
DOCUMENT RESUME

ED 050 583 EM 008 943

AUTHOR Avner, R. A.; Tenczar, Paul
TITLE The TUTOR Manual.
INSTITUTION Illinois Univ., Urbana. Computer-Based Education Lab.
SPONS AGENCY Office of Education (DHEW), Washington, D.C.
REPORT NO R-CERL-X-4
PUB DATE Mar 70
CONTRACT GEC-6-10-184
NOTE 194p.; See also User's Memos, EM 008 944, and EM 008

945

EDPS PRICE
DESCRIPTORS

IDENTIFIERS

EDRS Price MF-$0.65 HC -56.58
*Computer Assisted Instruction, Computer Graphics,
Computer Programs, *Curriculum Development, Display
Systems, *Manuals, *Progrartng Languages
PLATO, Programme° Logic for Automated Teaching
Operations, *TUTOR

ABSTRACT
The TUTOR logic-building language to be used with

the PLATO (Programmed Logic for Automated Teaching Operations) system
is explained in this manual. TUTOR is designed to transcend the
difficulties of FORTRAN for a computer-based educational system
utilizing graphical screen displays. The language consists of about
seventy words or "commands" which can be used in various combinations
to produce the desired effect. It was designed specifically for use
by lesson authors lacking prior knowledge of and experience with
computers. Although authors are able to write parts of useful lessons
after approximately ae hour of introduction to TUTOR, the ultimate
complexity and flexibility of TUTOR lessons is limited largely by the
ingenuity and experience of lesson authors. A sample TUTOR program
which allows the student to construct geometric shapes on his
television screen demonstrates how a TUTOR lesson appears to the
student. A complete description of the structure and elements of the
language is presented, as well as a description of methods for
inputting lessons and obtaining output. The manual is intended to be
used as a textbook by the beginning lesson author and as a reference
tool by the experienced TUTOR user. (iT)

w04.1,,AWIM

CERI. REPORT X-4 JANUARY, 1969

REPRINTED
MARCH, 1970

THE TUTOR MANUAL

R.A. AVNER
PAUL TENCZAR

-...-emrce..Areso.lsezarkgair041:44,

Computa - based Education Resaarch Laborotory ,

This work was supported in part by the National
Science Foundation

M
under Contract NSF GT-81, and in part by the Advanced

Research
CO Projects Agency through the Office of Naval Research under ContractU Nonr 3985(08).O
LCNO
C:3

LLJ

Reproduction in whole or in part is permitted for any purpose ofthe United States Governnent.

Distribution of this report is unlimited.

'NePARNEWNINOWAININnwrINIWORN

U.S DEPARTMENT OF HEREIN, Ea UCATICW
WELFARE

OFFICE OF EDUCATION
TII5 00CUMENT HAS SEEN REPRODUCED
EXACTLY AS RECL.'ED FROM TNE PERSON OR
ORGANIZATION ORIaINATING IT POINTS OF
VIEW OR OPINIONS STATED DO NOT NECES-
SARILY REPRESENT OFFICIAL OFFICE OF ETU
CATION POSITION OR POLICY.

THE TUTOR MANUAL

R. A. Avner
Paul Tenczar

Computer-based Education Research Laboratory

University of Illinois - Urbana

1969

Copyright © 1969 by tht. Board of Trustees

of the University of Illinois

J41,1111111Mea. etww.am...111111Mx.neraosear

S

I

MANUAL

ACKNOWLEDGEMENTS

We would like to thank Richard W. BlommeHand William Golden for

the time and effort they spent reading drafts of this manual. Any

awkward grammar or confusing concepts in this manual are only a drop

remaining from the ocean of errors eliminated by them.

Each of the co-authors is willing to assign responsibility for

all remainilg errors to the other co-author.

R. A. Avner

Paul Tenczar

January, 1969

TUTOR LOGIC

TUTOR was conceived in June, 1967 because of my desire for a

simple users language transcending the difficulties of FORTRAN and

designed specifically for a computer-based educational system

utilizing graphical screen displays. Since this is the first pub-

lished account of TUTOR, I would like to mention the many people

who have helped me in TUTOR's development. Richard Blomre must be

singled-out for his ideas and programming which have encompassed all

aspects of TUTOR. Indeed, since September, 1968, he has taken over

many of the responsibilities for the continued development of TUTOR.

At that time, I resumed work on my Ph.D. in Zoology, and with R. A.

Avner, began writing The TUTOR Manual. Uther persons who added ideas

and programming effort to TUTOR were R.A. Avner, Robert Bohn, John

Gilpin, J. Richard Dennis, William Golden, Robert Grandy, Con Lund,

Phillip Mast, James Payne, and Louis Steinberg.

Paul Tenczar

January, 1969

FINANCIAL SUPPORT

Production of this manual was supported in part by the Ad-
vanced Research Projects Agency through the Office of Naval Re-
search under Contract Nonr-3985(08), by the Natio%al Science
Foundation under NSF G3-81, and by the U.S. Office of Education
under OE-0.10.184.

5

ii

Table of Contents

Acknowledgements

1. INTRODUCTION 1

Some reasons for using TUTOR and the PLATO system . . . 2

On the misuse of computer-based education 6

How to use this manual 8

2, WHAT THE STUDENT SEES 9

Writing keys 9

Functional keys 12

Illustrated 1e3son segments 14

3, HOW TO BEGIN LESSON WRITING 23

4, HOW 10 CUSTOM TAILOR YOUR LESSONS 34

Commands which allow movement between base Units . . . 35

Commands for branching to supplementary material 37

Using stored student information for branching 39

5. TUTOR COKMANDS 41

An Overview 41

Contingencies 45

TUTOR variables 52

Individual commands 54

Alphabetic Index of TUTOR commands 55

INDIVIDUAL COMMAND DEKRIPTIONS
(YELLOW SECTION) not numbered.

6. VARIABLES 56

Format 56

Alteratior, of TUTOR variables 61

PEEK, a diagnostic routine 63

7, ASSIGNED OPERATIONS 66

8, INDIRECT REFERENCING BY TUTOR VARIABLES 69

9. OPERATING AS AN AUTHOR 72

Entry to AUTHOR MODE 72

Exit from AUTHOR MODE 74

Main AUTHOR MODE display 74

AUTHOR MODE Options 77

(1) EDIT 77

(2) READIN 91

(3) DATA 95

(4) START 99
(5) STOP 100
(6) DELETE 101

(7) PRINT 102

(8) RECORDS 103

Summary 108

(continued on next page)

111

10, FINDING LESSON ERRORS 109

Where to look 109

TUTOR variable problems 111

11, APPLICATIONS 112

Graphing a function 113
Numerical answer judging 117

Repetitious exercises 121

Animation using slides 124

Animation using plotting 125

Now

I
Chapter 1

INTRODUCTION

The PLATO Computer-Based Education System was designed to aid

both student and instructor in the educational process through use

of the capabilities of the modern digital computer. The PLATO

computer interacts with each student by presenting information and

reacting to student responses. The comtuter's actions follow the

instructor's rules which specify what is to be done in each and every

possible situation. A lesson constructed of such a set of rules

can have a flexibility approaching that possible when each student

has a human tutor. In fcct, the rules defining a useful tutorial

lesson presented by computer are quite similar to those implicitly

used by a human teacher. For example, areas in which a Student has

proven compel.ence are given minimal coverage while areas in which

the student lacks competence are developed more thoroughly.

In coil.tructing computer lessons, instructors must use

"languages" W- . allow communichtion wi:h computers. One such

language is TWO ?.

TUTOR consists of about seventy words or "commands" which can

be used in various combinations t7) produce desired effects. 4uch

lesson writing can be done using less than a dozen of these commands.

TUTOR was Aesigned by Paul Tenczar of Cie Computer-Based Education

Research Laboratory specifically for use by !esson authors lacking

prior experience with computers. The language is extremely easy to

learn and to use. Normally, authors are able to write parts of

useful lessons after a one-hour introduction to TUTOR. The simpli-

city of TUTOR does not limit its applications, Since TUTOR is a

true language, the ultimate complexity and flexibility of TUTOR

lessons is limited largely by the ingenuity and experience of lesson

authors.

2

TUTOR is among the languages presently used on the PLATO system

at the University of Illinois. PLATO (an acronym for Programmed

Logic for Automated Teaching Operations) currently consists of a CDC

1604 computer, student stations, and the equipment necessary for

the computer to interact with these stations. Each student station

has a television screen for presentation of information to the

student and a keyboard used for student communication with the compu-

ter. Chapter 2 will describe a typical student station and show how

PLATO communicates wit% a student through such a station.

SOME REASONS FOR USING TUToR AND THE PLATO SYSTEM

1, Individual Attention

In contrast to a conventional classroom in which a teacher

manages twenty to thirty students simultanlously and can seldom Rive

special attention to individual students, PLATO apoears to Rive

each student undivided attention. This appearance results from the

computer's ability to identify and handle most student requests in a

small fraclion of a second. When several students request material

simultaneously, the PLATO system processes their requests in turn,

However, PLATO works so rapidly that the last processed student

seldom has to wait more than one-tenth of a second for a repli from

the computer, To most students, one-tenth of a second appears to be

instantaneous. One aspect of individual attention is rapid feedback.

The student can get immediate knowledge of the correctness of his

responses.

PLATO's individual attention capability together with its

computational and graphic d/splay abilities allows authors to produce

simulated laboratories in which each student can collect his own data

without fear of damage to himself or anparatus. Since the time

scale of a model laboratory can be shortened, the student does not

have to wait hours, days, or even years for actual experimental

conditions to occur. In one University of iiiinois course the

student is allowed to experiment with a model home thermo:,tat system.

The student selects the outside daily temperature range, the furnace

9 o

I

r.

I

and air conditioner thermostat settings, the type of furnace and air

conditioner, and the type of house insulation. The student can then

see a graph of indoor ar,d outdoor termeeatures for a twenty-four

Figure 1.1

hour period under these conditions. (see Figure 1.1) \nother model

laboratory allows students to train a simulated mouse in an operant

learning situation. The "mouse" moves about the screen of the

student's TV set it response to "stimuli" given by the student and

past "experieiice."

At another level, TUTOR permits the author to provide alternate

information based on a pattern or history of student response.

Unlike many forms of programmed instruction, computer-based education

is not limited to providing lesson alternatives based on one student

response. Thus, in a TUTOR lesson it would be possible to give a

student remedial instruction if he missed, say, any four of the last

ten questions. Some of the techniques of lesson individualization

are discussed in ChApter 4.

10

4

2. Ease in Lesson Construction

Additions or corrections to TUTOR lessons can be made faster

and easier than additions or corrections to a typewritten manu-

script. A single change will affect all students using the lesson.

Thus, if an author finds that recent advances in his field have

outdated a section in his lesson, he need only sit down at any

PLATO station and replace the outdated section with the latest

information. The updated lesson is immediately available for student

use. With languages such as TUTOR, the author spends most of his

time working with lesson content rather than struggling to "inter..

pret" the content to the educational medium being used.

3. Complete Data Handling

Authors, especially at early stages of lesson development, can

collect data on all student responses. If students are having

difficulty with certain concepts (as shown by the number of incorrect

responses or amount of time spent in the area), the author can use

the data to alter the lesson End clarify the difficult areas.

Automatic data collection is also a useful tool for experimental

studies In the behavioral sciences. 'ine computer acts as a very

accurate and unbiased data collector for the exnerimenter. Data

such as response times and answer scores can also be used during a

student lesson as criteria for choosing the next lesson segment for

the student.

4. Computational Ability

In addition to recording student data, authors in experimental

studies can use the computer 0 perform necessary statistical opera-

tions on data as they are being collected. The computational ability

can also serve the student in subject areas requiring the student to

perform lengthy or complex mathematical operations. Frees from

tedious calculations, the student can rapidly explore the important

relationships among elements of problem.

t

S

C

5

5. Visual Displays

PLATO can be used to select and present stored material such as

printed messages or photographic slides. In addition, PLATO is

also able to construct geometric figures or graphs. Such constructed

displays are produced by the computer following instructions speci-

fied by either the author or the student. A constructed graphic

display might, for example, be used to allow a student in a Physics

course to specify the shape and composition of a lens. PLATO could

then produce a side view of the lens on the student's TV screen.

Upon the student's request, PLATO might also show the path of light

rays through this model lens. Chapter 2 illustrates a TUTOR program

which allows the student to construct geometric figures on his TV

screen. This same program can also evaluate the student's work.

6. Judging

The TUTOR language allows the author to specify a wide range of

criteria for acceptable and unacceptable student responses. At the

most limited level, the computer may require that the student respond

in exactly one way (e.g., the answer "4") or require that the student

respond with one of a list of correct answers (e.g., "4", "4.0,"

"FOUR"). TUTOR goes beyond this restricted form of "answer matching."

The student's answer can consist of single words, a phrase, and even

sentences. The computer can be directed to indicate to the student

such things as possible misspellings, incomplete answers, duplicate

terms in lists, or incorrect words in sentences. An author need not

specify every possible form of correct answer. In certain instances

the author might even let PLATO decide what the correct answer is.

PLATO's decision would be based on rules given by the lesson author.

For example, the student might be allowed to construct his own,

addition problems. The "correct answer" would be determined by the

rule "sum the factors given by the student." Chapters 3 and 5 will

cover further exanples of judging options available to the TUTOR

au0,or.

12

6

7. Drill and Practice

With little effort an instructor using TUTOR can provide his

students with an untiring drill master. The author can set the rules

of timing, problem removal, and criteria for exercise completion or

he can allow the student to set his own rules. Fcr example, a

University of Illinois French course allows the student to choose

his timing for an English-to-French translation drill. Words from

d list are presented in random order. A word correctly translated

within the time limit is removed from the list. Thus, near the end

of the drill he list contains the words most difficult for the

student. When finished, the student can take the drill again at a

quicker pace. After the drill session or before the next lesson

session, PLATO can remind the student which lems in the drill caused

the most difficulty. The accounting ability of the computer is

ideally suited to take over this tedious and time-consuming job from

teachers and release them for more rewarding labors. In addition,

a well written computer drill lesson can hold student attention

through its game-like qualities.

ON THE MISUSE OF COMPUTER-EASED EDUCATION

Balancing the positive features of PLATO are several negative

considerations. These considerations can be placed in two general

classifications; cost and relative effectiveness. If instructional

material can be presented with equal effectiveness by any of several

media, that medium which has the lowest cost in time and/or money is

usually chosen. Even when one medium is superior to another there

are usually financial limitations. Cost and effectiveness are inter-

twined in any actual judgment but their separation stmplifies further

discussion.

Coet. In future versions of PLATO the cost per student-conta,Z-
.

.hour will approach that iwlurred in conventional ele:rntary school

13

0

7

education. This favorable cost relationship does not presently

exist for any computer-based educational system, The effect of the

present high rurchase and operating costs limits the availability of

computer-based educational systems. In addition, existing systems

are generally subject to heavy use which limits new research and

lesson development.

Of more direct interest to the author is the cost in effort

needed to prepare lesson material- Certain instructional techniques,

such as programmed instruction or inquiry learning, are costly in

preparation time, whatever the medium of presentation. Other

techniques, such as drill -type lessons, are relatively easy to pre-

pare. In addition, cost is a function of the complexity of the

materials. It is easier to give a thorough coverage of the rules of

integer addition than to do equal justice to, say, the laws of

thermodynamics or irregular French verbs. The use of languages such

as TUTOR minimizes the effort needad to put draft lessons onto the

computer. Thus, the preparation of lesson content will usually be

the most time-consuming aspect of Preparing lessons for PLATO. The

instructor must judge in each case whether the preparation cost will

be balanzed by the benefits to students.

Relative effectiveness. The instructor is to some extent an

expert in teaching his material. He generally has at least a

notion of an ideal method or methods by which this material could be

presented to maximize learning. Computer-based education should be

considered as merely another medium which might allow some of these

methods to be used in practice. The instructor will sel..716m go wrong

if he late the message dictate the medium. Many of the trivial or

contrived uses of computers and other "glamorous" media are the

result of instructors who start with a commitment to a medium and

proceed to write materials intended to utilize the features of that

medium. No magical improvement of material occurs simply because of

presentation by a computer -based educational system.

Instructors using both cost and effectiveness as guides can

avoid the mistake of using computer-based education 1.n situations

.14

where more effective media exist. The very flexibility of systems

such as PLATO tends to draw lesson authors into the trap of acting

as if everything that can be done by comnute-.2-baced education

should be.

HOW TO USE THIS MANUAL

This manual is intended for use both as a textbook for the be-

ginning lesson author and as a reference manual for the experienced

user of TUTOR. The manual is written for the prospective lesson

author who has neither a back round nor a particular interest in

computers. Examples are used Ihenever possible to clarify use of

TUTOR and to provide modils for simple applications of the language.

Chapters 3 through 8 are concerned entirely with the elements and

structure of a TUTOR lesson. Upn finishing chapter 3, one should be

able to write simple lesson material. Chapter 9 tells how this

material can be put onto the computer.

Many parts of the manual on first reading ,d11 not appear to be

of immediate use. In these cases it is generally quite sufficient

to merely read for an understanding of what is possible rather than

how it is done. Later, when a need for one of these techniques arises,

one can return for a more thorough reading. Remember tlat useful

lessons can be written while using only a fraction of the features

of TUTOR.

The yellow -page section of the manual will be of most use to

authors after they begin extensive lesson writing. The section

contains a complete description plus useful examples of each of the

available TUTOR commands.

Chapter 2

WHAT THE STUDENT SEES

Conversation between a student and his computer teacher occurs

at a student station (see figure 2.1). The station is equipped with

a television screen for display of the computer's part of the

dialogue and a keyboard for the student to use in responding to the

computer display.

Writing Keys

The keyboard (see figure 2.2) contains a set of keys labeled

with alphabetic and numeric characters similar to those found on a

typewrites. These keys are used by the student to answer questions.

The computer "writes" what the student types on the screen in an

appropriate place. Normally, pushing an alphabetic key causes a

lower case letter to appear on the screen. If the shift key is

held while a letter is typed, an upper case letter appears. How-

ever, lesson authors may choose to use only an upper case character

set in which case unshifted keys produce upper case letters. Press-

ing the SUP key causes the next character to appear as a superscript

while the SUB key produces a following subscript. Other keys have

the effect of causing a carriage return and a backspace. The back-

space can be used to superimpose characters.

The character set used by TUTOR is sufficient to write in any

of the major European languages. In addition, keys exist which

. automatically superimpose an accent, grave, underline, overline,

etc., over a preceding character. The computer automatically dis-

tinguishes between lower and upper case preceding characters so that

the additional mark is positioned properly. Under directions of

the lesson author, students can write using a Cyrill'c or a Phonetic

character set. Characters specific to a certain field of study

(e.g., th' sigma used so frequently in statistics) can be designed

And employed in a lesson.

.16 f

1 *

10

Al. fi,SCO

"r'
4$- I '

ta,

Figure 2.1

A student station

17

S
h
i
f
t

.1
11 2

V
B

N
I

1

F
i
g
u
r
e

2
.
2

T
h
e

K
e
y
b
o
a
r
d

S
h
i
f
t

!
D
A
T
A

12

Functional Keys

The keyboard also contains a set of keys labeled with words

which represent lesson control options available to the student. A

list of the main lesson control keys along with a description of

their use follows.

NEXT

A student presses the NEXT key to request the computer to do

the next logical action for the current student situation. For

exarple, if the student hers typed in an answer to a question he

would press the NEXT key to obtain an evaluation of his answer. If

the answer is incorrect, the student can push the NEXT key again

which will in this case erase the student's response so that

another answer can be typed in. If the answer is correct, pushing

the NEXT key advances the student to the next question or informa-

tional display.

ERASE

A typing error can be deleted by pressing the ERASE key. The

lower case ERASE key deletes only the last character typed while

the upper case ERASE key deletes the entire response previously

typed.

BACK

A student requests to review material previously seen by

pressing the BACK key. Lesson authors provide the computer with

information necessary to handle this student request. For example,

a lesson author can allow the student to review previous material

in reverse order, or the author can allow the student to choose

which parts of the lesson he wants to review, or the author can

disallow the BACK option.

ANS

The answer to a question may be requested by the student by

pressing the ANS key. Unless this option is disallowed by the

lesson author, the computer responds by giving the student the

author's first answer choice for the question.

IfittOleirkhare

13

HELP

A student experiencing difficulty with the lesson can request.

aid by pushing the HELP key. The computer then takes the student

into a sub-lesson segment provided by the author which is as speci-

fic to the student situation as the author desires. Upon completion

of this supplementary lesson segment, the student is returned to

the point in the lesson from which he requested aid. The adjitional

lesson control option keys LAB and DATA function in a manner identi-

cal to the HELP key in branching the student to an author provided

sub-lesson segment. These keys may be used to provide the student

access to reference material.

TERM

A student can request the definition of any word by pressing the

TERM key. The computer responds to this key by displaying the

message "WHAT TERM?" near the bottom of the T.V. screen. The

student can now type in the word he desires information about. He

then presses the NEXT key. If the lesson author has provided for

this word, the student obtains a sub-lesson segment of the author's

choosing. Upon completion, the student is returned to the point in

the lesson from which he pressed the TERM key. While these sub-

lesson segments reached by a .tudent through pushing the TERM key

often concern word definitions, they can contain anything the author

chooses. Thus, for a chemistry course the TERM key can provide

access to information concerning the chemical elements similar to

that provided by a periodic chart of the elements.

REPLOT

Much of the screen display can come from a storage device

containing plotted information from the computer. Over several

minutes time, the image plotted on this device decays and produces

a loss of quality in the student's screen display. Pushing the

REPEAT key recreates the image on the storage device. Thus, the

student can refresh his T.V. screen.

2f)

14

ARROW

Several questions may occur in a given screen display. A

small arrow appears on the screen near the particular question to

which the student is currently responding. His typewritten re-

sponse appears on the screen after this arrow. Initially, the

student's response is directed to the first question in the display.

However, he may choose to address another question on the display.

By pressing the ARROW key, the student can move the arrow to what-

ever question he wishes to address.

The set of arrows on the left hand side of the keyboard can be

used for a variety of author determined functions. A Geometry

course developed at University High School in Urbana uses these

keys to move a small dot around a grid shown on the screen. The

dot moves in the direction of the arrow key pushed. Additional

functional keys allow the student to mark a current dot by a large

circle and to draw lines connecting marked dots. Thus, geometrical

figures can be produced.

New authors need not fear that there are too many functional

keys. They can use only the keys needed. Indeed, several lessons

use only the NEXT key.

ILLUSTRATED LESSON SEGMENTS

The remainder of this chapter illustrates with actual photo-

graphs parrs of lessons taught on the PLATO computer system utilizing

the TUTOR language.

15

The above message appears on the T.V. screen of any student

station not being currently used. A student begins conversation

with the PLATO computer by pressing the NEXT key. He is then

asked to write in his name. If PLATO recognizes him, his lesson

resumes where he .last left off. As an example, say that a student

is studying French phonetics. The last time the student worked

with PLATO he was in the middle of a timed translation drill.

22

16

He resumes study and types in an answer.

His wrong answer elicits help from PLATO.

23

17

Another student in a different course is asked a question about

the discovery of the New World, His answer can be a phrase or
sentence. PLATO evaluaces this long answer by means of a keyword

judger which is described in the next chapter.

24

18

The student types in a long answer.

PLATO in turn underlines misspellings and crosses out unrecognizable words.

25

19

A sixteen lesson course in geometry used zt University High

School, Urbana, Illirois has been developed by J. Richard Dennis. *

Dr. Dennis devised a grid system which allows the student to con-

struct and evaluate geometrical figures. By storing relevant

information during the student's construction of the figure, Dr.

Dennis' lesson can distinguish the major geometrical figures

regardless of their size, positioning or rotation on the grid.

The student constructs a figure by using the set of arrow keys on

the left hand side of the keyboard. These keys move a small cross

in the direction of the arrow key pushed. The student can mark

a location and upon marking a second location defines a line.

* Dennis, J. Richard. Teaching Selected Topics via a

Copputer System. CERL Report X-3; June, 196S. Uraia, !II,

20

PLATO draws a line connecting the marks.

The student continues this process until his figure is complete.

I

PLATO then evaluates his correct figure and ...

21

11111

asks him to draw the other quadrilateral possessing one line of

symmetry. The student does so.

28

22

A last example demonstrates PLATO's usefullness in a beginning

chemistry course at the University of Illinois.

Frequent mention has been rade of the fact that the computer

is directed by lesson authors in choosing what information will he

displayed in a given situation and what evaluation will be given to

a student respor.e. The next chapter describes how lesson authors

cazi direct the PLATO computer by using the TUTOR language.

4

29

23

Chapter 3

HOW TO BEGIN LESSON WRITING

Lessons on the PLATO teaching system consist of a repeating

sequence: a display on the student's T.V. screen followed by the

student's response to this display. The display information may

consist of slides, sentences, graphs--nearly anything of a pictorial

nature--and in any combination. The student responds to this dis-

play by pressing a single key (e.g., the HELP or NEXT key) or by

typing a word or sentence or even by making a geometrical con

struction. Lesson authors provide enough details about the possible

student responses so that PLATO can maintain a dialogue with the

student. The sequence of a display followed by a response is the

building block of a TUTOR lesson and is called a UNIT.

An author constructs a lesson by writing one UNIT at a time.

For each UNIT, the author specifies (1) the display that will appear

on the student's T.V. screen, (2) how PLATO is to handle student

responses to this display, and (3) how the current UNIT connects

to other UNITs.

A statement written in the TUTOR language appears as follows:

WRITE HOW ARE YOU TODAY?

The first part of the statement (WRITE) is called the command,

while the remainder (HOW ARE YOU TODAY?) is called the tag. Com-

mand names mnemonically represent PLATO functions. Following is a

UNIT written in TUTOR. Figure 3.1 shows what a student would see

on his T.V. screen while working pn the UNIT.

30 t4
0-1

24

UNIT DAVINCI
WRITE NAME THE ARTIST WHO

PAINTED THIS PICTUF -

SLIDE 24

ARROW 1110
ANS LEONARDO DA VINCI
WHERE 1301

WRITE YOUR ANSWER TELLS ME THAT YOU
ARE A TRUE RENAISSANCE MAN.

WRONG WHISTLER
WHERE 1301

WRITE I HOPE YOU ARE JOKING.

As one can infer, tags individualize commands for the parti-

cular function desired. The statements in this UNIT will be explained

fully to verify inferences.

UNIT DAVINCI

The UNIT statement initiates each UNiT. The tag (DAVINCI) will

become useful later when UNITs are connected together to form a

lesson. Each UNIT must halve a name. No two UNITs may have the same

name.

WRITE NAME THE ARTIST WHO
PAINTED THIS PICTURE -

The WRITE statement causes the information contained in the

tag to be displayed on the student's screen. The writing starts

at the top left corner of the screen.

SLIOE 24

The SLIDE statement tells PLATO to show slide 24 on the stu-

dent's scree =n. Slides and writing are superimposed on the screen.

In this case, slide 24 is a picture of the beguiling smiler, mOna

-,-"Lisa.

ARROW 1110

The ARROW statement acts as a boundary-line that separates

preceding display statements from following response- handling

statements. Thus, what precedes the ARROW command produces the

T.V. display which remains on while the student works on the UNIT.

Statements after the ARROW command are used in handling student

responses to the display.

31

A, INITIAL UNIT DISPLAY

C. PLATO'S JUDGMENT

Figure 3.1

25

B. FIRST STUDENT RESPONSE

S

D. CORRECT RESPONSE AND JUDGmENF

The T.V. screen at four phases of a student's study of Unit DAVINCI

32

26

In addition, the ARROW statement notifies PLATO that a student

response is required at this point in the lesson. Not only must an

author leave room in the display for a student response, he must

tell PLATO where that space is. The tag of the ARROW statement

locates the student response on the screen. An arrow is shown on

the screen at this place to tell the student where his response will

appear. The tag 1110 is coded as follows. Consider the number)110

as two pairs of numbers--11 and 10. The first pair refers to the

line count and goes from 01 (the top line on the screen) to 18

(t1; bottom line on the screen). The second pair refers to the

character count on the given line and goes from 01, the left side

of the screen, to 48, the right side of the screen. Thus, 0101

refers to the first line first-character position, while 1848 refers

to the last-character position on the bottom line. This convention

for referring to screen positions is used in other TUTOR commands.

ANS LEONARDO DA VINCI

WRONG WHISTLER

The ANS (mnemonic for answer) and WRONG statements are used to

evaluate the student's response. the response matches the tag

of the ANS statement, PLATO writPs "OK" after the student's re-

sponse. "NO" is written for a match to a WRONG statement. An "OK"

judgment allows the student to proceed to the next UNIT, whereas a

"NO" judgment requires the student to erase and try again. Any

response not foreseen by ANS or WRONG statements is judied "NO."

Having matched the student's response, PLATO proceed.: to execute

any display statements following tie matched ANS or WRONG statement.

Thus, student answers of "LEONARDO DA VINCI" and "WHMTLER" will

receive appropriate responses from PLATO.

,r-

27

WHERE 1301

The WHERE statement indicates where the tag of the following

WRITE statement will appear on the screen. The screen position con-

vention already explained is used. Hence. PLATO's response to the

student will start a the first-character position of line thirteen.

Statements can oe added to the current examole UNIT which will

greatly improve it. Consider the following:

UNIT DAVINCI
WRITE NAME THE ARTIST WHO

PAINTED THIS PICTURE
SLIDE 24

ARROW 1110

ANS LEONARDO
WHERE 1301

WRITE THE COMPLETE NAME IS LEONARDO DA VINCI.
SPELL
ANS LEONARDO DA VINCI
WHERE 1301

WRITE YOUR ANSWER TELLS ME THAT YOU
ARE A TRUE RENAISSANCE MAN.

