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paranoia

An initial effort is made to investigate social aspects of the
classroom within a mathematical framework called general systen theory.
The objective of the study is to set the stage for a theory of
social behavior in the large which, when verified, may be employed
to guide computer simulations of detailed, social situations.

A model of a goal-seeking and learning individual, called a
P-model, is constructed at which point the interconnection of
several such. ?- models, called an n-group, is formalized. The notion
of an n-group may represent teacher-class interaction.

Analogously to other system-theoretic developments, the dynamic
behavior of n- groups is investigated. In particular, the stability
and controllability of mutually rewarding behavior in such groups
are the objects of discussion. Further, the notion of "status"
within an n-group is formalized and change in status is related to
the learning capabilities of group members. Illustrative examples
are given for each of these investigations in order to provide
intuitive appeal to the formlism.

The results of the investigation include theorems which state
necessary and/or sufficient conditions for stability and controllability
of n-groups. Though the conditions are somewhat restrictive, the
framework for relating them to the aforemontio:aed aspects of dynamic
behavior is established. Within this framework, the investigation
may be extended in several directions and those recommendations
for further action are indicated in the appropriate sections of
the report.

3



Introduction and analysis

r.

The study of the social aspects of Classroom organization
may be broadly characterized as the study of interaction among
learning and goal-seeking individuals. Such a viewpoint forms the
conceptual basis of this report.

Rue to the difficulties presented by experimental investigations
of social behavior, it may be useful to establish simulations or
models of such behavior, either via mathematics or on a computer.
Computer simulations of social behavior have been developed by
the Gullahorns (11) who, however, state that verification of such
a model is not feasible. This difficulty with verification is
apparently due to the very large number of computer runs that
it would entail in order to reliably generalize the results. On
the other hand, mathematical models inherently deal in such
generalities and so would apparently present less difficulty in
this regard with respect to verification. Once verified, a
mathematical theory of social behavior provides a sound and
rigorous foundation on which to build computer simulations of more
detailed situations. In addition, some of the results derived
from such a theory may provide insight and point to new directions
for experimentation.

Mathematical models of social behavior were suggested by
Simon (12) more than a decade ago. Those models were "numerical"
in the sense that they employed differential equations. Recently !

nonnumerical formalisms such as the algebraic models of Fararo (5)
have been developed and used to investigate the notion of status
in groups. The theory presented in this report is essentially
nonnumerical and is employed largely to study the dynamic behavior
of groups.

The following section of the report displays several examples
of classroom behavior which serve as interpretations of later
mathematical results. In sections B and C, the person-nodel And
model of group interaction are developed within the framework
of a mathematical system theory. The remaining sections consider
several pertinent aspects of group behavior including its dynamic
characteristics, where the latter development parallels that
of other developments of system theory such as linear system
theory.
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A. Social aspects of classroom orpanization - examples.

The study of social behavior on a mathematical basis, whether
in the claseroom or elsewhere, requires that rigor is pursued at
several different conceptual levels. At.the broadest level, the
effects of interaction among individual persons with different
psychological characteristics is considered (this is the level at
which "sociological results" are obtained) . 2ut prior to study
at that "'interaction_-level", one must first formalize (i.e., make
rigorous) what is meant by "psychological characteristics." Such
a formalization may be said to constitute the "psychological-
level" of study. If we wished, we could. proceed on to a next
level, perhaps called the "physiological- level", and so forth.
Rather, this study begins at the psychological-level with an eye
toward application of that formalism at the interaction-level.

The choice of the formalism at the psychological-level,'
herein-after referred to as the "person-model" or simply P, was
influenced by the efforts of Romans (1,2), Yiller, Pribram and
Galanter (3), Kelly. (4) and Fararo (5).

In particular, since Romans' more recent book considered
certain aspects of elementary psychological behavior in a social
context, it is these aspects which are explicitly represented in
the person-model. Such aspects include the notions of reward,
punishment (or withdrawal of reward), expectation, and decision-
maldng behavior. In addition, notions such as change in expectation,
perception of is justice," perception of "status," and chancee in
perception may be incorporated into a more cccqplete person-model.

To illustrate how Romans (2) employs the above notions,
consider five of his typical propositions regarding social behavior
(i.e., his propositions of behavior are at the interaction level;
we will develop notions of interaction level behavior later);

(1) the more valuable (i.e., rewarding) to a man a
unit of activity (e.g., response) another gives
him, the more often he will emit activity rewarded
by the activity of the other.

(2) a man in an exchange relation (i.e., in interaction)
with another will expect that the rewards of each man
be proportional to his costs. If this distributive
justice fails, anger and/or guilt arises.

(3) if in the past the occurrence of a particular stimulus-
situation has been the occasion on which a =ants
activity has been rewarded, then the more similar
the present stimulus situation is to the past one, the
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more likely he is to emit the activity, or some
similar activity now.

.(4) the more often within a given period of time a man's
activity rewards the activity of another, the more
often the other will emit the activity.

(5) withdrawal, or holding back of a reward is a punishment.

In addition, Kelly's work seems to imply another propositions

(6) it is rewarding to receive an activity which is
expectEd in the light of previously emitted
activities.

These propositions may be used to provide insight into several
forms of classroom behavior.

With regard to the notion of status, we may consider a typical
classroom situation. Studies indicate that status is essentially
an unlatown concept to first through about fifth graders. It does,
however, become evident during about the sixth grade that what
people thing of a child matters to the child. We shall consider
the simple premise that to the averagepersmn it is re-eardinc. to
him if his status is increased and costlyifits decesased.

With this simple premise, we can gain insight into the role
status can play in the classroom if we note that an instructor
can manipulate the status of students and thereby control their
behavior.

For example, suppose an instructor desired to limit the inter-
ruptions during his lectures. He may believe that questions asked
during class slow down the progress of the class. It often happens

that a question is relevant to one ortwo students, while the
others already know the answer. In this case lecture time is taken
to teach only a few.

If a student were to ask a question, and he were made to look
foolish (i.e., incurred a decrease in status) for asking this question,
then the "punishment" version of Homan's proposition (1) predicts
that he will be less likely to ask questions in the future. For
example, student A may politely ask the instructor a eastion during
the lecture to which the instructor replies, "Obviously Nr. A, you
haven't been keeping up with the outside reading. If you will please
read the assigned material, we won't have to waste the rest of the
class's time, while I bring you up to date on the things you should
be learning out of class." Without answering the question, the
instructor then returns to his planned lecture. Student A incurred
a cost to ask this question. Even though the other students may
not havo known the answer to the question either, student A has lost
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some status in the exchange -with the instructor. The instructor in
this example has manipulated the status of one of his students to
disconrage questions during the lecture.

This example is considered again later in this report, but in
a much more rigorous context.

Consider a second example of the application of propositions
(1) - (6) to the classroom situation, with particular resard to
the evaluation of teaching performance. That is, the opinion of
the evaluator (e.g., principal or department chairman) may be
shaded by any of the following:

1. the opinions of other teachers

2. he like or dislike which the students show toward the
teacher

3. The parent; opinion of the teacher

4. The behavior and interest displayed in faculty meetings

5. The teachells willingness to give time to extra-curricular
activities connected with the school.

Since a teacher bo aware that he is evaltated and rewarded
on the above criteria, then Homans propositions (1) (3) and (4)
predict that these aspects may be of overriding significance to the
teacher. In that case, his teaching efficiency may suffer. For
example, it nay be that, in certain teaching situations, the teacher
has to require an unusually la:ge amount of hard work from the
students. This may even require the teacher placing the students
in a stress situation. When these situations occur, the students'
opinions of the teacher mill likely worsen. This may in turn cause
parent opinion and colleague opinion to suffer. If the students,
parents, and other teachers complain to the principal or department
chairman about this teacher, then his opinion of this teacher may
well be reduced. Therefore, in cases where strict academic dis-
cipline is required, the teacher may be in a dilemma. If he does
the best thing for the students, he harms himself; if he does the
best thing for himself, his students may suffer.

This conflict between teacher and student behavior may resrat
in a "non-cohesive" class-teacher relationship which is the subject
of a theorem later in this report.

Finally, consider a situation where the presentation of know-
ledge to a class alters the social position of certain class aembers.
That is, suppose that a boy impresses his friends with his ability
to win female companionship. It is Homansi conjecture that such a



group member, if he offers his rare and valuable skill in exchange
for other activities, mill obtain "status" in the group, where this
status is considered rewarding by the skill-holder. For example,
the boy's friends may do him favors in return for introductions to
his girl-friends. If now information regarding this skill is
presented to all other group members in such a way as to teach them
the skill (perhaps via a "dating" course), then that skill is
obviously no longer rare in which case the status of the original
skill-holder decreases in perhaps a dramatic fashion (depending
upon what other rare and valuable skills he may possess). This
decrease in 'status constitutes a withdrawal of reward, which Homans
indicates is usually accompanied by anger. Thus, the distribution
of knowledge in the group created some unrest in the group in
addition to the beneficial effects of educating the group members
with respect to a particular skill.

