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MULTIVARIATE CLUSTER ANALYSIS

Douglas J. McRae
CTB/McGraw-Hill

Monterey, California

ABSTRACT

Procedures for grouping students into homogeneous subsets have

long interested educational researchers. The research reported in this

paper is an investigation of a set of objective grouping procedures

based oa multivariate analTds considerations. Four multivariate func-

tions that might serve as criteria for adequate grouping are given and

discussed; a method for optimizing these functions is also described.

The set of procedures is illustrated through application to data from

two samples of students, each student with scores on either ten or

eleven subtests of a criterion referenced mathematics inventory. The

results indicate that the procedures discussed provide a promising

means for grouping students to minimize classroom heterogeneity,
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The problem of grouping or clustering students into homogeneous

subsets has been of interest to educational researchers for years. The

rationale behind this interest is the assumption that teaching effective-

ness is enhanced by homogeneity of ability, learning level, learning

deficiencies, etc., is the students. The endpoint of this rationale is,

of course, individualized instruction This form of instruction, however,

is either in the developmental state as far as educational hardware is

concerned or, where hardware exists, is prohibitively expensive. Hence,

educators still group or cluster students toward the aim of maximizing

teacher effectiveness.

Traditionally, grouping procedures have been a suojective result of

some objective measurement process. Student record'.; in various subject

areas are obtained from a variety of :ources, for instance, previous

grades, teacher evaluations, standardized tests; the administrator then

sets a few basic decision rules and groups or clusters students on this

basis. The efficiency of this pror.edure is open to question: Are the

resultant groups in any sense maximally homogeneous? This paper discusses

a set of objective procedures in which statistical and computer science

technology is applied to the grouping procedure,

The line of thought followed for this work started with the suggestions

of Sebestyen (1962). He suggested that one criterion for maximal grouping

might be to minimize the sum of the distances from each observation to

its group center. This is one of the criteria discussed below. Ball

and Hall (1967) and MacQueen (1967) developed computer algorithms for

optimizing this criterion; they also have investigated their procedures

using real and artificial data- Friedman and Rubin (1967) extended the

work by suggesting two new criteria based on multivariate analysis considera-

tions; the Friedman and Rubin work included an algorithm for optimization

3
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and empirical investigation. The technique as described in this paper

includes four criteria for optimization and a combination of the MacQueen

and Friedman-Rubin algorithms to accomplish the optimization.

Theory

This set of clustering procedures is motivated through consideration

of an N x P data matrix, say X, where N refers to the number of students

and P refers to the number of measurements available on each student. If

one arbitrarily partitions the data matrix into g groups of students, then

the cross-products matrix

T = X' X

may be partitioned into two matrices, W and B, such that

where

and

T = W B

g ni

W = E E (Xij 7( ), - 7(1.) ,
ij

1=1 j=1

B = E n
i '

1=1

where g is the number of groups,

and

ni is the number of students in the i
th

group,

X is the (1 x p) observation vector for the

j
th

student in the i
th

group,

X. is the (1 x p) mean vector for the i
th

group.

If cne changes the membership constitution of the groups, say by trans-

ferring a student from one group to another, or by eliminating a student
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from membership in any gr,mp, or by changing the number of groups, the

W and B matrices will change. Hence, various functions of these matrices

might be considered as criteria for objective cluster solutions.

The first function considered is minimum Trace W. Since the diag-

onal elements of the W matrix are simply sums of squared deviations,

minimizing the trace of the W matrix is the same as minimizing the sum

of squared Euclidian distances from the data points to their group

centroids. This criteria for clustering was first suggested by Sebestyen

(1967) and has been used by a number of investigators (Ball and Hall, 1967;

MacQueen, 1967; Kendall, 1969). MacQueen labeled cluster solutions using

the minimum Trace W criterion "minimum variance partitions."

The second function considered is minimum Determinaat W. This function

was suggested by Friedman and Rubin (1967); and it follows from consideration

of the Wilks' lambda statistic in multivariate analysis. Wilks' lambda

statistic

A = IWI / IT:

is used for testing for differences among groups when more than one

variable is involved, The magnitude of the differences among groups

is inversely related to A : i.e., the smaller the A, the larger the

differences. Since minimum A = minimum 'WI / Ti
I

and ITI is a constant,

minimum A = minioum iWl. Hence, minimizing 1141 leads to maximal differ-

ences among groups as determined by Wilks' lambda statistic.

