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The other papers in the symposium have concentrated on the effects of
errors of measurement on various types of correlation measures. In contrast,
the purpcose of the present peper is to consider the propercies of ANOVA,
regression anilyses, ANCOVA, and factor analyses when emnployed on foallible
variables, {,e,, variables which contain errors of measucement. Because
of the broad range of topics to be considered, the discussion of cach will
be somewhat brief. For each topic the major protlems of concern o the
user of statistics will be identified; wher available, solutions to the
problems wil! be indicated; and several of the more ingortant references
will be cited.

Factur analysis 1is consldered first bacause the primary concern is
with the properties of the elements in thc correlation matrix to be factaored,
and so perhaps will facilitate a transfer from the preceeding papers. The
topic of regressicn analysis is considered second because it logically leads
tlie way to subsequent discussions of ANOVA and ANCOVA., As Fisher (1932) has
said, ANCOVA '"combines the advantages and reconciles the requirements of tne
twe very widely applicable procedures knowu as regression and aanalysis of

variance."

Factor Analysis

Although the literature abounds with articles on the theory and use of
factor analysis, few have been concerned with the nature of the correlations
in the matrlx to be factored. Whern discussing the nature of correlation co-
efficients in a matrix to be factored, it is useful to make a distinction

between manitest and latent relationships. Manifest reiationships are those



O

ERIC

Aruitoxt provided by Eic:

obtained from variables as they are oh%served, while latent relationships are
those which "may bz inferred to exist between variables and which are masked
or distorted by various kinds of errors and constraints' {Carroll, 1561,

p. 351). When used as an instrument to farilitate theory building, factor
analysis should operate on a matrix of correlation coefficients which reflect
the latent relatlonships among tlie variables.

Cavroll (1961) has identified the fcollowing four categories of errors
and constraints which can affect the value >f a Pearson Product-Moment cor-
relativa coefficient:

. errors of scaling,
. errors of scale-dependent selection,

. scedastic errors of measurement,
. topastic errors of measurement,

E R N

Ertors of scaling result when a dichotomy is forced on a countinuous variable.
An error of scale-dependent selection occurs when the sample is taken such
that subjects with extreme scores on either or both variables are not selected.
Scedastic errors of measurement are those dealt with in classical measurement
theory, i.e. independent of cuch other and the latent variable with expected
value zero; and topastic errors of measuyrement are created when a subject
guesses correctly on a multiple cholce item.

Carroll states that except for scedastic errors of measurement the
errors and constraints can alter the rank of a correlation matrix and cause
subseqguent factor analysis to yield spurious results. The exception made for
scedastic errors probably stems from results given by Roff (1337) and later
supported by Saunders (1948) which indicate that

1. the rank of the correlation matrix, R, is unaffected by
scedastic errors;
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2. the communality of an infallible variable is equal to the
communality of the fallible variatle divided by the relia-
bility of the fallible variable;

and 3, the factor pattern matrix of the infalliblie voiilables, F”,

is related to the factor pattern matrix of the fallible
variables, F, Ly the equation
*
F = AF,
where A is a diagonal matrix of the inverses of the
square roots of the reliabilities of the fallible
variables,
As will be pointed out later, the exception made for scedastic errors was
a mistake since the relationships given by Roff are based on the seldom met
assumption thac communalities are known rather than estimated,

A matrix of Pearson Product~Moment coefficients for variables containing
errors of scaling generally results in a lactor analysis solution which con-
tains a difficulty factor. although Kaiser (1970} has recently indicated that
Guttman's image analysis may not. Carroll (1961) rccommends the usc of tetra-
choric coefficients to side step the problem of errors of scaling. The problems
of errors caused by scale-dependent selection have not been sleed except by
the obvicus method of avoiding them via careful sampling procedures. The
procedures of correcting correlations for restriction of rarge (Guilford, 1959;
Bryant, 1970) night be useful, but to my knowledge the conscquence of using
such corrected coefficients in factor analysis have not been investigated.
Carroll (1961) has givea a method of correcting joint and marginal distri-~
butions of the observed variables for topastic error, and cuggetts that cor-
relations be calculated on the corrected distributions.

