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MULTIVARIATE CLUSTER ANALYSIS

Douglas J. McRae
CTB/McGraw-Hill
Monterey, California

ABSTRACT

Prccedures for grouping students into homogeneous subsets have
long interested educationzl researchers. The research reported in this
paper is an investigation of a cet of objective grouping procedures
based oa multivariate analysis considerations. Four multivariate func-
tions that might serve as criteria for adequate grouping are given and
discussed; a method for optimizing these functions is also described.
The set of procedures is illustrated through application to data from
two samples of students, each student with scores on either ten or
eleven subtests of a criterion referenced mathematics inventory. The
results indicate that the procedures discussed provide a promising

means for grouping students to minimize classrvom heterogeneity.



The problem of grouping or clustering students into homogeneous
subsets has been of interest Lo educational researchers for years. The
rationale behind this interest is the assumption that teaching effective-
ness is enhanced by homogeneity of ability, learning level, learning
doficiencies, etc., ia the students. The endpoint of this rationale is,
of course, individualized instruction. This form of instruction, however,
is either in the developmental state as far as educational hardware 1is
concerned or, where hardware exists, is prohibitively expensive. Hence,
educators still group or cluster students toward the aim of maximizing
teacher effectiveness.

Traditionally, grouping procedures have been a subjective resulc of
some objective measurement process. Student records in various subject
areas are obtained from a variety of ‘ources, for instance, previous
grades, teacher evaluations, standardized tests; the administrator then
sets a few basic decision rules and groups or clusters students on this
basis. The effiziency of this proredure is open to question: Are the
resultant groups in any sense maximally homogeneous? This paper discusses
a set of objective procedures in which statistical and computer science
technology 1is applied to the grouping procedure.

The line of thought followed for this work started with the suggestions
of Sebestyen (1962). He suggested that one criterion for maximal grouping
might be to minimize the sum of the distances from each observation to
its group center. This is one of the criteria discussed below. Ball
and Hall (1967) and MacQueen (1967) developed computer algorithms for
optimizing this criterion; they also have investigated their procedures
using real and artificial data. Friedman and Rubin (1967} extended the
work by suggesting two new criteria based on multivariate analysis considera-

tions; the Friedman and Rubin work included an algorithm for optimization
Q
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and empirical investigation. The technique as described in this paper
includes four criteria for optimization and a combination of the MacQueen

and Friedman-Rubin algorithms to accomplish the optimization.

Theory

This set of clustering procedures is motivatea through consideration
of an N x P data matrix, say X, where N refers to the number of students
and P refers to the number of measurements available on each student. If
one arbitrarily partitions the data matrix into g groups of students, then
tlhe cross-products matrix

T=X'X

may be partitioned into two matrices, W and B, such that

T=W+B
where
Port oy -5 )
W= I ) X.: = X,) X.. - X,
1 i i’ 2
- i=1  j=1 -1 -1 -~
and
8 -, =
SR
i=1
where g is the number of groups,
' ny is the number of students in the 1th group,
X1j is the (1 x p) observatiun vector for the
) th
3 student in the 1th group,
s h
and X, is the (1 x p) mean vector for the it" group.

1f cne changes the membership consiitution of the groups, say by trans-

ferring a student from one group to another, or by eliminating a student
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from membership in any group, or by changing the number of groups, the
v and B matrices will change. Hence, various functions of these matrices
might be considered as criteria for objective cluster sclutions.

The first function considered is minimum Trace W. Sinze the diag-
onal elements of the W matrix are simply sums of squared deviations,
minimizing the trace of the y matrix is the same as minimizing the sum
of squared Fuclidian distances from the data points to their group
centroids. This criteria for clustering was first suggested by Sebestyen
{1967) and has been used by a number of jinvestigators (Ball and Hall, 1967;
MacQueen, 1967; Keudall, 1969). MacQueen labeled cluster solutions using
the minimum Trace W criterion "minimum variance partitions."