WRONG WHISTLER
WHERE 1301

WRITE I HOPE YOU ARE JOKING.
WRONG
WHERE 1301
WRITE HINT - MONA LISA - HINT

As you can see, any number of ANS and WRONG statements can be

added to the response handling section of the UNIT. Time and

effort spent by an author in providing for student responses other

than the common answer can greatly increase the ability to carry on

a personal dialogue with each student. Use of the last WRONG

statement (which has a blank tag) needs explanation. As previously

mentioned, any unmatched student response is judged "NO." However,

an author may wish to do something in addition to writing "NO" after

an unanticipated response. The WRONG command with a blank tag

facilitates such action and is called a "universal WRONG" statement.

A student response that fails to match an ANS or WRONG statement tag

is automatically "matched" to the universal WRONG statement.

Display statements following this universal WRONG are then executed.

34 ,;(*,

28

Thus, PLATO can give a hopefully appropriate comment even though the

actual student response is not recognized (just as human teachers

often try to do).

The SPELL command is also introduced here. In matching

responses to ANS tags, PLATO uses a precision which often seems

undesirable. Renderings of LEONARDO DA VINCI as LEANARDO DA VINCI

or LEONARDO DAVINCI cause mismatches. Simply to judge these student

responses "NO" would cause confusion. Is the concept incorrect or

only the spelling? The SPELL command resolves this problem by

telling PLATO to place "SP" after a student response if a slight

rearrangement of the response would result in a match with following

ANS tags. The student must correct the misspelling to continue.

Lessons could be written using only the commands already dis-

cussed. Expository UNITs could be written using only display

commands. Tutorial UNITs could be interspersed to test a student's

understanding of the lesson material. Thus a simple linear chain

of UNITs could form a lesson. However, mastery of a few more TUTOR

commands opens up a wealth of "branching" possibilities. Branching,

the technique of allowing alternate paths through a lesson, is the

key to' personal dialogue with each student. The example UNIT will

therefore be expanded to include NEXT, BACK, and HELP commands.

UNIT DAVINCI
NEXT RUBENS
BACK INTRO
HELP DHELP1
WRITE NAME THE ARTIST WHO

PAINTED THIS PICTURE -
SLIDE 24

ARROW 1110
ANS LEONARDO
WHERE 1301
WRITE THE COMPLETE NAME IS LEONARDO DA VINCI.
SPELL
ANS LEONARDO DA VINCI
WHERE 1301

WRITE YOUR ANSWER TELLS HE THAT YOU
ARE A TRUE RENAISSANCE MAN.

WRONG WHISTLER
WHERE 1301

WRITE I HOPE YOU ARE JOKING.
WRONG
WHERE 1301

WRITE HINT - MONA LISA - HINT
WRONG MICHELANGELO
NEXT MREVIEW

35,

0

29

The tag of the NEXT statement following the UNIT command gives

the name of the next UNIT the student will see upon the successful

completion of UNIT DAVINCI, The NEXT statement is necessary be-

cause ia a highly branching lesson sequence the next UNIT for a

student may not be the UNIT following in the write -up, For example,

a diagram of the lesson flow involving UNIT DAVINCI might be:

PARTIAL DIAGRAM OF

MAIN

LESSON

LESSON ARTSY

UNIT INTRO

1.-1, _1

4]FPUNIT DAVINCI 4--
r-

UNIT DHELP1

4]

4IUNIT DHELP2

UNIT DHELP3

--UNIT RURENS

BRANCHES

OFF

MAIN

LESSON

The tag of the BACK statement gives the name of the UNIT the

student will see upon pressing the BACK key. As you may infer,

an author may choose to allow students to "backup" througa the main

lesson flow. However, the current example "backs up" to MIT INTRO

which might, for example, caltain a list of the artists'to he studied

in the Lesson.

The HELP statement refers to a help UNIT which the student

may reach through use of the HELP key. Help UNITS are constructed

in the same manner as UNIT DAVINCI, However, the last (or only)

30

UNIT in a help sequence is terminated by an END command. Upon

completing the last HELP UNIT, the student is returned to the main

UNIT from which he branched--in this case UNIT DAVINCI. Help UNITs

for UNIT DAVINCI could appear as follows:

UNIT DHELPI
SLIDE 25

WRITE HERE ARE SOME ADDITIONAL
WORKS BY THE PAINTER OF
THE SMILING LADY.

UNIT DHELP2
SLIDE 26

UNIT DHELP3
SLIDE 27

END

As another example of TUTOR branching, consider the following

situation. A student, working on UNIT DAVINCI, responds 'MICHELANGELO."

Previously, the student had worked his way through a series of UNITs

concerning Michelangelo. The author therefore feels that the

student must have missed something in the previous study and must be

given further information about Michelangelo, The set of TUTOR

statements

WRONG 'MICHELANGELO

NEXT MREVIFh

permit an author to force the student into additional material con-

cerning Michelangelo. When the ..tudent responds "MICHELANGELO,"

he will see this answer judged "NO." He will not be able to erase.

Instead, he can only go to UNIT MREVIEW. Upon completion of the

Michelangelo review, which may consist of any number of UNITs, the

author may return the student to UNIT DAVINCI. Thus, this student's
-, -

lesson flow +muld consist of

1. a series of UNITS on Michelangelo,

2. a question about the Mona Lisa; error leads to

3. a further study of Michelangelo, and

4. a return to the Mona Lisa.

37:

31

_

Consider now the problem of using UNIT DAVINCI for a second

student response. Additional display information is needed to ask

the student a second question and another ARROW command is needed

plus a second set)f response handling statements. The UNIT may

appear as follows:

UNIT DAVINCI
NEXT RUBENS
BACK INTRO .-

WRITE NAME THE ARTIST WHO
PAINTED THIS PICTURE

WHERE 1501

WRITE IN WHAT CENTURIES DID THIS ARTIST WORK?
SLIDE 24

ARROW 1110

HELP MEM

/

Response-handling statements
for first arrow.

ARROW 1601

HELP DIME

Response-handling statements
for second arrow.

One may wonder why the first WRITE statement in the UNIT is

not preceded by a WHERE statement. The first WRITE statement auto-

matically starts in the first character position on the top line

of the screen. However, that assumption can be overridden by using

a WHERE statement of your choice:

Notice that specific HELP statements are placed after each

ARROW command. Placing the HELP statements in this lotation pro-

vides the student with help sequences specific to the question he

is working on.

The second question, "In what centuries did this artist work?,"

gives rise to a large number of possible student responses which

must be judged "OX. ", Students may respond "15 and 16," "the 15th

and 16th centuries," "fifteenth and sixteenth," etc. Students may

even respond with variations of "Leonardo Da Vinci worked from the

fifteenth century to the sixteenth century." Hundreds of correct

32

responses exist. To list all possibilities by means of ANS state-

ments is clearly impractical and programming a computer to under-

stand sentence syntax is currently unsolved. However, an attack

can be made on this problem if one considers a sentence to consist

of key words together with filler ones. Thus, the words "fifteen"

and"sixteen" are the only essential words of the answer. "Century,"

"of," "the," and "and" are filler words. The following lesson

segment illustrates how this Jivision of words may be used to

handle responses for the second question of UNIT DAVINCI.

ARROW
HELP
ANS
SPELL
MUST
MUST
DIDDL

CANT
WHERE
WRITE
CANT
WHERE
WRITE

1601

DTI ME

THE FIFTEENTH AND SIXTEENTH CENTURIES,

15, 15TH, FIFTEENTH
16, 16TH, SIXTEENTH
THE, AND, CENTURY, CENTURI
LEONARDO, DA, VINCI
13, 13TH, THIRTEENTH, 14,
1801

YOUR DATES ARE TOO EARLY.
17, 17TH, SEVENTEENTH, 18,
1801

YOUR DATES ARE TOO LATE.

ES, FROM, TO, HE, WORKED,

14TH, FOURTEENTH

18TH, EIGHTEENTH

A MUST statement contains an important word along with any

acceptable synonyms for this word. A student response must include

one of these words to be judged "OK." The author includes as many

MUST statements as there are important words in the desired re-

. . sponse; ;Failure of a student response to include one word from

each 'MST" statement results in the student's response being judged

incomplete. The DIDDL statement contains a list of words which may

or may not occur in the student response. These words are ignored

during judging. Any words in the response not accounted for in

MUST and DIDOL tags are considered inappropriate and result in a
-

"NO" judgment. CANT statements indicate list of inappropriate
. .

words for which the author desires to take some specific action.

The action is specified by statements following the CANT commands.

39

0

33

A collection of MUST, DIDDL, and CANT statements allows handling

of student phrase or sentence responses. The price paid for this

flexibility, however, is that the order of words in a student's

response is not considered in the judgment, A student would be

judged "OK" fur his answer "LEONARDO DA 15TH WORKED SIXTEENTH

VINCI CENTURIES."! The ANS statement is present to tell PLATO what

to put on the screen of a student who pushes the ANSWER key.

Fifteen commands have been illustrated in this chapter. While

over seventy TUTOR commands exist, most of the additional commands

are as easy to master as those already explained. Mastery of the

complete repertory of TUTOR commands is neither necessary nor suffi-

cient to guarantee useful student lessons. Novice authors with

clear goals can write useful lessons using only the commands already

discussed. On the other hand, the most sophisticated programmer

may write worthless lessons using the full set or TUTOR commands.

The number of TUTOR commands mastered by an author should be dic-

tated by the requirements of the lesson material and not by a desire

to use all TUTOR commands in a lesson.

40
f!`

34

Chapter 4

HOW TO CUSTfl TAILOR YOUR LESSONS

A goal of good teaching is to tailor the instruction to the needs and

background of individual students. If a student demonstrates failure to

learn something, the teacher may try alternate approaches to the material.

Similarly, when a student shows mastery of a topic, the teacher moves on to

new material. Such flexibility is relatively easy in a tutorial situation

(one teacher to one student) but more difficult in classroom instruction.

Fortunately, PLATO allows a for of instruction which is quite close to the

ideal tutorial situation.

In the last chapter you saw how the Unit, the basic element of a

TUTOR lesson, was constructed and how Units may be connected together to form

simple lesson segments. This chapter elaborates on the important subiect of

Unit interconnection. Before describing the TUTOR commands used to connect

Units together, a common type of lesson framework will be examined.

Certain Units may be considered basic to the presentation of a lesson

to a particular student. Such Units are called base Units. Each base Unit

can be considered to be a decision point in a lesson. The student is either

ready for the next major step in the lesson (a new base Unit) or he is not.

If the student is not prepared for the next step, he is given supplementary

material until he is prepared. A student's main lesson is defined as the

path through his base Units. The first Unit in a lesson is automatically the

first base Unit of each student's lesson. Following this first base Unit,

each student moves to additional base Units. For each base Unit, a student

may branch into Units supplementary to the base Unit. After a student goes

into supplementary Units, he must return to the base Unit from which he

started and resume the main lesson. PLATO's record of the current base Unit

serves as a marker to facilitate the return from the supplementary Units.

Unit interconnections within the supplementary Units do not reset the base

. marker. The marker is analopous to a bookmark which keens the student's

place in his text while he is using a reference boa.

TUTOR branching commands can thus be divided into Iwo cateaories:

1. Those which permit movement between base !Min and,

2. Those which permit supplementary lesson sequences.

41

35

Commands Which Allow Movement Between Base Units

The NEXT statement specifies what base Unit the student will be sent

to when he completes his current base Unit and presses the key marked "NEXT".

Usually the student is not allowed to use the NEXT key to move forward in

the lesson until he has correctly answered all questions in a Unit. However,

the author might want to select alternate Units contingent on a certain re-

sponse by a student. For example, an incorrect answer which indicated a

misunderstanding of a concept might best be followed by a few Units which

give extra emphasis to the missed concept. As you may remember, there was

an example like this in Chapter 3. The author can force the student to move

on to these remedial Units before answering other items in the oripinal hut,

A more complete explanation of such "contingent operations" as well as

details of use of the NEXT command in these situations will be covered in

Chapter S.

Like the NEXT command, the JUMP command specifies a Unit which the

student will be sent to. In our example of a response contingent operation

of the NEXT command, the student entered a wrong answer and found that it was

judged "NO" by PLATO. Having given this particular wrong answer, the student

is permitted only to move on to a remedial sequence of !'nits. However:until

he presses key NEXT he remains at the original Unit. The remedial Units

would be seen only after the student pressed NEXT. In contrast, if a APT

command had been used instead of the NEXT command the student would he sent

to the first remedial Unit as soon as PLATO fudged his answer "NO". The

student would not have even seen PLATO write "NO" after his incorrect answer

befote the shift in Units took piece.

Our discussion of the use of NEXT and JP? branches as contingencies of

particular student answers suggests a way in which these connection commands

could be used to allow the student to select his own connections between

Units. Suppose the student is working on Unit SELrCT.

42

36

UNIT

WRI1:

SELECT

SELECT A LESSON BY

PRESSING THE APPROPRIATE KEY

PRESS KEY... TO SEE...

1 ADDITtflN DRILL

2 SUBTRACTION DRILL

ARROW 1001

LONG 1

ANS
JUMP ADDA
ANS 2

JUMP SUBA
WRONG
WHERE 1101

WRITE You MUST SELECT EITHER 1 OR 2,

PRESS -NEXT- AND TRY AGAIN

You can see that Unit SELECT is very similar to the Units shown in Chapter 3.

The statement "LONG 1" tells PLATO to "judge the students's answer as soon

as it is 1 character long" (i.e. immediately after the student has pressed

one key). If the student presses key 1, PLAT() will immediately judge this

"answer" and find that it matches the tag of the ANS 1 statement. Since there

is a JUPIP to Unit ADDA which is contingent on the student giving this parti-

cular answer, the student will be sent to Unit ADDA as soon as he presses

key 1. A similar effect would have occurred if the student had pressed

key 2 (except that he would have been JUPed to Unit SUBA). If the student

had pressed any other key his answer would have been judged "NO" by PLATO

and he would have received the message "YOU MUST SELECT EITHER 1 OR 2,

PRESS -NEXT- AND TRY AGAIN." Unit SELECT thus gives the student the

voluntary choice of going to either the first Unit of an addition drill

sequence or the first Unit of a subtraction drill sequence.

43

37

Commands for Branching to Supplementary "aterial

As you saw in Chapter 3, the HELP command specifies a Unit to which the

student will be shifted whenever he presses the HELP key. The term "HELP"

arises from a typical use of this type of branch. The DATA and LAB commands

operate in a similar manner and provide additional branching possibilities

for a student situation. The Units reached by the HELP, DATA, or LAB key

contain supplementary information which is intended to aid understanding of

the material in the main Unit. They are not. limited to such use however.

Mathematical tables, vocabulary lists, review sequences and a host of other

reference-type material can be stored in HELP, DATA, or LAB Units for ready

student access.

A HELP-type sequence may consist of as many Units as desired. The

student moves through such a sequence just as if it were part of the main

lesson. If the student presses the NEXT key after completing the last Unit

of the sequence he will be returned to his base Unit in the main lesson. He

may also return to his base Unit at any intermediate point in the sequence

by pressing the SIUFT and BACK keys simultaneously. Each Unit in a lesson

(including HELP-type Units) may have its own HELP-type sequences.

In other situations it might be necessary for students to have direct

access to a great many small pieces of information. cor example, suppose a

lesson uses many new terms which the student may not be familiar with. It

would be convenient if the author could give him the definition of any term

upon request. This is essentially the effect of the TERM command. The

TERM command specifies a term which will allow access to a single Unit. The

student desiring information presses the TERM key. A message appears at

the bottom of his TV.screen asking "WHAT TERM?" When the student types a

term, say "CAT," and presses the NEXT key he is sent to the Unit which

contains a TERM statement with that particular term (e.g. CAT).

44 ,...

38

UNIT DICT74
TERM CAT

TERM FELINE
WHERE 401

WRITE CAT (FELIS CATUS)

CARNIVOROUS QUADRUPED MAMMAL.

FREQUrNTLY KEPT AS A PET

BY DISCERNING HUMANS.

The same Unit could be reached by typing any number of different terms so

long as each term (e.g. FELINE) appeared as the tag of a TERM command in

that Term Unit. Thus information can be "cross-referenced:1 When the

student is finished with the Term Unit he presses the NEXT key and is

returned to his original Unit.

Like the HELP branch, the TERM branch is not limited to the use

suggested by the word "term." Any information which can be indexed by

single words or short groups of symbols could be stored in Term Units.

One convenient use of a Term Unit is as an index to other material.

Unit TABLE allows access to the listed information from any other Unit

in the lesson.

UNIT TABLE

TERM INDEX

WRITE PRESS KEY... TO SEE...

A HEART RATE

B TEMPERATTIRE

C RESPIRATION

ARROW 1001

LONG , 1

ANS A
JUMP HRT
ANS
JUMP TMP

ANS
JUMP RESP

Notice that the JUMP command appears here despite its normal use for

movement between base Units. Bot\ JUMP and NEXT may be used within HELP or

39

TERM Units. However PLATO will not shift the "marker" which indicates the

original base Unit. Thus, in the above example, Units HRT, TMP and RESP

will be considered as supplementary Units rather than new base Units.

The BACK command specifies what Unit the student will be sent to if he

presses the key marked "BACK" on his keyboard. The specified Unit may be

the Unit that was last seen. Thus, the BACK key would act as a "reverse"

allowing students to review previously covered Units. The student returns

to his base Unit by pressing his NEXT key. Since the author has complete

control over what Unit is specified, it is also possible to send students to

special review Units. The author can even prevent use of the BACK key in

particular Units simply by not including a BACK command,

In some situations, e.g. when using a Term Unit as an index to other

material, the author may wish to redefine a supplementary Unit as a base Unit. 1

lnclus'Jn of a BASE command in the supplementary Unit will perform such a

redefinition. Thus, Units reached through HELP, DATA, LAB, BACK, and TERm

commands can become main lesson base Units.

Using Stored Student Information for Branching

So far, all of the described connection (or branching) operations are

fixed at the time the lesson is written. The author may, however, want to

allow alternate connections as a result of prior student performance. For

example, the author may want to give additional explanations to students who

make too many mistakes during the lesson. Connection commands such as

NEXT, BACK, JUMP, TERM, HELP, LAB, and DATA, can use stored student informa-

tion to "decide" what connections each student may make from each Unit, In

short, the author is able to provide alternate branches from a Unit and let

PLATO decide (from specified student information) which of the alternate

connections each student will be allowed. This general technique of

assigning branches based on stored student information will be fully ex-

plained in Chapter 7.

46 fl.P)

40

To review: TUTOR "branching" commands allow authors to prepare lessons

which are responsive to the needs of individual students. Two of these

commands (NEXT and JUMP) are used for connections between base Units. These

two commands may also be used for connections between supplementary Units.

Other commands (HELP, LAB, DATA, TERM, AND BACK) are restricted to connections

to supplementary Units. However, the BASE command may be used to redefine

a supplementary Unit as a base Unit. The author may provide alternate

connections to various Units on the basis of specified tudent resnonses or

stored student information. The quality and quantity of lesson individuali-

zation is limited only by the ingenuity of the author. The next few chapters

will give you full details on how to incorporate these connection features

into your own lessons.

47,

Chapter 5

TUTOR COMMANDS

41

An Overview

All of the TUTOR commands can be arbitrarily placed in one of six

categories based on their major function in a lesson. The only purpose in

making such a classification is to insure that the new TUTOR author will

not overlook a useful command simply because its function is not suggested

by its title. The following list of categories (and the commands outlined

within the categories) should be used mainly to suggest which commands

warrant further investigation. The brief description of a command's function

is oversimplified and based on typical use of the command. A more complete

description of each command appears later in this chapter. The individual

descriptions of the commands and the examples shown there will suggest

more applications (as will practice in using the commands in actual

lessons).

Do not be overwhelmed by the number of available commands. A great

deal of useful lesson writing can be done using only about a dozen of the

possible commands. Nor is it necessary for you to be familiar with every

option of the commands you do use. Many basic commands (such as WHEkE)

offer a great deal of flexibility for the author vino has special reouire-

ments but can be used in a much more restricted fashion by authors who do

not need this flexibility. At the same time, your efforts to understand

and use the complete range of TUTOR commands will be well rewarded,

(1) "Lesson" Commands

This group of commands is used in presenting.the lesson as a whole.

Some of these commands are used only once (or not at all) in a given

lesson.

AREA - gives lesson title and author identification

UNIT - gives unique name to each segment of the lessor.

END - specifies the end of a main or help-type sequence in the

lesson

T6OTHS - specifies that times of student responses will be recorded

in 60ths of a second (usually recorded in minntes and

seconds)

48

42

BASE - specifies that a supplementary segment of the lesson is

to be redefined as a part of the main lesson.

UPLOW - makes both upper.and.lower. case characters as well as

special language character sets available in the lesson

C - allows author to annotate lesson

(2) "Display" Commands

These commands allow information to be shown on the student screen

WRITE or WRUSS*- allows printing (using a standard set

of characters) on :reen

CHAR - allows special characters to be designed

PLOT - displays special characters designed by CHAR

LINE - displays straight line anywhere on screen

SLIDE - displays photographic material

SHOW - displays information stored during the lesson

WHERE - specifies where on the screen WRITE, PLOT, or SHOW infor-

mation is to be presented

INHIB - inhibits certain standard TUTOR displays for special

requirements

(3) "Response" Commands

These commands specify where student responses are expected in

a lesson and how they are evaluated.

ARROW - indicates that a student response is required

ANS or ANSRU - specifies a single response which will be

accepted

WRONG or WRGRU - specifies a single response which will not be

accepted

SPELL - checks the spelling of a student's answer

JUDGE - evaluates a response (overrides prior judging)

BUMP - allows PLATO to ignore 'specific single characters which

are irrelevant (e.g., spaces or certain punctuation)

in a particular response

43

RESET - cancels prior judging options and resets judging to

standard form

MUST' - specifies words which must appear in a correct sentence-

type answer

CANT - specifies words which must not appear in a correct

sentence-type answer

DIDDL - specifies words which can be ignored in a correct sentence-

type answer

PUT - allows interpretation of specified single characters as

equivalent to other specified characters

NODUP - allows duplicate student responses to be rejected

LONG - allows responses of a specified length to be judged automa-

matically

TIME - limits the time a student has to give a response

(4) "Branching" Commands

These commands allow the author to specify the order in which units

will be arranged.

NEXT - specifies what Unit is next in the lesson (overrides linear

order)

BACK - specifies what Unit the student will go to if he presses the

"BACK" key

GOTO - gives Unit alternate forms depending on certain stored Infor-

mation

JUMP - forced branch based on a specific student response or value

of certain stored information

HELP (DATA or LAB) - allows voluntary (and temporary) branch to speci-

fied Units by using special keys

TERM - specifies information to be received on a voluntary (and

temporary) branch using the "TERM" key

50,

44

(5) "Splicing" Commands

This command allows information which is used in many parts of

the same lesson to be written only once and "spliced" in wherever

needed.

JOIN - allows insertion of statements which are

identical to those appearing in a specified Unit in the

same lesson

(6) "Calculation" Commands

These commands allow numerical and logical operations by the

student and the author.

CALC - performs a mathematical operation as a part of the lesson

ICALC - similar to CALC but performs more restricted operations

at a much higher speed

FCALC - similar to CALC but performs somewhat more restricted

operations at a higher speed

STORA - allows student to use his PLATO station as a desk cal-

culator

STORE - stores a student response (which may be alphabetic as

well as numerical)

1CALC - stores alphanumeric information

INFO - makes a record of specified stored information on

magnetic tape

CLOCK - stores the amount of time elapsed since the student

signed in for the lesson

ADD1 - increases the value of a stored number by one

SUB1 - decreases the value of a stored number by one

ZERO - sets a stored number to zero

RANDP - stores a number selected at random (without replace-

ment) from a list of integers

!PERM - sets up a list of intergers for RAW

RANDU - stores a number selected at random from a uniform

distribution

LOOP - allows multiple operations in excess of the usual limit

51

()

0 Contingencies

O

45

Suppose that a student is given a problem. more specifically, let us

suppose that the problem consists of a statement followed by several questions

which must each be answered by the student. There are four periods during the

presentation of such a task that we might want PLATO to do particular opera-

tions. These periods are:

1. when the student obtains the initial presentation,

2. when the student selects a question to answer,

3. when the student answers the question and requests PLATO's

evaluation, and

4. after PLATO has evaluated the answer.

For example we might want to:

1. display the problem and record the time at which the student

first saw the problem,

2. show a special message related to each question,

3. ignore certain irrelevant parts of a student's answer, and

4. send the student to a special review unit for certain wrong

answers.

Each of these last four operations are contingent on PLATO's being involved

in one of four basic functions of lesson presentation. They are referred to

as UNIT contingencies, ARROW Contingencies, JUDCE Contingencies and

ANSWER-TYPE (or ANS) Contihgencies.

Unit, Arrow, and Answer Contingencies

In terms of some of the basic TUTOR commands which you have already

seen, we might want to present a message to the student by means of a

WRITE command

1. when he enters a Unit

2. when he selects a particular question to answer

3. when his answer is recognized.

52

46

This is done in the TUTOR UNIT below.

UNIT QUES8
WRITE ANSWER THESE PROBLEMS

3 + 3 =

3 X 3 =

ARROW 309

WHERE 701

WRITE TAKE YOUR TIME
ANS 6

WHERE 320

WRITE .VERY GOOD
ARROW 509

WHERE 701

WRITE KEEP CALM
ANS 9

WRONG 6

WHERE 520

WRITE MULTIPLY, DO NOT ADD

When the student enters UNIT QUES8 he sees the Ressage

ANSWER THESE PROBLEMS

3 + 3 =

3 X 3 =

TAKE YOUR TIME

which was produced by the WRITE command following UNIT QUES8 and the

WRITE command following ARROW 309. Upon entry to the Unit the student

has the question specified by the first ARROW command selected for him

automatically. If he decided to try the other question first he could

press the ARROW key and he would see the message

ANSWER THESE PROBLEMS

3 + 3

3 X 3 - 4

KEEP CALM

produced by the WRITE command following UNIT QUES8 and the WRITE com-

mand following ARROW 509. In each of these cases the small arrow

53

47

indicates where the student's answer will appear. The position of the

small arrow is specified by the number following the ARROW command.

Thus ARROW 309 puts a small arrow on line 3 in the 9th space and ARROW

509 puts a small arrow on line S ih the 9th place. The ARROW command

indicates that a response is required from the student and states where

the response will appear on the screen.

In this example the message produced by the WRITE command follow-

ing the UNIT command is known as a UNIT Contingency, or UNIT-C for short.

Notice that this writing occurred when either of the two questions were

selected. In general, commands placed after a UNIT command and before

the first ARROW command in a Unit (or the next UNIT command if there

are no ARROWs in the UNIT) are activated as soon as the student enters

a Unit and stay activated (unless specifically overriden by later com-

mands) as long as the student remains in that Unit. All such commands

are termed UNIT Contingencies (or UNIT-Cs).

The messages produced by the WRITE commands following each of the

ARROW commands are known as ARROW Contingencies, or ARROW-Cs for short.

In general, commands placed after an ARROW command and before the

first answer-type (ANS-type) command (any command which specifies a

correct or incorrect answer is considered an ANS-tyot command) will be

activated only while that particular ARROW is selected. All such com-

mands are termed ARROW Contingencies (or ARROW-Cs).

Now suppose our student answers the first question by typing the

number 6. After he requests that PLATO judge his answer (by pressing

key "NEXT") his screen will show

ANSWER THESE PROBLEMS

3 3 a 6 OK VERY GOOD

3 X 3

TAKE YOUR TIME

As you might have guessed, the message "VERY GOOD" which was produced by

the WRITE command following ANS 6 is an ANSWER Contingency, or ANS-C

for short. The "OK" is produced automatically when a student's answer

48

is judged and found to match an answer listed as being correct.

There are several ANS-type commands. In general commands placed

after any ANS-type command and before the next ANS-type, command,

ARROW, or UNIT command are activated when the tag of that particular

ANS-type command matches the student response. The student response

may be incorrect, i.e. the matched ANS-type command might be the

command WRONG. For example, after answering the first ARROW

correctly the student might answer the second ARROW with the number 6.

He would then see

ANSWER THESE PROBLEMS

3 + 3 = 60K

3 X 3 = 6 NO MULTIPLY, DO NOT ADD

KEEP CALM

Notice that the prior ARROW-C and ANS-C writing is replaced by the

current ARROW-C and ANS-C message. If the student erased his in-

correct answer the "NO" and the "MULTIPLY, DO NOT ADD" messages would

also disappear. This is logical since when the student erases an

answer, the ANS-C comments no longer apply.

To review, a given command is part of a...

(1) UNIT-C if it occurs after a UNIT command and before any-----

ARROW commands in the Unit,

(2) ARROW-C if it occurs after an ARROW command and before

the first following ANS-type command,

(3) ANS-C if it occurs after an ANS-type command and before

the next ANS-type command (if any) or before the

next UNIT command.

The operation specified by a command which occurs in a...

(1) UNIT-C is activated when the student first enters the

Unit and, if a disnlay command, remains active

during the entire time the student remains in

that unit,

55

49

(2) ARROW-C is activated whenever the student selects the

given ARROW and, if a display command, remains

active while the student is on that ARROW,

(3) ANS-C is activated whenever the student's response

matches the tag of an ANS-type command.

All contingent operations are terminated as soon as the student

enters a new Unit.

Judge Contingencies

Not all TUTOR commands fit into this pattern of UNIT-Cs,

ARROW-Cs or ANS-Cs. The most obvious of these are the UNIT and

ARROW commands which are used to specify part of the boundaries of

such contingencies. These special commands actually define contin-

gencies and serve to form the basic structure of a lesson. In

practice you must examine the individual description of each command

to determine if it can be used under a particular contingency and if

so, what its effect will be.

The ANS-type commands, which are used to define the remaining

boundaries for the ARROW-Cs and ANS-Cs, fall into our fourth and

final category of contingencies. This remaining contingency occurs

during the period between the time judging of a response begins and

the time judging is completed. Usually judging Lulu after a

student enters a response and requests that it be judged (by pressing

key "NEXT"). Judging usually ends when a match to the student's

response is made to the tag of an ANS-type command or no match can

be made (and an automatic "NO" judgment is given). There are situa-

tions where we might want to alter this usual process of judging.

