptualizing and communicating
the insights of the scientists, a mathematical background is more valuable
than a nontechnical acquaintance with the particular subject matter of a
scientific discipline for communicating with specialists in that field. A min-
ister or layman with mathematical background would be well equipped to
understand the arguments put forward by a technical specialist in support
of or in opposition to a given program. He would be able to discuss intelli-
gently the technical aspects of alternative program proposals. Mathematics
thus becomes an important tool for the minister or layman in his relations
on behalf of the church with those who make the decisions that affect our
society.

On a more general level, the methodology of the sciences has influenced
all disciplines, philosophy and theology as well as the social sciences.
Both the process .school of philosophers and the language analysts depend
heavily on results achieved in physics and mathematics since the begin-
ning of this century. Since these influential schools of philosophy con-
tribute heavily to the patterns of thought used by modern man, a minister
must take them into account in his efforts to communicate meaningfully
with people. A number of theologians have attempted to incorporate some
of the insights of these systems into their thought. An acquaintance with
mathematics makes it easier for a minister to grasp the significance of the
arguments that lie at the base of these philosophies and to use the symbols
by which they express their insights. Only by thus coming to grips with the
patterns of modern thought can a minister hope to be taken seriously as
having something to say that is significant for our modern situation. Other-
wise he will be seen as an expert in ancient texts, a promoter of esoteric
rites that have nothing to do with life in the twentieth century.

There was a time when psychology was not a part of the traditional
theological curriculum, just as mathematics now is not. I point or' that
1 can see mathematics, too, as a part of that curriculum. I have used at
least some of the creative mathematical ability with which I have been
blessed in studying as much mathematics as I could; I have used some of
the knowledge I have acquired in the work I have done in industry; and I
have come to realize the relationship between mathematics and the minis-
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try. You see, mathematics is, in a sense, the language of the modern world.
The minister who has a mathematical background is in a position to asso-
ciate himself with that large segment of the population which sees science
as the new messiah. By employing the native tongue of these people, a
mathematically sophisticated minister is better able to communicate inti-
mately with them and to witness to them the good news of the gospel. If
you, the reader, have an interest in a career in the ministry, study as much
mathematics as you can consume.

44

5:1



MY WORLD

OF

MATHEMATICS

"Doing mathematics for love
is the best reason of all. ... The bait

that keeps luring you on
is not so much

the ultimate goal .. .
but the fact

that the road itself
is sort of fun

to travel."

editor's Introductioa,

The world referred to in the title
is that of "pure" mathematics, where
the mathematician thinks and works
as a creative artist. You will get some
idea of what this means as you follow
the experience of the author, who is
an associate professor of mathematics
at the University of California at
Davis. After reading his essay, you
might go on to read A Mathematician's
Apology by G. H. Hardy, an English
mathematician who could be called
"the purest of the pure." (Note that
the 1967 edition has a delightful
preface by C. P. Snow.)

Professor Sallee was born in a farm-
ing community to parents who lacked
academic training and lived in modest
circumstances, but none of this was a
handicap. Despite their nonprofes-
sional status, his parents taught him
arithmetic when he was four or five
years old and encouraged him to study
mathematics even when he had ad-

GEORGE T. SALLEE

vanced enough so that they could no
longer help him.

As a sophomore in high school he
placed fourth in Oregon in the 1956
Annual High School Mathenu
Contest. He was allowed to skip Alge-
bra I and take Analytic Geometry. He
also studied calculus, independently.
Never was any pressure needed to
make him study mathematics except
for a single instance when his teachers
insisted that he learn solid geometry
because it was required for entrance
to the California Institute of Tech-
nology, which he wanted to attend
and which he later did attend on a
four-year scholarship.

At Cal Tech his choice of a major
field of study was physics until his
sophomore year, when he came face
to face '-ith the "difficulties and messi-
ness of the subject.' He then switched
to mathematics essentially for aesthetic
reasons; it was "just so beautiful." He
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received a B.A. in mathematics from
Cal Tech in 1962, an M.A. in mathe-
matics from Berkeley in 1964, and a
Ph.D. in mathematics from the Uni-
versity of Washington in 1966. His
dissertation, "Incidence Graphs of
Convex Polytopes," was published in

the Journal of Combinatorial Theory
2 (1967).