The above examp7e will be formalized later and -a theorem dis-
playing the reduction of status will be derived.

B. Development of a mrson-model

Apparently, the aforementioned psychological notions such as
reward, punishment, etc. are directly pertinent to Homans-type
social behavior, and so they are taken as a minimal sot of notions
to be explicitly represented in the person-model. The structure of
the person-model P is such that each of the pertinent notions is
related to a "subsystem" and these subsystems are interconnected
in a logical manner. In addition to the influence of other authors
from a psychological standpoint, the structure of P was also
affected by mathematical considerations. For example, the author's
experience has been such that in order to achieve an elegant presenta-
tion (roughly, "elegance" is synonymous with as few symbols as
possible," and is desirable for clarity and efficiency), no feed-
back structures should be incorporated exPlicitiv into P (6)"0 It
should be emphasized that feedback is implicit in some of the sub-
systems of P and so its effect is present. However, the structure
itself is "hidden."

The block diagram below shows the basic structure of P.

Fig. 1 P-Model Block Diagram
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Consider the manner in which each of the subsystems relates to
one or more pertinent psychological notions;

(a) the system 0 (a subsystem is also a system) represents
the internal activity of generating candidates for actual ressomat
to an input "event," where such an "event" may be spoken word
or sentence or perhaps a visuel stimulus. The sot of responses is
usually limited in real life situations to responses that are
ampapnriato to the event, either socially or otherwise. For example,
a possible response to the statement "thank you" is another state-
ment such as "you're welcome." It is quite unlikely however that
one would respond to "thank you" by flapping one's arms like a
bird while at the same time yodeling and stomping one's feet.

(b) the system G represents the reward-seeking (and
punishmentavoiding) activity of P. This activity is assumed to
place the current input event (i.e., current contexts) in association
with lelqh response generated by 0 so as, in essence, to complete the
following statements "given the current input event, if I were to
exhibit this respense, then I would like (not like) to receive in
return an input eventaccord.ingto the following ordering of such
events Thus, G associates two orderings with
the current input event and eseh. candidate for response. One of
these orderings is associated with rovard-seoking and so places
one input event above another if the former element is perceived
as more rewarding than the latter. The other ordering places ono
input event above another if the former element is seen as more
punishing, or more to be avoided, than the latter. It may appear
that each of those orderings is tho inverse of the other; houever,
the notions of "reward" and "punishment" are ill-defined hero and
so provent a proof of such a hypothesis.

Note again that G associates two orderings tp each
nandidate for response. Thus, for four candidates for response,
the output of G displays eight orderings.

(c) the system E represents the ferecasting or predictive
activity of P based upon "experience." As in G, the input event
is associated with 0,1011 generated response, but in this case the
essence of operation is to complete the statement; "given tht)

. currant input ovent, if I were to exhibit this response, then I
expect to observe in return an input event accorddng to the
following (subjective) probabilities on the input events
The system E associates to the current input event and ead.A candidato
for responee a list containing the input events and the probability
of occurrence of each element. So for the sot of responses from
0, E produces ono such list for each response.

6
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One of the ways that "learning" may occur is via a change in
expectation, either in the event itself or in its probability
number. Such a change may come about through "experience" (i.e.,
observing and assimilating the "world's" reaction to one's responses
over a period of time). On this basis, the system L is postulated.

(d) the system. L. represents the activity of changing expecta-
tions based upon the history of the input events (and memory of past
responses). This capability of P provides for "dynamic" behavior
at the interaction-level as will be indicated later.

(e) the system D represents the decision-making activity of
P. That is, D employs the current input event, the generated
responses, the rewards (punishments) that are being'sought (avoided),
and the likelihood of receiving such rewards and punishments, so as
to select one of the generated responses. For example, given the
aforementioned information, D ray select the response which provides
the most desirable reward that has an associated high probability
of occurrence. Such behavior on an economic basis may be character-
ized as mayimizing expected utility.

The discussion to this point has been largely intuitive so
as to give the reader a "feeling" for the structure and behavior
of P. Let us now consider the formalization of P in mathematical
terms, using Windeknechtls development of system theory (7). (See app, a),

A person-model P is an ordered septuple (I, R, 0, G, L, E,
D) where;

(i) I and R are sets representing sets of input events and
responses, respectively. (Strictly speaking, we should differ-
entiate between the events and responses themselves versus their
masentation within P. However, that will be left as a refinement
for a later model.)

(ii) Os IN
R'

such that for all

xEdI)0 and all nE N, 0(x) (n)= o(x(n)) there os I

Here, the function o represents the activity of generating
candidate responses for a given input event.

,7



N

TTR *
14

I I *
). G: * 77

N
( TrR * *

such that for all x E ,X,G and all nEN,

G(x)(n) = (g(x(n)), -exn))) -where
g: I *rr

--> Tr R * IT
and

7: I *r -> 'r*IT

The function g represents the activity of associating a
"reward"-arderIng of I with each candidata for response. Thus,
the above expression for g is to be interpreted such that the
elements of R which appear in the argument of g also appear in
the result from appliceUon of g, and further that each subset
of I * I which results from an application of g satisfies the
axioms of a partial ordering relation.

Similar remarks may be made for the function E.

(iv) Lqt IN QN such that for all n E N and

all nEdt , (i) Lq (x)(0) = q

(ii) Lq (x) (n 1) = (x(n) L (x)(n) )

where Q is a set and

XI I * Q Q.

Here, Q represents -ehe sot of nmemory-states" reflecting the
past experience of P, especially regarding expected rewards versus
actual input events. This experience will be employed to affect
the expectation of P. The function), represents the activity of
changing the memory-state on account of the current input event
(i.e., the current input event may represent a reward or punishment
for a provious'response, and this rewa.gd or punishment may have
been expected or quite unexpected). The memory-state q represents
the iyAtial memory-state of P at the beginning of our observation.
Therefore

L= U L

qEQ

(v) Es (I * Q * r R)N ( )N1 su Ph that
I * I

for all x E EE and 411 n EN, E(x) (n) e(x(n)) whore

ei I* Q* rr r

R*TTI1-*

and T. represents the closed interval on the real line, [ 0,1 .
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The function e represents the setivity of associating a
probability of occurrence to each element of I, given a candidate
for response from R and & current input event and a specified
state of knowledge. The result from e is to be interpreted as
a set containing several subsets of I * T, one for each candi-
date response, where each, such subset of I * T is a function. from
I to T.

(vi) D = DI M where

(a) D' s .* TT * TT
R R * Tr

I

*7
R *

*

* I I * I
Tr

R*TrI*.1

( 7(1 * R) * (I * R))N
such that for all xEceDI and vall. n E N,

Di (x) (n) = c1.1 (x(n) ) where

d' I *
R

* TT
R *Tr

*TT * TT
Tr

I * I
R * Tr

I * I
R *

I* T

7(1 * R) * (I * R)

(b) M (Tra R) (I R) )
N

RN such that for all xE sa 14

and all nE N, M(x) (n) = m(x(n)) where m o
7(1 * R) * (I * R) R

The functions dl and m represent the decision making activity
of P insofar as P employs the outputs of the subsystems 0, G and E
to select a response. As shown, the subset of (I * R) * (I * R)
which results from dl is assumed to satisfy the axioms of a simple
ordering relation with respect to R. Thus' d' produces an orAsrine.
of responses (and the most desirable reward associated with each
response by g or most undesirable punishment associated via 7), where
this ordering is obtained via the strategx of P (e.g., ordering via
expected utility). That is, an element in I * R is above another
element in I * R if the response in the former pair is perceived
as more goal.- achieving (i.e., more reward - achieving or punishment-
avoiding) than the response in the latter pair. Then, the function
in represents the selection of the greatest pair in the ordering and
produces the response contained within that pair.

The interconnection of the subsystems may be formalized as follows*

P = ( ( (0 G) // ( ( 0 // L) 0 E ) // 0)0 D)

The expression on the right-hand side of the "equals" sign
represents the block diagram interconnection for the person-model
as shown previously. This expression, denoted by P, is the mathe-
matical representation of the person-model. Note that this repre-
sentation incorporates the notions c: stimulus, response, reward,
punishment, expectation, decision-making strategy, end "learning"
(where the last notion is limited to a char ye in expectation) .