This is done by a special group of commands which operate solely

under the judging contingency (JUDGE-C for short).

For example, we might want to indicate to the student that he

almost matched a correct answer. The SPELL command will alter the

standard judging so that if the student's answer differs from an

accepted answer by only a few letters, the letters "SP" (for

'spelling") will be placed after the student's response instead of the

usual "OK" or "NO" judgement.

56

SO

As another example, we might not care about the manner in which

the student separates a sequence of numbers which make up the proper

response. We want to allow the student to use spaces, dashes, commas

or any other unambiguous means of separating the numbers from one

another. One way to allow this is to list as answers the correct

string of numbers separated by spaces, the same numbers separated by

commas, separated by the word "and," and so forth. A far better

approach would be to ignore any spaces, commas, dashes, etc. when

judging the student's answer. This can be done by the command BEM

whose tag contains the list of characters to be ignored.

Commands which act as JUDGE-Cs are located after the ARROW for

which the judging is to apply and before the next ARROW (if any) in

the Unit or the next UNIT command. At first thought you might expect

there to be confusion between the function of commands in these loca-

tions since ARROW-C and ANS-C commands are also located there. How-

ever, any command which can function as a JUDGE-C cannot function

under any other contingency and any command which can function as

ARROW-C or ANS-C cannot function as a JUDGE-C.

Commands such as SPELL, BUMP, ANS, WRING, etc. tell PLATO how to

go about judging a response. Other commands, such as WRITE, have nothing

to do with the operation of evaluating the student's answer. From

another viewpoint, commands such as SPELL, BIPIP, ANS, WRON(7, etc.

perform no function unless judging is in progress. They could thus

not serve as an ARROW-C, which is executed before a response is

given, or an ANS-C, which is executed after a response has been

judged to be of a given type. 'Ultimately, the best (and easiest)

way to determine the proper function of a command is to read the

description of that command located at the end of this chapter.

These descriptions specify under which contingency or contingencies

each command may be used

Once judging of a response to a particular ARROW is begun,

each of the commands following the ARROW command is examined.

Commands other than JUDGE-C commands are ignored. When an ANS-type

command is found the tag is matched against the students response.

Judging halts as soon as an exact match is found. If the command is

another type of JUDGE-C, judging is altered in compliance with the

57

TrIlVD740.

C

0

0

51

directions of the JUDGE-C command and judging is continued to the next

command. You can see that it is possible (and often desirable) for

the author to alter the judgingseveral times if necessary before

a match is found. For example, consider an ARROW for which the

correct answer is the number 23. Say that the

ARROW 201

WHERE 220

WRITE SECOND ITEM
ANS 23

SPELL
BUMP
ANS TWENTYTHREE
ARROW 301

student has typed "TWENY THREE" and pressed key "NEXT" to request

that this answer be judged. PLATO begins checking all the commands

following ARROW 201. The WHERE and WRITE commands form an ARROW-C

(which was activated when ARROW 201 was first selected), hence,

they are ignored. ANS 23 is an ANS-type command so PLATO checks to

see if "23" matches the student's response (TWENY THREE). Since it

does not match, PLATO continues to the next command, SPELL, which is

a JUDGE-C that tells PLATO to alter its judging to accept slight

mismatches as possible misspellings. The following command, BUMP, is

also a JUDGE-C and tells PLATO to discard spaces and dashes in the

student's response. At the next 'NC command PLATO can thus look at

"TWENY THREE" and identify it as a possible misspelling of the

acceptable answer "TWENTYTHREE." The student would then see the

letters "SP" placed beside his answer. Because of the BUMP command,

PLATO would have accepted either "TWENTYTHREE", "TWENTY-THREE" or

"TWENTY THREE" as correct responses.

Up to this point the terms UNIT-C, ARROW-C, etc. :lave been

used to mean a single command whose activation was contingent upon

PLATO being involved in one of four basic functions of lesson pre-

sentation. From now on these same terms may also refer to a group

of commands which are similarly contingent

52

TUTOR Variables

In the first se:tion of this chapter several references were

made to "stored information" or "stored numbers." For example, it

might be necessary to keep a record of the first name of each student

so PLATO could say "you are doing very well, George' at some appro7

priate point in a lesson. In order to know if PLATO should tell

George that he was "...doing very well..." it would also be necessary

for PLATO to keep track of how marry wrong answers George has given

during the lesson. Such information as the name "George" and the

number "12" (George's total wrong answers) can be stored during a

TUTOR lesson in storage spaces known as "TUTOR variables."

Chapter 6 will give you a more detailed description of how TUTOR

variables work and how to use them. For now it will be enough to know

that each adent has 63 such storage spaces (variables) which can

be referred to in a TUTOR lesson. Three types of information can

be stored in these variables:

1) groups of alphabetic symbols like "GEORGE", "TEST 42",

'JULY 29", "WHAT?", etc.

2) integers ("whole numbers") like "12", "1984", etc.

3) numbers with decimal fractions like "12.0", ".002",

"45.7324", etc.

The type of information stored in a TUTOR variable is indicated by a

"format code letter" which precedes the identification number rf the

variable. For example,

A20 indicates that TUTOR variable 20 contains Alphabetic or

"wurd" information,

132 indicates that TUTOR variable 32 contains an Integer number,

F63 indicates that TUTOR variable 63 contains a number with a

decimal Fraction. (If you nave computer programming

experience, you may prefer to remember this as a Floating

point number.)

When a TUTOR variable is used (say to store information received

from a student) the author defines the format of the variable to

match the type of information being stored. Thus, if a student is

59.

(

ttlieMnavers.

C

C

S3

asked to type his first name and we wish this name to be stored in

TUTOR variable 20, we would use the statement "STORE A20" in our

lesson. On the other hand, say we wanted to use variable 20 to

make a note of his answer to the problem "2X5= ." The command

"STORE 120" would be used to store his response, since the expected

answer would be an integer. Finally, if we wanted to use variable

20 to store the students answer to a problem which would involve a

decimal fraction, we would use the statement "STORE F20" in our

lesson. Although expresions like "variable 120" and "variable F20"

are often used for convenience, remember that "120" and "F20"

actually refer to only one variable.

PLATO uses the TUTOR variables of each individual student

whenever a reference to a TUTOR variable is encountered in a lesson.

Thus one student might be sent to a remedial Unit bxlcause his TUTOR

variable 30 shows that he has made an excessive number of mistakes in

a review test. Another student on the same lesson might be allowed

to continue because his variable 30 shows a small number of mistakes.

A TUTOR variable with an "A" format can contain up to 8 sym-

bols--letters, numbers or punctuation marks. Whatever letters,

numbers, etc. are contained in a variable having an "A" format, it is

important to remember that they will be treated only as symbols.

Thus it would be possible to store a number like "125" in TWOR

variable 15 with an "A" format but the author could not do the same

meaningful arithmetic operations that he could do if "125" had been

stored with an "1" format. You might say that PLATO does not recog-

nize that the symbols "1", "2", "3", etc. represent numbers when

they are stored with an "A" format in a TUTOR variable, Ne will have

more to say about the different formats used by TUTOR variables in

Chapter 6.

Individual Commands

The remainder of this chapter consists of single page descrip-

tions of each of the TUTOR commands. Each description consists of

six sections:

60)

54

(1) COMMAND: The command itself. The command specifies a

given type of operation to be activated during

a lesson.

(2) TAG: The additional information (if any) used with

the command to specify the exact operation to

be performed when the command is activated

during the lesson.

(3) OCCURRENCE: The contingencies under which the command can

be used, i.e. UNIT-C, ARROW-C, ANS-C, JUDGE-C

or SPECIAL. Earlier in this chapter there

is a complete discussion of the idea of TUTOR

contingencies. In the case of SPECIAL com-

mands, the OCCURRENCE section explicitly

describes the situation under which the com-

mand is used.

(4) EFFECT: a description of what occurs when the command

is activated.

(5) COMMENTS: special notes about the use or restrictions

in the use of the command.

(6) EXAMPLE: a demonstration of the use of the command in

a TUTOR lesson.

The next page shows he TUTOR commands in llphabetical order

listed with the coatingencies under which they can operate.

61

55

Alphabetic Indes:-of TUTOR-Commands

Command UNIT-C. ARROW-C ANS-C JUDGE-C SPECIAL

ACALC X X X

ADD1 X X X
ANS X

AREA X

ARROW X

BACK X

BASE X
RUMP X

C X
CALC X X X

CANT X

CHAR X

CLOCK X X X

DIDDL X

END X

FCALC X X X

GOTO X X X

HELP. X X X

ICALC X X X

INFO X X X

INHIB X X

IPERM X X X

JOIN X

JUDGE X

JUMP X X X

LINE X X X

LONG X

LOOP X

MUST X

NEXT X X

NODUP X

PLOT X X X
PUT X

RANDP X X X

RANDU X X X
RESET X

SHOW X X X

SLIDE X X X

SPELL X

STORA X

STORE X

SUB1 X X X

TERM X

TIME X X X

T6OTHS X

UNIT X

UPLOW X

WHERE X

WRITE X X X

WRONG X

ZERO X X X

I

E2

COMMAND:

TAG:

OCCURRENCE:

EFFECT:

COMMENTS:

EXAMPLE:

ACALC

ACALC

A TUTOR alphanumeric variable followed by an equal sign and
up to 8 alphanumeric characters. Indirect referencing
chapter 8) is permitted.

UNIT-C, ARROW-C, ANS-C

The characters to the right of the equal sign are stored
in the variable on the left of the equal sign.

This command allows the author to store any combination
of up to 8 characters in a TUTOR variable. It is parti-
cularly useful in providing labels for Litudent data
produced by the INFO command.

. This Unit produces data records which summarize a student's
performance on a previols test. The number of correct
answers is stored in 112; the number of wrof.g answers
is stored in 113. Note that preceding blank characters
are used in the ACALC command so the labels will be lined
up with the "I" format numbers beneath.

. UNIT SUMMARY
ICALC 114 g 112 + 113
ACALC A2S mi. TOTAL
ACALC A26 18 RIGHT
ACALC A27 WRONG
INFO A25, A26, A27
INFO 114, 112, 113

JONES 35.26

JONES

The data records below indicate the type of output Unit
SUMMARY would produce.

SUMMARY 1 INFO TOTAL

35.27 SUMMARY 1 INFO 75

63 .

RIGHT WRONG

64 11

ADD1

COMMAND: Arm

TAG: A single TUTOR integer variable. Indirect referencing
(chapter 8) is permitted.

OCCURRENCE: UNIT-C, ARLOW-C, ANS-C.

EFFECT: Increases by 1 the value of the variable listed in the tag.

EXAMPLE: In this example ADD1 is used as an answer contingency
controlling IS (which .is used here as a "corrects" counter).
Notice in UNIT LAST that the WHERE command gives the begin-
ning position of an 8 charucter field. The values of IS
and 16 will appear st the right of this field.

UNIT BEGIN
ZERO IS

ZERO 16

WRITE THIS LESSON CONS: STS OF 35
PROBLEMS

UNIT PROM
WRITE WHAT IS.
ARROW 1010
ANS

ADD1 IS

JUMP PROB2
WRONG
ADD1 16

JUMP PROB2'

END
. UNIT
WRITE

LAST
YOU ARE NOW FINISHED.
OF THE 35 PROBLEMS
YOUR SCORE IS...

CORRECT...
WRONG

WHERE , 504

SHOW IS

WHERE 604

SHOW 16

4

ANS

COMMAND: ANS

TAG: The author's answer (a "correct answer")

OCCURRENCE: JUDGE-C

EFFECT: While judging, if the computer matches a student's response
with the author's ANS tag, an "OK" will be placed after the student's
answer. Then aiy Answer-type contingencies following the ANS
command are performed.

COMMENTS: Any number of ANS or WRONG commands can be placed after
any Arrow. An ANS command with a blank tag is termed a
"universal answer" and will also, ist answer that does not match
any of the other ANS or WRONG tags to be scored "OK". All arrows
leust have "OK" responses before the student is permitted to go to
the next UNIT. The tag of the first ANS command after the Arrow
provides the "correct" answer that the student sees if he presses
the ANS key. If answers will exceed about 20 characters see the
discussion for LONG. Where the student's answer iG given in
Cyrillic characters, the command ANSRU should be used
instead of ANS.

EXAMPLE: On the first question either "FOUR" or "4" is accepted as
"OK". The second question will accept anything but "PURPLE" as
correct. If "FOUR" is given on the first question he WRITE tag
appears on line 17 (as an Answer contingency).

WRITE WHAT IS 242?
WHAT COLOR ARE YOUR EYES?

ARROW 113

ANS 4

ANS FOUR
WRITE THAT'S CORRECT BUT WHY SPELL IT OUT?
ARROW 226

ANS
WRONG PURPLE
WRITE I UONT BELIEVE YOU

6r-

IN9*.1:10,007"..AVM

0

AREA

COMMAND: AREA

TAG: Up to 32 characters.

OCCURRENCE: First command in the first Unit of a lesson.

EFFECT: Provides a lesson title which allows identification and

selection of a lesson by authors and system personnel.

COMMENTS: Authors may test any lesson which has been read into the

computer by "signing in" under the name "STUDENT."

After signing in this way (or with student records which

list no Lesson name), the author sees a choice table

listing the AREA tags of all Lessons which are then in

the computer. The author can thereby enter a lesson.

. EXAMPLE: UNIT GEOM1

AREA TRIANGLE EVALUATION BY G. P. SMELL

C GEORGE P. BURDELL
APRIL 1, 1969

COMMAND: ARROW

TAG:

ARROW

1. A 4-digit number specifying a point on the screen. The
first 2 digits specify one of 18 lines (01 through 18) and
the second 2 digits specify one of 48 spaces (01 through
48) on this line. Thus 0148 specifies a point in the upper
right corner of the screen. The first of these 4 digits may
be omitted if it is zero, i.e., 0101 and 101 both specify
th, upper left corner of the screen.

2. When finer control of location is desired, a tag con-
sisting of two numbers (separated by a comma) can be used.
The first number specifies one of 170 vertical positions
(0 is the top position). The second number specifies one
of 240 horizontal positions (0 is the left of the screen).
Standard characters used in TUTOR are written within a rec-
tangle 10 units high and 5 units wide. Thus, to position an
arrow between lines 10 and 11 and between spaces 4 and 5
(in terms of "single-number" coordinates) the statement
ARROW 95,17 would be used.

OCCURRENCE: After all UNIT contingencies

EFFECT: An arrow is displayed at the point specified by the tag.
The first ARROW command in a UNIT marks the end of Unit
contingencies in that UNIT. Each ARROW command ini-
tiates any Arrow and Judge contingencies that might be present.

COMMENTS: Up to 20 ARROW commands can be used in each Unit. Student
responses are displayed to the right of the arrow on the
screen. Some type of answer command must follow every
ARROW command for use in the Judge contingency. The stu-
dent may answer any "arrow" first by pressing the "ARROW"
key until the desired arrow is selected. Generally the
student must satisfactorily answer all "arrows" before
proceeding. Orly one arrow appears at a time.

EXAMPLE: In the example below the first WRITE is a UNIT contingency
while the other WRITE commands are Arrow contingencies and
occur only when the specified arrow is selected. Note
that the two WHERE tags have the same effect. The student's
response appears at 0204 for the first ARROW and 0213 for the
second since a space is automatically inserted after
the arrow.

UNIT TEST4
WRITE PUT AN X BESIDE 1 AND A Y BESIDE 2

1 2

ARROW 0202
WHERE 0301

WRITE PUSH THE X KEY
ANS ,X
ARROW 211

WHERE 301
WRITE PUSH THE Y KEY
ANS

67

BACK

COMM.AND: BACK

TAG: A UNIT name. Assigned
Operations (Chapter 7) and Indirect

Referencing (Chapter 8) are permitted.

OCCURRENCE: MNIT-C

COMMENTS: When the BACK key is pressed by the student, he is

shifted to tho UNIT specified by the BACK command tag.

If tho student presses
BACK again, he is shifted to the

UNIT mentioned in a BACK command in this "BACKUP" UNIT.

This process continues until the student reaches a UN1F

lacking a BACK command. When the student presses the SHIFT AND

NEXT key in any of the BACKUP UNITS, he will immediately

return to the MAIN UNIT he was working on.

EXAMPLE:

UNIT ST1

AREA STUDY ONE

BACK NOBACK

WRITE HELLO. TODAY WE SHALL...

UNIT ST2

BACK ST1

WRITE .

BASE

COMMAND: BASE

TAG No tag is used

OCCURRENCE: UNIT-C

EFFECT: Defines Unit as the student's base Unit regardless of how
the student got to that Unit

EXAMPLE: This Unit permits a student to select various sub-lessons
from any point in a lesson o: sub lesson by pressing kev
TERM and typing "CHOOSE". Ihe student's restart records
will reflect his actual position in the lesson (i.e.,
Unit SELECT) rather than the Unit :.rom which Unit SELECT
was entered.

UNIT SELECT
TERM CHOOSE

BASE
WRITE PRESS KEY... FOR

A V,A,TOR ADDITION. LESSON

B VECTOR SUBRRACTION LFSSON
C VECTOR MULTIPLICATION LESSON

ARROW 1020

LONG 1

ANS A
JUMP : ADDA
ANS B

JUMP , SUBA
ANS C
J1J4P MULTA
ANS
JUDGE IGNORE

r,,,VCAMI

BUMP

COMMAND: BUMP

TAG: A list of characters to be ignored in the answer,

OCCURRENCE: JUDGE-C

COMMENT: The characters designate in the tag are "bumped" from the

student's answer for judging. Thus, if some characters are

irrelevant but may appear in a student's ariswer, they may be

ignored in his answer during judging. Although the characters

are "bumped" for judging, the student's answer on the screen remains

untouched. If a space is to be '.eumped", it must be the first

character in the.tag. Note that _sea character in the list will

be bumped. Therefore you should not include anything (such as

commas, dashes, etc.) in the list which you don't want ivored.

EXAMPLE:

UNIT MATHS
WRITE WHAT ODD NUMBERS ARE

BETWEEN 1 AND 8?

ARROW S10

BUMP ,AND

ANS . 357

()
COMMAND: C

TAG: A message wiCn any number of 60 character lines.

OCCURRENCE: Anywhere in a lesson.

COMMENTS: Messages in the tag of a C command will appear only in
the printed copy of a lesson or during on-line editing
of the lesson. These messages will not affect student
operation. The main use of the command Ls for annotation
of lessons for systems and author use, Months after a
lesson is written, these notes will remind the author
and inform new programmers why something was done the way
it was.

EXAMPLE:

0

This Unit uses the C command to Identify the lesson
author and indicate the use of a variable,

UNIT Al
AREA BURDELL'S LESSON
C GEORGE P. BURDELL

APRIL 1, 1969
ZERO 140
C 140 CONTAINS TOTAL CORRECT ANSWY,1S

COMM): CALC

TAG:

CALC

A TUTOR variable folloWed by an equal sign and an arithmetic

expression. The arithmetic expression nay consist of con-

stants, TUTOR variables, and operation symbols. All of the

constants and TUTOR variables may be either integer or

floating point. Indirect referencing (Chapter 8) is per-

mitted

OCCURRENCE: UNIT-C, ARROW-C, ANS-C

EMU:

COMENTS:

EXIMLE:

The value of the arithmetic expression is placed in the

variable to the left of the equal sign. Operation symbols

permitted are:

(addition)
(subtraction)
(multiplication)

/ (division)

R (square root)

S (sine)

C (cosine)

L (natural log)

E (e)

Parentheses are not permitted

R,S,C,L and E operations are done first, all * and /

operations next and all + and - operations last. Operations

at the same level (e.g. + ar.d -) are preformed in order from

left to right.. Nathematital errors casue a zeru to be

placed in the variable to the left of the equal sign. Values

greater than 9,999,999,999 are not permitted. Rounding fol-

lows scientific convention (i.e. CALC ISml.S. would set 75=2).

If faster operation or romding by truncation is desired, see

PCALC and ICALC commands.

The CALC commands and tags listed In the

equivalent to the algebraic expressions or operations listed

in the right column.

left column are

1722m124.26476/42

F30236+1,45*E4

FII.SI7*9I7+CI5 *C15

1231223 round the, value of F23
to the nearest whole
number.

COMMAND; CANT

TAG: A list of words separated by commas

OCCURRENCE: JUDGE-C

EFFECT AND
COMMENTS:

EXAMPLE:

CANT

Use with MUST and DIDDLs (which see) in sentence judgers. If

any woad in the tag of a CANT appears in a student's response,
it is overwritten with X's and the student's response is judged
wrong. In addition, any WRITE, SHOW, JUMP, or other answer
contingent commands immediately following the CANT are executed.
The CANT command is provided so that you can base contingencies
on particular foreseen errors. You may have several CANTs in a
sentence judger, each with its own contingencies.

UNIT
WRITE
ARROW
MUST
CANT
WRITE
CANT
WRITE

FARMI8
NAME SOME DOMESTIC FARM ANIMALS.
510
COW,HORSb,CHICKEN,...
DEER,PHEASANT,...
'MIS IS A WILD ANIMAL
CORN,WHEAT,..,
THIS IS A PLANT, NOT AN ANIMAL.

(See also the DIDDL command)

COMMAND: CHAR

CHAR

TAG: First line: a name for a special character (up to 7
letters long).

Following lines: up to 64 4-digit octal numbers sep-
arated by r:ommas.

OCCURRENCE: Within any UNIT of a lesson (not necessarily the same UNIT
in which it is used).

EFFECT: Allows a special character to be designed for a particular
lesson.

COMMENTS: Special characters are displayed during the lesson by the
PLOT command (which see). The CHAR command is used to
design special characters which are to be used in addition
to the Chartxters in one of the standard character sets.
Characters larger than the standard ones can be designed
but you should seek expert advice before doing so.

Tho CHAR command specifies the points which are arranged
within a standard area to form the shape of the desired
special character. This area with its pattern of
illuminated points can be positioned on the screen by a
WHERE command.

Each point of a character is specified by a 4-digit octal
number. The first 2 digits give a horizontal position
and the second 2 digits give a vertical position.
Horizontal positions for the standard characters range
from 30 (left edge of character) to 36 (right edge of
Character). Vertical positions range from 44 (top) to
61 (bottom).' Position 57 is just above the standard line
when the "single number" WHERE command is used. Remember
that these positioh numbers are expressed in octal notation,
hence there are no positions 48, 49, 58, Or 59.

EXAMPLE: This is how the prosently used upper case "L" tppears when
written with a CHAR statement. The standard characters are,
of course, directly available to the author through use of
the WRITE command. In fact, Unit 83 and 84 below would look
the same to a student. Remember that continuation lines are
specified by a "blank" command.

UNIT WHATSIS
CHAR ' LCAP

3044,3045,3046,3047,3050,3051,3052,3053
3054,3055,3056,3656,3457,3157,3257,3357
3457,3557,3657

CLOCK

COMMAND: CLOCK

TAG: TUTOR integer variable

OCCURRENCE: UNIT-C, ARROW-C, ANS-C

EFFECT: The time elapsed (in 60ths of a second) since student sign-in
is placed in the TUTOR integer variable specified by the tag.

EXAMPLE: Variable 112 has the elapsed time at which the student first
saw the problem and variable 113 1.s the elapsed time at

which he correctly solved the problem. The time in seccnds

spent on the problem is stored in 120.

UNIT PROB2
WRITE WHAT IS 2+2?
CLOCK 112

. .

ARROW 1020

ANS 4

CLOCK 113

CALC 120=113/60-112/60
WRONG
WHERE 1101

WRITE WRONG,TRY AGAIN

DIDDL

COMMAND: DIDDL

TAG: A list of words separated by commas

OCCURRENCE: JUDGE-C

EFFECT and
COMMENTS: Used with MUSTs and CANTs (which see) in sentence judgers. Any

words in the tag of a DIDDL are peraitted to be present in the
student's response, but are not required to be so. A DIDDL with
no tag, if given as the last command in d sentence judger, has
the effect of permitting any words whatever (other than those
in the tags of CANTs) to be present in the student's response.
If a word appears in the student's response which is not a
MUST word or a DIDDL word, it is overwritten with X's and the
response is judged wrong.

EXAMPLE: The ANS command is included so PLATO has something to display
if the student presses the ANS key. Note that the ANS-C for
a correct answer appears after the first MUST command. UNIT
EXTRA has a general DIDDL list which can be referenced from
many different UNITs by using the JOIN command.

EXAMPLE: UNIT NURSE
WRITE DIABETES IS A RESULT OF A MALFUNCTION

IN THE...
ARROW 1001
ANS ABILITY TO METABOLIZE SUGAR
MUST METABOLISM, UTILIZATION, BURNING, TOLER'.TION,

METABOLIZE, UTILIZE, USE, BURN, TOLERATE
WRITE VERY GOOD
MUST SUGAR, SUGARS, GLUCOSE, GLYCOGEN
CANT FAT, FATS, PROTEIN, PROTEINS, VITAMIN,

VITAMINS, CELLULOSE
WRITE YOU MUST BE THINKING OF A DIFFERENT DISEASE
DIDDL ABILITY, CAPABILITY
JOIN EXTRA

END
UNIT EXTRA
DIDDL A,AFTER,AN,AND,ARE,AT,BEFORE,BY,

CAN,DURING,POR,FROM,IF,IN,INTO,
IS,IT,MAY,OF,ON,OR,SHE,SHOULD,SINCE,
THAN,THE,THEN,THERE,THROUGH,TO,TRY,
USE,WHEN,WILE,WITH.

END

COMMAND: END

TAG: A black tag is used

OCCURRENCE: At end of a UNIT. Occurs in last UNIT of a main sequence
program and in last UNIT of each HELP sequence.

EFFECT: Causes "end of lesson" message to appear on the screen when
the student tries to proceed from a main sequence UNIT ioAowed
by an END command. If UNIT is last of a HELP sequence, the
student is returned to the main sequence when he tries to
proceed.

COMMENT: HELP and TERM units beyond the END command are accessable only
by direct student request (via keyset) or JUMP type commands.
If no END command appears in a lesson, PLATO acts as if there
was one at the end of the last unit in the lesson. This command
is useful for isolating UNIT6 which are used in branching op-
erations from the main sequence UNITs.

EXAMPLE: In this example the lesson ends after UNIT SP1-3. The HELP

sequence for UNIT SP1-2 consists of UNITs HELP-3 and HELP-4.
The END command in HELP-4 terminates that HELP sequence. The

HELP sequence for SP1-3 consists of a single UNIT, HELP-5.

UNIT SP1-1

UNIT SP1 -2

HELP HELP-3

UNIT SP1 -3

HELP HELP-5

END
UNIT

UNIT HELP-3

TERM-1

FCALC

COMMAND: FCALC

TAG: A TUTOR variable followed by an equal sign and an
arithmetic expression.. The arithmeti:.expression may
consist of (a) a single constant or variable, or (b) two
constants or variables separated by .an operation symbol.
All of the constants and .TUTOR variables may be either
integer or floating point. Indirect referencing (Chapter
8) is pei

OCCURRENCE: UNIT-C, ARROW-C, ANS-C

EFFECT: The value of the arithmetic expression is placed in the
variable to the left of the equal sign. The only operation
symbols allowed are + (for addition), - (for subtraction),
* (for multiplication), and / (for division). When an
'integer variable is used on the left of the equal sign,
fractional parts of the value of the arithmetic expression
.re ignored (e.g. FCALC 19.20.9 would set 19.20).

COMMENTS: The FCALC command is performed faster than a comparable
CALC command. Note that-an FCALC command which contains
only integer variables and constants.could be replaced by
a corresponding.ICALC command, which would be more efficient
and performed still faster. Integer constants must be
less than 32,767.

EXAMPLE: The following calculation sequence demonstrates.several
permitted types of FCALC expressions. Note that any
fractional part of the expression F4+25.5 in the second
12,ALC command will be ignored.

UNIT
FCALC F510.3
FCALC 16F4+25.6
FCALC F7F10-19
FCALC Ill6 *F7
FCALC F1225/18
FCALC :14.75256.

The last !TALC indicates one proper procedure for c &ses
Ayr* an integer constant greater than 32,767 is required.

C)

Cu 'fl

COMMAND: GOTO

TAG: A UNIT name
Assigned Operations (Chapter 7) and Indire_t Referencing
(Chapter 8) are permittti.

OCCURRENCE: UNIT-C, ARROW-C, and ANS-C

EFFECT: Commands in the named WIT are used to Lx,plete the current UNIT.
The student remains in the current UNI1. ('ca. ands in the current

UNIT which follow an executed GOTO co, Ina are never reached
(unlike the JOIN command).

EXAMPLE: Both UNIT DEFINE and DEFINE2 do the sare thing but DEFINE2
uses the Assigned Operation option.

UNIT DEFINE UNIT DEFINE2
WRITE PRESS THE NUMBER WRITE PRESS THE NUMBER

FOR THE WORD :: FOR THE WORD
YOU WANT DEFINED YOU WANT DEFINED
1 ALLELE 1 ALLELE
2 ALBINO 2 ALBINO

. .

() ARROW 1835 ARROW 1835

LONG 1 LONG 1

ANS 1 STORE 12

GOTO ALLELE ANS
COTO

JUDGE
WRONG : .7. :

JUDGE IGNORE H . .

.

.

UNIT
WHERE 1701
WRITE ALLELE IS A TERM MEANING

12,X,X,ALLELE,ALBINO,...
IGNORE

The GOTO command is ideally suited for looping operations (sea

Chapter 1l)
I

44, v war, srt Sr vry

COMMAND:

TAG:

OCCURRENCE
and EFFECT:

HELP

HELP or HEL?1, LAB, LABI, DATA, DATA1)

'A UNIT name. Assigned operations (Chapter 7) and indirect
referencing (Chapter 8) are permitted.