Professor Sallee poses some prob-
lems, at the end of his essay, that will
challenge your creative mathematical
ability.

What's your dream? Zipping down to your villa at Cannes in your
Lamborghini Miura? Setting a ski-jump record? Landing on the moon?

Millionaire, athlete, astronautI'm none of these things, but I wouldn't
trade my job to be any of them. Da a mathematician.'

Most people regard mathematics as the low point of their educational
career and mathematicians as harmless drudges. I've run across this atti-
tude so often that I should be hardened into acceptance of itbut every
now and then some poor soul will ask me how my work is going, and I
throw caution to the winds and tell him just how great things are. Just
what I'm doing and why, and how much fun I'm having doing it.

Fun. This is the thing that really surprises them. Mathematics for money
is understandable, mathematics for humanity is laudable ("everyone must
know some mathematics"), but mathematics for the sheer love of it is
thought to be downright lunacy.

I suppose that there are a lot of good sober reasons for being a mathe-
matician. The same can be said for being a s-vamp-cleare, too; but doing
mathematics for love is the best reason of all. To me, mathematics is
beautifullike looking into a perfect crystal. A good proof has all of the
inevitability of a falling stone, but what genius it took to see how clear it
all was. And it is there for anyone to appreciate, like the sunerb artistry
of Tennessee Williams or the Beatles. All are true. All are beautiful. Even
better, there is more.

C. P. Snow put it quite well iq one of his books when he said that people
have always liked to solve problems and scientists are fortunate enough to
get paid for doing it. So are mathematicians. There is a real thrill in trying
to solve a problem that no one else in the world has ever solved before.

L The notion of being a millionaire mathematician has a certain appeal, though.
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The problems you are working on may not have a solution,2 or (as is much
more common) what you are trying to prove may not even make sense.
When you are working out on the frontier of knowledge, chances are you
don't know where you are going. So you keep plugging away, constructing
examples and making guesses on the basis of them, and trying to see if
your guesses are correct. When you finish and look back on your com-
pleted work, you say, "Well, of course, that was the way it had to be," but
what it "has to be" is usually not clear when you start.

And when you have finished working on a real problemnot some
made-up problem that is merely for amusement, but a real problemyou
feel that you have added something to man's knowledge. Just like any
scientist, you are after truth, whatever it may be. But it is a peculiar kind
of truth you are seeking, for its validity rests entirely in the minds of men.
While you may model what you are doing after what you think nature is,
you are not bound to follow it precisely. Everyone works with his own
approximation to the real worldno real plane is as flat as the mathe-
matician's, and no real function is as smooth as mathematics often requires.
But this does not really matterwe have our own set of rules which we
may modify at will to make what S. K. Stein calls "the man-made uni-
verse."3 What mathematicians are seeking to discover, I think, is the logi-
cal underpinnings of the universenot so much what the laws might be,
but how the laws might be expressed if anyone can find them. As it is, the
real world is too difficult to understand, so we make approximations to
simplify it into pure logic, which we hope we may someday comprehend.

Mathematics for me began the day that I found Geoffrey Mott-Smith's
fascinating little book, Mathematics Puzzles for Beginners and Enthusiasts,
in the library.4 This was sometime during junior high school. Before that
I had always liked arithmetic, but I had had no idea how interesting prob-
lems could be when they were cleverly posed. Many of the problems in
the book are very simple (mathematically speaking) once you get the idea,
but they are all dressed up in an enjoyable story form. Martin Gardner has
the same happy knack in his Scientific American column. After a while, I

2. As, for example, the classical Greek problems of trisecting the angle, duplicating
the cube, and squaring the circle, which have no solution with ruler and compass.
This fact was not discovered until Galois came along and gave an extremety elegant
proof of this result in 1830, when he was twenty. A friend of mine who is a logician
tells me that there is a suspicion that Fermat's Conjecture, probably the most famous
outstanding problem today (x" y" = zu does not have a solution in nonnegative
integers if n > 2) may suffer from the same defect; that is, we may be trying to
solve a problem that cannot be solved as it is posed. Technically speaking, it may
be formally undecidable, and this result is in a sense an axiom of the real number
system.