The third function considered is the maximum largest root of

IB - AWl = 0. This function is Roy's largest root statistic in multi-

variate analysis and, as far as this author knows, has not previously
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been suggested for application to the clustering situation. Use of this

function should tend to maximize differences among groups along the first

dimension of discriminant (W-I B) space.

The fourth function considered is maximum sum of roots of 1B - ,WI = 0.

This is Hotelling's Trace statistic in multivariate analysis and has been

suggested for the cluster analysis application by Friedman and Rubin (1967).

Method

Finding solutions optimizing the criteria specified above is not a

trivial matter, The number of ways of partitioning N objects into g

groups is very large (see Fortier and Solomon, 1966); the use of an

electronic computer and an iterative algorithm is indicated. Toward this

end, a computer program (called MIKCA, for Multivariate Iterative K-means

Cluster Analysis) was writtea (McRae, 1971). This program is now described.

The primary procedure used for optimization is the K-means procedure

(MacQueen, 1967). The procedure as outlined by MacQueen allows the number

of clusters to increase or decrease; MIKCA does not incorporate this option.

A supplementary section of MIKCA employs a more time consuming algorithm

similar to the algorithm used by Friedman and Rubin (1967).

Information that must be specified by the user includes, in addition

to the number of observations and the number of variables, an estimate for the

number of clusters. Initial cluster centers are determined by raneomly

choosing an observation to serve as the initial center for each cluster. All

observations are then assigned to the cluster having the closest cluster
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center (closest being defined in terms of Euclidian distance); cluster

centers are recomputed after each observation is assigned. The order of

consideration of the observations is the order of input. After all observa-

tions are assigned, the criterion value is computed. This entire procedure

is repeated three times; the solution associated with the best criterion value

of the three is chosen as the initial cluster solution.

After an initial solution is found, the iterative K-mn.ans procedure

begins. Once again each observation is considered in the order of input. The

observation is assigned to the cluster having the closest cluster center

("closest" being oefined as the distance as computed using one of the distance

functions described below). After each observation has been assigned, the

cluster centers are recomputed. For any given iteration, after all the observa-

tions have been considered, the criterion value is computed; if the criterion

value is better than the previous iteration, the entire process is repeated; if

the criterion value is the same or worse, the program continues on to the supple-

mentary section, called "individual switches."

The individual switches section assigns observations to clusters based

directly on the criterion value (as versus a distance function). In addition,

the order of consideration of the observations differs from the K-means section

of the program. Briefly, this heuristic begins by considertng observations in

cluster "one." It considers switching each observation in this cluster to each

of the remaining clusters; the switch is made if and only if the criterion value

improves when the switch is made. After all observations in cluster one are

considered, the observations in cluster "two" are considered, and so on.

The individual switches heuristic is intended to be a final sharpening

process. If any switches are made, then the heuristic will continue to consider

7



Page 6

those clusters affected by the switches until no further switches are

made. At this point, the final cluster solution is output.

In the iterative K -means section of the program, observations are

assigned to clusters based on a distance function specified by the user.

One of three distance functions may be specified: Euclidian distance,

weighted Euclidian distance, and Mahalanobis distance.

Euclidian distance is defined as

d
2

= (X.. .)7.) (X -
ij ij t

whereXiiisthej"ohservationveC-orintheithclusterand7(.is

the mean vector for the ith cluster. This distance function dues not

take into account either the scale of measurement for the variables or

the covariation among the variables-

The weighted Euclidian distance function designed for this program

attempts to account for scale differences among the variables. It is

defined as

d
2

= (X .) (diag W)
-1

w ,i
5Z

j
7( )

The diagonal elements of the within-clusters matrix at any given stage

in the analysis reflect the differing variation among the variables.

Hence, using this distance function is equivalent to computing distances

on variables scaled by the within-cluster standard deviations. Insofar

as the within-clusters matrix is a good estimate of the "true" structure

in the data, this distance function will adjust for differences due to

scale of measurement for the variables.
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The third distance function iE Mahalanobis distance, which is defined

D
2

= (Xij - T{.) W 1

j
T

i
(X. .)'

This distance function takes into account both scale of measurement for

the variables and covariation among the variables. Using this distance

function is equivalent to computing distances on uncorrelated variables

with equal variances.