UNIT-C: Establishes a GENERAL HELP-type sequence for aUNIT. When the student presses the HELP key, he is branched
to the UNIT mentioned in the HELP command tag. The stu-
dent can then press NEXT to continue through the HELP
sequence UNITS. When the student presses the NEXT key
on the last HELP sequence UNIT or presses the SHIFT and
BACK keys at any time in the HELP sequence, he will return
to the MAIN UNIT frl where he asked for HELP. This
MAIN UNIT wit. arpear as the student left it.

ARROW-C: Ovarrio s any UNIT-C HELP-type sequence present.

ANS-C: The student is immediately jumped into the HELP-
type sequence if his answer matches the ANSWER-TYPE
command starting the ANS-C.

COMMENTS: Commands HELP1, LAB, LAB1, DATA, DATA1 all perform in the
same way that HELP does except that a different key is
used for each. HELP1, LAB1, or DATA1 commands are
executed when both the SHIFT key and the HELP, LAB, cp..
DATA keys are pressed. The last UNIT in each HELP-type
sequence mat have an END command as its last command.

UNIT StAMPAL1 is the GENERAL HELP for UNIT 2C0L17. However,
when the student is on ARROW 515, UNIT SPRING' becomes
the HELP. On ARROW 615 the student will Immediately be
sent to UNIT SUMFAL1 if he answers "PARROT".

EXAMPLE:

UNIT ECOL17
WRITE NAME BIRDS THAT WOULD BE

FOUND IN ILLINOIS WOODS IN
THE INDICATED SEASON.

SPRING -

SUMMER
HELP SUMFAL1
ARROW
HELP ' SPRING'
MUST , ' CARDINAL,. BROWN THWASHE
ARROW 61S

MUST OVENBIRD, BLUEJAY,..
CANT I PARROT
HELP ;SUMPAL1

COMMAND: ICALC

TAG:

ICALC

A TUTOR integer variable followed by an equal sign and an

arithmetic expression. The arithmetic expression may consist

of either
(a) a single integer constant or variable, or
(b) two integer variables or constants separated by an
cneration symbol.
Inarect referencing (Chapter 8) is permitted.

OCCURRENC: UNIT -C, ARROW-C, ANS-C

EFFECT: The value of the arithmetic expression is placed in the
variable to the left of the equal sign. The only operation
symbols allowed are + (for addition), - (for subtraction),

* (for multiplication), and (for divition). The'remainder

in a division operation is ignored (e.g. 7/4 is interpreted
as equal to 1).

COMMENTS: The ICALC command is performed in less than 1/10 the time
needed for a comparable CALC command (which see). Thus, in
lessons which use extensive calculation routines, use of ICALC
rather than the more flexible CALC command will result in fewer
noticeable delays. Integer constants must be less than
32;167.

EXAMPLE: The following calculation sequence demonstrat:n several per-
mitted types of ICALC expressions. Note that any remainder in
the division operation will be ignored.

UNIT COMP3
ICALC .:16g10

' ICALC IS14+2S
ICALC ' 17110-19
ICALC 18E16.17
ICALC 1122S/18

INFO

COMMAND: INFO

TAG: A list of up to 10 TUTOR integer variables separated by commas.

OCCURRENCE: UNIT-C, ARROW-C, ANS-C

EFFECT: Whenever this command is encountered in a lesson (and collection
of data on tape unit 4 has been requested), a recaridth the
specified variables in placed on tape unit 4.

COMMENT: Format of the record is similar to that of the standard student
data record except that the word "INFO" appears instead of the
response judgment (e.g. NO,SP) and a list of integer variables
appears in the area where the student answer normally appears.

EXAMPLE: IS contains total correct answers while 16 contains total
requests for Help during the preceding lesson. The universal
wrong prevents the student from proceeding beyond this unit.

UNIT ENDIT
WRITE THIS IS THE END OF THE TEST

HOW WELL DO YOU THINK YOU DID?
INFO 15,16
ARROW 401
LONG $OO
WRONG

JUDGE ' IGNORE
The following typical records might be produced on tape 140.t
4. Notice that values of the variables are right-justified
in an 8-space field.

25 126
REALLY GREAT

INHIB

COMNIAND: INHIB

TAG: NEXT, NORING, ANSWER, ARROW, and/or OKNO

CONTINGENCY: UNIT-C: (NEXT and NORING tags only)

ARR,.:W-C: (ANSWER, ARROW, and OKNO tags only)

EFFECT: Affects standar0 TUTOR student feedback options as follows

NEXT The message -PRESS NEXT- will not appear on line 18(usually appears as soon as the studeg-has
satisfactorilyresponded to all ARROWs in the UNIT)

NORING - Student keyset light will flash when student pressesany key which is not acceptable
in that UNiT (e.g., when the"HELP" key is pressed in a UNIT for which no HELP is provided).This light is not normally used for TUTOR lessons.

ANSWER - Student will not be able to receive the correctanswer by pressing theTiRS" key (he normally can).
,

.

ARROW - An arrow will
not be displayed at the position on thescreen where a response expected (it normally is).

OKNO - Messages: OK, NO, SP, DP , etc. will not appear afterresponse is judged
correct, incorrect.; thisspelled, a dupli-cate, etc.

These options are t.sed for special effects where the standard
feedback might be inappropriate. The ARROW-C options shouldbe used cautiously since the feedback they inhibit is cftenuseful to the author in finding errors 'in his lesson writinq.It is probably best to limit use of the ARROW tag, for example,to UNITs which have only one ARROW.

This Unit accepts anything as an answer, hence the "ANS" keyand the messages OK or NO 8T3 inappropriate. No -PRESS NEXT-message will appear at the bottom of the screen after thestudent has "judged" his entry by pressing Key "NEXT".

CONMENTS:

EXANWLES:.

hRITE WHAT IS YOUR FIRST NAME? PRESS KEY -NEXT-
''AFTER YOU HAVE TYPED IT.

ARROW 305
INHIB OKNO,ANSWER

rr.

0

Cf.MAND: IPERM

IPERM

TAG: A single TUTOR integer variable or an integer constant.
Indirect referencing (Chapter 8) is permitted.

OCCURRENCE: UNIT-C, ARROW-C, ANS-C

7.FFECT: .Fixes the upper bound to a set of integers from which subsequen
selections are to be made at random without replacement. (The

lower bound to the set is always on 1.) For example, IPERM 5
makes the set of integers 1,2,3,4 and 5 available for subsequent
selection. (The actual selection is accomplished by means of th
RANDP command, which see). The maximum value the tag may have i

JOIN
COMMAND: JOIN

TAG: A UNIT name

Assigned Operations (Chapter 7) and Indirect Referencing(Chapter 8) are permitted

OCCURRENCE: Anywhere in a UNIT

EFFECT: Inserts the cvntents of the specified UNIT into the currentUNIT. The student remains in the current UNIT.

COMMENTS: This command is useful when certain sequences of commands
appear frequently in the same lesson. The sequence iswritten once and placed in a special UNIT which is "JOINed"to other UNITs as needed. ARROW commands must not appearwithin a UNIT which is JOINed to other UNITs. JOINed UNITsmay also have JOIN commands within them. Such "nesting" ofJOINed UNITs cannot be more than 6 deep.

WI TEST gives a student randomly drawn problems inaddition, subtraction, and multiplication. The first twoRANDU statements select numbers between 1 and 99 for usein the problem. The third RANDU statement selects anumber between 1 and 3. This number is used by a laterJOIN statement to set the rules - addition, subtraction,
or multiplication - for the problem. The last JOIN
statement attaches a perfect match judger to WIT TEST.

EXAMPLE:

UIIT TEST
NEXT TEST '

JOIN EXPLAIN
RANDU 11,99
RANDU 12,99
RANDU 13,3
WHERE 911

WHERE 916
SHOW I 2

WHERE 920
JOIN 13,i, X, ADD,SUB , MULT
WHERE 925
WRITE
ARROW 927 "

JOIN . J LI)GER

,

UNIT EXPLAIN
WRITE , DO THIS PROBLEM...
C
UNIT
CALC 14s-11+12
WRITE
C
MIT SUB
CALC 14=11-12
WRITE
C
hilT MULT
CALC I 14a11X12
WRITE.
C

UNIT JUDGER
STORE 15
ANS
CALC 16a15-14
JUDGE 16 ,NO,OK,NO

JUDGE

COMMAND: JUDGE

TAG: OK, NO, or IGNORE
Assigned Operations (Chapter 7) and Indirect Referencing
(Chapter 8) are permitted.

.

OCCURRENCE: ANS-C (Must follow an answer-type command, e.g. ANS, WR)NG,

EFFECT: Judging by the preceding answer-type command is overridden.
New judging is based on the tag; (1) OK-(judge the response
"OK"), (2) NO-(judge the reponse "NO"), (3) IGNORE-(eraze
the response and ignore it).

EXAMPLE: Both of the UNITS below ignore answers which are less than 1
or greater than 5. Answers 1, 3, or 5 are judged NO while
2 or 4 are judged OK. UNIT EVENT uses the assigned operation
option.

UNIT EVEN :-.-;..:.,:. ,.. - (RUT EVENT
WRITE TYPE AN EVEN NUMBER WRITE TYPE AN EVEN NUMBER

BETWEEN 1 AND S ; BETWEEN 1 AND 5
THEN PRESS - NEXT THEN PRESS - NEXT

... ARROW i' 520 :''::' '-:':
' ,

,, ARROW 520

' ANS : 2 ' STORE 15

ANS ,',, 4 .-. ANS
WRONG 1 JUDGE 15, IGNORE, IGNORE, NO,

WRONG : 3 : : ,_...-. OK, NO, OK, NO, IGNORE
WRONG 5

WRONG ''- -'7:..

: IGNORE

17Wiekt-sarioar.,

COMMAND: JUMP

JUMP

A UNIT name

Assigned Operations (Chapter 7) and Indirect Referencing
(Chapter 8) are permitted.

OCCURRENCE: UNIT-C, ARROW-C, and ANS-C

EFFECT: Forces an immediate branch to the specified UNIT. The student
automatically leaves the UNIT in which the JUMP command is en-
countered ar.d enters the specified UNIT.

EXAMPLE: Both UNITS perform the same function but MED-42 uses the
assigned op^ration option,

UNIT
WRITE

MED-41

WHAT DATA DO YOU WANT?
1) HER HEART RATE
2) HER BLOOD PRESSURE
3) HER TEMPERATURE
320

MED-78
2

NED-P4
3

MED-87

UNIT MED-42
%RITE WHAT DATA DO YOU WANT?

1) HER HEART RATE
2) HER BLOOD PRESSURE
3) HER TEMPERATURE

ARROW 320
STORE 133
WRONG
JUMP .-. 133,X,X,MED-78,MED-94,

MED-87,X

x4-411,C

LINE

COMMAND: LINE

TAG: 1. Two 4-digit numbeis (sepwrated by a comma) which specify
2 points on the screen. For each 4-digit number, the first
two digits specify one of 18 lines (01 is the top line).
The second two digits specify a character position on that
line (01 is the left-most space). If the first digit of
the tag is zero it may be omitted (i.e., 101 is the same
as 0101.). TUTCR integer variables are also permitted
as well as indirect referencing (see Chapter 8),

2. Four numbers separated by commas. For more precise
positioning a "four number" LINE command is used. These
numbers represent, respectively, the starting Y-value,
the starting X-value, the ending Y-value, and the ending
X-value. See the description of the "double-number"
WHERE tag for details of this finer scale coordinate
system.

OCCURRENCE: UNIT-C, ARROW-C, ANS-C.

COMMENT: End points of lines appear where the center of a character
would be if that character was positioned by a WHERE
command having a tag with the coordinates of the end-point.

EXAMPLE: In this example a line is drawn under the space in which
the student's response will appear.

. r 7

SPI-1
WHERE 801
WRITE TYPE YOUR NAME HERE
LINE 1021,1040
ARROW 920

JUMP SP1-2

LONG

A number specifying the maximum number of characters in
a student's response.

OCCURRENCE: JUDGE-C

EFFECT: When a student response reaches the length indicated in the
tag the computer will automatically check the response.

COMMENTS: If a LONG .command is NOT included, the .computer assumes a
LONG with thetag of 32. :TErstudent may request the computer
to check his response by pressing the "NEXT" key at any time
before the response length exceeds the length specified in the
tag of the LONG command.

EXAMPLE: In the example belowthe student's response on the first
ARROW is evaluated as soon as the first letter is entered. The
second ARROW allows for up to 2 lines P6 letters) of student
response.'

UNIT 95
WRITE

: HAVE YOU STOPPED BEATING YOUR WIFE?
ANSWER .YES OR NO

COMMENT ON THIS QUESTION
(USE 2 LINES OR LESS)
218
1

ANS
WRITE GOOD, EVERYONE HAS SEEN TALKING ABOUT YOU
ANS

COMMAND:

TAG:

GCCURRENCE:

EFFECT and
COMMENTS:

LOOP

LOOP

A number between 1,000 and 10,000,000.

Before a group of commands which will be repeatedly activated

A "fatal loop" occurs when the same set of commands is executed

over and over again without end. To prevent fatal loops from

occurring, no mare than 1000 TUTOR commands are processed for

a given contingency. Exceeding this limit will cause the
student to be removed from the lesson and an error message to

be placed on his screen. Since most contingencies seldom ex-
ceed 10 commands, accidental "fatal loops" are quite effectively

caught without hindering the usual author. However, some pro -

gramming (e.g. graphing) requires looping which causes several

thousand commands to be activated. The LOOP command is available

to those authors who need to override the 1000 command limit.

CAUTION:
1. Do not use LOOP unless you know what you are doing

2. Do not use LOOP unless it is actually needed (i.e.,
you have gotten a "FATAL LOOP" error message).

3. Do not place the LOOP command within the loop or
use more than one LOOP c)maind within the same

contingency.
4. The number in the tag should only slightly exceed

the number of commands you expect to process.
S. The LOOP command must be located within the con-

tingency which requires its use.

COMMAND: WIVE

TAG:

NNE

4 arguments separated by commas; 1 and 3 are TUTOR variables(in-
teger or word format), 2 and 4 are integer' or TUTOR integer var-
iables which specify character positions it the variables given
in the first and third arguments respectively. Indirect refer-
encing is permitted.

EFFECT: Allows movement of a character from one TUTOR variable to another.
The specified character in the first TUTOR variable reOaces the
specified character in the second TUTOR variable. The character
in the first TUTOR variable is unchanged.

CINNENTS: A "character" is a 6-bit piece of a 48-bit TUTOR variable. The 8
Characters making up a TUTOR variable are numbered from 1 to 8
(left to right). Specification of a character position greater
than 8 is interpreted as a reference to the appropriate position
in a following variable. Thus, a reference to position 9 of var-
iable 60 is interpreted as a reference to position 1 of variable
61. Attempts to reference variables greater than 63 will produce
an error message. Remember that while character positions for "A"
format variables correspond to the 8 rharacter positions, the same
correspondence does not obtain between character positions in "I"
format variables and-37cimal digit positions.

EXAMPLE: The lesson below is a 40-question multiple-choice exam. The ques-
tions are on slides 1-40. The MOVE command in Unit CHOICE is used
to store the student's answers packed 8 per variable starting in
variable 31. The MOVE commands. in Unit COUNT are used to unpack
the student's answers and the author's answers. For each match,
counter 12 is incremented by 1.

UNIT PRE
C ! THE CORRECT ANSWERS
ACALC A41ABACDEEA
ACALC A42.CCDABECD
ACALC A43CAALTAAB
ACALC A44BACEEACB
ACALC A45 BBDEAACD
C TOTAL NUMBER OF PROBLEMS
CALC 19.2410

CALC
JUMP CHOICE
C
UNIT CHOICE
SLIDE Il

ARROW. 1010
INHIB OKNO
LONG 1

STORE AS
ANS
MOVE A3,I,A31,11
A001 II

CALC 129-11 '-
JUMP ' 12,TALLY CHOICE

UNIT
NEXT
WRITE
ZERO
ZERO :

ZERO
CALC
JOIN
CALC
WHERE
SHOW
C
UNIT
MOVE
MOVE
CALC
GOTO
ADO1
00TO
C
UNIT:
sun
GOTO

TALLY
TALLY
YOUR SCORE IS
12

13
14

I119
COUNT
1412/Z9*100
110 ,

14

COUWi
A31,I1,13,8
A41,I1,14,8
IS13-14
IS,COUNTI,X,COUNT1
12

COUNT1

COUNTI
11 v:
II,X,X,COUNT

PER CENT.

MUST

COMMAND: MUST

TAG: A list of words separated by commas.

OCCURRENCE: JUDGE-C

EFFECT AND
COMMENTS: A set of MUST, CANT, and DIDDL commands associated with an

arrow comprise a "sentence judger' for that arrow. Thewords in the tag of a MUST are treated as interchangeable
synonyms, and at least one of them must be present in the
student's response. If several MUST commands are listed
together, then at ivast one word from each of them must bepresent in the student's respz.tse. Words not required by
MUST commands may be present in the student's response onlyif they are explicitly permitted. Concurrent use of the
SPELL commane will cause PLATO to check the student's
answer for misspellings of MUST words. Misspellings are
then underlined in the student's answer and must be cor-
rected before the answer is judged "OK." Spaces, commas,
periods, and question marks are used to separate words in
the student's sentence and thus must not be used as partof a word in a sentence.

Answer contingencies for correct
answers should be positioned after the first MUST command.

EXAMPLE:

UNIT NUMS8
WRITE WHAT NUMBERS ARE BETWEEN 3 and b?
ARROW S10
MUSr 4, FOUR
WHERE o01
WRITE . VERY 000D
MUST , S,F1VE
DIDDL AND,+

A WIT name
Ass%gned Operations (Chapter 7) and Indirect Referencing
(Chapter 8) are permitted

ilEXT

OCCURRENCE:

WIT -C: Specifies the next unit of study

ANS-C: Causes "NEXT" key to be only "legal" key and
specifies whie. WIT will be obtained when
that key is pressed. This is a nice WRONG
answer contingency for branching since it

- allows the student to see his error before
going to the next UNIT.

0341ENTS't In the absence of a NEXT WIT -C cogsand, the WIT following
the current WIT will be obtained by the student when all
his answers are "OK" and he pushes the NEXT key.

EXAMPLE: In this example NEXT commands are used as WIT and srwer-
type contingencies, If the student is wrong, for example,
he is sent back to UNIT SP1-3. If he is correct, he goes
to UNIT SP1 -lQ when he presses key NEXT.

UNIT SP1-9
NEXT SP1-10
WHERE 818
WRITE 444=
ARROW 822
ANS 6
ANS SIX
WRONG
NEXT SP1-8

EFFECT:

NODUP

A number or a TUTOR integer variable which ranges from I
to 63. Indirect referencing (Chapter 8) is palmated.

Authors often ask questions of the typo,. "list three
reasons for...". The order in which the student lists
the answers is immateri L.- However, the student is not
to be allowed to list the sane response more than once-
a condition called "duplicate answers." The NODUP command
following a matched ens -type statement directs the computer.
to check if any other judged answer in .t.e Unit'had a
similar NODUP statement *tag. If so, the answer is judged
a duplicate answer and DP is placed after the answer on the
student's screen. The student must erase this answer.

In this example, the student cannot him, duplicate answers.

UNIT
WRITE
ARROW
JOIN
ARROW
JOIN
'ARROW
JOIN

PLANET.

LIST THREE PLANETS OF OUR SOLAR SYSTEM.
10

9PLAN
610
9PLAN

'710
9PLAN

UNITS 9PLAN
ANS MERCURY
MOM 1

ANS ,VENUS

NODUP
ANS ? EARTH

NODUP , 3

ANS OUR PLANET
NODUP
ANS ' MARS
NODUP 4

ANS ''.IVPITER

NODUP ,

ANS SATURN
NOW , 6
AWS URANUS

NODUP 7

ANCKWS NEPTUNE
IUP g

COMMAND: PLOT

TAG:

OCCURRENCE:

The name of a special character which is defined within the
lesson by a CHAR command.

UNIT-C: special character appears on student's screen whln-
ever the student is in the UNIT.

ARROW -C: special character appears on screen when the stuudAt
is working on the particular arrow. Disappears when the
student works on a different arrow.

ANSWER-C: special character appears when the student's
response matches an Answer-type command.

CkHNENTS: The special character is generally positioned by a WHERE
command telich preceeds it See comments for WRITE and SLIDE
also

EXAMPLE: The special character nerve "POINTER" (which is defined else-
where in the sane lesson by a CHAR command) is positioned on
the screen by a WHERE command. It is used in thu exauple to
cause a small arrow to he pointed at different areas on slide
2S which has a map of Illinois on it

UNIT MAP
SLIDE 2$

WRITE TYPE THE NAME OF THE CITY WHOSE LOCATION
IS DESIRED. THEN PRESS KEY -NEXT-. AN ,

ARROW WILL POINT TO THE CITY ON THE MAP.
ARROW 1820

MIS URBANA
WHERE 1235
PLOT ;: POINTER
MIS -; PAXTON
WHERE 1034
PLOT . POINTER

TUT

TAG: Two character strings cf the same length separated by an
equal sign.

0

3

OCCURRENCE: JUDGE -C

EFFECT: Any character in the student's response identical to a
character in the first string of characters of the PUT
command tag is changed for judging to the character in the
identical position in the string after the equal sign.

COMMENTS:

EXAMPLE:

A

In certain fields (e.3., genetics) the student's response
will often be in symbols. These symbols may have characters
that very fror problem to problem. However, an underlying
logic exists for symbol construction in all the problems.
Thus, tt is advantageous to.write a general symbol judger
that can be added to many UNITS by use of the JOIN command.
All one need do is PUT the particular characters for a pro-
blem equal to the characters in the general symbol judger.

UNIT ,CENET8
WRITE WHAT IS THE PROBABLE GENOTYPE OF A

NORMAL !OTHER WHO HAS AN ALBINO CHILE?

ANS ' +A
PUT A=14

JOIN RECHECK

END

UNIT GCHECK
WRONG 44
WRONG +M
WRONG : MM

WRONG M+
WRITE AS A CUSTOM, + ALWAYS PRECEDud

.1, THE MUTANT .'ENE SYMBOL

WRONG
WRITE DO NOT PUT SPACES IN GEN:JTYPES

WRONG .1. M

WRITE DO NOT PUT SPACES IN GENOTYPES
WRONG 14 M

WRITE DO NOT,PUT SPACES IN GENOTYPES
' BUMP + M

VIONO s,

WRITE ,., THE GENOrkiPE IS INCORRECTLY WRITTEN

WRITS PERHAPS YOU ARE USING lilt WPM GENES

"Mn!MFMWPnftitzewmmwssrrewc...,....-----

TAG: A single TUTOR inter variable. Indirect referencing (Chapter 8)

is permitted.
...

OCCURRENCE: WIT -C. ARROW-C, ANS-C

EFFECT: Randomly selects an integer from a set of integers provided
by an IPERM command and puts it into the variable named in the

tag. The integer selected is then eliminated from the set and
the next selection is made from among those remaining. When the

set has been exhausted, RANDP will "select" zero.

COMMENTS:

: EXAMPLE..

It is possible at any time to abandon one set of integers and

start sele:Iing from another by executing a new IPERM command.

UNIT BEGIN ,

WRITE PRESS NEXT TO BEGIN

THE DRILL.
IPERM 30

.

WIT BRAJCH
RAMP IS
JUMP IB,DONE,DRILDR2,..,DR30

WIT . DR30
NEXT BRANCH
WRITE 13

-71
LINE 301,304

; ARROW . 401

ANS -58

WIT IVNE
WRITL 'OU HAVE FINISHED

:hM DRILL
END
.

COMMAND: RANDU

Either

I. A single TUTOR floating point variable ! or

2. A TUTOR integer variable followed by a comma and
another integer variable or constant.

Indirect referencing (Chapter 8) is permitted.

RANDU

OCCURRENCE: UNIT-C, ARROW-C, ANS-C

EFFECT:

1. In the floating point option, a pseudorandomly generated
floating point number between zero and one is returned in the
variable mentioned it the tag.

2: In the integer option, a pseudorandomly generated integer
number between 1 and the value of the second variable or con
stant is returned in the first variable.

COMMENTS: A collection of the pseudorandomly generated numbers produces
a uniform distribution of points within the limits of the
number range.

EXAMPLE:

-..

UNIT RANDOW
,VRITE HERE IS A RANDOMLY GENERATED

NUNMER BETWEEN ZERO AND ONE.
.

A COLLECTION OF THESE NUMBERS
WILL YIELD A UNIFORNIDENSITY
BETWEEN 0 AND 1.

RANDU ' PSI
WHERE El°
SHOW F31

UNIT RANDONU
WRITE HERE IS A RANDOMLY GNERATED

INTEGER. A COLLECTION OF
THESE INTEGERS WILL PRODUCE A
UNIFORM DENSITY BETWEEN I AND 100.

RANDU 13,100
IMRE $10
SHOW 1 13

:k

M.V4Er.tInTR-441t,e4tfo..voanseerrAirommes

COMMAND:

' TAG:

OCCURRENCE:

EFFECT:

COMMENTS:

RESET

None

JUDGE-C

MET

Restarts judging.

At the start of a JUDGE-C, a copy of the student", response
is obtained.' During tho' JUDGE-C, many changes may occur
in this copy. A BUMP command will eliminate letters from
the copy, a PUT command will replace letters, and sentence
judging will cause a complete restructuring of the copy.
An author may want to try several types Of judging suc-
cessively on a simple ammo.:- A "fresh' copy of the
student's response must be obtained before each type of
judging is tried.' The RESET command does just this. If
a student's response is not matched by any of the answer
type commands before a RESET command occurs, a new copy
of the student's response is obtained and judging starts
afresh in accordance with commands that follow the RESET
command.'

EXAMPLE: In the example below, the RESET command allows judging
of many different possible sentence answers.

ARROW
MUST
MUST
JOIN
RESET
MUST
MUST
JOIN r.
RESET
MUST
MUST
JOIN
RESET

SOUTH

NAME A SOUTHERN STATE ALONG
WITH THE CAPITAL OF THAT STATE- -
1001
GEORGIA
ATLANTA
EXTRAS

FLORIDA
TALLAHASSEE
EXTRAS '7:4,

ALABAMA
MONTGOMERY
EXTRAS '

910W

TAG: A single TUTOR
alphabetic, integer, or floating point variable.Indirect referencing (Chapter 8) is permitted.

, .

WIT -C: The contents of th- variable named appear on the student'sscreen whenever the student is working on the UNIT.

ARROW-C: The contents of the variable named appear on the screenwhen the student is working on the given arrow.

ANS-C: The contents of the variable named appear when in judgingthe compute.. matches the answer-type command starting the ANS-C.
COMMENTS: Generally, a SHOW command should be preceded by a WHERE commandstating the lIcation on the screen for the SHOW display. Thedisplay formats for the SHOW command are A8, 18, or F16.7.See IVE command comments.

EXAMPLE: In this example six blank spaces precede the integer andfloating variable and two blank spaces follow the alphabeticvariable. Other printing (by WRITE, SHOW or PLOT commands)could be placed where these blanks now appear. Note thatseven digits always follow the decimal point of a floatingpoint variable, Variable A2 contains the word "TWENTY", T4contains the number "20" and F7 contains the number "20.0".

. LWIT
,

MERE
SNOW
WHERE
SNOW
WHERE
SHOW

SEE
;201
A2

-' 301

14

401
F7

is seen on the screen as
.

TWENTY
20

20.0000000

COMMAND: SLIDE
- .

TAG: A number or a TUTOR integer variable which ranges from 0 to
122 to specify a slide. Indirect referencing (Chapter 8)
is p)rmitted.

OCCURRENCE: ' UNIT-C, ARROW-C, ANS-C

COMMENTS: Slides can be presented on the screen much more rapidly than
plotting from WRITE or PLOT commands can. Thus, where presen.:

I tations involve rapid sequences of different displays or dis-
.plays with extensive amounts of material on_them, slides will
produce better results than WRITE commands. Diagrams are most
elegantly dens by use of slides. PLOT and SLIDE commands
can be used together to provide superimposed images for special
effects. ' : -

EXAMPLE: In this example slide number 4 is shown with the question
"Which slide is this?" superimposed on it by use of a WRITE
command.

UNIT: SP1-3
SLIDE 4 ,-

WRITE WHICH SLIDE IS THIS?
ARROW 0201
ANS

OCCURRENCE: JUDGE-C

EFFECT: The computer checks the student's response for possible
misspellings of the author's ANS or MUST command tag.
SP is placed after the student's answer if it is a mis-
spelling of the author's ANS tag. In sentence judging,

if one of the author's MUST words is misspelled by the
student, that word in the student's answer is underlined.
The student cannot continue until his misspellings are

corrected.

COM ENTS: Deletions. and insertions are handled in addition to in-

correct characters.
,

UNIT GEOM16
WPM " WHAT IS THE NAME OF A

TRIANGLE HAVING TWO EQUAL
SIDES?

ARROW 410
SPELL
ANS ISOSCELES

Any of the fol1owing student answers

. as mdsspellings of the Answer by tho

isocles
isoscles .

isosceles

isocales
isosales
icoseles

will be interpreted
computer:

. isasales
esasceles

- asoseles

ir,!-S-4

4444P

COMMAND:

TAG:

OCULRENCE:

EFFECT:

COMKNTS:

STORA

A single TUTOR inleger or floating point variable.

JUDGE-C

An arithmetic student response is evaluated and stored in
the variable designated 1n the tag. The permitted operations
are addition (+), subtraction (-), multiplication (*), division
(f), square root (R), sine (S), cosine (C), natural logarithm
(L), and raising e to a power (E). Any error returns a zero
in the variable.

STORA allows a student terminal to be used as a simple desk
calculator. the comments for the CALC command also apply for
STORA.

UNIT ARITH
WRITE THIS UNIT IS A CALCULATION UNIT.