An example of person-model behavior will be given in the latter
part of this section. P, as a reltlion, may be characterized by
the following conditions on the oreercd pairs of time fur etiom;

9'
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for all xE IN and all yE RN and all q0E Q and all yoE R,

(x,y)E (P) if and only if (i.) xE IN

(clo"Yo)
(ii) wE QN) ( V nE (w(0) = qo and

w(n + 1) =X(x(n), w(n))) and .(iii) for all nE N, y(0) = yo and

y(n 4 1) = m(d1(x(n),o(x(n)),g(x(n),o(x(n))),x(n),o(x(n))),e(x(n):

o(x(n)),w(n))))

Let y(n f(x(n),w(n)) where f: I * Q R as in condition
(iii) above.

Since we wish the model to apply for all initial states q0 E Q

and all initial outputs y ER, let P = , U (P)
lq

o
,y

o
R)EQ *o (q

o
,y

o
)

Technically, the systems 0, G, E, D' and are static systems
with transfer functions as specified. Thus, the capacity for
learning resides manly within system L.

The model P represents one out of many possible structures for
sirmlating the behavior of a person. P does not necessarily represent
the manner in which 'Ithinkine occurs. Rather, P represents a logical
structure which incorporates several significant psycholozical notions
and which, to an e renal observer recording only input events and
output responses, might appear to exhibit behavior silailar to a person.

Our aim is to study this external behavior for several person
models in interaction (i.e., in groups), and then to relate their
external behavior to the internal characteristics of each person-
model. It may ultimately be possible to nr.edct group behavior
given the characteristics of each group member.

As a means of displaying the operation of the P-model, consider
a formalization of the previous example concerning manipulation of
status.

With the interconnected subsystems for P as described above, we
may display an example of the operation of a P-model. Consider a
hypothetical course in linear programming at Georgia Institute of
Technology for which the class is in the middle of the quarter and
has just ccmpleted the chapter on duality in linear programmim,.
Assume that there are n possible inputs which can be given to the
professor. Therefore in terms of the model, I =(ii, i2, i3 in] .

Assume that there are m possible different responses that
the professor can emit such that

R =(ri, r2, 3 .

10
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As the professor is beginning to start his lecture (at time
zero, sar), some studont asks the following question hick is the
input for the model at tine zero.

Why mould one ever apply the dual.
.simplex algorithm when the primal

-

97 simplex will solve all linear pro-
gramming problems?

Note: The above input is i
97

in the set I.

System 0 0: I -->
R

Supposethateallthsresponsesto is/,,, professor thought only

the three r
1' -53'

1. and r
82

to be appropriate where

The dual simplex algorithm is more efficient
in some applications when solving an LP problem

r4,
J.4 than the primal simplex algorithm. This often

occurs when one must add artificial variables
to the initial tableau. Xr. Student, if you had
worked homework problem 3 in the last assignment,
you would know the value of the dual simplex
algorithm.

That is a very good question Yr. Student. It
is certainly not obviou4 but in certain applica-

r
53

=
tions, the dual simplex proves to be more efficient
than the primal simplex. This is often the case
when one must add artificial variables to obtain
a starting point for the primal simplex. Excellent
question! Any other questions?

Obviously, ir. Student, you haven't been keeping
up mith the homework problems. If you will please

r
82

=
work the assignments, I won't have to waste lecture
time bringing you up to date.

Thus (
97

) = (r14, r53, r821

.

Sve.tem E ei I * Q * rr
R

7
R

I *1*

In practical situations, the set I may be very large. For
simplicity, this example deals with only those elements of I
for which the subjective probability of occurrence is greater
than 0.01. Suppose

1201 = The attention of all members of the class and no
questions

11
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1102 - Another question

153 = An expression of boredom from some members of
the class

134 = An expression of animosity from some members of
the class

and the conditional probabilities associated with the appropriate
elements of R are as follows!

Pr ( 1201 1 r14 3

Pr [ i53 I ri4 3

Pr
12011 r53 )

Pr
[
153 ir53 3

Pr ( 1201(2'82 3
Pr [ 153 ir82

=

=

=
=

=

=

O'75
0.00

0.15

0.09

0.95

0.00

Pr ( 1102 1'14 3

Pr [ i34 ri4 3

Pr
[
1102 I r53

Pr [ i34 i r53 3

Pr [ 110212'82 3
Pr [ 134 1r82

=

=

=

=

=

=

0.2

0.00

0.75

0.00

0.01

3.03

The probabilities for each later input event were chosen
arbitrarily, but it is likely that they reflect some similarity
to reality.

NeticethatE[Pr(ik lr.3] = 0.99 j = 14, 53, 82.
k

This implies that there may exist later inputs not considered
here. Even though they aro not included, their expectation proba-
bilities are so small that we nay assume they do not iniiuence the
declaim process.

The system E produces at time zero an output of the following
formt

e(i
97'

q , ( r
14'

r
53'

r
82

3 ) =

[ [ r14, ((1201'
0.75), (1i02, o.24)1 3 ,

[ r53, ( (1201
0415),

(1102' 0.75)
,

(153, 0.09)3 3 ,

( 1'82' (1201'
0.95),

(1102' 0.01),
(i34, 0.03)3 3 1

where qo represents the present sot of expectations of the professor,

and where for example the expectations associated with r14 are listed

first, those associated with r
53

are listod second, etc.

System. G. gt I* TTR .--> TT
* 7 I * I

It is convenient to assume that, for r
14

and r
53'

g orders the

elements of I linearly according to increasing subscript numbers
whereas for r82, g produces the inverse ordering. Thus

12



g(i97' (r34, r53' r82
3)

( (r1.4° ( (1201' 1201)'(i201' 1i02)'(i201' 153)'(1201" i34),

(1102' 5102)1(1102' i53)'(102' i34)'(153' 133)1(153' 134)'(i34' i34)3 3,

(r82I ( (Lye i34), (i34,. 153), (i34, 1102),(i34, 1201),

(153' 153), 0.53, i109)'(i53' 1201)'(1102' 1102),(1102' i201),(1201' 1201)}},

(253' ( C1201' 1201)' ---
etc.

The effect of 7;will not be specified in this example.

System D Let us assume that the decision process is based upo:., utility
theory (8) whereby a number may be associated with each element of I in
each ordering from g. Assume this number to be 4 if, the element is
highest in the ordering, 3 if it is second highest, etc. Then the
following decision tree describes the decision process, neglecting
the effect of 'ff.

r
14 ---- i --ga--........_ is

i34 3072

1201
4(0.2,9_ expected

ii02 utility

97

Fig. 2
Decision Tree

3

1201

1102

153

134

i34

(expected

utility

is

3.03

expected

--31217-51---

...202&50

__1192_______

i53 utility

2 i
102 --

10.01)- is
1201 -.104252--- 1.09

---

Apparently, the most promising candidate for response is rill, for

which the most desirable input event in return is ini. The second most

promising candidate for response is r53. Thus, at time zero,

d' (197' r
97' 110-53'-

r82 l
g(i9rtrliVr53'1.823)' e(i97'clo'f r14'r53'r82 ))

= (( 1201'r14)' (1201'2.14))'((i201'r14)'(i201'r53))'((i201'r14)'(iVr82))'

((i201"r53)'(1201'r53))'((1201'r53)' (i34'r82))'((i3'r82)'(i34'r82))3
where go is professor's state of knowledge at time zero. Clearly then,

m(dqi
97'

- - e(i9 r7'qe r14Vr53'r82
3)))

rite
Thus, the professor chooses to emit response rill, at time instant one.

Meanwhile, low., also causes the professor to change his state of know-
ledse from go. This change is not exemplified here.

13
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C. Develonnent of an interaction model

In order to moJel interaction of personmodels so as to simulate
group behavior, the notion of "interaction" itself need be formalized.
This notion can be represented for two person-models by the following
diagrams

Fig. 3
2-Group Model
Block Diagram

The above diagram represents interaction between P
1
and F2

insofar as it is characterized by the following properties;

(i) P
1

can emit events to P
2
and can receive them from P

2
,

-
and similarly for P

2 1
re r

(ii) both P
1

and P
2
may receive events from the "environment"

and both may emit events to that environment.

Thus, property (5) provides for "intra-group eclvity" vhile
property (ii) allows for the presence of task inputs from the
environmont. The interaction diagram may be considered from several
points of view by an external observer;

(a) the observer may have access only to the events received
from the pnvirorrent and those emitted to it,

(b) the observer may see only those events emitted from P
1

to P
2

and vice versa,

(c) the observer may note the events received from the
environment as well as both the events emitted to the
environment, and the events emitted by

P1 to P- and by P
2

to P
1

,

(d) the observer may have access to the events received froA
the environment as well as both the events emitted to

the environment and the events received by P
1
from P2

and by P
2

from P1

It is assumed in this model that all events emitted by P
1
are

received by P2, and vice versa. Thus, viewpoints (c) and (d) above
are equivalent.