Glass (1966) has indicated the problems with several methods of .actor
analysis which result from scedastic errors. 1In particular he has shown that

a components analysis of the correlation matrix with ones in the main diagonal

and off diagonal elements corrected for attenuation is not necessarily of the

4
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same¢ order as components analysis of the uncorrected matrix. Factoring
the correlation matrix with Guttman's lower bound to vemmmalitles In the
main diagonal does not result in the relation F*¥ = A¥, nor does Ruo's
canonical factor analysis. On the positive side, Glass demonstrated that
F* = AF for Kaiser's alpha factor analysis.

3riefly, alpha factor analysis is an iterative procedure which starts
with a principal axis factorization of the matrix

7l (R DH 4T,

where Hy is a diagonal matrix of the multiple correlation of each variable with
the remaining variables and I is the identity matrix. As many factors are re-
tained as there are latent roots of the above matrix which exceed one. The
solution is used to calculate new estimates of the communalities which are
used to replace thosez iv Hl to yield HZ. The prccedure is repeated until
the estimates of the communalities have converged according to an arbitrary
apriori ctiterion. Glass has shown that by replacing Hz'l with H3~1 = Hz'l A,
alpha factor analysis results in the relationship F* = AF provided that H3 and
Hy will iterate to the same matrix of communalities. A necessary assumption
is that the elements of A satisfy hjZ < llaj2 <1 for all j, where hjz is the
communality of the j th variable. Glass has demonstrated on several well
known examples that the two matrices do converge on the samne parameters. Glass
(1966, p, 559) further derived that '"Alpha factor analysis applied to fallible
and infallible variables separately will be equivalent in terms of number of
factors, complexities of corresponding variables, and patterns of simple struc-
ture"; "Normal varimax rotations of F and F* will yield derived solutions F,

and Fl* such that AFy = Fl*; and ''The alpha factor scores for the fallible and

corresponding infallible variables may be considered ideatical."

O

RIC

Aruitoxt provided by Eic:

(Pa



[E

-5~

The above supgest that a researcher interested In using factor analysis
to investiage the latent structure of variables should first be careful in
his sampling oi subjects to avoid possible problems brought on by errors of
scale-depend:ut selection. Second, he should employ Carroll's correction
to the marginal and joint distributious of each pair of variables .o control
for topastic errors. Third, he should calculate tetrachoric coefficients on
the corrected distributions to avoid the problem of difficulty factors arising
from errors of scaling. Finally, given the resulting correlation_matrix he
should use Kailser's alpha factor analysis to side step the problem of scedastic
errors of measurement. The use of alpha factor analysis reems toc follow
éaise*'s recently stated first principle in deuling with problems of factor
anaiysis, l.e. "It don't make no never-mind."” What is meant by the principle

he says is "that when faced with a crucial decision, don't try to settle it;

rather, avoid it!" (Kaiser, 1970, p. 403).

Regression Analyses

Madansky (1959) identifies three basic types of regression relation-
ships which arc generally referred to, although not always (iindley, 1947),
as regression, structural, and functional. Regression is defined as the
appropriate relationship for predicting on2 set of scores from another.
Because the purpose is to predict one set of scores on the basis of another
set of scores, the relation should be defired by the observations, making
the least-squares estimate appropriate, i.e., the manifest relationship is
of interest. A structural relativnship is defined by the true parts of the
variables, when th. independent variable is random. A functional relation-
ship is also defined by the true parts of the variables, but the independent

variable is fixed, and the true variables are perfectly correlated. These

O
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last two types of relationships fall under the general category of latent
relationships and are of interest when theory building or testing is the
objective. Fecause problems of prediction and the regression relationship
are familiar, and because f{unctional relationships are probably quite rare
in educational research, the follawing discussion emphasizes structural
relationships. Both Madansky (1939) and Cochran (1968) offer excellent
reviews of the work done on estimating structural relationships.