3. Stein's book with this title is included in the list of suggested readings at the
end of this essay.

4. This, also, is included in the suggested readings.
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began reading algebra and geometry so that I could work on more math
puzzles. In fact, a good chunk of my spare time in high school was spent
doing math problems of various kinds.

The ideal solution would have been to continue learning all of my mathe-
matics this wayfinding problems of interest and then learning enough to
be able to solve them. R. L. Moore at the University of Texas has had great
success with this kind of problem-oriented approach to teaching. Eventu-
ally, however, there came a day when I needed to know some things that I
didn't care much about. Differential equations and linear algebra I remem-
ber very well in this regard. I didn't care much about them when I first
met the subjects, and I don't care much about them now (it is only fair to
say that the linear algebra I have learned has been extremely valuable).
But if you want to be good at something, it always takes some tears some-
where along the line. I am reasonably sure that Tommy Smith doesn't come
out to the track burning with desire to practice starts, but it is necessary
if he is to be a great runner. Many areas must be mastered if you want to
be a great mathematicianor even just a competent one. The bait that
keeps luring you on is not so much the ultimate goal (that sometimes seems
so far away), but the fact that the road itself is sort of fun to travel. I am
reminded of a quotation from "A Prayer," by Gelett Burgess:

Not the quarry, but the chase,
Not the laurel, but the race.

However, after six years of learning all kinds of advanced mathematics,
I was ready for something new when I was finally in a position to begin
work on my doctoral thesis. What I found was the field of combinatorial
geometry, a relatively new area that has its roots in the recent interest in
linear programming. The questions are all fairly easy to state once you
know a few basic definitions, and then you are on your own.5 There is not
a great deal of knowledge that definitely has to be learned before you can
begin workin striking contrast to many branches of mathematics, like
algebraic topology. Most of the problems do not need so much a thorough
mastery of everything that has been done ("I'll bet we can use the theorem
of Schmerdley that appeared in the Rumanian Journal of Mathematical
Alchemy in 1927") as a fresh approach. In this field, a good idea is worth
a lot of reading. The reason for this is simplethe field is so new that
there has not yet been a chance for it to develop any structure of impor-
tance. Every new piece of knowledge looks like an island, with only an
occasional bridge connecting two islands. In time, the field may develop a
solid structure, so we can see what really is important and how all of these

5. Other fields that are similarly accessible to the interested person are convex
sets, number theory, and graph theory. Some elementary books in these as are
cited at the end.
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Not the quarry, but the chase),,
Not the laurel, but the race.).

(so far) isolated results tie together. But until that time, everyone is pretty
much his own guide.

Well, what is combinatorial geometry? Unfortunately, this is a tricky
question to answer. The difficulty stems both from the newness of the field
and the associated fact that its boundaries are so ill-defined. Some of the
questions I work on could be considered fair game for graph theorists or
combinatorial analysts or even topologists. So, rather than describe the
field in the usual way, at the end of this essay I have listed a few "typical"
questions.

As you will see by even a casual scanning of the topics, there is very
little to connect them. (I am coming more and more to appreciate the defi-
nition: "Geometry is what geometers do.") About the only link is that the
problems are of interest to the same group of people and that the methods
used on one problem may sometimes be of use on another.

But it's an exciting field and it's an exciting life. Geometry is growing,
and I want to be a part of that growth. Perhaps in a hundred years some-
one can look back and use a contribution I have made. There won't be
many of them (von Neumann, I'm not), but if there is just one I'll be
happy. And what more can a man ask out of life?