14



Consider the formalization of viewpoint (c). Designate

the person-models as P
1
and P2. Therefore, the set of input events

to Pi is called I1, and the corresponding set for P2 is called 12.

Bat note that, in interaction, P
i

may receive events from two

sources; namely, from the environment and from P2. Denote this

situation by defining I1 = Ii * Ri2 . That is, the input events

to P
1
may now occur in pairs, where the first member of the pair

is the environmental input event and the second member of the pair

is an event emitted from P2 to Pi (thus the superscript "2" and

subscript "1"). In a similar manner, we can define I
2
= R1

2
* I

2
2

.

1
Repeating this procedure, we define R

1 = R1 * R2 and R
2
= R1 * R2.

It is not assumed that R
2
= R

2
so P

i
may emit events'that P2 cannot,

and vice versa. Thus, difference in skill or intellectual level is
maintained in the model.

Denote the observation of interaction of Pi and P2 from view-

point (c) as PlA P2. Now Pile P2 is a relation, i.e., a set of
ordered pairs of time functions. The nature of this relation is
as follows,

for all x Eat * I2)N and all 5rE (R1 * R2)N, and all

q E Qi * Q2 and all r E R1 * R2, (x,y)E(P
1

r
2

A )(q.r) iff
-

(i) x E (111' *

(ii) (3 wE (Q1 * e)N)(w(0) = q and for all n E N

w(n 4. 1) = x1((x1(n),y2i(n)), wi(n)). X 2((x2(n)ly21(n)), w2(n))))

(iii) y(0) = r and y(n -2. 1) = (fi((xi(n)4(n)), vi(n)),

f2((x2(n),4(n)), w2(n)))), where X1, Q1 and fi refer to Pi, and

similarly for P2, and where the notation wit x1, 4, we x2 and ya

is as defined in the appendix b. w is called the (q,r)-state-trajectory.

Since we wish this relation to hold for all initial states

ci.EQ1 * (P and all initial outputs r E Ri * R2, define

Pi.
A P2 = u (Pile P2)

(q,r)
(q,r) E (Q1 * Q2) * (R1 * R2)

15
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Note that

(a) xi and x2 are the time functions of first and second

members, respectively, from x.

(b) for all n E N, w(n) is an ordered pair with first member

being the "memory-state" of P
1
at time n, and second

member being the "memory-state" of P
2

at time n.

It is of interest to glean from the above expression that the

"memory-state" and the emitted response of P
1

depend upon the event

emitted by P2, and vice versa. But these are two of the relationships

implied by the intuitive statement that "P
1
and P2 are interacting".

Therefore, PIA P2 has some intuitive appeal as a representation for
"group interaction."

We may simplify our formal consideration of P
1
A P2 by making

the following definitions of functions associated with P
1 -2
A ;

/

(a) x$ a2
* Ii) * (Q- * Q2) --> Q

1
* Q2 such that

X(0 (.1$ i), (q, qt)) = x 1(q), x2(it, qt))

Note that X represents the "learning" function of P1A P2.

(b) f (I
2

* Il) * (Q1 * Q2) --> R1 * R2 such that

f((ii, i), (q, qt)) = (f1(i, q), f(it, qt)).

Note that f represents the "output" function of P
1
A P

2
.

9 .

Henceforth, P1A P- will be designated as a1,72-group." The

above definition can be extended to an "n-aroup", i.e., P1A P2A---AP n
,

in a straightforward manner.

The formalization of P1 AP2 (and its extension to P 1A P2A---AP)
provides a framework for the formal study of both the static and
oynamic characteristics of group behavior. That is, the static
behavior of the model is that behavior which is independent of
time, and so is not associated with a learning capability for any
of the individuals. This sort of behavior approximates the "steady
state" or "equilibrium" situation for a group. Thus, the conditions
under which a group nay exhibit cohesive (as opposed to clique-ish)
behavior in equilibrium may be studied in terms of the characteristics
of the individuals that make up the group. In the next section of
this report, the conditions on the individual goals and expectations
of each member of a dyad are given such that the dyad be a cohesive
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group in steady state. It shodld be noted that the investigation
of static behavior as given here is related to the "algebraie
models used by other authors.

The dynamic characteristics of group behavior are those which
involve time as a dependent variable, and so can be associated with
a learning capability for some or all of the individual members.
This type of behavior approximates the situations in groups where
at least one member is still assimilating information and possibly
modifying his behavior accordingly. Results from systems theory
indicate that the most pervasive dynamic characteristic of systems
is that of stability. That is, behavior is stable when it "settles
down" to some steady state or equilibrium. Later in this report,
necessary conditions on the relationship between the learning
capabilities of each member of a dyad are given so that the dyad
may settle down into some steady state situation. Another import-
ant characteristic of dynamic systems is the notion .of controllabilitz.
The behavior of a group may be said to be controllable if the "state"
of the group may be modified (e.g., changed from "clique-ish" group
to "cohesive" group) by some sequence of "external" or fienvironmentalh
inputs. Later in this report, the controllability of n-groups is
investigated.

In addition to the study of the static and dynamic characteristics
of group behavior, the formalization of n-groups allows the precise
definitions of such notions as status, justice, power, and othc
notions which are relevant to group behavior. Further, it allows
the derivation of relationships among these notions in a rigorous
manner. For example, it is shown later that certain "control"
inputs to a group whose members have learning capabilities can
affect the status of specific group members.

D.Atopertv of interaction model behaviort cohesiveness

PIA F2 represents behavior at the interaction-level. What
sort of behavior at this level is of interest?

Results obtained in general systems theory indicate
most pervasive property of systems is that of stztaity.
behavior may be called "stable" whenever the behavior is
over a long period of time, or is repetitive over such a
time.

that the
System

maintained
period of

Sinne stability is concerned with behavior that is maintained
over a long period of time, then, in a social context, we may be
most interested in stable behavior that is "good" behavior, i.e.,
ImEznte behavior. Consider the conditLna necessary and/or
sufficient for the group behavior to be mutually rewarding, in
which case the group may be said to be "cohesive."

20



1.

For the interaction model designated. A P2, the conditions
for stable cohesive behavior depend upon the environment

. .

input events and the learning processes o3-. P
1

P
2

and . Initially,
let us simplify our considerations by assuming that the effects
of the environment input and output events and the learning
processes aro negligible, in which case, static behavior is being
investigated.

Mathematically, these assumptions correspond to the require-

ments that (a) 3:1
2

and 12
1

and R1 and R2 are unit sets and (b) that
1 2

C21 and e are unit sets, respectively. Then, the subsystem transfer.
functions in each person model may be simplified in the follevrin3
manners

for i E { 1,2} and j E C 1, 2) and i j,

(a) o1 2 it3.'. -,> TrRi

Ji -,j
(b) g 2 A. * Ti ... I -""-> 7,4 i and similarly for 7.J. it n * 70 Rt.,

J J 3. 3.
(c) X i is a constant function and may be ignored,

(d)
,j

1 it. * 7,1 11,i1 si. > II . * TT. ''''
J

TT. ' 1
(e) (d1)1 2 13,.. * 7 ,-,i * Tr t * TT i *

3. /4 . R. * Tr J ,. ,i R *Tr , i3 R . h, j rt. * R.i. :s. 4 I Ii
Rrr 4.x TrRj T. "(Pbt1 * RI.) * (RY * RI.)

J ± 1 a. 1 j

(f) Illi : Tr i i i i >Sti
(P.:' * RT) * (R'..' * R.) ----j

1 j 1
The form for f1 may now be written as;

,j ,i i N
for all p E 4\1 1 % p i .....

riii((d.1)1(-p , ol( p), gi( p,o1( p ) ) , g ( F r o ( p )), ei( p ,oi( P )))).

j.
Dote that P1 is now a static system with transfer function f

i.

Thus, the previous definition for P
1
A P2 may be simplified to;

for all x E Ili * 12 and all y E (R21 * 1-121)11 and all yoE .,-;.
2

* .R2
1

,

rl .

(x; y) E (P1 A P2) iff
Yo

(i)(xl= * 4)N and

(ii) for all n E N, y(0) = yo :and

y (n (f1(y2(n)), fi2(y (21M.

1
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It is convenient, to define another function assouiated with Pi,

namely the function which. relates the input event of P1 to the distinguished

"goaltt-input in the ordering produced by (dt)
i
from that input

event. That is define 8 t such that, for all

p ER1, 1(p) = [raL.->. ( (d1 )±( P P ),gi( toi( p p ,

o1( p )),ei( p ,oi( p )))) 31.

Notice that 1( p) is the first element of an ordered pair,

this first element being a later input event, (from Pi) that is most

desired by Pi (according to Pits decision -r king strategy), and

the second element being P
i
ts response which is expected to produce

that desirable input event from Pi.