In summary, optimization of the functions described in the first

section of this paper is accomplished by a computer program using pri-

marily an iterative K-means algorithm. This algorithm is supplemented

by a more brute force algorithm called "individual switches." The pro-

gram allows the user to specify one of three distance functions to be

used in the iterative K-means section; the distance functions available

are designed to adjust for scale and covariation of the variables.

Application

To illustrate the above set of cluster analysis procedures, two sets

of data were analyzed. These data were drawn from the tryout sample for

the Prescriptive Mathematics Inventory (CTB/McGraw-hill, 1971), a criterion-

referenced mathematics test designed to indicate the knowledge and skills of

mathematics for fourth through eighth grade students. The two samples of

data will first be described, followed by a description of 18 cluster

analysis solution.:.

9
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The first sample (Sample A) involved 149 students, each with scores

on 10 subsets of the items from the Prescriptive Mathematics Inventory.

The students were drawn from six classrooms in three grade schools from

a large metropolitan area in the southwestern part of the United States.

All students were in grade five at the time of testing. The ten scores

were obtained as follows: a tryout edition of th...! PMI, consisting of 241

items and yielding 34 subscores, was administered. The 34 subscores

were reduced to ten scores by adding together subscores in such a manner

as to yield ten scores representative of the ten major areas for Level B

of the final edition of the PMI. The ten scores, the subscores from which

they were drawn, and the number of items contributing to each score are

given in Table 1.

The second sample (Sample B) involved 142 students, each with scores

on 11 subsets of the items from the Prescriptive Mathematics Inventory.

These students were drawn from one junior high school in the same metro-

politan area as Sample A. All students were in ,zrade seven at the time of

testing. The 11 scores were obtained from a separate tryout edition of the

PMI, consisting of 234 items and 41 subscores. The 41 subscores were reduced

to 11 scores by adding together subscores in such a manner as to yield 11

scores representative of the 11 major areas in Level C of the final edition

of the PMI. The 11 scores, the subscores of the tryout edition from which

they were drawn, and the number of items cmtributing to each score are

given in Table 2.

The number of combinations of criterion used. distance fum_tion used,

and number of 'looters desired yields a large numbe- of cluster solutions

posible for each data set. A complete exploration of the two data sets

JO
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TABLE 1

Scores, Subscores, and Number of Items for Sample A

Score Contributing Subscores
Number

of Itel-..s

ets Sets

1

umeratiun Systems Place value, roman numerals 11

Addition
Addition of whole numbers, addition of posi-
tive fractions, addition of decimal numbers,
number line problems 33

Subtraction
Subtraction of whole numbers, subtraction of
positive fractions, subtraction of decimal
numbers 15 ,

Multiplication
Multiplication of whole numbers, primes and
factors, multiplication of positive frac-
tions, multiplication of decimal numbers 30

Division
Division of whole numbers, division of
positive fractions, division of decimal num-
bers, rounded numbers 33

Properties Properties 1 18

Mathematical Sentences
Number sequences, missing addends and factors,
mathematical sentences 21

Measurement Denominate numbers, measurement 29

Non-metric Geometry Geometry 9

TOTAL

11

201
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TABLE 2

Scores, Contributing Subscores, and Number of Items for Sample B

Score Contributing Subscores
Number

of Items

Sets Sets 10

numeration Systems Place value, numerals

Operations
Number line problems, positive fractions,
negative fractions, rcunded numbers, deci-
mal numbers, integers, missing digits,
transforms, missing addends and factors

Properties

77

24Properties

Mathematical Sentences Number theory, mathematical sentences

Geometry, ratio

Percent

14

22

6

Non-metric Geometry

Percent __-

Functions and Graphs Functions and graphs

Measurement, geometric computations, hour
clock, significant digits 14

Measurement

Statistics & Probability Statistics, probability 14

Trigonometry Trigonometry 4

TOTAL

12

197
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not attempted in this paper; rather, only analyses illustrative of the

technique and its results are given. First, for Sample A, three solutions

representing 3 different pretreatments of the data are given and discussed.

Then, for each data see, eight solutions representing the most popular of

options (Trace W with Euclidian distance, Determinant W with Mahalanobis

distance) are pres.Ated and discussed.

Before obtaining cluster solutions, a judgement concerning pretreatment

of the date, must be made. For the data at hand he number of items contributing

to each raw score varies widely; hence, some pretreatment is indicated. To

illustrate what happens to solutions under various pretreatments, Trace W,

Euclidian distance, three cluster solutions were obtained using three types of

scores: (1) raw scores (no pretreatment), (2) standardized score (z-scores),

and (3) percent scores. The results of these analyses are given in Table 3.