First mention of the inappropriateness of a lzast-squares estimate of
the structural relation, when the variables are fallible, was made by
R. J. Adcock (1878). However, in an early review of the problem of esti-
mating structural relations, Roos (1937, P. 7} credits Corrado Gini in 1921
as the first to recognize that "if the errors of ¥ and Y are independent,
then the least-squares B is larger than the B of the actual line of best
fit." Since then, a considerable body of literature has dealt with the
problem of estimating the structural relation when both variables are
fallible.

In the first half of a paper by Berkson (1950), the problem of esti-
mating a structural relation is stated, and an analytic demomstration of
the bias of the least-squares solution is piven for the case of scedastic
errors of measurement. Berkscn's demonstration shows that the B defined
by a fallible dependent varfahtle, Y, and a fallible independent variable,
X, is equal to the B defined by the true parts, multiplied by the ratio
of the variance of the true parts of X over the variance of the trve parts
of X plus the variauce of the error parts of X, In the notation adopted
here

Byx =— 9% 8

0% ¢+ o2
T E

Y.T *

O
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where T denctes the true parts of X. The ratio which defines the bias of
the least-squares P is equivaleat to the measurement theory definition of
the reliability of X (Gulliksen, 1950, p. 25)., Thus

By.x = "xxP

Y.T *

where oy denotes the reliability of X. It should be noted at this point
that the bias does not depend on the dependert variable, Y, and therefore,
the fallibility of Y does not affect the least-squares estimate uf the
structural relation. Rather than offering Berkson's derivation, a2 deri-

vation which is consistept with measurement theory seemed more appropriate.

Let Pyt be the correlation of Y and T, and Pxy be the correlation of

Y and X,
- a
By.x = Pyx —X— >
X
but Pyx = Vpxx Pyr (Gulliksen, 1950, p. 105)
and oy = T
Pxx
= o
Therefore, BY.X PyT Pxx —¥
ot
and By x = fxx fy.1

Because the expected values of the fallible variables are equal to the expected

values of the infallible variabl.s

O.x = %1t By.p - By.y) BX)
where o defines the Y intevcept of the regression line.
Under the same classical madel for errors of measvrement but in dif-
ferent notation, Cochran (1970) gives the relationship between the manifest

and structural mulciple regression equations as

g = 8 - % (1-p ) B ]
ERIC N
P o]
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where i=1, ..., k denotes whicli independent variable. Tite relationship

between the wanllest and structural intercepts is b

a' = a+ ¥y (R - 8 ) E(X,) /
Y Y. 3 :
J X) ‘

where a' denotes the manifest intercept and o denotes the structural intercept.

For k=1 the above relationships reduce to those given earlier for a single '
i

independert variable. Cochran concludes that the direct effect of errors #n
an independent variable is to decrease the absclute value of its associate;

B weight by at least a factor of its reliability coefficient. Cochran (1%58)
has also given a statement of the alove relationships under a slightly leﬁs
restricted model for errors of measurement. Lindley (1947) has demonst;;ted
that even when the structural relationship is linear, the manifest relatfon“
ship need not be linear. 1If the infallible variables are multivariate n;r~
mal then the errors of measurement must also be multivariate normal to {;sure
a2 linear manifest relationshij.

Karl Pearson (1901} offered the first approach to gain any promiq;nce
for estimating structural relations, using fallible variables. Pearsoﬁ
proposed minimizing the sum >f the squared normal deviates of the obse}ved
points from a line which has come to be called the orthogonal regressibn

live. Allen (1939) has shown that an orthogonal regression line is dhpen-

dent upop the choice of units used in measuring the variables. The &rtho—

gonal regression line can zlways Le the structural relation, 1if the fnits

l

chosen to measure the variables happen to be the right ones. There S Mo
practical way of determinirg what the units should be without additional

information (Allen, 1939, p, 198). C. F, Roos (1937, p. 18) offers.an

orthiogonal regression line solution, which is invariant to the mecrﬂc of

the variables but requires apriori {nfoimation about the magnitude }f the

¢
rrors. ,;,
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Most of the developw:nts since Pearson can be placed in one of the
four categories: the method of grouping, the use of instrumental varf-
ables, the use of variance components, and the Berkson case. To supply
detailed information about the various types of estimates would not te
appropriate here, but a brief acquaintance with one of the more popular
techniques in each category should provide helpful background.