The second function considered is minimum Determinaat W. This function
was suggested by Friedman and Rubin (1967); and it follows from consideration

of the Wilks' lambda statistic in multivariate analysis. Wilks' lambda

statistic
A= af o

is used for testing for differences amoung groups when more than one
variable is involved. The magnitude of the differences among groups
is inversely related to A : i.e., the smaller the A, the larger the
differences. Since minimum A = minimum |W| / |T| and |T| is a constant,
minimum A = miniwnum IWL. Hence, minimizing |W| leads t; maximal differ-
evces among groups as determined by Wilks' lambda statistic.

The third function considered is the maximnum larpest root of
I? - AW| = 0. This function is Roy's largest rvot statistic in multi-

variate analysis and, as far as this author knows, has not previously

ERIC
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been suggested for application to the clustering situation. Use of this
function should tend to maximize differences among groups along the first
dimension of discriminant (w'l B) space.

The fourth function considered is maximum sum of roots of |B - xw| = 0.
This is Hotelling's Trace statistic in multivariate analysis and has been

suggested for the cluster analysis application by Friedman and Rubin (1967).

liethod

Finding solutions optimizing the criteria specitied above is not a
trivial matter. The number of ways of partitioning N objects into g
groups is very large {see Fortier and Solomon, 1966); the use of an
electronic ccmputer and an 1iterative algorithm is indicated. Toward this
end, a computer program {called MIKCA, for Multivariate Iterative K-means
Cluster Analysis) was writlen {McRae, 1971). This program is now described.

The primary procedure used for opLimization is the K-means procedure
{MacQueen, 1967). The procedure as outlined by MacQueen ailows the number
of clusters to increase or decrease; MIKCA does not incorporate this option.
A supplementary section of MIKCA employs a more time consuming algorithm
similar to the algorithm used by Friedman and Rubin (1967).

Information that must be specified by the user includes, in addition
to the number of observations and the number of variables, an estimate for the
number of clusters. Initial cluster centers are determined by randomly
choosing an observation to serve as the initial center for each cluster. All

observations are then assigned to the cluster having the closest cluster

ERIC
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center (closest being defined in terms of Euclidian distance); cluster

centers are recomputed after each observation is assigned. The order of
consideration of the observations is the order of input. After all observa-
tions are assigned, the criterion value is computed. This entire procedure

is repeated three times; the solution associated with the best criterion value
of the three is chosen as the initial cluster solution.

After an initial solution is found, the iterative K-mnans prccedure
begins. Once again each observation is considered in the order of input. The
observation is assigned to the cluster having the closest cluster center
("closest' being aefined as the distance as computed using one of the distance
functions described below). After each observation has been assigned, the
cluster centers are recomputed. For any given iteration, after all the observa-
tions have been considered, the criterion value is computed; if the criterion
value is better than the previous iteration, the entire process is repeated; if
the criterion value is the same or worse, the program continues on to the supple-
mentary section, called "individual switches.”

The individual switches section assigns observations to clusters based
directly on the criterion value (as versus a distance function). In addition,
the order of consideration of the observations differs from the K-means section
of the program. Briefly, this heuristic begins by considering observations in
cluster "one." It considers switching each observation in this cluster to each
of the remaining clusters; the switch is made if and only if the criterion value
improves when the switch is made. After all observations in cluster "one" are
considered, the observations in cluster ''two" are considered, and so on.

The individual switches heuristic is intended to be a final sharpening

process. If any switches are made, then the heuristic will continue to consider
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those clusters affected by the switches until no further switches are
made. At this point, the final cluster solution is output.

In the iterative K-means section of the program, observations are
assigned to clusters based on a distance function specified by the user.
One of three distance functions may be specified: Euclidian distance,
weighted Euclidian distance, and Mahalanobis distance.

Euclidian distance is defined as

2 = , VRN
d = (hij - hi) (kij - xi)

. . . . .th - .
. is the Jth observation vector in the i'" cluster and X, is

X,
where Xi3 X

the mean vector for the ith cluster. This distance function does not
take into account cither the scale of measuiement for the variables or
the couvariation among the variables.