In order to formalize the notion of a "cohesve" situation,
the notion of a "reward-producing event" must be made rigorous;

for any p p is Pi-rewardinr.. to Pi iff fi(fi( p)).(85-( p )).

That is, the event p gives rise in P1 to a most desired later input

to Pi, namely Si( p) If it turns out that the response emitted by

Pi to achieve that input event elicits a return response from Pi

(which is itself determined by the goals and expectations of Pi)
/

(which is the sane as k
i

k p)), then the eventp has given rise to

a reward for P1 from, Pi, (Note the emphasis on g rather than 10.

Then define; for any y ERCP1 A P2) and any n EN, PlAP2
is putual-reward cohesive on y from n iff for all nt n,

y (nt) is P
I
-rewarding to P

2
and y2(nt) is P

2
-rewarding to P .

Finally define; Pi A P2 is mutual-reward poklepiye iff there

exists an n E N such that for all y ERAP
i
A P2), PIA P2 is mutual

reward stable on y from n.

The above definitions formalize the notion of an interaction
between two person-models which are "perfectly matched" to each
other. That is, after an "initial adjustment" period, every response
from one person model gives rise to a reward for the other, Such
a 2-group may be called cohesive.

The following two theorems indicate the conditions under which
such cohesiveness occurs in 2-groups.

19
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A more olegant presentation of the two theorems results
from the following definitions of functions associated with
1 ,2

P A P

(a) f: RI 2 .--4> Ri R that,
2 '1

, sucn

f(r,r') = (f1(r1), f2(r)).

(b) 6 : R1
2

* R2
2 1

* R2 such th;;.t

6 r,r') = (62(r), 61(r1)).

Theorem D-1.

If f f = 8 . then PIA P2 is mutual-reward cohesive (from
time zero).

Proof: Let f f = 8 . Then for all rE RI2 * R21, f f (r) =8 (r).

Si nce 6(P1 A P2) g
'

R1 * R2 then for every c E °VIA P2,) f f ( c) = 8 (c) .

Pic'{ any yE (PL,

2

A P',

1)

and any n Clearly. y(n) E EY(PlA P2) , and

so f f(y(n)) = 8 (y(n)).

Therefore f(y(n + 1)) = (f1(y2(n.+ 1)), f4(Y1(n + 1)))

= (11('2(-' (n»), f2(21«n»»
Y2

= gy(n)) = (452(y1(n)), 61(y2(n)))

Thus f.1 (f
2
(yi(n))) = 6

2
(y1(n)) and

f20(y2(n))) = 81(y2(n)).

So for any y E R(P
1 ,

A P? ) and any nE 11, y1 (n) is Fl-rewardimz
to P2 and y 2(n) is P

2-rewarding
to P1. In that. case PIA P2 is

mutual-reward cohesive on y from zero, for any YE Ce
1

A P2i.
Then, P1 A P2 is mutual reward cohesive (from time zero) .

QED

Theorem D-1 states a sufficient condition for obtaining

mutual --re yard. cohesive behavior in P
1 -2
A r . This condition

*spocifies a precise relationship among f
1,

f 81 and 6
2

which,
if it holds, r2;uarantces that mutual-rewardin3 behavior is achieved.

In words, the theorem states that, after some . time n, every input to Pi

from Pi TrhAch induces, via gi, a desired later input to Pi also

causes Pi to emit a response which, in turn, causes P3 to produce
a resnense, wl7.C.P0 the latter re-Tonso is Preciscy the aforementioned
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later input which Pi desired to receive. In other words, if the goals,

expectations and decision making processes of P- and P2 are "matched"
in precisely the manner indicated, mutual-reward cohesive behavior
is achieved. Thuss sroup behavior has been related to the psychological
characteristics of members of the groups,

In terms of our second example in section Al theorem D-1
indicates that cohesive behavior between teacher and students may
have occurred if their goals were compatible. That is inagino a
situation where the students desire to be disciplined in return for
which they will be attentive and work hard. In addiiions suppose
that the teacher desires hard work from his students and is convinced
that discipline produces this effort. In this case, the student's
goals are in accord with the teacherfs goals because an input event
to the students which represents discipline from the teacher (Who
emits the event in search of harder work from the students) resats
in the response from the students of "working hardePl. Thus, the
disciplineevent is "student-rewarding to the teacher". On the other
hand, an input event to the teachor which represents "hard work"
from the students (who emit the event in search of discipline)
results in the teacher continuing his discipline so as to sustain
the "hard work". Thus, the "hard-work" event is "teacher-reuarding
to the students". if these exchanges continue for a long period of
time, this group nay be called mutual-reward cohesive in the sense
of our definition. Generally, however, students' goals are ne:11
likely to inch ude receiving strict discipline in which case the
goals of the above teacher and his students conflict, thus proventing
cohesive behavior. The latter situation may be formalized by the
conrapositive of theorem D-2.

Theorem D-2. If PIA P2 is mutual-reward cohesive, then there exists
an n E 'N such that

f f / CY(PlA P2)
n
= 8 / (PIA P2)n

Proofs Assume PIA P2 is mutual-reward cohesive. Then there exists

an n EN such that for all yE OL (P1 A P2)p PIA P2 is mutual-reward
cohesive on y from n. So

(3 n E N) (Vy ER(PlA F2)) ( E I;) (n'

y
1
(n1) is -rel.Tarding to P2 and

y2(nt) is P2-rewarding to P
1)

thus
(3 n E N) (VyER(PlA P2))(V nt E N)(nr?.n

f1( f2 (y1(nt)) =
2
(y (n1)) an d

f2(f(y (nt)) = O'(y2(nt))).

Choose such an nE N, and pick any element rE tY(PlA P2),n. It must be

that there exAsts a y E6k(r Ai?2) and an nig. N such that y(n. + n') = r.

21.
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Let n n' = n" and clearly n" 11 Thus,

f f(r) = f f(y(n")) = f(f(y(n"))) = f(f(Yi(n"igy2(n"))) =

f(fi(y2(n")), f2(y1(n"))) = (f1(f2(y1(1P))), f2(fi(y2(n"))))

= (82(y1(n")), 81(y2(n")))

= 8(Y(n")) = 8(r).

So f f (7(131A P2),n =8 / 6-(PiA P2 )n.

QED

Theorem D-2 states that it is necessary for the goals, expectations

and decision-making processes of P
i

and P
2

to related in the precise
manner shown in order to over achieve mutual-reward cohesive behavior.

Corollary D-1 f f /e3r(P
1
A P2) = ofer(P A P

2
)

if and only if P
1
A P2 is mutualreward nohesiv (from time zero).

Proof; The proof follows from the proofs of .theorems D-1 and D-2.

E. Pro arty pf a.n tempti on poLsj

The previous section studied certain aspects of the behavior
,

of P
i
A P-

9
where the learning capabilities ol P and P

2
were neglected.

In this section, we uill continue to ignore the effects of inputs
from and outputs to the environment, but let us relax the restriction

on Q and Q2 being unit sets. Since Q1 and Q
2
may now be sets of

large cardinality, the individuals Pi and P''t can exhibit modified
behavior with time and so may appear.to be "learning".

Since the P
i

can now exhibit varied behavior with time, the
dynamic characteristics of group behavior may be fruitfully studied.
In particular, the property of stability may be consideredo Previously,
it was noted that a particular kind of stable behavior was desirable,
namely mutual-rewarding cohoaive behavior. In that case, n learnins
capability was present, and conditions were given such that a 2-group
exhibited cohesive behavior for all time beyond some time n. In
the present case where learning capabilities are present, cohesive
behavior may be temporarily achieved, but behavior may later become
non-cohesive due to the acquisition of knowledge (reference, say,
the final example in section A). Let us consider the somewhat
restricted case where a "learning" 2-group becomes cohesive and
remains so for all time.

Since I
1

12
2' 2

R1 and R2 are unit sets, the functions which

characterize the subsyste= of the P-models may be si!vlified as

shown in appendix c.
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The conditions necessary to achieve stability to cohesive
behavior can be investigated once we have a rigorous notion of
stability. Consider the following definition.

For all nE N and all qEQ.1 * Q2 and all r ER21 * RT and all

y E (P0-A p2)(a,r),

(Pi A P2) (q,r) is cohesin:LaLc1j--state-
taidectoLLE from n iff for all ny E N,

nt-1- n fv(04,
1)

(fw(ro(y(n1))) =6 w(n,)(y(nI))

Then Pi A p2 is cohesive-stable iff there exists an nE N such that

for all q E Q1 * Q2 and all r E R1 * R2 and all y E (PiA P2) (q,r)

(PIA P2)
(4,r)

is cohesive-stable on y and the (qtr)- state- trajectory

w from n.