WRITE THE ARITHMETIC EXPRESSION
YOU WISH EVALUATED. THEN PUSH -NEXT-.
USE

+ FOR ADDITION.
FOR SUBTRACTION L'

* OR x FOR MULTIPLICATION
/ OR f FOR DIVISION
R FOR SQUARE ROOT

C FOR COSINE
S FOR SINE
L FOR NATURAL LOG
E FOR E TO A POWER

ARROW 1301 '

STORA F35

STORA '121 '

ARS
WHERE , 1501
!:'RITE ; THE VALUE OF THE

WRITTEN IS...
OR AS AN INTEGR...

WHERE 1613
SHOW F35 .

WHERE 1720

SHOW 121

COMMAND: STORE

TAG: A single TUTOR alphabetic, integer, or floating point
variable. Indirect referencing (Chapter 8) is permitted.

OCCURRENCE: JUDGE-C

EFFECT: When the computer judges a given arrow, the student's answer
is stored in the variable named in the tag.

COMMENTS: The student's answer is stored in the format given by the
author: A for alphabetic string, I for integer, and F for
floating point. My non-numeric characters are ignored
while storing under integer and floating point formats. 0

Since only 8 characters can be stored under A format in a
variable, consecutive A forget STORE commands are designed
to store consecutive blocks of 8 characters of the student's
answer.

EXAMPLE:

t. UNIT LANG
= WRITE TRANSLATE THE SENTENCE

GENT ES INNEN?'
ARROW 301
STORE Al
STORE ,:A2
STORE A3
ANS

WIT TRANS
WRITE HERE IS YOUR LAST TRANSLATION

OP 'WIE GENT ESIHNENY1 .YOU
MAY GIVE A DIFFERENT TRANSLATION,
OR TYPE -N- FOR NO CHANGE.

WHERE 601
SOON ; Al *

SHOW , A2
SHOW A3

INS N

JUMP OK
MS

4

COMMAND: SUBI

TAG: A single TUTOR integer variable.
(Chapter 8) is permitted. -,

OCCURRENCE: UNIT-C, ARROW-C, ANS-C.

EFFECT: Decreases ty one the value
tag.

Indirect referencing

EXAMPLE:

of the variable listed in

Variable IS is used here to keep track of the total number
of correct answers minus total wrong answers for a lesson.
A correct answer increases IS by one, an incorrect answer
decreases IS by one

IRIIT PROB1
WRITE WHAT IS...
ARROW 1016
ANS
ADD1 IS

WRONG
SUB1 ' IS

Inwrin 71' ItSall,r1.44,Pgr

TERN

COMMAND: TERM

TAG: . A single word

OCCURRENCE: Anywhere within the UNIT.

EFFECT: . If the student anywhere in the lesson presses the TERM key
and writes out a word ieentical to the tag of a TERM command,
he will immediately branch to the UNIT containing this TERM
command. When the student presses the NEXT or BACK key in
this new UNIT, he will return to the previous UNIT he was
working on.

COMMENTS: Many TFRM commands may occur in a single UNIT. The only
change adding a TERM command to a UNIT produces is that the
student has access to this UNIT froth anywhere. This command
is ideally suited for word definitions, reference tables,
review, etc.

More exactly, only the first eight characters of the student's
and author's terms are examined for matching.

EXAMPLE:

UNIT HISTS4
TERM . ROMULUS .

TERM .,:: REMUS

'.!flRITE ROMULUS AND RENNS WERE
LEGENDARY TWIN BROTHERS
WHO WERE RAISED BY A

UNIT HISTS4 is now available to the student anywhere in the
lesson when he asks for the term Romulus or Remus.

COWAND:

TAG:

.

OCCURRENCE:

EFFECT:

COMMENTS:

EXAMPLE:

TIME

A number or a TUTOR integer variable whose value represents
a time duration expressed in units of 1/60 second. Indirect
referencing (Chapter 8) is permitted).

UN1T-C, ARROW-C, ANS-C

Presses the "NEXT" key for the student after the given time
has elapsed from beginning of the contingencies.

The TIM command should be the last of the contingencies.

this example the student has 5 seconds (300 66ths of a
second) to give an answer to the problem. If he gives the
correct answer he is immediately shifted to UNIT TEST6. If
he gives the wrong answer he is shifted to UNIT WRONG (The
contingency of the "universal WRONG"). If he makes no
response (a "blank input") he is shifted to UNIT BLANK (the
contingency of the first WRONG command with a blank tag).
Note that only the last WRONG with a blank tag acts as a
"universal WRONG" iTiFre than one is present.

WIT TESTS
WRITE 2+2.
TIME ,3100
ARROW 106
LONG_ 1

ANS 4

JUM TEST6 A.
WRONG
JUMP BLANK
WRONG
JUMP WRONG

WRONG -
SORRY, YOUR ANSWER WAS WRONG...

!,91`.1,VISevro

COMMAND: T6OTHS

. TAG: NONE

OCCURRENCE: In first UNIT of a lesson

0
NAVE TIME UNIT

AVNER 3:04 PO4

AVNER 1440 PO4

EFFECT: This command is used to alter the usual time on the student
data kept on magnetic tape. Normally the time of occurrence
of each data record is indica;:ed in minutes and seconds (where
zero minutes and zero seconds represents the time that the
student started the lesson), In cases whore more precise
timing information is desired the T6OTH3 commend gives time
in 60ths of a second.

EXAMPLE: Each of the lines below (except the heading) represents the
same student record for a student answer CIMINO'S") given
3 minutes and 4 seconds after the lesson begau. 'Ilhe first
record is the usual form of student record while the second
shows how 3 minutes and 4 seconds (11,140 60ths of a second)
would be shown in a lesson having the command T6OTHS in its
first UNIT.

ARROW JUDGE STUDENT ANSWER

ILLINOIS

ILLINOIS

COMM N11; :

A name (the "UNIT name") up to 7 characters in length.
No spaces or commas should appear in name.

First command in each UNIT (the online editing does this
automatically for you)

Begins the basic addressable unit in the lesson (e.g.,
screenful-of iformation or a distinct computational
routine). Ends previous UNIT (if any). Initiates UNIT
contingency.

The "UNIT name" is used to aid the computer in the inter-
connection of UNITSoin the selection of a UNIT for on-line
editing and to indicate the location of the student in the
lesson on the student data. These names must be unique and
should be chosen for ease in use..

L -1

EXAMPLE: The first three UNITs in the first lesson in a Sample Pro-
gram might be names as follows:

, .

SP1-1

.,....preetanrateff$011

COPNAND: UPLOW

TAG: "` No tag is used

OCCURRENCE: In first UNIT of a lesson

This command makes the standard upper case, lower case

and character sets available for the lesson.
It must be present if the AtiLSRO and RUSS commands are
to be used in a lesson.

UNIT BLURB1 is the first UNIT in a lesson using upper and
lower case characters.

BLURBI
GRAPHIC DISPLAYS IN ADVERTISING

This lesson will demonstrate...

COMMAND: WHERE

TAG:

WHERE

Two types of tags are accepted, (1) a single number (or TUTOR.integer variable) or, (2) two numbers (or TUTOR integer vari-ables) separated by a comma. Indirect referencing (Chapter 8)is permitted.

(1) To position writing on the screen, a single 4-digit number
is usually used.: The first two digits specify one of the
18 lines (01 is the top line). The second two digits
specify a character position on that line and can range

: from 01 (the first character position) to 48 (the last
character position). If the first digit of the tag is
zero it may be omitted (i.e., 101 is the same as 0101).
(2) When finer control of location is desired, a tag
consisting of two numbers (separated by a comma) can be
used.- The first number specifies one of 170 vertical
positions (0 is the top position). The second number
specifies one of 240 horizontal positions (0 is the left
of the screen).

OCCURRENCE: Just before a WRITE, SHOW, or PLOT command.

EFFECT: Specifies the screen position where display of the tag of
. the following WRITE, SHOW, or PIOT command is to begin.

COMMENTS: In terms of the second type of tag the standard charactersused in TUTOR are written within a rectangle 10 unitshigh and S units wide.'' The "double number" tag refers tothe upper-left corner of this rectangle.

EXAMPLES: The letter X is displayed on line 9, space 4 (upper case
Character set), by all of the following Units.

UNIT A :UNIT . C UNIT . E . ; UNIT GWHERE ' 0904 CALC I1.904 CALC .= 1180 CALC 12.15WRITE X WHERE CALC I2815 : :.WHERE 80,12 ,
WRITE X WHERE - 11,12 WRITE X

WRITE X

UNIT 8
WHERE 904 i UNIT D
WRITE X WHERE 80,15

WRITE X

COMMAND: WRITE

TAG:

OCCURRENCE:

. A message with up to 18 lines of 48 characters each.

UNIT-C: tag appears on the student's s,reen whenever the
student is in the UNIT.

ARROW -C: tag appears on screen when the student is working
on the particular arrow. Disappears when the student works
'n a different arrow.

ANSWER-C: tag appears on screen when student's response
matches an Answer-type command. ,

COMMENTS: Unless overridden by a WHERE command, the writing of the first
WRITE command begins in the first space of the first line
during a UNIT contingency and in the first space of the 17th
line during an ANSWER contingency. Arrow contingency
writing should always be preceded by a WHERE command.
Avoid writing on the 18th line since it is used for
operational messages by the computer (e.g., "PUSH
NEXT TO CONTINUE"). See comments for SLIDE also. The
command WRUSS is used to produce Cyrillic characters when
the UPLOW character set is available. If several display
statementsJWRITE, SHOW, etc.) appear as an ARROW-C or
ANS-C, only the last such statement will be erased when
a new ARROW-C is activated or the answer is erased.

.
.

EXAMPLE: The message in the tag of the WRITE command is displayed on
'thee student's screen. The second line has been indented
by using "space" characters - just as on a typewriter.

UNIT . HI
WHERE $7. 801

VETE WELCOME TO PLATO -

PRESS NEXT TO CONTINUE

WRONG

COKAND: WRONG

TAG: An expected wrong answer

OCCURRENCE: JUDGE-C

EFFECT:

COINENTS:

EXAMPLE:

If the student's response matches Ulu tag of a WRONG command a
"NO" is placed on the screen after hf.s response. Any Answer -

type contingpncies following the WRONG command are then initiated.

Any number of WRONG commands can be used after the same ARROW.
A WRONG command with a blank tag would be matched only when the
student's response is blank unless this WRONG command is the last
ANS-type command for ARROW. en the later case exists, the
command is known as a "UNIVERSAL WRONG' and will cause any answer
that does not match the tag of another WRONG command or an ANS
command to be scored "NO". Even if no WRONG command follows an
ARROW command, the computer will act as if a WRONG with a blank
tag was the last Answer-type command before the next ARROW, UNIT
or END command. A WRGRU command should be used when the student
is using Cyrillic characters.

In this UNIT 'the first WRONG with a blank tag is matched only if
the student's response was blank (i.e. he asked PLATO to "judge"
his answer before he gave one). The second WRONG will a blank
tag is a "UNIVERSAL WRONG."

.SP1-7
WHAT COLOR IS A BLACKBOARD?

ARROW 226
ANS BLACK
WRONG GREEN
WRITE I WOULD HAVE SAID "GREENBOARD" THEN
WRONG
WRITE YOU DID NOT ANSWER YET.
WRONG
WRITE ARE YOU TRYING TO aE FUNNY?

COMMAND:

TAG: A tingle TUTOR integer variable. Indirect referencing
(Chapter 8) is permitted.

OC:URRENCE: . MIT -C, ARROW -C, ANS-C.

EFFECT: Sets to zero the value of the variable listed in the tag.

COMMENTS: This command is used to initialize a counter.

EXAMPLE:

UNIT BEGIN
ZERO . IS

ZERO . 16
' WRITE , THIS LESSON WILL CONSIST

. OF SS PROBLEMS. .

Counters IS and I6 could now be used to keep track of correct and wrong
answers by using the ADD1 command.-T

Chapter 6

VARIABLES

56

Chapter 5 briefly touched on the use of TUTOR variables. It

was mentioned there that TUTOR provides for 63 information "storage

spaces" for each student. These spaces, or "TUTOR variables" may

be used to store information with three different types of format:

ta) alphabetic - words, letters, symbols, etc.; (1) integers -

1,73,0, etc.; and (F) fractional numbers - i.0, 27.428, etc.

Unlike the lesson structure, TUTOR variables can be altered during

a lesson, hence the use of the term "variable". For example, UTOR

variable "15" in "I" format (more simply referred to as "variable 115")

might be used to individualize the lesson by giving certain portions

of the lesson material only to students whose 115 had a value

greater than 2S. ,Variable I15 might contain a count of the number

of correct or incorrect responses made by the student during a

short test given by PLATO earlier in the same lesson. Another use

of TUTOR variables would be to serve as a place to put numbers or

words temporarily during a lesson. PLATO could then, for example,

show the student the answer to a previous problem needed fiir the

solution of another problem. The same TUTOR variable might be used

again and again during a single lesson for several different pur-

poses. The format of any TUTOR variable can be altered within the

lesson and the author may set the variable to any desired value or

allow PLATO or the student to define or alter the value.

Format

New authors may wonder why it is necessary to specify the format

of a TUTOR variable. A human Lon tell that "cat" is a word, "25" is

an integer, ad "15.32" contains a decimal fraction simply by

looking at the expression itself. However, PLATn stores its infor-

mation completely in the form of numbers and the "format" code

115

57

letter tells PLATO how to decode the numbers to return them to

their original form when needed.

A simple example may help. Imagine that you have; a dial which

can be set to any number from 0000 to 9999. Obviously you could

use this dial to remember any number you might want to keep track of

(like your wife's age) simply by setting it to that number. This

use of the dial is analogous to a TUTOR variable in I (interger)

format. Whenever your wife had a birthday you could reset the dial

to the next higher number. This operation is just like the use of

the TUTOR command "ADD1" which adds the number "1" to a TUTOR integer

variable. By a simple code you can extend your dial to a memory

device for symbols. You could define 01=A, 02=B, and so forth

up to 26=Z. By adding various numerals, punctuation marks,

arithmetic symbols, etc. you could easily use up 99 numbers in such

a code. Since your dial goes up to 9999 you could use it to remem-

ber 2 symbols by letting the first 2 digits on your dial be the code

for the first symbol and the second 2 digits be the code for the

second symbol. Thus 0102 would be divided into 01=A and 02=B

or "AB". If "30" was the code for the numeral "4" and "32" was

the code for the numeral "6" you could even store the number "46"

coded as "3032" but this would be an inefficient way to store numbers

(as well as confusing). As you might have guessedjthis representa-

tion of symbols by a number code is analogous to the "A" format in

TUTOR variables. There are two things to note here.

(1) You must specify what "format" is being used before it is
possible to know if a dial setting of 0102 represents the
integer "102" (I format) or is a code for the letters "AB"
(A format).

(2) Numerals in "A" format will not necessarily have the same
dial setting that the identical digits in "I" format would.
Even if we altered the "A" format code so that 00=0, 01=1,
02=2,..., 11=A, 12=B,..., etc. the "A" format for the numerals
"11" would be 0101 rather than 0011.

There is a third type of information we might also want to

store on our dial memory device. While we can store any integer

from 1 to 9999 there is a problem in storing fractional values or

no

0

58

values larger than 9999. We might get around the problem of stor-

ing fractional values by simply defining a new "format" in which a

decimal point is assumed to be present between say, the second and

third digits. However, there is an even better way if we are willing

to give up a little precision--that is, if we are willing to specify

numbers to only 3 digits rather than 4. If we let the first digit

on our dial indicate the position of the decimal point and only the

remaining 3 digits indicate the number, we can store numbers ranging

from 0.0001 to 99,900,000. The code for the decimal point position

in this case works as follows:

If the first digit is: Place the decimal point:

0 4 places to the left of the least significant digit
1 3 11 II If 11 11 11 II

2 2
II 11 11 11 tt PI if

3 1
11 11 II II II PI 11

4 ' after the least significant digit
5 1 place to the right of the least significant digit
6 2 11 II 11 II 11

7 3 15 Si II 11 11 11 It

8 4 " 11 " II I/ It tl

9 5 11 11 II II II

Thus a dial setting of "0001" would be interpreted as the decimal

fraction ".0001," the setting "7253" would be interpreted as

"253,000," and a setting of "9999" would be interpreted as "99,900,000."

You can see now why this form of coding numbers is sometimes known

as "floating point." By giving up one digit to specify where the

decimal point is positioned we enormously increased the range of

numbers that could be specified. This last coding format is analogous

to the "F" format of TUTOR variables. Again we should note that:

(1) You must specify what "format" is being used before it is
possible to know if for example, a dial setting of 0102 repre-
sents the intager "102" (1 format), the code for the letters
"AB" (A format) or the floating point number ".0102" (F format).

11.1;1i

59

(2) Numbers in one format will not necessarily have the same
dial setting as the same number in another format. Thus
"36" might be coded as "2932" in A format, "0036" in I format,
and "4036" in F format.

While it is possible to store information in one format and inter-

pret it in another format you can see that this is not generally a

very useful procedure.

The technique PLATO uses to store information in TUTOR variables

is similar to that outlined in our dial analogy. PLATO uses "dials"

that allow integers with up to 14 decimal digits. Actually, numbers

as large as positive or negative 140,737,488,355,327 may be stored

in certain ceses with TUTOR variables in the I format. In the A

format you may store up to 8 characters (letters, numerals, punctua-

tion marks, etc.) and in the F format you may store numbers with

slightly better than 10 decfMal digit accuracy that range from 10-308

to 10
+308

(the number "1" preceded by a decimal point and 307 zeroes

in the first case or followed by 308 zeroes in the second case). In

practice, the possible size of stored integer or floating point

numbers far exceeds the usual requirements for computations associated

with instruction. Thus, restrictions have been made in certain

situations to simplify presentations or com.utations. For example,

the numbers handled by the CALC command are limited to values of

10, decimal digits or less. Another example is the SHOW command

which shows a maximmiof 8 decimal digits of an integer TUTOR

variable or 8 digits followed by a decimal point and 7 fractional

digits for a TUTOR floating point variable. Thus, 99,999,999 is

the largest integer TUTOR variable which could be presented by the

118 :

60

SHOW command and 99099,999.9900000 is the largest fractional or

'floating point" variable which could be presented by the SHOW command

(note that only the first 10 digits of the floating point variable

will be accurate). As you can see, numbers of this size or larger

would probably be undesirable in a teaching situation because of the

possbility of the student making reading errors.

If you really need the full storage and number-handling capa-

bilities of the computer, there are generally techniques available

in TUTOR to give you this ability at a slight cost in authoring

convenience. For example, the ICALC and FCALC commands do not have

the 10 digit limitation of the CALC command and are T,Jerformed at a

much higher speed than the CALC command. The drawback to using

ICALC or FCALC is that these commands do not have several of the

options (such as square root, logarithm, sine or cosine functions)

available to the user of the CALC command. Also, CALC permits a

complex, multiple-variable equation to be written as a single equa-

tion while it would generally be necessary to break this same equa-

tion into several parts before ICALC or FCALC could be used.

To review, you have now seen the reason why it is necessary to

specify the format of TUTOR variables as they are used. You may alter

this format at any time--either when storing information or when

retrieving it--but you have seen that it is generally best to inter-

pret information in the sane format in which it was stored. You may

use TUTOR variables to store information over the entiro period of

the lesson (as, for example, for keeping a record of the students'

first names in ordor to give an "individualized" response to his

. 119

61

ANSWERS) or you may want to use variables as a sort of scratch pad

by students for keeping track of intermediate steps in lengthy

problems.

Alteration of TUTOR Variables

Chapter 9 will explain mere about where and how TUTOR vari-

ables for a particular student are stored. For the moment it will

be enough to know that these storage spaces are available to the

author even when a student is not working on a lesson. In general,

there are three ways be which TUTOR variables are usually altered:

(1) By the author prior to the lesson (e.g. to preset certain
lesson options for particular students).
(2) During the lesson as a result of encountering calculation
type statements (e.g. a variable is increased by one when a
student response matches the tag of an ANS command)
(3) During the lesson as a direct result of a student response
(e.g. a student response is placed in a variable by use of a
STORE statement).

Alteration of variables by the author will be explained in

Chapter 9 as a part of the description of author operations. The

balance of this chapter will outline the last two methods of vari-

able alteration.

Calculation commands may be positioned in a lesson so that

they will function as UNIT, ARROW and ANS Contingencies. Such

commands then generally produce an alteration of TUTOR variables

when activated. If the contingency which they are part of never

occurs, then the alteration which they direct will also not occur.

In a sense then, TUTOR variables can be made to act as flags or

signals which indicate that a particular student has passed through

a particular part of a lesson.

The CALC command may be considered as the prototype of calcu-

lation commands. The statement,

CALC 19=3

alters variable "9" by placing the integer:"T(interpreted in "1"

format) in it. The use of a variable as a counter leads to frequent

120

62

use of statements such as,

CALC 19=19+1

which alters variable "9" by replacing the number formerly stored

there with the next higher integer. The frequent use of variables

as counters has prompted several "short-cut" commands

"Short-cut" Statement Equivalent CALC Statement

ADD1 18 CALC 18=18+1

SUB1 112 CALC 112=112-1

ZERO 13 CALC 13=0

It should be clear that commands such as ADDI are only con-

veniences which could be replaced by the more general CALC command.

At another level, it is sometimes desirable to perform large

numbers of calculations as a part of a single contingency. For

example, the computer could be used to solve a fixed type of problem

for the student. In such a situation it is convenient to have a

command which performs operations in the most rapid'manner possible.

Even though a single calculation might be done very rapidly, large

numbers of calculations could cause undesirable delays for the

student. The ICALC and FCALC commands perform a restricted number

of the CALC operations. However they perform these operations much

more rapidly than CALC (there are certain other advantages to use

of 1CALC and FCALC as well). Agin it should be clear that an

understanding of the uses of the CALC command is basic to the use

of most calculation commands. The individual descriptions of calcula-

tion commands in the yellow section of this manual detail limitations

and advantages of each command as well as give simple examples of

their use. Chapter 11 has several more advanced examples of the

use of variables in lessons.

The last typical way by which variables are altered is by

direct action of the student. Two commands, STORE and STORA, are

used as ARROW contingencies. STORE places the student's response

directly in a specified variable under a specified format. STORA

121

63

allows the student to type a mathematical expression which is

evaluated by PLATO. The value of this expression is stored in a

specified TUTOR variable. If the contents of the variable are then

displayed on the student's screen by a SHOW statement, the student

is able to use PLATO as a desk calculator. The reader is again

directed to the yellow section of this manual for a more complete

des.,:?iption of the STORE and STORA commands.

PEEK, A Diagnostic Routine

Authors often find helpful, especially in testing lessons

which contain involved calculation, the ability to examine and

alter TUTOR variables while acting as a student. The Units shown

below may be temporarily inserted at the end of any lesson for this

purpose. They also serve as a practical example of several of the

options which will be explained in Chapters 7 and 8.

The author may reach the diagnostic routine from any point in

his lesson by pressing the TERM key, typing the word "PEEK," and

pressing the NEXT key. Once in the routine the author specifies

any legal format ("A", "I", or "F") and variable number (1-63).

The routine shows the value of the contents of the specified vari-

able as interpreted by the desired format. The author can then

alter the value of the variable, look at another variable, or return

to the lesson.

122

64

UNIT PEEK
TERM PEEK
C DIAGNOSTIC UNIT, USES 152, 153, AND 154
WHERE 301
WRITE WHICH VARIABLES? (INCLUDE FORMAT LETTER)
WHERE 1007_ ,

WRITE PRESS -NEXT- WHEN FINISHED
ARROW 519
INHIB OKNO
LONG 1

ANS A
ICALC 153=0-1
ANS I

ZERO 153
ANS F

ICALC I53=1

WRONG
WHERE 601
WRITE YOU MUST INCLUDE A LEGAL FORMAT CODE

(EITHER -A-, -I -, OR -F-)
ERASE AND TRY AGAIN

ARROW 521

INHIB ARROW
STORE 152

ANS
GOTO I52,ILL,ILL,X

-ICALC 154=63-152
GOTO 154,ILL,X
JUMP PEEK2

UNIT PEEK2
WHERE 410
JOIN 153,FORMA,FORMI,FORMF
WHERE 401

WRITE VARIABLE
NOW HAS THE VALUE

WHERE 405
SHOW 152

WHERE 801

WRITE PRESS -A- TO CHOOSE ANOTHER VARIABLE
-BACK- TO RETURN TO THE LESSON
-C- TO ALTER THIS VARIABLE

ARROW 1120
LONG 1

ANS A
JUMP PEEK
ANS

ARROW 1420
JOIN 153 STA,STI,STF
WHERE 1401

WRITE WHAT IS NEW VALUE?
(ENTER AND PRESS -NEXT-)

ANS
JUMP PEEK2

123

65

UNIT FORMA
WRITE A
WHERE 519
SHOW A(52)

UNIT FORMI

WRITE I

WHERE 519
SHOW I(S2)

UNIT FORMF
WRITE F

WHERE 519
SHOW F(52)

UNIT STA
STORE A(52)

UNIT STI
STORE I(S2)

UNIT STF
STORE F(S2)

UNIT ILL
JUDGE NO
WHERE 601

WRITE YOU CHOSE A NON-EXISTANT VARIABLE
ERASE AND TRY AGAIN

12At,

C

0

O

66
Chapter 7

ASSIGNED OPERATIONS

Certain TUTOR commands allow a very flexible type of operation

which is termed an "assigned operation." Normally each command speci-

fies a single operation which is determined at the time the lesson is

written. For example,

JUMP BD7

indicates that the student will be immediately moved ("JUMPed") to the

UNIT whose title is "BD7" when he comes to the point in the lesson

where the JUMP command is encountered.

Now suppose we wanted the student to go to a different UNIT for

each of three possible answers to a question. It would be possible to

do this with three separate JUMP commands properly placed in the lesson.

However, an assigned operation would permit the same thing to be done

with a single JUMP command.

UNIT

WRITE

TRAFFIC

A YELLOW LIGHT MEANS

UNIT

WRITE

TRAF

A YELLOW LIGHT MEANS

1) SPEED UP 1) SPEED UP

2) STOP 2) STOP

3) SLOW DOWN 3) SLOW DOWN

ARROW 501 ARROW 501

ANS 1 STORE 15

JUMP BD7 ANS

ANS 2 JUMP I5,X,X,BD7,BD11,BD9,X

JUMP BD11 JUDGE IGNORE

ANS 3

JUMP BD9

ANS

JUDGE IGNORE

UNITs TRAFFIC and TRAF do exactly the same thing but UNIT TRAF uses 4

fewer commands by using JUMP with the assigned operation option. Look

closely at the tag of the JUMP command in UNIT TRAP. Notice that it

consists of a TUTOR integer variable followed by a list of "titles" which

are separated from each other by commas.

JUMP IS,X,X,BD7,BD11,BD9,X

67

TUTOR variable IS contains the answer of the student (this was done by

the STORE command). PLATO looks at the tag of the JUMP command and sees

that it must be an assigned operation, since it contains a TUTOR inte-

ger variable and a list of titles separated by commas PLATO then

finds the value of IS and JUMPs to one of the UNITs mentioned In the

following list of titles. The titles "BD7", "BD11" and "BD9" are names

of UNITs in the same lesson. The title "X" is a dummy title which

tells FLAW to forget about the JUMP command and simply go on to the

next TUTOR command. The dummy title "X" should be used only as a

substitute for a UNIT title. If 15 is any negative number the JUMP

is made to the first title in the list. Since the first title is "X",

the JUMP command is ignored if the student enters a negative answer.

If IS is zero, the JUMP is made to the second title in the list (again

an "X" in this example). If IS is 1, the JUMP is made to the third

title; if 15 is 2, the fourth title; etc. The sixth title in cur

example is an X and this title would be chosen if 15 was 4 of greater

The list could have been made longer or shorter as desired Notice

that a JUMP will be made in our example only if IS contains a 1, 2 or

3. If 15 has any other value the JUMP is ignored and the next com-

mand in the UNIT is used by TUTOR- In our example the next command is

JUDGE with an IGNORE tag which would cause the student's answer to be

erased and ignored by PLATO. Incidentally, it should be obvious that

it would be unwise to ever name one of your UNITs as "UNIT X-"

The complete description of a particular TUTOR counand tag will

indicate if assigned operations are permitted with that command The

list of titles in the tag of an assigned operation is not always a list

of UNITs, In the case of the JUDGE command, for example, the list con-

sists of judging options. Each of these options could Le selected

from the list if the TUTOR integer variable has a certain value, For

example in

JUDGE 13,N0,GNORE,OK,NO,OK

if 13 is the student's answer is

negative judged NO

zero erased and ignored

1 judged OK

2 judged NO

3 or greater judged OK

126Y-

68

The dummy Unit t:tle "X" would not, of course, be used in

the JUDGE command since the tags of a JUDGE command are not Unit

titles.

If mi assigned operation command contains titles of Units

which are not available, e.g. where the Unit has not yet been

written, PLATO will act as if the dummy Unit title "X" was present

inst:ad of the title of the unavailable Unit.

All commands which use the assigned operation option can

also use the indirect referencing option explained in Chapter 8.

127

PVICIT.st

0

Chapter 8

INDIRECT REFERENCING BY TUTOR VARIABLES

69

TUTOR commands which use a variable in their tag:have a very

useful option known as "indirect referencing." An example will

clarify its use,

EXAMPLE: In the command

CALC 120=11 + 12

suppose that 11=4 and 12=5. Then Il and 12 could be said to

"directly refer" to the numbers 4 and 5 respectively. This

would be an instance of "direct referencing" by TUTOR variables.

Nov, in the command

CALC 120=1(1) + 1(2)

the parentheses around the 1 and the 2 indicate that 11 and 12

refer indirectly to specific values. The numbers within the

parentheses refer to TUTOR integer variables which have as

their value a number from 1 to 63. Since in this example

11=4 and 12.5, this second CALC command tells PLATO to put

the sum of the values of TUTOR variables 14 and IS in variable

120. That is, variables 11 and 12 "indirectly refer" to the

numbers contained in variables 14 and IS. This is an instance

of "indirect referencing" by TUTOR variables.