Wald (1940) provides a method for estimating structural relations,
bassd¢ on the method of grouping. Letting X denote the independent variable
and Y the dependent variable, Wald makes the following assumpticns:

1. Errors on X are uncorrelated and have a common distritution,

2. Errors on Y are uncorrelated and have a common distribution,

3. FErrors on X are uncorrelated with errors on Y,

4, There is a single linear relation between the true variables,

5. Observetions on X, cun be divided into subgroups in suach a

way that the true part of any ohservation will be in the

same subgroup as its associated olserved score.
The location of the line, identifying the structural relationship, is
esrimated by the mean coordinates. To estimate slope, Waid first orders
the observations on X and divides them into two g oups of equal size. The
joii. of the mean coordinates of the tvio groups provides the estimate of
slope. Wald derived the variance of the above estimate of a structural
relation and provided a test of hypotheses about the size of the slope.
Wald demonstrated that his estimate . structural relation is a consistent
estimate and that the hypothesis test is exactly correc: if tha assumptions
are satirfied,.

Bar-lett {1949) extended Wald's estimate by proposing that the sub-

groups for estimating slope be the upper and lover one-third cf the ordered

O
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X values, Bartleit provides confidence interval estinates. for his estimate
of slope and shows that, when X has ¢ rectangular distribition, the esti-
mate is more efficient thanm Wald's. More generally, the efficiency of a
criterion for grouping is dependent upon the distribution of the indepen-
dent variable. ¥or a normallv distributed independent viriable, Madansky
(1959) has shown that the most efficient criterion for grouping is to use
the upper-lower twenty-seven percent. Madansky (1959, p. 184) offers a
table, which indicates the most efficient criterion for grouping several
different types of distributions. Besides being depend:nt upon the dis-
tribution of thz independent variable, the method of grouping further
requires knowledge that the errors of the independent variable are in-
dependent of tte grouping. Without this additional information, the
estimates are not necessarily consistent (Neyman, 1951).

Reierso) (1945) origliated the strategy of using instrumental
variables in tie estimation of structural relations ani the approach has
since been developed by others. An approach, taken by Durbin (1954},
represents the simplest use of an instrumental variable, although probably
the least often applicable, The assunptions are the same as the first
four giv n, in regard to the method of grouping. Let 2z be an infallible
instrumental variable which is correlated with the true parts of the

independent viriable but not with the error parts. Tien

i=1
is a consistent cstimate of the structural relation of Y on X. Durbin offers

a proof of b's consistency and derives a confidence :region for the parameter

O
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of the structural relation by making use of the fact that true regression

Y - BX on z is zero. As would be expected, Durbin's e:timate is less
efficient than a least-squares estiwate, based on the unobservable true parts
of the fallible variables.

Reiersol (1945) has considered the estimation of structural relations,
using fallible insurumental variables. Reiersol's estimate requires obser-
vations on two instrumental variables, both of which are correlated with
the true parts of the independent variable, but not with the e:vor parts,
and further states that these instYumental variables have some known
linear relation.

Geary (1949, p. 30) states that the accuracy of using instrumental
variables to estimate structural relations is dependent upon the correlation
of the instrumental variables with the dependent and independent variables.
Even if instrumental variables can be identified as having the required
properties, which in itself seems unlikely, their use represen’e additional
cost. Madansky (1959, p. 188) identifies Durbin's use of an infailible
instrumental variable as equivalent to the grouping method, when the instru-
mental variable is restricted to the values -1, 0, and +1.