The weighted Luclidian distance function designed for this program
attempts to account for scale differences among the variables. It is
defined as

2 _ .3 . -1 Y
dm Oy - B W@isg Ty - T

The diagonal elements of the within-clusters matrix at any given stage
in the analysis reflect the differing variation among the variables.
Hence, using this distance function is equivalent to computing distances
on variables scaled by the within-cluster standard deviations. Insofar
as the within-clusters matrix is a good estimate of the "true' structure
in the data, this distance function will adjust for differences due to

scale of measurement for the variables.
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The third distance function iz Mahalanobis distance, which is defined

as

p? = (x

- _
Xig = X W gy - X

1

This distance function takes into account both scale of measurement for
the variables and covariation among the variables. Using this distance
function is equivalent to cowputing distances on uncorrelated variables
with equal variances.

In summary, optimization of the functions described in the first
section of this paper is accomplished by a computer program using pri-
marily an irerative K-means algorithm. This algorithm is supplemented

by a more brute force algorithm called "individual switches.” The pro-
gram allows the user to specify one of three distance functions to be

used in the iterative K-means section; the distance functions available

are designed to adjust for scale and covariation of the variables.,

Application

To iliustrate “he above set of cluster analysis proucedures, two sets
of data were analyzed. These data were drawn from the tryout sample for

the Prescriptive Mathematics Inventory (CTB/McGraw-till, 1971), a criterion-

referenced mathematics test designed to indicate the knowledge and skills of
mathematics for fourth through eighth grade students. The two samples of
data will first be Jdescribed, followed by a description of 13 cluster

analysis solutions.

ERIC
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The first sample (Sample A) involved 149 students, each with scores

on 10 subsets of the items from the Prescriptive Mathematics Inventory.

The students were drawn from six classrooms in three grade schools from
a large metropolitan area in the southwestern part of the United States.
all students were in grade five at the time of testing. The ten scores
were obtained as follows: a tryout edition of the PMI, consisting of 241
items and yielding 34 subscores, was administered. The 34 subscores
were reduced to ten scores by adding together subscores in such a manner
as to yield ten scores representative of the ten major areas for Level B
of the final edition of the PMI. The ten scores, the subscores from which
they were drawn, and the number of items contributing to each score are
given in Table 1.

The cecond sample (Sample B) involved 142 students, each with scores

on 11 subsets of the items from the Prescriptive Mathematics Inventory.

These students were drawn from one juaior high school in the same metro-
politan area as Sample A. All students were in ¢rade seven at the time of
testing. The 11 sccres were obtained from a separate tryout edition of the
PMI, consisting of 234 items and 4l subscores. The 41 subscores were reduced
to 11 scores by adding together subs:ores in such a manner as to yield 1i
scores representative of the 1l major areas in Level C of the final edition
of the PMI. The 11 scorcs, the subscores of the tryout edition from which
they were drawn, and the number of items contributing to each score are
given in Table 2.

The number of comhinatians nf criterion used. wistance fun-.tion used,
and number of eclnusters decired yields a large numbe- of cluster sclutions

poscible for each data set. A complete exploration of the two data sets i3

—t
]



TABLE 1

Scores, Subscores, and Number of Items for Sample A

Page 9

|
: Rumber
Score Contributing Subscores of Iteus
Sets Sets 2
Egmeratiun Systems | Place value, roman numerals 11
Addition of whole numbers, addition of posi~
Addition tive fractions, addition of decimil numbers,
| number line problems 33
Subtraction of whole numbers, subtraction of
Subtraction positive fractions, subtraction of decimal
numbers 15
Multiplication of whole numbers, primes and
pultiplication factors, nultiplication of positive frac-
tions, multiplication of decimal nunbers 30
Division of whole numhers, division of
Pivision positive fracticns, division of decimal num-
bers, rounded numbers 33
roperties Properties 18 |
Number sequences, missing addends and factors,
Mathematical Sentences | mathematical sentences 21
Measurement Denominate numbers, measurement 29
Non-metric Geometry Geometry 9
TOTAL 201

ERIC
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Scores, Contributing Subscores, and Number of Items for Sample B