PROBLEMS

Listed below are some examples of the wide variety of problems that
might be of interest to combinatorial geometers. They might very well be
of interest to other mathematicians, too; this listing is not meant to exclude
them. Most of these problems can also be posed in higher dimensions
things don't really start happening until you get to four dimensions6but

6. I do not want a lot of gas to the effect that the fourth dimension is time. It is
true that the world may be explained very nicely by means of the so-called space-
time continuum, but this is merely one way of describing the universe. To a mathe-
matician, to give a dimension to a space is to tell how many numbers you have to
specify to uniquely identify each point. Thus each point on a line may be fixed by
using only one number, while to find points in a plane requires two. Hence the line is
one-dimensional, and the plane is two-dimensional. If a space is such that it requires
five numbers to uniquely specify each point, then the space is five-dimensional.

In four dimensions it is possible to construct a polytope with as many vertices as
you choose and such that every pair of them form an edge. Try to do this in three
dimensions and then see how contrary it is to your intuition.
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some of them aren't solved even in three dimensions, so there is no point
in going any further yet.

Before we can pose any problems we must give a few definitions.
A polytope is a generalization to higher dimensions of the notion of a

polyhedron (as it is usually called in three dimensions) or a polygon (in
two dimensions). Polytopes have vertices, edges, and generally flat faces
of all dimensions from 0 to d minus 1, where d is the dimension of the
polytope.

Two polytopes are combinatorially equivalent (or have the same combi-
natorial structure) if they have the same number of faces of the same di-
mension and the faces fit together "in the same way." For example, any
two triangles are combinatorially equivalent. So are any two tetrahedra.
And if you take a square pyramid and cut off the apex with a plane, you
get a polytope combinatorially equivalent to a cube. However, a cube is
not combinatorially equivalent to a pyramid over a pentagon, although
both have six faces, because that pyramid has only six vertices while the
cube has eight. You might want to try the harder problem of finding an
example of a polytope with eight vertices, twelve edges, and six faces (not
all necessarily with four sides) which is not combinatorially equivalent to
a cube.

If you are still with me, here are some known results and unsolved prob-
lems. Probably the first combinatorial theorem goes back to Euler, about
1780, who proved that for each three-dimensional polytope, if V = number
of vertices, E = number of edges, and F = number of faces, V E F
2. An analogue of this is true in higher dimensions. Using this and the
fact that every vertex has at least three edges coming into it, you can show
that every three-dimensional polytope has at least one face that has 3, 4,
or 5 sides.

Now for some unsolved problems. Let me emphasize that these are
problems that you may be able to attack successfully, as they are probably
not hard if you look at them from just the right angle. (This cheery re-
mark does not apply to prcJlems 1 and 8, which are probably horribly
difficultproblem 8 certainly is.) In problems 1 through 5, polytope
means a three-dimensional polytope.
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1. Let p3 be the number of triangular faces of a polytope, p4 the number
of 4-sided faces, and in general p the number of n-sided faces.
Characterize all sequences (p3, p4, p5, p6, . . .) such that a polytope
exists having pa triangular faces, and so forth. For example, the
sequence associated to the square pyramid is (4, 1, 0, 0, . . .); to
the cube it is (0, 6, 0, 0, ...).
Remark: It is known that

3P3 + 2p4 + P5 - Pi - 2P8 3139 . 12
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2. Can you find any relation other than the one just mentioned which
the (pi) must satisfy to arise from a polytope?

3. Can you solve either problem 1 or problem 2 for simple polytopes
that is, those with exactly three edges coming in to each vertex?

4. The edge distance between two vertices of a polytope is the smallest
number of edges on a path oetween them. A center of a polytope is
a vertex such that the maximum edge distance to any other vertex
is as small as possible, and this minimum distance is called the
radius. (A tetrahedron has radius 1; a cube has radius 3.) Find the
maximum radius of a polytope having n vertices for each n 4.

5. Show that it is always possible to cut apart a polytope along edges
so that the result is connected, will lie flat in the plane, and does not
overlap itself.

6. Lower-bound problem: For a given number of vertices, what is the
smallest number of faces of dimension d minus 1 which a polytope
can have? (This problem has been solved up to dimension 9, at the
last I had heard, but you might want to try it in three dimensions.
It is one of the most famous problems in the field.)