Note that the notion of cohesive-stability is based upon
mutually rewarding exchanges. This notion differs from that of
mutual - reward cohesion in the previous section because, in this
case, the state of the F-model must be accounted for clueing each
exchange.Foroxemple,sincew.(n) may not be the same as w.(n 2),

the input which uas most desired by P3 at time n may no longer be
so distinguished at time n + 2. The acme definition assumes that
the state of knowledge does not change so appreciably as to cause
the latter situation to occur.

The following theorem specifies a sufficient condition on the

functions which characterize each of P
1
and P

2
such that their 2-

group is cohesively stable.

Theorem E-1. If for any p ER1
2
and 01ER

1

2
and q E Q

1
and qIE Q

2
,

8 (( p, (q,(711)) =C f1(f2(p ,q'), x1( p',q)),

£2(fi( pi,q), x2( p,q1))]

then PIA P2 is cohesive stable.

Proof2 Assume the antecedent is true. Pick any n1E N, any
1 2 1 2 (P1

A
2

kg r)
Designate

,

the (qir)-state-trajectory as w.
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1 2
So, since y(111) E R2 * R1 and w(nt) EQ1 * Q2,

8 w(11)(Y(11)) = 8 ((y2(0),y1(n1)),(wi(nOlyn1)))0

= [fi(f2(yi(n1)002(n1)), Xi(y2(n1)11/1(n1))).

f2(f1(y2(111)1wi(n1)). X2(y1(0)1w2(nI)))]

= f((fi(y2(nt)iwi(nI)), f2(yi(n1),mi(nI))),

61(y2(211),i(n1)), x2(y1(111);14.2(n1))))

= f (f ( (yi (n1 ) (nl ) ) (wi (nf ) ,m2 (nt ) ) ) $

X ((yl(n1),Y2(n1)),(wi(n1)042(n1)))

= f(f(y(n'),w(n')), X (y(n1)114-(11)))

= f(f(y(nt)sw(nI)), w(n + 1))

= fw(nl
4 1) 'Lm(nt )

(y611 ) ) ) .

Thus (P1A P2)((yr) is cohesive-stable on y and the (q,r)- state-

trajectory w from zero. Since this is true for any nIE N,
1qEQ1 *Q2 ,rER2 * Ri2 and yEa(PiA Pa), then P1A P2 is cohesive-

stable.

The above theorem displays a relationship among 81, f and X
i

(i = 1,2) such that, if the relationship holds: it is guaranteed
that the 2-group will exhibit cohesive-stability. Notice that
this condition bears some resemblance to the condition of theorem D-1.
However, the above condition is complicated by the presence of
changing states of knomledse.

The investigation of cohesive behavior for all time, as just
consi6ered, is a relatively simple consideration. In fact, tho
more leeneral case is that in which cohesive behavior occurs over
some intervals of time and does not occur at other times. The
investigation of such "cycles" of behavior, which are more character-
istic of real-life situations, appears to be a quite fruitful area
for future study. For example, it may be possible to display those

relationships among the subsystems of each of the P which result in
relatively lengthy intervals of cohesive group behavior.

Another useful refinement of the above development would involve
extending the notion of cohesive - stability beyond a "nextinput"
operation so as to allm a longer ].apse of time between response and
reward,
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F. Fronerty of it'll; Ot5. 0n-madol beha.vi orj controllability

The previous section considered the conditions which wore
conducive to cohesive-stable behavior. It was pointed out that, in
real-life situations, cohesive behavior is usually not maintained
for very long periods of time. In this section, mu begin to consider
the possibility of exerting external influence on the group in order,
for example, to achieve or maintain cohesive group behavior. Clearly,
since we are concerned with external influence, we need relax the

constraint Of I1 I
2

being unit sets as made in the previous section,
1 2

1
External influence, via inputs from the sets I1

2
, obviously

2
affects the responses from P

i
and P. A more significant effect of

external inputs is to modify the state of knowledge of P
i

. Such a
change can in turn affect the choice of response for' a given input
event. Thus, a change in state of knowledge may be employed for
reoemse:-control. Such influence appears to characterize the efforts
of parents to teach their children to exhibit selected responses and
repress others so that the mhole of behavior may be socially acceptable.

Consider a formalization of the notion of response-control, first
for a P-model and later for a 2-group. Note that, since we are deal-
ing with responses, the function d' which provides an ordering regard-
ing responses is the center or interest, how, the form for d' may be

:mitten as d's I * Q r
(I * R) * (I since, given a EI and

q ER, d' may be computed. via o, e, g and 7.

Assume that I and R are finite sets and that Ro = R . The
latter assumption may be interpreted as stating that even response
is considered "appropriate", no matter what input event occurs.
Further, recall that the elements of d' are not only partially ordered
with respect to the responses, but in fact simply ordered.

In order to clarify what is meant by an ordering "with respect
to the responses", let C be the set of simple orderings of the set R
and consider the function

Hi
7(1

C
* R) * (1 * R)

such that for any r, r'ER and any bE TT(
* R) *

(I there exists

a, OE I such that ((a,r),(0,r1))E b if and only if (r,r')EH(b).

For any bE
7

denote H(b) as b.
(1 * R) * (I *

The notion of b is useful since it can display the ordering
produced by d' as it,would look if it were "unclutteredb with elements
from I, The use of b has another implication in that ram elements



of G:.)dl may be aseeeiated with a given t. This nay bo interpreted
as not caring why P prefers one: response to another (i.e., not being
concerned with the roe?. that P is pursuing via any particular reeponse).

Consider the following definition of controllability with respect
to a given environmental context (i.e., with respect to a given input
event from the environment).

For any bERd.1 and a E I, P is response-controllable to b on a
iff for all q E Q, there exists an xE051) and an n E N such that

(i) x(n) = a and,

(ii) dt(x(n),L (x)(n)) H-1(b).

This definition may be interpreted as stating, that if P is
A

response controllable to b on a, then P can be eventually '!taught"

to display at least one of the orderings in H(b) when presented
with input a, regardless of Pls initial state of knowledge. A
sufficient condition for response-controllability may be derived
following several somewhat involved considerations which are
intended to display a metric space related to Q.

Since R is finite (with eardimlity k, say), the responses in

etc), vhere badl ney be indexed by the subset of integeeef1,2, kl.

Let the indexing function be called BIA) and be defined as

13-totb.-.>(1.,2,---,kisuchthatABb(r) k= if r is the greatest

element P in IAD, and Bb(r) = le--I if r is the greatest element in the

sub-ordering induced by b on (et -403 , etc.

The indexing function 3^ as defined above allows the definition

of a measure of distance on the set of simple orderings over the whole
of R. Thus, it becomes possible to formalize the notion of being
"close" to achieving the desired response ordering for a given input.
Now, if the subsystems of P were constructed such that it would be
possible to bring the ordering produced by dt closer to the desired
one at every time instant,"then it would be guaranteed that P
eventually achieves the desired ordering since it nay be shown that
there ere only a finite number of such orderings. The following
development and theorem display such a condition on the subsystem of. P.

The set C represents the set of simple orderings of R. Consider
the function pat C * C Z such that for any c, el E C2

P(c,c1) :7r6lEic( where Z is the sot of real numbers.r) B
el

(01,

The function is a metric, as shown in the appendix d.
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This metric can be extended to relate to tho elements of R.d1.
That is, the function H partitions u It) (I.* .p.) into the set

of equivalence classes A ri (IS) b is a simple ordering of Rl .

Define b lot iff H(b) = H(b1).

The b-equivalence class, [o] = b' j b b13 . Then

t =C [b] P bE IT(I * R) * (I * B.)3 Similarly, HM d1 partitions
. Let tyre set of such equivalence classes be denoted by '714

Consider the function p, h.: * >11 Z such that for en b, b'E R.d1,

[ b] [ 101 ) = PR(H(b),H(b1)). Clearly, pliis a metric.

The sufficient condition to be displayed shortly is expressed
via subsystem L, so consider the extension of µpi to a metric

related to Q. That is, note that for a given a E

citat Q TT
(I * R) * (1 * R)

Thus the set Q may be pa.rtitioned by Oa according to the following
relations

(pea q' iff (q)] rx.0 (qt)] .

Let the set of equivalence classes be denoted by and let

q]a (qt q1 . Consider the function p,
Qs

* Z

such that for all q,qt E Q, PQ( Cg 1a, = PH( {cita(q)], [dIa(c11):1).

Again, it should be clear the [IQ is a nietric.

The stage has been almost set for the sufficient condition ..)n
the subsystems of P which guarantees that. P is response-controllable
on a given input. The condition of interest is associated with the
"learning" subsystem L and, in particular, with the function X
Now, fox' a given a EI, Xat Q Q. However, the metric PQ is

associated with a , so define, for any a E I, drat 4 - such that for

any q E Q,
1
( [q] ) = Xa (q)]as

The function g glay have a number of properties, but the property
of interest here isaassociated with the fact that is in fact a metric
space.