Number
Score Contributing Subscores of Itemd
Sets Sets 10
Numeration Systems Place value, numerals 4
. Number line problems, positive fractions,
Operations negative fractions, rcunded numbers, deci-
mal numbers, integers, missing digits,
transforms, missing addends and factors 77
Properties Properties ~ 24
Mathematical Sentences Number theory, mathematical sentences 14
Non-metric Geometry Geometry, ratio 22
Percent Percent 6
Functions and Graphs Functions and graphs 8
Measurement Measurement, geometric computations, hour
clock, significant digits 14
Statistics & Probability;Statistics, probability 14
Trigonometry Trigonometry [}
TOTAL 197

RIC
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not attempted in this paper; rather, only analyses illustrative of the
technique and its results are given. First, for Sample A, three solutions
representing 3 different pretreatments of the data are given and discussed.
Then, for each data sei, eight solutions representing the most popular of
options (Trace W with Euclidian distance, Determinant W with Mahalanobis
distance) are pres: .ated and discussed.

Before cbtaining cluster solutions, a judgement coacerning pretreatment
of the dati must be made. For the data at hand 'he number of items contributing
to each raw score varies widely; hence, some pretreatment is indicated. To
illustrate what happens to solutions under various pretreatments, Trace W,
Euclidian distance, three cluster solutions were obtained using three types of
scores: (1) raw scores (no pretreatment), (2) standardized score (z-scores),
and (3) perceat scores. The results of these analyses are given in Table 3.

The three solutions are remarkably similar in that they yield low, medium,
and high profile clusters (the clusters were permuted for presentation in
Table 3, putting the "low" cluster first, the "medium" cluster second, and the
"high'" cluster last), This pattern of results will recur. A closer look at
the results shows @ remarkable similavity between the raw score and z-score
solutions; in fact, 136 of the 149 observations are assigned to the same
cluster by these two solutions. The percent score solution differs soumewhatl,
offering a slightly clearer resolution between the "low" cluster and the
"mediun'' cluster. Based partially on these results, the remeining analyses
presented in this paper were dcne using percent scores.

In obtaining «luster anialy- s solutions, one senernlly does not know before
the analysis exactly how many rlusters hest represent his data. It would be

nice to have an indication rf rhe best representation! using MIKCA this is

ERIC
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Table 3

TRACE W, EUCLIDIAN DISTANCE THREE CLUSTER SOLUTIONS

FOR THRFE PRETREATMENTS OF THE DATA

———r s ¢ e o

B O UL SN,

Page

12

[ERSTVINS

RAW SCORES Z-SCORES PERCENT SCORES RAW
| Low | Med | High | Low | Med | High | Low | Med |High | SCORE
1.365 1.879 1.821 1.382 1.846 1..897 45.6 1100.0190.7 2 T
1.942 3.414 5.590 1.945 3.600 6.069 é 20.9 23.01{48.0 11
9.865 114.741 123,974 10.000 ;15.954 } 24.F90 29.6 40.5 1 64.8 33
5.058 7.948 [{10.923 5.127 8.462 110.966 31.8 47.4 | 68.4 15
4,885 {10.155 ;13,538 5.073 | 10.369 | 14.414 18.0 ; 28.6 | 40.9 30
2.327 6.672 |11.615 2.382 7.246 112.379 7.9 i 15.2 | 31.8 33
5.096 | 10.897 | 13.590 5.2,. | 11,169 | 14.172 29.4 45,11 77.4 18
| 2.346 4.914 7.462 2.382 5.200 7.8%87 12.5 | 18.61 32.6 21
4,346 9.638 115.077 4,591 | 10.092 | 15.828 17.5 25.9 | 47.3 29
1.096 1.810 3.974 1.091 1.892 4,621 11.8 12.9 | 43.2 9
s I
52 58 32 55 65 29 34 61 EA . J
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possible. To illustrate how this is done, solutions for 2, 3, 4, and 5
clusters were obtained for Trace W, Euclidian distauce, and Determinant W,
Mahzlanobis distance for each of the two samples. The results of these
analyses are summarized in Table 4. Rather than the actual value of
Determinant ?, the value of Log ]T| / lwi is given in accord with the
recommendation of Friedman and Rubin (1967).