The variance components procedure for estimating structural relations,
using fallible variables, began with Tukey (1951), and requires additional
information, similar to that necessary for grouping. The data must be in
the fornm of ny observations, xij’ on each of N Xi's, i.e., two or more
groups must be identified into which the data ray be divided. The pro-
cedure is to do one-way analyses of varience on the variables X, Y, and
XY, as in an analysis of covariance. The mean squares and expected wean

squares of the computations are given in Table 1. (Madansky, 1259, p. 189).

ERIC 12
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An inspection of the expected mean squares in Tabde I indicates

b=’ 111 - Vi
-1V

is an estimate of the structural relation of ¥ on X, Tukey shows the estimate
to be ccnsistent as N > » and scme ny + =, and provides confidence intervals
for 8, both in the wase cf a functifonal rel ..°n and in the case of a struc-
tural relation.

Berkson's method (1950) for estimating structural relations is dependent
upon his sampling model which dis:inguishes between a “controlled observation"
and an "uncont.olled observation.'" Let x = X + u be an observation on the
fallible independent variable, broker down into a true part X and an error
part u; and similarly, let y = Y -+ v be a fallible observation =i the depen-
dent variable. An "uncontrolled observation'" on the fallible independent
variable is defined as X being fixed, and u being a random variable, inde-
pendent of X. The structural relation 18 Y = a + BX and by substitutiorn
y = a+ Bx+ (v - By}, The sbove equation is not a standard regression
model because the random arror (v - By) is not indepeadent of x. The
purpose of taking a "controlled observation' is not to estimate X, but
rather, to bring the observed quantity to a set value. The attempt is
to get X each time 21 observation is made, but because of errors of
neasurement, the observation represents x - u. The sampling model causes
X to vary while x remains fixed; therefore, u is independent of x. Since
for a "contrclled observation" the error of measurement is independent of
the observat.., the least-squares estimate of slope is also an unbiased
estimate of the structural relation, A fixed » also eliminates the popu-
lation correiation of x and y, which means the regression line y nn x is

the same as the regression line x on y. Scheffé {1958) offers a slight

13
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TABLE 1

Tukey's Variance Components”

Source Mean Square Expected Mean Square
N - - 2 2 2 N 2
I I ong(Xgr-X ) / (N-1) g +{N -2 n))/ (Nn-n)) o
1=1 u i=1 1 X
@ N o , N
Q11 Long (X, <X ), Y ) cov(u,v) + [(N° - L n)) /
i=1 ' i=1
[=]
g 2
< [ (N-1) (Nn-u)] Bo
] X
m
oo 2 2 ¥
1| < n (Y, -Y )/ (N-1) o + [(N° - £ n))/(Nn~n)]8%2
N i i . v i X
i=1 i=1 i
N n
i -
Wl L D (XX )? /D) o2
i=1 J=1 u
A _
o VLB (X Xy )Yy ) cov{u,v)
£ j=1 y=1 RIS
!
N g — ,
vi{ £ (Yij-Yi.) / (N-1) o
i=1 j=1 v
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u = error part of X

v = error part of ¥
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modification of Berkson's model by allowing u and v to be independent

variables, with variances ci and c%. The modification is dependent

upon the manner in which replication is achieved. Scheffé supposes that
replicates are taken by changing tha controlled bariable from its pre-
vious value and bringing it back for each replicate; whereas Berkson
assumes the controlled varlable remains unchanged. Scheffé develops
confidence intervals for the slope and intetcept, under the assumptions

of his restatement of the Berkson case.

ANOVA and ANCOVA

The effects of scedastic errors of measurement in ANOVA are the same
as they are in ANCOVA with a fallible dependent variable and an infallible
covariable. Because scedastic errors have an expected value of zero and
are independent of the true parts cf the variable, the least squares pro-
cedures of ANOVA provide unbiased estinates of the parameters in its linear
model. In ANCOVA the lesst squares estimate of the slope of the structural
relation of the dependent variable on the covariable is unbiased if the co-
variable is infallible, as seen earlier, and so the least squares procedures
of ANCOVA also provide unbiased estimates of the parameters in its linear
model. Cochran (1968, has ~onsidered the problem of estimating the parameters
in the linear model o ANOVA for a less restrictive model c¢. errors of measure-
ment and comes to the same faveralile corclusion.