That is, any function Kt iii --> N, where ii is a metric space

with metric p, , is a, coxrtractien 2iar, unrilri), if and only if there

exists an 0: < 1 such that for c.11.1 m, m1 E

p,(m,m1). ( (K(ra),K(m1))).
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Further, if 1.1 is a complete metric space, there e::::Ists a pni.pue
element mE M such that K(m) n, in which case m is called the
fixelks2.Int of K. (9)

Now it can be shown that is a complete metric space and so
a sufficient condition for response-oontrollabilit is at hand, For

purposes of expediency, let ba be a representative of the set

(di
a
)-1(b), for any a El and bE(Zdt

ThaoreM F-1:. For any b EG`&11 and aE I, if
a
is a contraction map

under PQ with fixed point [ba]a, then Pis response-contralablo to

b on a.

Proof: Pick any bEad.1 and a E I and assume that ota is a contraction

nap under p,Q with fixed point [ba]e.. Select any q EQ, cell it q.

Consider the 57:1.E c.rfP such that for all n EN, R'(n) = a, Clearly, for

any n EN, di (:7(n),L (c') (n)) = dia(La(7)(n)). It has been shown (10)

that the sequence %la.
a(

[ZI] a). ot (et ( »
a a a

converses to the fixed point of f,a, namely [be.] a.

But [7.1]a = [Le)(0)]a and

4-a( Ma) = [ X a
(71)1

a
= [L-(3c") (i )1

By induction, for any n EN,
r-- n tames

a
( 'a (]

a
) ) [L-(2)(n)] a

So the sequence

[IM.)(0)1a, [1,--(5?) (1).1a

converges to [ba1a. Further since R and I are ffnite, then a dt

is finite, in which case is finite. Therefore, the above scluence

converges in finite tine, say riF such that

1*"q(-5:) (17)1 a = a

Then 1.--(H)(71)
a

b
a

So [dIa(1.-q-(77) (TI))] = [dia(ba)] = ]

since ba E (d.la)-1(b).

Thus [ Jt (7(1-i),14-(5E)(R)) = [b ]
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So dfcm), is(R)(a))

in which case ii(d.'07(7),I,
4CRXE)) = Ii(b) = b

Thus dtM11),L.-(R)(ri)) E H-1(b)

So there exists an xEJ.,1) and n EN such that dt (x(n),I,(x.) (n)) E (b)

and x(n) = a.

Since this is so for any q E Q, Pis response-controllable to b on a.

QED

Theorem F-1 indicates that, in order to achieve response-
controllability on a given input a, it is sufficient for tet to be

a contraction map.
.4.

.

This may be interpreted in terms of "rote learning" where it is
presumed that a repetition of presentation of given infortwtion
causes the information to be learned and the associated desired
response to be displayede For examplel the repetitive presentation
to a secondgrader of an input event consisting of a statement that
"2 + 2 = 4" followed by the question "What is the sun of 2 and 27"
may eventually be rewarded by the response "the sum of 2 and 2 is 4"
if the student is controllable to this response.

The above development considers response controllability on
a single input. Future investigation would likely display conditions
such that response-controllability is ebta.ined for ppre than one
input event. Such a situation is closer to reality since in general
it is desired to teach students more than just one fact.

To this point, the responsecontrollability of a single P-model
has been investigated. Consider now the response-controllability

of a 2-group, PIA P2. In particular, uc may define for a.C-
i
* 12

2
and.

for any b CaXd1)1 * ( k ) ( d T )2, p1A p2 is rg,s1221.11tr91,719 to 1/. on.a

iff for all q E Q1 * QD there exists an x Ee(P1A P2) and an n EN

such that dl (x(n),L (x)(n)) C H (b) and x(n) = a, uhere L and H are

defined appropriately for P A P2.

Since neither. 11
2

I
1
nor I2 are restrictedestricted to be unit sets, either

P-model may receive tyn inputs at one time. Intuitively, it appears
that a person can understand only one message at a time. Thus,
to provide some intuitive appeal to the formalimtion of a 2-group,
consider the following functions wMch nay be termed "attention"
functions.
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(F-1) °CI s *

s 12 * Ri
1. 2

12
4: 2 2

(F-2) .

1
c"C

1
* R

1

2
-* 1

1

s I
2 * R -* R

1

2 2 2 2

There are two other possible sets of such functions, but the
two sets shQwn above are of immediate interest.

Thefunctiona.may be :Interpreted as indicating at a given time

whether Pi pays attention only to the environmental input or only
to the input from the other F-model. If a., holds for all time, then

the functions denoted by (F-1) above indicate that both P
1

and P
2

attend only to the environmental inputs. The functions denoted by

(F-2) above indicate that P
1
pays attention only to environmental

input whereas P
2

processes only these inputs received from P
1

.

Therefore, set (F-1) may be interpreted as characteristic of a
complotoly non-cohesive 2group (i.e., no communication among group
nembers), whereas set (F-2) can be thought of as representing a
"superior - subordinate relationship suoh that the environmental

. .

P
1

inputs affect. P2 only vla

The attention-functions need be incorporated into the P-models
in order to investigate the controllability of 2-groups. This can

be accomplished in the case where 0( holds for all time by modifying Pi

as follows;
(i) let A.

i
be replaced by 0

and (ii) lot of be replaced by 0 o1

and (iii) modifying g1,, g , e and d1 appropriately.

Future work should be aimed at incorporatinginto Pi in e. more

-precise manner than indicated above. Such a meaificatien of p1 appears
to present no problems and, one() it is completed, several theorems on
controllability of 2- groups may be derived. For example, for the set
of attention functions called (F-i), it is likely that the fclle-4ing
statement may be proved;



for any b d(dt)1 * (i\)(d')2 and a E li 4. I2,

ifX is a contraction map under p 1 2
Q. * Q

with fixed point [b
a- a

1 , then P
1
A P

2
is

response-controllable to b on a.

Furthermore, for the set of attention functions denoted
(F -.2), it appears that an interesting sufficient condition may

be derived such that P2ts response-ordering is first carried to

the desired type via input to P
1

, then remains there as P
1
ts

response-ordering is carried to its desired kind, thus obtaining

response-controllability for Pi A P2.

More complex situations arise when Oi is allowed to vary

in time. For example, real-life situations indicate that the
form forcX (i.e., whether (F-1) or (F-2), etc.) depends upon

recent input events. Thus an extensive area of future study
is opened by these considerations.
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G. Imnaet of anvlronr1.,ntr., iiwpts on rfroun s+.ruatiire

The previous section investigated one aspect of the effect of
environmental inputs on group behavior: In particular, interest
was centered on the possibility of "teaching" a certain response
to be produced in a given context. If such a "lesson" could be
taught, the group was said to be response-controllable.

In this section, it is assumed that the group under consideration
is response-controllable. However, though it is feasible under this
assumption to teach a given lesson, the effect upon the structure of
the group of learning that lesson remains to be investigated. For
instance, such an effect was discussed in the final exeJ:iplo of
section A. We may formalize the situation of that example by the
following development. Since the example under consideration involved
a change in status of a group member, the notion of status need. be
formalized. This can be accomplished based upon Hemanst stated
relationship between status and "rare and valuae activities".
Consider such a formalization in terms of n-groups.

.

A homolKeneoua n- P2APiA PA --- AP
n
is such that I = II

I
2

= = I
n

and R = R1 = R
2
= = R

n
. Such a group may be

interpreted as one in which all members "speak the same language".

For a homogeneous n-- group, (P1A P2A APn)(q,r) describes the

input-output behavior of the n-group for initial ftate

q E Qi ><: Q2 * * Q
n

and initial, output r E' R
n T.

* R *
11";10S

* R.
Associated, with this input-output behavior is the (q,r)-state-

trajectory w E (QS * *
_n

* )
N

, as discussed previously.

Consider (1)
1
A P2A APn)(q,r) fnr any q and any r. Then

define, for any a E I, rt E R and n li, Pi his ata:lans a:Taxagsma

at V W, 12.1f P-710. only if

(i) for all nt E N, if n' n, then ?' (a) = 1'1
wi(nt)

and for all j E { 1,--,n }- (11 , fj
)
1.(a) 0 rt

(ii) for all j E { 1,- ,n} - (11 p there exists an

at E T and n" E N such that, if n" S n, then8 (as) = rt.
W (11° )

In the above definition, condition (i) accounts for the

"rareness" of activity rt since only P" may emit rt up to time n.

Condition (ii) states that, for every group member except possibly P1,
there is at least one situation in which r would have been the
desired later input and so is "valuable" to each of those members.
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The provious section considered the possi,b3itx of causing P
to prefer responses to a given input event in a certain orders
Consider now a formalization of the .actualj..fa of displaying a

certain response preference.