The results summarized in Table 4 do not strongly indicate which
solution is best representative of the data. The Trace W, Euclidian
distance solutions show relatively smooth drops in the Trace W values as
the number of clusters increases. The Log ]Tl / W] values for Sample A
do show that not much change occurred between g = 3 and g = 4, indicating
that the 3-clvster solution is about as efficient as the 4-cluster solution
in describing the data. The Sample B Log !T[ / [Wl values do not show the
same effect.

The lack of indication of which solution best represents the data is
better understood by considering the 2 and 3 cluster solutions fur Sample A,
Trace W, Euclidian distance. The cluster centroids fer each cluster are
plotted in Figures 1 and 2. As is easily seen, the solutions are essentially
unidimensional: 1i.e., a cluster high on one variable tends to be high on all
variables, a cluster low on one variable tends to be low on all variables, and
so on. All solutions obtained with the IMI data tended to show this type of
pattern. The recommendaticn coming from these considerations would be, then,
to determine the number of clusters desired on grounds other than . he trend
of Trace W or Log [T] / |W| values. Since the results are esseutially
univariate, one wculd do about as well to sum the ten variables and cluster

the students based cn the total score.
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TABLE 4

Summary of Results for Sample A and Sample B
g =2, 3, 4, 5 for Trace W
Euclidian distance and Determinant W, Mahalanobis distance

Sample A
Number of Clusters Trace W Log |T| / w|
2 41.52 0.684
¢
3 34.35 1.402
4 29.50 1,512
5 26.91 1.991
Sample B
!
Number of Clusters Trace W Log |T| / |W|
2 44,53 0.708
3 37.40 1.104
4 33.00 1.388
5 30.43 1.827

ERIC 16
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100
80
60
40
20 ‘,,-'\\\
1 2 3 4 5 6 7 8 ¢ 10
Variable
Figure 1
Sample A: Trace ?, Euclidian distance, Two cluster solution
100
80
60
40 =
20 . / N PrOT
] 2 3 4 5 6 7 8 9 10
Variable
Figure 2
Sample A: Trace Y, Euclidian distance, Three cluster solution
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Discussion and Conclusion

The set of procedures described in the first part of this paper
represent an objective solution to the problem of grouping students.

Many questions concerning this technique still must be answered before
confident, general use can be made of it. Some of these questions are
now discussed.

One obvious question is which clustering criterion yields the best
results. There are certain theoretical considerations which favor the
criteria based on multivariate analysis; primary among these considerations
is the fact that the criteria based on multivariate analysis use the entire
B and W matrices rather than just the diagonal elements. This means that
covariation among the variables enters into the clustering solutions. In
addition, the use of the Mahalanobis distance function with the multivariate
analysis criteria "equates" the variables for s:ale and covariation during
the solution process. Among the multivariate analysis criteria, the largest
root criterion is clearly best for finding maximal unidimensional solutions;
the criteria based on Wilks' lambda and Hotelling's trace would clearly be
superior if more than one dimension is involved.

Empirical results, both on artificial data and on real data, are also
needed to ascertain the types of data for which the use of each criterion
is warranted. Along these lines, Friedman and Rubin (1967) report that the
Hotelling's trace criterion tends to give unidimensional solutions whereas
the Determinant W criterion does not. Hence, from these results, indi-

cations are that the Determ ' nant W, Mahalanobis distance solutions may be

the best of the multivariate analysis type solutions.

18
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Another question which must be answered is the question of efficiency
and optimality in the computer algorithm. The algorithm described above
has some undesirable features, most notably the manner in which the initial
cluster solution is obtained. Due to the random element in the initial
cluster part of the algorithm, differing solutions can be obtained with
differing orders of input. This situation can be used to advantage to
obtain an indication of “sirength of clustering'; this could be done by
re~running the data under a variety of input orders, using the stability
of cluster results to indicate ''strength of clustering." ("Strength of
clustering" is a vague term; what 1s meant is the general notion of vhether
the clusters obtained are significant and replicable as versus random
artifacts of the forced partitioning.) A preferable solution to the
initial clustering problem would be to fix the order ¢f consideration
of the observations; the trick here is to find a rule for fixing the
order that yields "optimal" results for a variety of data types. Research
effort along these lines is continuing.