Glven the usual assumptions, the F test statistics for ANOVA on a fal-
lible dependent variable and the F t=st statistics of ANCOVA on a fallible
cdependent variable and an infallible covariable will {ollow theoretical F
distributions. The only detrimental effect that scedastic errors of measure-

ment in the dependont variable have is to decrezase precisiou and thus increase
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the probability of a Type II error. For ANOVA the decrease iu precision is
seen by the equation
22 2

g =0_+0
Y T e’

where ci denotes the variance of the fallible dependent variable, oi is the
variance of the infallible dependent variable which is inflated by 02 the
variance of the errors of measurement. The error variance of a one-way
ANCOVA s

2 2 1
1 - Yy [1 4 —
OY( pr [ f-2 ]:
e

where 05 is the variance of the fallible dependent variable, Py is the cor~
relation of the fallible dependent variable with the infallible covairiable
and fe denvtes the degrees of freedom for estimating error variance, The Oy
term is inflated by errors of measurement in the same way as shown above for
ANOVA. Further, P gy is attenuated by errors of weasurement in Y. Both
effects cause a loss in precision due to a fallible depend:nt variable.
Sutcliffe (1958) has derived the expected mean squares for a one-way, fixed
effects ANOVA for a fallible dependent variable. By using his table of ex-
pected mean squares, Sutcliffe points out the increase in the probability

of a Type LI error caused by tiie errors of measurement. tox (1961} has
considered whether the ANOVA least squares methods employed on fallille
variables provide unbiased estimates of error variances in factorial and
fractional factorial designs. He concludes that the estinates are unbiased
for both high crder interactiuns and the pooled variance of replications
within ~eolls,

The use of a fallible covariable in ANCOVA can caus: a far more dis-

tressing problem than decreased precision. First, considar the linear model

kllC 16
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of 1 one-way fixed-effects ANCOVA with a single random covariable. Note that
a random covariable represents a relaxing of the restriction in the classical
model that covariables be fixed, DeGracie (1968) has shown that the usual
ANCOVA procedures applied to data with a random covariable still provide un-
biased estimates of the parameters in the linear model as well as valid test
statistics. The only difference from classical results is that the variances
of the various estimates are averaged across all values of the covariable. A
random covariable is certainly more representative of practice in educational
-esearch than is a fixed covarfable, The linear model 1is

Yy

= N -V + T
3 uY.. + fl.J + BY-X(Xij \-X.') eljl

where Yij and Xij are the i th observations in the j th treatment for the
dependent and covariable respectively,
Uy ., is the constant for true mean response,

a.j = ”Y_j -y BY-X (“X.j - px ) is the j th treatment effect,

.o

BY X is the common within treatment slope of fhe regression of Y on X,

and eij are random variables assumed to be normally distributed independent
of each other with zero mean and comr.: wvariance,
Whon ANCOVA is employed as a method for gaining precision i{a designs
where experimental units are randomly assigned to treatments and where the

ccvariable is observed antecedent to the experiment, My = UX for all
*d .3

3 # 3j', and the treatment effects, a T reduce to those for ANOVA, i.e.

U‘{ - ¥

.

v.." The only regative effect of a fallible covariable beyond that

of a fallible dependent variable is a furth:r attenuation of Pxv causing a
los¢ in precision as scen earlier. However, when ANCOVA is used in attempt

to control for systematic initial between group differences on the covariable,

17
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in general “y # My and the treatment effects will reflect the nature
" «J

of the correction term

Byox Cug i Yx..

Tlils sccond use of ANCOVA has become common p~actice in educational research

since suggested by Campbell and Stanley (1963) for use on their quasi-

experiments. Lord (1960), Smith (1957} and Thorndike (1942) as well as several

others move recently have recognized that even though X and Y are fallitle,

the regression line relevant to ANCOVA is the structural relationship. Since
By.x = Pxxfy.r

the usual ANCOVA procedures provide and test biased estimates of the treatment

effects when 1 # ux , - Further, by puugging in different possible values

i %

of Pxx® BY T and p i it is seen that usual ANCOVA procedures can provide

non zero treatment effects when the actual effects are zero or zero treat-
men effects when the actual treztment effects are non zero. (Porter, 1967)
Lord (1960) offers a graphic demonstration of the same problem.