7. Upper-bound problem: For a given number of vertices, what is the
largest number of faces of dimension d minus 1 which a polytope
might have? (I think this is also solved up to dimension 9.)

8. Four-color problem: Consider a map of countries, where each
country consists of a single connected piece (like Switzerland, and
not like New Zealand). Show that this may may be colored with
four colors so that each pair of countries with a common border are
given different colors. See The Four-Color Problem, listed in the
suggested readings, for all that is known about this problem.

READING You MAY ENJOY

(This listing is given in the order in which you will probably want to read
the books.)

Mathematical Puzzles for Beginners and Enthusiasts, Geoffrey Mott-Smith.
2d ed., rev. New York: Dover, 1954.

Scientific American Book of Mathematical Puzzles and Diversions, Martin
Gardner, ed. New York: Simon & Schuster, 1964.

New Mathematical Diversions from Scientific American, Martin Gardner. New
York: Simon & Schuster, 1966.

A Miscellany of Puzzles: Mathematical and Otherwise, Stephen Barr. New
York: Thomas Y. Crowell Co., 1965.
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One Hundred One Puzzles in Thought and Logic, Clarence R. Wylie, Jr. New
York: Dover, 1957.

Mathematics: The Man Made Universe (An Introduction to the Spirit of
Mathematics), Sherman K. Stein. 2d ed. Books in Mathematics series. San
Francisco: W. H. Freeman & Co., 1969.

Mathematics and the Imagination, Edward Kasner and James R. Newman.
New York: Simon & Schuster, 1940.

Combinatorial Geometry in the Plane, Hugo Hadwiger and Hans Debrunner,
translated by V. Klee. New York: Holt, Rinehart & Winston, 1964.

Convex Figures, I. M. Yaglom and V. Boltyanskii. New York: Holt, Rinehart
& Winston, 1961.

Graphs and Their Uses, Oystein Ore. New York: Random House, 1963.
The Four-Color Problem, Oystein Ore. New York: Academic Press, 1967.
Introduction to the Theory of Numbers, Ivan Niven and H. S. Zuckerman.

2d ed. New York: John Wiley & Sons, 1966.
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EDITOR'S SUMMARY

You have read in these essays about some uses of mathematics in career
activities. Many more essays could have been written. Those that have
been written could have been arranged in as many orders as the number of
permutations of seven things taken seven at a time. But neither the number
of essays nor their arrangement really makes any particular difference.
Their value, even if none has dealt with a career you are likely to choose,
lies in the possibility that they have aroused in you the desire to use your
mathematical ability in some way and to investigate further the uses of
mathematics.

One area you may want to investigate is the field of linguistics, the study
of language and languages, which has recently come into vogue in the
academic world and government circles and among educated laymen.
Linguistics relies strongly on mathematical theory. Mathematics itself is a
language, a language common to people speaking different languages.
Mathematics, however, like any field of continuing human interest, has an
advantage over language in general. As G. H. Hardy said, languages die
but mathematical ideas do not.

Another area, that of aeronautical engineering, is appealing because of
the great interest in space exploration and the part played by mathematics
in making that exploration possible.

But mathematics is common to the advanced study of practically every
field. Your pursuit of its uses can go on and on.

In reading these reports of personal experience, you may have noticed
common patterns: independent study that began early in youth; an early
interest in puzzles and problems and the willingness to work hard at their
solution; a head start on the study of both secondary and college mathe-
matics because of an inner drive; the willingness at a more mature age to
plug away even if an ultimate goal was not obvious; and, often, changes of
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career in midstream, not to desert mathematics but to make further use of it.
Something that you could not have noticed in your reading is a common

pattern in what took place behind the scenesa pleasant, cooperative
willingness, if not eagerness, on the part of the authors to share their ex-
periences. You must have realized, however, that these young men are
ambitious and that they recognize the value and uses of their backgrounds
in mathematics in fulfilling their ambitions and making their dreams cone
true.
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