In other words, if

11=4, 12=5, 14=22, and 15=23,

then CALC 120=1(1) + 1(2)

is interpreved by PLATO as

CALC 120=14 + IS

or CALC 120=22 + 23

An analogy may Ise helpful in understanding indirect referencing.

Direct referencing is similar to looking up the word "feline" in a

dictionary and finding the word's definition under the entry

"feline." Indirect referencing would be similar to looking up the

word "feline" under the entry "feline" and finding a note telling

you that the definition will be found instead under the entry for

"cat." In indirect TUTOR referencing the "note" (telling you where

the desired value is located) is the value of a TUTOR integer variable.

The analogy breaks down when we come to the formats of the vari-

ables concerned. However, it should be apparent that for most cases

we will want the formats of the referencinR And referenced variables

128

70

to match. Thus,

for A(20), if 120=5, variable 5 should be defined as AS;

for F(32), if 132=7, variable 7 should be defined as F7; and

for 1(22), if 122=9, variable 9 should be defined as 19.

In other words, the variable whose number is enclosed within the

indirect referencing parentheses must always be defined as an integer

variable (120, 132, 122, in the example above). The variable refer-

enced by this integer variable should in turn be defined as a vari-

able with the same format as the original referencing variable

(A5 for A(20), F7 for F(32), and 19 for.I(22) in the above example).

indirect referencing is very useful when a formula or UNIT

using TUTOR variables is used many times in the same lesson. In-

direct referencing allows a single UNIT to be used in all applica-

tions withoat forcing the author to redefine the variables used

each time.

As an example of the use of indirect referencing, suppose that

an author wishes that the value of TUTOR variables 111 through 125

be set to zero before he uses them during a portion of a lesson.

Perhaps the author will be using these 15 variables to keep a count

of 15 different types of errors a student might make. Obviously,

erroneous results might occur unless any old Information shred in

these variables was first "erased." Both units ZERO and ZRO produce

the desired zeroing of 111 through 125. In Unit ZRO, assume that

TUTOR variable 19 is preset to the value

UNIT ZERO UNIT ZRO

ZERO Ill ZERO 1(9)

ZERO 112 ADD1 19

ZERO 113 1CALL 110=15 -26

ZERO 114 GOTO 110, ZRO, X

ZERO 115

ZERO 116

ZERO 117

ZERO 118

ZERO 119

ZERO 120

ZERO 121

ZERO 122

ZERO 123

ZEkO 124

LER.) 12S

0

Re* Wm...mot

71

The effect of Unit ZERO should be obvious but that of.Unit ZRO may

not he so readily apparent, Let us go through Unit ZRO step by

step to see how PLATO would act when it encountered.tnese commands.

In a previous UNIT, the author has placed the number.l1 in variable

19. Upon entering Unit ZRO, PLATO thus interprets.ZERO.I(9) as

"ZERO Ill." As a result, any prior information that.might have

been stored in TUTOR variable Ill is replaced by the number zero,

The ADO1 command then increases the value of 19 by one, giving 19

the value 12. Since we are really only interested in the point at

which 19 exceeds 25, the temporary variable I10 is used. HO is

defined by the operation 110=19-26. Thus, 110 is negative unless

19 exceeds 25.

Now, when PLATO goes through Unit ZRO a second time ZERO I(9)

is interpreted as "ZERO 112", the value of 19 is increased to 13

and a new GOTO to the beginning of Unit ZRO is made. This "loop-

ing" through Unit ZRO continues until, on the 15th time, TUTOR

variable 125 is set to zero, 19 is increased to 26, I10 becomes zero

and the GOTO command is not performed. Commands following the GOTO

statement are now executed.

o

0

72

Chapter 9

OPERATING AS AN AUTHOR

A PLATO student station is the main means of communicating with

PLATO. The student, of course, uses a student station to receive

lessons. When a station is being used for lesson presentation,

it is said to be operating in STUDENT MODE. Any PLATO student

station can also be used by a teacher to produce or alter lessons

or to give special instructions to guide lesson presentation. When

a station is used in this latter manner it is said to be operating

in AUTHOR MODE. A station can be quickly shifted from either of

these modes of operation to the other. Each station operates

independently and any mixture of "authors" or "students" may

simultaneously use PLATO with each acting almost as if he were the

only person using the system.

The user of a student station in AUTHOR MODE has a great deal

of power. He can alter virtually any lesson available as well as

control student access to lessons. It is therefore necessary to

limit use of AUTHOR MODE to responsible individuals. This point

cannot be emphasized too strongly. Never let any student or other

unauthorized individual see how you shift a station to AUTHOR MODE.

Likewise, you should never leave a station unattended while it is

in AUTHOR MODE. It should go without saying that careless actions

of an authorized person can also cause a great deal of damage.

Entry to AUTHOR MODE

The general method of entry to AUTHOR MODE at any keyset is by

pressing the TERM key end then typing a "c de word." This code

word will be changed from time to time to insure the security of

lessons and student informazior. You will be told the current

code word if and when you have a valid need to use AUTHOR MODE. If

you must write this word down to remember it, please do so in a

place of a fashion that will not identify its use to an un-

authorized person.

131

73

To enter AUTHOR MODE from an unused student station

1. Press TERM key

2. Type code word (main AUTHOR. MODE display
will appear)

To enter AUTHOR MODE from a station in use by a
student

1. Press TERM key ("WHAT TERM?" will appear
on bottom line of screen)

2. Type "FINISHED" and press NEXT key
(WELCOME TO PLATO message will appear)

3. Type code word (main AUTHOR MODE display
will appear)

The first two steps in the procedure for entry from a statio,1 in use

by a student cause the student's current location in the lesson to

be stored away. When you have finished using AUTHOR MODE and

return the station to STUDENT MODE, he can "sign in" again and he

will be returned immediately to his last location in the lesson.

He could also "sign in" at any other station or at some later time

and immediately take up where he left: off. Thus, the TERM-

"FINISHED"-NEXT procedure is generally useful in cases where the

student must leave before he has completed an entire lesson. You

should, of course, not allow the student to observe you as the

code word is typed.

132

Exit from AUTHOR MODE

74

The main AUTHOR MODE display serves as both the exit and

entrance point to AUTHOR MODE. An author will always be able to

return to the main AUTHOR MODE display from the various AUTHOR MODE

options by pressing key BACK one or more times. Once on tl.a main

AUTHOR MODE display, pressing key RACK once will shift the station

!alto STUDENT MODE. Authors should always return a station to

STUDENT MODE before leaving.

To enter STUDLNT MODE from AUTHOR MODE

1. Get to main AUTHOR MODE display by pressing
key BACK ono or more times.

2. Press key BACK (station shifts to
STUDENT MODE. WELCOME TO PLATO
message appears if student operation
is permitted. SESSION FINISHED
message appears if student operation
is not permitted).

Main AUTHOR MODE Display

Figure 9.1 shows the main AUTHOR MODE display. This display

is the access point to all major AUTHOk MODE options. Options are

selected by typing the code word of a desired option and pressing

the NEXT key to activate that option. As the code word it typec,

it appears on the screen after the small arrow. The available

options will be discussed in the next section of this chapter.

133

75

AUTHOR NODE

LESSON LENGTH SPACE AVAILABLE

(TODD) 2618
(REINF) 1062

1.

5220

Figure 9.1

Main AUTHOR MODE display, Two lessons, (TDEMO) and (REINN),
are indicated as being available for student use. In

addition, 5220 "words" of storage space are available for
use by other lessons.

The AUTHOR MODE display shows what lessons are currently

available to students during a particular class period and how

much space is available for additional lessons. In order for a

lesson to be available for use by students, a copy of the lesson

must be placed in (or "read into") a section of the computer. The

total number of lessons that are available to students at any one

time is limited by the amount of space available in the computer.

Computer space is measured in "word" units. Figure 9.1 shows an

example in which Awo lessons have been placed in the computer.

Lesson (TDENO) takes up 2618 words and lesson (REINF) takes up

1062 words. There are 5220 words still available to other in-

structors. The lesson author need never worry aLcut how lesson

length is measured since the main AUTHOR MODE display tells him

all he will ever need to know. The first time a new lesson is

placed in the computer, the author should make a note of its

134

0

76

length (as indicated on the AUTHOR MODE display). thereafter, the

author need only verify that the space available in the computer

equals or exceeds the length of desired additional lessons. For

example, daring a class period in which lessons (TDEM) and (REINF)

were alreridy available to students, an author might deCide that les-

son (INTRO; should also be made available. Having used lesson

(INTRO) before, the author would know that (INTRO) takes up 1214

words of space. Since 5220 words are available (see Figure 9.1),

there is ample room for lesson (INTRO). After "reading in" les-

son (INTRO), the main AUTHOR MODE display would appear as in

Figure 9.2. The space available for additional lc.ssons has been

reduced to 4006 words.

AUTHOR MODE

4

LESSON LENGTH SPACE AVAILABLE

(TDEMO) 2618
(REINF) 1062

(INTRO) 121,1

4006

Figure 9.2

Main AUTHOR MODE display after addition of lesson INTRO).

Lessons may be added to ur removed from the computer at any time

by use of various AUTHOR MODE options which will be described

shortly.

135 0;..

77

One caution should be observed in using the information on the

AUTHOR MODE display. The information is current only at the time

it is first displayed upon entry from STUDENT MODE or return from

an AUTHOR MODE option. Thus, your AUTHOR MODE display will not

reflect additions or deletions made by another author a few seconds

after your current copy of the message was first displayed.

AUTHOR MODE Options

As indicated previously, an AUTHOR MODE option is selected by

typing its code word while on the main AUTHOR MODE display. It is

activated by pressing key NEXT. If an error is made during typing,

the ERASE key may be used at any time before the option is acti-

vated. If an author attempts to activate a misspelled or uonexist-

ant option, his station will be immediately shifted to STUDENT MODE

(it is assumed that STUDENT MODE is the best place to put people

who make mistakes while in AUTHOR MODE). However, the author

should not rely on this feature to catch his careless mistakes.

Several special AUTHOR MODE options (not described hers) are

reserved for use by TUTOR and PLATO system personnel. Activation

of came of these special options at certain times could be catas-

trophic. Therefore, the author should use particular care while

selecting Aurwr. MODE options and should certainly never attempt

to vse options which are not described here. Eight AUTHOR MODE

options are available to the general TUTOR author: EDIT, READIN,

DATA, START, STOP, DELETE, PRINT, And RECORDS. Each of these will

be discussed in detail in the following sections.

(1) The EDIT Option: The EDIT option permits the author to

write a lesson in a form which is immediately usable. As you have

seen in prior chapters, a TUTOR lessen consists of a collection of

Units, which in turn are made up of a sequence of TUTOR statements.

In the EDIT option,'the author can enter or alter the list of TUTOR

statements which make Lp his lesson. The author does this by typing

each TUTOR command and its tag on the keyboard at a PLATO station.

As the author types, the commands are sent to the computer which

later places them on a magnetic disk storage device. Each lesson

is assigned a specific area on one of tee disk storage devices.

13q,

0

78

Lessons are identified by abbreviated titles which consist of up to

six letters or numbers enclosed in parentheses. (TDEMD) and (REINF)

are two such titles. Let us observe how an author might start a new

lesson entitled (BOSH).

The first steps in beginning a new lesson consist of (a) writ-

ing a draft of the lesson and (b) getting permission from PLATO

personnel to place the lesson on a magnetic disk storage pack. If

permission is granted, an area of a peck will be set aside for the

author under the title which he requests. After the area has been

set aside the author is notified. He may then begin writing his

lesson using the EDIT option of AUTHOR MODE.

. Tc EDIT a lesson

1. Get to the main AUTHOR MODE display

2. Type EDIT and press key NEXT
(the AUTHOR MODE display will disappear and .

a new message will request the name of the .

lesson to be EDITed)

3. Type title of lesson to be EDITed and press
key NEXT (EDIT index display will appear)

. NOTE: Remember that lesson titles are always
enclosed in parentheses.

Figure 9.3 shows the EDIT index display for lesson (BOSH) before

the author has written anything in the area reserved for (BOSH). The

top line indicates that EDITing is being done in the area reserved

for lesson (BOSH).

79

LESS NI (BOSH) UNIT-4

PUSH -NEXT TO EDIT NAMED UNIT
-TERM TO ADD UNIT AFTER NAMED ONE
-HELP1- TO DESTROY UNIT

ONE

Figure 9.3

EDIT index display for lesson (BOSH) before the author has
written any Units.

,':

The next three lines give di;Iections for either (1) editing a Unit
i

already present, (2) adding a new Unit, or (3) destroying a Unit.

Since (BOSH) is a brand new lesson, the only Unit present is one

placed there temporarily by PLATO personnel when they reserved the

lesson space for him. This tomporary Unit is titled "ONE". If

the author wishes to inspect Unit One he types "ONE" on his key-

board. The word "ONE" will appear on the first line of the ENT

index ?{splay after the word "UNIT". Pressing key NEXT allows the

author to edit this L'nit. Figure 9.4 shows the contents of Unit
k.

OW which t ie autl..)- ti, i-4111 see on his screen. The Unit presently

consists c : five statertv 3, an AREA statement indicating the gen-

eral topic of the lesrt4nPind four "C" statements giving information

about the author and the date the space was reserved. The "C" com-

mand is a "dummy" command which is ignored during a TUTOR lesson but

can be used in AUTHOR t.ODE to store useful information for the

author or PLATO personnel.

,111030t4RWMII

0

0

80

LESSON-- (BOSH) UNIT--ONE
AREA RESERVED FOR PATTERN LESSONS
C 24 DECEMBER 1968
C DEPT. OF BASKETWEAVING
C PHONE 333-6500
C GEORGE P. BURDELL

Figure 9.4

Unit Conttats - as seen by author after typing "ONE" and
pressing key NEXT. The author returns to EDIT index dis-
play by pressing key BACK.

In this situation, the "C" statements are used to ! Pt "n person-

nel about the lesson and the author. Now, suppose the author wished

to alter this information and also wished to call his first Unit

"B-1" rather than "ONE". By pressing key BACK he could return to

the EDIT index display. He could then add a Unit after Unit ONE

by typing "ONE'fand pressing key TERM as per the instructions on

the EDIT index display. (Note - -if TERM is pressed when no Unit

name has been entered, the new Unit will be inserted in front of

all other Units at the beginning of the lesson.) A new message

would then request the name of this new Unit (see Fig. 9.5).

After typing "8-1", the author presses key NEXT to indicate that

he has finishe.i typing the name of the nel. Unit.

1 39,,-sr.

81

Figure 9.5

Request for name of new Unit

The display shown in Figure 9.6 would then appear. The X's in.the

line displayed at the top indicate that material is being inserted

at the start of a Unit. At thit, point the author begins producing

the contents of his lesson.

COMMAND -XXXXX lAG-

COMMAND -

Figure 9.6

140

OARROPPII#011111011IIHIr Oft'sellaulaaftse.rue.amodo..S.1111196111E101e2eir

82

If the first statement in Unit B-1 was:

tREA PATTERNS IN NEOLITHIC BASKETWEAVING

the author would type "AREA" and press key NEXT to indicate that he

was finished with the command portion of the statement. The display

would shift to that shown in Figure 9.7. After typing the tag of

the AREA statement and pressing NEXT the screen would shift to

Figure 9.8.

COMMAND -XXXX

COMMANU -AREA

TAG -

TAG -a

Figure 9.7

COMMAND -AREA TAG-
PATTERNS IN NEOLITHIC BASKtTWEAVING

COMMAND 4

Figure 9.8

1411

83

Suppose the next statement was:

BURDELL, 333.6500

After the command "C" had been entered, and the author had..,tarted

writing the tag, the screen would appear as in Figure 9.9. Note

tAat the immediately preceding statement is retained on the screen.

Mistakes in typing may be corrected by use of the ERASE key if

detected before key NEXT is pressed.

COMMAND -AREA TAG-
PATTERNS IN NEOLITHIC BASKETWEA.iNG

COMNAND -C

G.P. BURDELL, 333-

TAG,

- Figure 9.9

Once NEXT has been pressed, however, the entire command containing

the error must be deleted. Such deletions are performed by use of

one of several sub-options to be explained next.

. After entering several statements the author might wish to

chl.ck over all of the statements he has entered in the Unit. By

pressing key BACK he will be able to see the contents of his Unit

as shown in Figure 9.10.

14.

0

84

LESSON -- (BOSH) UNIT - -B -1

AREA PATTERNS IN E LITHIC BASKETWEAVING
G.P. BURDELL, 333-6500

C BASKETWEAVING DEPT.

C 27 DEC. 68
WHERE 415

WRITE INTRODUCTION

Figure 9.10

Unit Contents for Unit 3-1

While on a Uhit content display the author has six sub-

options available. He may:

1. Return to the lesson index display (by pressing key BACK),
2. Move the display forward (up) by a specified number of

statements,
3. Move the display backward (down) by a specified number of

statments,
4. Delete a specified number of statements,
5. Insert additional statements, or

_ 6. Save a specified number of statments.

Note that a small arrow appears in the upper right corner of the Unit

content display shown in Figure 9.10. If the author presses letter

or number keys while the Unit content display is present, the cor-

responding characters will appear on the screen following the spell

arrow. Sub- options 2 through 6 are activated as follows:

85

Sub-options ivailable on Unit Content Display

1. To move the display FORWARD (up), type "F" and
a. numbeT. Activate Ey pressing NEXT (display
moves up by the specified number of lines).

2. To move the display BACKWARD (down), type "B"
and a nuMber. Activate by pressing NEXT (display
moves down by the number of lines specified.

N. To DELETE lines, type "D" and a n, oer. Activate
lay pressing NEXT (beginning with the top statement,
the specified number of statements will be deleted).

4. To INSERT new statements, type "I". Activate by
pressing NEXT (insertion will begin following the
top statement on the display).

S. To SAVE a number of statement lines, type "S" and a
nuMger. Activate by pressing NEXT (beginning with
the top statement, the specified number cf state-
ments will be saved).

Examples: F3, B2, D6, I, S2. NOTE--Any letter activated
without a following number is interpreted as if the
number "1" were present. Thu: F and Fl will both move the
display up one line.

Following use of the Delete sub-option, any preceding statement which

was formerly not on the display will drop into view (end the deleted

statement will of course disappear). The Insert sub-option also may

be used with a number to indicate that the insertion is to occur fol-

lowing a specified statement counting from the top statement on the

display. However, it is generally safer for inexperienced autho,s to

zhift the display so that insertions are always made after the top

statement. The Insert sub-option moves the author to a type of dis-

play like that seen in Figure 9.8. Actually upon beginning a new

Unit the author is automatically placed in the Insert sub-option.

Writing a new Unit or adding to the end of an unfinished Unit are

simply special cases of "inserting" new statements.

144

teire(MOVNINN14110....*.... 13,11,11.

86

The total number of lines that can be saved with the Save sub-

option varies depending upon hod much information the lines contain.

"Saved" information can be inserted anywhere in a lesson by suffixing

an I directive with the letter S. For example, if the author types

in the directive IS the previously "saved" lines are inserted after

the first lint of the unit content display. Information saved via an

S directive remains available until destroyed by another S directive

or until the author leaves the EDIT option. Since the storage space

for saving information is limited, authors attempting to save more

than a few lines should always be careful to check that all the in-

formation they requested has actually been saved.

To correct errors in Units which have already been written, the

Delete and Insert sub-options are used in conjuncton. To avoid re'l,

pounding errors, authors are urge4 to adopt a systematic approach to

correcting lesson errors. One such approach is outlined here. Many

authors discover (the hard way) that little is gained and much can be

lost when an erroneous statement, or possibly what the author thought

was an erroneous statement, is deleted before, rather than after, its

replacement has been inserted.

' To correct erroneous statements

. 1. Get to Unit Content Display

2. Move incorrect statement to top of display

' 3. Insert correction

4. Return to Unit Content Display by pressing
BACK (incorrect statement will be on top
line, correction will appear below).

5. Verify that correction is actually correct

' 6. Delete incorrect statement (type "Du,
press NEXT)

87

Only about 17 statements will be visibi; . a time on a Unic

content display. Thus, on lengthy Units it will not be possible to

see the entire Unit without using the "F" sub-option. There is a

maximum perm'.ssible size for single Units; however, this limit will

rarely be encountered by most authors. An author who is approach-

ing this limit will see a row of X's appear on the Unit content

display as shown in Figure 9.11. Figure 9.11 of course shows only

the last few statements of a very lung Unit.

LESSON- --(BOSH) UNIT - -B -1

ANS HIAWATHA
JUMP B-32

xxxxxx
xxxxxx

Figure 9.11

Unit content display for Unit which is nearly "full".

The limitation in maximum length of a Unit need not be of practi-

cal concern to an author since portions of the draft version of

the Unit may themselves be defined as Units an'i JOINed into the

overly :enell, Unit at the appropriate point (see Chapter 5).

To return to our example, suppose thil the author has satis-

factorily completed his Unit B-1 through appropriate use of the

"F", "8", "D" and "I" sub-options of the EDIT option. After re-

viewing his typing by inspection of the Unit content display,

the author returns to the lesson index display by pressing key

BACK. In general, throughout AUTHOR MODE, an author may always

146'

.nolow-rftemenomvermacwomen0.467~11111010WWW,

88

"back out of" the various levels of the options by use of the bACK

key. Upon return to the lesson index display, the author observes

that the display now appears as Figure 9.12. Since Unit B-1 replaces

Unit ONE, the author will now wish to eliminate Unit ONE.

LESSON -- (BOSH) UNIT- -

PUSH -NEXT- TO EDIT NAMED UNIT
-TERM- TO ADD UNIT AFTER MANED UNIT
- HELPI- TO DESTROY UNIT

ONE
B-1

Figure 9.12

Lesson index display after addition of Unit B-I

This is done by following the third instruction on the iisplay.

"ONE" is typed ty the author and the SHIFT and HELP kcys are

pressed simultaneously ("HELP1" being interpreted as SHIFT+

HELP). The lesson index display is immediately altered and the

"ONE" listing disappears. The procedure and the instructions for

destroying a Unit are purposely complex. The intention is to

avoid a:cidental destruction of lesson material by an author or

"malicious mischief" by a student who might get into AUTHOR MODE

accidentally or through the carelessness of an author. For the

same reason you will not' that no instructions are given in

Alr;f0m WOE itself for use of the "I", "D",

sub-or.ions.

147
11.01

"S", "PI and "B"

89

As the author adds additional Units, the names of these Units

will appear on the lesson index display. Depending on the length of

the individual Units, between 32 and 64 Units may he listed on the

index display before the lesson space is filled to capacity. Exper-

ience has shown that lessons of this size are generally more than

long enough to take up a typical class "hour." When Units are very

short it is possible to have more than 64 Units in a lesson. If

this situation arises, the author should consult PLATO personnel for

special instructions.

Only one author can EDIT a lesson at a time. If an author at-

tempts to EDIT a lesson already being EDITed by another author, he

will receive a message informing him of the conflict. Pressing key

NEXT will then return him to the main AUTHOR MODE display.

This completes the discussion of the EDIT option. However,

before continuing on to the remaining seven options, we will try to

clear up a point which may be puzzling some readers. We have re-

ferred to the fact that an author using EDIT stores his lessons on

the magnetic disk. However, the distinction between disk storage

and computer storage has not yet been made clear.

Associated with the computer is a hign-speed "memory" or

storage device. Informaticn such as a TUTOR lesson stored in this

high-speed memory is rapidly accessable. in fact, the speed with

which particular items of information can be retrieved from this

high-speed memory is measured in terms of millionths of a second.

Such ..reeds are a necessity when large numbers of students met be

served without noticeable delays. If lessons could be permanently

stored in this high-speed memory, all lessons could be immediately

u ailable for student use. Unfortunately such storage devices are

relatively expensive. Thus lessons are stored on a somewhat lower-

speed (and less expensive)memory device except when they are actually

being used by students. The magnetic disk pack is one such device.

A disk pack would be far too slow on the present PLATO system for

practical use durilg an actual lesson. However, a copy of a lesson

can be "read" from a disk pack into the computer's high-speed memory

148

rervAttilow

90

in a matter of seconds. Thus the limitation in the amount of avail-

able high-speed memory space does not significantly reduce the range

of lessons available to students. In otter words, a group of 20

students might have quick access to an/ of several hundred lessons

stored on disk packs but only 6-10 of these lessons would be avail-

able simultaneously beceuse of limited high-speed storage space.

Authors may edit lessons at the same time the lessons are being

used by a student. Note that what the student is using is only a

copy of the lesson which was read into te computer from disk storage

at the beginning of the class period. The author performs his edits

on the original lesson which is always stored on the disk. Thus,

Changes made by the author during a clasp will not be apParent to the

student until a new copy of the revised lesson is rea-k from the

disk storage into the computer.

149 r

7.1rIN

91

2. The READIN OJtion. This AUTHOR MODE option allows the

author to read a copy of a lesson stored on a disk pack into the high-

speed memory of the computer, thus making the lesson availa'ae for

student use.

, To make a les4lon available for student i.se:

. 1. Get to the main AUTHOR MODE display

. 2. Verify that space is available for the lesson(s) .

desired,

. 3, Type "READIN" and press key NEXT (READIN message .

will appear - se:. Figure 9.13).

4. Type the name of each lesson desired. Use the
ARROW key to move to a new line for each ad, -
itionai lesson.

. 5. Press key NEXT to begin READIN (main AUTHOR MODE .

display will reappear after READIN is complete -- .

READIN may take up to 15 seconds if several les, .

sons are addt.

Several corvtications may occur during READIN, The simplest of

these is that someone else might have already begun a READIN or

certain other options. In this case, a message to that effect

will appear. Pressing key NEAT allows a return to the main AUTHOR

MODE display. A second attempt to READIN may then be made.

,5O

0

C)

92

LESSON NAMES

1. (ALPH-7)
2. (ALPH-6)

(AL ?H -5)

4.

5.

6.

7.

8.

Figure 9.13

'READIN message. Key ARROW shifts to new line.
Press NEXT to begin READIN.

If a lesson is newly written it might well contain typing or

logical errors. Certain of these errors will be detected when the

lesson is readin for student use. Most errors consist of "illegal"

commands (generally misspellings of the intended commands) and les-

son connections which could not be made. An example of a missing

lesson connection would be a lesson containing the statement

NEXT SUB3 when

there was no Unit named "SUB3" among the lessons read in. Errors

are indicated in a message which appears, when needed, immediately

After READIN. The message will list the errors which were detected

and the Units in which each error was found. If the author mis-

calculates and tries to READIN a lesson which is too large for the

available space in the computer, the error message will kndicate

how much of the lesson did get into the computer. The author should

make a note of all errors listed and then press key NEXT to A.turn

to the main AUTHOR MODE Lessage. If unexpected erlot wassages occur

on READIN of a lesson, remove the lesson from the computer (sma the

DELETE option), make appropriate EDITa, and then READIN the revised

151 od

93

lesson. Similarly, if a lesson will only partially fit into the space

available, it should be removed from the computer. No harm will re-

sult from testing lessons with known or unknown errors (the lesson

will operate normally up to a faulty Unit) but good authoring practice

suggests that grief is minimized when known errors are corrected as

they are encountered.

When several lessons are placed in the computer by the same

READIN, a special feature becomes evajlable. Connections between all

lessons entered at the same tiny: are permitted. For example,, the last

Unit of one lesson might contain a NEXT command allowing a connection

to the first Unit of a related lesson. As long as both lessons were

placed in the computer by the same READIN, this connection would be

made. If the lessons were placed in the computer by two separate

READINs, the connection would not be made. Under certain circum-

stances an author might want to READIN a single lesson even though

it contained connections to other lessons. Upon READIN, en error

message would inform the author of the connections which could not

be made. Students could still use the lesson but the lesson would

behave as if the statement (or portion of the statement) calling

for the nonexistant connection was not present. If the lesson has

been written so that it can function properly even without scch

statements, al is well. This is generally the only situation in

which an author would operate a lesson for students after getting

an error message on READIN.

Another advantage of using connected lessons is that c.?licate

Units used by several lessons need be produced only once. Examples

of such duplicate Units include help, review, and other supplementary

material as well as Units (known as "drivers") which alla4 economical

presentation of large numbers of screen displays which differ only

slightly from one another. As an ideal, authors should limit the

total size of an individual lesson or group of lessons which must

be read-in torther to about 3000 words. There are several ad-

vantages to keeping a lesson or group of dependent lessons as

short as possible. Among these advantages is the greater flex-

152_

94

ibility that short programs give to the instructor of a class con-

taining students with a wide range of interests or ability levels.

Equally important is the fact that during early testing of lessons

it is ..ar easier to find small amounts of "free" computer space

than it is to find, say, 5000 words of unused space.

95

3. The DATA Option. One of the basic advantages of computer-

based education is the ability to collect data as each student

works his way through a lesson. By means of the DATA option, a

standard data record can be saved on magnetic tape each time a

student's answer is judged, each time the student presses certain

control keys, or whenever an INFO command is encountered. Follow-

ing the class session, these records can be sorted and printed.

The DATA option applies to all users of the PLATO system. That is,

if su instructor begins data collection, data is stored for all

students working on the system.

To collect student data

'1. .heck with computer operator to verify
that magnetic tape is ready for data
collection

'2. Get to main AMOR MODE display

'3. Typo "DATA" and press key NEXT (when
"DATA" disappears from screen, data
collection has-begun)

Conversely, no data will be collected for any student unless some

instructor asks for it. Figure 9.14 shows part of a printed copy

of data from one class session.

154

96

Name Time Unit Arrov Event Supplementary information

TENCZAR S*42 ADD 1 WRONG 25

AVNER 4729 KEYS 2 DU? ALFALFA

BOHN 23*51 Q23 1 INFO 256 74

TENCZAR 5*53 ADD 1 35

BLOMNE 3*14 HP 1 TERM PLATO

CRANDE(44:'42 STAT-24 1 NC THE MEAN AND KURTOSIS.