Lord (1960) was the first to provide a statistical procedure that yields
and tests unbiased estimates of the correct treatment effects -then analyzirg
data from quusi experimerts having a fallible dependent variable and a fallible
co-variable. His test statistic is asymptotically distributed normal and is
limited to consideration of only two levels of the independent variable.

The necessary data are observations on the dependent variable and duplicate
observations on the covariable, where the duplicate measures follow the
test-retest paradigm of classical measurement tlieory.

I have developed another approach to the prublem of obtaining and
testing unbiased estimates of the correct treatment effects when analyzicg

O
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data from quasi experiments having a fallible dependent vaciable and o
fallible covariable. At least computationally my procedure can be usad
in any design vhere classical ANCOVA can be used {(Porter, 1967 and 1968).
Essentially the procedure I have suggested and investigated substitutes
an estimated true score covariable for the observed fallible covariable
and then employs classical ANCOVA procedures. The estimated true score
variable in a one way ANCOVA is defined as

~ -

Tyg = X5 % oxx (Kyy - X 90
For more complex desigas the estimated true score covariable would follow
the same form except that the observations wculd be deviated from the
respective cell maans. The important properties of an estimated true score
covariable are that it is a linear transformation of the fallible covariable

and

1) has the same treatment group aud grand means as the fallible
and unobserved infallible covariable,

2) has the same correlation with the dependent variable as does
the fallible covariable,

and 3) the slope, By.T » is equal to the desired slope of the

structural relation, By T .

From the above three points it follows that use of classical ANCOVA on
the fallible dependent variable and the ~stimated true score covariable will
provide unbiased estimates of the treatment main effects

R B S T A By.T(“Xj -ux)
«nd that the F test statistic will follow the theoretical F distribution
given the usual assumptiomsof ANCOVA plus the assumption that the reliability

of X is common acvoss all treatment groups. When the reliability of X is
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net known, an estimate must be used which {ntorduces an additional source
of variation 1into the model. With the additional source of variation due
to estimating pXX’ ANCOVA using estimated true scores as the covariable

no longer conforms to the classical rodel and the distribution of the F
test statistic must be questioned. Also of interest is a comparison of
the small sample propertics of Lord's procedure to the one I have proposed
wien there are only two levels of the treatment independent variable.

In a cecent study (Porter, 1967) I used the Monte Carlo approach t~
investigate the effects of sample size, the reliability of the covariable,
and the correlation of the dependent variable with the covariable on the
small sample properties of Lord's statistic and on the distributjon of the
F statistic calculated from ANCOVA using estimated true scores as the co-
variable. The ANCOVA procedure was investigated for both two and four
levels of the independent variable. Each empirical distribution was based
on 1000 values vi _he test statistic and the method for estimating relia-
bility conformed to the test retest paradigm suggested by Lord. Further,
the covariable was random.

The results indicated that whea the reliability of the covariable was as
low as .5, the distribution of Loru's statistic was a very poor approxima~
tion of the normal distribution. As the reliability of the covariable in-
creased, the number of observations per treatment group necessary for a
good approximation becam: less. The size of the correlation of the covariable
with the dependent variable had an inverse effect on the rapidity of con-
vergence, Samples of size 20 or greater per treatment group seemed to pro-
vide for sufficient convergence of Lord's statistic for intermediate values
of reliability and correlation. A sample size, larger than 20, was necessary
in order for the distribition of Lord's statistic to converge upon the normal