For any a E I, rl E R and n E N, P LelU.Pd,r1 for a at tir29
n if and only if

(i) for all n1 E N, if n' < n, then fi (a) ri ,

v

(ii) f!
.4(n 4- 1)

(a) = r1

This definition states that, prior to time n, Pi would not emit
r' in response to a, but would do so at time n.

A theorem may be framed relating the learning of a "skill" by
every member of a group to the subsequent status structure of the
group.

Theorem G.-1. For any a E 1, r' E R, n E N and i E {1,-,n} ,

if Pi has status re r for a at time n and, for all

Pi E Pi, ---,Pnl {P } , Pi learned r1 for a at time n, then

tharo is no P
k

E {P
1

, Pill such that P
k

has status re r for
a at time n 1.

Proof. Pick any a E I, r1
that the antecedent of tho

fi N(a) = r1 and for all
w. km/1

( 1 , -

implication is true. Then

jE ( 1, ---, n} - (i}, fi
If

(n+

Assume

1)
(a' ) = rt.

Thus, for ell k E { 1, ---, n} , condition (i) of the definition

of status of P
k

is not satisfied. Therefore, there is no P
k

such

that P
k
has status re r for a time n.+ 1.

QED

Theorem G-1 relates to the example under consideration in
that it formalizes the loss of status of a skill-hold®r when that
skill is taught to the remainder of the group.

The notions of status and justice play an important role in
the work of Homans. We have considered the concept of status in
some detail, both in this section and at the end of section A.
However, there are many other aspects of "status" which romin to
be investigated and other authors (especially (5)) are doing
extensive investigations in this area. The notion of justice is
much less studied, yet apparently is of significance in every
exchar4o among group members. Extensions of this effort should
include a formalization of the concept of justice, and relate it
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to other notions dIscued here. For oxanple, one relatAenship

vhich should be investigatod is the conjecture that "all exchanges

in cohesive-stable groups conforn to the notion of distributive

justice as stated in proposition (2) of section A".



991,1q71124.(:;ps

This study indicates. that it is feasible.te employ mathe-
matical models to investigate the broader social aspects of
classroom organization. Further, it displays a procedure for
investigating dynamic bchavicr which parallels other system-
theoretic developments. In particular, a mathematical framework
for examining static and dynamic behavior of groups of learning,
goal-seeking individuals is developed. Several significant
notions such as cohesiveness, stability, controllability and
status are formalized within this framework and relationships
are displayed between such notions and the "internal" character-
istics of the group members. Further, recommendations as to
future effort at establishing "deeper" relationships are given in
each of sections D through F.

Due to the incipient nature of this study, therp are a number
of refinements and extensions that are both possible and desirable.
For example, the P-model may provide a bettor reflection of reality
if the notion of "perception" is incorporated into it, perhaps
via a partition of the set I (note that, in the example of section B,
the inputs 134

53'
i
102

and i
201

represent classes of inputs and

so are related to some partition of input events). Also, the
investigation of dynamic behavior can be more meaningful if the
learning capabilities of the P-models are extended to allow
modification of goals and response-choices as well as expectations.
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App s

(a) General *ystems theory

(b) Definitions of w. , xi and y.

(c) Simplification of P-model

(d) Proofd) Prrr is a metric

(a) General Systems Theory

A aMara." Sy5 t Or.I. is any binary relation; any set of ordered
pairs. If S is a general system, then the sets

obi S = (x (ay) ((x,y) E S)1

and S = ( y (x)((x,y) E S))

are called, respectively, the iryout ult. and putr.att set of S.

A Save fuction is any function x such that ,;,)tx = N, 1,7here N is
the set of positive integers (including zero).

The 13::::t.1,on of a, t irile ganction x, denoted xn, is the set

= ((ni,x(nt n)) I E N

The set x
n
may be interpreted as what x "looks like" beyond time n.

A Lime) ratsAn is any set of ordered pairs of time functions

S A
N

* B such that A and B are sotr., and

AN= I xs N A

and BN = (yIys N B}

The input space of a system S, denotedSS, is the set

N-9 s = x(n) 1 xCeS 4 n E N

The output space of a system S, denoted 6, is the set

as = Y(n) I y E n E N}

The n-sf..,qt..ion of a stem S., denoted Sn, is the set

Sn = {(xn, y n) (x,y) E S 3

Sn may be interpreted as what the system "looks like" beyond

time n.
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For a system S, thc frrpThnLo1i of S, denoted kS, is the
set

kS = ((x(n), y(n)) (x,y) ESS:nEN1..

A system is s:PatLe iff kS is a function.

The seriu ;imterconectj,m cf systems S and St, denoted S St,

is the system

S SI = ((xlz)1 (g3r)((x,Y) E S & (y,z) E SI))

The parallel interconnection of systems S end S', denoted S // S,
is the sot

where

s // S' ((x,y//z) (x,y) E S E 3')

yilz = ((n, (y(n), z(n)))1NEN1

The gpoff.sp.TNA 1.ntercsmpectim of systems S and SI, denoted
S # $I, is such that

(x,y) E S iff (1) x EZS
(ii) 30)((x130) E S ec(l/yi,y) E St)

Other notation;

For any sot A
'

711 =(BIDgA3

(1D) Definitions cf x1 arid y
i'

For any ordered pair, p = (a,b), the fl.,n-1,L element of p, denoted

(p)1, is the element.a; the second element of p, denoted (p)2, is the

element b.

For any time function x E (A * B).N , where A and B are sets,

xl = ( (n,(x(n))1)1 n E N)

and = ( (n,(x(n))
2
)j n EN)

,N
For any time function y E ((A * B) * (C e D)) where A, B, C

and D are sots,

yl = ((n, (yi(n))/) in EN)

and yl = ((n, .(y1(n))2) I n E

and similarly for y and 4.

(c) Simplification of P-model

For iE (1,21 and j E [1,2) and i
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(a) 0, g1, (d')1 and ml are as given in section 1);

CO xis R t Q5' 7-> Ql

(c) eit Qi 7 Ri 7 i

3
7

*

Now,fimaybellrittenas;fich that for

all pEP1 and all q E Q1, f( p,q) = mi((dI)i(p Op1(P),g1(P,°i(P)),

1.(P1 oi(p)),ei(p,05-(p),q))).

Similarly, the form for Si may be displayed as;

Sit Ri * Qi 11

the relation Pi A P2 may be expressed as follow,'

for al) E (II * 4 I)1I and all y E CR2" * 4)1C1 and all q E Qi * Q2

1
and all r E R *

2 1'

(x,y) E (P1 A P2) iff f, 12)N
(q,r) 1 2'

(ii) E(Q1 * Q2)1.1(Vn E /i)(11(0) = q

and w(n 1) = (X1(w1(n),Y2(n)),X2(w2(n),Y,(n)))

(iii) for all n E N, y(0) = r and

y(n 4 1) (f1(w1(n),y2(n)),f2(w2(n),Y,(n))).

It can be shown that Iris uniel e for a given pair (q,r). For
this reason, wwill be referred to as the r),zste-t-inipctoa.

Now Pi A P2 = U OA P2)
(q,r)(q,r) E (Qi * Q2) * *

2 1 1 2
For the present case, the functions associated with P AP can

be sireplificd as follos;

(a) >t t (R12' * * (Q1 * Q2) - Qt * Q2 such that

((r,r'), (q,q')) = (A1(r1,q), )2(r,q1))

(b) tt (R * ItT) * (Q1 * Q2) --> R1 * R1 such that

f((r,r'), (q,q')) = (f1(r1,(1), f2(r,q'))

(c) 8: (R1 * RT) * (Q1 * C?) fl * 14 such that

8 ((r.,0), (q,q')) = (52(r1 q1), 61(r1,0)
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(d) Proof that TTR
is a metric

If pit(c,c1) = 0, then every term in the summation must be

zero. Thus, for every r E R, Bc(r) = 301(r), in which case c = cf.

Conversely, if c = cl, then Pc(r) = Dci(r) for all r E R, and so

R
(c

'

cl) = 0. Further, due to the nature of the magnitude operator,

PR(c1c1). = p(ct,c). Finally Ila(c,c1) pa(cl,c")

2
1B (l") Bl(r)1 4.

E 13c1(r) Bell(r)1
r E R c

o
r

R

But E (113 (r) Ect(r)( 4. 160(r) - Bcc(r),

r E R

c
(r)

c
1,(r)1 as may be shourn by displaying all nine

r E'R
cases for tho relationship among

c
(r)

cl
(r) and B

c

Thus p,R(c,c1) p,R(c10)?:-- p,R(c, cl'). So p,R, is a metric.

43
40