BITZER 12*36 PROB4 1 ANS 1492

MAST 5*15 INTR 3 BACK

STEINBER 7.15 HI 1 HELP

Figure 9.14

Portion of a data record from a class session

Each line of data is produced at the time the event occurs. Thus,

records of different students taking different lessons are all inter-

mixed. An author would of course rarely use student data in this

"raw" form. The first item in a standard data record is the student

name. The second item is the time at which the event occurred. Time

is measured in either minutes and seconds (e.g., 5*42 = five minutes

and 42 seconds after sign -in) or in sixtieths of a second (e.g., 4729

sixtieths after sign-in) at the option of the author of each lesson.

By starting each student's clock at zero when he signs-in for a class,

a record of cumulative class-time can automatically be kept. The

third item in a data record is the name of the Unit in which the

student was working. The fourth item further specifies the student's

position in the lesson by indicating which "ARROW" the student was

responding to. The fifth item specifies the type of event which

caused the data line to be produced. Table 9.1 lists the lb differ-

ent types of events which can produce a data record. The sixth

and final item in a line of student data is supplementary infora-

tion which usually consists of a record of what (if anything) the

student typed.

155
'1'

97

EVENT LABEL EVENT

none (blank) A student response was judged "OK"

WRONG A student response matching the tag of a WRONG or
CANT statement was judged "NO"

NO A student response which did not match any ANS-
type statement tag was judged "NO"

NC A sentence was judged incomplete

SP A student response was judged to be misspelled

DUP The student attempted to use the same response
twics on a list

ANS The student requested the answer

TERM Student requested a term

INFO An INFO command was encountered in the lesson

HELP Student branched by pressing the HELP key

HELP1 II 1, 11 " HELP1 "

DATA 11 e 11 e " DATA "

DATA1 " " " " " DATAI "

LAB '' e U H LAB "

LAB1 e " e " LABI "

HELPNO A help-type key was pressed, but no branch was
available

Table 9,l

Events which can produce a data record and the labels
indicating these events

,ii
1 ub- "

ifileakeeetemewsk_

98

The only exceptions to this generalization occur for the ANS and

INFO events. Supplementary information for the ANS event is the

correct answer (if any) given the student upon his request. The

supplementary information for INFO events consists of a line of

information specified by the author in an INFO statement con-

tained in a lesson.

Student data is generally sorted in the evening following

classes. Authors can specify that selected data are to be kept

(e.g. data for specific students or particular types of events)

and how the data are to be arranged (by students, by Units, etc.)

The major use of data as extensive as that shown is in revision

of early for of lessons. Two ways of using the data which give

goad results ere (1) checking Units on which students seem to

spend a great deal of time (expansion or rewriting may be needed)

and (2) checking all "NO" events (responses which were not anti-

cipated) to insure that correct responses are not being rejected

and that "popular" incorrect responses receive spedial attention

if necessary. Complete data collection is generally notwarranted

for final forms of lessons. If records of student performance are

desired, summary data can be provided more efficiently by use

of TUTOR variables and the RECORDS option discussed later.

99

4. The START Option. For purposes of class control, it is

sometimes helpful to prevent student access to lessons which have

been placed in the computer. For this reason, students will not

be able to "sign-in" for any lesson until an author activates the

START option. Once as author activates the START option, all

students will be able to sign-in. At this point w. can list the

complete procedure for starting a TUTOR class session.

To start a TUTOR class session:

1. Get to the rain AUTHOR MODE display

2. READIN all desired lessons (use separate
READINs for independent lessons).

3. If data are to be collected, verify that a'
magnetic tape is ready and activate DATA

4. Type "START" and press key NEXT. WELCO:E
TO PLATO messages will appear on all un-
used stations in flUDENT MODE. Stations
in AUTHOR MODE are unaffected.

S. Return your station to STUDENT MODE be-
fore leaving it (press key BACK)

If student data are not desired, step 3 should be eliminated. .

Other instructors can READIN additional lessons after one set of

students has begun without affecting the students already at work.

However, since the START option has already been activated, students

belonging to the latter instructors will be able to sign-in once

their lessons are read-in. If the START option is activated more than

once during a class session the only effect will be to place a fre$h

WELCOME TO PLATO message on the screens of unused stations. Thus the

procedure for starting class sessions which is outlined above may be

used by instructors even if they READIN lessons after another class

has begun.

158

IMS1001000011MOMOINrvAise AsisammomMWWWW,

100

The STOP Option. The procedure for ending a class session

is quia simple, merely write STOP on the AUTHOR MODE display page

and press NEXT. When the STOP option is activated data collection

is halted and an "end" marker antcmatically is placed on the magnetic

tape. Records of all students are also updated so that the next time

they sign in they will begin where they last left off. Remember that

all students are halted as soon as EL instructor activates STOP.

Thus, when several classes share the same time some coordination is

advisable. The "press key TERM, type 'FINISHED', press key NEXT"

procedure described at the first of this chapter is useful for up-

dating records of individual students who leave before the end of

the class session. This procedure also releases the student station

for use by another student or by an author.

' To stop a TUTOR class session:

1. Get to the main AUTHOR MODE display

2. Type "STOP" and press key NEXT. The

SESSION FINISHED message will appear
on all stations in STUDENT MODE.
Stations in AUTHOR MODE are un-
affected.

159 1

101

6. The DELETE Option. Lessons should be removed from the com-

puter as soon as a class session is completed,whenever all students

have finished using a particular lesson during a class session, or

wheAever testing of the lesson is completed. The procedure for re-

moviLg a lesson from the computer's high-speed storage is outlined

below.

To remove a lesson front the computer:

1, Get to the main AUTHOR MODE message

2, Type 'DELETE" and press key NEXT (a
message will request the name of the
lesson)

3. Type the name of the lesson to be de-
leted and press key NEXT. Deletion is
complete when the AUTHOR MODE display
appears. Deletion may be verified by
examination of the AUTHOR MODE display.

If a lesson is deleted while students are still working on it, the

students records are automatically updated and the WELCOME TO PLATO

message appears at the stations in use by those students. Thus,

DELETE provides an alternate method of halting a class session if

student data are not being collected. Use of the DELETE option

has no effect on authors or students working on lessons other than

those deleted. Only one instructor may DELETE at a time. If an

instructor attempts to use DELETE while another instructor is

using DELETE (or certain other options such as READIN) a message

to that effect occurs. The author may return to the main AUTHOR

MODE message by pressing key NEXT and attempt to DELETE again

after a short wait.

102

7. The PRINT lion. Printed copies of portions of a lesson or

the entire lesson may be produced for authors by means of the PRINT

option.

To obtain a printed copy of a lesson

1. Get to the main AUTHOR MODE display

2. Type "PRINT" and press key NEXT. (The PRINT
option message will appear).

3. Type the name of the lesson desired

4. If selected sections of the lesson are de-
sired use the ARROW key to move the arrow to
,hat portion of the message and rmter the
beginning and ending Units of each segment
desired.

5. Press key NEXT (a message will indicate that
printing is being done).

(6. The main AUTHOR MODE display will reappear
when the printing has been completed.

Only one author may PRINT, READIN, or DELETE at a tima. Thus

one author may not DELETE a lesson during the time another author

is using PRINT. If someono else is using any of these options the

author will receive a message telling him of the conflict. The

author thus thwarted should press key -NFXT- to return to the main

AUTHOR MODE message and repeat his attempted PRINT, READIN, or

DELETE after a short wait. Do not use PRINT near the first of a

class session since this may delay the start of classes needing to

READIN lessons.

Since printed copies of lessons are produced only at the com-

puter site,authors at remote sites will not have immediate access

to their requested print-out. Such authors will recognize the use-

fulness of having complete author identification contained in the

first Unit of each lesson.

103

8. The RECORDS Option. rie final option to be described in

this chapter permits the author to specify who will be allowed to

use a lesson. Earlier chapters show how a student "signs -in" for

a class period. When a student types his name, the disk storage

's searched for a "STUDENT RECORD" with the same name. If the

proper name is found and the lesson is available, the student may

proceed. Otherwise he is stopped. The procedure is analogous to

a teacher checking E roll book on the first day of a new semester.

Students who show up in the wrong class are directed elsewhere.

The analogy of STUDENT RECORDs to a teacher's roll book may

be extended further. Just as a roll book contains space for addel

information such as grades and attendance, each ST WENT RECORD

contains 63 spaces known as STUDENT VARIABLES for recording tem-

porary or permanent information concerning a particular student.

When a student signs in for a lesson his STUDENT RECORD is

brought from disk storage and placed in the computer. When a

student finishes a class session and signs out (by the TERM -

"FINISHED" -NEYT procedure) or is signed by the instructor

(by use of STOP or DELETE), the up-to-day. iTUDENT RECORD re-

places the old reco7d in disk storage. If the student does not

get signed out, his old record is not altered. The RECORDS

option allo% the author to begin new student records or destroy

old ones and :a mcve a copy of a student record from disk to

computer in order to alter; print, or observe entries in the

record.

One of the most usefL1 parts of a STUDENT RECORD is the posi-

tion of the student in the lesson that he is working in. As the

student proceeds through the lesson, a record of his current base

Unit is maintained. Thus a student may sign out in the midst of a

lesson and return to complete that lesson at a later time. Figure

9.15 shows the RECORDS display which is seen when the RECORDS

option is activaed. As you can see, there are spaces for the

name of a student, the title of a Lesson, and the name of a !IN1T

within oat lesson. These may be typed, erased, or altered by

appropriate use of the ARROW, ERASE, and regular keys of the

104

keyboard. Five sub-options are listed on the RECORDS display. A

basic sub-option involves getting a copy of a student record from

disk storage to tho computer. Once the copy is present in the com-

puter, it may be examined and altered by the author at his PLATO

station.

TO SEE STUDENT RECORDS, PUSH KEY...

NEXT--TO GET NAPED RECORDS
BACK--TO RETURN RECORDS
TERM.-TO PRINT RECORDS
HELP1-TO DESTROY RECORDS
DATA--TO SEE VARIABLES

LESSON-

Figure 9.15

RECORDS Display

To Get a Student Record:

. 1. Ge, to the main AUTHOR MODE display.

2. Type "RECORDS" and press NEXT (RECORDS
display will appear).

. 3. Type the name of the lesired student (no more
than 8 letters) and press NEXT (Student re-
cords for the named student will be sent from
disk storage to the computer).

105

The author can request that a printed copy of the student record be

provided. If a student record is altered, the revised copy can be

returned to disk storage where it will replace the old version of

that particular studen record. When a course is completed, old

student records may be destroyed so as to give space on the disk

pack for other students. The sub-options will now be explained in

more detail.

1. To get RECORDS from the disk pack: Type the name of the
student (limited to 8 letters, spaces, punctuation marks or numbers)
and press key NEXT. If the student has records assigned, his cur-
rent Lesson and Unit will appear in those spaces. If the student
does not have records assigned, a series of small wedge symbols
will appear on the Lesson and Unit lines of the display.

2. To send RECORDS from the computer to the disk park: When
key BACK is pressed, the Name line is checked. If a name is pre-
sent the copy of RECORDS then in the computer is sent to the disk
pack. The RECORDS being placed on the disk pack will replace any
already present which are assigned to the same name. If no records
having the same name are present, a new RECORD is s,arted. NOTE- -

if BACK is pressed when ro name is present on the Name line, the
station is returned to this main AUTHOR MODE display.

3. To print a copy of RECORDS: Press key TERM to get printed
copy of the RECORDS which are currently in the computer.

4. To destroy RECORDS: Type the name of the student whose
RECORDS are to be destroyed. Press the SHIFT and HELP keys simul-
taneously and the RECORDS will be deleted from disk storage.

5. To examine or alter TUTOR variables for a student: Get the
student's RECORDS from disk and press key DATA. A new display will
appear. This new display allows the author to specify what format
the 63 variables are to be viexad in. After the format or formats
(see Chapter 6) have been specified the variables appear sequentially
as key NEXT is pressed.

The process of sending RECGRDS to the 'lisk storage should be

done with caution. For example, a careless author might send RECORDS

fol.. a new student to disk storage without first verifying that no

RECORDS for another student with the same name are present. If du-

plication of names occurred, the older RECORDS Nould be lost when the

new RECORDS replaced them. The following procedure should always be

followed ir setting up RECORDS fc: a new class.

164 1:"1

106

4 . To set up RECORDS for a class:

O

0

. 1. Verify that no RECORDS are already present on the .

disk pack with names identical co those which your .

students will use. (Check each name on your roll .

by attempting to get RECORDS from the disk under .

that nale. If the wedge symbols appear, it is
safe to use that name; if RECORDS are present, try .

variations of the name until an acceptable form is .

found).

2. Set up a standard RECORD for the class. (Indicate .

the Lesson and Unit names and set any TUTOR vari- .

Ables which the lesson assumes to be preset. If .

students are to begin at the first Unit of the
lesson, the Unit line may be left blank).

3. Send class RECORDS to disk (Fill in each student
name and press BACK. When the student name dis-
aypears, the RECORDS will have been placed on
disk. Other names may be typed in and sent to
disk. Note that once a standard RECORD has seen
set up, it need not be altered unless subsequent
students are to have different initial RECORDS).

4. Verify that RECORDS are present. (Try to get
RECORDS for each student on your list).

Figure 9.16 shows the display which is seen when an author

presses key DATA in order to view TUTOR variables for a particular

student, The author must specify the format (see Chapter 6) in

which the variables are to be interpreted. If all variables are

integers the author may simply type "63" opposite the INTEGER entry.

He could then press NEXT 63 times and see each o the 63 variables

as interpreted in "1" format. If variables use several different

formats, the author might arrange them so that all "A" format var-

iables precede all "I" variables which in turn precede all "F"

variables (e.g. variables 1-12 use "A" format, 13-24 use "1" for-

mat, and 25-63 use "F" format). This would allow him to specify

all formats for viewing or printing variables at once. Figure 9.16

'1

16 5 ?,

THERE ARE 63 VARIABLES

SPECIFY HOW YOU WOULD LIKE MEN!
DIVIDED UP. THEY WILL APPEM.
SEQUENTIALLY WHFN YOU PRESS -NEXT -.

VARIABLES NUMBER

WORD +12

INTEGER 12

FLOATING 39
POINT

Figure 9.16

Format Specification Display

shows how the Format Specification Display would be set up for the

above example. Authors ueed not feel constrained to arrange their

variables in the order indicatr'd for the Format Specification Dis-

play. It is possible to enter the Format Specification Display

three tilers and interpret all variables successively under each

format. Only the variables which had actually been stored under

a specific format would appear to b2 "cprrect" when interpreted

under that same format.

108

Summary

CAUTION: Always return a station to STUDENT WDE, after using AUTHOR
MODE.

TO ENTER AUTHOR MODE: (from a station not in use by a student) Press
key TERM, type entry code word

TO RETURN TO STUDENT MODE: Press key BACK one or more times

AUFlioi; MODE OPTIONS: Type code word of options and press key NEXT

Code Word Use

EDIT To produce or edit a TUTOR lesson

Sub-options F ("forward ")

("back")

D ("delete")

I ("insert")

S ("save")

REAM to place a lesson in the computer

START To make lessons in computer available
to students

DATA To collect student data

STOP To stop data collection and halt all
students'

DELETE To remove lessons from, computer

PRINT To produce a printed copy of a lesson

RECORDS To examine or alter student records

Chapter 10 109

FINDING LESSON ERRORS

or

"How to Avoid Looking Grim as You Reap What You Have Sown"

From time to time you will find that there is a sharp difference

between the way PLATO presents a portion of your newly written material

and the way i'ou intended PLATO to present it. On these occasions it is

customary to blame

(1) PLATO (the system),

(2) TUTOR (the language), or

(3) the author (you),

in that order. In practice, however, most errors in lesson presenta-

tion are due to mistakes on the part of the author. This is not to

say that either PLATO or TUTOR is infallible but on y that the least

thoroughly tested element in the system (your lesson) is the most

ikely location of an error. Also, malfunctions of either PLATO or

TUTOR tend to be cat-strophic and thus immediately apparent to all.

For these reasons we will assume here that your problem lies in your

own material. Fortunately, most mistakes will be obvious a.d you will

have no trouble correcting them, Some, twwever, will not oe so obvious

(at least the first time they are encountered) and some of the sug-

gestions given here may be of help.

Where to Look

One of the best sources of clues to errors is provided by error

messages from PLATO. An error listing is given on the screen by PLATO

wheneve; a lesson which contains certain faulty commands is read into

the computer for student use. If such a listing appears after you

have read in your lesson,it means that PLATO found somethiL, rong

with the way you wrote the lesson. You ray, for example, have mis-

spelled a command or specified s connection (g. by a JUMP command)

to a UNIT which was not available. Whenever such errors occur, PLATO

Ignores the entire lino containing the error and adds the error to

the error listing. If you then use the lesson &A a student, the les-
. ,

son will I.ehave as though the line containing the error was not present.

It should be apparent that error listings should not be ignored.

168

110

Another error message which may be displayed on a student's screen

is the "FATAL LOOP" message. This indicates that TUTOR found more than

1000 commands during one of your lesson's contingencies (e.g. during a

UNIT-C, ARROW-C, etc.). Generally this results from cycling through

the same set of commands over and over again. If this "leaping" was

unintended you can prevent this message from recurring by rewriting

the portion of your lesson which caused it. Otherwise, you may want

to use the LOOP command (which see) to allow a larger number of com-

mands to be encountered by PLATO during a contingency.

More subtle errors result when a proper command is used in the

wrong place or left out completely. No error listing will occur

(PLATO can't read your mind) but the effects on your lasso: will still

be evident. Sometimes the only way to find such errors is to locate

the UNIT in your lesson in which things last seemed to be working

normally end proceed from there line by line. Some of the more com-

mon mistakes to look for are;

(1) Are commands legal in the position you used them? (e.g. are

you trying to use a command as an ARROW contingency when it

was designed only for use as a UNIT contingency?)

(2) Are commands positioned properly for the desired effect?

(e.g. if a command is to be an ARROW contingency is it

placed between the ARROW command and the first ANS-type

command?)

(3) Do all con ands that should have tags actually have them?

Leaving the tag off of certain commands can produce bizarre

effects.

(4) Are there any extraneous blank lines? A blank line after an

ANS command will result in rejection of a "correct" answer

by PLATO even though what appears to be the same correct

answer is produced by pressing the ANS key (Actually it is

the "correct" answer followed by a blank line).

As you look through the troublesome UNIT you should also think about

how each of the commanus and tags will affect what PLATO will do.

With a little experience you will find that an undesired effect

will often suggest a possible cause. Even without such experience

you can frequently nar.'ow down the possfalities. For example, if a

lesson "worked" until some additions or corrections were made it is

obvious that the new contends and the commands next to them are good

16a 1-

10811114111111Mibwr..

111

beginning points for your search. Remember that the insertion of

tertain commands (e.g. the ARROW or ANS command) can change the

effect of following commands from a UNIT or ARROW contingency to

an ARROW or ANS contingency

TUTOR Variable Problems

Lessons which use TUTOR variables should be given special

attention. If possible, before attempting to use such lessons on

PLATO, you should work through them "by hand" with extreme values

to insure that the lesson is prepared for anything a student might

do. You will find that such "hand simulation" will eliminate al-

most all problem before they happen. When problems are found in

lessons you should use the disk student records to examine the value

of variables at specific points in the program. Remember to update

student records, if you are using them, by pressing key TERM and

typing "FINISHED" each time before examining them. On errors which

require extensive amounts of student operation time you may want to

-1mporarily insert SHOW commands in the lessor or use the PEEK rou-

tine described 11 Chapter 6 to avoid having to shift into and

out of Author Mode at many points in the lesson. In some cases,

it may be necessary to change Jumr and GOTO commands temporarily

into NEXT commands to allow you to go through complex computa-

tional routines a step at a time.

In Conclusion

Above all remember that most errors in TUTOR lessons are not of

the sort that require a great deal of wurk to locate. Also, error

location is one ability that rh:ows very rapld effects from experience.

Once you have tracked down one or two moderately elusive errors your

efficiency at this sort of game will noticeably increase.

170,1

112
Chapter 11

APPLICATIONS

Complex lesson segments are seldom written by neophytes, Once

written, however, useful complex lesson segments can often be modified

to fit other applications by authors who possess only a scant knowl-

edge of TUTOR. This chapter is intended to propagate knowledge about

useful lesson segments written by authors skilled in TUTOR and PLATO

operations, Although the segments concern specific applications for

the sake of a clear presentation, mention is made of how the segments

can be generalized for use in other applications. In adapting a lesson

segment to other uses, the novice author should list the pats of hi.;

application that he wants to differ from those of the given example.

Then, it is usually an easy task to find the TUTOR statements which

need to be changed. The statement to be altered will ofter suggest

how the new statement should be written.

Each of the following examples begins with an italicized statement

describing a desired lesson situation. Then follows a discussion of the

problems involved and the method of solution. Finally, a complete TUTOR

lesson segment is given which satisfies the desired lesson situation,

One should not be confused by the combined use of 1CALC, FCALC,

and CALC commands in the examples. In most cases, the CALC command

can replace the ICALC and FCALC commands and give the same results.

However, the ICALC and FCALC commands are executed about 10 times fast-

er than the CALC command. Authors can use only the CALC command when

first writing a lesson segment. Only if noticeable time delays occur

should the author consider "speeding up" the operation by substituting

ICALC and FCALC commands, Noticeable time delays usually occur when

operations require extensive looping.

171 p.

1111ZWINIMmiteitara

113

GRAPHING A JUNCTION

Students are to explore the contributions from the different parts of the

quadradio fUnotion, Y=AX2 t BX t C, through graphing the function many times

while changing the values of A, B, and C.

A first Unit, Unit SETUP, is used to explain the situation to

the student and to obtain values for A, B, and C from the student.

These values are put into the floating point variables 1, 2, and

3 by the use of STORE statements. If desired, the judge contin-

gencies for Unit SETUP could check that the student values for vari-

ables 1, 2, and 3 fall within a range of values meaningful to the

problem and to the coordinate system used in the graph.

Another Unit, Unit GRAPH, displays a coordinate system along

with the quadratic equation and the student's values for A, B, and

0 C. Variable 5 is initialized at this time and will contain the

value of X from 0 to 10 for the calculation of the quadratic func-

tion. For each X unit, 15 points on the graph will be generated

giving a total of 150 points. Units GRAPH1 and GRAPH2 plot the

graph. The first statement in Unit Graphl calculates the value of

Y. Authors desiring to graph other functions merely need to sub-

stitute an alternate statement at this point. The next four state-

ments invert the value of Y for graphing and check that Y is within

proper screen bounds. The following WHERE statement prepares the

PLATO equipment foe plotting a dot at the current Y and X coordinate

screen position. Unit GRAM increments the screen position of X,

the value of X for calculation of the next Y value, and decrements

counter 9. Finally a check is made for the completion of the graph

using counter 9.

1.\
172

114

The Y and X screen position values contained in variables 4

and 6 need further explanation. While a full understanding lequires

an explanat!on of the operation of the storage tube device, an ex-

planation sufficient for most purposes starts with the information

that there are 180 addressable points on the Y-axis of the screen

and 256 X-axis points. The top left corner of the screen is addres-

sed by 0,0. Each character of a TUTOR WRITE statement consumes 5

X-axis points while each line consumes 70 Y-axis points. Thus, the

X-axis of Unit GRAPH is centered at about 105 on the Y-axis. The

calculated. Y-value from the quadratic formula must be subtracted

from the number 105 to center and invert the graph on the screen.

Since the desired zero of the X-axis is four characters in from the

left of the screen, the starting screen X-value is 15 (not 20 since

the first character position is at 0).

Mb\

115

UNIT SETUP

NEXT GRAPH

WRITE ONE CAN OBTAIN AN INTUITIVE UNDERSTANDING OF
THE CONTRIBUTIONS FROM THE DIFFERENT PARTS OF
THE QUADRADIC FUNCTION

Y = AX2 + BX + C

THROUGH GRAPHING THE FUNCTION MANY TIMES WHILE
CHANGING THE VALUES OF A, B, AND C IN AN
ORDERLY MANIMR.

CHOOSE THE VALUES OF A, B, AND C...(THEY CAN
BE POSITIVE OR NEGATIVE)

A =
B =
C =

THE VALUE OF X WILL RANGE FROM 0 TO 10.
ARROW 140')

STORE Fl
ANS
ARROW 1509
STORE F2
ANS
ARROW 1609
STORE F3
ANS
C
C
UNIT GRAPH
NEXT SETUP
WRITE GRAPH OF. A =

Y = AX48X+C B =
80 : C =
70
60
50
40
30
20
10
=0 1 2 3 4 5 6 7 8 9 10

-10
- 20

-30
- 40

-5C
- 60

- 70

WItTRE 125
SHOW F1

116

WHERE 225
SHOW F2
WHERE 325
SHOW F3
FCALC F5=0
ICALC I6= 15
FCALC F7=1/15
ICALC 19=149
GOTO GRAPH1
C
C
UNIT GRAPH1-
CALC 14=F1 *F5*F5+F2*F5+F3
ICALC 14= 105-14
GOTO , 14, GRAPH2, X
ICALC 18 = 180-14
GOTO 18, GRAPH2,X
WHERE 14, 16
PLOT DOT
GOLLA GRAPH2
CHAR DOT,4040,4041,4140,4141
C
C
UNIT GRAPH2
ADD1 16
FCALC F5=F5+F7
SUB1 19
GOTO I9,X, GRAPH1

117

NUMERICAL ANSWER JUDGING

A student's numerical response Mmult be within a stated range of values

and (2)must be associated with a crrreepondi4g unit of measurement.

When judging complex numerical answers, the author should

attempt to give the student as much help as possible for incorrect

answers. This lesson segment gives the student four types of error

messages: (1) failure to attach a unit label; (2) improper unit

label; (3) numerical answer too big; (4) numerical answer too small.

Unit PHYEQ gives the student two problems correctly answered

"14.9 grams" and "802.3 grams". The numerical part of the student's

response is put into variable 40. Variable 41 holds the correct

answer while variable 42 holds the range of allowable error (thus

0 the student can respond with 14.9+0.02 grams and 802.3+0.5 grams.

When judging, Unit GRAMCK bumps out the numerical part of the

response. A check is then made for the failure of the student to

include a unit label. Sentence judging is then resorted to in

(prier to separate legal unit labels from unrecognizable labels. If

the student's label is "gram" or one of its Synonyms, a switch is

made to Unit NUMJUDG where the evaluation of the numerical part of

the student's answer occurs. If the student's unit label is

"decigram," the numerical part of the student's response must be

divided by 10 to correspond to the author's answer before going to

Unit NUMJUDG. Indeed, using sentence judging separated by RESET

commands, a student response in centigrams, milligrams, etc., can

be handled.

118

Unit NUMJUDG checks that the numerical part of the student's

answer falls within acceptable bounds. Of importance here is the

fact that the FCALC comman e. converts a floating point number into

a truncated integer numbe.f. Thus, "1.8" becomes the integer "1"

(one). Since slight rounding-off errors might occur, the allowable

range should slightly exceed the desired range by about .000001%

for critical usage.

Once Unit GRAMCK and NUMJUDG are written, they can be used as

many times as desired through the use of JOIN commands. In fact,

Unit NUMJUDG can be used alone for responses not requiring a unit

label. Unit NUMJUDG can also be altered so that variable 42 con-

tains a percentage error rather than absolute range of error.

171Z,

-"^-1-7.".. R

119

UNIT PHYEQ
WRITE FILL IN THE MXSSING PARTS OF THIS PHYSICS

PROBLEM...

ARROW 823
STORE F40
FCALC F41=14.9
FCALC F42=0.02
ANS 14.9 GRAMS
JOIN GRAMCK
ARROW 1323
STORE F40
FCALC F41=802.3
FCALC F42=0.5
ANS 802.3 GRAMS
JOIN GRAMCK
C
UNIT GRAMCK
BUMP 1234567890.+ -
WRONG
WHERE 1601
WRITE YOU MUST LABEL YOUR ANSWER WITH A UNIT OF

MEASUREMENT,
MUST G,GM,GS,GMS,CRAM,GRAMS
GOTO NUMJUDG
RESET
BUMP 1234567890.+ -
MUST DG,DGM,DGS,DECIGRAM,DECIGRAMS
FCALC F40=F40/10
GOTO NUMJUDG
RESET
BUMP 1234567890.+ -
MUST CG,CGM,CGS,CENTIGRAM,CENTIGRAMS
FCALC F40=F4V100
GOTO NUMJUDG
RESET
BUMP 1234567890.s-
MUST KG ,14.2M, KGS , KI1DGRAM , KL ID GRAMS
FCALC F40=F40*1000
GOTO NUMJUDG
RESET
WRONG
WHERE 1601
WRITE I DO NOT UNDERSTAND YOUR UNITS.

C
UNIT NUMJUDG
FCALC F50=F41-F40
FCALC I51=P50 +F42
GOTO I51,HI3HAN,X
FCALC 151=F42-P50
GOTO I53,LOWAN,X

120

UNIT LOWAN
WHERE 1601
WRITE YOUR NUMERICAL ANSWER IS TOL) smALL.
JUDGE NO

C
UN IT H IGHAN
WHERE 1601
WRITE YOUR NUMERICAL ANSWER I.S. TOO SIG.
JUDGE NO

0
121

REPETITIOUS EXCEFCISES

An English to French translation drill consisting of V problems is to be

presented to the student. The problems are to appear in a random cyder.

The solution to this programming problem consists in separating

the variable parts of the lesson sequence from the constant parts.

A Unit can then be constricted which contains the constant parts and

which joins in the "proper" variable parts. Such a Unit is called a

DRIVE Unit.

Unit INIT explains the situation to the student. The BASE

command is present to make Unit INIT a base Unit regardless of how

the student reached it. The IPERM statement initializes the prob-

lem set to 27 problems. Later use of a RANDP statement will with-

draw numbers from these 27 without replacement.