)
[: T(:when reliability, correlition, or both were low.
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The analysis of covariance, using estimated true scores as a covarlable,
also required samples of size 20 or larger per treatment group for th2 theo-
retical F to serve as a usc¢ful reference distribution. For covariabées having
reliability of .7 or .9, the generated distributions of F based on énalysis
of covariance usinug estimated true scores as the covairiable were in-close
agrzement with the corresponding theoretical distributions of F. Lhen the
reliability of the covariable was .5, the agreement of the generat:d dis-
tributions of F to their theoretical counterpart- were not quite as good,
but still close. The degree of agrzement suffered a greater decrease caused
by a decrease in the reliability of the covariable for analyses involving
four treatment groups than for two trea .ent groups. For analyseA involving
only two treatment groups the size nf the correlation of the depeadent vari-
able with the covariablz did not have a systematic effect on the legree of
agreement of the generated distributions of the F statistic for ahalysis of
covariance using estimated true scores as the covariable with the theoretical
F distribution. However, when using four treatment groups, an ipfreaSL in
the correlation of the dependent variable with the covariable catse a syste-
ratic decrease in the «agreement of the generated distribution wiith the theo-
retical distribution.

The analysis of uovariance using estimated true scores for the co-
variable appeared to b: as useful a method for testing hypothese; as Lord's
statistic. The genera:ed probabilities of a Type 1 Error for tw;—tailed
tests were in clore agreement with the theoretical probabilitfes for both
test statistics. A slight negative skewness for generated distributions

of Lord's statistic caused the probabilities of a Type I Error £51 one-

tailea tests systematically to exceed tne probcbilities of a Typé I Error
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for two-tailed tests. Power was essentially the same for both test statistics.
The use of estimated true scores was slightly more powerful for the two ex~
treme levels of reliability, .5 and .9, of the covariable, and Lord's statistic
was slightly more powerful for the intermediate level, .7.

The results clearly indicated the utility of Lord's statistic and my
rrocedure of ANCOVA using estimated true scores as the covariable, when
analyzing data from a quasi experiment where the variables are fallible.

They also supported the greater generalicy of th-~ modified ANNCOVA procedure.
Thistletnwaite (1969) and Campbell and Erlebacher (1970) provide illustrations
of the use of ANCCOVA using estimated true scores as the covariable. DeGracie
(1968) has more recently propuvsed a test statistic which he points out is
similar to the one that I have proposed and investigated, hut wiiich . an
asymptotic normal distribution.

As a final note of caution none of the above wmentioned analyses pro-
vides a completely satisfactory substitution for random assignmert of ex-
perimental units te levels of the independent variable. Although tiey pro-
vide and test estimates of the treatment effects after controlling for
initial betweel level differences on tae covariabiv, there is no guarantee
tiiet tie covariable reflects all important initial hetween levels aif-
ferences, i.e., all of the above mentioned procedures suffer from the same
limitations that apply for ANCOVA on {nfallible variables. Two excellent
references on such limitations are provided by Smith {(1957) and Lord (1967).
Elashoff (1969) also points out the limitations of ANCOVA when rancdom as-
signment has not been used in the avsign as well as several other limitations
of ANCGVA. 1nformally Lce Crunbach, Donald Campbell and 1 (Campbell and Erle-

bacher 1970,Errata) have con=idered the prou .em of choice among covariates
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where the intent is to use the cevariate to control for the problem of con-
founding vari:bles, Unfortunately our thoughts are at too prelimiary a

stage to be ruported here.

Sumnary

In this paper problems caused by the existence of errors of measure-
ment have been identified for factor analysis, regression analysis, ANOVA,
and ANCOVA. At least one detrimental effect was seeu to exist for each
type of anal/sis. When a researcher's interest .s with infallible variables,
he rune the risk of biased results from all of the procedures except ANOVA.
The estimates of parameters in all four procedures cuffer from inflated
error variauce. Some partial solutions were indicated, but clearly more
work is needed on several of the problems.

Most statistical procedures have been develop:d for models where
variablrs are assumed to be free from errors of measurement. Since almost
all educational research involves use of [{allible variables, it is lmpor-
tant that the effects of errors of measurement for the various models he
understocd and that the understanding be reflected in current research

practice,

O
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