The three solutions are remarkably similar in that they yield low, medium,

and high profile clusters (the clusters were permuted for presentation in

Table 3, putting the "low" cluster first, the "medium" cluster second, and the

"high" cluster last). This pattern of results will recur. A closer look at

the results shows a remarkable similarity between the raw score and z-score

solutions; in fact, 136 of the i49 observations are assigned to the same

cluster by these two solutions. The percent score solution differs solaewhal,

offering a slightly clearer resolution between the "low" cluster and the

"medium" cluster. Based partially on these results, the remaining analyses

presented in this paper were dyne using percent scores.

In obtaining f.luster anilr:; solutions, one penernlly does not know before

the analysis exactly how man) (lusters best Lt.:present his data. It would be

nice to have an indication Pf he best representation: using MIKCA this is

13
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Table 3

TRACE W, EUCLIDIAN DISTANCE THREE CLUSTER SOLUTIONS

FOR THREE PRETREATMENTS OF THE DATA

RAW SCORES Z-SCORES PERCENT SCORES

MAX.

RAW

SCORELow Med High Low Med High Low Med High

1. 1.365 1.879 1.821 1.382 1.846 1.897 45.6 100.0 90.7 2

2. 1.942 3.414 5.590 1.945 3.600 6.069 20.9 23.0 48.0 11

3. 9.865 14.741 23.974 10.000 15.954 24.c90 29.6 40.5 64.8 33

4. 5.058 7.948 10.923 5.127 8.462 10.966 31.8 47.4 68.4 15

5. 4.885 10.155 13.538 5.073 10.369 14.414 18.0 28.6 40.9 30

6. 2.327 6.672 11.615 2.382 7.246 12.379 7.9 15.2 31.8 33

7. 5.096 10.897 13.590 11.169 14.172 29.4 45.1 77.4 18

8. 2.346 4.914 7.462 2.382 5.200 7.897 12.5 18.6 32.6 21

9. 4.346 9.638 15.077 4.691 10.092 15.828 17.5 25.9 47.3 29

10. 1.096 1.810 3.974 1.091 1.892 4.621 11.8 12.9 43.2 9

Size: 52 58 3: 55 65 29 34 61 54

14



Faze 13

possible. To illustrate how this is done, solutions for 2, 3, 4, and 5

clusters were obtained for Trace W, Euclidian distance, and Determinant W,

MabF.lanobis distance for each of the two samples. The results of these

analyses are summarized in Table 4. Rather than the actual value of

Determinant W, the value of Log ITI / !WI is given in accord with the

recommendation of Friedman and Rubin (1967).

The results summarized in Table 4 do not strongly indicate which

solution is best representative of the data. The Trace W, Euclidian

distance solutions show relatively smooth drops in the Trace W values as

the number of clusters increases. The Log IT! / !WI values for Sample A

do show that not much change occurred between g = 3 and g = 4, indicating

that the 3- cluster solution is about as efficient as the 4-cluster solution

in describing the data. The Sample Es Log ITI IWI values do not show the

same effect.

The lack of indication of which solution best represents the data is

better understood by considering the 2 and 3 cluster solutions fur Sample A,

Trace W, Euclidian distance. The cluster centroids for each c:uster are

plotted in Figures 1 and 2. As is easily seen, the solutions are essentially

unidimensional: i.e., a cluster high on one variable tends to be high on all

variables, a cluster low on one variable tends to be low on all variables, and

so on. All solutions obtained with the :MI data tended to show this type of

pattern. The recommendation coming from these considerations would be, then,

to determine the number of clusters desired on grounds other than he trend

of Trace W or Log IT1 / IWI values. Since the results are essentially

univariate, one would do about as well to sum the ten variables and cluster

the students based on the total score.

15
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TABLE 4

Summary of Results for Sample A and Sample B
g = 2, 3, 4, 5 for Trace W

Euclidian distance and Determinant W, Mahalanobis distance

Sample A

Number of Clusters Trace W Log ITI / Ilfl

2 41.52 0.684

3 34.35 1.402

4 29.50 1.512

5 26.91 1.991

Sample B

Number of Clusters Trace W
.

Log ITI / IWI
. .