Another problem that has surfaced with the use of tbls technique is
thiat the technique tends to find clusters of roughly equal size. Scott
and Symons (1970) report that if clusters are of disparate size, for
instance if one cluster has five times as many elements as another, the
technique tends not to be able to arrive at the appropriate solutior To
remedy this, they suggest another criterion: one based on individual

within-cluster determinants. They suggest minimizing

g My
x |?1|
11
ni — _
1 = - t -
Q vhere "y §=1 Ryy 7307 &y~ X
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This criterion fits well with a modification of the Mahalanobis distance
function suggested by Chernoff (1970) for the clustering situation, This

modification defines Mahalanobis distance as

2 . =1 —_
D" = (X - X, . - X!
SO AR

where Wi is defined as above. To date, no empirical work has been done
either with the criterion suggested by Scott and Symons or with the
Mahalanobis distance function suggested by Chernoff.

Finally, there are a number of things that can be done to extend the
technique. One of the things would be to allow for a weighting of the
variables as specified by the user. The user may want a solution that,
on theoretical grounds, weights one score twice as heavily as another score,
Another extension of the technique would te to allow analysis on a reduced
set of variables, for instance by analyzing a set of r principal component
scores cerived from the p x p correlation matrix. Since the number of
variables is a very important determinant of the computer time required
for solution, incorporating this option could prove to be quite time saving.
It would also be nice to provide graphic output of the results; the best
way to do this seems to be to plot the sceres in the first two dimensions of
discriminant (W-IB) space. Research effort on incorporating these options
into the procedure is continuing.

In summary, then, this paper describes a cluster analysis technique
that allows for completely objective grouping. The options open to the user
are described and discussed. Solutions illustrative of the technique using

data from the Prescriptive Mathematics Iaventory are given. The general
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conclusion of this paper is that although much work still needs to be
done, the technique represents a promising method for objectively

grouping students to minimize classroom heterogeneity.

o

ERIC

Aruitoxt provided by Eic:

21



Page 20

References

1. Ball, G. H. and Hall, D, .'. A ciustering technique for summarizing
multivariate data. Behavioral Science, Vol. 12 (2), March, 1967,

2. Chernoff, H. Metric considerations in the K-means method of cluster
analysis. Paper given at the First Annual Meeting of the Classi-
fication Society, Columbia, Ohio, April, 1970.

3. CTB/McGraw~Hill. The Prescriptive Mathematics Inventory. 1971.

4. Fortier, J. J. and Solomon, H. Clustering Procedures. In Interna-
tional Symposium on Multivariate Analysis, edited by P. R. Krishnaiah,
Academic Press, 1966 pp. 493-506.

5. Friedman, H. P.

and Rubin, J. On some invariant criteria for
grouping data. J.A.S

.A., (62), 320, pp. 1159-1178.

6. Kendall, M. G. Cluster Analysis. Scientific Control Systems Ltd.
London, England, July, 1968.

7. MacQueen, J. Scme methods for classification and analysis of multi-
variate observations. 1In The Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Berkeley, U. of California Press, 1967.

8. McRae, D. J. MIKCA: A FORTRAN IV Iterative K-means Cluster Analysis
Prograia, Behavioral Science, in press.

9, Sebestyen, G. S. Decision-making Processes in Pattern Recognition.
ACM Monograph Series, Macmillan, New York, 1962,

10. Scott, A. J. and Symons, M. J. Clustering methods based on likeli-
tood ratio c¢riteria. Institute of Statistics Mimeo Series No. 710,
University of North Carolina, Chapel Kill, North Carolina, September,
1970.

ERIC

Aruitoxt provided by Eic:

0D
NS