Unit DRIVE consists of several parts: (1) a part setting

variable 1 which is used to join in a particular problem, (2) the

constant display, and (3) the part joining in the particular prob-

lem and answer. Th3 RANDP statement places the next number from the

original 27 into variable 1. The following JUMP statement checks

whether all the numbers have been withdrawn - -a condition indicated

when variable 1 is set to zero by the RANDP command. Then follow

statements which set up the constant part of the display. Finally,

a JOIN statement using variable 1 joins in the particular problem

and answer. The WRITE statement in Unit TI occurs as an ARROW-

contingency. While only one ANS statement is given in Unit Ti,

many Can occur along with WRONG statements and comments. Units T2

122

throurh T27 are constructed in a similar manner.

By using drive Units, much time and effort can be saved by

authors since the "constant" parts of a lesson exercise need be

written only once. Many additional features can be easily added to

the drive Unit. For example, a TIME statement can be added before

the ARROW command to add timing to the drill. A command structure

such as:

ICALC 12=0

ARROW 1101

WHERE 801

JOIN Il,X,X,T1,...

JOIN I2,X,OK

WRONG

SUB1 12

will automatically tally in variable 54 the number of times the

student answered a problem correctly on his first try. (Remember

to initialize variable 54 to zero in Unit INIT). Later in Unit

DONE, variable 54 can be shown to the student or used to make a

decision as to whether the student should be automatically forced
-

to repeat the drill.

'It

123

The student may be moved through the problem set in many ways

other than by use of the RANDP command. The simplest is to use an

ADD1 statement along with a proper ending check. A more compli-

cated method is to continue in the problem set choosing problems

randomly by use of the RANDU command until some criterion is met.

In any case, let the lesson material dictate the progression

through the problem set and the terminator.

UNIT INIT
BASE
WRITE FOLLOWING IS AN ENGLISH TO FRENCH SENTENCE

TRANSLATION DRILL.
IPERM 27
C
C
UNIT DRIVE
NEXT DRIVE
RANDP Il
JUMP ILDONE,DOBE,X
WHERE 501,,

0 WRITE TRAOcLATE THE FOLLOWING SENTENCE INTO FRENCH.
ARROW 1101
WHERE 801
JOIE' , Il,X,X,T1,T2,T3,...
C
C
UNIT T1
WRITE WHAT IS THE CAPITAL OF FRANCE?
ANS ()MLLE EST LA CAPITALE
UNIT T2

DE LA FRANCE?

. UNIT DONE
BACK INIT
WRITE IF YOU WOULD LIKE TO TRY THE DRILL AGAIN, PRESS

AMY BACK. OTHERWISE...

18

124

ANIMATION USING SLIDES

A sequence of 15 pictures ulse to show how atoms may collide and form

a molecule.

Animation using slides on the PLATO system is limited by three

factors. The first concerns the difficulties of mounting consecu-

tive slides so that they are registered with one another. The

second limitation is the maximum number of slides available--122.

The third factor concerns the possible one-tenth second delay time

resulting from the computer's handling of requests other than the

animation sequence. These limitations dictate that the animation

be of a course nature (i.e., the "movement" is done in large steps

by a few slides). The animation can possess a psychological reality

if the author includes directional clues such as air sweeps, dotted

past positiors, etc. The following Units illustrate a solution to

the problem of showing slides 15 through 29 consecutively at a rate

of 2 per second.

UNIT INIT
CALC Ilk14
JUMP MOVIE
UNIT MOVIE
NEXT MOVIE
ADD1
CALC ' I2=I1-30
JUMP 12,X,DONE
SLIDE II_

TIME 31
C
C
UNIT DONE

125

ANIMATION USING PLOTTING

A mouse is to run randomly through a maze until it finds the food reward.

Unit SETUP is used to explain the situation to the student.

In addition, all specific information concerning the appearance

of the maze, the starting position of the mouse, etc. is ini-

tialized at this time. If desired, the author can allow the

student to set these parameters.

Since the example lesson segment is well commented, only the

"tricks" will be further discussed. The movement of the mouse oc-

curs by bouncing back and forth between two ARROW-Contingencies

using a TIME command. At the first ARROW-C, the mouse is plotted.

When the time is up, the second ARROW-C occurs. This erases the

previous mouse and plots another. This process continues until the

mouse finds the food.

RANDU commands are used to generate mouse moves to fit a

predetermined forward-to-turn ratio and type-of-turn ratio. The

author can alter these commands to allow the student to set the

ratio in Unit SETUP. In addition, the author could program in

additional mouse strategies that the student could choose such as

"follow the right wall," "turn into openings," and "remember

crucial turning points."

126

UNIT SETUP
WHERE 501
WRITE WHEN YOU PRESS THE NEXT KEY, YOU WILL SEE A

MOUSE RANDOMLY RUN A MAZE.

C
C

CALC 110=510
CALC 111=530
C
CALC 112=1510
CALC 113=1530
C

PRESS KEY D WHEN YOU ARE DONE WITH MOUSE
WATCHING.

SET UP HORIZONTAL LINES USING TWO VARIABLES PER LINE

C THE LAST HORIZONTAL LINE IS IN VARIABLE...
CALC 18=13
C SET UP VERTICAL LINES USING TWO VARIABLES PER LINE
C
CALC 130=510
CALC 131=1510
C
CALC 132=516
CALC 133=1216

C
CALC 134=824
CALC 135=1524
C
CALC 136=530
CALC 137=1530
C
C THE LAST VERTICAL LINE IS IN VARIABLE...
CALC 19=37
C
C SET STARTING POSITION OF MOUSE
CALC I1=612 '-

C
C SET DIRECTION THE MOUSE IS HEADING
C -1=NORTH. 0=EAST, 1=SOUTH, 2=WEST
CALC 13=1
C
C SET LOCATION OF FOOD REWARD
CALC 15=1429,

C
UNIT MOUSE
C
C DRAW THE HORIZONTAL LINES
CALC 160=10
CALC 163=18
JOIN LINES

0
C
CALC
CALC
JOIN
C
C
WHERE
WRITE
C
ARROW
JOIN
ARRO'w1

JOIN
C

UNIT
C
C
INHIB
C
C
C
RANDU
JOIN
C
C
WHERE
JOIN
C
C
CALC
GOTO
C
C
TIME
C
C
ANS
JUMP
ANS
JUDGE
TIME
C
C
UNIT
C
ICALC
ADD1
ICALC
ADD1
LINE
ICALC
GOTO
C

DRAW THE VERTICAL LINES
160=30
163=19
LINES

SHOW THE LOCATION OF THE FOOD REWARD
15
F

1830
MOVE
1830
MOVE

127

MOVE
THE FIRST PART OF THIS UNIT IS AN ARROW CONTINGENCY AND
MOVES THE MOUSE.
ARROW
GENERATE A 3 TO 1 RATIO OF
FORWARD TO TURN MOVES FOR THE MOUSE

160,4
I60,X,X,TURN,FORWARD

SHOW THE CURRENT LOCATION OF THE MOUSE

13,N,E,S,W

TEST IF MOUSE FOUND THE FOOD
160=11-15
160, X, THANKS, X

SET TIMING TO 4
15

HANDLE ANY KEYS
D
SETUP

IGNORE
13

LINES
THIS UNIT PLOTS
761=1(60)
160
/62=1(60)
160
161, 162
161=160-163
I61,LINES,X

MOVES PER SECOND

THE STUDENT PUSHES

ALL THE LINES

A1/4

igg

128

C
UNIT THANKS
WHERE 15
WRITE THANK YOU
C

C
UNIT TURN
C THESE UNITS TURN THE MOUSE TO THE
C RIGHT, TURN THE MOUSE TO THE LEFT, OR
C LEAVE THE MOUSE ALONE WITH A
C 1 70 1 TO 1 RATIO
C
RANDU 166,3
CALC 160=160-2
CALC 13=13+160
CALC 160=13+1 .

GOTO I60,TURN1,X
CALC 160=13-3
GOTO I60,X,TURN2
C
UNIT TURN1
CALC 13=2
C
UNIT TURN2
CALC 13=-1
C

UNIT FORWARD
C THESE UNITS MOVE THE MOUSE
C FORWARD IN THE DIRECTION HE IS HEADING
C
CALC 160=10
GOTO I3,FN,FE,FS,FW
C
UNIT FN
CALC 12=11-100
GOTO HORCK
C

UNIT FE
CALC 12=11+1
GOTO HORCK
C
UNIT FS
CALC 12=11+100
GOTO HORCK
C
UNIT FW
CALC 12=11-1
GOTO HORCK
C
UNIT HORCK
C THESE ROUTINES WILL NOT ALLOW THE
C MOUSE TO CROSS HORIZOW.'AL LINES

487

129

ICALC 161=12-1(60)
ADD1 160
GOTO 161, HORCK1, 'X
ICALC 161=12-1(60)
GOTO I61,X,X,HORCN1
C
UNIT HORCK1
ADD1 160
ICALC 161=160-18
GOTO I61,HORCK,X
ICALC 160=30
GOTO VERCK
C
C
UNIT VERCK
C THESE ROUTINES WM NOT ALLOW THE
C MOUSE TO CROSS VERTICAL LINES
C
ICALC 161=12-1(60)
ADD1 160
ICALC 161=161/100
GOTO I61,VERCK1, X
ICALC 161=12-1(60)
ICALC 162=161/100
GOTO .I62,X,X,VERCK1
ICALC I62=162*100
ICALC 161=161-162
GOTO 161,VERCK1,X,VERCK1
C
UNIT VERCKI
ADD1 160
ICALC 161=160-19
GOTO I61,VERCK,X
C.
C THE MOUSE HAS PASSED ALL CHECKS
CALC 11=12
C
C
UNIT N
PLOT NMOUSE
CHAR NMOUSE

3443,3446,3447,3450,3451,3542,3544,3545
3546,3547,3550,3551,3552,3641,3642,3643
3644,3645,3646,3647,3650,3651,3652,3653
3654,3655,3742,3744,3745,3746,3747,3750
3751,3752,3756,4043,4046,4047,4050,4051

C
UNIT E
PLOT EMOUSE
CHAR EMOUSE

188

130

3546,3646,3746,4046,4346,3447,3647
3747,4047,4147,4247,4447,3050,3150
3250,3350,3450,3550,3650,3750,4050
4150,4250,4350,4450,4550 3051,3451
3551,3651,3751,4051,4151,4251,4451
3552,3652,3752,4052,4352

C
UNIT S
noir SMO USE
CHAR SIIOUSE

3446,3447,3450,3451,3454,3545
3546,3547,3550,3r 51,3552,3553,3555
3642,3643,3644,3645,3646,3647,3650
3651,3652,3653,3654,3655,3656,3745
3746,3747,3750,3751,3752,3753,3755
4046,4047,4050,4051,4054

UNIT W

PLOT WMOU SE
CHAR %NOUSE

3246,3546,3646,3746,4046,3147,3347,3447
3547,3647,3747,4047,4147,3050,3150
3250,3350,3450,3650,3750,4050,4150,4250
4350,4450,3151,3351,3451,3551,3651,3751,3550
4051,4151,3252,3552,3652,3752,4052

18,9t:

0
NAVY

3 Chief of Naval Reseat:h
Code 455
Department of the Navy
Nash' rigtun, D.C. 20360

I Director
348 Branch Office
495 Simmer Street
Boston, Massachusetts 02;10

rirector
OfiR Branch Office
119 South Dearborn Street
Chicago, Illinois 60604

I Director
Celt Drench Office
1030 tut Green Street
Pasadena, California 91101

I Conteact Adainistrator
Southeasters Area
Office of Naval Research
2110 G Street, N.V.
Washington, D.C. 20037

It Commanding Officer
Office of Naval Reseed
Box 39
Fleet Post Office
New 'fort, New Yost 09010

1 Office of Naval Research
Area Office

20? West Sumer Street
New York, New Tort 20011

Office of Marti Research
Area Office

1076 Mission Street
San Francisco, California 94103

6 Director
Naval Research Laboratory
Washington, D.C. 20390
Arta: Technical laformition

Division

20 Defense Documemtatice Center
Cameron Similes, !utilise S
3010 Duke Street
Alexandria, Pirgini 22314

I Stmerimterdent
Naval Postgresimie School
Monterey, Californim 93940
At Cm: Code 2124

I Head, Peydsology Brandt
IMunrosychiattic Service
U. S. Navel FlosnItal
04 1 wad, Cat I fond 14127

Commodimg Office.
Service School Command
V. S. Navel Tealeleg tenter
Sam Dille, Cmliforliiii 92133

3 toimandi mg oramme
Naval Persoseel Research Activity
SIM Nero, Cenfornin 92152

I Ceemardiag Officer
Petal kit fedaleal Tenting Collier
Jedsomvilie, Florida 31211

I Officer In Charge
Naval Mildical Neuropsychlatric

Reea ch U: it
San Diego, California 92152

I Dr. James J. Regan
Naval Training Device :eater
Orlando, Florid,. 32813

I Chief, Aviation Psychology Division
Naval Aerospace Medical Institute
Nasal Aerospace Medical Center
Pensacola, Florida 32512

1 (lief, Naval Air Reserve Training
Naval Air Station
Box I
llenviev, Illinois 60026

Chairman
leadershinhianagenent Committee
Naval Soinces Department
U. S. Naval Academy
Annapolis, Maryland 21402

1 Technical Services Division
National library of Medicine
8600 Rockville Pile
Bethesda, Maryland 20014

I Behavioral Sciences Department
Naval Medical Research Institute
%-tional Naval Medical Center
Bethesda, Maryland 20014
Attn: Sr. W.N. Haythorn, Director

I Commanding Officer
Naval Medical Field Research laboratory
Caw lejese, North Carolina 28542

I Director
atr011OaCia Crew Equiplent Department
Naval Air r vele:Pent Center, Johnsvi/le
Warainster, Pennsylvania 18974

I Chief, Naval Air Technical Training
Naval Air Steil:as
Mewohls, Tennessee 3811S

I Cusrsara.!:r
Operational Test and Evaluate roe
U.S. Naval IRS?
Norfolk, xi Weis 23512

I Office of Civilian Manpower Management
Departmeor of .fie Navy
Washingtve, S.C. 20350
Ott,: Cede 013

*ief of Naval Operations, Op-37
Fleet Readings' 6 Trainire Divislos
Departatot of the limy
Ifeshington, D.C. :0150

I Oleg of Naval Operations, 09-07TI.
Depart 'et of the Nary
lashisgton, D.C. 20130

I Capt. J.f, Dasoussen, MCC, USN
Ode(of Nasal Nate.ial (MAT 03110
Room 1323, Maim Nary Building
trashington, D.C, 20360

Navel Ship Systems Commend, Code 030
Depart, tut of the Nary
Mit Navy Ileitis'
Itashiagtoe, D.C. 20360

190'

1 Chief
Bureau of M. di clue and Surgcry
Code 513
Washington, O. C. 20360

9 Technical Library
Bureau of Nava' Per;ornel (Pecs -11b)
Department of the Navy
Wellington, D.0 20370

3 Director
Personnel Research Laboratory
N ash I altos Navy Y.vol, Building 200
Wuhlniton, D.C. 20391
Attn: Library

I Commander, Naval Air Systems Command
Navy Department MR-4133
Washington, D.C. 20360

I Coseandant of the Marine Corps
Headquarters, U. S. Marine Corps
Code A0111
Washington, D.C. 20380

65540

I Human Resources Reseeich Office
Division 16, Aviation
Post Office Hon 428
Fort Rucker, Alabeaa 36 360

I Hunan Resources Research Office
Division 03, Recruit Training
Post Office tea 5767
Presidio of Monterey, Crilfornia

93940
Attn: Library

I Human Resources Research Office
Division 14, Infantry
Post Office Box 2086
Fort tenting. Georgia 31905

I Department of the Army
U.S. Arm Adjutant General School
Fort tenfaain Harrison. Indian.

46216
Attn: ACMCS-EA

1 Disecsor of Research
U.S. Army Armor Hume Reseerch Unit
Fort Knox, Kentucky 40121
Attn: Library

I Dr. George S. Harker
Director, Experivental Psychology

Dlris ion

U.S. Any Medical Research Laboratory
Fort Knox, Fentudy 40121

1 Research Analysis Corporation
*tem, Virginia 12101
Otto: Library

1 Homan Resources Research Office
Division OS, kir Defense
Post Office Boa 6011
Fort Slits, Team '9916

I Hymn Resources Research Office
Division 41, Systems Operations
300 North 114ShingteM Street
altalinari I, Weal' 22311

1 Director
Human Resources Research Office
The George Washington University
300 Worth Washington Street
Alexandria, Virginia 22314

1 Armed Forces Staff College
Norfolk, Virginia 23511
Attn: Library

1 thief
Training and De...elopment Division
Office of Clin Ilan Personnel
Decal- lent of the Any
Washington. C.C. 20310

1 U. F. Ara Behavioral Science
Resea.ch Laboratory

Washington, D.C. 2(315

1 Walter Reed Army Institute of
Research

Walter Reed Army Med1Cel Center
Washington. D. C. 10012

1 Sehaviorat Sciences Dills!.
Office of Chief of Research and

Dent:aura
Department of the Ailey
Washington. D.C. 20310

1 Dr. Vincent Cieri
V. S. Ara Signal School
CAI Project
Fort feartmouth, bet Jersey

AIR FORCE

1 Director
Air University Library
Marl' Ale Force lose
Mara 36112
Attn:

1 Cadet Registrar (m)
D. S. Mr Force Atadea
Colorado 00540

tleaelparten, ESC
RSVP!
L.C. Hermon Field
Bedford, Plassachusetti 01731
ate: Dr. Voter

1 6570 AMPS (101T)
Wright.lattenon Air Force lase
Ohio 45433
Atte: Dr. C. A. Er/strand

1 Corandat
V.I. Mr Torte School of Aerospace

Medici*,
brooks Air Force Dar, Texas 711235
Atte: Potoredical Library

(See L)

1 6570th Penwell Research
Lion:tory

Aerospace 011011 MOW I
Caciland aft Force lase
Sea latent,. Terence 70236

APC6R (SW)
lad allies relevant
Arliagtoe, Virginia 21109

1 eilaimarters, V.S. Air Force
thief, llealnie Disioa C6PPOPT1
Vashiegtoe. O.C. 23330

1 Headquarters, 13.5. Air force
Washington, D. C 20530
Attn: AFT'IRTI

1 Headouarters, U.S. lir force
AFRODG
Room 10373, The Fentega
Washington. D.C. 20530

1 Reamed, Psychologist
SCSI, Headquarters
Air Force Systems Carmand
Andrews Air FOr:.e Base
Waihington, D.C. 20151

MISCELLANEOUS

1 Wt. Joseph 3, Conan
Chief, Personnel Rneerch Branch
u.s. Coast Guard Lteadquarters
P0-1, Station 5.12
1300E Street, N.M.
9uhioftoo. D.C. 20226

1 Di rector
Defense Atom', Support Agency
WashingtOn, D.C. 20305

Emoitive Officer
American Psychological Association
1100 Seventeenth Street. N.W.
W..1'190T0n, D.C. 20036

1 Dr. W. A. Bonifield
Department of Psychology
riversitY of Connecticut
Stoop, Connecticut 06260

I Or. Lee .7. Cronbech
School of fdtacation
Stanford University
Stanford, California 94305

I Professor I.. 0, Davit
Graduate School of Businest

Administration
University of California. Los Angeles
Cos Angeles, California 90024

I Dr. Philip N. DuBois
Department of Psychology
Washing:on University
Lindell I Flanker boulevard.,
St. Louis. %Mari 63150

1 Dr. Jock W. palm
Ovalep and Associates
Dana, Connecticut 06120

1 Professor 0. IL fete.
The hockefell.r University
Mee Vole, Nee Tab 13021

1 Dr. Jar C. Flanagan
America Institutes for Research
Post Office lea 1113
Palo Alto, California 94302

1 Dr. Frank Frledlonder
Divislom of Drgaitslonal Sciences
Case Institute of Tichnology
CleveIond, Ohio 10900

1 Dr. Urn liner
Leaning Reseal:1 and Derelopmeit

Center
Unlansty of Pittsburgh
Marra. Pennsylvamis 13413

1,91.

Dr. Bert Green
Department of Psychology
Canegie-Mellon University
Pi ttsbura Pennsylvani 15213

I Dr, J. P. Guilford
University of Southern California
3531 University Avenue
Los Angeles. California 90007

1 Dr, Harold Gulliksen
Department of Psychology
Princeton University
Princeton, New Jersey 0540

1 Dr, M. D. Marron
Haan Sciences Research, Inc.
Westgate Industrial Park
7710 Old Springhouse Road
McLean, Virginia 22151

1 Dr. Albert E. Hickey
Entelek, Incorporated
42 Pies:tilt Street
Nerburyport, Massachusetts 01950

1 Dr. Wi11fen A. Root
Department of Psychology
Loyola University, thicaeo
052$ North Sheridan Road
Chicago, Illinois 60626

Dr. Howard H. Fendler
Department of Psychology
Universi y of California
Santa Barbara, California 93106

1 Dr. Robert R. rale
Human Factors Research, Inc.
6760 Cotton trite
Sint. Barbara Research Park
Goleta. California 03107

1 Dr. A. S. Neal
General Learning Corposetion
5454 Miscasin Avenue. N.W.
Waihington, D.C. 20013

1 Dr. Sister E. Rerun
Department of Psychology
North Carolina State University
Ralelets, North Carolina 27607

I Dr. C. E. Noble
Department of Psychology
University of Georgia
Athens, Georgia 30601

I Dr. genry S. °Siert
Rational Science Few:dittos
1900 0 Street,
Washington. D.C. 20550

1 Dr. Harry J. 013er
Software Syitens,
51:0 Seminery bad
Falls aura. Virgil:a 21041

I Dr. Leo F. Postman
Institute of War Lean:leg
Univenity of California
1241 College Avenue
Rerie1ey. California 61710

1 Dr. Joseph W. ligney
electronics Personnel Real r.it Group
university of Souther* Cali f
University fart
Los Males, CI:11%ra 90007

1 Dr. Arthur I. Siagal
Applied Psychclogical Services
Science Canter
404 East Lancaster Avenue
Meyer, Pennsylvania 19087

I Dr. Arthur N. Stoats
Department of Psychology
Unvereity of Hawaii
Honolulu, Nawali 96622

1 Dr. Laurence N. Sto tonne
Harvard Computing Center
6 Appian Pay
Cashridge, Wassachusetta 02138

1 Dr, Donald 9. Taylor
Department of Pa 111BolFV/
Tele University
333 Cedar Street
New Haven, Connecticut u6510

Dr. Lodyard ruder
Department of Psychology
University of Illinois
Urbana, Illinois 61301

I Dr. Kul L. Zinn
Center for **search on Leaving

and Trataing
Univenity of Michigan
Ana Arbor, !Dahlia:I 11101

1 Dr. Jon J. Asher
Department of Psychology
Sam Jose State Cellar
Sam Jos*, California 93114

Or. Albert 3. Cosa
Departmest of Psyclulov
Douglass College, Rutgers

The State Uaiveralty
New iluarovick, Now Jolley 06909

ltr. Mali. Dikaptan, Inlet
Wain Factors
eadia Coacany
Drtando, Florida 32809

Dr. Maim E. Goias, Executive Secretary
Persomality mil Cognition Research

Red ee Corned tics
Mbreloral Sciences beseards trod
Natioeal Institut Of Itastal Health
5451 Wistoroim Luaus, Roos 100.11
Chevy QUI, Maryland 20203

Meadguarters USAF (AFPTMD)
Fistulas Devito, and !minutiae.]

Tedutelory Division
lashiagtam, D.C. 20330

Director
Educatios end Tratoio Sciences

Departsult
Nava % Medial Rarstard lastituta
kdlilag 102
Natiomel Naval Ilmlital Curter
lathestia, Maryland 20011

l Sr. Mats Sputum
UsiunIty of Uwe
Daltartmett of PsycholD
Uwe 6, Swain

LC% A.C. Mrddith, USN (Oat.)
lua7tit et LiirtAry Raseard
Valatt si ty of Cali fence, berielory
11,11,1ey, California 34720

1 Executive Secretariat
Interagency Coamintee on %inpos yr

Research
Room 313
1738 M Street, 77.3.
hashington, D.C. 20036
At in Mrs. Ruth Re lye a)

/ Dr. Marshall J. Farr
Assistant Director, Engineering

Psychology Program
Office of Naval Research (Code MS)
Washington, D.C. 20360

1 14r. Joseph a. Illankenheim
NAVELEL 0174
Munitions Building, Pa. 3721
Washington, D.C. 20360

I Technical Inforeation E7change
Center for Computer Sciences

and Technology
National Bureau of Standards
Wuhington. D.C. 20234

1 Technical Library
U. S. Naval Weapons Laboratory
Dahlgren, Virginia 22113

Technical Library
Naval Training Device Center
Orlando, Florida 32813

1 technical Library
Naval Ship System Command
Maim am Building, Pa. 1312
Wuhingtoe, D.C. 20360

I Technical Library
Naval Ordoarce Statioe
Indian Mead, Maryland 20610

1 Naval Ship Engineering Center
Philadelphia Division
Technical Library
Philadolphla, Pennsylvania 19111

1 Library, Cede 0212
Naval iostgraduato School
Sooterey, California 9330

l Technical Reference 113rnry
Moral Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

I Technical Library
Naval Ordnance Station
Louisville, restudy 40211

Library
N aval Electronics Laboratory Center
Sae Ditto, Cal fonda 91151

1 'ethnical Library
N asal Undersea Warfare Center
3202 E. Foothill lloulevard
Pasadena', California 81107

1 Or, Russ L. Ni -Ban OfE71
Training *sward Divisiol
Phew Nesourcts Laboratory
f right-Pattersoa Al? force gage
MIA 43433

192

I Headquarters, Air Training Comund
Randolph Mr Force lase, Texas

78118
Attn: ATXTD (Dr. Meyer)

I Hr. Michael Macdonald-Ross
International Training and Education

Cowpony Limited
ITEC Mouse
29-30 Ely Place
London EC1

ENGLAND

I Comes/lain* Officer
U. S. Nave Schools Comsand
Mare Island
Vallejo, California 94592

1 Dr. Don C. Coorhs, MS/ftfrt Director
ERIC Clearinghouse
Stanford University
Palo Alto, California .91307

1 CDR N. 3. Connery, USN
Scientific Advisory Team (Code 71)
staff, COWSWFORLANT
Norfolk, VI rein' a 23511

1 ERIC Clearinghouse
Educational Media and Technology
Stanford University
Stanford, California

I 01110 Clearinghouse
Vocational and Technical Education
Ohio State University
Columbus, Ohio 13212

1 Dr. Bentoa J. Underwood
Department of Psychology
North University
Evanston, Illinois 60201

smtamt salaam"
-4,'-,:-r.--. -',. . -- , ..'-',:.,-, -.:::::,-: DOCUMENT CONTROL DATA R & D

!Security classification of IWO, body o! abrliact and indeelne annotation must be entered when the overall report is shout/bed
r. ORIGINATING ACTIVITY (Corporate author) ; ..,,... I. . . .: ,::. 7. ..,..,.. ,

University of Illinois, Board of Trustees _

Computer-based Education Research Laboratory
' Urbana, Illinois 61801 -:=. '''.-- 7

la. REPORT SECURITY CLASSIFICATION

''..'-- Unclassified ---
ab. GROUP

7. REPORT TITLE -, -
.. .

. .:

.THE TUTOR MANUAL , ,--,

.. ()Esc RIP TO/ E NOTES (rip. 0:repot. anctineluelve dame)

programming manual, copyrighted January, 1969 by U. of Ili Board of Trustees
1. AU ?RORIE (Pfeil nem*, arldelia initial, Met name)

;1.A. Avner
Paul Tenczar

4..gPilziuDit4, 1969
.., _. ,... .

la. TOTAL NO. OF PAGES
172 -'-

7b. NO OF REFS
none

i.i eONTRAC T OR GRANT NO.
Nonr 3985(08)

a. PROJECT HO. . . - _

.

4

NI ORIGINATOR'S REPORT NUmERISI
=

CERL Report X-4

IA. OTHER I. SPORT NOIS) Any aline numbers Met pay be searaned
We remora) ,

1-----
110 DISTRIBUTION STATEMENT , .

DISTRIBUTION OF THIS REPORT IS UNLIMITED.

-_._,L__=.'''Ai-.L.L'f',:;._-..-,±".......'____ __. _

II. SU PPPPPP NTARY NOTES
e ' '

IS. SDNIIORING MILITARY ACTIVITY

Advanced Research Projects Agency
Office of Naval Research

IS. IITRCT

) .

'. ,' -.. This annual was written to explain the use of the TUTOR logic-building
-. language used with the PLATO system. The logic, TUTOR, was conceived by
Paul Tenczar in June, 1967 and is designed to transcend the di2ficulties of

_ FORTRAN for a cosputer -based educational system utilizing graphical screen
displays. -'- ' ----

T1TT0R consists of about seventy words or "commands" which can be used
in various noibinaticns to produce desired effects. Much lesson writing
can he done using less than a dozen of these commands. TUTOR was designed
specifically for use by lesson authors lacking prior knowledge of and
experience with computers. the language is easy to learn and to use.

' Normally, authors are able to write parts of useful lessons after a one-hour
introduction to TUTOR. The simplicity of TUTOR does not limit its appli-
cations. Since TUTOR is a true language, the ultimate complexity and
flexibility of TUTOR lessons is limited largely by the ingenuity and ex-

, parlance of lesson authors.'
.

.d.

DD '?.1%.1473 (PAGI /
am 0101.407-N11

A-$1410

Security Classification

KEY WORDS

PLATO
author language .

logic building
computer-based education
computer- assisted instruction
instructional language

btatel
)'i/v04141.7isti

.

(BACK)

4

.. (,
it

litosusftyCfaaalfltatioa , A.111412,

I