2 44.53 0.708

3 37.40 1.104

4 33.00 1.388

5 30.43 1.827

16
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1 2 3 4 5 6 7 8 9 10

Variable

Figure 1

Sample A: Trace W, Euclidian distance, Two cluster solution

2 3 4 5 6 7 8 9 10

Variable

Figure 2

Sample A: Trace W, Euclidian distance, Three cluster solution

17
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Discussion and Conclusion

The set of procedures described in the first part of this paper

represent an objective solution to the problem of grouping students.

Many questions concerning this technique still must be answered before

confident, general use can be made of it. Some of these questions are

now discussed.

One obvious question is which clustering criterion yields the best

results. There are certain theoretical considerations which favor the

criteria based on multivariate analysis; primary among these considerations

is the fact that the criteria based on multivariate analysis use the entire

B and W matrices rather than just the diagonal elements. This means that

covariation among the variables enters into the clustering solutions. In

addition, the use of the Mahalanobis distance function with the multivariate

analysis criteria "equates" the variables for stale and covariation during

the solution process. Among the multivariate analysis criteria, the largest

root criterion is clearly best for finding maximal unidimensional solutions;

the criteria based on Wilks' lambda and Hotelling's trace would clearly be

superior if more than one dimension is involved.

Empirical results, both on artificial data and on real data, are also

needed to ascertain the types of data for which the use of each criterion

is warranted. Along these lines, Friedman and Rubin (1967) report that the

Hotelling's trace criterion tends to give unidimensional solutions whereas

the Determinant W criterion does not. Hence, from these results, indi-

cations are that the Determ nant W, Mahalanobis distance solutions may be

the best of the multivariate analysis type solutions.

18
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Another question which must be answered is the question of efficiency

and optimality in the computer algorithm. The algorithm described above

has some undesirable features, most notably the manner in which the initial

cluster solution is obtained. Due to the random element in the initial

cluster part of the algorithm, differing solutions can be obtained with

differing orders of input. This situation can be used to advantage to

obtain an indication of "strength of cluster!.ng"; this could be done by

re-running the data under a variety of input orders, using the stability

of cluster results to indicate "strength of clustering." ("Strength of

clustering" is a vague term; what is meant is the general notion of whether

the clusters obtained are significant and replicable as versus random

artifacts of the forced partitioning.) A preferable solution to the

initial clustering problem would be to fix the order Gf consideration

of the observations; the trick here is to find a rule for fixing the

order that yields "optimal" results for a variety of data types. Research

effort along these lines is continuing.

Another problem that has surfaced with the use of this technique is

that the technique tends to find clusters of roughly equal size. Scott

and Symons (1970) report that if clusters are of disparate size, for

instance if one cluster has five times as many elements as another, the

technique tends not to be able to arrive at the appropriate solution. To

remedy this, they suggest another criterion: one based on individual

within-cluster determinants. They suggest minimizing

where 4:
= ji

(X
ij

- )t (X
ij

- ).
-

1

19
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This criterion fits well with a modification of the Mahalanobis distance

function suggested by Chernoff (1970) for the clustering situation. This

modification defines Mahalanobis distance as

-1
D2 = (X - I.) W. (X

ij
7( .)'

whereW.is defined as above. To date, no empirical work has been done

either with the criterion suggested by Scott and Symons or with the

Mahalanobis distance function suggested by Chernoff.

Finally, there are a number of things that can be done to extend the

technique. One of the things would be to allow for a weighting of the

variables as specified by the user. The user may want a solution that,

on theoretical grounds, weights one score twice as heavily as another score.

Another extension of the technique would Le to allow analysis on a reduced

set of variables, for instance by analyzing a set of r principal component

scores ierived from the p x p correlation matrix. Since the number of

variables is a very important determinant of the computer time required

for solution, incorporating this option could prove to be quite time saving.

It would also be nice to provide graphic output of the results; the best

way to do this seems to be to plot the scores in the first two dimensions of

discriminant (W 1B) space. Research effort on incorporating these options

into the procedure is continuing.

In summary, then, this paper describes a cluster analysis technique

that allows for completely objective grouping. The options open to the user

are described and discussed. Solutions illustrative of the technique using

data from the Prescriptive Mathematics Inventory are given. The general

20
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conclusion of this paper is that although much work still needs to be

done, the technique represents a promising method for objectively

grouping students to minimize classroom heterogeneity.
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